WorldWideScience

Sample records for higher o2 affinity

  1. Blood O2 affinity of a large polar elasmobranch, the Greenland shark Somniosus microcephalus

    DEFF Research Database (Denmark)

    Herbert, N.A.; Skov, Peter Vilhelm; Tirsgaard, B.

    2017-01-01

    The Greenland shark (Somniosus microcephalus. Bloch & Schneider 1801) is a polar elasmobranch that is hypothesised to possess a unique metabolic physiology due to its extreme large size, the cold waters it inhabits and its slow swimming lifestyle. Our results therefore provide the first insight...... into the metabolic physiology of this unique shark, with a focus on blood O2 affinity. An evaluation of blood O2 affinity at 2 °C using tonometry revealed a P50 of 11.7 mmHg at a PCO2 of 2.25 mmHg and a Bohr effect (binding sensitivity of blood to pH, ϕ = Δlog P50/ΔpH) of −0.26. A comparative evaluation of blood O2...... affinity across elasmobranch fishes suggests that S. microcephalus has a high blood O2 affinity (i.e., low P50) and a small Bohr effect but these are common traits in sluggish elasmobranch fishes, with little evidence for any relationship of blood O2 affinity to the low metabolic rates, low environmental...

  2. ATP-induced temperature independence of hemoglobin-O2 affinity in heterothermic billfish

    DEFF Research Database (Denmark)

    Weber, Roy E.; Campbell, Kevin L.; Fago, Angela

    2010-01-01

    heterotherms, where it may hamper unloading (e.g. in cold extremities of arctic mammals) or increase the diffusive arterio-venous short-circuiting of O2 (e.g. in counter-current heat exchangers of warm swimming muscles of tuna). We hypothesized analogous blood specializations in heterothermic billfish, whose......The inverse relationship between temperature and hemoglobin-O2 affinity resulting from the exothermic nature of heme oxygenation favors O2 unloading from blood to warm, metabolically active tissues. However, this temperature sensitivity is maladaptive, and commonly countered in regional...... to allosterically modulating hemoglobin-O2 affinity, ATP diminishes its temperature sensitivity, reducing deleterious arterio-venous short-circuiting of oxygen in the cranial billfish heat exchangers. The mechanism underlying this reduction in oxygenation enthalpy differs fundamentally from that in tuna, supporting...

  3. Density Functional Study of Structures and Electron Affinities of BrO4F/BrO4F-

    Directory of Open Access Journals (Sweden)

    Wei Li

    2009-07-01

    Full Text Available The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT methods with DZP++ basis sets. The planar F-Br…O2O2 complexes possess 3A' electronic state for neutral molecule and 4A' state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad, the vertical electron affinity (EAvert, and the vertical detachment energy (VDE. The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om (m = 1-4 and De- (BrO4F- → BrO4-mF- + Om and BrO4F- → BrO4-mF + Om- are predicted. The adiabatic electron affinities (EAad were predicted to be 4.52 eV for F-Br…O2O2 (3A'← 4A' (B3LYP method.

  4. F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.

    Science.gov (United States)

    Grant, Daniel J; Wang, Tsang-Hsiu; Vasiliu, Monica; Dixon, David A; Christe, Karl O

    2011-03-07

    Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes. © 2011

  5. Tuning affinity and reversibility for O2 binding in dinuclear Co(II) complexes

    DEFF Research Database (Denmark)

    Vad, Mads Sørensen; Johansson, Frank Bartnik; Seidler-Egdal, Rune Kirk

    2013-01-01

    The O2 binding affinity of a series of dicobalt(II) complexes can be tuned between p(O2)50% = 2.3 × 10−3 and 700 × 10−3 atm at 40 °C by varying the number of H and Cl atoms in the bridging acetato ligands of [Co2(bpbp)(CH(3−n)ClnCO2)(CH3CN)2]2+, where bpbp− = 2,6-bis(N,N-bis(2-pyridylmethyl)amino...

  6. Role of H2O2 on the kinetics of low-affinity high-capacity Na+-dependent alanine transport in SHR proximal tubular epithelial cells

    International Nuclear Information System (INIS)

    Pinto, Vanda; Pinho, Maria Joao; Jose, Pedro A.; Soares-da-Silva, Patricio

    2010-01-01

    Research highlights: → H 2 O 2 in excess is required for the presence of a low-affinity high-capacity component for the Na + -dependent [ 14 C]-L-alanine uptake in SHR PTE cells only. → It is suggested that Na + binding in renal ASCT2 may be regulated by ROS in SHR PTE cells. -- Abstract: The presence of high and low sodium affinity states for the Na + -dependent [ 14 C]-L-alanine uptake in immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293 (2007) R538-R547). This study evaluated the role of H 2 O 2 on the Na + -dependent [ 14 C]-L-alanine uptake of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). Na + dependence of [ 14 C]-L-alanine uptake was investigated replacing NaCl with an equimolar concentration of choline chloride in vehicle- and apocynin-treated cells. Na + removal from the uptake solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H 2 O 2 levels in the extracellular medium significantly reduced Na + -K m and V max values of the low-affinity high-capacity component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na + -dependent [ 14 C]-L-alanine uptake. After removal of apocynin from the culture medium, H 2 O 2 levels returned to basal values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h. Under these experimental conditions, the Na + -K m and V max of the high-affinity low-capacity state were unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but not 4 days after apocynin removal. In conclusion, H 2 O 2 in excess is required for the presence of a low-affinity high-capacity component for the Na + -dependent [ 14 C]-L-alanine uptake in SHR PTE cells only. It is suggested that Na + binding in renal ASCT2 may be regulated by ROS in SHR PTE cells.

  7. Design, synthesis, and activity of 2,3-diphosphoglycerate analogs as allosteric modulators of hemoglobin O2 affinity.

    Science.gov (United States)

    Kassa, Tigist W; Zhang, Ning; Palmer, Andre F; Matthews, Jason Shastri

    2013-04-01

    Four phosphonate derivates of 2,3-diphosphoglycerate (2,3-DPG), in which the phosphate group is replaced by a methylene or difluoromethylene, were successfully synthesized for use as allosteric modulators of hemoglobin (Hb) O2 affinity. The syntheses were accomplished in four steps and the reagents were converted to their potassium salts to allow for effective binding with Hb in aqueous media. O2 equilibrium measurements of the chemically modified Hbs exhibited P50 values in the range 8.9-12.8 with Hill coefficients in the range of 1.5-2.4.

  8. Bovine serum albumin-GABA-His-Pro-NH2: an immunogen for production of higher affinity antisera for TRH

    International Nuclear Information System (INIS)

    Youngblood, W.W.; Moray, L.J.; Busby, W.H.; Kizer, J.S.

    1983-01-01

    Coupling the synthesize hapten, GABA-His-Pro-NH 2 to bovine serum albumin at a molar ratio of 18 : 1 by means of water-soluble carbodiimide produced an immunogen which stimulated the rapid production in New Zealand white rabbits of antisera with an affinity (2.42+-0.3x10 9 l/mol) for TRH, some 8-fold higher than that of antisera (0.33+-0.03x10 9 l/mol) raised by immunization with a conjugate produced by the currently accepted bis-diazotized-benzidine bridging technique. These higher affinity antibodies when used in a standard TRH radioimmunoassay permitted the detection of less than 1/pg of TRH per assay tube and showed an extremely low affinity for the two major metabolites of TRH, p-Glu-His-Pro-COOH and His-Pro diketopiperazine (4.84x10 4 and 4.0x10 4 l/mol, respectively). Application of this newer radioimmunoassay to the measurement of TRH in brain tissue yielded measurements of TRH content similar to those determined by current RIA methods. Chromatography of whole crude brain extracts revealed one major immunoreactive peak corresponding to authentic TRH. It is concluded that immunization of rabbits with this hapten rapidly produces antisera with a high affinity for TRH suitable for the development of a very sensitive TRH radioimmunoassay. (Auth.)

  9. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity.

    Science.gov (United States)

    Zádor, Ferenc; Balogh, Mihály; Váradi, András; Zádori, Zoltán S; Király, Kornél; Szűcs, Edina; Varga, Bence; Lázár, Bernadette; Hosztafi, Sándor; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-11-05

    14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [ 35 S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile 5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (E max ) and potency (EC 50 ) than morphine in MVD, RVD or [ 35 S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Decrease in the red cell cofactor 2,3-diphosphoglycerate increases hemoglobin oxygen affinity in the hibernating brown bear Ursus arctos.

    Science.gov (United States)

    Revsbech, Inge G; Malte, Hans; Fröbert, Ole; Evans, Alina; Blanc, Stéphane; Josefsson, Johan; Fago, Angela

    2013-01-01

    During winter hibernation, brown bears (Ursus arctos) reduce basal O(2) consumption rate to ∼25% compared with the active state, while body temperature decreases moderately (to ∼30°C), suggesting a temperature-independent component in their metabolic depression. To establish whether changes in O(2) consumption during hibernation correlate with changes in blood O(2) affinity, we took blood samples from the same six individuals of hibernating and nonhibernating free-ranging brown bears during winter and summer, respectively. A single hemoglobin (Hb) component was detected in all samples, indicating no switch in Hb synthesis. O(2) binding curves measured on red blood cell lysates at 30°C and 37°C showed a less temperature-sensitive O(2) affinity than in other vertebrates. Furthermore, hemolysates from hibernating bears consistently showed lower cooperativity and higher O(2) affinity than their summer counterparts, regardless of the temperature. We found that this increase in O(2) affinity was associated with a significant decrease in the red cell Hb-cofactor 2,3-diphosphoglycerate (DPG) during hibernation to approximately half of the summer value. Experiments performed on purified Hb, to which DPG had been added to match summer and winter levels, confirmed that the low DPG content was the cause of the left shift in the Hb-O(2) equilibrium curve during hibernation. Levels of plasma lactate indicated that glycolysis is not upregulated during hibernation and that metabolism is essentially aerobic. Calculations show that the increase in Hb-O(2) affinity and decrease in cooperativity resulting from decreased red cell DPG may be crucial in maintaining a fairly constant tissue oxygen tension during hibernation in vivo.

  11. Metric-affine formalism of higher derivative scalar fields in cosmology

    International Nuclear Information System (INIS)

    Li, Mingzhe; Wang, Xiulian

    2012-01-01

    Higher derivative scalar field theories have received considerable attention for the potentially explanations of the initial state of the universe or the current cosmic acceleration which they might offer. They have also attracted many interests in the phenomenological studies of infrared modifications of gravity. These theories are mostly studied by the metric variational approach in which only the metric is the fundamental field to account for the gravitation. In this paper we study the higher derivative scalar fields with the metric-affine formalism where the affine connection is treated arbitrarily at the beginning. Because the higher derivative scalar fields couple to the connection directly in a covariant theory these two formalisms will lead to different results. These differences are suppressed by the powers of the Planck mass and are usually expected to have small effects. But in some cases they may cause non-negligible deviations. We show by a higher derivative dark energy model that the two formalisms lead to significantly different pictures of the future universe

  12. H2O2-induced higher order chromatin degradation: A novel ...

    Indian Academy of Sciences (India)

    Unknown

    mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant concentrations rapidly induces higher order chromatin degradation (HOCD), i.e. enzymatic ... clease works through a single strand scission mechanism ... a great mutagenic risk to the surviving cells, because en-.

  13. Affinity column for purification of the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor

    International Nuclear Information System (INIS)

    Venton, D.L.; Arora, S.K.; Kim, S.O.; Lim, C.T.; Le Breton, G.C.

    1987-01-01

    The TXA 2 /PGH 2 receptor antagonist, 13-azaprostanoic acid (13-APA), was synthesized and used as the immobilized ligand in the affinity column purification of the 13-APA/U46619 binding component in human platelets. Diazo coupling of the ligand to the phenol of this tyr-gly-gly-NH-(CO)-O-Sepharose gave the affinity column material. Isolated platelet membranes were solubilized with detergent, applied directly to the affinity column and the eluate collected as 6 x 70 ml fractions. For each fraction, protein concentration and specific 3 H-13-APA/numberH-U46619 binding were determined. The majority of the applied protein (>98%) eluted in fraction number1. However, the specific 13-APA/U46619 binding per mg of protein was localized in fractions number4 and number5, representing approximately a 500-fold purification of this binding component. These results suggest that the platelet TXA 2 /PGH 2 receptor protein is retarded by this column, and that starting from crude, solubilized platelet membranes, a single pass through the column provides a 500-fold purification of the receptor

  14. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility

    International Nuclear Information System (INIS)

    Meng Xiu-Qing; Fang Yun-Zhang; Wu Feng-Min

    2012-01-01

    The dispersibility of bio-molecules such as lecithins on the surface of ZnO nanowires are investigated for biosensor applications. Lecithins can be absorbed on an as-synthesized ZnO nanowire surface in the form of sub-micro sized clusters, while scattering well on those annealed under oxygen atmosphere. Wettability analysis reveals that the as-synthesized ZnO nanowires bear a super-hydrophobic surface, which convents to superhydrophilic after oxygen annealing. First-principles calculations indicate that the adsorption energy of ZnO with water is about 0.2 eV at a distance of 2 Å when it is superhydrophilic, suggesting that lecithin can be absorbed on the hydrophilic surface stably at this distance and the bio-affinity can be enhanced under this condition. (condensed matter: structure, mechanical and thermal properties)

  15. H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering

    Science.gov (United States)

    Srivastava, Amit; Kumar, Naresh; Singh, Priti; Singh, Sunil Kumar

    2017-06-01

    Catalyst-free ( 00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250-10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme's kinetic parameter (Michaelis-Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.

  16. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture.

    Science.gov (United States)

    Conthe, Monica; Wittorf, Lea; Kuenen, J Gijs; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Hallin, Sara

    2018-04-01

    Reduction of the greenhouse gas N 2 O to N 2 is a trait among denitrifying and non-denitrifying microorganisms having an N 2 O reductase, encoded by nosZ. The nosZ phylogeny has two major clades, I and II, and physiological differences among organisms within the clades may affect N 2 O emissions from ecosystems. To increase our understanding of the ecophysiology of N 2 O reducers, we determined the thermodynamic growth efficiency of N 2 O reduction and the selection of N 2 O reducers under N 2 O- or acetate-limiting conditions in a continuous culture enriched from a natural community with N 2 O as electron acceptor and acetate as electron donor. The biomass yields were higher during N 2 O limitation, irrespective of dilution rate and community composition. The former was corroborated in a continuous culture of Pseudomonas stutzeri and was potentially due to cytotoxic effects of surplus N 2 O. Denitrifiers were favored over non-denitrifying N 2 O reducers under all conditions and Proteobacteria harboring clade I nosZ dominated. The abundance of nosZ clade II increased when allowing for lower growth rates, but bacteria with nosZ clade I had a higher affinity for N 2 O, as defined by μ max /K s . Thus, the specific growth rate is likely a key factor determining the composition of communities living on N 2 O respiration under growth-limited conditions.

  17. Location of the higher affinity copper site on human hemoglobin by the use of the spin label technique

    International Nuclear Information System (INIS)

    Tabak, M.; Louro, S.R.W.

    1983-11-01

    Addition of copper (II) ions to Cys β-93 maleimide spin-labelled human hemoglobin A produces a dramatic decrease in the amplitude of the spin-label ESR spectra. This effect was analyzed in the framework of Leigh's theory which permits interspin distances to be deduced from the effect of dipolar coupling on the ESR spectra and led to an estimate of 9A as the distance between the label and the higher affinity copper site. Taking into account the previous results which suggest that four nitrogen atoms coordinate with copper, and that the N terminal val β-1 and His β-2 residues are involved, the location of the higher affinity copper site is proposed to be at the β 1 β 2 interface of the hemoglobin molecule, involving the N terminal of one β subunit and the C terminal of the other. (Author) [pt

  18. Facile Synthesis of Mesocrystalline SnO2 Nanorods on Reduced Graphene Oxide Sheets: An Appealing Multifunctional Affinity Probe for Sequential Enrichment of Endogenous Peptides and Phosphopeptides.

    Science.gov (United States)

    Ma, Wen; Zhang, Feng; Li, Liping; Chen, Shuai; Qi, Limin; Liu, Huwei; Bai, Yu

    2016-12-28

    A novel multifunctional composite comprising mesocrystalline SnO 2 nanorods (NRs) vertically aligned on reduced graphene oxide (rGO) sheets was synthesized and developed for sequential capture of endogenous peptides and phosphopeptides. With the hydrophobicity of rGO and high affinity of SnO 2 nanorods, sequential enrichment of endogenous peptides and phosphopeptides could be easily achieved through a modulation of elution buffer. With this multifunctional nanomaterial, 36 peptides were observed from diluted bovine serum albumin (BSA) tryptic digest and 4 phosphopeptides could be selectively captured from β-casein digest. The detection limit of tryptic digest of β-casein was low to 4 × 10 -10 M, and the selectivity was up to 1:500 (molar ratio of β-casein and BSA digest). The effectiveness and robustness of rGO-SnO 2 NRs in a complex biological system was also confirmed by using human serum as a real sample. Our work is promising for small peptide enrichment and identification especially in complicated biological sample preparation, which also opens a new perspective in the design of multifunctional affinity probes for proteome or peptidome.

  19. Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions

    Directory of Open Access Journals (Sweden)

    Nur Hasiba Kamaruddin

    2017-10-01

    Full Text Available The study of binding affinity is essential in surface plasmon resonance (SPR sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+ and Hg2+ ions according to their SPR response using a gold/silver/gold/chitosan–graphene oxide (Au/Ag/Au/CS–GO sensor for the concentration range of 0.1–5 ppm. The higher affinity of Pb2+ to binding with the CS–GO sensor explains the outstanding sensitivity of 2.05 °ppm−1 against 1.66 °ppm−1 of Hg2+. The maximum signal-to-noise ratio (SNR upon detection of Pb2+ is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS–GO SPR sensor also exhibits excellent repeatability in Pb2+ due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+ and Hg2+ on the CS–GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+ and Hg2+ ions is computed. The affinity of Pb2+ ions to the Au/Ag/Au/CS–GO sensor is significantly higher than that of Hg2+ based on the value of K, 7 × 105 M−1 and 4 × 105 M−1, respectively. The higher shift in SPR angles due to Pb2+ and Hg2+ compared to Cr3+, Cu2+ and Zn2+ ions also reveals the greater affinity of the CS–GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.

  20. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin.

    Directory of Open Access Journals (Sweden)

    Johan Nilvebrant

    Full Text Available The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein.

  1. The O-H Bond Dissociation Energies of Substituted Phenols and Proton Affinities of Substituted Phenoxide Ions: A DFT Study

    Directory of Open Access Journals (Sweden)

    Tadafumi Uchimaru

    2002-04-01

    Full Text Available Abstract: The accurate O-H bond dissociation enthalpies for a series of meta and para substituted phenols (X-C6H4-OH, X=H, F, Cl, CH3, OCH3, OH, NH2, CF3, CN, and NO2 have been calculated by using the (ROB3LYP procedure with 6-311G(d,p and 6-311++G(2df,2p basis sets. The proton affinities of the corresponding phenoxide ions (XC6H4-O- have also been computed at the same level of theory. The effect of change of substituent position on the energetics of substituted phenols has been analyzed. The correlations of Hammett’s substituent constants with the bond dissociation enthalpies of the O-H bonds of phenols and proton affinities of phenoxide ions have been explored.

  2. Protein-phosphotyrosine proteome profiling by superbinder-SH2 domain affinity purification mass spectrometry, sSH2-AP-MS.

    Science.gov (United States)

    Tong, Jiefei; Cao, Biyin; Martyn, Gregory D; Krieger, Jonathan R; Taylor, Paul; Yates, Bradley; Sidhu, Sachdev S; Li, Shawn S C; Mao, Xinliang; Moran, Michael F

    2017-03-01

    Recently, "superbinder" SH2 domain variants with three amino acid substitutions (sSH2) were reported to have 100-fold or greater affinity for protein-phosphotyrosine (pY) than natural SH2 domains. Here we report a protocol in which His-tagged Src sSH2 efficiently captures pY-peptides from protease-digested HeLa cell total protein extracts. Affinity purification of pY-peptides by this method shows little bias for pY-proximal amino acid sequences, comparable to that achieved by using antibodies to pY, but with equal or higher yield. Superbinder-SH2 affinity purification mass spectrometry (sSH2-AP-MS) therefore provides an efficient and economical approach for unbiased pY-directed phospho-proteome profiling without the use of antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Higher-order momentum distributions and locally affine LDDMM registration

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Nielsen, Mads; Darkner, Sune

    2013-01-01

    description of affine transformations and subsequent compact description of non-translational movement in a globally nonrigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction......To achieve sparse parametrizations that allow intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper...... higher-order momentum distributions in the large deformation diffeomorphic metric mapping (LDDMM) registration framework. While the zeroth-order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local...

  4. Comparing Multi-Step IMAC and Multi-Step TiO2 Methods for Phosphopeptide Enrichment

    Science.gov (United States)

    Yue, Xiaoshan; Schunter, Alissa; Hummon, Amanda B.

    2016-01-01

    Phosphopeptide enrichment from complicated peptide mixtures is an essential step for mass spectrometry-based phosphoproteomic studies to reduce sample complexity and ionization suppression effects. Typical methods for enriching phosphopeptides include immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) beads, which have selective affinity and can interact with phosphopeptides. In this study, the IMAC enrichment method was compared with the TiO2 enrichment method, using a multi-step enrichment strategy from whole cell lysate, to evaluate their abilities to enrich for different types of phosphopeptides. The peptide-to-beads ratios were optimized for both IMAC and TiO2 beads. Both IMAC and TiO2 enrichments were performed for three rounds to enable the maximum extraction of phosphopeptides from the whole cell lysates. The phosphopeptides that are unique to IMAC enrichment, unique to TiO2 enrichment, and identified with both IMAC and TiO2 enrichment were analyzed for their characteristics. Both IMAC and TiO2 enriched similar amounts of phosphopeptides with comparable enrichment efficiency. However, phosphopeptides that are unique to IMAC enrichment showed a higher percentage of multi-phosphopeptides, as well as a higher percentage of longer, basic, and hydrophilic phosphopeptides. Also, the IMAC and TiO2 procedures clearly enriched phosphopeptides with different motifs. Finally, further enriching with two rounds of TiO2 from the supernatant after IMAC enrichment, or further enriching with two rounds of IMAC from the supernatant TiO2 enrichment does not fully recover the phosphopeptides that are not identified with the corresponding multi-step enrichment. PMID:26237447

  5. High-throughput identification of higher-κ dielectrics from an amorphous N2-doped HfO2–TiO2 library

    International Nuclear Information System (INIS)

    Chang, K.-S.; Lu, W.-C.; Wu, C.-Y.; Feng, H.-C.

    2014-01-01

    Highlights: • Amorphous N 2 -doped HfO 2 –TiO 2 libraries were fabricated using sputtering. • Structure and quality of the dielectric and interfacial layers were investigated. • κ (54), J L < 10 −6 A/cm 2 , and equivalent oxide thickness (1 nm) were identified. - Abstract: High-throughput sputtering was used to fabricate high-quality, amorphous, thin HfO 2 –TiO 2 and N 2 -doped HfO 2 –TiO 2 (HfON–TiON) gate dielectric libraries. Electron probe energy dispersive spectroscopy was used to investigate the structures, compositions, and qualities of the dielectric and interfacial layers of these libraries to determine their electrical properties. A κ value of approximately 54, a leakage current density <10 −6 A/cm 2 , and an equivalent oxide thickness of approximately 1 nm were identified in an HfON–TiON library within a composition range of 68–80 at.% Ti. This library exhibits promise for application in highly advanced metal–oxide–semiconductor (higher-κ) gate stacks

  6. Argonaute pull-down and RISC analysis using 2'-O-methylated oligonucleotides affinity matrices.

    Science.gov (United States)

    Jannot, Guillaume; Vasquez-Rifo, Alejandro; Simard, Martin J

    2011-01-01

    During the last decade, several novel small non-coding RNA pathways have been unveiled, which reach out to many biological processes. Common to all these pathways is the binding of a small RNA molecule to a protein member of the Argonaute family, which forms a minimal core complex called the RNA-induced silencing complex or RISC. The RISC targets mRNAs in a sequence-specific manner, either to induce mRNA cleavage through the intrinsic activity of the Argonaute protein or to abrogate protein synthesis by a mechanism that is still under investigation. We describe here, in details, a method for the affinity chromatography of the let-7 RISC starting from extracts of the nematode Caenorhabditis elegans. Our method exploits the sequence specificity of the RISC and makes use of biotinylated and 2'-O-methylated oligonucleotides to trap and pull-down small RNAs and their associated proteins. Importantly, this technique may easily be adapted to target other small RNAs expressed in different cell types or model organisms. This method provides a useful strategy to identify the proteins associated with the RISC, and hence gain insight in the functions of small RNAs.

  7. Solution structure of the Grb2 SH2 domain complexed with a high-affinity inhibitor

    International Nuclear Information System (INIS)

    Ogura, Kenji; Shiga, Takanori; Yokochi, Masashi; Yuzawa, Satoru; Burke, Terrence R.; Inagaki, Fuyuhiko

    2008-01-01

    The solution structure of the growth factor receptor-bound protein 2 (Grb2) SH2 domain complexed with a high-affinity inhibitor containing a non-phosphorus phosphate mimetic within a macrocyclic platform was determined by nuclear magnetic resonance (NMR) spectroscopy. Unambiguous assignments of the bound inhibitor and intermolecular NOEs between the Grb2 SH2 domain and the inhibitor was accomplished using perdeuterated Grb2 SH2 protein. The well-defined solution structure of the complex was obtained and compared to those by X-ray crystallography. Since the crystal structure of the Grb2 SH2 domain formed a domain-swapped dimer and several inhibitors were bound to a hinge region, there were appreciable differences between the solution and crystal structures. Based on the binding interactions between the inhibitor and the Grb2 SH2 domain in solution, we proposed a design of second-generation inhibitors that could be expected to have higher affinity

  8. Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    -moieties for benzyl alcohol have been shown to maintain affinity for hPepT1. The primary aim of the present study was to investigate if modifications of the benzyl alcohol model drug influence the corresponding D-Glu-Ala and D-Asp-Ala model prodrugs' affinity for hPepT1 in Caco-2 cells. A second aim...... was to investigate the transepithelial transport and hydrolysis parameters for D-Asp(BnO)-Ala and D-Glu(BnO)-Ala across Caco-2 cell monolayers. In the present study, all investigated D-Asp-Ala and D-Glu-Ala model prodrugs retained various degrees of affinity for hPepT1 in Caco-2 cells. These affinities are used....... Transepithelial transport studies performed using Caco-2 cells of D-Asp(BnO)-Ala and D-Glu(BnO)-Ala showed that the K(m) for transepithelial transport was not significantly different for the two compounds. The maximal transport rate of the carrier-mediated flux component does not differ between the two model...

  9. The synthesis of higher alcohols using modified Cu/ZnO/Al@#2@#O@#3@# catalysts

    NARCIS (Netherlands)

    Slaa, J.C.; Slaa, J.C.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1992-01-01

    This paper gives a review of research work in the synthesis of higher alcohols over catalysts based on Cu/ZnO/Al2O3, emphasizing three main topics: (i) the effect on selectivity of the addition of several compounds to this catalyst, (ii) the effect on selectivity of the reaction conditions used, and

  10. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    International Nuclear Information System (INIS)

    Ouargli-Saker, R.; Bouazizi, N.; Boukoussa, B.; Barrimo, Diana; Paola-Nunes-Beltrao, Ana; Azzouz, A.

    2017-01-01

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe"0-NPs and Cu"0-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO_2 and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu"o (CuNPs) and Fe"o (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO_2 retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  11. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ouargli-Saker, R. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Bouazizi, N. [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Unité de recherche, Electrochimie, Matériaux et Environnement, Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès (Tunisia); Boukoussa, B. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Lqamb, Laboratório de Química Analítica Ambiental, Faculdade de Química, Pontifícia Universidade Católica do Rio Grande do Sul (Brazil); Barrimo, Diana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Paola-Nunes-Beltrao, Ana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Laboratory of Materials Chemistry L.C.M, University of Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran (Algeria); Azzouz, A., E-mail: azzouz.a@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada)

    2017-07-31

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe{sup 0}-NPs and Cu{sup 0}-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO{sub 2} and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu{sup o} (CuNPs) and Fe{sup o} (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO{sub 2} retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  12. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin.

    Science.gov (United States)

    Gifford, Stacey M; Liu, Weizhi; Mader, Christopher C; Halo, Tiffany L; Machida, Kazuya; Boggon, Titus J; Koleske, Anthony J

    2014-07-11

    The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity "Arg-like" SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an "Abl-like" low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  14. Influences of Mg Doping on the Electrochemical Performance of TiO2 Nanodots Based Biosensor Electrodes

    Directory of Open Access Journals (Sweden)

    M. S. H. Al-Furjan

    2014-01-01

    Full Text Available Electrochemical biosensors are essential for health monitors to help in diagnosis and detection of diseases. Enzyme adsorptions on biosensor electrodes and direct electron transfer between them have been recognized as key factors to affect biosensor performance. TiO2 has a good protein adsorption ability and facilitates having more enzyme adsorption and better electron transfer. In this work, Mg ions are introduced into TiO2 nanodots in order to further improve electrode performance because Mg ions are considered to have good affinity with proteins or enzymes. Mg doped TiO2 nanodots on Ti substrates were prepared by spin-coating and calcining. The effects of Mg doping on the nanodots morphology and performance of the electrodes were investigated. The density and size of TiO2 nanodots were obviously changed with Mg doping. The sensitivity of 2% Mg doped TiO2 nanodots based biosensor electrode increased to 1377.64 from 897.8 µA mM−1 cm−2 and its KMapp decreases to 0.83 from 1.27 mM, implying that the enzyme achieves higher catalytic efficiency due to better affinity of the enzyme with the Mg doped TiO2. The present work could provide an alternative to improve biosensor performances.

  15. The synthesis of higher alcohols using modified Cu/ZnO/Al@#2@#O@#3@# catalysts

    OpenAIRE

    Slaa, J.C.; Slaa, J.C.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1992-01-01

    This paper gives a review of research work in the synthesis of higher alcohols over catalysts based on Cu/ZnO/Al2O3, emphasizing three main topics: (i) the effect on selectivity of the addition of several compounds to this catalyst, (ii) the effect on selectivity of the reaction conditions used, and (iii) the reaction network leading to the different products found. Although the use of alkali compounds has been studied most extensively, other compounds, for example those containing manganese,...

  16. Correlated ab initio calculations of spectroscopic parameters of SnO within the framework of the higher-order generalized Douglas-Kroll transformation.

    Science.gov (United States)

    Wolf, Alexander; Reiher, Markus; Hess, Bernd Artur

    2004-05-08

    The first molecular calculations with the generalized Douglas-Kroll method up to fifth order in the external potential (DKH5) are presented. We study the spectroscopic parameters and electron affinity of the tin oxide molecule SnO and its anion SnO(-) applying nonrelativistic as well as relativistic calculations with higher orders of the DK approximation. In order to guarantee highly accurate results close to the basis set limit, an all-electron basis for Sn of at least quintuple-zeta quality has been constructed and optimized. All-electron CCSD(T) calculations of the potential energy curves of both SnO and SnO(-) reproduce the experimental values very well. Relative energies and valence properties are already well described with the established standard second-order approximation DKH2 and the higher-order corrections DKH3-DKH5 hardly affect these quantities. However, an accurate description of total energies and inner-shell properties requires superior relativistic schemes up to DKH5. (c) 2004 American Institute of Physics.

  17. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  18. Repairable and nonrepairable inactivation of irradiated aqueous papain: effect of OH, O2-, e/sub aq-/, and H2O2

    International Nuclear Information System (INIS)

    Lin, W.S.; Clement, J.R.; Gaucher, G.M.; Armstrong, D.A.

    1975-01-01

    Repairable inactivation of papain irradiated in dilute aqueous solutions saturated with air or nitrous oxide is caused predominantly by reversible oxidation of Cys 25 SH by H 2 O 2 . The same process occurs in nitrogen-saturated solutions but the yield of repairable product decreases at higher doses, probably because of the consumption of H 2 O 2 by intermediates formed from e - /sub aq/ and papain. The OH radical produces only nonrepairable damage, with the fraction of the OH radical causing nonrepairable inactivation (f/sub OH//sup n.r./) equal to 0.1 and this is accompanied by, if not solely due to, SH loss. The O 2 - radical with f/sub O 2 //sup -n.r. = 0.4 also causes nonrepairable damage resulting from or accompanied by SH loss. In addition, there is evidence that every O 2 - reacts with papain to produce a hydrogen peroxide molecule, thus causing a marked increase in the repairable yield. The solvated electron for which f/sub e//Sup n.r./ is 0.07 does not appear to destroy Cys 25 SH, and must, therefore, inactivate papain by damaging other essential residues or changing the active site geometry. The inactivation yields for the present papain solutions prepared by affinity chromatography are compared with other work. Discrepancies in previous determinations of sulfhydryl loss are attributed to the special properties of the sulfenic acid product of the H 2 O 2 -papain reaction and its different effects on pHMB and DTNB assays. (U.S.)

  19. IA-2 autoantibody affinity in children at risk for type 1 diabetes.

    Science.gov (United States)

    Krause, Stephanie; Chmiel, Ruth; Bonifacio, Ezio; Scholz, Marlon; Powell, Michael; Furmaniak, Jadwiga; Rees Smith, Bernard; Ziegler, Anette-G; Achenbach, Peter

    2012-12-01

    Autoantibodies to insulinoma-associated protein 2 (IA-2A) are associated with increased risk for type 1 diabetes. Here we examined IA-2A affinity and epitope specificity to assess heterogeneity in response intensity in relation to pathogenesis and diabetes risk in 50 children who were prospectively followed from birth. At first IA-2A appearance, affinity ranged from 10(7) to 10(11)L/mol and was high (>1.0×10(9)L/mol) in 41 (82%) children. IA-2A affinity was not associated with epitope specificity or HLA class II haplotype. On follow-up, affinity increased or remained high, and IA-2A were commonly against epitopes within the protein tyrosine phosphatase-like IA-2 domain and the homologue protein IA-2β. IA-2A were preceded or accompanied by other islet autoantibodies in 49 (98%) children, of which 34 progressed to diabetes. IA-2A affinity did not stratify diabetes risk. In conclusion, the IA-2A response in children is intense with rapid maturation against immunogenic epitopes and a strong association with diabetes development. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Characterization of the ER-Targeted Low Affinity Ca2+ Probe D4ER

    Directory of Open Access Journals (Sweden)

    Elisa Greotti

    2016-09-01

    Full Text Available Calcium ion (Ca2+ is a ubiquitous intracellular messenger and changes in its concentration impact on nearly every aspect of cell life. Endoplasmic reticulum (ER represents the major intracellular Ca2+ store and the free Ca2+ concentration ([Ca2+] within its lumen ([Ca2+]ER can reach levels higher than 1 mM. Several genetically-encoded ER-targeted Ca2+ sensors have been developed over the last years. However, most of them are non-ratiometric and, thus, their signal is difficult to calibrate in live cells and is affected by shifts in the focal plane and artifactual movements of the sample. On the other hand, existing ratiometric Ca2+ probes are plagued by different drawbacks, such as a double dissociation constant (Kd for Ca2+, low dynamic range, and an affinity for the cation that is too high for the levels of [Ca2+] in the ER lumen. Here, we report the characterization of a recently generated ER-targeted, Förster resonance energy transfer (FRET-based, Cameleon probe, named D4ER, characterized by suitable Ca2+ affinity and dynamic range for monitoring [Ca2+] variations within the ER. As an example, resting [Ca2+]ER have been evaluated in a known paradigm of altered ER Ca2+ homeostasis, i.e., in cells expressing a mutated form of the familial Alzheimer’s Disease-linked protein Presenilin 2 (PS2. The lower Ca2+ affinity of the D4ER probe, compared to that of the previously generated D1ER, allowed the detection of a conspicuous, more clear-cut, reduction in ER Ca2+ content in cells expressing mutated PS2, compared to controls.

  1. Mobile Technology Affinity in Renal Transplant Recipients.

    Science.gov (United States)

    Reber, S; Scheel, J; Stoessel, L; Schieber, K; Jank, S; Lüker, C; Vitinius, F; Grundmann, F; Eckardt, K-U; Prokosch, H-U; Erim, Y

    Medication nonadherence is a common problem in renal transplant recipients (RTRs). Mobile health approaches to improve medication adherence are a current trend, and several medication adherence apps are available. However, it is unknown whether RTRs use these technologies and to what extent. In the present study, the mobile technology affinity of RTRs was analyzed. We hypothesized significant age differences in mobile technology affinity and that mobile technology affinity is associated with better cognitive functioning as well as higher educational level. A total of 109 RTRs (63% male) participated in the cross-sectional study, with an overall mean age of 51.8 ± 14.2 years. The study included the Technology Experience Questionnaire (TEQ) for the assessment of mobile technology affinity, a cognitive test battery, and sociodemographic data. Overall, 57.4% of the patients used a smartphone or tablet and almost 45% used apps. The TEQ sum score was 20.9 in a possible range from 6 (no affinity to technology) to 30 (very high affinity). Younger patients had significantly higher scores in mobile technology affinity. The only significant gender difference was found in having fun with using electronic devices: Men enjoyed technology more than women did. Mobile technology affinity was positively associated with cognitive functioning and educational level. Young adult patients might profit most from mobile health approaches. Furthermore, high educational level and normal cognitive functioning promote mobile technology affinity. This should be kept in mind when designing mobile technology health (mHealth) interventions for RTRs. For beneficial mHealth interventions, further research on potential barriers and desired technologic features is necessary to adapt apps to patients' needs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hemoglobin affinity in Andean rodents

    Directory of Open Access Journals (Sweden)

    HRVOJ OSTOJIC

    2002-01-01

    Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.

  3. Homogeneity of peraluminous SiO2-B2O3-Al2O3-Na2O-CaO-Nd2O3 glasses: Effect of neodymium content

    International Nuclear Information System (INIS)

    Gasnier, E.; Bardez-Giboire, I.; Massoni, N.; Montouillout, V.; Pellerin, N.; Allix, M.; Ory, S.; Cabie, M.; Poissonnet, S.; Massiot, D.

    2014-01-01

    Considering the interest of developing new glass matrices able to immobilize higher concentration of high level nuclear wastes than currently used nuclear borosilicate compositions, glasses containing high rare earth contents are of particular interest. This study focuses on a peraluminous alumino borosilicate system SiO 2 -B 2 O 3 -Al 2 O 3 -Na 2 O-CaO-Nd 2 O 3 defined by a per-alkaline/peraluminous ratio RP = ([Na 2 O] + [CaO])/ ([Na 2 O] + [CaO] + [Al 2 O 3 ]) ≤ 0.5. Samples with various contents of Nd 2 O 3 from 0 to 10 mol% were studied using DSC, XRD, SEM, TEM, STEM and EMPA methods. The glasses present a high thermal stability even after a slow cooling treatment from the melt. Only a slight mullite crystallization is detected for low Nd 2 O 3 content (≤2.3 mol%) and crystallization of a neodymium borosilicate crystalline phase combined to a phase separation occurred at high Nd 2 O 3 content (≥8 mol%). The solubility of neodymium in the presence of aluminum is demonstrated, with higher neodymium incorporation amounts than in per-alkaline glasses. (authors)

  4. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank

    Science.gov (United States)

    Fu, Yuchen; Shelley-Abrahamson, Seth

    2016-06-01

    We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.

  5. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein.

    Directory of Open Access Journals (Sweden)

    George P Anderson

    Full Text Available Single-domain antibodies derived from the unique New Antigen Receptor found in sharks have numerous potential applications, ranging from diagnostic reagents to therapeutics. Shark-derived single-domain antibodies possess the same characteristic ability to refold after heat denaturation found in single-domain antibodies derived from camelid heavy-chain-only antibodies. Recently, two shark derived single-domain antibodies specific for the nucleoprotein of Ebola virus were described. Our evaluation confirmed their high affinity for the nucleoprotein, but found their melting temperatures to be low relative to most single-domain antibodies. Our first approach towards improving their stability was grafting antigen-binding regions (complementarity determining regions of one of these single-domain antibodies onto a high melting temperature shark single-domain antibody. This resulted in two variants: one that displayed excellent affinity with a low melting temperature, while the other had poor affinity but a higher melting temperature. These new proteins, however, differed in only 3 amino acids within the complementarity determining region 2 sequence. In shark single-domain antibodies, the complementarity determining region 2 is often referred to as hypervariable region 2, as this segment of the antibody domain is truncated compared to the sequence in camelid single-domain antibodies and conventional heavy chain variable domains. To elucidate which of the three amino acids or combinations thereof were responsible for the affinity and stability we made the 6 double and single point mutants that covered the intermediates between these two clones. We found a single amino acid change that achieved a 10°C higher melting temperature while maintaining sub nM affinity. This research gives insights into the impact of the shark sdAb hypervariable 2 region on both stability and affinity.

  6. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    Yeast surface display is an effective tool for antibody affinity maturation because yeast can be used as an all-in-one workhorse to assemble, display and screen diversified antibody libraries. By employing the natural ability of yeast Saccharomyces cerevisiae to efficiently recombine multiple DNA...... laboratory conditions. A particular emphasis was put on using molecular techniques in conjunction with microenvironmental measurements (O2, pH, irradiance), a combination that is rarely found but provides a much more detailed understanding of “cause and effect” in complex natural systems...

  7. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    Science.gov (United States)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  8. [3H]-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and [3H] ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    International Nuclear Information System (INIS)

    Branchek, T.; Adham, N.; Macchi, M.; Kao, H.T.; Hartig, P.R.

    1990-01-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to [3H]ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding the serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both [3H]DOB and [3H]ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate [Gpp(NH)p] to this system caused a rightward shift and steepening of agonist competition curves for [3H] ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity [3H]DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that [3H]DOB and [3H]ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein

  9. Characterization of glucagon-like peptide-1 receptor beta-arrestin 2 interaction: a high-affinity receptor phenotype

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Martini, Lene; Schwartz, Thue W

    2005-01-01

    To dissect the interaction between beta-arrestin ((beta)arr) and family B G protein-coupled receptors, we constructed fusion proteins between the glucagon-like peptide 1 receptor and (beta)arr2. The fusion constructs had an increase in apparent affinity selectively for glucagon, suggesting...... that (beta)arr2 interaction locks the receptor in a high-affinity conformation, which can be explored by some, but not all, ligands. The fusion constructs adopted a signaling phenotype governed by the tethered (beta)arr2 with an attenuated G protein-mediated cAMP signal and a higher maximal internalization...... of that which has previously been characterized for family A G protein-coupled receptors, suggesting similarities in the effect of (beta)arr interaction between family A and B receptors also at the molecular level....

  10. Genetically based low oxygen affinities of felid hemoglobins: lack of biochemical adaptation to high-altitude hypoxia in the snow leopard

    Science.gov (United States)

    Janecka, Jan E.; Nielsen, Simone S. E.; Andersen, Sidsel D.; Hoffmann, Federico G.; Weber, Roy E.; Anderson, Trevor; Storz, Jay F.; Fago, Angela

    2015-01-01

    ABSTRACT Genetically based modifications of hemoglobin (Hb) function that increase blood–O2 affinity are hallmarks of hypoxia adaptation in vertebrates. Among mammals, felid Hbs are unusual in that they have low intrinsic O2 affinities and reduced sensitivities to the allosteric cofactor 2,3-diphosphoglycerate (DPG). This combination of features compromises the acclimatization capacity of blood–O2 affinity and has led to the hypothesis that felids have a restricted physiological niche breadth relative to other mammals. In seeming defiance of this conjecture, the snow leopard (Panthera uncia) has an extraordinarily broad elevational distribution and occurs at elevations above 6000 m in the Himalayas. Here, we characterized structural and functional variation of big cat Hbs and investigated molecular mechanisms of Hb adaptation and allosteric regulation that may contribute to the extreme hypoxia tolerance of the snow leopard. Experiments revealed that purified Hbs from snow leopard and African lion exhibited equally low O2 affinities and DPG sensitivities. Both properties are primarily attributable to a single amino acid substitution, β2His→Phe, which occurred in the common ancestor of Felidae. Given the low O2 affinity and reduced regulatory capacity of feline Hbs, the extreme hypoxia tolerance of snow leopards must be attributable to compensatory modifications of other steps in the O2-transport pathway. PMID:26246610

  11. Interaction between alkaline earth cations and oxo-ligands. DFT study of the affinity of the Ca2+ cation for carbonyl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; Carneiro, José Walkimar de Mesquita; Romeiro, Gilberto Alves; Paes, Lilian Weitzel Coelho

    2011-02-01

    The affinity of the Ca(2+) ion for a set of substituted carbonyl ligands was analyzed with both the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) methods. Two types of ligands were studied: a set of monosubstituted [O=CH(R)] and a set of disubstituted ligands [O=C(R)(2)] (R=H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either directly bound to the carbonyl carbon atom or to the para position of a phenyl ring. The interaction energy was calculated to quantify the affinity of the Ca(2+) cation for the ligands. Geometric and electronic parameters were correlated with the intensity of the metal-ligand interaction. The electronic nature of the substituent is the main parameter that determines the interaction energy. Donor groups make the interaction energy more negative (stabilizing the complex formed), while acceptor groups make the interaction energy less negative (destabilizing the complex formed).

  12. Higher spin currents in the critical O(N) vector model at 1/N2

    International Nuclear Information System (INIS)

    Manashov, A.N.; Strohmaier, M.

    2017-06-01

    We calculate the anomalous dimensions of higher spin singlet currents in the critical O(N) vector model at order 1/N 2 . The results are shown to be in agreement with the four-loop perturbative computation in φ 4 theory in 4-2ε dimensions. It is known that the order 1/N anomalous dimensions of higher-spin currents happen to be the same in the Gross-Neveu and the critical vector model. On the contrary, the order 1/N 2 corrections are different. The results can also be interpreted as a prediction for the two-loop computation in the dual higher-spin gravity.

  13. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology.

    Science.gov (United States)

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of

  14. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  15. Fire increases the risk of higher soil N2O emissions from Mediterranean Macchia ecosystems

    DEFF Research Database (Denmark)

    Karhu, Kristiina; Dannenmann, M.; Kitzler, B.

    2015-01-01

    on climate change. However, the potential importance of indirect GHG emissions due to changes in soil biological and chemical properties after fire is less well known. Increased soil mineral nitrogen (N) concentrations after fire pose a risk for increased emissions of gaseous N, but studies on the post......-fire N2O production and soil N turnover rates (mineralization, nitrification, microbial immobilization, denitrification) are still rare. We determined N2O production, rates of N turnover and pathways for N2O production from the soil of burned and unburned plots of a Macchia shrubland in central Spain...... using a 15N labelling approach. Measurements were initiated before the controlled burning and continued for up to half a year after fire. Fire markedly increased the risk of N2O emissions from soil through denitrification (N2O production rate was 3 to ≈30 times higher in burned soils compared to control...

  16. Thermokinetic model of borosilicate glass dissolution: contextual affinity

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.

    1989-01-01

    Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100 0 C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Helgeson. It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. We prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites. 19 refs

  17. The phenomenon of phase separated in Na2O-B2O3-SiO2, Na2O-SiO2-P2O5 glasses

    International Nuclear Information System (INIS)

    Procyk, B.; Bieniarz, P.; Plichta, E.; Pudelek, B.; Kucinski, G.; Staniewicz-Brudnik, B.

    1997-01-01

    During the thermal treatment, the phenomenon of phase separation has been observed in the some glasses. The glass has became opaque, due to the opalescence of phase separated. Investigations of the phenomenon of phase separation were conducted using the basic systems: Na 2 O-B 2 O 3 -SiO 2 , Na 2 O-SiO 2 -P 2 O 5 and theirs modifications. The occurrence of binodal and spinodal phase decomposition was observed by TEM. The phase separation inhomogeneities have drop-like character and with higher concentration shows a tendency for coalescence. The influence of the chemical composition, temperature and time on the phenomenon of phase separation in the investigated glasses has been defined. (author)

  18. Experimental and theoretical study about sulfur deactivation of Ni/ CeO{sub 2} and Rh/CeO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ocsachoque, Marco A., E-mail: ocmarco@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr Jorge J. Ronco”, (CONICET, CCT La Plata), Departamento de Química, Facultad de Cs Exactas (UNLP), Calle 48 N° 257, 1900 La Plata (Argentina); Eugenio Russman, Juan I.; Irigoyen, Beatriz [Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES), Departamento de Ingeniería Química, Facultad de Ingeniería (UBA), Buenos Aires (Argentina); Gazzoli, Delia [Dipartimento di Chimia, Universitá di Roma “La Sapienza”, Roma (Italy); González, María G. [Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr Jorge J. Ronco”, (CONICET, CCT La Plata), Departamento de Química, Facultad de Cs Exactas (UNLP), Calle 48 N° 257, 1900 La Plata (Argentina)

    2016-04-01

    Sulfur deactivation of Ni/CeO{sub 2} and Rh/CeO{sub 2} catalysts were examined through an experimental and theoretical study. These catalysts were characterized by N{sub 2} adsorption, X-ray diffraction, temperature programmed reaction, thermogravimetric analysis, Uv–visible spectroscopy and Raman spectroscopy, and tested under the methane dry reforming reaction in the presence of H{sub 2}S. On the other hand, different possible interactions of sulfur with Rh, Ni or surface sites of the CeO{sub 2} support were evaluated by performing energy calculations with the density functional theory (DFT). Overall, the results indicate that tolerance to sulfur of Rh/CeO{sub 2} catalyst is higher than that of Ni/CeO{sub 2} one. In this sense, TPR measurements show that reduction of CeO{sub 2} is promoted by the presence of Rh. This effect, probably caused by hydrogen spillover to CeO{sub 2} support during the reduction of RhO{sub x} species, could be linked to a high oxygen donation capacity of Rh/CeO{sub 2} catalysts. Accordingly, the O{sup 2−} species existing on Rh/CeO{sub 2} catalysts, revealed by Raman spectra of these samples, could favor sulfur oxidation and prevent Rh–S interactions. Likewise, the theoretical calculations show that desorption of S–O species from Rh/CeO{sub 2} system is more favorable than that from Ni/CeO{sub 2} one. Therefore, our experimental and theoretical study about sulfur deactivation of Ni and Rh supported on CeO{sub 2} allow us to postulate that Rh can help to desorb SO{sub x} species formed on the support, retarding sulfur poisoning of the Rh/CeO{sub 2} catalysts. - Highlights: • CeO{sub 2} support can act as a sacrifice trap decreasing sulfur poisoning. • Theoretical calculations indicate an important nickel affinity with sulfur. • Rh would favor desorption of S–O species formed on the support. • The O{sup 2−} species present on the Rh–CeO{sub 2} sample favor sulfur removal.

  19. Preparation of ZnO-SnO2 ceramic materials by a coprecipitation method

    Directory of Open Access Journals (Sweden)

    Caballero, A. C.

    2006-06-01

    Full Text Available Tin (IV-doped zinc oxide ceramics find its main application as specific gas sensor devices. The sensor ability of the mixture and its particular affinity for a particular gas (selectivity depends both on the crystalline phases in the microstructure of the sintered semiconductor and on the degree of tin incorporation into ZnO lattice. By means of a highly reactive coprecipitation method it is revealed that the range of solid solution of tin in zinc oxide stays below 0.1 mol % of SnO2 since higher concentrations lead to segregation of a secondary Zn2SnO4 spinel type-phase.Los materiales cerámicos basados en óxido de cinc dopado con estaño (IV encuentran su principal aplicación como dispositivos sensores específicos de gases. La capacidad sensora de la mezcla de óxidos y su particular afinidad por un determinado gas específico (selectividad es función directa de cuáles sean las fases cristalinas presentes en la microestructura del semiconductor sinterizado, así como del grado de incorporación del estaño en la red del ZnO. La obtención del polvo cerámico de partida por un método de coprecipitación altamente reactivo revela que el rango de solución sólida del estaño en el óxido de cinc se encuentra por debajo del 0.1 % en moles de SnO2; concentraciones superiores llevan a la segregación de una fase secundaria, Zn2SnO4, con estructura de tipo espinela.

  20. [Zn(phen)(O,N,O)(H2O)] and [Zn(phen)(O,N)(H2O)] with O,N,O is 2,6-dipicolinate and N,O is L-threoninate: synthesis, characterization, and biomedical properties.

    Science.gov (United States)

    Chin, Lee-Fang; Kong, Siew-Ming; Seng, Hoi-Ling; Tiong, Yee-Lian; Neo, Kian-Eang; Maah, Mohd Jamil; Khoo, Alan Soo-Beng; Ahmad, Munirah; Hor, Tzi-Sum Andy; Lee, Hong-Boon; San, Swee-Lan; Chye, Soi-Moi; Ng, Chew-Hee

    2012-10-01

    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.

  1. One-pot synthesis of porphyrin functionalized γ-Fe{sub 2}O{sub 3} nanocomposites as peroxidase mimics for H{sub 2}O{sub 2} and glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingyun, E-mail: qyliu@sdust.edu.cn; Zhang, Leyou; Li, Hui; Jia, Qingyan; Jiang, Yanling; Yang, Yanting; Zhu, Renren

    2015-10-01

    Meso-tetrakis(4-carboxyphenyl)-porphyrin-functionalized γ-Fe{sub 2}O{sub 3} nanoparticles (H{sub 2}TCPP-γ-Fe{sub 2}O{sub 3}) were successfully prepared by one-pot method under hydrothermal conditions and were found to possess intrinsic peroxidase-like activity. The H{sub 2}TCPP-γ-Fe{sub 2}O{sub 3} nanocomposites can catalytically oxidize peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H{sub 2}O{sub 2} to produce a blue color reaction, which can be easily observed by the naked eye. Furthermore, kinetic studies indicate that the H{sub 2}TCPP-γ-Fe{sub 2}O{sub 3} nanocomposites have an even higher affinity to TMB than that of the natural enzyme, horseradish peroxidase (HRP). On the basis of the high activity, the reaction provides a simple, sensitive and selective method for colorimetric detection of H{sub 2}O{sub 2} over a range of 10–100 μM with a minimum detection limit of 1.73 μM. Moreover, H{sub 2}TCPP-γ-Fe{sub 2}O{sub 3}/glucose oxidase (GOx)/TMB system provides a novel colorimetric sensor for glucose and shows good response toward glucose detection over a range of 5–25 μM with a minimum detection limit of 2.54 μM. The results indicated that it is a simple, cheap, convenient, highly selective, sensitive and easy handling colorimetric assay. Results of a fluorescent probe suggest that the catalase-mimic activity of the H{sub 2}TCPP-γ-Fe{sub 2}O{sub 3} nanocomposites effectively catalyze the decomposition of H{sub 2}O{sub 2} into H{sub 2}O and O{sub 2}. - Graphical abstract: 5,10,15,20-Tetrakis(4-carboxyl phenyl)-porphyrin (H{sub 2}TCPP)-γ-Fe{sub 2}O{sub 3} nanocomposites were demonstrated to possess intrinsic peroxidase-like activity and showed a higher catalytic activity, compared to that of γ-Fe{sub 2}O{sub 3} nanoparticles alone. - Highlights: • Porphyrin-functionalized γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by one-pot method. • The porphyrin-γ-Fe{sub 2}O{sub 3} nanocomposites were found to possess

  2. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    International Nuclear Information System (INIS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-01-01

    Graphical abstract: - Highlights: • TiO 2 nanowire decorated with C 60 and C 70 derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO 2 has great biocompatibility. - Abstract: In this study, we have synthesized C 60 and C 70 -modified TiO 2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C 60 and C 70 derivatives) can act as sinks for photogenerated electrons in TiO 2 , while the fullerene/TiO 2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO 2 NWs, the modified TiO 2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO 2 which expand the utilization of solar light from UV to visible light. The results reveal that the C 70 /TiO 2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO 2 , the electron only devices and photoelectrochemical cells based on fullerenes/TiO 2 are also fabricated and evaluated.

  3. The utility of affine variables and affine coherent states

    International Nuclear Information System (INIS)

    Klauder, John R

    2012-01-01

    Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  4. Higher spin currents in the critical O(N) vector model at 1/N{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Manashov, A.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Skvortsov, E.D. [Munich Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Lebedev Institute of Physics, Moscow (Russian Federation); Strohmaier, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik

    2017-06-15

    We calculate the anomalous dimensions of higher spin singlet currents in the critical O(N) vector model at order 1/N{sup 2}. The results are shown to be in agreement with the four-loop perturbative computation in φ{sup 4} theory in 4-2ε dimensions. It is known that the order 1/N anomalous dimensions of higher-spin currents happen to be the same in the Gross-Neveu and the critical vector model. On the contrary, the order 1/N{sup 2} corrections are different. The results can also be interpreted as a prediction for the two-loop computation in the dual higher-spin gravity.

  5. Laser photoelectron spectroscopy of MnH - 2, FeH - 2, CoH - 2, and NiH - 2: Determination of the electron affinities for the metal dihydrides

    Science.gov (United States)

    Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.

    1986-04-01

    The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.

  6. Thermokinetic model of borosilicate glass dissolution: Contextual affinity

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.

    1990-01-01

    Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Hegelson: v = k + · S · a( H + ) -n · (1 - e -(A/RT) ). It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. The authors prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites

  7. The effect of MWCNT treatment by H2O2 and/or UV on fulvic acids sorption.

    Science.gov (United States)

    Czech, Bożena

    2017-05-01

    The carbon nanotubes (CNT) present in the wastewater subjected to treatment will possess altered physico-chemical properties. The changed properties will result in the unknown behavior of CNT in the environment after disposal; and it is expected to differ from their pristine analogues. In the present paper the effect of sorption of dissolved organic matter with fulvic acids (FA) as representatives onto UV and/or H 2 O 2 treated CNT was tested. Both kinetics and mechanism of sorption was estimated. The chemical adsorption was a rate limiting step and a pseudo-second order kinetics described the sorption of FA onto UV and/or H 2 O 2 treated CNT. The treating increased affinity towards FA and treating by UV and H 2 O 2 simultaneously possessed greater impact on k 2 than UV and H 2 O 2 separately. The greatest effect on CNT sorption capacity revealed H 2 O 2 . The sorption mechanism was described by Temkin (CNT-H 2 O 2 ) and Dubinin-Radushkevich model. The increase in CNT surface disorder caused by UV and/or H 2 O 2 treatment favored sorption of FA via π-π interactions (exfoliated surface and disordered CNT walls). FA sorption occurred between aromatic rings of FA and CNT and hydrogen bonds formed with the oxygen functional groups. The results indicate that UV and/or H 2 O 2 treatment affected the sorption capacity and affinity of CNT towards FA. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Combined use of O3/H2O2 and O3/Mn2+ in flotation of dairy wastewater

    Directory of Open Access Journals (Sweden)

    Marta Cristina Silva Carvalho

    2018-05-01

    Full Text Available This work investigated the degradation of organic matter present in synthetic dairy wastewater by the combination of ozonation (ozone (O3/hydrogen peroxide (H2O2 and catalytic ozonation (ozone (O3/manganese (Mn2+ associated with dispersed air flotation process. The effect of independent factors such as O3 concentration, pH and H2O2 and Mn2+ concentration was evaluated. For the flotation/O3/H2O2 treatment, the significant variables (p ≤ 0.05 were: O3 concentration (linear and quadratic effect, H2O2 concentration linear and quadratic effect, pH values (linear and quadratic effect and interaction O3 concentration versus pH. For catalytic ozonation, it was observed that the significant variable was the linear effect of O3 concentration. According to the desirability function, it was concluded that the optimal condition for the treatment of flotation/O3/H2O2 can be obtained in acidic solution using O3 concentrations greater than 42.9 mg L-1 combined with higher concentrations of H2O2 to 1071.5 mg L-1. On other hand, at pH values higher than 9.0, the addition of O3 may be neglected when using higher concentrations than 1071.5 mg L-1 of H2O2. For flotation/ozonation catalyzed by Mn2+, it was observed that metal addition did not affect treatment, resulting in an optimum condition: 53.8 mg L-1 of O3 and pH 3.6.

  9. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.

    Science.gov (United States)

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Yu, Jiaguo; Ho, Wingkei

    2016-03-15

    Hollow microspheres and hierarchical porous nanostructured materials with desired morphologies have gained remarkable attention for their potential applications in environmental technology. In this study, NiO-SiO2 hollow microspheres were prepared by co-precipitation with SiO2 and nickel salt as precursors, followed by dipping in alkaline solution and calcination. The samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption, and X-ray photoelectron spectroscopy. The synthesized hollow spheres were composed of a SiO2 shell and hierarchical porous NiO nanosheets on the surface. Adsorption experiments suggested that NiO-SiO2 composite particles were powerful adsorbents for removal of Congo red from water, with a maximum adsorption capacity of 204.1 mg/g. The high specific surface areas, hollow structures, and hierarchical porous surfaces of the hollow composite particles are suitable for various applications, including adsorption of pollutants, chemical separation, and water purification. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [11C]MA2 and [18F]MA3.

    Science.gov (United States)

    Ahamed, Muneer; van Veghel, Daisy; Ullmer, Christoph; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy M

    2016-01-01

    The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([ 11 C]MA2) and a fluorine-18 ([ 18 F]MA3) labeled analog of a highly potent N -arylamide oxadiazole CB2 agonist (EC 50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC 50 : 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for h CB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC 50 values when compared to the originally reported trifluoromethyl analog 12 . [ 11 C]MA2 and [ 18 F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [ 11 C]MA2 and [ 18 F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted.

  11. Interspecific variation and plasticity in hemoglobin nitrite reductase activity and its correlation with oxygen affinity in vertebrates

    DEFF Research Database (Denmark)

    Jensen, Frank B.; Kolind, Rasmus A. H.; Jensen, Natashia S.

    2017-01-01

    -dependent manner. The initial second order rate constant of the deoxyHb-mediated nitrite reduction showed a strong curvilinear correlation with oxygen affinity among all ectothermic vertebrates, and the relationship also applied to plastic variations of Hb properties via organic phosphates. The relationship...... determines oxygen affinity. In the present study we investigated nitrite reductase activity and O2 affinity in Hbs from ten different vertebrate species under identical conditions to disclose interspecific variations and allow an extended test for a correlation between the rate constant for nitrite reduction...... and O2 affinity. We also tested plastic changes in Hb properties via addition of T-structure-stabilizing organic phosphates (ATP and GTP). The decay in deoxyHb during its reaction with nitrite was exponential-like in ectotherms (Atlantic hagfish, carp, crucian carp, brown trout, rainbow trout, cane toad...

  12. Generalized magnification in visual optics. Part 2: Magnification as affine transformation

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2010-12-01

    Full Text Available In astigmatic systems magnification may be different in different directions.  It may also be accompanied by rotation or reflection.  These changes from object to image are examples of generalized magnification.  They are represented by  2 2×  matrices.  Because they are linear transformations they can be called linear magnifications.  Linear magnifications account for a change in appearance without regard to position.  Mathematical structure suggests a natural further generalization to a magnification that is complete in the sense that it accountsfor change in appearance and position.  It is represented by a  3 3×  matrix with a dummy third row. The transformation is called affine in linear algebra which suggests that these generalized magnifica-tions be called affine magnifications.  The purpose of the paper is to define affine magnification in the context of astigmatic optics.  Several examples are presented and illustrated graphically. (S Afr Optom 2010 69(4 166-172

  13. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia

    Science.gov (United States)

    Charache, Samuel; Grisolia, Santiago; Fiedler, Adam J.; Hellegers, Andre E.

    1970-01-01

    Blood of patients with sickle cell anemia (SS) exhibits decreased affinity for oxygen, although the oxygen affinity of hemoglobin S is the same as that of hemoglobin A. SS red cells contain more 2,3-diphosphoglycerate (DPG) than normal erythrocytes. The oxygen affinity of hemolyzed red cells is decreased by added DPG, and hemolysates prepared from SS red cells do not differ from normal hemolysates in this regard. Reduction of oxygen affinity to the levels found in intact SS red cells required DPG concentrations in excess of those found in most SS patients. The same was true of oxygen affinity of patients with pyruvate kinase deficiency. Other organic phosphates, as well as inorganic ions, are known to alter the oxygen affinity of dilute solutions of hemoglobin. These substances, the state of aggregation of hemoglobin molecules, and cytoarchitectural factors probably play roles in determining oxygen affinity of both normal and SS red cells. PMID:5443181

  14. Rank Two Affine Manifolds in Genus 3

    OpenAIRE

    Aulicino, David; Nguyen, Duc-Manh

    2016-01-01

    We complete the classification of rank two affine manifolds in the moduli space of translation surfaces in genus three. Combined with a recent result of Mirzakhani and Wright, this completes the classification of higher rank affine manifolds in genus three.

  15. Sol–gel hybrid membranes loaded with meso/macroporous SiO2, TiO2–P2O5 and SiO2–TiO2–P2O5 materials with high proton conductivity

    International Nuclear Information System (INIS)

    Castro, Yolanda; Mosa, Jadra; Aparicio, Mario; Pérez-Carrillo, Lourdes A.; Vílchez, Susana; Esquena, Jordi; Durán, Alicia

    2015-01-01

    In this work, highly conductive hybrid organic–inorganic membranes loaded with SiO 2 , TiO 2 –P 2 O 5 and SiO 2 –TiO 2 –P 2 O 5 meso/macroporous particles were prepared via a sol–gel process. Meso/macroporous particles were incorporated to hybrid membranes, for improving water retention and enhancing electrochemical performance. These particles with a polymodal pore size distribution were prepared by templating in highly concentrated emulsions, the particles showed a specific surface area between 50 m 2 /g (TiO 2 –P 2 O 5 ) and 300 m 2 /g (SiO 2 –TiO 2 –P 2 O 5 ). The particles were dispersed in a hybrid silica sol and further sprayed onto glass paper. The films were polymerized and sintered; those loaded with meso/macroporous particles had a homogenous distribution. High temperature proton conductivity measurements confirmed a high water retention. Conductivity of these materials is higher than that of Nafion ® at higher temperatures (120 °C) (2·10 −2  S/cm). This study provides processing guideline to achieve hybrid electrolytes for efficient conduction of protons due to their high surface area and porous structure. - Highlights: • Hybrid electrolyte with meso/macroporous particles were synthesized by sol–gel. • Depositions of hybrid solutions by spraying onto glass substrates were performed. • Proton conductivity was evaluated as a function of composition and porous structure

  16. The Effect of Volcanic Ash Composition on Ice Nucleation Affinity

    Science.gov (United States)

    Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.

    2017-12-01

    Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (

  17. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    Science.gov (United States)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  18. Gaussian-2 theory: Use of higher level correlation methods, quadratic configuration interaction geometries, and second-order Moller--Plesset zero-point energies

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Raghavachari, K.; Pople, J.A.

    1995-01-01

    The performance of Gaussian-2 theory is investigated when higher level theoretical methods are included for correlation effects, geometries, and zero-point energies. A higher level of correlation treatment is examined using Brueckner doubles [BD(T)] and coupled cluster [CCSD(T)] methods rather than quadratic configuration interaction [QCISD(T)]. The use of geometries optimized at the QCISD level rather than the second-order Moller--Plesset level (MP2) and the use of scaled MP2 zero-point energies rather than scaled Hartree--Fock (HF) zero-point energies have also been examined. The set of 125 energies used for validation of G2 theory [J. Chem. Phys. 94, 7221 (1991)] is used to test out these variations of G2 theory. Inclusion of higher levels of correlation treatment has little effect except in the cases of multiply-bonded systems. In these cases better agreement is obtained in some cases and poorer agreement in others so that there is no improvement in overall performance. The use of QCISD geometries yields significantly better agreement with experiment for several cases including the ionization potentials of CS and O 2 , electron affinity of CN, and dissociation energies of N 2 , O 2 , CN, and SO 2 . This leads to a slightly better agreement with experiment overall. The MP2 zero-point energies gives no overall improvement. These methods may be useful for specific systems

  19. Coral-like CeO{sub 2}/NiO nanocomposites with efficient enzyme-mimetic activity for biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jianshuai; Zhao, Xin; Li, Jie [College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387 (China); Yang, En-Cui, E-mail: encui_yang@163.com [College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387 (China); Zhao, Xiao-Jun, E-mail: xiaojun_zhao15@163.com [College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071 (China)

    2017-05-01

    Development of nanomaterials-based enzymatic mimics has gained considerable attention in recent years, because of their low cost, high stability and efficiently catalytic ability. Here, CeO{sub 2} was successfully incorporated into the coral-like NiO nanostructures assembled by nanoflakes with high surface area, forming the coral-like CeO{sub 2}/NiO nanocomposites. The morphology and composition of CeO{sub 2}/NiO nanocomposites were characterized by XRD, SEM, element mapping and XPS. The results of characterization showed that cerium was highly dispersed in the coral-like NiO nanostructures. The peroxidase-like activity of CeO{sub 2}/NiO nanocomposites was investigated, and they exhibited enhanced peroxidase-like activity in comparison to that of pure NiO or CeO{sub 2}. The catalytic activity was dependent on the cerium content, and the optimal content was 2.5%. The enhanced catalytic activity of CeO{sub 2}/NiO nanocomposites arised from their high ability of electron transfer because of cerium incorporation. The catalytic performance of CeO{sub 2}/NiO nanocomposites was evaluated by steady-state kinetic, which showed that the CeO{sub 2}/NiO nanocomposites exhibited higher affinity for the substrates and similar catalytic efficiency compared with natural peroxidase. Based on the efficient peroxidase-like activity, CeO{sub 2}/NiO was used for H{sub 2}O{sub 2} determination. The constructed colorimetric H{sub 2}O{sub 2} sensor had fast response for only 5 min, a wide linear range from 0.05 to 40 mM and a low detection limit with 0.88 μM. The CeO{sub 2}/NiO nanocomposites were expected to have potential applications in clinical diagnosis and biotechnology as enzymatic mimics. - Highlights: • Coral-like CeO{sub 2}/NiO nanocomposites with different Ce content were synthesized. • CeO{sub 2} was highly dispersed in the NiO matrixes with high surface area. • CeO{sub 2}/NiO nanocomposites exhibited efficient peroxidase-like activity. • A colorimetric H{sub 2}O

  20. Synthesis, biodistribution and in vitro evaluation of brain permeable high affinity type 2 cannabinoid receptor agonists [11C]MA2 and [18F]MA3

    Directory of Open Access Journals (Sweden)

    Muneer Ahamed

    2016-09-01

    Full Text Available Abstract The type 2 cannabinoid receptor (CB2 is a member of the endocannabinoid system and is known for its important role in (neuroinflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([11C]MA2 and a fluorine-18 ([18F]MA3 labeled analogue of a highly potent N-arylamide oxadiazole CB2 agonist (EC50 = 0.015 nM. MA2 and MA3 behaved as potent CB2 agonist (EC50: 3 nM and 0.1 nM, respectively and their in vitro binding affinity for hCB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group was found to have higher binding affinity and EC50 values when compared to the originally reported trifluoromethyl analogue 12. [11C]MA2 and [18F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [11C]MA2 and [18F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted.

  1. DNA intercalation studies and antimicrobial activity of Ag@ZrO2 core–shell nanoparticles in vitro

    International Nuclear Information System (INIS)

    Dhanalekshmi, K.I.; Meena, K.S.

    2016-01-01

    Ag@ZrO 2 core–shell nanoparticles were prepared by one pot simultaneous reduction of AgNO 3 and hydrolysis of zirconium (IV) isopropoxide. The formation of core–shell nanoparticles was confirmed by absorption, XRD, and HR-TEM techniques. The antibacterial activity of Ag@ZrO 2 core–shell nanoparticles against Escherichia coli and Staphylococcus aureus and the antifungal properties against Candida albicans, Candida glabrata, Aspergillus niger and Aspergillus flavus were examined by the agar diffusion method. DNA intercalation studies were carried out in CT-DNA. As a result ZrO 2 supported on the surface of AgNPs not only prevented aggregation, but also proved to have enhanced antimicrobial activity and DNA intercalation than the Ag nanoparticles. - Highlights: • Ag@ZrO 2 core–shell nanoparticles were prepared by one pot synthesis. • The ZrO 2 coated AgNPs prevent aggregation and enhanced stability. • The surfaced modified AgNPs showed higher antimicrobial activity. • DNA intercalation studies show better binding affinity of core–shell NPs.

  2. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  3. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.

    Science.gov (United States)

    Wright, Traver J; Davis, Randall W

    2015-07-01

    Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. © 2015. Published by The Company of Biologists Ltd.

  4. Evolution of Src Homology 2 (SH2) Domain to Recognize Sulfotyrosine.

    Science.gov (United States)

    Ju, Tong; Niu, Wei; Guo, Jiantao

    2016-09-16

    Protein tyrosine O-sulfation is considered as the most common type of post-translational tyrosine modification in nature and plays important roles in extracellular biomolecular interactions. To facilitate the mapping, biological study, and medicinal application of this type of post-translational modification, we seek to evolve a small protein scaffold that recognizes sulfotyrosine with high affinity. We focused our efforts on the engineering of the Src Homology 2 (SH2) domain, which represents the largest class of known phosphotyrosine-recognition domain in nature and has a highly evolvable binding pocket. By using phage display, we successfully engineered the SH2 domain to recognize sulfotyrosine with high affinity. The best mutant, SH2-60.1, displayed more than 1700 fold higher sulfotyrosine-binding affinity than that of the wild-type SH2 domain. We also demonstrated that the evolved SH2 domain mutants could be used to detect sulfoprotein levels on the cell surface. These evolved SH2 domain mutants can be potentially applied to the study of protein tyrosine O-sulfation with proper experimental designs.

  5. Improving iron-enriched basalt with additions of ZrO2 and TiO2

    International Nuclear Information System (INIS)

    Reimann, G.A.; Kong, P.C.

    1993-06-01

    The iron-enriched basalt (IEB) waste form, developed at the Idaho National Engineering Laboratory a decade ago, was modified to IEB4 by adding sufficient ZrO 2 and TiO 2 to develop crystals of zirconolite upon cooling, in addition to the crystals that normally form in a cooling basalt. Zirconolite (CaZrTi 2 O 7 ) is an extremely leach-resistant mineral with a strong affinity for actinides. Zirconolite crystals containing uranium and thorium have been found that have endured more than 2 billion years of natural processes. On this basis, zirconolite was considered to be an ideal host crystal for the actinides contained in transuranic (TRU)-contaminated wastes. Crystals of zirconolite were developed in laboratory melts of IEB4 that contained 5% each of ZrO 2 and TiO 2 and that were slow-cooled in the 1200--1000 degrees C range. When actinide surrogates were added to IEB4, these oxides were incorporated into the crystals of zirconolite rather than precipitating in the residual glass phase. Zirconolite crystals developed in IEB4 should stabilize and immobilize the dilute TRUs in heterogeneous, buried low-level wastes as effectively as this same phase does in the various formulations of Synroc used for the more concentrated TRUs encountered in high-level wastes. Synroc requires hot-pressing equipment, while IEB4 precipitates zirconolite from a cooling basaltic melt

  6. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants.

    Science.gov (United States)

    Anjum, Naser A; Sharma, Pallavi; Gill, Sarvajeet S; Hasanuzzaman, Mirza; Khan, Ekhlaque A; Kachhap, Kiran; Mohamed, Amal A; Thangavel, Palaniswamy; Devi, Gurumayum Devmanjuri; Vasudhevan, Palanisamy; Sofo, Adriano; Khan, Nafees A; Misra, Amarendra Narayan; Lukatkin, Alexander S; Singh, Harminder Pal; Pereira, Eduarda; Tuteja, Narendra

    2016-10-01

    Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants; (c) to summarize the principles of current technologies used to assay CAT and APX in plants; (d) to appraise available literature on the modulation of CAT and APX in plants under major abiotic stresses; and finally, (e) to consider a brief cross-talk on the CAT and APX, and this also highlights the aspects unexplored so far.

  7. Probing SH2-domains using Inhibitor Affinity Purification (IAP).

    Science.gov (United States)

    Höfener, Michael; Heinzlmeir, Stephanie; Kuster, Bernhard; Sewald, Norbert

    2014-01-01

    Many human diseases are correlated with the dysregulation of signal transduction processes. One of the most important protein interaction domains in the context of signal transduction is the Src homology 2 (SH2) domain that binds phosphotyrosine residues. Hence, appropriate methods for the investigation of SH2 proteins are indispensable in diagnostics and medicinal chemistry. Therefore, an affinity resin for the enrichment of all SH2 proteins in one experiment would be desirable. However, current methods are unable to address all SH2 proteins simultaneously with a single compound or a small array of compounds. In order to overcome these limitations for the investigation of this particular protein family in future experiments, a dipeptide-derived probe has been designed, synthesized and evaluated. This probe successfully enriched 22 SH2 proteins from mixed cell lysates which contained 50 SH2 proteins. Further characterization of the SH2 binding properties of the probe using depletion and competition experiments indicated its ability to enrich complexes consisting of SH2 domain bearing regulatory PI3K subunits and catalytic phosphoinositide 3-kinase (PI3K) subunits that have no SH2 domain. The results make this probe a promising starting point for the development of a mixed affinity resin with complete SH2 protein coverage. Moreover, the additional findings render it a valuable tool for the evaluation of PI3K complex interrupting inhibitors.

  8. Effect of atomic layer deposition temperature on current conduction in Al{sub 2}O{sub 3} films formed using H{sub 2}O oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp [Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Matsumura, Daisuke [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kawarada, Hiroshi, E-mail: kawarada@waseda.jp [Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2016-08-28

    To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al{sub 2}O{sub 3} films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al{sub 2}O{sub 3} metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO{sub 2} capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al{sub 2}O{sub 3} capacitors are found to outperform the SiO{sub 2} capacitors in the cases where the capacitors are negatively biased and the gate material is adequately selected to reduce virtual dipoles at the gate/Al{sub 2}O{sub 3} interface. The Al{sub 2}O{sub 3} electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al{sub 2}O{sub 3} capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al{sub 2}O{sub 3}. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al{sub 2}O{sub 3} capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al{sub 2}O{sub 3}/underlying SiO{sub 2} interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al{sub 2}O{sub 3} films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450

  9. 2D Affine and Projective Shape Analysis.

    Science.gov (United States)

    Bryner, Darshan; Klassen, Eric; Huiling Le; Srivastava, Anuj

    2014-05-01

    Current techniques for shape analysis tend to seek invariance to similarity transformations (rotation, translation, and scale), but certain imaging situations require invariance to larger groups, such as affine or projective groups. Here we present a general Riemannian framework for shape analysis of planar objects where metrics and related quantities are invariant to affine and projective groups. Highlighting two possibilities for representing object boundaries-ordered points (or landmarks) and parameterized curves-we study different combinations of these representations (points and curves) and transformations (affine and projective). Specifically, we provide solutions to three out of four situations and develop algorithms for computing geodesics and intrinsic sample statistics, leading up to Gaussian-type statistical models, and classifying test shapes using such models learned from training data. In the case of parameterized curves, we also achieve the desired goal of invariance to re-parameterizations. The geodesics are constructed by particularizing the path-straightening algorithm to geometries of current manifolds and are used, in turn, to compute shape statistics and Gaussian-type shape models. We demonstrate these ideas using a number of examples from shape and activity recognition.

  10. Synthesis and mechanical properties of stabilized zirconia ceramics: MgO-ZrO_2 and Y_2O_3-MgO- ZrO_2

    International Nuclear Information System (INIS)

    Yamagata, C.; Mello-Castanho, S.R.H.; Paschoal, J.O.A.

    2014-01-01

    Precursor MgO-ZrO_2 and Y_2O_3-MgO-ZrO_2 ceramic powders were synthesized by the method of co-precipitation and characterized by techniques such as laser diffraction, QELS (Quasi Elastic Light Scattering), XRD, BET, and SEM. Nanoscale powders with specific surface area higher than 60 m"2. g"-"1 was achieved. Sintered ceramic obtained from the synthesized powders, were characterized to mechanical tests using Vickers indentation technique. The addition of Y_2O_3 promoted an increase in hardness of the ceramics and total cubic crystalline phase stabilization. (author)

  11. DNA intercalation studies and antimicrobial activity of Ag@ZrO{sub 2} core–shell nanoparticles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dhanalekshmi, K.I., E-mail: dhanamveni88@gmail.com; Meena, K.S.

    2016-02-01

    Ag@ZrO{sub 2} core–shell nanoparticles were prepared by one pot simultaneous reduction of AgNO{sub 3} and hydrolysis of zirconium (IV) isopropoxide. The formation of core–shell nanoparticles was confirmed by absorption, XRD, and HR-TEM techniques. The antibacterial activity of Ag@ZrO{sub 2} core–shell nanoparticles against Escherichia coli and Staphylococcus aureus and the antifungal properties against Candida albicans, Candida glabrata, Aspergillus niger and Aspergillus flavus were examined by the agar diffusion method. DNA intercalation studies were carried out in CT-DNA. As a result ZrO{sub 2} supported on the surface of AgNPs not only prevented aggregation, but also proved to have enhanced antimicrobial activity and DNA intercalation than the Ag nanoparticles. - Highlights: • Ag@ZrO{sub 2} core–shell nanoparticles were prepared by one pot synthesis. • The ZrO{sub 2} coated AgNPs prevent aggregation and enhanced stability. • The surfaced modified AgNPs showed higher antimicrobial activity. • DNA intercalation studies show better binding affinity of core–shell NPs.

  12. Monastrol, a 3,4-dihydropyrimidin-2(1H)-thione, as structural scaffold for the development of modulators for GHB high-affinity binding sites and α1β2δ GABAA receptors

    DEFF Research Database (Denmark)

    Damgaard, Maria; Al-Khawaja, Anas; Nittegaard-Nielsen, Mia

    2017-01-01

    -affinity binding and is furthermore reported as an allosteric modulator selective for the α1β2δ GABAARs. Therefore, structural determinants for selectivity at the two targets were investigated. 39 structural diverse monastrol analogues were synthesized by employing the Biginelli cyclocondensation and examined......-affinity binding. However, three analogues of monastrol (11, 12 and 24) enhanced the maximal binding of [(3)H]NCS-382 to a higher maximal level than seen for monastrol itself. Selected compounds were further characterized as modulators at α1β2δ, α1β2γ2s and α1β2 GABAARs. Most of these modulators were shown to have...... δ-specific GABA-potentiating effects. The dual effect shown for monastrol to modulate the GHB high-affinity binding and α1β2δ GABAAR activity was also shown for the compounds 11, 18 and 24. Compound 29 displayed minimal modulatory effect on GABAARs and therefore appears to be a GHB high...

  13. The far infrared radiation characteristics for Li2O.Al2O3.4SiO2(LAS) glass-ceramics and transition-metal oxide

    International Nuclear Information System (INIS)

    Huh, Nam Jung; Yang, Joong Sik

    1991-01-01

    The far infrared radiation characteristic for Li 2 O.Al 2 O 3 .4SiO 2 (LAS) glass, the LAS glass-ceramic and sintered transition metal oxides such as CuO, Fe 2 O 3 and Co 3 O 4 , were investigated. LAS glass and LAS glass-ceramic was higher than that of the LAS glass. Heat-treated CuO and Co 3 o 4 had radiation characteristic of high efficiency infrared radiant, and heat-treated Fe 2 O 3 had radiation characteristic that infrared emissivity decreased in higher was length above 15μm. (Author)

  14. Modifiers of hemoglobin/oxygen affinity as sensitizers of tumors to radiation

    International Nuclear Information System (INIS)

    Hirst, D.G.; Wood, P.J.

    1987-01-01

    A powerful mechanism in the control of oxygen delivery to tissues is the allosteric modification of hemoglobin. Increased or decreased release of oxygen can be achieved by altering the affinity of hemoglobin for oxygen. Several studies have shown that tumor radiosensitivity is dependent on this relationship. The authors studied affinity changes produced in two distinctly different ways. Tumor bearing mice were given isovolemic exchange blood transfusions with the blood from donor mice which had been exposed to abnormal oxygen tensions, leading to increased or slightly decreased levels of 2,3-diphosphoglycerate (2,3 DPG) in their blood. When the recipient mice were irradiated, those receiving the blood with higher 2,3 DPG levels showed greater tumor sensitivity to radiation. An alternative strategy is the use of drugs which directly alter hemoglobin/oxygen affinity. The authors studied three antihyperlipoproteinemia drugs, all of which have produced markedly reduced affinities in vivo. Preliminary data indicate that the radiosensitization produced by at least one of these compounds is less than would have been expected from the 2,3 DPG experiments

  15. Thermal, structural and optical properties of new TeO2sbnd Sb2O3sbnd GeO2 ternary glasses

    Science.gov (United States)

    Pereira, C.; Barbosa, J.; Cassanjes, F. C.; Gonçalves, R. R.; Ribeiro, S. J. L.; Poirier, G.

    2016-12-01

    In this work the novel glass system TeO2sbnd Sb2O3sbnd GeO2 was investigated and promising glass compositions were selected for further specific studies. Glass samples in the (80-0.8x)TeO2-(20-0.2x)Sb2O3-xGeO2 molar composition were prepared by the melt-quenching method with a glass-forming domain from x = 10 to x = 90. Samples were investigated by XRD, DSC, FTIR, Raman spectroscopy and UV-visible absorption. The XRD and DSC results bring informations about the non-crystalline state and thermal properties of these materials. It has been observed that higher GeO2 contents lead to higher glass transition temperatures and thermal stabilities against crystallization. FTIR and Raman spectroscopies suggest a progressive incorporation of GeO2 in the covalent network of TeO2 with conversion of structural units TeO4 to TeO3. Absorption spectra revealed the high visible transparency of these samples and an increase of the optical band gap with GeO2 addition, in agreement with a decreasing polarizability of the glass network. Er3+ doped and Er3+/Yb3+ codoped samples were also studied with respect to their infrared emission properties and higher GeO2 contents lead to an increase in IR emission intensity at 1,5 μm as well as longer radiative lifetimes. Finally, upconversion emission in the visible were also recorded and were shown to be strongly dependent of the composition.

  16. Fullerene C{sub 70} decorated TiO{sub 2} nanowires for visible-light-responsive photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Er-Chieh [Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan (China); Ciou, Jing-Hao [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Zheng, Jia-Huei; Pan, Job [Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan (China); Hsiao, Yu-Sheng, E-mail: yshsiao@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China); Lee, Kuen-Chan, E-mail: kclee@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Huang, Jen-Hsien, E-mail: 295604@cpc.com.tw [Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, Kaohsiung 30010, Taiwan (China)

    2015-11-15

    Graphical abstract: - Highlights: • TiO{sub 2} nanowire decorated with C{sub 60} and C{sub 70} derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO{sub 2} has great biocompatibility. - Abstract: In this study, we have synthesized C{sub 60} and C{sub 70}-modified TiO{sub 2} nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C{sub 60} and C{sub 70} derivatives) can act as sinks for photogenerated electrons in TiO{sub 2}, while the fullerene/TiO{sub 2} is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO{sub 2} NWs, the modified TiO{sub 2} NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO{sub 2} which expand the utilization of solar light from UV to visible light. The results reveal that the C{sub 70}/TiO{sub 2} NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO{sub 2}, the electron only devices and photoelectrochemical cells based on fullerenes/TiO{sub 2} are also fabricated and evaluated.

  17. Influence of organic matter on the solubility of ThO2 and geochemical modeling

    International Nuclear Information System (INIS)

    Liu Dejun; Luo Tian; Maes, N.; Bruggeman, C.

    2014-01-01

    Thorium (IV) is widely considered in laboratory experiments as a suitable chemical analogue for long-lived tetravalent actinides. Th (IV) is redox-insensitive, as an analogue for U (IV) to study the influence of natural organic matter on the solubility. The solubility of crystalline ThO 2 (cr) has been measured under geochemical conditions representative for the Boom Clay using Real Boom Clay Water containing organic matter to assess its influence on the ThO 2 (cr) solubility. For the purpose of comparison, Aldrich Humic Acid was also investigated. Solubility measurements of ThO 2 (cr) were approached from under-saturation in an anaerobic glove box with a controlled Ar0.4%CO 2 atmosphere. Th concentration is determined after 30000 MWCO, 300000 MWCO, and 0.45 μm filtration to distinguish solid (0.45 μm), larger colloids (300000 MWCO), and small dissolved species(30000 MWCO). X-ray diffraction was carried out to investigate the transformation of ThO 2 (cr) phase during the contact with Boom Clay Water. In Synthetic Boom Clay Water (without organic matter) the concentrations of Th (IV) are 5 × l0 -ll mol/L, 4 × lO -10 mol/L, and 8 × lO -8 mol/L after 30000 MWCO, 300000 MWCO, and 0. 45 μm filtration, respectively. It indicated the existence of inorganic colloids in solution. The increase of the total Th solution concentration with increasing organic matter concentration revealed a complexation-like interaction between Th and organic matter. All the experimental data could be modeled by Tipping humic ion-binding model VI using a combination of solubility calculations and complexation reactions between Th (IV) and organic matter functional groups. Similar to the investigation of Eu 3+ solubility, the affinity of organic matter for Th was higher for Aldrich humic acid compared to Boom Clay organic matter. However, Boom Clay organic matter with different size had the similar complexation affinity with Th (IV). (authors)

  18. Sequence2Vec: A novel embedding approach for modeling transcription factor binding affinity landscape

    KAUST Repository

    Dai, Hanjun

    2017-07-26

    Motivation: An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Results: Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model (HMM) which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these HMMs into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA data sets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods.

  19. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  20. Modulating uranium binding affinity in engineered Calmodulin EF-hand peptides: effect of phosphorylation

    International Nuclear Information System (INIS)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Guilloreau, Luc; Berthomieu, Catherine; Delangle, Pascale; Adriano, Jean-Marc

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T 9 TKE 12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K d =25±6 nM to K d =5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the sub-nanomolar range (K d = 0.25±0.06 nM). FTIR analyses showed that the phospho-threonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν as (P-O) and ν s (P-O) IR modes of phospho-threonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν as (UO 2 ) 2+ vibration (from 923 cm -1 to 908 cm -1 ) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. (authors)

  1. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    Science.gov (United States)

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Affinity for a malignant tumor and organs of sup(99m)Tc-citrate complex

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A; Sanada, S; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Hisada, K; Nakazawa, N

    1976-12-01

    In order to investigate the tumor affinity of sup(99m)Tc-citrate complex, it was synthesized in three different ways. By (1) reducing sup(99m)TcO/sub 4//sup -/ with FeCl/sub 3//sup -/ ascorbic acid in 0.15 M sodium citrate, (2) reducing sup(99m)TcO/sub 4//sup -/ with SnCl/sub 2/ solution in 0.15 M sodium citrate, and (3) reducing sup(99m)TcO/sub 4//sup -/ with NaBH/sub 4/ in 0.45 sodium citrate. It was presumed from thinlayer chromatography that the sup(99m)Tc-citrate complexes synthesized in three ways were chemically different. These sup(99m)Tc-citrate complexes were injected intravenously into the rats subcutaneously transplanted with Yoshida sarcoma. These rats were sacrificed at one hour and three hours after injection. The radioactivity of the tumor, blood, muscle, liver, kidney, spleen and urine was measured by well-type scintillation counter. The retention values in these organs and the excretion rates in the urine were calculated. sup(99m)Tc-citrate complex synthesized by reducing sup(99m)TcO/sub 4//sup -/ with SnCl/sub 2/ solution had very strong affinity for the malignant tumor but the other two sup(99m)Tc-citrate complexes had no affinity to the malignant tumor. Excretion rates (% dose) of sup(99m)Tc-citrate complexes in one hour were from 65% to 75%.

  3. Affine and quasi-affine frames for rational dilations

    DEFF Research Database (Denmark)

    Bownik, Marcin; Lemvig, Jakob

    2011-01-01

    In this paper we extend the investigation of quasi-affine systems, which were originally introduced by Ron and Shen [J. Funct. Anal. 148 (1997), 408-447] for integer, expansive dilations, to the class of rational, expansive dilations. We show that an affine system is a frame if, and only if......, the corresponding family of quasi-affine systems are frames with uniform frame bounds. We also prove a similar equivalence result between pairs of dual affine frames and dual quasi-affine frames. Finally, we uncover some fundamental differences between the integer and rational settings by exhibiting an example...

  4. Affinity (tropism) of caprine arthritis encephalitis virus for brain cells

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... Full Length Research Paper. Affinity (tropism) of caprine arthritis encephalitis virus for brain cells. Adebayo, I. A.1*, Awoniyi, T. A. M. 1 and Olaleye, O. D.2. 1Department of Animal Production and Health, Animal Parasitology and Microbiology Research Unit, Federal University of Technology, P M B 704, ...

  5. Exploring the possibility to store the mixed oxygen-hydrogen cluster in clathrate hydrate in molar ratio 1:2 (O2+2H2).

    Science.gov (United States)

    Qin, Yan; Du, Qi-Shi; Xie, Neng-Zhong; Li, Jian-Xiu; Huang, Ri-Bo

    2017-05-01

    An interesting possibility is explored: storing the mixture of oxygen and hydrogen in clathrate hydrate in molar ratio 1:2. The interaction energies between oxygen, hydrogen, and clathrate hydrate are calculated using high level quantum chemical methods. The useful conclusion points from this study are summarized as follows. (1) The interaction energies of oxygen-hydrogen mixed cluster are larger than the energies of pure hydrogen molecular cluster. (2) The affinity of oxygen molecules with water molecules is larger than that of the hydrogen molecules with water molecules. (3) The dimension of O 2 -2H 2 interaction structure is smaller than the dimension of CO 2 -2H 2 interaction structure. (4) The escaping energy of oxygen molecules from the hydrate cell is larger than that of the hydrogen molecules. (5) The high affinity of the oxygen molecules with both the water molecules and the hydrogen molecules may promote the stability of oxygen-hydrogen mixture in the clathrate hydrate. Therefore it is possible to store the mixed (O 2 +2H 2 ) cluster in clathrate hydrate. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.

  7. Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS)

    Science.gov (United States)

    Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai

    2017-08-01

    La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.

  8. Stabilization of the high coercivity ε-Fe2O3 phase in the CeO2–Fe2O3/SiO2 nanocomposites

    International Nuclear Information System (INIS)

    Mantlikova, A.; Poltierova Vejpravova, J.; Bittova, B.; Burianova, S.; Niznansky, D.; Ardu, A.; Cannas, C.

    2012-01-01

    We have investigated the processes leading to the formation of the Fe 2 O 3 and CeO 2 nanoparticles in the SiO 2 matrix in order to stabilize the ε-Fe 2 O 3 as the major phase. The samples with two different concentrations of the Fe were prepared by sol–gel method, subsequently annealed at different temperatures up to 1100 °C, and characterized by the Mössbauer spectroscopy, Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (PXRD), Energy Dispersive X-ray analysis (EDX) and magnetic measurements. The evolution of the different Fe 2 O 3 phases under various conditions of preparation was investigated, starting with the preferential appearance of the γ-Fe 2 O 3 phase for the sample with low Fe concentration and low annealing temperature and stabilization of the major ε-Fe 2 O 3 phase for high Fe concentration and high annealing temperature, coexisting with the most stable α-Fe 2 O 3 phase. A continuous increase of the particle size of the CeO 2 nanocrystals with increasing annealing temperature was also observed. - Graphical abstract: The graphical abstract displays the most important results of our work. The significant change of the phase composition due to the variation of preparation conditions is demonstrated. As a result, significant change of the magnetic properties from superparamagnetic γ-Fe 2 O 3 phase with negligible coercivity to the high coercivity ε-Fe 2 O 3 phase has been observed. Highlights: ► Research of the stabilization of the high coercivity ε-Fe 2 O 3 in CeO 2 –Fe 2 O 3 /SiO 2 . ► Samples with two different concentrations of Fe and three annealing temperatures. ► Phase transition γ→ε→(β)→α with increasing annealing temperature and particle size. ► Elimination of the superparamagnetic phases in samples with higher content of Fe. ► Best conditions for high coercivity ε-Fe 2 O 3 —higher Fe content and T A =1100°C.

  9. Optical characteristics of a RF DBD plasma jet in various {Ar}/ {O}_{2}Ar/O2 mixtures

    Science.gov (United States)

    Falahat, A.; Ganjovi, A.; Taraz, M.; Ravari, M. N. Rostami; Shahedi, A.

    2018-02-01

    In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The Ar/O2 mixture is taken as the operational gas and, the Ar percentage in the Ar/O2 mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H_{β }. It is mostly seen that, the radiation intensity of Ar 4p→ 4s transitions at higher argon contributions in Ar/O2 mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of Ar^{*} with O2 results in higher O species with respect to O2 molecules. In addition, at higher percentages of Ar in the Ar/O2 mixture, while the excitation temperature is decreased, the electron density is increased.

  10. INFORMATION BEHAVIOR AND TECHNOLOGY AFFINITY AMONG HIGHER INSTITUTION LEARNERS IN BORNEO

    OpenAIRE

    Johari, Nurul Muizzah

    2016-01-01

    This study aims to provide an understanding of information behavior with technology based on gender. It also to investigate the relationship between information behavior and degree of technology affinity. This research has been conducted quantitatively and using survey to gain data from participants.  Participant are selected randomly across Universiti Malaysia Sarawak, Sarawak. The instrument are adopted from Mills, Knezek, and Wakefield (2013) which taking interest into information behavior...

  11. Structural and sensing characteristics of Gd2Ti2O7, Er2TiO5 and Lu2Ti2O7 sensing membrane electrolyte–insulator–semiconductor for bio-sensing applications

    International Nuclear Information System (INIS)

    Pan, Tung-Ming; Liao, Pei-You; Chang, Kung-Yuan; Chi, Lifeng

    2013-01-01

    Highlights: ► The structural and sensing properties of Gd 2 Ti 2 O 7 , Er 2 TiO 5 and Lu 2 Ti 2 O 7 sensing films grown on Si substrates by reactive co-sputtering. ► The EIS device incorporating a Lu 2 Ti 2 O 7 sensing film exhibited a higher sensitivity, a larger drift rate, a higher hysteresis voltage, and a larger hysteresis gap than other sensing films. ► The impedance effect of EIS sensors has been investigated using C–V method. -- Abstract: This paper describes the structural and sensing characteristics of Gd 2 Ti 2 O 7 , Er 2 TiO 5 , and Lu 2 Ti 2 O 7 sensing membranes deposited on Si substrates through reactive co-sputtering for electrolyte–insulator–semiconductor (EIS) pH sensors. In this work, the structural properties of Gd 2 Ti 2 O 7 , Er 2 TiO 5 , and Lu 2 Ti 2 O 7 membranes were investigated by X-ray diffraction, atomic force microscopy and X-ray photoelectron spectroscopy. The observed structural properties were then correlated with the resulting pH sensing performances. The EIS device incorporating a Lu 2 Ti 2 O 7 sensing film exhibited a higher sensitivity (59.32 mV pH −1 ), a larger drift rate (0.55 mV h −1 ), a higher hysteresis voltage (5 mV), and a larger hysteresis gap (∼70 mV) compared to those of the other sensing films. This result is attributed to the higher surface roughness and the formation of a thicker interfacial layer at the oxide–Si interface. Furthermore, the impedance effect of EIS sensors has been investigated using capacitance–voltage (C–V) method (frequency-dependent C–V curves). From the impedance spectroscopy analysis, we find that the diameter of a semicircle of an EIS sensor becomes smaller due to a gradual decrease in the bulk resistance of the device with degree of pH value

  12. Affinity of Iresine herbstii and Brugmansia arborea extracts on different cerebral receptors.

    Science.gov (United States)

    Nencini, Cristina; Cavallo, Federica; Bruni, Giancarlo; Capasso, Anna; De Feo, Vincenzo; De Martino, Laura; Giorgi, Giorgio; Micheli, Lucia

    2006-05-24

    Iresine herbstii Hook. (Amaranthaceae) and Brugmansia arborea (L.) Lagerheim (Solanaceae) are used in the northern Peruvian Andes for magic-therapeutical purposes. The traditional healers use Iresine herbstii with the ritual aim to expel bad spirits from the body. Furthermore, Iresine herbstii was used in association with other plants, such as Trichocereus pachanoi Britt. et Rose, for divination, to diagnose diseases, and to take possession of another identity. Also, species of Brugmansia have been reported to be used during ritual practices for magical and curative purposes. Given the above evidence, the aim of the present study is to evaluate if the central effects of Iresine herbstii and Brugmansia arborea could be associated with interaction with SNC receptors. Two Iresine herbstii extracts (methanolic and aqueous) and one Brugmansia arborea aqueous extract were tested for in vitro affinity on 5-HT(1A), 5-HT(2A), 5-HT(2C), D1, D2, alpha(1), and alpha(2) receptors by radioligand binding assays. The biological materials for binding assay (cerebral cortex) were taken from male Sprague-Dawley rats. The extracts affinity for receptors is definite as inhibition percentage of radioligand/receptor binding and measured as the radioactivity of remaining complex radioligand/receptor. The data obtained for Iresine extracts have shown a low affinity for the 5-HT(1A) receptor and no affinity for 5-HT(2A) receptor. Otherwise the methanolic extract showed affinity for 5-HT(2C) receptor (IC(50): 34.78 microg/ml) and for D1 receptor (IC(50): 19.63 microg/ml), instead the Iresine aqueous extract displayed a lower affinity for D1 (48.3% at the maximum concentration tested) and a higher value of affinity for D2 receptors (IC(50): 32.08 microg/ml). The Brugmansia aqueous extract displayed affinity for D1 receptors (IC(50): 17.68 microg/ml), D2 receptors (IC(50): 15.95 microg/ml) and weak affinity for the serotoninergic receptors. None of the three extracts showed relevant affinity

  13. Tris-(hydroxyamino)triazines: high-affinity chelating tridentate O,N,O-hydroxylamine ligand for the cis-V(V)O2(+) cation.

    Science.gov (United States)

    Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A

    2010-10-14

    The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.

  14. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  15. Sol–gel hybrid membranes loaded with meso/macroporous SiO{sub 2}, TiO{sub 2}–P{sub 2}O{sub 5} and SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5} materials with high proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Yolanda, E-mail: castro@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Mosa, Jadra, E-mail: jmosa@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Aparicio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Pérez-Carrillo, Lourdes A.; Vílchez, Susana; Esquena, Jordi [Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona (Spain); Durán, Alicia [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain)

    2015-01-15

    In this work, highly conductive hybrid organic–inorganic membranes loaded with SiO{sub 2}, TiO{sub 2}–P{sub 2}O{sub 5} and SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5} meso/macroporous particles were prepared via a sol–gel process. Meso/macroporous particles were incorporated to hybrid membranes, for improving water retention and enhancing electrochemical performance. These particles with a polymodal pore size distribution were prepared by templating in highly concentrated emulsions, the particles showed a specific surface area between 50 m{sup 2}/g (TiO{sub 2}–P{sub 2}O{sub 5}) and 300 m{sup 2}/g (SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5}). The particles were dispersed in a hybrid silica sol and further sprayed onto glass paper. The films were polymerized and sintered; those loaded with meso/macroporous particles had a homogenous distribution. High temperature proton conductivity measurements confirmed a high water retention. Conductivity of these materials is higher than that of Nafion{sup ®} at higher temperatures (120 °C) (2·10{sup −2} S/cm). This study provides processing guideline to achieve hybrid electrolytes for efficient conduction of protons due to their high surface area and porous structure. - Highlights: • Hybrid electrolyte with meso/macroporous particles were synthesized by sol–gel. • Depositions of hybrid solutions by spraying onto glass substrates were performed. • Proton conductivity was evaluated as a function of composition and porous structure.

  16. Current-voltage characteristics of SnO2-Co3O4-Cr2O3-Sb2O5 ceramics

    International Nuclear Information System (INIS)

    Aguilar-Martinez, J A; Glot, A B; Gaponov, A V; Hernandez, M B; Guerrero-Paz, J

    2009-01-01

    The effect of mechanical treatment in a planetary mill on the microstructure and electrical properties of tin dioxide based varistor ceramics in the system SnO 2 -Co 3 O 4 -Cr 2 O 3 -Sb 2 O 5 sintered in the range 1150-1450 0 C was studied. The mechanical treatment leads to an increase in shrinkage, decrease in porosity, decrease in sample diameter, change in colour of the sintered samples from grey to black and enhancement of nonlinearity. For the sample sintered at 1350 0 C the mechanical treatment enhances the nonlinearity coefficient from 11 to 31 and decreases the electric field E 1 (at 10 -3 A cm -2 ) from 3500 to 2800 V cm -1 . The observed changes in physical properties are explained in terms of an additional size reduction of oxide particles and a better mixing of oxide powder followed by the formation of potential barriers at the grain boundaries throughout the whole sample. In spite of the low porosity, the low-field electrical conductivity of mechanically treated ceramics is significantly increased with the growth of relative humidity. A higher humidity sensitivity is found for mechanically treated ceramics with higher barrier height and higher nonlinearity coefficient.

  17. Lanthanide ions induce hydrolysis of hemoglobin-bound 2,3-diphosphoglycerate (2,3-DPG), conformational changes of globin and bidirectional changes of 2,3-DPG-hemoglobin's oxygen affinity.

    Science.gov (United States)

    Cheng, Y; Lin, H; Xue, D; Li, R; Wang, K

    2001-02-14

    The changes in structure and function of 2,3-diphosphoglycerate-hemoglobin (2,3-DPG-Hb) induced by Ln(3+) binding were studied by spectroscopic methods. The binding of lanthanide cations to 2,3-DPG is prior to that to Hb. Ln(3+) binding causes the hydrolysis of either one from the two phosphomonoester bonds in 2,3-DPG non-specifically. The results using the ultrafiltration method indicate that Ln(3+) binding sites for Hb can be classified into three categories: i.e. positive cooperative sites (N(I)), non-cooperative strong sites (N(S)) and non-cooperative weak sites (N(W)) with binding constants in decreasing order: K(I)>K(S)>K(W). The total number of binding sites amounts to about 65 per Hb tetramer. Information on reaction kinetics was obtained from the change of intrinsic fluorescence in Hb monitored by stopped-flow fluorometry. Fluctuation of fluorescence dependent on Ln(3+) concentration and temperature was observed and can be attributed to the successive conformational changes induced by Ln(3+) binding. The results also reveal the bidirectional changes of the oxygen affinity of Hb in the dependence on Ln(3+) concentration. At the range of [Ln(3+)]/[Hb]<2, the marked increase of oxygen affinity (P(50) decrease) with the Ln(3+) concentration can be attributed to the hydrolysis of 2,3-DPG, while the slight rebound of oxygen affinity in higher Ln(3+) concentration can be interpreted by the transition to the T-state of the Hb tetramer induced by Ln(3+) binding. This was indicated by the changes in secondary structure characterized by the decrease of alpha-helix content.

  18. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    Science.gov (United States)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  19. Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts

    NARCIS (Netherlands)

    Kulazynski, M.; van Ommen, J.G.; Trawczynski, J.; Walendziewski, J.

    2002-01-01

    Combustion of trichloroethylene (TCE) on Cr2O3, V2O5, Pt or Pd catalysts supported on TiO2-SiO2 as a carrier has been investigated. It was found that oxide catalysts are very active but their activity quickly diminishes due to loss of the active component, especially at higher reaction temperatures

  20. A comparative study of the magnetization in transition metal ion doped CeO2, TiO2 and SnO2 nanoparticles

    Science.gov (United States)

    Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.

    2018-05-01

    Using the microscopic s-d model taking into account anharmonic spin-phonon interactions we have studied the magnetic properties of Co and Cu ion doped CeO2 and TiO2 nanoparticles and compared them with those of SnO2. By Co-doping there is a maximum in the magnetization M(x) curve for all nanoparticles observed in the most transition metal doped ones. The s-d interaction plays an important role by the decrease of M at higher dopant concentration. We have discussed the magnetization in dependence of different model parameters. By small Cu-ion doping there are some differences. In CeO2M decreases with the Cu-concentration, whereas in TiO2 and SnO2M increases. For higher Cu dopant concentrations M(X) decreases in TiO2 nanoparticles. We obtain room temperature ferromagnetism also in Zn doped CeO2, TiO2 and SnO2 nanoparticles, i.e. in non-transition metal ion doped ones. The different behavior of M in Co and Cu doped nanoparticles is due to a combination effect of multivalent metal ions, oxygen vacancies, different radius of cation dopants, connection between lattice and magnetism, as well as competition between the s-d and d-d ferromagnetic or antiferromagnetic interactions.

  1. Influence of heme environment structure on dioxygen affinity for the dual function Amphitrite ornata hemoglobin/dehaloperoxidase. Insights into the evolutional structure-function adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shengfang; Sono, Masanori; Wang, Chunxue; Du, Jing; Lebioda, Lukasz; Dawson, John H. [SC

    2014-05-15

    Sea worm, Amphitrite ornata, has evolved its globin (an O2 carrier) also to serves as a dehaloperoxidase (DHP) to detoxify haloaromatic pollutants generated by competing species. A previous mutagenesis study by our groups on both DHP and sperm whale myoglobin (SW Mb) revealed some structural factors that influence the dehaloperoxidase activities (significantly lower for Mb) of both proteins. Using an isocyanide/O2 partition constant measurement method in this study, we have examined the effects of these structural factors on the O2 equilibrium constants (KO2) of DHP, SW Mb, and their mutants. A clear trend of decreasing O2 affinity and increasing catalytic activity along with the increase in the distal His Nε–heme iron distance is observed. An H93K/T95H Mb double mutant mimicking the DHP proximal His positioning exhibited markedly enhanced O2 affinity, confirming the essential effect of proximal His rotation on the globin function of DHP. For DHP, the L100F, T56G and M86E variants showed the effects of distal volume, distal His flexibility and proximal electronic push, respectively, on the O2 affinity. This study provides insights into how DHP has evolved its heme environment to gain significantly enhanced peroxidase capability without compromising its primary function as an O2 carrier.

  2. Characterization of high affinity [3H]triazolam binding in rat brain

    International Nuclear Information System (INIS)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-01-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on [ 3 H]TZ binding. Saturation studies showed a shift to lower affinity at 37 0 C (K/sub d/ = 0.25 +/- 0.01 nM at O 0 C; K/sub d/ = 1.46 +/- 0.03 nM at 37 0 C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. at 0 0 C and 1001 +/- 43 fmoles/mg prot. at 37 0 C). Inhibition studies showed that [ 3 H]TZ binding displayed no GABA shift at 0 0 C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37 0 C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37 0 C. In Ro 15-1788/[ 3 H]TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on [ 3 H]TZ binding at both temperatures. In conclusion [ 3 H]TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists

  3. Hemoglobin oxygen affinity in patients with cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Dieter Böning

    Full Text Available In patients with cystic fibrosis lung damages cause arterial hypoxia. As a typical compensatory reaction one might expect changes in oxygen affinity of hemoglobin. Therefore position (standard half saturation pressure P50st and slope (Hill's n of the O2 dissociation curve as well as the Bohr coefficients (BC for CO2 and lactic acid were determined in blood of 14 adult patients (8 males, 6 females and 14 healthy controls (6 males, 8 females. While Hill's n amounted to approximately 2.6 in all subjects, P50st was slightly increased by 1 mmHg in both patient groups (controls male 26.7 ± 0.2, controls female 27.0 ± 0.1, patients male 27.7 ± 0.5, patients female 28.0 ± 0.3 mmHg; mean and standard error, overall p<0.01. Main cause was a rise of 1-2 µmol/g hemoglobin in erythrocytic 2,3-biphosphoglycerate concentration. One patient only, clearly identified as an outlier and with the mutation G551D, showed a reduction of both P50st (24.5 mmHg and [2,3-biphosphoglycerate] (9.8 µmol/g hemoglobin. There were no differences in BCCO2, but small sex differences in the BC for lactic acid in the controls which were not detectable in the patients. Causes for the right shift of the O2 dissociation curve might be hypoxic stimulation of erythrocytic glycolysis and an increased red cell turnover both causing increased [2,3-biphosphoglycerate]. However, for situations with additional hypercapnia as observed in exercising patients a left shift seems to be a more favourable adaptation in cystic fibrosis. Additionally when in vivo PO2 values were corrected to the standard conditions they mostly lay left of the in vitro O2 dissociation curve in both patients and controls. This hints to unknown fugitive factors influencing oxygen affinity.

  4. Improving iron-enriched basalt with additions of ZrO{sub 2} and TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, G.A.; Kong, P.C.

    1993-06-01

    The iron-enriched basalt (IEB) waste form, developed at the Idaho National Engineering Laboratory a decade ago, was modified to IEB4 by adding sufficient ZrO{sub 2} and TiO{sub 2} to develop crystals of zirconolite upon cooling, in addition to the crystals that normally form in a cooling basalt. Zirconolite (CaZrTi{sub 2}O{sub 7}) is an extremely leach-resistant mineral with a strong affinity for actinides. Zirconolite crystals containing uranium and thorium have been found that have endured more than 2 billion years of natural processes. On this basis, zirconolite was considered to be an ideal host crystal for the actinides contained in transuranic (TRU)-contaminated wastes. Crystals of zirconolite were developed in laboratory melts of IEB4 that contained 5% each of ZrO{sub 2} and TiO{sub 2} and that were slow-cooled in the 1200--1000{degrees}C range. When actinide surrogates were added to IEB4, these oxides were incorporated into the crystals of zirconolite rather than precipitating in the residual glass phase. Zirconolite crystals developed in IEB4 should stabilize and immobilize the dilute TRUs in heterogeneous, buried low-level wastes as effectively as this same phase does in the various formulations of Synroc used for the more concentrated TRUs encountered in high-level wastes. Synroc requires hot-pressing equipment, while IEB4 precipitates zirconolite from a cooling basaltic melt.

  5. The dynamics of metric-affine gravity

    International Nuclear Information System (INIS)

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-01-01

    Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy

  6. Interaction of Ce{sub 1−x}Er{sub x}O{sub 2−y} nanoparticles with SiO{sub 2}-effect of temperature and atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kepinski, L., E-mail: L.Kepinski@int.pan.wroc.pl; Krajczyk, L.; Mista, W.

    2014-01-15

    Morphology, microstructure and phase evolution of homogeneous, nanocrystalline Ce{sub 1−x}Er{sub x}O{sub 2−x/2} mixed oxide (x=0.3 and 0.5), prepared by microemulsion method, supported on amorphous SiO{sub 2} was studied in oxidizing and reducing atmosphere by XRD, TEM, SEM-EDS and N{sub 2} adsorption. The system is structurally and chemically stable in the oxidizing atmosphere up to 1000 °C, exhibiting only a small increase of the mean crystallite size of the oxide to ∼4 nm. At 1100 °C formation of Er silicate with unusual structure isomorphic with y-Y{sub 2}Si{sub 2}O{sub 7} (yttrialite), stabilized by Ce{sup 4+} ions was observed. In the reducing atmosphere the Ce{sub 1−x}Er{sub x}O{sub 2−x/2} reacted with SiO{sub 2} already at 900 °C, due to high affinity of the reduced Ce{sup 3+} to form a silicate phase. At higher temperature the silicate crystallized into the tetragonal, low temperature A-(Ce{sub 1−x}Er{sub x}){sub 2}Si{sub 2}O{sub 7} polymorph. Such systems, containing nanocrystalline silicate particles with Er{sup 3+} ions placed in well defined sites embedded in silica matrix, may be interesting as highly efficient active components of optical waveguides amplifiers integrated with Si microelectronics. The nanocrystalline Ce–Er–O/SiO{sub 2} system prepared by the impregnation of the silica with the aqueous solution of nitrates appeared to be chemically inhomogeneous and less stable in both oxidising and reducing atmosphere. - Graphical abstract: Structure evolution of Ce{sub 0.5}Er{sub 0.5}O{sub 1.75} in air and in H{sub 2}. Display Omitted - Highlights: • Homogeneous 3 nm Ce{sub 1−x}Er{sub x}O{sub 2−y} particles were prepared and uniformly dispersed on SiO{sub 2}. • Er diffusion to SiO{sub 2} determines the stability of the mixed oxide in air to ∼1000 °C. • Spreading of Ce{sub 1−x}Er{sub x}O{sub 2−y} onto SiO{sub 2} occurs in hydrogen at 900 °C. • Nanocrystalline A-(Ce,Er){sub 2}Si{sub 2}O{sub 7} silicate forms in H

  7. Affine field theories

    International Nuclear Information System (INIS)

    Cadavid, A.C.

    1989-01-01

    The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index

  8. Role of β/δ101Gln in Regulating the Effect of Temperature and Allosteric Effectors on Oxygen Affinity in Woolly Mammoth Hemoglobin†

    Science.gov (United States)

    Yuan, Yue; Byrd, Catherine; Shen, Tong-Jian; Simplaceanu, Virgil; Tam, Tsuey Chyi S.; Ho, Chien

    2013-01-01

    The oxygen affinity of woolly mammoth hemoglobin (rHb WM) is less affected by temperature change than that of Asian elephant hemoglobin (rHb AE) or human adult hemoglobin (Hb A). We report here a biochemical-biophysical study of Hb A, rHb AE, rHb WM and three rHb WM mutants with amino acid substitutions at β/δ101 (β/δ101Gln→Glu, Lys, or Asp) plus a double and a triple mutant, designed to clarify the role of the β/δ101 residue. The β/δ101Gln residue is important for responding to allosteric effectors, such as phosphate, inositol hexaphosphate (IHP), and chloride. The rHb WM mutants studied generally have higher affinity for oxygen under various conditions of pH, temperature, and salt concentration, and in the presence or absence of organic phosphate, than do rHb WM, rHb AE and Hb A. Titrations for the O2 affinity of these mutant rHbs as a function of chloride concentration indicate a lower heterotopic effect of this anion due to the replacement of β/δ101Gln in rHb WM. The alkaline Bohr effect of rHb WM and its mutants is reduced by 20–50% compared to that of Hb A and is independent of changes in temperature, in contrast to what has been observed in the hemoglobins of most mammalian species, including human. The results of our study on the temperature dependence of the O2 affinity of rHb WM and its mutant rHbs illustrate the important role of β/δ101Gln in regulating the functional properties of these hemoglobins. PMID:24228693

  9. Graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3: A novel multi-heterojunction photocatalyst with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Ao, Yanhui; Xu, Liya; Wang, Peifang; Wang, Chao; Hou, Jun; Qian, Jin; Li, Yi

    2015-01-01

    Graphical abstract: A novel multi-heterojunction photocatalyst (graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3) was prepared for the first time. The as-obtained samples showed much higher activity compared to pure Bi_2O_2CO_3, TiO_2 and GR–Bi_2O_2CO_3 for dye degradation, which is almost 14 times higher than that of pure Bi_2O_2CO_3 and also much higher than the sum of graphene–Bi_2O_2CO_3 and TiO_2. - Highlights: • Graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3 was prepared for the first time. • The sample shows enhanced photocatalytic activity due to the formation of multi-heterojunction. • The sample also exhibits a synergetic effect of graphene and TiO_2. • The composite photocatalyst shows a good stability for dye degradation. - Abstract: In this paper, graphene (GR) and titania co-modified flower-like Bi_2O_2CO_3 multi-heterojunction composite photocatalysts were prepared by a simple and feasible two step hydrothermal process. The prepared samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), photoluminescence (PL), N_2 adsorption–desorption isotherm, and photo-induced current. The photocatalytic activity was investigated by the degradation of MO under UV light irradiation. The as prepared multi-heterojunction GR/Bi_2O_2CO_3/TiO_2 composites exhibited much higher photocatalytic activity than pure Bi_2O_2CO_3, TiO_2 and GR–Bi_2O_2CO_3. The higher performance of GR/Bi_2O_2CO_3/TiO_2 can be ascribed to the formation of multi-heterojunctions, which promote the effective separation of photo-induced electron–hole pairs. Moreover, the higher photocatalytic activity can also be ascribed to the high surface area of GR and TiO_2, which offers more active sites for the photodegradation reaction. Furthermore, the photocatalytic activity of GR/Bi_2O_2CO_3/TiO_2 remained without striking decrease after five cycles

  10. Rheological phase synthesis of nanosized α-LiFeO_2 with higher crystallinity degree for cathode material of lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Haowen; Ji, Panyin; Han, Xiaoyan

    2016-01-01

    In this paper, rheological phase method has been successfully applied to synthesize nanosized α-LiFeO_2, a promising cathode material of lithium-ion batteries. The formation, structure and morphology of the as-prepared powder were characterized by Thermogravimetric and differential thermal analyses (TGA/DTA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM). The particle size of the obtained α-LiFeO_2 ranged from 100 to 300 nm. It exhibited an initial discharge capacity 169 mAh g"−"1 at 0.1 C between 1.5 and 4.3 V, especially excellent cycling retention from the 10th to the 50th cycle (96.8%) between 1.5 and 4.3 V. The higher crystallinity degree might be responsible for the cyclability improvement. - Highlights: • α-LiFeO_2 with higher crystallinity degree has been synthesized. • The obtained samples were investigated by TGA/DTA, FTIR, SEM, XRD. • The prepared α-LiFeO_2 indicated excellent cycling retention.

  11. Molecular electron affinities

    International Nuclear Information System (INIS)

    Fukuda, E.K.

    1983-01-01

    Molecular electron affinities have historically been difficult quantities to measure accurately. These difficulties arise from differences in structure between the ion and neutral as well as the existence of excited negative ion states. To circumvent these problems, relative electron affinities were determined in this dissertation by studying equilibrium electron transfer reactions using a pulsed ion cyclotron resonance (ICR) spectrometer. Direct measurement of ion and neutral concentrations for reactions of the general type, A - + B = B - + A, allow calculation of the equilibrium constant and, therefore, the free energy change. The free energy difference is related to the difference in electron affinities between A and B. A relative electron affinity scale covering a range of about 45 kcal/mol was constructed with various substituted p-benzoquinones, nitrobenzenes, anhydrides, and benzophenones. To assign absolute electron affinities, various species with accurately known electron affinities are tied to the scale via ion-cyclotron double resonance bracketing techniques. After the relative scale is anchored to these species with well-known electron affinities, the scale is then used as a check on other electron affinity values as well as generating new electron affinity values. Many discrepancies were found between the electron affinities measured using the ICR technique and previous literature determinations

  12. Structure of Greyhound hemoglobin: origin of high oxygen affinity.

    Science.gov (United States)

    Bhatt, Veer S; Zaldívar-López, Sara; Harris, David R; Couto, C Guillermo; Wang, Peng G; Palmer, Andre F

    2011-05-01

    This study presents the crystal structure of Greyhound hemoglobin (GrHb) determined to 1.9 Å resolution. GrHb was found to crystallize with an α₁β₁ dimer in the asymmetric unit and belongs to the R2 state. Oxygen-affinity measurements combined with the fact that GrHb crystallizes in the R2 state despite the high-salt conditions used for crystallization strongly indicate that GrHb can serve as a model high-oxygen-affinity hemoglobin (Hb) for higher mammals, especially humans. Structural analysis of GrHb and its comparison with the R2-state of human Hb revealed several regions that can potentially contribute to the high oxygen affinity of GrHb and serve to rationalize the additional stability of the R2-state of GrHb. A previously well studied hydrophobic cluster of bar-headed goose Hb near α119 was also incorporated in the comparison between GrHb and human Hb. Finally, a structural comparison with generic dog Hb and maned wolf Hb was conducted, revealing that in contrast to GrHb these structures belong to the R state of Hb and raising the intriguing possibility of an additional allosteric factor co-purifying with GrHb that can modulate its quaternary structure.

  13. Studies of Eu2O3 - Bi2O3 - B2O3 glasses using Raman and IR spectroscopy

    International Nuclear Information System (INIS)

    Pop, Lidia; Culea, Eugen N.; Bratu, I.

    2004-01-01

    The bismuth borate (3Bi 2 O 3 ·B 2 O 3 ) glasses were prepared with different concentrations of Eu 3+ . The structure of these systems were investigated by Raman and IR spectroscopy. The structural study reveals that the glasses contain BiO 3 , BiO 6 , BO 3 , BO 4 and Eu-O structural units. For the samples with a higher content of Eu 2 O 3 , the spectra became very large indicating a more disordered structure. The hygroscopic character of the 3Bi 2 O 3 ·B 2 O 3 glass matrix and the progressive decrease of this behaviour with increasing the Eu 2 O 3 content was observed. Therefore, we conclude that the europium oxide acts as a network modifier in these glasses. (authors)

  14. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective

  15. Realization of Robertson-Walker spacetimes as affine hypersurfaces

    International Nuclear Information System (INIS)

    Chen Bangyen

    2007-01-01

    Due to the growing interest in embeddings of spacetimes in higher dimensional spaces, we consider a special type of embedding. We prove that Robertson-Walker spacetimes can be embedded as centroaffine hypersurfaces and graph hypersurfaces in some affine spaces in such a way that the induced relative metrics are exactly the Lorentzian metrics on the Robertson-Walker spacetimes. Such realizations allow us to view Robertson-Walker spacetimes and their submanifolds as affine submanifolds in a natural way. Consequently, our realizations make it possible to apply the tools of affine differential geometry to study Robertson-Walker spacetimes and their submanifolds

  16. Hemoglobins: models of physiological adaptation, with special reference to O2 availability and temperature

    DEFF Research Database (Denmark)

    Weber, Roy E.

    In transporting O2 from the respiratory surfaces to the respiring tissues of animals, hemoglobin (Hb) directly links aerobic metabolism with O2 availability and is a paradigm for studying mechanisms of molecular adaptations. Hb-O2 binding is cooperative (described by sigmoid O2 binding curves......) and decreased by allosteric effectors (protons, CO2, lactate, organic phosphates and chloride ions) that modulate O2 binding in response to changes in environmental and metabolic dictates. Hb-O2 affinity moreover decreases with rising temperature. This increases O2 unloading in warm tissues that consume more O2......, but may be maladaptive – and thus is reduced - in regional heterothermic animals where it may hamper O2 unloading (in cold extremities of Artic mammals) or cause excessive O2 release (in warm organs of fast-swimming fish). Illustrated with case studies (estivating lungfish, high altitude frogs, birds...

  17. USING MICROSCALE THERMOPHORESIS TO EASILY MEASURE BINDING AFFINITY

    Directory of Open Access Journals (Sweden)

    Dennis Breitsprecher*

    2018-03-01

    Full Text Available While it’s very common for biologists and chemists to test whether or not two molecules interact with each other, it’s much more useful to gather information on the nature of that interaction. How strong is it? How long will it last? What does that mean for its biological function? One way to answer these questions is to study affinity. Binding affinity is defined as the strength of the binding interaction between a single biomolecule to its binding partner, or ligand, and it can be quantifiably measured, providing information on whether or not molecules are interacting, as well as assigning a value to the affinity. When measuring binding affinity, there are several parameters to look at, but the dissociation constant (Kd, which defines the likelihood that an interaction between two molecules will break, is a very common measurement. The smaller the dissociation constant, the more tightly bound the ligand is, and the higher the affinity is between the two molecules.

  18. Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2

    Institute of Scientific and Technical Information of China (English)

    CAI Tiejun; LIAO Yuchao; PENG Zhenshan; LONG Yunfei; WEI Zongyuan; DENG Qian

    2009-01-01

    The binary composite photo-catalysts CeO2/TiO2, ZrO2/TiO2 and the ternary composite photo-catalysts H3PW12O40-CeO2/TiO2,H2PW12O40-ZrO2/TiO2 were prepared by sol-gel method. The catalysts were characterized by thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalyfic elimination of methanol was used as model reaction to evaluate the photocatalytic activity of the composite catalysts under ultraviolet light irradiation. The effects of doped content, activation temperature, time, initial concentration of methanol and gas flow rate on the catalytic activity were investigated. The results showed that after doping a certain amount of CeO2 and ZrO2, crystaniTation process of TiO2 was restrained, particles of catalysts are smaller and more uniform. Doping ZrO2 not only significantly improved the catalytic activity, but also increased thermal stability. Doping H3PW12O40 also enhanced the catalytic activity. The catalytic activities of binary and ternary composite photocatalysts were significantly higher than tin-doped TiO2. The dynamics law of photocatalytic reaction over the binary CeO2/TiO2 and ZrO2/TiO2 catalysts has been studied. The activation energy 15.627 and 15.631 kJ/mol and pre-exponential factors 0.5176 and 0.9899 s-1 over each corresponding catalyst were obtained. This reaction accords to the first order dynamics law.

  19. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO2 nanoparticles.

    Science.gov (United States)

    Hong, Yayun; Zhan, Qiliang; Pu, Chenlu; Sheng, Qianying; Zhao, Hongli; Lan, Minbo

    2018-09-01

    In this work, hollow magnetic macro/mesoporous TiO 2 nanoparticles (denoted as Fe 3 O 4 @H-fTiO 2 ) were synthesized by a facile "hydrothermal etching assisted crystallization" route to improve the phosphopeptide enrichment efficiency. The porous nanostructure of TiO 2 shell and large hollow space endowed the Fe 3 O 4 @H-fTiO 2 with a high surface area (144.71 m 2 g -1 ) and a large pore volume (0.52 cm 3 g -1 ), which could provide more affinity sites for phosphopeptide enrichment. Besides, the large pore size of TiO 2 nanosheets and large hollow space could effectively prevent the "shadow effect", thereby facilitating the diffusion and release of phosphopeptides. Compared with the hollow magnetic mesoporous TiO 2 with small and deep pores (denoted as Fe 3 O 4 @H-mTiO 2 ) and solid magnetic macro/mesoporous TiO 2 , the Fe 3 O 4 @H-fTiO 2 nanoparticles showed a better selectivity (molar ratio of α-casein/BSA up to 1:10000) and a higher sensitivity (0.2 fmol/μL α-casein) for phosphopeptide enrichment. Furthermore, 1485 unique phosphopeptides derived from 660 phosphoproteins were identified from HeLa cell extracts after enrichment with Fe 3 O 4 @H-fTiO 2 nanoparticles, further demonstrating that the Fe 3 O 4 @H-fTiO 2 nanoparticles had a high-efficiency performance for phosphopeptide enrichment. Taken together, the Fe 3 O 4 @H-fTiO 2 nanoparticles will have unique advantages in phosphoproteomics analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals

    International Nuclear Information System (INIS)

    Wild, Damian; Schmitt, Joerg S.; Ginj, Mihaela; Maecke, Helmut R.; Bernard, Bert F.; Krenning, Eric; Jong, Marion de; Wenger, Sandra; Reubi, Jean-Claude

    2003-01-01

    Earlier studies have shown that modification of the octapeptide octreotide in positions 3 and 8 may result in compounds with increased somatostatin receptor affinity that, if radiolabelled, display improved uptake in somatostatin receptor-positive tumours. The aim of a recent research study in our laboratory was to employ the parallel peptide synthesis approach by further exchanging the amino acid in position 3 of octreotide and coupling the macrocyclic chelator DOTA(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to these peptides for labelling with radiometals like gallium-67 or -68, indium-111, yttrium-90 and lutetium-177. The purpose was to find radiopeptides with an improved somatostatin receptor binding profile in order to extend the spectrum of targeted tumours. A first peptide, [ 111 In, 90 Y-DOTA]-1-Nal 3 -octreotide ( 111 In, 90 Y-DOTA-NOC), was isolated which showed an improved profile. In III -DOTA-NOC exhibited the following IC 50 values (nM) when studied in competition with [ 125 I][Leu 8 , d-Trp 22 , Tyr 25 ]somatostatin-28 (values for Y III -DOTA-NOC are shown in parentheses): sstr2, 2.9±0.1 (3.3±0.2); sstr3, 8±2 (26±1.9); sstr5, 11.2±3.5 (10.4±1.6). Affinity towards sstr1 and 4 was very low or absent. In III -DOTA-NOC is superior to all somatostatin-based radiopeptides having this particular type of binding profile, including DOTA-lanreotide, and has three to four times higher binding affinity to sstr2 than In III ,Y III -DOTA-Tyr 3 -octreotide (In III ,Y III -DOTA-TOC). In addition, [ 111 In]DOTA-NOC showed a specific and high rate of internalization into AR4-2J rat pancreatic tumour cells which, after 4 h, was about two times higher than that of [ 111 In]DOTA-TOC and three times higher than that of [ 111 In]DOTA-octreotide ([ 111 In]DOTA-OC). The internalized radiopeptides were externalized intact upon 2 h of internalization followed by an acid wash. After 2-3 h of externalization a plateau is reached, indicating a steady

  1. Crystallization behavior of Li2O-SiO2, Na2O-SiO2 and Na2O-CaO-SiO2 glasses; Li2O-SiO2, Na2O-SiO2, Na2O-CaO-SiO2 kei glass no kessho sekishutsu kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, K.; Otake, J.; Nagasaka, T.; Hino, M. [Tohoku University, Sendai (Japan)

    1998-06-01

    It has been known that crystallization of mold powder is effective on the disturbance of heat transfer between mold and solidified shell in production of middle carbon steel slabs in continuous casting process. But it has not yet been made clear which composition of mold powder is the most suitable for crystallization. The crystallization behavior of Li2O-SiO2, Na2O-SiO2 and Na2O-CaO-SiO2 glasses was observed by differential thermal analysis (DTA) and hot-thermocouple methods with DTA in the present work. As a result, addition of alkaline metal and alkaline earth metal oxides to SiO2 increased the critical cooling rate for glass formation in binary system of Li2O-SiO2 and Na2O-SiO2 and Li2O-SiO2 system crystallized easier than Na2O-SiO2 system. In ternary system of Na2O-CaO-SiO2, addition of Na2O hurried the critical cooling rate at CaO/SiO2=0.93 mass ratio, but the rate was almost constant in the composition range of more than 15 mass% Na2O. The slag of CaO/SiO2=0.93 made the rate faster than the slag of CaO/SiO2=0.47 at constant content of 10mass% Na2O. 17 refs., 10 figs., 3 tabs.

  2. Effective role of CaO/P2O5 ratio on SiO2-CaO-P2O5 glass system

    Directory of Open Access Journals (Sweden)

    P. Kiran

    2017-05-01

    Full Text Available In the present work, the effect of the CaO/P2O5 ratio on the composition of sol-gel synthesized 58SiO2-(19 − xP2O5–(23 + xCaO (x = 0, 5, 10 and 15 mol% glass samples was studied. Further, the effect of NBO/BO ratio on hydroxy carbonated apatite layer (HCA forming ability based on dissolution behavior in simulated body fluid (SBF solution was also investigated. CaO/P2O5 ratios of synthesized glass samples were 1.2, 2, 3.6, and 9.5, respectively. NBO/BO ratios were obtained using Raman spectroscopic analysis as 0.58, 1.20, 1.46, and 1.78, respectively. All samples were soaked in the SBF solution for 7 days. The calculated weight losses of these samples were 58%, 64%, 83%, and 89% for corresponding NBO/BO ratios. The increase in CaO/P2O5 ratio increases the NBO/BO ratios. However, the increase in NBO/BO ratio increases HCA forming ability of SBF treated samples. The HCA crystalline layer formation was confirmed through X-ray Diffraction (XRD, Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Raman and Infrared spectroscopic analysis. Higher CaO/P2O5 ratio favors the increase in HCA formation for SBF treated calcium phospho silicate glasses.

  3. Low temperature formation of higher-k cubic phase HfO{sub 2} by atomic layer deposition on GeO{sub x}/Ge structures fabricated by in-situ thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R., E-mail: zhang@mosfet.t.u-tokyo.ac.jp [School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S. [School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-02-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x} interfacial layer.

  4. [Affinity of the elements in group VI of the periodic table to tumors and organs].

    Science.gov (United States)

    Ando, A; Hisada, K; Ando, I

    1976-10-01

    In order to investigate the tumor affinity radioisotopes, chromium (51Cr), molybdenum (99Mo), tungsten (181W), selenium (75Se) and tellurium (127mTe)--the elements of group VI in the periodic table--were examined, using the rats which were subcutaneously transplanted with Yoshida sarcoma. Seven preprarations, sodium chromate (Na251CrO4), chromium chloride (51CrCl3), normal ammonium molybdate ((NH4)299MoO7), sodium tungstate (Na2181WO4), sodium selenate (Na275SeO4), sodium selenite (Na275SeO3) and tellurous acid (H2127mTeO3) were injected intravenously to each group of tumor bearing rats. These rats were sacrificed at various periods after injection of each preparation: 3 hours, 24 hours and 48 hours in all preparations. The radioactivities of the tumor, blood, muscle, liver, kidney and spleen were measured by a well-type scintillation counter, and retention values (in every tissue including the tumor) were calculated in percent of administered dose per g-tissue weight. All of seven preparations did not have any affinity for malignant tumor. Na251CrO4 and H2127mTeO3 had some affinity for the kidneys, and Na275SeO3 had some affinity for the liver. Na2181WO4 and (NH4)299MoO4 disappeared very rapidly from the blood and soft tissue, and about seventy-five percent of radioactivity was excreted in urine within first 3 hours.

  5. The Role of Peroxiredoxins in the Transduction of H2O2 Signals.

    Science.gov (United States)

    Rhee, Sue Goo; Woo, Hyun Ae; Kang, Dongmin

    2018-03-01

    Hydrogen peroxide (H 2 O 2 ) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H 2 O 2 -eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H 2 O 2 . Peroxiredoxins possess a high-affinity binding site for H 2 O 2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H 2 O 2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H 2 O 2 effectors are therefore at a competitive disadvantage for reaction with H 2 O 2 . Recent Advances: Here we review intracellular sources of H 2 O 2 as well as H 2 O 2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H 2 O 2 -mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H 2 O 2 effector proteins localized in specific subcellular compartments participates in H 2 O 2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H 2 O 2 signaling. Antioxid. Redox Signal. 28, 537-557.

  6. Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe(3)O(4)@SiO(2) core/shell magnetic nanoparticles.

    Science.gov (United States)

    Park, Minsung; Seo, Sungmin; Lee, In Su; Jung, Jong Hwa

    2010-07-07

    A new fluorogenic based aminonaphthalimide-functionalized Fe(3)O(4)@SiO(2) core/shell magnetic nanoparticles 1 has been prepared, and its abilities to sense and separate metal ions were evaluated by fluorophotometry. The nanoparticles 1 exhibited a high affinity and selectivity for Hg(2+) and CH(3)Hg(+) ions over competing metal ions.

  7. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants.

    Science.gov (United States)

    Zarrin, Saviz; Heshmatpour, Felora

    2018-06-05

    In this study, highly active titanium dioxide modified by niobium oxide (Nb 2 O 5 ), polymer (PANI) and reduced graphene oxide (RGO) were successfully prepared. The morphology, structure, surface area and light absorption properties of the present nanocomposites for removal of methylene blue (MB) and methyl orange (MO) were investigated and compared with those of TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. The characterization techniques such as XRD, FT-IR, UV-vis, SEM, EDX, BET and TEM were employed in order to identify the nanocomposites. Also, photocatalytic properties of TiO 2 /Nb 2 O 5 /PANI and TiO 2 /Nb 2 O 5 /RGO nanocomposites under visible light irradiation were studied. In this way, the obtained results were compared to each other and also compared to TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. In this context, the chemical oxygen demand (COD) removal follows the photodegradation in observed performance. The results indicate that reduced TiO 2 /Nb 2 O 5 nanocomposite is effectively modified by graphene oxide to give TiO 2 /Nb 2 O 5 /RGO composite. The TiO 2 /Nb 2 O 5 /RGO exhibits significantly higher photocatalytic activity in degradation of organic dyes under visible light rather than that of TiO 2 /Nb 2 O 5 /PANI, TiO 2 /Nb 2 O 5 and pure TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Amyloid-beta binds catalase with high affinity and inhibits hydrogen peroxide breakdown.

    OpenAIRE

    Milton, N G

    1999-01-01

    Amyloid-beta (Abeta) specifically bound purified catalase with high affinity and inhibited catalase breakdown of H(2)O(2). The Abeta-induced catalase inhibition involved formation of the inactive catalase Compound II and was reversible. CatalaseAbeta interactions provide rapid functional assays for the cytotoxic domain of Abeta and suggest a mechanism for some of the observed actions of Abeta plus catalase in vitro.

  9. Crack-resistant Al2O3-SiO2 glasses.

    Science.gov (United States)

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-07

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  10. Higher spins and Yangian symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Gaberdiel, Matthias R. [Institut für Theoretische Physik, ETH Zurich, CH-8093 Zurich (Switzerland); Gopakumar, Rajesh [International Centre for Theoretical Sciences-TIFR, Survey No. 151, Shivakote, Hesaraghatta Hobli, Bengaluru North 560 089 (India); Li, Wei [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,100190 Beijing (China); Peng, Cheng [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States)

    2017-04-26

    The relation between the bosonic higher spin W{sub ∞}[λ] algebra, the affine Yangian of gl{sub 1}, and the SH{sup c} algebra is established in detail. For generic λ we find explicit expressions for the low-lying W{sub ∞}[λ] modes in terms of the affine Yangian generators, and deduce from this the precise identification between λ and the parameters of the affine Yangian. Furthermore, for the free field cases corresponding to λ=0 and λ=1 we give closed-form expressions for the affine Yangian generators in terms of the free fields. Interestingly, the relation between the W{sub ∞} modes and those of the affine Yangian is a non-local one, in general. We also establish the explicit dictionary between the affine Yangian and the SH{sup c} generators. Given that Yangian algebras are the hallmark of integrability, these identifications should pave the way towards uncovering the relation between the integrable and the higher spin symmetries.

  11. Affinity Programs and the Real Estate Brokerage Industry

    OpenAIRE

    G Stacy Sirmans; David A. Macpherson

    2001-01-01

    This study surveys active real estate brokers obtaining information on involvement in affinity programs and referral/relocation networks. Some results regarding affinity involvement are: (a) 13% of respondents reported affinity affilliations, 75% reported no affiliations, and 12% indicated plans to become involved within the next year; (b) about half having affinity affiliations were involved with 2-4 groups; (c) affinity relationships were most often with membership organizations, corporatio...

  12. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity.

    Directory of Open Access Journals (Sweden)

    Lisa K Brents

    Full Text Available K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R.JWH-018, five potential monohydroxylated metabolites (M1-M5, and one carboxy metabolite (M6 were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i values that were lower than or equivalent to Δ(9-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251.Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ(9

  13. Two-parameter quantum affine algebra Ur,s(sln-circumflex), Drinfeld realization and quantum affine Lyndon basis

    International Nuclear Information System (INIS)

    Hu Naihong; Rosso, M.; Zhang Honglian

    2006-12-01

    We further find the defining structure of a two-parameter quantum affine algebra U r,s (sl n -circumflex) (n > 2) in the sense of Benkart-Witherspoon [BW1] after the work of [BGH1], [HS] and [BH], which turns out to be a Drinfeld double. Of more importance for the 'affine' cases is that we work out the compatible two-parameter version of the Drinfeld realization as a quantum affinization of U r,s (sl n ) and establish the Drinfeld isomorphism Theorem in the two-parameter setting via developing a new remarkable combinatorial approach - quantum 'affine' Lyndon basis with an explicit valid algorithm, based on the Drinfeld realization. (author)

  14. Energy-band alignment of (HfO2)x(Al2O3)1-x gate dielectrics deposited by atomic layer deposition on β-Ga2O3 (-201)

    Science.gov (United States)

    Yuan, Lei; Zhang, Hongpeng; Jia, Renxu; Guo, Lixin; Zhang, Yimen; Zhang, Yuming

    2018-03-01

    Energy band alignments between series band of Al-rich high-k materials (HfO2)x(Al2O3)1-x and β-Ga2O3 are investigated using X-Ray Photoelectron Spectroscopy (XPS). The results exhibit sufficient conduction band offsets (1.42-1.53 eV) in (HfO2)x(Al2O3)1-x/β-Ga2O3. In addition, it is also obtained that the value of Eg, △Ec, and △Ev for (HfO2)x(Al2O3)1-x/β-Ga2O3 change linearly with x, which can be expressed by 6.98-1.27x, 1.65-0.56x, and 0.48-0.70x, respectively. The higher dielectric constant and higher effective breakdown electric field of (HfO2)x(Al2O3)1-x compared with Al2O3, coupled with sufficient barrier height and lower gate leakage makes it a potential dielectric for high voltage β-Ga2O3 power MOSFET, and also provokes interest in further investigation of HfAlO/β-Ga2O3 interface properties.

  15. Structures and electron affinity of XO30,-, XOF40,- and XO2F20,- (X = P, As, Sb, Bi): a theoretical study of novel superhalogen formulae and exceptions of superhalogen formulae

    Science.gov (United States)

    Yang, Yi-Fan; Cui, Zhong-Hua; Ding, Yi-Hong

    2015-03-01

    Most superhalogen species are in the form of oxides or halides. To enrich the family of superhalogen species, herein, we investigated the structures and electron affinity (EA) values of higher group 15 elements (X = P, As, Sb, Bi) oxyfluoride species XO30,-, XOF40,- and XO2F20,-, at the CCSD(T)/aug-cc-pVTZ-pp & aug-cc-pVTZ //B3LYP/aug-cc-pVTZ-pp & aug-cc-pVTZ levels (aug-cc-pVTZ-pp for X = Sb and Bi). Some oxyfluoride species, i.e., PO2F20,-, AsO2F20,-, SbO2F20,-, POF40,-, AsOF40,-, SbOF40,- and BiOF40,-, were found to possess higher EA (VDE: 5.0-6.2 eV; ADE: 4.5-5.5 eV) than halogens (F: 3.4 eV; Cl: 3.6 eV). Thus, we recommended that the oxyfluorides in the form of XO2F20,- and XOF40,- should be considered as potential superhalogens, which have not been considered previously. Surprisingly, we showed that BiO3 and BiO2F2, in superhalogen formulae, possess a high vertical detachment energy (VDE) yet a low adiabatic detachment energy (ADE). This is in marked contrast to the previously reported superhalogens, which generally contain both the high VDE and high ADE values. It is the first report about exceptions of superhalogen formulae. These findings revealed that for the analogous main-group compounds with the same structural formula, the difference in the metallic property of the core element could lead to the significant difference in the ground structures of either the anionic or neutral structures, which would result in the much differed superhalogen features.

  16. Higher spin currents in orthogonal Wolf space

    International Nuclear Information System (INIS)

    Ahn, Changhyun; Paeng, Jinsub

    2015-01-01

    For the N=4 superconformal coset theory by ((SO(N+4))/(SO(N)×SU(2)))×U(1) (that contains an orthogonal Wolf space) with N = 4, the N=2 WZW affine current algebra is obtained. The 16 generators (or 11 generators) of the large N=4 linear (or nonlinear) superconformal algebra are described by these WZW affine currents explicitly. Along the line of large N=4 holography, the extra 16 currents with spins (2,(5/2),(5/2),3), ((5/2),3,3,(7/2)), ((5/2),3,3,(7/2)), and (3,(7/2),(7/2),4) are obtained in terms of the WZW affine currents. The lowest spin of this N=4 multiplet is two rather than one, which is for a unitary Wolf space. The operator product expansions between the above 11 currents and these extra 16 higher spin currents are found explicitly. (paper)

  17. Report: Affinity Chromatography.

    Science.gov (United States)

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  18. Dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 system

    OpenAIRE

    Yixiang Chen; Zengchao Yang; Bin He; Guanghua Liu; Jiangtao Li; Liang Wu

    2011-01-01

    The dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 (YAS) system has been investigated by melting experiment. Transparent YAS glasses have been prepared under the condition of furnace cooling instead of quenching. It is found that, in the YAS ternary phase diagram, the compositions on the Y3Al5O12–SiO2 line and with 52-68 mol% SiO2 have a higher glass-forming ability to produce pure glass. For the compositions with too much or less SiO2 or with Y/Al = 5/3, 1/1,...

  19. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Directory of Open Access Journals (Sweden)

    Person Alexandra M

    2011-11-01

    Full Text Available Abstract Background Along with high affinity binding of epibatidine (Kd1≈10 pM to α4β2 nicotinic acetylcholine receptor (nAChR, low affinity binding of epibatidine (Kd2≈1-10 nM to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after

  20. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Science.gov (United States)

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of

  1. Eosin Y-sensitized nanostructured SnO{sup 2}/TiO{sup 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Weon-Pil [Institute of Advanced Materials, Inha University, Yonghyun-dong, Nam-ku, Inchon 402-751 (South Korea); Inoue, Kozo [National Institute of Advanced Industrial Science and Technology, Tosu, Saga 841-0052 (Japan)

    2003-02-01

    The photoelectrochemical behaviors of eosin Y (organic dye)-sensitized nanostructured SnO{sub 2}/TiO{sub 2} coupled and SnO{sub 2}+TiO{sub 2} composite solar cells were studied. The value of incident photon-to-current conversion efficiency (IPCE) in the coupled system was higher than the composite system. A maximum IPCE value, 63%, was reached at 525 nm wavelength in the coupled cell with 3.5-{mu}m-thick SnO{sub 2} and 7-{mu}m-thick TiO{sub 2}. The IPCE difference in the coupled and composite cells sensitized by eosin Y dye is discussed.

  2. The effect of CaO/SiO2 molar ratio of CaO-Al2O3-SiO2 glasses on their structure and reactivity in alkali activated system.

    Science.gov (United States)

    Kucharczyk, Sylwia; Sitarz, Maciej; Zajac, Maciej; Deja, Jan

    2018-04-05

    The influence of CaO/SiO 2 molar ratio of calcium aluminosilicate glasses on resulting structure and reactivity was investigated. Chemical compositions of glasses were chosen to mimic the composition of the fly ash and slag amorphous phase. Understanding the reactivity of these materials is of high importance allowing further development of the composite cements to limit the environmental footprint of cement industry. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy were employed to examine the structure of glasses. Reactivity of the glasses was analyzed on paste samples after 1, 2, 7, 28 and 90days of curing by means of thermogravimetry (TGA), X-ray diffraction (XRD) and FTIR. Spectroscopic results emphasize dependence of the structure on the chemical composition of the glasses. The higher CaO/SiO 2 the more depolymerized the glass network is, though there is no direct correlation with the reactivity. Significant differences in reactivity is observed primarily between the glasses of peraluminous (CaO/Al 2 O 3 1). Amongst the pastes made of glasses of percalcic region a higher degree of reaction at later ages is observed for the paste containing glass of lower CaO/SiO 2 molar ratio. This is due to both degree of depolimerization and the nature of these glasses (pozzolanic and hydraulic materials). No difference of degree of reaction has been observed within the glasses of CaO/SiO 2 lower than 1. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The effect of CaO/SiO2 molar ratio of CaO-Al2O3-SiO2 glasses on their structure and reactivity in alkali activated system

    Science.gov (United States)

    Kucharczyk, Sylwia; Sitarz, Maciej; Zajac, Maciej; Deja, Jan

    2018-04-01

    The influence of CaO/SiO2 molar ratio of calcium aluminosilicate glasses on resulting structure and reactivity was investigated. Chemical compositions of glasses were chosen to mimic the composition of the fly ash and slag amorphous phase. Understanding the reactivity of these materials is of high importance allowing further development of the composite cements to limit the environmental footprint of cement industry. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy were employed to examine the structure of glasses. Reactivity of the glasses was analyzed on paste samples after 1, 2, 7, 28 and 90 days of curing by means of thermogravimetry (TGA), X-ray diffraction (XRD) and FTIR. Spectroscopic results emphasize dependence of the structure on the chemical composition of the glasses. The higher CaO/SiO2 the more depolymerized the glass network is, though there is no direct correlation with the reactivity. Significant differences in reactivity is observed primarily between the glasses of peraluminous (CaO/Al2O3 1). Amongst the pastes made of glasses of percalcic region a higher degree of reaction at later ages is observed for the paste containing glass of lower CaO/SiO2 molar ratio. This is due to both degree of depolimerization and the nature of these glasses (pozzolanic and hydraulic materials). No difference of degree of reaction has been observed within the glasses of CaO/SiO2 lower than 1.

  4. Influence of Molecular Structure on O2-Binding Properties and Blood Circulation of Hemoglobin‒Albumin Clusters.

    Directory of Open Access Journals (Sweden)

    Kana Yamada

    Full Text Available A hemoglobin wrapped covalently by three human serum albumins, a Hb-HSA3 cluster, is an artificial O2-carrier with the potential to function as a red blood cell substitute. This paper describes the synthesis and O2-binding properties of new hemoglobin‒albumin clusters (i bearing four HSA units at the periphery (Hb-HSA4, large-size variant and (ii containing an intramolecularly crosslinked Hb in the center (XLHb-HSA3, high O2-affinity variant. Dynamic light scattering measurements revealed that the Hb-HSA4 diameter is greater than that of either Hb-HSA3 or XLHb-HSA3. The XLHb-HSA3 showed moderately high O2-affinity compared to the others because of the chemical linkage between the Cys-93(β residues in Hb. Furthermore, the blood circulation behavior of 125I-labeled clusters was investigated by assay of blood retention and tissue distribution after intravenous administration into anesthetized rats. The XLHb-HSA3 was metabolized faster than Hb-HSA3 and Hb-HSA4. Results suggest that the molecular structure of the protein cluster is a factor that can influence in vivo circulation behavior.

  5. Interactions between alkaline earth cations and oxo ligands. DFT study of the affinity of the Mg²+ cation for phosphoryl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho

    2011-08-01

    DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.

  6. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  7. Study of directionally solidified eutectic Al2O3-ZrO2(3%Y2O3 doped with TiO2

    Directory of Open Access Journals (Sweden)

    Peña, J. I.

    2007-06-01

    Full Text Available An study of directionally grown samples of the eutectic composition in the Al2O3-ZrO2 (3 mol% Y2O3 system, with small TiO2 additions (1 wt%, is presented. The microstructural changes induced by this addition are analysed using SEM (EDX techniques. The mechanical changes, when TiO2 is added, are studied by measuring the flexural strength by three point bending. Also, the toughness is determined by Vickers indentation method. When slow growth rates (10 mm/h are used, interpenetratred and homogeneous microstructure is obtained, independently of the TiO2 doping. When growth rates are higher (300 and 1000 mm/h the structure changes and the phases are organized in form of colonies or cells, which have smaller size when TiO2 is present. This size reduction is accompanied with an increase of the toughness.Este trabajo presenta un estudio de muestras crecidas direccionalmente del sistema Al2O3-ZrO2 (3 mol% Y2O3 en su composición eutéctica con pequeñas adiciones de óxido de titanio (1% de TiO2 en peso. Se analizan los cambios microestructurales inducidos por esta adición mediante SEM (EDX y se estudian los cambios en su comportamiento mecánico medido por flexión en tres puntos, así como la tenacidad de fractura mediante indentación Vickers. Con velocidades lentas de solidificación (10 mm/h se obtiene en ambos casos una microestructura homogénea e interpenetrada, mientras que a velocidades mayores, 300 y 1000 mm/h, se forma una estructura en las que las fases se organizan en forma de colonias o células, siendo éstas de menor tamaño en las muestras dopadas. Esta disminución en el tamaño viene acompañada de un aumento de la tenacidad de fractura medida por indentación.

  8. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity.

    Science.gov (United States)

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.

  9. High affinity binding of [3H]cocaine to rat liver microsomes

    International Nuclear Information System (INIS)

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    ] 3 H]cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in [ 3 H]cocaine binding. On the other hand, chronic administration of cocaine reduced [ 3 H]cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of [ 3 H]cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced [ 3 H]cocaine binding to liver with a different rank order of potency than their displacement of [ 3 H]cocaine binding to striatum. This high affinity [ 3 H]cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  10. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    Science.gov (United States)

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  11. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage

    Science.gov (United States)

    Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke

    2017-11-01

    Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.

  12. Spark plasma sintering and mechanical properties of $ZrO_{2} (Y_{2}O_{3})-Al_{2}O_{3}$ composites

    CERN Document Server

    Jin Sheng H; Dalla Torre, S; Miyamoto, H; Miyamoto, K

    2000-01-01

    Spark plasma sintering (SPS) was conducted on nanocrystalline ZrO/sub 2/(Y/sub 2/O/sub 3/)-20 mol% Al/sub 2/O/sub 3/ powder at a heat rate of 600 degrees C/min with a short holding time. Full density was obtained at sintering temperatures >1300 degrees C. Considerable grain growth occurred relative to the initial powder particles, but smaller grain size and higher density can be obtained as compared to hot-pressing. High flexural strength and fracture toughness were also achieved for the SPS-resulted composite. (8 refs).

  13. Thermodynamic modeling of La2O3-SrO-Mn2O3-Cr2O3 for solid oxide fuel cell applications

    DEFF Research Database (Denmark)

    Povoden-Karadeniz, E.; Chen, Ming; Ivas, Toni

    2012-01-01

    The thermodynamic La–Sr–Mn–Cr–O oxide database is obtained as an extension of thermodynamic descriptions of oxide subsystems using the calculation of phase diagrams approach. Concepts of the thermodynamic modeling of solid oxide phases are discussed. Gibbs energy functions of SrCrO4, Sr2.67Cr2O8......, Sr2CrO4, and SrCr2O4 are presented, and thermodynamic model parameters of La–Sr–Mn–Chromite perovskite are given. Experimental solid solubilities and nonstoichiometries in La1xSrxCrO3d and LaMn1xCrxO3d are reproduced by the model. The presented oxide database can be used for applied computational...... thermodynamics of traditional lanthanum manganite cathode with Cr-impurities. It represents the fundament for extensions to higher orders, aiming on thermodynamic calculations in noble symmetric solid oxide fuel cells...

  14. Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O<3 and Na2O/SiO2 molar ratios

    Directory of Open Access Journals (Sweden)

    Trochez, J. J.

    2015-03-01

    Full Text Available This paper assesses the feasibility of using a spent fluid catalytic cracking catalyst (SFCC as precursor for the production of geopolymers. The mechanical and structural characterization of alkali-activated SFCC binders formulated with different overall (activator + solid precursor SiO2/Al2O3 and Na2O/SiO2 molar ratios are reported. Formation of an aluminosilicate ‘geopolymer’ gel is observed under all conditions of activation used, along with formation of zeolites. Increased SiO2/Al2O3 induces the formation of geopolymers with reduced mechanical strength, for all the Na2O/SiO2 ratios assessed, which is associated with excess silicate species supplied by the activator. This is least significant at increased alkalinity conditions (higher Na2O/SiO2 ratios, as larger extents of reaction of the spent catalyst are achieved. SiO2/Al2O3 and Na2O/SiO2 ratios of 2.4 and 0.25, respectively, promote the highest compressive strength (67 MPa. This study elucidates the great potential of using SFCC as precursor to produce sustainable ceramic-like materials via alkali-activation.Este artículo estudia la factibilidad de usar un catalizador gastado del proceso de craqueo (SFCC para la producción de geopolímeros. Se evalúan las características mecánicas y estructurales de los geopolímeros producidos con diferentes relaciones molares (activador + precursor solido de SiO2/Al2O3 y Na2O/SiO2. La formación de un gel geopolimérico de tipo aluminosilicato se observa a las diferentes condiciones evaluadas, así como la formación de zeolitas. Un incremento en la relación SiO2/Al2O3 genera geopolímeros de baja resistencia mecánica, a las diferentes relaciones molares Na2O/SiO2 evaluadas, como consecuencia del exceso de especies silicato provenientes del activador. Este efecto es menos significativo al incrementar las condiciones de alcalinidad (mayores relaciones Na2O/SiO2, ya que un mayor grado de reacción del catalizador gastado es alcanzado. Las

  15. Electronic states of SiO2-MxOy (MxOy=P205, TiO2 and ZrO2) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kowada, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan); Adachi, H [Kyoto Univ. (Japan). Faculty of Engineering; Minami, T [Univ. of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1993-12-01

    Using the sol-gel method the surface of metal and glass substrates can be modified. For example, stainless steel sheets coated with the SiO2-ZrO2 glass films have higher resistance to corrosion and oxidation. The coating films contain high concentration of alkali ions diffusing from the glass substrates. It suggests that the sodium ions are trapped strongly within the coating films and are blocked to further diffuse to the surface. This behavior must be associated with the chemical bonding around the sodium ions in the SiO2-TiO2 and SiO2-ZrO2 films. For better understanding of the chemical bonding in the glasses, the electronic states of the SiO2-MxOy glasses were calculated by means of the DV-Xa cluster method. In this paper, the calculation method is explained, the results are discussed and the conclusion is stated. 17 refs., 6 figs.

  16. Crack-resistant Al2O3–SiO2 glasses

    Science.gov (United States)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  17. Ion channel regulation by phosphoinositides analyzed with VSPs – PI(4,5P2 affinity, phosphoinositide selectivity, and PI(4,5P2 pool accessibility

    Directory of Open Access Journals (Sweden)

    Alexandra eRjasanow

    2015-06-01

    Full Text Available The activity of many proteins depends on the phosphoinositide (PI content of the membrane. E.g., dynamic changes of the concentration of PI(4,5P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids.Voltage-sensitive phosphatases (VSPs turn over PI(4,5P2 to PI(4P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5P2. Because cellular PI(4,5P2 is resynthesized rapidly, steady state PI(4,5P2 changes with the degree of VSP activation and thus depends on membrane potential.Here we show that titration of endogenous PI(4,5P2 with Ci-VSP allows for the quantification of relative PI(4,5P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5P2 and PI(4P was insensitive to VSP.Surprisingly, despite comparable PI(4,5P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5P2 that differ in their accessibility to PLC and VSPs.

  18. Atenção primária, atenção psicossocial, práticas integrativas e complementares e suas afinidades eletivas Primary care, psychosocial care and complementary and alternative medicine: elective affinities

    Directory of Open Access Journals (Sweden)

    Charles Dalcanale Tesser

    2012-06-01

    Full Text Available Discutem-se afinidades eletivas entre três fenômenos na área da saúde: a atenção primária à saúde (APS, a abordagem psicossocial no cuidado à Saúde Mental e uso crescente das práticas integrativas e complementares (PIC. Apesar de suas diferenças, eles convergem como críticas e respostas a problemas do modelo médico hegemônico. Embora regulamentados e em implantação no Sistema Único de Saúde (as PIC de forma quase incipiente, tais fenômenos portam um caráter contra-hegemônico. Suas concepções de objeto, de meios e de fins do trabalho ou cuidado apresentam relevantes afinidades, como: centramento nos sujeitos em seus contextos sociais/familiares; abordagens ampliadas e holísticas; valorização de saberes/práticas não-biomédicos e de múltiplas formas, vivências e técnicas de cuidado; estímulo à auto-cura, participação ativa e empoderamento dos usuários; abordagem familiar e comunitária. Na organização das práticas e no relacionamento com a clientela há afinidades quanto à adequação sócio-cultural; parceria, dialogicidade e democratização das relações; trabalho territorial e construção/exploração de vínculos terapêuticos. Assinalam-se também convergências quanto aos efeitos terapêuticos e ético-políticos e discute-se o caráter relativamente desmedicalizante desses fenômenos, mais acentuado na atenção psicossocial e na procura pelas PIC. Tais afinidades significam sinergia entre os três fenômenos, ora relativamente independentes e isolados entre si. O reconhecimento e exploração dessas afinidades pela Saúde Coletiva, pelos movimentos sociais, bem como de profissionais e gestores do SUS, podem contribuir para qualificar a APS e a atenção em saúde mental e sua abertura para as PIC, ampliando as possibilidades de cuidado e fortalecendo os três fenômenos tematizados.This article discusses the elective affinities between three phenomena in health: primary health care, the

  19. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    Science.gov (United States)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  20. Thermoelectric Properties in the TiO2/SnO2 System

    Science.gov (United States)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  1. Comparative Study of Catalytic Oxidation of Ethanol to Acetaldehyde Using Fe(III Dispersed on Sb2O5 Grafted on SiO2 and on Untreated SiO2 Surfaces

    Directory of Open Access Journals (Sweden)

    Benvenutti Edilson V.

    1998-01-01

    Full Text Available Fe(III was supported on Sb(V oxide grafted on the silica gel surface and directly on the silica gel surface using ion-exchange and impregnation processes producing Fe/Sb/SiO2 and Fe/SiO2, respectively. The catalytic conversion of ethanol to acetaldehyde was much more efficient using Fe/Sb/SiO2 than Fe/SiO2 as catalyst. This higher efficiency of the former catalyst takes into account two aspects: a the new phase FeSbO4 formed when Fe/Sb/SiO2 is heat treated and, b it is higher dispersion on the matrix.

  2. Fabrication and evaluation of osteoblastic differentiation of human mesenchymal stem cells on novel CaO-SiO2-P2O5-B2O3 glass-ceramics.

    Science.gov (United States)

    Lee, Jae Hyup; Seo, Jun-Hyuk; Lee, Kyung Mee; Ryu, Hyun-Seung; Baek, Hae-Ri

    2013-07-01

    Apatite-wollastonite glass-ceramics have high mechanical strength, and CaO-SiO2 -B2 O3 glass-ceramics showed excellent bioactivity and high biodegradability. A new type of CaO-SiO2 -P2 O5 -B2 O3 system of bioactive glass-ceramics (BGS-7) was fabricated, and the effect and usefulness was evaluated via bioactivity using simulated body fluid and human mesenchymal stem cells (hMSCs). The purpose of this study was to compare BGS-7 and hydroxyapatite (HA) using hMSCs in order to evaluate the bioactivity of BGS-7 and its possibility as a bone graft extender. Alkaline phosphatase (ALP) staining, ALP activity, cell proliferation 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, Alizarin Red-S (AR-S) staining, calcium levels, the mRNA expression of ALP, osteocalcin, osteopontin, and runt-related transcription factor 2 (runx-2) using reverse-transcription polymerase chain reaction (RT-PCR) and the protein expression of osteocalcin and runx-2 using Western blot were measured by transplanting hMSC onto a tissue culture plate, HA, and BGS-7. The ALP staining and AR-S staining of BGS-7 was greater than that of HA and control. The ALP value of BGS-7 was significantly higher than that of HA and control. The MTS results showed that BGS-7 had a higher value than the groups transplanted onto HA and control on day 15. The calcium level was higher than the control in both HA and BGS-7, and was especially high in BGS-7. There were more mineral products on BGS-7 than on the HA when analyzed by scanning electron microscopy. The mRNA expression of ALP, osteopontin, osteocalcin, and runx-2 were higher on BGS-7 than on HA and the control when analyzed by RT-PCR. The relative gene expression of osteopontin and runx-2 were found to be higher on BGS-7 than on HA and the control by Western blot. Accordingly, it is predicted that BGS-7 would have high biocompatibility and good osteoconductivity, and presents a possibility as a new

  3. G2(+)M study on N-alkylamino cation affinities of neutral main-group element hydrides: trends across the periodic table.

    Science.gov (United States)

    Geng, Song; Wu, Ding-Lu; Yang, Jing; Wei, Xi-Guang; Zhu, Jun; Zhang, Hai-Bo; Ren, Yi; Lau, Kai-Chung

    2014-05-08

    We have made an extensive theoretical exploration of gas-phase N-alkylamino cation affinities (NAAMCA), including amino cation affinities (AMCA) and N-dimethylamino cation affinities (NDMAMCA), of neutral main-group element hydrides of groups 15-17 and periods 2-4 in the periodic table by using the G2(+)M method. Some similarities and differences are found between NAAMCA and the corresponding alkyl cation affinities (ACA) of H(n)X. Our calculations show that the AMCA and NDMAMCA are systematically lower than the corresponding proton affinities (PA) for H(n)X. In general, there is no linear correlation between NAAMCA and PA of H(n)X. Instead, the correlations exist only within the central elements X in period 2, or periods 3-4, which is significantly different from the reasonable correlations between ACA and PA for all H(n)X. NAAMCA (H(n)X) are weaker than NAAMCA (H(n-1)X(-)) by more than 700 kJ/mol and generally stronger than ACA (H(n)X), with three exceptions: H2ONR2(+)(R = H, Me) and HFNH2(+). These new findings can be rationalized by the negative hyperconjugation and Pauli repulsion.

  4. In vivo evaluation of CaO-SiO2-P2O5-B2O3 glass-ceramics coating on Steinman pins.

    Science.gov (United States)

    Lee, Jae Hyup; Hong, Kug Sun; Baek, Hae-Ri; Seo, Jun-Hyuk; Lee, Kyung Mee; Ryu, Hyun-Seung; Lee, Hyun-Kyung

    2013-07-01

    Surface coating using ceramics improves the bone bonding strength of an implant. We questioned whether a new type of glass-ceramics (BGS-7) coating (CaO-SiO2 -P2 O5 -B2 O3 ) would improve the osseointegration of Steinman pins (S-pins) both biomechanically and histomorphometrically. An in vivo study was performed using rabbits by inserting three S-pins into each iliac bone. The pins were 2.2-mm S-pins with a coating of 30-μm-thick BGS-7 and 550-nm-thick hydroxyapatite (HA), as opposed to an S-pin without coating. A tensile strength test and histomorphometrical evaluation was performed. In the 2-week group, the BGS-7 implant showed a significantly higher tensile strength than the S-pin. In the 4- and 8-week groups, the BGS-7 implants had significantly higher tensile strengths than the S-pins and HA implants. The histomorphometrical study revealed that the BGS-7 implant had a significantly higher contact ratio than the S-pin and HA implants in the 4-week group. The biomechanical and histomorphometrical tests showed that the BGS-7 coating had superior bone bonding properties than the groups without the coating from the initial stage of insertion. The BGS-7 coating of an S-pin will enhance the bone bonding strength, and there might also be an advantage in human bone bonding. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Preparation and Characterization of PbO-SrO-Na2O-Nb2O5-SiO2 Glass Ceramics Thin Film for High-Energy Storage Application

    Science.gov (United States)

    Tan, Feihu; Zhang, Qingmeng; Zhao, Hongbin; Wei, Feng; Du, Jun

    2018-03-01

    PbO-SrO-Na2O-Nb2O5-SiO2 (PSNNS) glass ceramic thin films were prepared by pulsed laser deposition technology on heavily doped silicon substrates. The influence of annealing temperatures on microstructures, dielectric properties and energy storage performances of the as-prepared films were investigated in detail. X-ray diffraction studies indicate that Pb2Nb2O7 crystallizes at 800°C and disappears at 900°C, while NaNbO3 and PbNb2O6 are formed at the higher temperature of 900°C. The dielectric properties of the glass ceramics thin films have a strong dependence on the phase assemblages that are developed during heat treatment. The maximum dielectric constant value of 171 was obtained for the film annealed at 800°C, owing to the high electric breakdown field strength, The energy storage densities of the PSNNS films annealed at 800°C were as large as 36.9 J/cm3, These results suggest that PSNNS thin films are promising for energy storage applications.

  6. Dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 system

    Directory of Open Access Journals (Sweden)

    Yixiang Chen

    2011-09-01

    Full Text Available The dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 (YAS system has been investigated by melting experiment. Transparent YAS glasses have been prepared under the condition of furnace cooling instead of quenching. It is found that, in the YAS ternary phase diagram, the compositions on the Y3Al5O12–SiO2 line and with 52-68 mol% SiO2 have a higher glass-forming ability to produce pure glass. For the compositions with too much or less SiO2 or with Y/Al = 5/3, 1/1, or 1/3, crystallization occurs with the formation of Y3Al5O12, Y2Si2O7, Al6Si2O13, or SiO2. The densities of the YAS glasses increase with decreasing SiO2 contents and increasing Y/Al ratios, and for the samples with Y/Al = 3/5 there is a good linear relationship between the density and SiO2 content.

  7. O2 binding and CO2 sensitivity in haemoglobins of subterranean African mole rats

    DEFF Research Database (Denmark)

    Weber, Roy E.; Jarvis, Jennifer U. M.; Fago, Angela

    2017-01-01

    that predictably safeguard pulmonary loading under hypoxic and hypercapnic burrow conditions. The O2 binding characteristics are discussed in relation to available information on the primary structure of Hbs from adult and developmental stages of mammals subjected to hypoxia and hypercapnia and the molecular......Inhabiting deep and sealed subterranean burrows, mole rats exhibit a remarkable suite of specializations, including eusociality (living in colonies with single breeding queens), extraordinary longevity, cancer immunity and poikilothermy, and extreme tolerance of hypoxia and hypercapnia. With little...... and 2,3-diphosphoglycerate (DPG, the major allosteric modulator of Hb-O2 affinity in red blood cells) in four social and two solitary species of African mole rats (family Bathyergidae) originating from different biomes and soil types across Central and Southern Africa. We found no consistent patterns...

  8. Electronic structures and Eu3+ photoluminescence behaviors in Y2Si2O7 and La2Si2O7

    International Nuclear Information System (INIS)

    Zhang Zhiya; Wang Yuhua; Zhang Feng; Cao Haining

    2011-01-01

    Research highlights: → Host excitation near the band gap of Y 2 Si 2 O 7 and La 2 Si 2 O 7 is analyzed. → The calculated result well explains Eu 3+ PL behaviors in Y 2 Si 2 O 7 and La 2 Si 2 O 7 . → The electronic structure and Eu 3+ VUV PL in La 2 Si 2 O 7 are first estimated. - Abstract: The electronic structures and linear optical properties of Y 2 Si 2 O 7 (YSO) and La 2 Si 2 O 7 (LSO) are calculated by LDA method based on the theory of DFT. Both YSO and LSO are direct-gap materials with the direct band gap of 5.89 and 6.06 eV, respectively. The calculated total and partial density of states indicate that in both YSO and LSO the valence band (VB) is mainly constructed from O 2p and the conduction band (CB) is mostly formed from Y 4d or La 5d. Both the calculated VB and CB of YSO exhibit relatively wider dispersion than that of LSO. In addition, the CB of YSO presents more electronic states. Meanwhile, the VB of LSO shows narrower energy distribution with higher electronic states density. The theoretical absorption of YSO shows larger bandwidth and higher intensity than that of LSO. The results are compared with the experimental host excitations and impurity photoluminescence in Eu 3+ -doped YSO and LSO.

  9. Electrical resistivity surface for FeO-Fe2O3-P2O5 glasses

    Science.gov (United States)

    Vaughan, J. G.; Kinser, D. L.

    1975-01-01

    The dc electrical properties and microstructure of x(FeO-Fe2O3)-(100-x)P2O5 glasses were investigated up to a maximum of x = 75 mol %. Results indicate that, in general, the minimum resistivity of the glass does not occur at equal Fe(2+) and Fe(3+) concentrations, although for the special case where x = 55 mol % the minimum does occur at Fe(2+)/Fe total = 0.5, as reported by other investigators. Evidence presented shows that the position of the minimum resistivity is a function of total iron content. The minimum shifts to glasses richer in Fe(2+) at higher total iron concentrations.

  10. Ni doping effect on the electronic and sensing properties of 2D SnO2

    Science.gov (United States)

    Patel, Anjali; Roondhe, Basant; Jha, Prafulla K.

    2018-05-01

    In the present work using state of art first principles calculations under the frame work of density functional theory the effect of Nickel (Ni) doping on electronic as well as sensing properties of most stable two dimensional (2D) T-SnO2 phase towards ethanol (C2H5OH) has been observed. It has been found that Ni atom when dope on T-SnO2 causes prominent decrement in the band gap from 2.26 eV to 1.48 eV and improves the sensing phenomena of pristine T-SnO2 towards C2H5OH by increasing the binding energy from -0.18eV to -0.93eV. The comparative analysis of binding energy shows that Ni improves the binding of C2H5OH by 5.16 times the values for pristine T-SnO2. The doping of Ni into 2D T-SnO2 reduces the band gap through lowering of the conduction band minimum, thereby increasing the electron affinity which increases the sensing performance of T-SnO2. The variation in the electronic properties after and before the exposure of ethanol reinforced to use Ni:SnO2 nano structure for sensing applications. The results indicate that the Ni doped T-SnO2 can be utilized in improved optoelectronic as well as sensor devices in the future.

  11. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  12. Adsorption of endotoxins on Ca2+ -iminodiacetic acid by metal ion affinity chromatography.

    Science.gov (United States)

    Lopes, André Moreni; Romeu, Jorge Sánchez; Meireles, Rolando Páez; Perera, Gabriel Marquez; Morales, Rolando Perdomo; Pessoa, Adalberto; Cárdenas, Lourdes Zumalacárregui

    2012-11-01

    Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by-products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high-efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ -iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+ was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than 100 EU/mL and 100 000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.

  13. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  14. Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2 Fenton-like system.

    Science.gov (United States)

    Issa Hamoud, Houeida; Finqueneisel, Gisèle; Azambre, Bruno

    2017-06-15

    In this study, the removal of binary mixtures of dyes with similar (Orange II/Acid Green 25) or opposite charges (Orange II/Malachite Green) was investigated either by simple adsorption on ceria or by the heterogeneous Fenton reaction in presence of H 2 O 2 . First, the CeO 2 nanocatalyst with high specific surface area (269 m 2 /g) and small crystal size (5 nm) was characterized using XRD, Raman spectroscopy and N 2 physisorption at 77 K. The adsorption of single dyes was studied either from thermodynamic and kinetic viewpoints. It is shown that the adsorption of dyes on ceria surface is highly pH-dependent and followed a pseudo-second order kinetic model. Adsorption isotherms fit well the Langmuir model with a complete monolayer coverage and higher affinity towards Orange II at pH 3, compared to other dyes. For the (Orange II/Acid Green 25) mixture, both the amounts of dyes adsorbed on ceria surface and discoloration rates measured from Fenton experiments were decreased by comparison with single dyes. This is due to the adsorption competition existing onto the same surface Ce x+ sites and the reaction competition with hydroxyl radicals, respectively. The behavior of the (Orange II/Malachite Green) mixture is markedly different. Dyes with opposite charges undergo paired adsorption on ceria as well as homogeneous and heterogeneous coagulation/flocculation processes, but can also be removed by heterogeneous Fenton process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    Science.gov (United States)

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  16. Proteína bruta e energia digestível em dietas para alevinos de curimbatá (Prochilodus affins Crude protein and digestible energy in the diets for curimbatá fingerlings (Prochilodus affins

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Delmondes Bomfim

    2005-12-01

    Full Text Available Objetivando-se determinar as exigências de proteína bruta (PB em função do nível de energia digestível (ED da dieta para alevinos de curimbatá (Prochilodus affins, foram utilizados 256 peixes com peso inicial de 2,72 ± 0,11 g, mantidos em 32 aquários de 100 L, dotados de abastecimento de água, temperatura controlada e aeração individuais. O experimento foi realizado seguindo-se esquema fatorial 4 x 2 (quatro níveis de PB: 18,0; 22,0; 26,0; e 30,0%, combinados com dois níveis de ED: 2.700 e 3.000 kcal/kg, em um delineamento inteiramente ao acaso, com quatro repetições e oito peixes por unidade experimental. Os peixes foram alimentados ad libitum em duas refeições diárias durante 78 dias. Avaliaram-se o ganho de peso, o consumo aparente de racão, a conversão alimentar aparente, a taxa de crescimento específico, a taxa de eficiência protéica, a eficiência de retenção de nitrogênio, a umidade, a proteína e a gordura corporais e as porcentagens de nitrogênio e de gordura no ganho de peso. Verificou-se que não houve interação dos níveis de PB ´ ED, à exceção da porcentagem de gordura no ganho de peso. Com o nível de 3.000 kcal de ED/kg, obtiveram-se peixes com maiores níveis de matéria seca, gordura corporal e porcentagem de gordura no ganho de peso. Concluiu-se que a exigência de PB e ED para alevinos de curimbatá é de 26,05% e 2.700 kcal/kg, respectivamente, que corresponde a uma relação ED:PB de 10,36 kcal de ED/g de PB, por proporcionar as melhores respostas em ganho de peso e composição de carcaça.Two hundred and fifty six curimbatá (Prochilodus affins fingerlings averaging initial weight of 2.72 ± 0.11 g, stocked in 32 aquariums (100 L with water renewal, controlled temperature and individual aeration, were used to determine the dietary crude protein (CP requirements, according to the digestible energy level (DE. The experiment was carried out in to a 4 x 2 factorial scheme (four CP levels: 18

  17. Hirota's solitons in the affine and the conformal affine Toda models

    International Nuclear Information System (INIS)

    Aratyn, H.; Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1993-01-01

    We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis. (orig.)

  18. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins.

    Science.gov (United States)

    Meir, Jessica U; Ponganis, Paul J

    2009-10-01

    The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb-O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.

  19. A Novel Affinity Tag, ABTAG, and Its Application to the Affinity Screening of Single-Domain Antibodies Selected by Phage Display

    Directory of Open Access Journals (Sweden)

    Greg Hussack

    2017-10-01

    Full Text Available ABTAG is a camelid single-domain antibody (sdAb that binds to bovine serum albumin (BSA with low picomolar affinity. In surface plasmon resonance (SPR analyses using BSA surfaces, bound ABTAG can be completely dissociated from the BSA surfaces at low pH, over multiple cycles, without any reduction in the capacity of the BSA surfaces to bind ABTAG. A moderate throughput, SPR-based, antibody screening assay exploiting the unique features of ABTAG is described. Anti-carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6 sdAbs were isolated from a phage-displayed sdAb library derived from the heavy chain antibody repertoire of a llama immunized with CEACAM6. Following one or two rounds of panning, enriched clones were expressed as ABTAG fusions in microtiter plate cultures. The sdAb-ABTAG fusions from culture supernatants were captured on BSA surfaces and CEACAM6 antigen was then bound to the captured molecules. The SPR screening method gives a read-out of relative expression levels of the fusion proteins and kinetic and affinity constants for CEACAM6 binding by the captured molecules. The library was also panned and screened by conventional methods and positive clones were subcloned and expressed for SPR analysis. Compared to conventional panning and screening, the SPR-based ABTAG method yielded a considerably higher diversity of binders, some with affinities that were three orders of magnitude higher affinity than those identified by conventional panning.

  20. Effect of Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O Promoter Catalysts on H2, CO and CH4 Concentration by CO2 Gasification of Rosa Multiflora Biomass

    Directory of Open Access Journals (Sweden)

    Tursunov Obid

    2017-11-01

    Full Text Available The thermal behaviour of the Rosa mutiflora biomass by thermogravimetric analysis was studied at heating rate 3 K min−1 from ambient temperature to 950 °C. TGA tests were performed in high purity carbon dioxide (99 998% with a flow rate 200 ml/min and 100 mg of sample, milled and sieved to a particle size below 250 µm. Moreover, yields of gasification products such as hydrogen (H2, carbon monoxide (CO and methane (CH4 were determined based on the thermovolumetric measurements of catalytic (Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O promoter catalysts and non-catalytic gasification of the Rosa multiflora biomass. Additionally, carbon conversion degrees are presented. Calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the catalytic and non-catalytic CO2 gasification processes. A high temperature of 950 °C along with Ni/Al2O3-SiO2and Ni/Al2O3-SiO2 with K2O promoter catalysts resulted in a higher conversion of Rosa multiflora biomass into gaseous yield production with greatly increasing of H2 and CO contents. Consequently, H2 and CO are the key factors to produce renewable energy and bio-gases (synthesis gas. The parameters obtained during the experimental examinations enable a tentative assessment of plant biomasses for the process of large-scale gasification in industrial sectors.

  1. Evaluation of dyes adsorption properties of TiO2-alginate biohybrid material

    International Nuclear Information System (INIS)

    Barrón Zambrano, J A; Ávila Ortega, A; Muñoz Rodríguez, D; Carrera Figueiras, C; Sánchez Morales, G

    2013-01-01

    In this study a TiO 2 -alginate biohybrid material was obtained by the sol gel method and its adsorption properties were compared to those of its precursors using eosin B (anionic) as model dye. The results showed that the TiO 2 and biohybrid have a greater affinity for eosine B than alginate. The maximum adsorption capacity for the eosin B was obtained at pH = 10. Kinetic studies showed that the biohybrid has greater rate and adsorption capacity than its precursors. Kinetic data were fitted to a pseudo-second order kinetic model. The experimental isotherms were fitted to the Langmuir model.

  2. The solutions of affine and conformal affine Toda field theory

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Spence, B.

    1994-02-01

    We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs

  3. Specificity and affinity motifs for Grb2 SH2-ligand interactions

    NARCIS (Netherlands)

    Kessels, Helmut W. H. G.; Ward, Alister C.; Schumacher, Ton N. M.

    2002-01-01

    Protein-protein interactions are often mediated by the recognition of short continuous amino acid stretches on target proteins by specific binding domains. Affinity-based selection strategies have successfully been used to define recognition motifs for a large series of such protein domains.

  4. On the structure of self-affine convex bodies

    Energy Technology Data Exchange (ETDEWEB)

    Voynov, A S [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  5. Detecting obstructive sleep apnea in children by self-affine visualization of oximetry.

    Science.gov (United States)

    Garde, Ainara; Dekhordi, Parastoo; Petersen, Christian L; Ansermino, J Mark; Dumont, Guy A

    2017-07-01

    Obstructive sleep apnea (OSA), characterized by cessations of breathing during sleep due to upper airway collapse, can affect the healthy growth and development of children. The gold standard for OSA diagnosis, polysomnography(PSG), is expensive and resource intensive, resulting in long waiting lists to perform a PSG. Previously, we investigated the time-frequency analysis of blood oxygen saturation (SpO 2 ) to screen for OSA. We used overnight pulse oximetry from 146 children, collected using a smartphone-based pulse oximeter (Phone Oximeter), simultaneously with standard PSG. Sleep technicians manually scored PSG and provided the average of apnea/hypoapnea events per hour (AHI). In this study, we proposed an alternative method for analyzing SpO 2 , in which a set of contracting transformations form a self-affine set with a 2D attractor, previously developed for qualitative visualization of the photoplethysmogram and electroencephalogram. We applied this technique to the overnight SpO 2 signal from individual patients and extracted features based on the distribution of points (radius and angle) in the visualization. The cloud of points in children without OSA (NonOSA) was more confined than in children with OSA, which was reflected by more empty pixels (radius and angles). The maximum value, skewness and standard deviation of the distribution of points located at different radius and angles were significantly (Bonferroni corrected) higher in NonOSA compared to OSA children. To detect OSA defined at different levels (AHI≥5, AHI≥10 and AHI≥15), three multivariate logistic regression models were implemented using a stepwise feature selection and internally validated through bootstrapping. The models (AHI≥5, AHI≥10, AHI≥15), consisting of 3, 4 and 1 features respectively, provided a bootstrap-corrected AUC of 73%, 81%, 73%. Thus, applying this visualization to nocturnal SpO 2 could yield both visual and quantitative information that might be useful for

  6. Fission gas release from ThO2 and ThO2--UO2 fuels (LWBR development program)

    International Nuclear Information System (INIS)

    Goldberg, I.; Spahr, G.L.; White, L.S.; Waldman, L.A.; Giovengo, J.F.; Pfennigwerth, P.L.; Sherman, J.

    1978-08-01

    Fission gas release data are presented from 51 fuel rods irradiated as part of the LWBR irradiations test program. The fuel rods were Zircaloy-4 clad and contained ThO 2 or ThO 2 -UO 2 fuel pellets, with UO 2 compositions ranging from 2.0 to 24.7 weight percent and fuel densities ranging from 77.8 to 98.7 percent of theoretical. Rod diameters ranged from 0.25 to 0.71 inches and fuel active lengths ranged from 3 to 84 inches. Peak linear power outputs ranged from 2 to 22 kw/ft for peak fuel burnups up to 56,000 MWD/MTM. Measured fission gas release was quite low, ranging from 0.1 to 5.2 percent. Fission gas release was higher at higher temperature and burnup and was lower at higher initial fuel density. No sensitivity to UO 2 composition was evidenced

  7. On Affine Fusion and the Phase Model

    Directory of Open Access Journals (Sweden)

    Mark A. Walton

    2012-11-01

    Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  8. Contractions of affine spherical varieties

    International Nuclear Information System (INIS)

    Arzhantsev, I V

    1999-01-01

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL 2 -varieties are considered

  9. Neutron irradiation damage in Al2O3 and Y2O3

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Bunch, J.M.; Ranken, W.A.

    1975-01-01

    Two ceramics under consideration for use in fusion reactors, Al 2 O 3 and Y 2 O 3 , were irradiated in the EBR-II fission reactor at 650, 875, and 1025 0 K to fluences between 2 and 6 x 10 21 n/cm 2 (E greater than 0.1 MeV). Samples evaluated include sapphire, Lucalox, alumina, Y 2 O 3 , and Y 2 O 3 -10 percent ZrO 2 (Yttralox). All Al 2 O 3 specimens swelled significantly (1 to 3 percent), with most of the growth observed in sapphire along the c-axis at the higher temperatures. Al 2 O 3 samples irradiated at 875 to 1025 0 K contained a high density of small aligned ''pores''. Irradiated Y 2 O 3 -based ceramics exhibited dimensional stability and a defect content consisting primarily of unresolved damage and/or dislocation loops. The behavior of these ceramics under irradiation is discussed, and the relevance of fission neutron damage studies to fusion reactor applications is considered. (auth)

  10. Hexachlorobenzene stimulates uroporphyria in low affinity AHR mice without increasing CYP1A2

    International Nuclear Information System (INIS)

    Gorman, Nadia; Trask, Heidi S.; Robinson, Susan W.; Sinclair, Jacqueline F.; Gerhard, Glenn S.; Smith, Andrew G.; Sinclair, Peter R.

    2007-01-01

    Hexachlorobenzene (HCB), a weak ligand of the aryl hydrocarbon receptor (AHR), causes hepatic uroporphyrin (URO) accumulation (uroporphyria) in humans and animals. CYP1A2 has been shown to be necessary in the development of uroporphyria in mice. Using mice expressing the low affinity form of the AH receptor (AHRd), we investigated whether the enhancement of uroporphyria by HCB involves an obligatory increase in CYP1A2 as measured by specific enzyme assays and immunoblotting. We compared the ability of HCB, in combination with iron dextran and the porphyrin precursor, 5-aminolevulinate (ALA), to cause uroporphyria in a strain of mice (C57BL/6) which expresses the high affinity form of the receptor (AHRb 1 ), with three strains of mice (SWR and two 129 sublines) expressing the low affinity AHRd. In C57BL/6 mice, HCB-enhanced uroporphyria was associated with a doubling of CYP1A2. HCB treatment produced uroporphyria in iron-loaded mice expressing AHRd, even though there was little or no increase in CYP1A2. Cyp1a2(-/-) mice in a 129 background were completely resistant to HCB-induced uroporphyria, and female Hfe(-/-) 129 mice, in which the levels of hepatic CYP1A2 were half of those of the male levels, responded poorly. The effect of exogenous iron, administered in the form of iron dextran, on HCB enhancement of uroporphryia could be replicated utilizing the endogenous hepatic iron accumulated in 129 Hfe(-/-) mice. In conclusion, some minimal basal expression of CYP1A2 is essential for HCB-mediated enhancement of uroporphyria, but increases in CYP1A2 above that level are not essential

  11. Silica-supported Macroporous Chitosan Bead for Affinity Purification of Trypsin Inhibitor

    Institute of Scientific and Technical Information of China (English)

    Feng Na XI; Jian Min WU; Ming Ming LUAN

    2005-01-01

    Macroporous cross-linking chitosan layer coated on silica gel (CTS-SiO2) was prepared by phase inversion and polyethylene glycol (PEG) molecular imprinting methods. Formation of macroporous surface was investigated by scanning electron microscopy (SEM) and BET analysis.The prepared bead was activated by reacting with 1,2-ethylene diglycidyl ether for introducing epoxy groups, and trypsin could be efficiently immobilized on the bead as a biospecific ligand.The bead bearing trypsin was employed to purify trypsin inhibitor (TIs) from egg white as affinity adsorbent.

  12. Role of CeO2 promoter in NiO/α-Al2O3 catalyst for dry reforming of methane

    Science.gov (United States)

    Loc, Luu Cam; Phuong, Phan Hong; Tri, Nguyen

    2017-09-01

    A series of Ni/α-Al2O3 (NiAl) catalysts promoted by CeO2 was prepared by co-impregnation methods with content of (NiO+CeO2) being in the range of 10-30 wt%. The NiO:CeO2 weight ratio was fluctuated at 1:1, 1:2 and 1:3. Several techniques, including X-ray powder diffraction (XRD), Hydrogen temperature-programmed reduction (H2-TPR), and transmission electron microscopy (TEM) were used to investigate catalysts' physico-chemical properties. The activity of these catalysts in dry reforming of CH4 was investigated at temperature range of 550-800 °C. The results revealed that the most suitable CeO2 promoted Ni catalyst contained 20 wt% of (NiO+CeO2) and NiO:CeO2 weight ratio of 1:2. The best catalytic performance of catalyst [20(1Ni2Ce)Al] due to a better reducibility resulted in a higher amount of free small particle NiO. At 700 °C and CH4:CO2 molar ratio of 1:1, the conversion of CH4 and CO2 on the most suitable CeO2 promoted Ni catalyst reached 86% and 67%, respectively; H2 and CO selectivity of 90% and H2:CO molar ratio of 1.15 were obtained. Being similar to MgO [1], promoter CeO2 could improve catalytic activity of Ni/α-Al2O3 catalyst at a lower range of temperature. Besides, both MgO and CeO2 had a great impact on improving coke resistance of Ni catalysts. At higher temperature, the role of CeO2 as well as MgO in preventing coke formation on catalyst was clarified by temperature-programmed oxidation (TPO) technique. Coke amount formed after 30-h TOS on 20(1Ni2Ce) catalyst was found to be 22.18 mgC/gcat, being less than on non-promoted catalyst (36.75 mgC/gcat), but more than on 20(1Ni2Mg)Al one (5.25 mgC/gcat).

  13. Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials

    International Nuclear Information System (INIS)

    Zhang Lei; He, Yiming; Wu Ying; Wu Tinghua

    2011-01-01

    Highlights: → Novel composite MgFe 2 O 4 /TiO 2 as catalyst. → Higher activity for the photodegradation of RhB under visible light irradiation. → Calcination temperature of catalyst has effect on photocatalytic activity. → Different photocatalysis mechanism under UV and visible light irradiation. - Abstract: MgFe 2 O 4 /TiO 2 (MFO/TiO 2 ) composite photocatalysts were successfully synthesized using a mixing-annealing method. The synthesized composites exhibited significantly higher photocatalytic activity than a naked semiconductor in the photodegradation of Rhodamine B. Under UV and visible light irradiation, the optimal percentages of doped MgFe 2 O 4 (MFO) were 2 wt.% and 3 wt.%, respectively. The effects of calcination temperature on photocatalytic activity were also investigated. The origin of the high level of activity was discussed based on the results of X-ray diffraction, UV-vis diffuse reflection spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen physical adsorption. The enhanced activity of the catalysts was mainly attributed to the synergetic effect between the two semiconductors, the band potential of which matched suitably.

  14. Lectin affinity electrophoresis.

    Science.gov (United States)

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  15. Preparation and characterization of PbO2–ZrO2 nanocomposite electrodes

    International Nuclear Information System (INIS)

    Yao Yingwu; Zhao Chunmei; Zhu Jin

    2012-01-01

    PbO 2 –ZrO 2 nanocomposite electrodes were prepared by the anodic codeposition in the lead nitrate plating bath containing ZrO 2 nanoparticles. The influences of the ZrO 2 nanoparticles concentration, current density, temperature and stirring rate of the plating bath on the composition of the nanocomposite electrodes were investigated. The surface morphology and the structure of the nanocomposite electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The experimental results show that the addition of ZrO 2 nanoparticles in the electrodeposition process of lead dioxide significantly increases the lifetime of nanocomposite electrodes. The PbO 2 –ZrO 2 nanocomposite electrodes have a service life of 141 h which is almost four times longer than that of the pure PbO 2 electrodes. The morphology of PbO 2 –ZrO 2 nanocomposite electrodes is more compact and finer than that of PbO 2 electrodes. The relative surface area of the composite electrodes is approximately 2 times that of the pure PbO 2 electrodes. The structure test shows that the addition of ZrO 2 nanoparticles into the plating bath decreases the grain size of the PbO 2 –ZrO 2 nanocomposite electrodes. The anodic polarization curves show that the oxygen evolution overpotential of PbO 2 –ZrO 2 nanocomposite electrodes is higher than PbO 2 electrodes. The pollutant anodic oxidation experiment show that the PbO 2 –ZrO 2 nanocomposite electrode exhibited the better performance for the degradation of 4-chlorophenol than PbO 2 electrode, the removal ratio of COD reached 96.2%.

  16. Current-voltage characteristics of SnO{sub 2}-Co{sub 3}O{sub 4}-Cr{sub 2}O{sub 3}-Sb{sub 2}O{sub 5} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Martinez, J A [Centro de Investigacion en Materiales Avanzados, S.C. (CIMAV), Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica (PIIT), Nueva Carretera Aeropuerto km. 10, Apodaca, Nuevo Leon, CP 66600 (Mexico); Glot, A B [Posgrado, Universidad Tecnologica de la Mixteca, Carretera Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca, CP 69000 (Mexico); Gaponov, A V [Department of Radioelectronics, Dniepropetrovsk National University, Dniepropetrovsk 49050 (Ukraine); Hernandez, M B [Instituto de Mineria, Universidad Tecnologica de la Mixteca, Carretera Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca, CP 69000 (Mexico); Guerrero-Paz, J, E-mail: josue.aguilar@cimav.edu.m [Particulate Materials Lab, Universidad Autonoma del Estado de Hidalgo, Pachuca, CP 42184 (Mexico)

    2009-10-21

    The effect of mechanical treatment in a planetary mill on the microstructure and electrical properties of tin dioxide based varistor ceramics in the system SnO{sub 2}-Co{sub 3}O{sub 4}-Cr{sub 2}O{sub 3}-Sb{sub 2}O{sub 5} sintered in the range 1150-1450 {sup 0}C was studied. The mechanical treatment leads to an increase in shrinkage, decrease in porosity, decrease in sample diameter, change in colour of the sintered samples from grey to black and enhancement of nonlinearity. For the sample sintered at 1350 {sup 0}C the mechanical treatment enhances the nonlinearity coefficient from 11 to 31 and decreases the electric field E{sub 1} (at 10{sup -3} A cm{sup -2}) from 3500 to 2800 V cm{sup -1}. The observed changes in physical properties are explained in terms of an additional size reduction of oxide particles and a better mixing of oxide powder followed by the formation of potential barriers at the grain boundaries throughout the whole sample. In spite of the low porosity, the low-field electrical conductivity of mechanically treated ceramics is significantly increased with the growth of relative humidity. A higher humidity sensitivity is found for mechanically treated ceramics with higher barrier height and higher nonlinearity coefficient.

  17. Efficiency enhancement using a Zn1- x Ge x -O thin film as an n-type window layer in Cu2O-based heterojunction solar cells

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-05-01

    Efficiency enhancement was achieved in Cu2O-based heterojunction solar cells fabricated with a zinc-germanium-oxide (Zn1- x Ge x -O) thin film as the n-type window layer and a p-type Na-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing Cu sheets. The Ge content (x) dependence of the obtained photovoltaic properties of the heterojunction solar cells is mainly explained by the conduction band discontinuity that results from the electron affinity difference between Zn1- x Ge x -O and Cu2O:Na. The optimal value of x in Zn1- x Ge x -O thin films prepared by pulsed laser deposition was observed to be 0.62. An efficiency of 8.1% was obtained in a MgF2/Al-doped ZnO/Zn0.38Ge0.62-O/Cu2O:Na heterojunction solar cell.

  18. Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.

    Science.gov (United States)

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale

    2012-05-07

    The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.

  19. Design and Synthesis of Hierarchical SiO2@C/TiO2 Hollow Spheres for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Ying; Zhao, Yan; Cao, Shunsheng; Yin, Zhengliang; Cheng, Li; Wu, Limin

    2017-09-06

    TiO 2 has been widely investigated as an electrode material because of its long cycle life and good durability, but the relatively low theoretical capacity restricts its practical application. Herein, we design and synthesize novel hierarchical SiO 2 @C/TiO 2 (HSCT) hollow spheres via a template-directed method. These unique HSCT hollow spheres combine advantages from both TiO 2 such as cycle stability and SiO 2 with a high accessible area and ionic transport. In particular, the existence of a C layer is able to enhance the electrical conductivity. The SiO 2 layer with a porous structure can increase the ion diffusion channels and accelerate the ion transfer from the outer to the inner layers. The electrochemical measurements demonstrate that the HSCT-hollow-sphere-based electrode manifests a high specific capacitance of 1018 F g -1 at 1 A g -1 which is higher than those for hollow TiO 2 (113 F g -1 ) and SiO 2 /TiO 2 (252 F g -1 ) electrodes, and substantially higher than those of all the previously reported TiO 2 -based electrodes.

  20. Optical spectroscopy of Sm(3+) doped Na2O-ZnO-La2O3-TeO2 glasses.

    Science.gov (United States)

    Sobczyk, Marcin

    2015-10-05

    Telluride glasses with the composition xSm2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2 (where x=0.1, 1, 2, 5 and 7 mol%) were obtained by the melt quenching technique. Electronic absorption and fluorescence spectra as well as fluorescence dynamics of the Sm(3+)-doped title glasses are presented and analysed in detail. A Judd-Ofelt intensity analysis of the absorption spectrum at 300 K has been applied for determination of Ωλ parameters (Ω2=3.10, Ω4=3.80, Ω6=1.61×10(-20) cm(2)) which in turn have been used for calculations of the radiative transition probabilities (AT), the natural (radiative) lifetimes (τR) of the (4)G5/2 level of Sm(3+), the fluorescence branching ratios (β) and the emission cross-sections (σem). The τR value of the (4)G5/2 level amount to 1546 μs and is slightly higher than the measured decay time of 1306 μs. With the increasing of Sm2O3 concentration from 0.1 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 1306 to 41 μs. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The optical achieved results indicate that the investigated glasses are potentially applicable as an orange and/or red laser host. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Catalytic Decomposition of N2O over Cu–Zn/ZnAl2O4 Catalysts

    Directory of Open Access Journals (Sweden)

    Xiaoying Zheng

    2017-05-01

    Full Text Available The catalytic decomposition of N2O was investigated over Cu-Zn/ZnAl2O4 catalysts in the temperature range of 400–650 °C Catalytic samples have been prepared by wet impregnation method. Prepared catalysts were characterized using several techniques like BET surface area, X-ray diffraction (XRD, and Scanning electron microscopy (SEM. The Cu-Zn/ZnAl2O4 showed higher catalytic performance along with long term stability during N2O decomposition. The Cu-Zn/ZnAl2O4 catalysts yielded 100% N2O conversion at 650 °C. The Cu-Zn/ZnAl2O4 catalysts are promising for decrease this strong greenhouse gas in the chemical industry.

  2. The interaction of soil phototrophs and fungi with pH and their impact on soil CO2, CO18O and OCS exchange.

    Science.gov (United States)

    Sauze, Joana; Ogée, Jérôme; Maron, Pierre-Alain; Crouzet, Olivier; Nowak, Virginie; Wohl, Steven; Kaisermann, Aurore; Jones, Sam P; Wingate, Lisa

    2017-12-01

    The stable oxygen isotope composition of atmospheric CO 2 and the mixing ratio of carbonyl sulphide (OCS) are potential tracers of biospheric CO 2 fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, β and γ) may have different affinities to CO 2 and OCS and their expression should also vary between different microbial groups, differences in the community structure could impact the 'community-integrated' CA activity differently for CO 2 and OCS. Four soils of different pH were incubated in the dark or with a diurnal cycle for forty days to vary the abundance of native phototrophs. Fluxes of CO 2 , CO 18 O and OCS were measured to estimate CA activity alongside the abundance of bacteria, fungi and phototrophs. The abundance of soil phototrophs increased most at higher soil pH. In the light, the strength of the soil CO 2 sink and the CA-driven CO 2 -H 2 O isotopic exchange rates correlated with phototrophs abundance. OCS uptake rates were attributed to fungi whose abundance was positively enhanced in alkaline soils but only in the presence of increased phototrophs. Our findings demonstrate that soil-atmosphere CO 2 , OCS and CO 18 O fluxes are strongly regulated by the microbial community structure in response to changes in soil pH and light availability and supports the idea that different members of the microbial community express different classes of CA, with different affinities to CO 2 and OCS.

  3. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2-TiO2-CaO-Na2O/SrO bioactive glass.

    Science.gov (United States)

    Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

    2015-02-01

    This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface.

  4. Glass forming in La2O3-TiO2-ZrO2 ternary system by containerless processing

    Science.gov (United States)

    Kaneko, Masashi; Kentei Yu, Yu; Kumar, Vijaya; Masuno, Atsunobu; Inoue, Hiroyuki; Odawara, Osamu; Yoda, Shinichi

    The containerless processing is an appropriate method to create new glasses, because it sup-presses nucleation at the boundary between liquid and crucible during solidification and it enables molten samples to be solidified without crystallization. Recently, we have succeeded in forming BaTi2 O5 glass in the bulk state by using an aerodynamic levitation furnace. BaTi2 O5 glass includes no traditional glass network former and it possesses high electric permittivity [1, 2]. From the point of view of optical application, BaTi2 O5 glass has high refractive indices over 2.1. BaTi2 O5 glass, however, vitrify only in a small sphere, and it crystallize when its diameter exceed 1.5 mm. In order to synthesize new titanate oxide glasses which possess higher refractive indices and larger diameter than BaTi2 O5 , La and Zr can be used as substitutive components. When Ba is replaced with La, refractive indices are expected to increase because of the heavier element. The addition of a third element is thought to be effective for enhance-ment of glass formation ability and Zr can be a candidate because Ti and Zr are homologous. In this research, we have succeeded in forming new bulk glass in La2 O3 -TiO2 -ZrO2 ternary system by means of the aerodynamic levitation furnace. We investigated the glass forming region, thermal properties and optical properties of La2 O3 -TiO2 -ZrO2 glass. Glass transition temperature, crystallization temperature, density, refractive indices and transmittance spectra were varied depending on the chemical composition. Reference [1] J. Yu et al, "Fabrication of BaTi2O5 Glass-Ceramics with Unusual Dielectric Properties during Crystallization", Chem-istry of Materials, 18 (2006) 2169-2173. [2] J. Yu et al., "Comprehensive Structural Study of Glassy and Metastable Crystalline BaTi2O5", Chemistry of Materials, 21 (2009) 259-263.

  5. Solar degradation of 5-amino-6-methyl-2-benzimidazolone by TiO2 and iron(III) catalyst with H2O2 and O2 as electron acceptors

    International Nuclear Information System (INIS)

    Sarria, Victor; Peringer, Paul; Caceres, Julia; Blanco, Julian; Malato, Sixto; Pulgarin, Cesar

    2004-01-01

    Wastewater containing mainly 5-amino-6-methyl-2-benzimidazolone (AMBI), used in the manufacture of dyes, was characterized as bio-recalcitrant by means of different biodegradability tests. In order to enhance the biodegradability of this important pollutant, solar photocatalytic degradation methods were explored. The systems light/TiO 2 /O 2 , light/TiO 2 /H 2 O 2 , light/Fe 3+ /O 2 and light/Fe 3+ /H 2 O 2 were compared under direct sunlight at the Plataforma Solar de Almeria (Spain), using a Compound Parabolic Collector (CPC). The iron photo-assisted systems exhibited the most interesting behaviour, from the kinetic and engineering points of view, especially if their combination (as pre-treatment) with a biological process is considered. To compare the efficiency of these systems, the evolution of the following parameters were studied: (a) the dissolved organic carbon and initial compound concentration, (b) the toxicity, and (c) the biodegradability of treated solution. At lab scale, using a solar lamp, the degradation rate of the system light/Fe 3+ /H 2 O 2 was two times higher than the system light/Fe 3+ /O 2 but this last system does not need H 2 O 2 addition, improving the economical requirements of the system

  6. Au/CeO2-chitosan composite film for hydrogen peroxide sensing

    International Nuclear Information System (INIS)

    Zhang Wei; Xie Guoming; Li Shenfeng; Lu Lingsong; Liu Bei

    2012-01-01

    Au nanoparticles (AuNPs) were in situ synthesized at the cerium dioxide nanoparticles (CeO 2 NPs)-chitosan (CS) composite film by one-step direct chemical reduction, and the resulting Au/CeO 2 -CS composite were further modified for enzyme immobilization and hydrogen peroxide (H 2 O 2 ) biosensing. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis spectra and electrochemical techniques have been utilized for characterization of the prepared composite. The stepwise assembly process and electrochemical performances of the biosensor were characterized by means of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and typical amperometric response (i-t). The Au/CeO 2 -CS composite exhibited good conductibility and biocompatibility, and the developed biosensor exhibited excellent response to hydrogen peroxide in the linear range of 0.05-2.5 mM (r = 0.998) with the detection limit of 7 μM (S/N = 3). Moreover, the biosensor presented high affinity (K m app =1.93mM), good reproducibility and storage stability. All these results demonstrate that the Au/CeO 2 -CS composite film can provide a promising biointerface for the biosensor designs and other biological applications.

  7. Exact S-matrices for dn+1(2) affine Toda solitons and their bound states

    International Nuclear Information System (INIS)

    Gandenberger, G.M.; MacKay, N.J.

    1995-01-01

    We conjecture an exact S-matrix for the scattering of solitons in d n+1 (2) affine Toda field theory in terms of the R-matrix of the quantum group U q (c n (1) ). From this we construct the scattering amplitudes for all scalar bound states (breathers) of the theory. This S-matrix conjecture is justified by detailed examination of its pole structure. We show that a breather-particle identification holds by comparing the S-matrix elements for the lowest breathers with the S-matrix for the quantum particles in real affine Toda field theory, and discuss the implications for various forms of duality. (orig.)

  8. Lp-dual affine surface area

    Science.gov (United States)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  9. Enhanced Adsorption of p-Arsanilic Acid from Water by Amine-Modified UiO-67 as Examined Using Extended X-ray Absorption Fine Structure, X-ray Photoelectron Spectroscopy, and Density Functional Theory Calculations.

    Science.gov (United States)

    Tian, Chen; Zhao, Jian; Ou, Xinwen; Wan, Jieting; Cai, Yuepeng; Lin, Zhang; Dang, Zhi; Xing, Baoshan

    2018-03-20

    p-Arsanilic acid ( p-ASA) is an emerging organoarsenic pollutant comprising both inorganic and organic moieties. For the efficient removal of p-ASA, adsorbents with high adsorption affinity are urgently needed. Herein, amine-modified UiO-67 (UiO-67-NH 2 ) metal-organic frameworks (MOFs) were synthesized, and their adsorption affinities toward p-ASA were 2 times higher than that of the pristine UiO-67. Extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculation results revealed adsorption through a combination of As-O-Zr coordination, hydrogen bonding, and π-π stacking, among which As-O-Zr coordination was the dominant force. Amine groups played a significant role in enhancing the adsorption affinity through strengthening the As-O-Zr coordination and π-π stacking, as well as forming new adsorption sites via hydrogen bonding. UiO-67-NH 2 s could remove p-ASA at low concentrations (<5 mg L -1 ) in simulated natural and wastewaters to an arsenic level lower than that of the drinking water standard of World Health Organization (WHO) and the surface water standard of China, respectively. This work provided an emerging and promising method to increase the adsorption affinity of MOFs toward pollutants containing both organic and inorganic moieties, via modifying functional groups based on the pollutant structure to achieve synergistic adsorption effect.

  10. Al2O3 doped TiO2 ceramic waste forms

    International Nuclear Information System (INIS)

    Uno, Masayoshi; Kinoshita, Hajime; Sakai, Etsuro; Ikeda, Akira; Matsumoto, Y.; Yamanaka, Shinsuke

    1999-01-01

    Melting of the mixture of Nd 2 O 3 , CeO 2 , SrO, TiO 2 and Al 2 O 3 at 1673 K for 1 hour produced one RE 2 Ti 3 O 9 phase compound. Differential Scanning Calorimetry (DSC) measurement showed that the melting temperature of this compound was 1646 K. Density of the alumina doped oxide was higher than that of the oxide obtained by the pressing and sintering without alumina. Vickers hardness of the oxide obtained by the pressing and sintering was 5.3 GPa and nearly same as that of glass waste. That of the alumina doped oxide was around 7 GPa. 7 days Soxhlet leach test (MCC-5) followed by Inductively Coupled Plasma Spectrometry (ICP) showed that normalized leaching rate of Ti for the oxide obtained by the pressing and sintering was 5.54 x 10 -3 kg/m 2 and that for the alumina doped oxide was 2.24 x 10 -3 kg/m 2 . The value of Sr for the pressed and sintered sample was 0.034 x 10 -3 kg/m 2 but that for alumina doped sample was below the detection limit (0.01 x 10 -3 kg/m 2 ). Al was not detected from the leachate of the alumina doped sample. (author)

  11. Influence of concentration of H2O2 on the phase stability of TiO2-anatase

    International Nuclear Information System (INIS)

    Montanhera, M.A.; Pereira, E.A.; Paula, F.R.; Spada, E.R.; Faria, R.M.

    2014-01-01

    Titanium dioxide (TiO 2 ) is a semiconductor what has attracted increasing attention because of its physical and chemical properties. In this work, we report the preparation of TiO 2 nanoparticles by dissolving of titanium oxysulfate (TiOSO 4 ) in aqueous solution containing hydrogen peroxide (H 2 O 2 ) and subsequent thermal treatment of the precipitated complex. The results of X-ray diffractometry showed that the first stage of heat treatment at 600°C generates the anatase phase at all concentrations of H 2 O 2 investigated. On the other hand, when treated at 825 deg C, prepared samples with lower concentrations of H 2 O 2 (0.009 and 0.017 mol/L) showed only the rutile phase and for concentrations starting from 0.088 mol/L, is obtained only anatase phase. When the heat treatment is performed at 900°C, phase-pure anatase is obtained only for concentrations higher than 0.122 mol/L. The stability of the phase anatase is related to the crystallite size obtained of the first stage of heat treatment. When the heat treatment is performed at 900°C, phase-pure anatase is obtained only at higher concentrations than 0.122 mol/L. The stability of the phase anatase is related to the crystallite sizes obtained in the first step of heat treatment. (author)

  12. A pharmacological profile of the high-affinity GluK5 kainate receptor

    DEFF Research Database (Denmark)

    Møllerud, Stine; Kastrup, Jette Sandholm Jensen; Pickering, Darryl S

    2016-01-01

    -hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2 S,4 R)−4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar...

  13. Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV.

    Science.gov (United States)

    Czech, Bożena; Oleszczuk, Patryk

    2016-04-01

    The application of oxidation processes such as UV and/or H2O2 will change the physicochemical properties of carbon nanotubes (CNT). It may affect the sorption affinity of CNT to different contaminants and then affect their fate in the environment. In the present study the adsorption of two very common used pharmaceuticals (diclofenac and naproxen) onto CNT treated by UV, H2O2 or UV/H2O2 was investigated. Four different adsorption models (Freundlich, Langmuir, Temkin, Dubinin-Radushkevich) were tested. The best fitting of experimental data was observed for Freundlich or Langmuir model. The significant relationships between Q calculated from Langmuir model with O% and dispersity were observed. Kinetics of diclofenac and naproxen followed mainly pseudo-second order indicating for chemisorption limiting step of adsorption. The data showed that the mechanism of sorption was physical or chemical depending on the type of CNT modification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. High electrochemical performance of RuO_2–Fe_2O_3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material

    International Nuclear Information System (INIS)

    Xiang, Dong; Yin, Longwei; Wang, Chenxiang; Zhang, Luyuan

    2016-01-01

    The electrode materials RuO_2 or RuO_2–Fe_2O_3 nanoparticle embedded OMC (ordered mesoporous carbon) are prepared by the method of impregnation and heating in situ. The mesoporous structure optimized the electron and proton conducting pathways, leading to the enhanced capacitive performances of the composite materials. The average nanoparticle size of RuO_2 and RuO_2–Fe_2O_3 is 2.54 and 1.96 nm, respectively. The fine RuO_2–Fe_2O_3 nanoparticles are dispersed evenly in the pore channel wall of the two-dimensional mesoporous carbon without blocking the mesoporous channel, and they have a higher specific surface area, a larger pore volume, a proper pore size and a small charge transfer impedance value. The special electrochemical capacitance of RuO_2–Fe_2O_3/OMC tested in acid electrolyte (H_2SO_4) is measured to be as high as 1668 F g"−"1, which is higher than that of RuO_2/OMC. Meanwhile, the supercapacitor properties of the RuO_2–Fe_2O_3/OMC composites show a good cycling performance of 93% capacitance retention (3000 cycles), a better reversibility, a higher energy density (134 Wh kg"−"1) and power density (4000 W kg"−"1). The composite electrode of RuO_2–Fe_2O_3/OMC, which combines a double layer capacitance with pseudo-capacitance, is proved to be suitable for ideal high performance electrode material of a hybrid supercapacitor application. - Highlights: • The nanocomposites of RuO_2–Fe_2O_3/OMC are prepared by impregnation and heating in situ. • The fine RuO_2–Fe_2O_3 nanoparticles distribute in the pore channel wall of OMC. • We discuss a reversible redox reaction mechanism of RuO_2–Fe_2O_3/OMC in acid solutions. • RuO_2–Fe_2O_3 nanoparticles embedded OMC shows a higher supercapacitive performance.

  15. Catalase-dependent H2O2 consumption by cardiac mitochondria and redox-mediated loss in insulin signaling.

    Science.gov (United States)

    Rindler, Paul M; Cacciola, Angela; Kinter, Michael; Szweda, Luke I

    2016-11-01

    We have recently demonstrated that catalase content in mouse cardiac mitochondria is selectively elevated in response to high dietary fat, a nutritional state associated with oxidative stress and loss in insulin signaling. Catalase and various isoforms of glutathione peroxidase and peroxiredoxin each catalyze the consumption of H 2 O 2 Catalase, located primarily within peroxisomes and to a lesser extent mitochondria, has a low binding affinity for H 2 O 2 relative to glutathione peroxidase and peroxiredoxin. As such, the contribution of catalase to mitochondrial H 2 O 2 consumption is not well understood. In the current study, using highly purified cardiac mitochondria challenged with micromolar concentrations of H 2 O 2 , we found that catalase contributes significantly to mitochondrial H 2 O 2 consumption. In addition, catalase is solely responsible for removal of H 2 O 2 in nonrespiring or structurally disrupted mitochondria. Finally, in mice fed a high-fat diet, mitochondrial-derived H 2 O 2 is responsible for diminished insulin signaling in the heart as evidenced by reduced insulin-stimulated Akt phosphorylation. While elevated mitochondrial catalase content (∼50%) enhanced the capacity of mitochondria to consume H 2 O 2 in response to high dietary fat, the selective increase in catalase did not prevent H 2 O 2 -induced loss in cardiac insulin signaling. Taken together, our results indicate that mitochondrial catalase likely functions to preclude the formation of high levels of H 2 O 2 without perturbing redox-dependent signaling. Copyright © 2016 the American Physiological Society.

  16. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  17. Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses.

    Science.gov (United States)

    Sakoh, Akifumi; Takahashi, Masahide; Yoko, Toshinobu; Nishii, Junji; Nishiyama, Hiroaki; Miyamoto, Isamu

    2003-10-20

    The photoluminescence spectra of the divalent Ge (Ge2+) center in GeO2-SiO2 glasses with different photosensitivities were investigated by means of excitation-emission energy mapping. The ultraviolet light induced photorefractivity has been correlated with the local structure around the Ge2+ centers. The glasses with a larger photorefractivity tended to exhibit a greater band broadening of the singlet-singlet transition on the higher excitation energy side accompanied by an increase in the Stokes shifts. This strongly suggests the existence of highly photosensitive Ge2+ centers with higher excitation energies. It is also found that the introduction of a hydroxyl group or boron species in GeO2-SiO2 glasses under appropriate conditions modifies the local environment of Ge2+ leading to an enhanced photorefractivity.

  18. Enhanced Optical and Electrical Properties of TiO_2 Buffered IGZO/TiO_2 Bi-Layered Films

    International Nuclear Information System (INIS)

    Moon, Hyun-Joo; Kim, Daeil

    2016-01-01

    In and Ga doped ZnO (IGZO, 100-nm thick) thin films were deposited by radio frequency magnetron sputtering without intentional substrate heating on a bare glass substrate and a TiO_2-deposited glass substrate to determine the effect of the thickness of a thin TiO_2 buffer layer on the structural, optical, and electrical properties of the films. The thicknesses of the TiO_2 buffer layers were 5, 10 and 15 nm, respectively. As-deposited IGZO films with a 10 nm-thick TiO_2 buffer layer had an average optical transmittance of 85.0% with lower resistivity (1.83×10-2 Ω cm) than that of IGZO single layer films. The figure of merit (FOM) reached a maximum of 1.44×10-4 Ω-1 for IGZO/10 nm-thick TiO_2 bi-layered films, which is higher than the FOM of 6.85×10-5 Ω-1 for IGZO single layer films. Because a higher FOM value indicates better quality transparent conducting oxide (TCO) films, the IGZO/10 nm-thick TiO_2 bi-layered films are likely to perform better in TCO applications than IGZO single layer films.

  19. Ce2O3-SO3-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Belokoskov, V.I.; Trofimov, G.V.; Govorukhina, O.A.

    1978-01-01

    The solubility, solid phase composition and crystal characteristics in the Ce 2 O 3 -SO 3 -H 2 O system have been studied in a broad range of sulfuric acid concentrations (25 to 80% SO 3 ) at temperatures from 150 to 200 deg C. It has been established that in the system the equilibrium had been reached after 15 to 20 days. At 150 deg C, Ce 2 (SO 4 ) 3 x2H 2 O, Ce 2 (SO 4 ) 3 xH 2 O sulfates and Ce 2 (SO 4 ) 3 x3H 2 SO 4 acid salt crystallize in the system. At 200 deg C, the same sulfates crystallize in the system, except that the bisaturation points of the system are shifted, with respect to 150 deg C, into the region of higher SO 3 concentration and correspond to solutions with a SO 3 concentration of 57.8 and 65%. The solubility of cerium(3) at 150 deg C is about 0.5% Ce 2 O 3 . An increase in temperature up to 200 deg C leads to a slightly higher solubility of cerium sulfates

  20. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation.

    Science.gov (United States)

    Zheng, X; Hu, B; Gao, S X; Liu, D J; Sun, M J; Jiao, B H; Wang, L H

    2015-07-01

    Saxitoxin (STX), a member of the family of paralytic shellfish poisoning toxins, poses toxicological and ecotoxicological risks. To develop an analytical recognition element for STX, a DNA aptamer (APT(STX1)) was previously discovered via an iterative process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) by Handy et al. Our study focused on generating an improved aptamer based on APT(STX1) through rational site-directed mutation and truncation. In this study, we generated the aptamer, M-30f, with a 30-fold higher affinity for STX compared with APT(STX1). The Kd value for M-30f was 133 nM, which was calculated by Bio-Layer Interferometry. After optimization, we detected and compared the interaction of STX with aptamers (APT(STX1) or M-30f) through several techniques (ELISA, cell bioassay, and mouse bioassay). Both aptamers' STX-binding ability was demonstrated in all three methods. Moreover, M-30f performs better than its parent sequence with higher suppressive activity against STX. As a molecular recognition element, M-30f has good prospects for practical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Affine coherent states and Toeplitz operators

    Science.gov (United States)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  2. Low temperature formation of higher-k cubic phase HfO2 by atomic layer deposition on GeOx/Ge structures fabricated by in-situ thermal oxidation

    International Nuclear Information System (INIS)

    Zhang, R.; Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S.

    2016-01-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO 2 using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO x interfacial layer. It is found that the cubic phase is dominant in the HfO 2 film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO 2 film on a 1-nm-thick GeO x form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO 2 can be induced by the formation of six-fold crystalline GeO x structures in the underlying GeO x interfacial layer

  3. Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II, UV/H2O2/Fe (III Processes

    Directory of Open Access Journals (Sweden)

    Nezamaddin Daneshvar

    2007-03-01

    Full Text Available UV/H2O2, UV/H2O2/Fe (II and UV/H2O2/Fe (III processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B was used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in the presence of hydrogen. The effects of different system variables such as initial dye concentration, duration of UV irradiation, and initial hydrogen peroxide concentration were investigated in the UV/H2O2 process. Investigation of the kinetics of the UV/H2O2 process showed that the semi-log plot of the dye concentration versus time was linear, suggesting a first order reaction. It was found that Rhodamine B decolorization efficiencies in the UV/H2O2/Fe (II and UV/H2O2/Fe (III processes were higher than that in the UV/H2O2 process. Furthermore, a solution containing 20 ppm of Rhodamine B was decolorized in the presence 18 mM of H2O2 under UV irradiation for 15 minutes. It was also found that addition of 0.1 mM Fe(II or Fe(III to the solution containing  20  ppm of the dye and 5 mM H2O2 under UV light  illumination decreased removal time to 10 min.

  4. Crystallization kinetics of bioactive glasses in the ZnO-Na2O-CaO-SiO2 system.

    Science.gov (United States)

    Malavasi, Gianluca; Lusvardi, Gigliola; Pedone, Alfonso; Menziani, Maria Cristina; Dappiaggi, Monica; Gualtieri, Alessandro; Menabue, Ledi

    2007-08-30

    The crystallization kinetics of Na(2)O.CaO.2SiO(2) (x = 0) and 0.68ZnO.Na(2)O.CaO.2SiO(2) (x = 0.68, where x is the ZnO stoichiometric coefficient in the glass formula) bioactive glasses have been studied using both nonisothermal and isothermal methods. The results obtained from isothermal XRPD analyses have showed that the first glass crystallizes into the isochemical Na(2)CaSi(2)O(6) phase, whereas the Na(2)ZnSiO(4) crystalline phase is obtained from the Zn-rich glass, in addition to Na(2)CaSi(2)O(6). The activation energy (Ea) for the crystallization of the Na(2)O.CaO.2SiO(2) glass is 193 +/- 10 and 203 +/- 5 kJ/mol from the isothermal in situ XRPD and nonisothermal DSC experiments, respectively. The Avrami exponent n determined from the isothermal method is 1 at low temperature (530 degrees C), and its value increases linearly with temperature increase up to 2 at 607 degrees C. For the crystallization of Na(2)CaSi(2)O(6) from the Zn-containing glass, higher values of both the crystallization temperature (667 and 661 degrees C) and Ea (223 +/- 10 and 211 +/- 5 kJ/mol) have been found from the isothermal and nonisothermal methods, respectively. The Na(2)ZnSiO(4) crystalline phase crystallizes at lower temperature with respect to Na(2)CaSi(2)O(6), and the Ea value is 266 +/- 20 and 245 +/- 15 kJ/mol from the isothermal and nonisothermal methods, respectively. The results of this work show that the addition of Zn favors the crystallization from the glass at lower temperature with respect to the Zn-free glass. In fact, it causes an increase of Ea for the Na diffusion process, determined using MD simulations, and consequently an overall increase of Ea for the crystallization process of Na(2)CaSi(2)O(6). Our results show good agreement between the Ea and n values obtained with the two different methods and confirm the reliability of the nonisothermal method applied to kinetic crystallization of glassy systems. This study allows the determination of the temperature

  5. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells.

    Science.gov (United States)

    Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K

    2017-01-01

    CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  6. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation.

    Directory of Open Access Journals (Sweden)

    Luigi Capoferri

    Full Text Available Prediction of human Cytochrome P450 (CYP binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD simulations and Linear Interaction Energy (LIE theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE of 4.1 kJ mol-1 and a standard error in prediction (SDEP in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units.

  7. Catalytic Oxidation of NO over MnOx–CeO2 and MnOx–TiO2 Catalysts

    Directory of Open Access Journals (Sweden)

    Xiaolan Zeng

    2016-11-01

    Full Text Available A series of MnOx–CeO2 and MnOx–TiO2 catalysts were prepared by a homogeneous precipitation method and their catalytic activities for the NO oxidation in the absence or presence of SO2 were evaluated. Results show that the optimal molar ratio of Mn/Ce and Mn/Ti are 0.7 and 0.5, respectively. The MnOx–CeO2 catalyst exhibits higher catalytic activity and better resistance to SO2 poisoning than the MnOx–TiO2 catalyst. On the basis of Brunauer–Emmett–Teller (BET, X-ray diffraction (XRD, and scanning transmission electron microscope with mapping (STEM-mapping analyses, it is seen that the MnOx–CeO2 catalyst possesses higher BET surface area and better dispersion of MnOx over the catalyst than MnOx–TiO2 catalyst. X-ray photoelectron spectroscopy (XPS measurements reveal that MnOx–CeO2 catalyst provides the abundance of Mn3+ and more surface adsorbed oxygen, and SO2 might be preferentially adsorbed to the surface of CeO2 to form sulfate species, which provides a protection of MnOx active sites from being poisoned. In contrast, MnOx active sites over the MnOx–TiO2 catalyst are easily and quickly sulfated, leading to rapid deactivation of the catalyst for NO oxidation. Furthermore, temperature programmed desorption with NO and O2 (NO + O2-TPD and in situ diffuse reflectance infrared transform spectroscopy (in situ DRIFTS characterizations results show that the MnOx–CeO2 catalyst displays much stronger ability to adsorb NOx than the MnOx–TiO2 catalyst, especially after SO2 poisoning.

  8. Atomic-Scale Structure of Al2O3-ZrO2 Mixed Oxides Prepared by Laser Ablation

    International Nuclear Information System (INIS)

    Yang Xiuchun; Dubiel, M.; Hofmeister, H.; Riehemann, W.

    2007-01-01

    By means of x-ray diffractometry (XRD) and X-ray absorption fine structure spectroscopy, the phase composition and atomic structure of laser evaporated ZrO2 and ZrO2-Al2O3 nanopowders have been studied. The results indicate that pure ZrO2 exists in the form of tetragonal structure, Al2O3 doped ZrO2 nanoparticles, however, have cubic structure. Compared to bulk tetragonal ZrO2, pure tetragonal ZrO2 nanoparticles have a shorter Zr-O- and Zr-Zr shell, indicating that the lattice contracts with decreasing particle size. For Al2O3 doped ZrO2 solid solution, the distances of first Zr-O and Zr-Zr (Al) coordination decrease with increasing solid solubility. The disorder degree of the ZrO2 lattice increases with increasing solid solubility. The coevaporated ZrO2-Al2O3 is quickly solidified into amorphous phase when it is ablated in a higher pressure. The amorphous phase contains Zr-O-Zr (Al) clusters and has shorter Zr-O distance and tower Zr-O coordination number

  9. On the Stability of NaO2 in Na-O2 Batteries.

    Science.gov (United States)

    Liu, Chenjuan; Carboni, Marco; Brant, William R; Pan, Ruijun; Hedman, Jonas; Zhu, Jiefang; Gustafsson, Torbjörn; Younesi, Reza

    2018-04-25

    Na-O 2 batteries are regarded as promising candidates for energy storage. They have higher energy efficiency, rate capability, and chemical reversibility than Li-O 2 batteries; in addition, sodium is cheaper and more abundant compared to lithium. However, inconsistent observations and instability of discharge products have inhibited the understanding of the working mechanism of this technology. In this work, we have investigated a number of factors that influence the stability of the discharge products. By means of in operando powder X-ray diffraction study, the influence of oxygen, sodium anode, salt, solvent, and carbon cathode were investigated. The Na metal anode and an ether-based solvent are the main factors that lead to the instability and decomposition of NaO 2 in the cell environment. This fundamental insight brings new information on the working mechanism of Na-O 2 batteries.

  10. Nanotextured Spikes of α-Fe2O3/NiFe2O4 Composite for Efficient Photoelectrochemical Oxidation of Water.

    Science.gov (United States)

    Hussain, Shabeeb; Tavakoli, Mohammad Mahdi; Waleed, Aashir; Virk, Umar Siddique; Yang, Shihe; Waseem, Amir; Fan, Zhiyong; Nadeem, Muhammad Arif

    2018-03-27

    We demonstrate for the first time the application of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films as anode materials for light-assisted electrolysis of water. The p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films were deposited on planar fluorinated tin oxide (FTO)-coated glass as well as on 3D array of nanospike (NSP) substrates. The effect of substrate (planar FTO and 3D-NSP) and percentage change of each component (i.e., NiFe 2 O 4 and Fe 2 O 3 ) of composite was studied on photoelectrochemical (PEC) water oxidation reaction. This work also includes the performance comparison of p-NiFe 2 O 4 /n-Fe 2 O 3 composite (planar and NSP) devices with pure hematite for PEC water oxidation. Overall, the nanostructured p-NiFe 2 O 4 /n-Fe 2 O 3 device with equal molar 1:1 ratio of NiFe 2 O 4 and Fe 2 O 3 was found to be highly efficient for PEC water oxidation as compared with pure hematite, 1:2 and 1:3 molar ratios of composite. The photocurrent density of 1:1 composite thin film on planar substrate was equal to 1.07 mA/cm 2 at 1.23 V RHE , which was 1.7 times higher current density as compared with pure hematite device (0.63 mA/cm 2 at 1.23 V RHE ). The performance of p-NiFe 2 O 4 /n-Fe 2 O 3 composites in PEC water oxidation was further enhanced by their deposition over 3D-NSP substrate. The highest photocurrent density of 2.1 mA/cm 2 at 1.23 V RHE was obtained for the 1:1 molar ratio p-NiFe 2 O 4 /n-Fe 2 O 3 composite on NSP (NF1-NSP), which was 3.3 times more photocurrent density than pure hematite. The measured applied bias photon-to-current efficiency (ABPE) value of NF1-NSP (0.206%) was found to be 1.87 times higher than that of NF1-P (0.11%) and 4.7 times higher than that of pure hematite deposited on FTO-coated glass (0.044%). The higher PEC water oxidation activity of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin film as compared with pure hematite is attributed to the Z-path scheme and better separation of electrons and holes. The increased surface area and greater light

  11. 17O solid-state NMR spectroscopy of A2B2O7 oxides: quantitative isotopic enrichment and spectral acquisition?

    Science.gov (United States)

    Fernandes, Arantxa; Moran, Robert F; Sneddon, Scott; Dawson, Daniel M; McKay, David; Bignami, Giulia P M; Blanc, Frédéric; Whittle, Karl R; Ashbrook, Sharon E

    2018-02-13

    The potential of 17 O NMR spectroscopy for the investigation of A 2 B 2 O 7 ceramic oxides important in the encapsulation of radioactive waste is demonstrated, with post-synthetic enrichment by exchange with 17 O 2 gas. For Y 2 Sn 2 O 7 , Y 2 Ti 2 O 7 and La 2 Sn 2 O 7 pyrochlores, enrichment of the two distinct O species is clearly non quantitative at lower temperatures (∼700 °C and below) and at shorter times, despite these being used in prior work, with preferential enrichment of OA 2 B 2 favoured over that of OA 4 . At higher temperatures, the 17 O NMR spectra suggest that quantitative enrichment has been achieved, but the integrated signal intensities do not reflect the crystallographic 1 : 6 (O1 : O2) ratio until corrected for differences in T 1 relaxation rates and, more importantly, the contribution of the satellite transitions. 17 O NMR spectra of Y 2 Zr 2 O 7 and Y 2 Hf 2 O 7 defect fluorites showed little difference with any variation in enrichment temperature or time, although an increase in the absolute level of enrichment (up to ∼7.5%) was observed at higher temperature. DFT calculations show that the six distinct resonances observed cannot be assigned unambiguously, as each has contributions from more than one of the five possible next nearest neighbour environments. For La 2 Ti 2 O 7 , which adopts a layered perovskite-like structure, little difference in the spectral intensities is observed with enrichment time or temperature, although the highest absolute levels of enrichment (∼13%) were obtained at higher temperature. This work demonstrates that 17 O NMR has the potential to be a powerful probe of local structure and disorder in oxides, but that considerable care must be taken both in choosing the conditions for 17 O enrichment and the experimental acquisition parameters if the necessary quantitative measurements are to be obtained for more complex systems.

  12. [Effect of almitrine administered by the oral route on levels of 2,3-diphosphoglycerate and on the affinity of hemoglobin for oxygen in healthy subjects].

    Science.gov (United States)

    Clerbaux, T; Frans, A

    1985-02-01

    Clinical and pharmacological studies have shown that almitrine increased arterial blood oxygen partial pressure (PaO2) and tissular oxygenation. We have verified whether this drug could also increase the 2,3 diphosphoglycerate (DPG) level and so modify the oxyhemoglobin dissociation curve (ODC). Determinations performed 3 hours and 5 days after daily oral administration (1,5 mg/kg) of the drug showed no alterations of DPG and ODC in normal subjects. The presence of almitrine does not explain the observed PaO2 increase by means of a direct effect on the hemoglobin oxygen affinity. However, one cannot exclude almitrine long term effect; indeed, after 15 days, DPG levels and Hill coefficient increased significantly (p less than 0.05) but no the P50 (respectively + 1,5 mumole/gHb; +0.1 and 26.0 vs 26.5 mmHg).

  13. The Study of Electrical Properties for Multilayer La2O3/Al2O3 Dielectric Stacks and LaAlO3 Dielectric Film Deposited by ALD.

    Science.gov (United States)

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2017-12-01

    The capacitance and leakage current properties of multilayer La 2 O 3 /Al 2 O 3 dielectric stacks and LaAlO 3 dielectric film are investigated in this paper. A clear promotion of capacitance properties is observed for multilayer La 2 O 3 /Al 2 O 3 stacks after post-deposition annealing (PDA) at 800 °C compared with PDA at 600 °C, which indicated the recombination of defects and dangling bonds performs better at the high-k/Si substrate interface for a higher annealing temperature. For LaAlO 3 dielectric film, compared with multilayer La 2 O 3 /Al 2 O 3 dielectric stacks, a clear promotion of trapped charges density (N ot ) and a degradation of interface trap density (D it ) can be obtained simultaneously. In addition, a significant improvement about leakage current property is observed for LaAlO 3 dielectric film compared with multilayer La 2 O 3 /Al 2 O 3 stacks at the same annealing condition. We also noticed that a better breakdown behavior for multilayer La 2 O 3 /Al 2 O 3 stack is achieved after annealing at a higher temperature for its less defects.

  14. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  15. O 1s core levels in Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Parmigiani, F.; Shen, Z.X.; Mitzi, D.B.; Lindau, I.; Spicer, W.E.; Kapitulnik, A.

    1991-01-01

    High-quality Bi 2 Sr 2 CaCu 2 O 8+δ superconducting single crystals, annealed at different oxygen partial pressures, have been studied using angular-resolved x-ray photoelectron spectroscopy with a resolution higher than that used in any previous study. Two states of the oxygen, separated by ∼0.7 eV, are unambiguously observed. Examining these components at different angles makes it possible to distinguish bulk from surface components. Using this capability we discover that annealing under lower oxygen partial pressure (1 atm) results in oxygen intercalation beneath the Bi-O surface layer of the crystal, whereas for higher-pressure anneals (12 atm) additional oxygen is found on the Bi-O surfaces. This steplike intercalation mechanism is also confirmed by the changes observed in the Cu and Bi core lines as a function of the annealing oxygen partial pressure

  16. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    Science.gov (United States)

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  17. Investigations on the local structures of Cu2+ at various BaO concentrations in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO glasses

    Science.gov (United States)

    Jin, Jia-Rui; Wu, Shao-Yi; Hong, Jian; Liu, Shi-Nan; Song, Min-Xian; Teng, Bao-Hua; Wu, Ming-He

    2017-11-01

    The local structures and electron paramagnetic resonance (EPR) parameters for Cu2+ in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO (BKZBC) glasses are theoretically investigated with distinct modifier BaO concentrations x (= 0, 6, 12, 18, 24 and 30 mol %). The ? clusters are found to undergo the relative tetragonal elongations of about 13.5 and 5.0% at zero and higher BaO concentrations. The concentration dependences of the measured d-d transition bands, g factors and A// are suitably reproduced from the Fourier type functions or sign functions of the relevant quantities with x by using only six adjustable parameters. The features of the EPR parameters and the local structures of Cu2+ are analysed in a consistent way by considering the differences in the local ligand field strength and electronic cloud admixtures around Cu2+ under addition of Ba2+ with the highest ionicity and polarisability. The present theoretical studies would be helpful to the researches on the structures, optical and EPR properties for the similar potassium barium zinc borate glasses containing copper with variation concentration of modifier BaO.

  18. Design of flexible PANI-coated CuO-TiO2-SiO2 heterostructure nanofibers with high ammonia sensing response values

    Science.gov (United States)

    Pang, Zengyuan; Nie, Qingxin; Lv, Pengfei; Yu, Jian; Huang, Fenglin; Wei, Qufu

    2017-06-01

    We report a room-temperature ammonia sensor with extra high response values and ideal flexibility, including polyaniline (PANI)-coated titanium dioxide-silicon dioxide (TiO2-SiO2) or copper oxide-titanium dioxide-silicon dioxide (CuO-TiO2-SiO2) composite nanofibers. Such flexible inorganic TiO2-SiO2 and CuO-TiO2-SiO2 composite nanofibers were prepared by electrospinning, followed by calcination. Then, in situ polymerization of aniline monomers was carried out with inorganic TiO2-SiO2 and CuO-TiO2-SiO2 composite nanofibers as templates. Gas sensing tests at room temperature indicated that the obtained CuO-TiO2-SiO2/PANI composite nanofibers had much higher response values to ammonia gas (ca. 45.67-100 ppm) than most of those reported before as well as the prepared TiO2-SiO2/PANI composite nanofibers here. These excellent sensing properties may be due to the P-N, P-P heterojunctions and a structure similar to field-effect transistors formed on the interfaces between PANI, TiO2, and CuO, which is p-type, n-type, and p-type semiconductor, respectively. In addition, the prepared free-standing CuO-TiO2-SiO2/PANI composite nanofiber membrane was easy to handle and possessed ideal flexibility, which is promising for potential applications in wearable sensors in the future.

  19. Emission analysis of Tb3+ -and Sm3+ -ion-doped (Li2 O/Na2 O/K2 O) and (Li2 O + Na2 O/Li2 O + K2 O/K2 O + Na2 O)-modified borosilicate glasses.

    Science.gov (United States)

    Naveen Kumar Reddy, B; Sailaja, S; Thyagarajan, K; Jho, Young Dahl; Sudhakar Reddy, B

    2018-05-01

    Four series of borosilicate glasses modified by alkali oxides and doped with Tb 3+ and Sm 3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B 2 O 3 + 10SiO 2 + 5MgO + R + 0.5(Tb 2 O 3 /Sm 2 O 3 ) [where R = 10(Li 2 O /Na 2 O/K 2 O) for series A and C, and R = 5(Li 2 O + Na 2 O/Li 2 O + K 2 O/K 2 O + Na 2 O) for series B and D]. The X-ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5 D 4 → 7 F 5 (543 nm) transition of the Tb 3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm 3+ ions with the series C and D glasses showed strong reddish-orange emission at 600 nm ( 4 G 5/2 → 6 H 7/2 ) with an excitation wavelength λ exci = 404 nm ( 6 H 5/2 → 4 F 7/2 ). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb 3+ and Sm 3+ ions was studied to optimize the potential alkali-oxide-modified borosilicate glass. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3,Er2O3,Lu2O3)

    International Nuclear Information System (INIS)

    Tang, M.; Lu, P.; Valdez, J.A.; Sickafus, K.E.

    2006-01-01

    Polycrystalline pellets of cubic C-type rare earth structure (Ia3) Dy 2 O 3 , Er 2 O 3 , and Lu 2 O 3 were irradiated at cryogenic temperature (120 K) with 300 keV Kr ++ ions to a maximum fluence of 1x10 20 Kr/m 2 . Irradiated specimens were examined using grazing incidence x-ray diffraction and transmission electron microscopy. Ion irradiation leads to different radiation effects in these three materials. First, Dy 2 O 3 begins to transform to a monoclinic B-type rare earth structure (C2/m) at a peak dose of ∼5 displacements per atom (dpa) (corresponding to a fluence of 2x10 19 Kr/m 2 ). This transformation is nearly complete at a peak dose of 25 dpa (a fluence of 1x10 20 Kr/m 2 ). Er 2 O 3 also transforms to the B-type structure, but the transformation starts at a higher irradiation dose of about 15-20 dpa [a fluence of about (6-8)x10 19 Kr/m 2 ]. Lu 2 O 3 was found to maintain the C-type structure even at the highest irradiation dose of 25 dpa (a fluence of 1x10 20 Kr/m 2 ). No C-to-B transformation was observed in Lu 2 O 3 . The irradiation dose dependence of the C-to-B phase transformation observed in Dy 2 O 3 , Er 2 O 3 , and Lu 2 O 3 is closely related to the temperature dependence of the C-to-B phase transformation found in phase diagrams for these three materials

  1. Characterization of self-affinity in the global regime

    Science.gov (United States)

    Neimark, Alexander V.

    1994-11-01

    Methods for characterization of self-affine surfaces and measurements of their roughness exponents H are developed. It is shown that for smoothed surfaces, which underwent particular coarse graining or averaging of the small-scale fluctuations, the excess surface area Sex and the mean square root radius of curvature ac are related by two distinct asymptotic power laws if ac is well below or well above a certain crossover scale acr. In the local regime of self-affinity, when acSex~(ac/acr)-(1-H). In the global regime of self-affinity, when ac>>acr, Sex~(ac/acr)-2(1-H)/(2-H). The former scaling relationship is consistent with the well known definition of local fractal dimensions dloc=dtop+1-H. The latter scaling relationship offers alternatives for characterization of self-affinity over large scales by means of excess dimensions defined as dex=dtop+2(1-H)/(2-H) and can be used for determination of roughness exponents from the measurements provided in the global regime. The thermodynamic method of fractal analysis, proposed earlier for self-similar surfaces (A.V. Neimark, Pis'ma Zh. Eksp. Teor. Fiz. 51, 535 (1990) [JETP Lett. 51, 607 (1990)]; Physica A 191, 258 (1992)), is extended for self-affine surfaces for determination of fractal dimensions and roughness exponents from adsorption and capillary experimental data.

  2. In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7} heterostructured nanoparticles with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yonglei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Yin, Xingtian; He, Zuoli; Liu, Xiaobin; Yang, Yawei; Shao, Jinyou [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Kong, Ling Bing, E-mail: ELBKong@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2016-11-30

    Highlights: • Visible-light photocatalytic activities of the nanostructured In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7} heterostructures were studied. • Effect of In{sub 2}O{sub 3} content on the photocatalytic activity of the In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7} heterostructure was evaluated. • 0.1In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7} heterostructure photocatalyst shows a superior photocatalytic activity. • Based on Mott-Schottky analysis and active species detection, a mechanism for the separation of photogenerated carriers is proposed. • The effective separation process of the photogenerated electron-hole pairs was testified by photocurrent test. - Abstract: In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7} composite photocatalysts with various contents of cubic In{sub 2}O{sub 3} nanoparticles were fabricated by using impregnation method. A thriving modification of Bi{sub 2}Sn{sub 2}O{sub 7} by an introduction of In{sub 2}O{sub 3} was confirmed by using X-ray diffraction, UV–vis diffuse reflectance spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The samples composed of hybrids of In{sub 2}O{sub 3} and Bi{sub 2}Sn{sub 2}O{sub 7} exhibited a much higher photocatalytic activity for the degradation of Rhodamine B under visible light, as compared with pure In{sub 2}O{sub 3} and Bi{sub 2}Sn{sub 2}O{sub 7} nanoparticles. Optimized composition of the composite photocatalysts was 0.1In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7}, which shows a rate constant higher than those of pure In{sub 2}O{sub 3} and Bi{sub 2}Sn{sub 2}O{sub 7} by 4.06 and 3.21 times, respectively. Based on Mott-Schottky analysis and active species detection, the photoexcited electrons in the conduction band of In{sub 2}O{sub 3} and the holes in the valence band of Bi{sub 2}Sn{sub 2}O{sub 7} participated in reduction and oxidation reactions, respectively. Hence, ·OH, ·O{sub 2}{sup −} and h

  3. Catalytic Hydrogenation of CO2 to Methanol: Study of Synergistic Effect on Adsorption Properties of CO2 and H2 in CuO/ZnO/ZrO2 System

    Directory of Open Access Journals (Sweden)

    Chunjie Huang

    2015-11-01

    Full Text Available A series of CuO/ZnO/ZrO2 (CZZ catalysts with different CuO/ZnO weight ratios have been synthesized by citrate method and tested in the catalytic hydrogenation of CO2 to methanol. Experimental results showed that the catalyst with the lowest CuO/ZnO weight ratio of 2/7 exhibited the best catalytic performance with a CO2 conversion of 32.9%, 45.8% methanol selectivity, and a process delivery of 193.9 gMeOH·kgcat−1·h−1. A synergetic effect is found by systematic temperature-programmed-desorption (TPD studies. Comparing with single and di-component systems, the interaction via different components in a CZZ system provides additional active sites to adsorb more H2 and CO2 in the low temperature range, resulting in higher weight time yield (WTY of methanol.

  4. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    Science.gov (United States)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  5. DOTA-derivatives of octreotide dicarba-analogues with high affinity for somatostatin sst2,5 receptors

    Science.gov (United States)

    Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M.; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso

    2017-02-01

    In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumours and their metastases. In fact, peptide ligands of somatostatin receptors (sst’s) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogues, which show interesting binding profiles at sst’s. In this context, it was mandatory to explore the possibility that our analogues could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogues of octreotide. Interestingly, two conjugated analogues exhibited nanomolar affinities on sst2 and sst5 somatostatin receptor subtypes.

  6. Photocatalytic degradation of clofibric acid, carbamazepine and iomeprol using conglomerated TiO2 and activated carbon in aqueous suspension.

    Science.gov (United States)

    Ziegmann, Markus; Frimmel, Fritz H

    2010-01-01

    The combination of powdered activated carbon (PAC) and TiO(2) has been tested for synergistic/antagonistic effects in the photocatalytic degradation of carbamazepine, clofibric acid and iomeprol. Synergistic effects are thought to be caused by rapid adsorption on the PAC surface followed by diffusion to the TiO(2) surface and photocatalytic degradation. The Freundlich constant K(F) was used for comparing the sorption properties of the three substances and it was found that K(F) for clofibric acid was 3 times lower than for carbamazepine and iomeprol, regardless of the kind of PAC used. A PAC with a distinct tendency to form conglomerates was selected so that a high percentage of the PAC surface was in direct proximity to the TiO(2) surface. The photocatalytic degradation of the pharmaceutically active compounds studied followed pseudo-first order kinetics. Synergistic effects only occurred for clofibric acid (factor 1.5) and an inverse relationship between adsorption affinity and synergistic effects was found. High affinity of the target substances to the PAC surface seemed to be counterproductive for the photocatalytic degradation.

  7. Transport and abatement of fluorescent silica nanoparticle (SiO_2 NP) in granular filtration: effect of porous media and ionic strength

    International Nuclear Information System (INIS)

    Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes

    2017-01-01

    The extensive production and application of engineered silica nanoparticles (SiO_2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO_2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO_2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO_2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO_2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO_2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO_2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO_2 NP filtration.

  8. Transport and abatement of fluorescent silica nanoparticle (SiO2 NP) in granular filtration: effect of porous media and ionic strength

    Science.gov (United States)

    Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes

    2017-03-01

    The extensive production and application of engineered silica nanoparticles (SiO2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO2 NP filtration.

  9. Optical properties of ternary TeO2-B2O3-ZnO Glass system

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Halimah, M.K.; Talib, Z.A.; Sidek, H.A.A.; Daud, W.M.; Zaidan, A.W.; Khamirul, A.M.

    2009-01-01

    Full text: A series of ternary tellurite based glasses [ (TeO 2 ) 70 (B 2 0 3 ) 30 ] 100-x [ZnO] x glasses with different compositions of ZnO (x= 5 to 30 wt.% in steps of 5 wt.%) have been synthesized by melt quenching method. The role of ZnO to the glasses structure was studied by IR spectroscopy. FTIR spectra revealed broad, weak and strong absorption bands in the investigated range of wavenumber from 280 - 4000 cm -1 which associated with their corresponding bond modes of vibration and the glass structure. The indirect optical band gap and the direct optical band gap are in the range 2.08-3.12 and 1.54-2.36 eV, respectively. An increase in the values of energy band gap E g may come down to the reason that the non-bridging oxygen ion content decreases with increasing ZnO content and shifting the band edge to higher energies. The optical band gap and Urbach energies were calculated from the absorption spectra measured between 190 and 900 nm at room temperature. The refractive index, n of the glasses change from 1.84 - 2.00 while the molar refractivities decrease from 13.06 to 12.00 with the increase of ZnO in mol %. (author)

  10. Cu2O-tipped ZnO nanorods with enhanced photoelectrochemical performance for CO2 photoreduction

    Science.gov (United States)

    Iqbal, Muzaffar; Wang, Yanjie; Hu, Haifeng; He, Meng; Hassan Shah, Aamir; Lin, Lin; Li, Pan; Shao, Kunjuan; Reda Woldu, Abebe; He, Tao

    2018-06-01

    The design of Cu2O-tipped ZnO nanorods is proposed here aiming at enhanced photoelectrochemical properties. The tip-selective deposition of Cu2O is confirmed by scanning transmission electron microscopy (STEM). The photoinduced charge behavior like charge generation, separation and transport has been thoroughly studied by UV-vis absorption analysis and different photoelectrochemical characterizations, including transient photocurrent, incident photon-to-current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent spectroscopy (IMPS), and Mott-Schottky measurements. The photoelectrochemical characterizations clearly indicate that ZnO/Cu2O structures exhibit much higher performance than pristine ZnO, due to the formation of p-n junction, as well as the tip selective growth of Cu2O on ZnO. Photocatalytic CO2 reduction in aqueous solution under UV-visible light illumination shows that CO is the main product, and with the increase of the Cu2O content in the heterostructure, the CO yield increases. This work shows that Cu2O-tipped ZnO nanorods possess improved behavior of charge generation, separation and transport, which may work as a potential candidate for photocatalytic CO2 reduction.

  11. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface*

    Science.gov (United States)

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-01-01

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. PMID:26912659

  12. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface.

    Science.gov (United States)

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-04-15

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. A feasibility study on SnO2/NiFe2O4 nanocomposites as anodes for Li ion batteries

    International Nuclear Information System (INIS)

    Balaji, S.; Vasuki, R.; Mutharasu, D.

    2013-01-01

    Highlights: ► The morphological analysis performed has shown the existence of nanocomposite. ► Sp. capacity after 50 cycles of pure NiFe 2 O 4 , 5 and 10 wt.% SnO 2 are 450, 750 and 780 mA h/g. ► The results are higher than the theoretical capacity of graphite (374 mA h/g). ► The capacity retention is also found to increase with SnO 2 addition in the NiFe 2 O 4 . ► Charge and discharge capacities of LiMn 2 O 4 vs. 10 wt.% SnO 2 /NiFe 2 O 4 are 232 and 138 mA h/g. -- Abstract: The SnO 2 /NiFe 2 O 4 nanocomposite samples with varying concentration of SnO 2 such as 5 wt.% and 10 wt.% were synthesized via urea assisted combustion synthesis. The kinetics of the combustion reactions were studied using thermo gravimetry analysis and from which the compound formation temperature of all the samples were observed to be below 400 °C. From the morphological analysis the grain size of NiFe 2 O 4 , 5 wt.% SnO 2 /NiFe 2 O 4 and 10 wt.% SnO 2 /NiFe 2 O 4 samples were observed to be around 1.7, 2.3 and 3.5 μm. The chrono potentiometry analyses of the samples were performed against lithium metal electrode. The capacity retention was found to be higher for composite with 10 wt.% SnO 2 . The discharge capacity of 10 wt.% SnO 2 sample with respect to Li metal and LiMn 2 O 4 electrode was observed to be around 980 mA h/g and 138 mA h/g respectively

  14. Continuous affine processes

    DEFF Research Database (Denmark)

    Buchardt, Kristian

    2016-01-01

    Affine processes possess the property that expectations of exponential affine transformations are given by a set of Riccati differential equations, which is the main feature of this popular class of processes. In this paper we generalise these results for expectations of more general transformati...

  15. Enhanced arsenic removal from water by hierarchically porous CeO{sub 2}–ZrO{sub 2} nanospheres: Role of surface- and structure-dependent properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weihong; Wang, Jing; Wang, Lei [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sheng, Guoping [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Liu, Jinhuai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Hanqing [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Huang, Xing-Jiu, E-mail: xingjiuhuang@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-09-15

    Highlights: • The CeO{sub 2}–ZrO{sub 2} hollow nanospheres had strong affinity and selectivity to arsenic. •The adsorbent showed excellent ability to remove arsenic at low concentrations. • The adsorption mechanism was investigated by FTIR and XPS. • The adsorbent showed potential application for drinking water treatment. -- Abstract: Arsenic contaminated natural water is commonly used as drinking water source in some districts of Asia. To meet the increasingly strict drinking water standards, exploration of efficient arsenic removal methods is highly desired. In this study, hierarchically porous CeO{sub 2}–ZrO{sub 2} nanospheres were synthesized, and their suitability as arsenic sorbents was examined. The CeO{sub 2}–ZrO{sub 2} hollow nanospheres showed an adsorption capacity of 27.1 and 9.2 mg g{sup −1} for As(V) and As(III), respectively, at an equilibrium arsenic concentration of 0.01 mg L{sup −1} (the standard for drinking water) under neutral conditions, indicating a high arsenic removal performance of the adsorbent at low arsenic concentrations. Such a great arsenic adsorption capacity was attributed to the high surface hydroxyl density and presence of hierarchically porous network in the hollow nanospheres. The analysis of Fourier transformed infrared spectra and X-ray photoelectron spectroscopy demonstrated that the adsorption of arsenic on the CeO{sub 2}–ZrO{sub 2} nanospheres was completed through the formation of a surface complex by substituting hydroxyl with arsenic species. In addition, the CeO{sub 2}–ZrO{sub 2} nanospheres were able to remove over 97% arsenic in real underground water with initial arsenic concentration of 0.376 mg L{sup −1} to meet the guideline limit of arsenic in drinking water regulated by the World Health Organization without any pre-treatment and/or pH adjustment.

  16. Cotton fabric finishing with TiO2/SiO2 composite hydrosol based on ionic cross-linking method

    International Nuclear Information System (INIS)

    Xu, Z.J.; Tian, Y.L.; Liu, H.L.; Du, Z.Q.

    2015-01-01

    Highlights: • We studied the cotton finishing with TiO 2 /SiO 2 based on ionic cross-linking method. • The samples treated with CHTAC had lower value of whiteness. • The samples treated with BTCA achieved higher crease recovery angle and lower tensile strength. • The ionic cross-linking treatment (CHTAC + BTCA + TiO 2 /SiO 2 ) was better than with TiO 2 /SiO 2 sol alone. - Abstract: Cotton fabric was successfully modified by 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHTAC), 1,2,3,4-butanetetracarboxylic acid (BTCA) and TiO 2 /SiO 2 sol. Self-cleaning characteristic was investigated using a Color Measuring and Matching System with 6 h sunlight irradiation. And the stability of TiO 2 /SiO 2 coatings was explored by measuring the washing fastness and wrinkle resistance of treated cotton samples. In addition, whiteness index, crease recovery angle and tensile strength retention (%) of treated samples were evaluated. Moreover, the morphology, structure change and crystallinity of samples were observed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively. The results revealed that the samples treated with CHTAC had lower value of whiteness index as compared with original cotton fabric. It was also found that samples treated with BTCA achieved higher crease recovery angle and lower tensile strength. Moreover, the treatment of CHTAC and BTCA had adverse effect on the crystallinity of cotton samples, as treated samples had lower crystallinity in comparison with raw cotton fabrics. Nevertheless, the stability of self-cleaning coatings was better for samples treated with ionic cross-linking treatment (CHTAC + BTCA + TiO 2 /SiO 2 ) than samples treated with TiO 2 /SiO 2 sol alone. Furthermore, compared with original samples the UV-blocking property of ionic cross-linking treated samples was obviously enhanced

  17. Catalytic oxidation of volatile organic compounds (n-hexane, benzene, toluene, o-xylene promoted by cobalt catalysts supported on γ-Al2O3-CeO2

    Directory of Open Access Journals (Sweden)

    R. Balzer

    2014-09-01

    Full Text Available Cobalt catalysts supported on γ-alumina, ceria and γ-alumina-ceria, with 10 or 20%wt of cobalt load, prepared by the wet impregnation method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, field emission transmission electron microscopy (FETEM, N2 adsorption-desorption isotherms (BET/BJH methods, energy-dispersive X-ray spectroscopy (EDX, X-ray photoemission spectroscopy (XPS, O2-chemisorption and temperature programmed reduction (TPR were used to promote the oxidation of volatile organic compounds (n-hexane, benzene, toluene and o-xylene. For a range of low temperatures (50-350 °C, the activity of the catalysts with a higher cobalt load (20% wt was greater than that of the catalysts with a lower cobalt load (10% wt. The Co/γ-Al2O3-CeO2 catalytic systems presented the best performances. The results obtained in the characterization suggest that the higher catalytic activity of the Co20/γ-Al2O3-CeO2 catalyst may be attributed to the higher metal content and amount of oxygen vacancies, as well as the effects of the interaction between the cobalt and the alumina and cerium oxides.

  18. Affinity in electrophoresis.

    Science.gov (United States)

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  19. Sorption and physical properties of Mn O2-Si O2 composite

    International Nuclear Information System (INIS)

    Labayru M, R.; Correa N, M.; Andalaft J, E.

    1992-01-01

    These results show that the addition of silica improve the sorption and mechanical properties of Mn O 2 -Si O 2 composite. This ion-exchange material has an high Sr adsorption capacity still in the presence of Cs and Al, its capacity being higher than that of commercially available products. The particle size distribution of the ground solid is homogeneous ranging from 90 to 600 μm. The largest particle size fraction is directly proportional to the amount of silica. (author)

  20. A graphene–SnO_2–TiO_2 ternary nanocomposite electrode as a high stability lithium-ion anode material

    International Nuclear Information System (INIS)

    Liang, Jicai; Wang, Juan; Zhou, Meixin; Li, Yi; Wang, Xiaofeng; Yu, Kaifeng

    2016-01-01

    In this work, a solvothermal method combined with a hydrothermal two-step method is developed to synthesize graphene–SnO_2–TiO_2 ternary nanocomposite, in which the nanometer-sized TiO_2 and SnO_2 nanoparticles form in situ uniformly anchored on the surface of graphene sheets, as high stability and capacity lithium-ion anode materials. Compared to graphene–TiO_2, bulk TiO_2 and grapheme–SnO_2 composites, the as-prepared nanocomposite delivers a superior rate performance of 499.3 mAhg"−"1 at 0.2 C and an outstanding stability cycling capability (1073.4 mAhg"−"1 at 0.2 C after 50 cycles), due to the synergistic effects contributed from individual components, for example, high specific capacity of SnO_2, excellent conductivity of 3D graphene networks. - Graphical abstract: Graphene–SnO_2–TiO_2 nanocomposite is synthesized by a hydrothermal two-step method. The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure. - Highlights: • We have synthesized a graphene–SnO_2–TiO_2 nanocomposite by a two-step method to improve the cycling performance. • Graphene–SnO_2–TiO_2 nanocomposite is synthesized by a hydrothermal two-step method. • The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure.

  1. The lower-temperature-pressure stability of pyrope in the presence of quartz in the system MgO-Al2O3-SiO2

    Science.gov (United States)

    Cheng, N.; Jenkins, D. M.

    2017-12-01

    Pyrope (Mg3Al2Si3O12) is the dominant component in garnets from type A eclogites. Determining the lower-pressure-temperature (P-T) stability of pyrope in the presence of quartz helps put constraints on the stability of quartz-bearing eclogites and therefore the depths to which crustal rocks in high pressure/ultra-high pressure (HP/UHP) terranes can be transferred. It also defines the lower-pressure stability of the nearly pure pyrope-bearing quartzites of the Dora Maira massif of the Western Alps (Chopin, 1984, Contrib. Min. Pet.). Aside from the approximate boundary proposed by Hensen & Essene (1971, Contrib. Min. Pet.), there has been no detailed study of the lower P-T stability of pyrope + quartz. A reversed determination of the reaction 3 enstatite + 2 kyanite = 2 pyrope + 2 quartz has been done in the system MgO-Al2O3-SiO2 over the P-T range of 900-1100 °C and 1.6-2.5 GPa for durations of 24 hours. Double capsules, one using pure enstatite and the other Al-rich (10 wt% Al2O3) enstatite in the starting mixtures, were used to obtain reversals on the Al content in the orthopyroxene (Opx). Experiments were done using a ½-inch diameter piston-cylinder press and NaCl-pyrex-MgO pressure media. Run products were analyzed using powder XRD and electron microprobe. Reaction direction was readily determined from peak height changes on XRD patterns. The reaction has been bracketed at 1.65 GPa at 1100 °C with > 12 wt% Al2O3 in Opx; 2.05 GPa at 1000 °C with 10 wt% Al2O3 in Opx; and 2.4 GPa at 930 °C with 5 wt% Al2O3 in Opx. The reaction boundary is slightly curved to higher P with increasing T caused by increasing Al in Opx. The boundary observed in this study is about 100 °C or 0.4 GPa higher than previously proposed by Hensen & Essene (1971) and 70-170 °C or 0.6-0.7 GPa higher than the boundary calculated in this system using THERMOCALC ds6.22 (Holland & Powell, 2011, J. Meta. Geol.) and about 1-4 wt% higher Al2O3 contents in Opx. Higher pressure runs in the field

  2. Stability of Zn–Ni–TiO2 and Zn–TiO2 nanocomposite coatings in near-neutral sulphate solutions

    International Nuclear Information System (INIS)

    Gomes, A.; Almeida, I.; Frade, T.; Tavares, A. C.

    2012-01-01

    Zn–Ni–TiO 2 and Zn–TiO 2 nanocomposites were prepared by galvanostatic cathodic square wave deposition. X-ray diffraction analysis and scanning electron microscopy revealed that the occlusion of TiO 2 nanoparticles (spherical shaped with diameter between 19.5 and 24.2 nm) promotes the formation of the γ-Ni 5 Zn 21 phase, changes the preferred crystallographic orientation of Zn from (101) and (102) planes to (002), and decreases the particle size of the metallic matrices. The stability of the nanocomposites immersed in near-neutral 0.05 mold m −3 Na 2 SO 4 solution (pH 6.2) was investigated over 24 h. The initial open circuit potential for the Zn–Ni–TiO 2 and Zn–TiO 2 coatings were −1.32 and −1.51 V (vs. Hg/Hg 2 SO 4 ), respectively, and changed to −1.10 and –1.49 V (vs. Hg/Hg 2 SO 4 ) after 24 h of immersion. Data extracted from the steady state polarization curves demonstrated that the metal–TiO 2 nanocomposites have, with respect to the metal coatings, a higher corrosion potential in the case of the Zn–Ni alloy composite; a lower corrosion potential in the case of Zn-based nanocomposite albeit the predominant (002) crystallographic orientation; and a lower initial corrosion resistance due to the smaller grain size and higher porosity in the Zn–Ni–TiO 2 and Zn–TiO 2 nanocomposites. Morphological and chemical analyses showed that a thicker passive layer is formed on the surface of the Zn–Ni–TiO 2 and Zn–TiO 2 deposits. After 24 h of immersion in the sulphate solution, the Zn–Ni–TiO 2 coating has the highest corrosion stability due to the double-protective action created by the deposit’s surface enrichment in Ni plus the higher amount of corrosion products.

  3. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    Science.gov (United States)

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. TiO2 and Al2O3 promoted Pt/C nanocomposites as low temperature fuel cell catalysts for electro oxidation of methanol in acidic media

    International Nuclear Information System (INIS)

    Naeem, Rabia; Ahmed, Riaz; Ansari, Muhammad Shahid

    2014-01-01

    Carbon corrosion and platinum dissolution are the two major catalyst layer degradation problems in polymer electrolyte membrane fuel cells (PEMFC). Ceramic addition can reduce the corrosion of carbon and increase the stability of catalysts. Pt/TiO 2 , Pt/TiO 2 -C, Pt/Al 2 O 3 and Pt/Al 2 O 3 -C catalysts were synthesized and characterized. Electrochemical surface area of Pt/TiO 2 -C and Pt/Al 2 O 3 -C nanocomposite catalysts was much higher than the Pt/TiO 2 and Pt/Al 2 O 3 catalysts. Peak current, specific activity and mass activity of the catalysts was also determined by cyclic voltammetry and were much higher for the carbon nanocomposites. Exchange current densities were determined from Tafel plots. Heterogeneous rates of reaction of electro oxidation of methanol were determined for all the catalysts and were substantially higher for titania catalysts as compared to alumina added catalysts. Mass activity of Pt/TiO 2 -C was much higher than mass activity of Pt/Al 2 O 3 -C. Stability studies showed that addition of ceramics have increased the catalytic activity and durability of the catalysts considerably

  5. High-temperature interaction in the ZrSiO4-TiO2 system

    International Nuclear Information System (INIS)

    Matveeva, F.A.; Melekhova, T.F.; Samsonova, T.I.

    1976-01-01

    The solid phase interaction in the ZrSiO 4 - TiO 2 system in the region of lower concentrations of TiO 2 (between 0-30%) when heating in the range 1400-1600 0 C is investigated. The different mechanism of the interaction of zircon and titanium dioxide with a content of titanium dioxide of 10% and higher is shown. In compounds with a TiO 2 content to 10%, a solid solution of titanium dioxide and zircon arises, with a limiting value of TiO 2 dissolving in zircon of 1% at 1400 0 C and 2% at 1500-1600 0 C. The partial decomposition of zircon giving crystobalite and the solid solution of separated zirconium dioxide with rutile occurs when the content of titanium dioxide is higher than 10%

  6. The metric-affine gravitational theory as the gauge theory of the affine group

    International Nuclear Information System (INIS)

    Lord, E.A.

    1978-01-01

    The metric-affine gravitational theory is shown to be the gauge theory of the affine group, or equivalently, the gauge theory of the group GL(4,R) of tetrad deformations in a space-time with a locally Minkowskian metric. The identities of the metric-affine theory, and the relationship between them and those of general relativity and Sciama-Kibble theory, are derived. (Auth.)

  7. Effect of composition on properties of In2O3-Ga2O3 thin films

    Science.gov (United States)

    Demin, I. E.; Kozlov, A. G.

    2017-06-01

    The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.

  8. The effect of Bi2 O3 on the electrical properties of Zr O2: 3 wt% Mg O ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Cosentino, I.C.

    1991-01-01

    Zr O 2 : 3 wt% Mg O ceramic solid electrolytes have been prepared to study the effect of Bi 2 O 3 addition on densification and electrical conductivity. Microstructural characterization have been done by X-ray diffractometry, scanning electron microscopy and electron microprobe analyses. Electrical conductivity measurements have been done by two probe dc technique in the 400 0 C - 700 0 C temperature range. The results show that 5 wt% Bi 2 O 3 addition improves densification: 93% TD and 98% TD specimens are obtained from zirconia stabilized by powder mixture and by coprecipitation of oxides, respectively. Moreover, electrical conductivity values are found to be two orders of magnitude higher for Zr O 2 : 3 wt% Mg O with 5% Bi 2 O 3 . (author)

  9. Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: good for photocatalysis, bad for electron transfer

    Science.gov (United States)

    Mohammadpour, Raheleh

    2017-12-01

    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.

  10. Characteristics of the interaction of calcium with casein submicelles as determined by analytical affinity chromatography

    International Nuclear Information System (INIS)

    Jang, H.D.; Swaisgood, H.E.

    1990-01-01

    Interaction of calcium with casein submicelles was investigated in CaCl2 and calcium phosphate buffers and with synthetic milk salt solutions using the technique of analytical affinity chromatography. Micelles that had been prepared by size exclusion chromatography with glycerolpropyl controlled-pore glass from fresh raw skim milk that had never been cooled, were dialyzed at room temperature against calcium-free imidazole buffer, pH 6.7. Resulting submicelles were covalently immobilized on succinamidopropyl controlled-pore glass (300-nm pore size). Using 45Ca to monitor the elution retardation, the affinity of free Ca2+ and calcium salt species was determined at temperatures of 20 to 40 degrees C and pH 6.0 to 7.5. Increasing the pH in this range or increasing the temperature strengthened the binding of calcium to submicelles, similar to previous observations with individual caseins. However, the enthalpy change obtained from the temperature dependence was considerably greater than that reported for alpha s1- and beta-caseins. Furthermore, the elution profiles for 45Ca in milk salt solutions were decidedly different from those in CaCl2 or calcium phosphate buffers and the affinities were also greater. For example, at pH 6.7 and 30 degrees C the average dissociation constant for the submicelle-calcium complex is 0.074 mM for CaCl2 and calcium phosphate buffers, vs 0.016 mM for the milk salt solution. The asymmetric frontal boundaries and higher average affinities observed with milk salts may be due to binding of calcium salts with greater affinity in addition to the binding of free Ca2+ in these solutions

  11. Effect of Sulfur on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-S System in Equilibrium with Metallic Iron

    Science.gov (United States)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-10-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.

  12. Detection of pH and Enzyme-Free H2O2 Sensing Mechanism by Using GdO x Membrane in Electrolyte-Insulator-Semiconductor Structure.

    Science.gov (United States)

    Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Jana, Surajit; Roy, Anisha; Singh, Kanishk; Cheng, Hsin-Ming; Chang, Mu-Tung; Mahapatra, Rajat; Chiu, Hsien-Chin; Yang, Jer-Ren

    2016-12-01

    A 15-nm-thick GdO x membrane in an electrolyte-insulator-semiconductor (EIS) structure shows a higher pH sensitivity of 54.2 mV/pH and enzyme-free hydrogen peroxide (H2O2) detection than those of the bare SiO2 and 3-nm-thick GdO x membranes for the first time. Polycrystalline grain and higher Gd content of the thicker GdO x films are confirmed by transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS), respectively. In a thicker GdO x membrane, polycrystalline grain has lower energy gap and Gd(2+) oxidation states lead to change Gd(3+) states in the presence of H2O2, which are confirmed by electron energy loss spectroscopy (EELS). The oxidation/reduction (redox) properties of thicker GdO x membrane with higher Gd content are responsible for detecting H2O2 whereas both bare SiO2 and thinner GdO x membranes do not show sensing. A low detection limit of 1 μM is obtained due to strong catalytic activity of Gd. The reference voltage shift increases with increase of the H2O2 concentration from 1 to 200 μM owing to more generation of Gd(3+) ions, and the H2O2 sensing mechanism has been explained as well.

  13. Anisotropic pressure effects on the Kagome Cu3Bi(SeO3)2O2Cl metamagnet

    Science.gov (United States)

    Wu, H. C.; Tseng, W. J.; Yang, P. Y.; Chandrasekhar, K. D.; Berger, H.; Yang, H. D.

    2017-07-01

    The anisotropic spin-flip-induced multiferroic property of the Kagome single-crystal Cu3Bi(SeO3)2O2Cl was recently investigated. The doping effects on the structural and magnetic properties of Cu3Bi(Se1-x Te x O3)2O2Cl (0 ≤slant x≤slant 0.6) polycrystalline samples were studied to further explore and manipulate the metamagnetic spin-flip transition. With higher Te concentration, the lattice constants a and b exhibit a linear increase, whereas the lattice constant c gradually decreases, which indicates that the anisotropic expansion and compression effect is induced by Te substitution in the Se site. Subsequently, the antiferromagnetic transition (T N) shifts to a higher temperature, the critical field ({{H}\\text{c}} ) of the metamagnetic spin-flip transition increases, and the value of the saturation magnetisation ({{M}\\text{s}} ) diminishes. Meanwhile, the effects of isotropic expansion (with Br doping) and compression (with external pressure) do not show a clear influence on the spin-flip phenomena. Our results emphasise the introduction of anisotropic pressure in Cu3Bi(SeO3)2O2Cl, which modulates the magnetic interaction of Cu (I)-O1-Cu (I) and Cu (I)-O1-Cu (II) and, consequently, enhances the {{H}\\text{c}} of the spin-flip transition.

  14. Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10

    Science.gov (United States)

    Urbach, J. S.; Mitzi, D. B.; Kapitulnik, A.; Wei, J. Y. T.; Morris, D. E.

    1989-06-01

    We report specific-heat measurements from 2 to 15 K on single crystals of Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0)<=1 mJ/mole K2].

  15. Effect of TiO2 nano fillers on the electrical conductivity of PSAN/TiO2 polymer nanocomposites

    Science.gov (United States)

    Ningaraju, S.; Munirathnamma, L. M.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2016-05-01

    The microstructural characterization of Polystyrene co-acrylonitrile and Titanium dioxide (PSAN/TiO2) nanocomposites has been performed by Positron Annihilation Lifetime Spectroscopy. The decrease of positron lifetime parameters viz. o-Ps lifetime (τ3) and free volume size (Vf) up to 0.6 wt% of TiO2 is attributed to the filling of free volume holes by TiO2 nanoparticles. The increased free volume size (Vf) after 0.6 wt% of TiO2 indicates the formation of interface due to TiO2 nanoclusters. The variation of electrical conductivity at the lower and higher concentration of TiO2 in (PSAN/TiO2) nanocomposites is attributed to the blocking effect and space charge effect respectively.

  16. Characterization of humic acid reactivity modifications due to adsorption onto α-Al 2O 3

    KAUST Repository

    Janot, Noémie

    2012-03-01

    Adsorption of purified Aldrich humic acid (PAHA) onto α-Al 2O 3 is studied by batch experiments at different pH, ionic strength and coverage ratios R (mg of PAHA by m 2 of mineral surface). After equilibration, samples are centrifuged and the concentration of PAHA in the supernatants is measured. The amount of adsorbed PAHA per m 2 of mineral surface is decreasing with increasing pH. At constant pH value, the amount of adsorbed PAHA increases with initial PAHA concentration until a pH-dependent constant value is reached. UV/Visible specific parameters such as specific absorbance SUVA 254, ratio of absorbance values E 2/E 3 and width of the electron-transfer absorbance band Δ ET are calculated for supernatant PAHA fractions of adsorption experiments at pH 6.8, to have an insight on the evolution of PAHA characteristics with varying coverage ratio. No modification is observed compared to original compound for R≥20mgPAHA/gα-Al2O3. Below this ratio, aromaticity decreases with initial PAHA concentration. Size-exclusion chromatography - organic carbon detection measurements on these supernatants also show a preferential adsorption of more aromatic and higher-sized fractions. Spectrophotometric titrations were done to estimate changes of reactivity of supernatants from adsorption experiments made at pH ≈6.8 and different PAHA concentrations. Evolutions of UV/Visible spectra with varying pH were treated to obtain titration curves that are interpreted within the NICA-Donnan framework. Protonation parameters of non-sorbed PAHA fractions are compared to those obtained for the PAHA before contact with the oxide. The amount of low proton-affinity type of sites and the value of their median affinity constant decrease after adsorption. From PAHA concentration in the supernatant and mass balance calculations, "titration curves" are experimentally proposed for the adsorbed fractions for the first time. These changes in reactivity to our opinion could explain the difficulty

  17. Hydrogen Production from Ethanol Steam Reforming over SnO2-K2O/Zeolite Y Catalyst

    International Nuclear Information System (INIS)

    Lee, Jun Sung; Kim, Ji Eun; Kang, Mi Sook

    2011-01-01

    The SnO 2 with a particle size of about 300 nm instead of Ni is used in this study to overcome rapid catalytic deactivation by the formation of a NiAl 2 O 4 spinal structure on the conventional Ni/γ-Al 2 O 3 catalyst and simultaneously impregnated the catalyst with potassium (K). The SnO 2 -K 2 O impregnated Zeolite Y catalyst (SnO 2 -K 2 O/ZY) exhibited significantly higher ethanol reforming reactivity that that achieved with SnO 2 100 and SnO 2 30 wt %/ZY catalysts. The main products from ethanol steam reforming (ESR) over the SnO 2 -K 2 O/ ZY catalyst were H 2 , CO 2 , and CH 4 , with no evidence of any CO molecule formation. The H 2 production and ethanol conversion were maximized at 89% and 100%, respectively, over SnO 2 30 wt %-K 2 O 3.0 wt %/ZY at 600 .deg. C for 1 h at a CH 3 CH 2 OH:H 2 O ratio of 1:1 and a gas hourly space velocity (GHSV) of 12,700 h -1 . No catalytic deactivation occurred for up to 73 h. This result is attributable to the easier and weaker of reduction of Sn components and acidities over SnO 2 -K 2 O/ZY catalyst, respectively, than those of Ni/γ-Al 2 O 3 catalysts

  18. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    Energy Technology Data Exchange (ETDEWEB)

    Briers, Yves [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Schmelcher, Mathias; Loessner, Martin J. [Institute of Food Science and Nutrition, ETH Zuerich, Schmelzbergstrasse 7, CH-8092 Zuerich (Switzerland); Hendrix, Jelle; Engelborghs, Yves [Laboratory of Biomolecular Dynamics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven (Belgium); Volckaert, Guido [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Lavigne, Rob, E-mail: rob.lavigne@biw.kuleuven.be [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium)

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  19. Thermal expansion of ThO2-2 wt% UO2 by HT-XRD

    International Nuclear Information System (INIS)

    Tyagi, A.K.; Mathews, M.D.

    2000-01-01

    The linear thermal expansion of polycrystalline ThO 2 -2 wt% UO 2 has been investigated from room temperature to 1473 K in flowing helium atmosphere using high temperature X-ray diffractometry. ThO 2 -2 wt% UO 2 shows a marginally higher linear thermal expansion as compared to pure ThO 2 . The average linear and volume thermal expansion coefficients of ThO 2 -2 wt% UO 2 are found to be α-bar a =9.74x10 -6 K -1 and α-bar v =29.52x10 -6 K -1 (298-1473 K). This study will be useful in designing the nuclear reactor fuel assembly based on ThO 2

  20. Binding of ReO4(-) with an engineered MoO4(2-)-binding protein: towards a new approach in radiopharmaceutical applications.

    Science.gov (United States)

    Aryal, Baikuntha P; Brugarolas, Pedro; He, Chuan

    2012-01-01

    Radiolabeled biomolecules are routinely used for clinical diagnostics. (99m)Tc is the most commonly used radioactive tracer in radiopharmaceuticals. (188)Re and (186)Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO(4)(-)) ion as a new way to label proteins. We found that a molybdate (MoO(4)(2-))-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetry measurements, we determined the dissociation constant of ModA for ReO(4)(-) to be 541 nM and we solved a crystal structure of ModA with a bound ReO(4)(-). On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (K(d) = 104 nM). High-resolution crystal structures of ModA (1.7 Å) and A11C/R153C mutant (2.0 Å) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond. © SBIC 2011

  1. Performance of NiFe2O4-SiO2-TiO2 Magnetic Photocatalyst for the Effective Photocatalytic Reduction of Cr(VI in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mike O. Ojemaye

    2017-01-01

    Full Text Available Investigation into the reduction of Cr(VI in aqueous solution was carried out through some batch photocatalytic studies. The photocatalysts used were silica coated nickel ferrite nanoparticles (NiFe2O4-SiO2, nickel ferrite titanium dioxide (NiFe2O4-TiO2, nickel ferrite silica titanium dioxide (NiFe2O4-SiO2-TiO2, and titanium dioxide (TiO2. The characterization of the materials prepared via stepwise synthesis using coprecipitation and sol-gel methods were carried out with the aid of X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared (FTIR spectroscopy, thermal gravimetric analysis (TGA, and vibrating sample magnetometry (VSM. The reduction efficiency was studied as a function of pH, photocatalyst dose, and contact time. The effects of silica interlayer between the magnetic photocatalyst materials reveal that reduction efficiency of NiFe2O4-SiO2-TiO2 towards Cr(VI was higher than that of NiFe2O4-TiO2. However, TiO2 was observed to have the highest reduction efficiency at all batch photocatalytic experiments. Kinetics study shows that photocatalytic reduction of Cr(VI obeyed Langmuir-Hinshelwood model and first-order rate kinetics. Regenerability study also suggested that the photocatalyst materials can be reused.

  2. Effects of N2-O2 and CO2-O2 tensions on growth of fungi isolated from damaged flue-cured tobacco.

    Science.gov (United States)

    Yang, H; Lucas, G B

    1970-02-01

    Ten fungi, Aspergillus niger, A. flavus, A. ochraceus, A. ruber, A. repens, A. amstelodami, Alternaria tenuis, Penicillium brevi-compactum, Cladosporium herbarum, and Chaetomium dolicotrichum, were isolated from moldy flue-cured tobacco and grown in various mixtures of N(2)-O(2) or CO(2)-O(2). A 1 to 5% concentration of O(2) in an N(2) atmosphere caused the greatest change in growth of the nine species, and a 10 to 20% concentration of O(2) for A. flavus. All species, except A. amstelodami and A. ruber, grew faster in air than in mixtures containing 10% O(2). High O(2) concentrations generally inhibited furrow production in the mycelial mats. In an atmosphere of 5 to 40% O(2) in the N(2) atmosphere, furrows formed in mycelial mats between 5 and 40% O(2) in the species except for A. ruber, A. repens, and A. amstelodami, which produced none in any concentration. As O(2) decreased below 20%, spore production was progressively decreased, colony color faded to white, and cleistothecia formation was suppressed. In CO(2)-O(2) mixtures radial growth of all species increased with each quantitative decrease of CO(2). All species except A. niger grew faster in air than in 10% CO(2). In contrast to N(2)-O(2) mixtures, the fungi formed furrows, sporulation and cleistothecial formation were suppressed, and colony color changed to white in higher O(2) concentrations.

  3. Interface trapping in (2 ¯ 01 ) β-Ga2O3 MOS capacitors with deposited dielectrics

    Science.gov (United States)

    Jayawardena, Asanka; Ramamurthy, Rahul P.; Ahyi, Ayayi C.; Morisette, Dallas; Dhar, Sarit

    2018-05-01

    The electrical properties of interfaces and the impact of post-deposition annealing have been investigated in gate oxides formed by low pressure chemical vapor deposition (LPCVD SiO2) and atomic layer deposition (Al2O3) on ( 2 ¯ 01 ) oriented n-type β-Ga2O3 single crystals. Capacitance-voltage based methods have been used to extract the interface state densities, including densities of slow `border' traps at the dielectric-Ga2O3 interfaces. It was observed that SiO2-β-Ga2O3 has a higher interface and border trap density than the Al2O3-β-Ga2O3. An increase in shallow interface states was also observed at the Al2O3-β-Ga2O3 interface after post-deposition annealing at higher temperature suggesting the high temperature annealing to be detrimental for Al2O3-Ga2O3 interfaces. Among the different dielectrics studied, LPCVD SiO2 was found to have the lowest dielectric leakage and the highest breakdown field, consistent with a higher conduction band-offset. These results are important for the processing of high performance β-Ga2O3 MOS devices as these factors will critically impact channel transport, threshold voltage stability, and device reliability.

  4. A Generalized Affine Isoperimetric Inequality

    OpenAIRE

    Chen, Wenxiong; Howard, Ralph; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong

    2004-01-01

    A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.

  5. Retention mechanism of Mo in TiO{sub 2} and ZrO{sub 2}-TiO{sub 2}, potential adsorbents for the radionuclides separation; Mecanismo de retencion de Mo en TiO{sub 2} y ZrO{sub 2}-TiO{sub 2}, adsorbentes potenciales para la separacion de radionuclidos

    Energy Technology Data Exchange (ETDEWEB)

    Badillo A, V. E.; Perez H, R.; Lopez R, C.; Vidal M, J., E-mail: veronica.badillo@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The retention properties of titanium and zirconium oxides are studied; solid adsorbents of high retention capacity for separation by chromatography of radionuclide pairs that are the basis of the so-called radionuclide generators. The titanium and zirconium nano materials obtained with a high retention capacity are prepared by the Sol-gel method using an alkoxide as a precursor. The acid-base properties are studied by potentiometric titrations, obtaining a value of the point of zero charge of 5.6 for TiO{sub 2} and 6.3 for the mixed oxide ZrO{sub 2}-TiO{sub 2}. To study the retention behavior of the {sup 99}Mo/{sup 99m}Tc radionuclide pair in these solids, batch experiments were performed on a 0.9% NaCl electrolyte as a function of the solution ph. The results show that {sup 99m}Tc is not absorbed by solids while {sup 99}Mo shows a high retention affinity for the metal oxides under study. The maximum adsorption of {sup 99}Mo takes place at a ph value close to the zero load point (pH{sub PZC}) (∼ 95% adsorption). This study focuses on the mechanism of molybdenum retention in terms of chemical equilibria between the functional groups of the solid (OH-) and the species of Mo(Vi) in solution. The experimental data of molybdenum retention were analyzed with the FITEQL program using the constant capacitance model and assuming the presence of a single type of sites on the surface of the solids (hydroxyl groups). In Mo(Vi) retention, surface complexes that are formed through a ligand exchange mechanism between molybdate species and hydroxyl ions from the surface of the solid are probably the mechanism responsible for adsorption in the ph range that is studied. (Author)

  6. Zirconia stabilization and its retention at room temperature in the ZrO sub(2). TiO sub(2) system. Estabilizacao de zirconia e sua retencao a temperatura ambiente no sistema ZrO sub(2). TiO sub(2)

    Energy Technology Data Exchange (ETDEWEB)

    Pandolfelli, V C; Rodrigues, J A [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais; Longo, E [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Stevens, R [Leeds Univ. (UK)

    1990-01-01

    Based on the results obtained in the ZrO sub(2).MO sub(x) systems, the stabilization aspects of tetragonal zirconia is discussed in an integrated way, in order to differentiate among the thermodynamical, the kinetic and stress fields effects of the dopant ion on the stabilization. In the ZrO2.TiO2 system, when in solid solution, TiO additions act to suppress the ZrO2 densification, leading to grain growth when attempts are made to attain higher densities. Such effect is believed to be the main factor preventing retention of tetragonal zirconia at room temperature in this system. (author).

  7. Transport and abatement of fluorescent silica nanoparticle (SiO{sub 2} NP) in granular filtration: effect of porous media and ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao, E-mail: chaozeng@email.arizona.edu; Shadman, Farhang; Sierra-Alvarez, Reyes [University of Arizona, Department of Chemical and Environmental Engineering (United States)

    2017-03-15

    The extensive production and application of engineered silica nanoparticles (SiO{sub 2} NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO{sub 2} NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO{sub 2} NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO{sub 2} filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO{sub 2} NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO{sub 2} NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO{sub 2} NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO{sub 2} NP filtration.

  8. Structural, dielectric and magnetic properties of SnO{sub 2}-CuFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kashif [Department of Physics, International Islamic University, Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@qau.edu.pk [Laboratory of Nanoscience and Technology (LNT), Department of Physics, Qaid-i-Azam University, Islamabad (Pakistan); Jan, Tariq [Department of Physics, University of Lahore, Sargodha Campus, Sargodha (Pakistan); Wan, Dongyun [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Ahmad, Naeem [Department of Physics, International Islamic University, Islamabad (Pakistan); Ahamd, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Ilyas, Syed Zafar [Department of Physics, Allama Iqbal Open University, Islamabad (Pakistan)

    2017-04-15

    The nanocomposites of (SnO{sub 2}){sub x}(CuFe{sub 2}O{sub 4}){sub (1−x)} (where x=0–100 wt%) have been successfully synthesized via two steps chemical method. XRD pattern has revealed the formation of inverse spinal phases with tetragonal crystal structure without any impurity phases for CuFe{sub 2}O{sub 4} sample. The thermodynamic solubility limit of SnO{sub 2} in CuFe{sub 2}O{sub 4} matrix has been found to be 30 wt% and above this percentage crystal phases related to SnO{sub 2} started to appear. The average particle size and shape of CuFe{sub 2}O{sub 4} nanoparticles have been strongly influenced by addition of SnO{sub 2} as depicted by TEM results. FTIR results have confirmed the existence of cation vibration bands at tetrahedral and octahedral sites along with Sn-O vibration band at higher concentrations, which also validates the formation of nanocomposites. Furthermore, the dielectric constant, tangent loss and conductivity of CuFe{sub 2}O{sub 4} nanoparticles have been found to increase up to 30 wt% addition of SnO{sub 2} and then decreases with further increase which is attributed to variations in resistivity and space charge carriers. Magnetic measurements have shown that saturation magnetization decreases from 35.68 emu/gm to 10.26 emu/gm with the addition of SnO{sub 2} content. - Highlights: • SnO{sub 2}-CuFe{sub 2}O{sub 4} nanocomposites with varying SnO{sub 2} concentrations were synthesized. • The thermodynamic solubility limit for SnO{sub 2} into CuFe{sub 2}O{sub 4} matrix by employing current method was found to be ≤30 wt%. • At higher concentrations, structural phases related to SnO{sub 2} started to appear. • FTIR results corroborated well with the XRD results. • It has been observed that the addition of SnO{sub 2} significantly influence the morphology, dielectric and magnetic properties of CuFe{sub 2}O{sub 4} nanoparticles.

  9. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex.

    Directory of Open Access Journals (Sweden)

    Masato Kiyoshi

    Full Text Available The optimization of antibodies is a desirable goal towards the development of better therapeutic strategies. The antibody 11K2 was previously developed as a therapeutic tool for inflammatory diseases, and displays very high affinity (4.6 pM for its antigen the chemokine MCP-1 (monocyte chemo-attractant protein-1. We have employed a virtual library of mutations of 11K2 to identify antibody variants of potentially higher affinity, and to establish benchmarks in the engineering of a mature therapeutic antibody. The most promising candidates identified in the virtual screening were examined by surface plasmon resonance to validate the computational predictions, and to characterize their binding affinity and key thermodynamic properties in detail. Only mutations in the light-chain of the antibody are effective at enhancing its affinity for the antigen in vitro, suggesting that the interaction surface of the heavy-chain (dominated by the hot-spot residue Phe101 is not amenable to optimization. The single-mutation with the highest affinity is L-N31R (4.6-fold higher affinity than wild-type antibody. Importantly, all the single-mutations showing increase affinity incorporate a charged residue (Arg, Asp, or Glu. The characterization of the relevant thermodynamic parameters clarifies the energetic mechanism. Essentially, the formation of new electrostatic interactions early in the binding reaction coordinate (transition state or earlier benefits the durability of the antibody-antigen complex. The combination of in silico calculations and thermodynamic analysis is an effective strategy to improve the affinity of a matured therapeutic antibody.

  10. Inverse CeO2sbnd Fe2O3 catalyst for superior low-temperature CO conversion efficiency

    Science.gov (United States)

    Luo, Yongming; Chen, Ran; Peng, Wen; Tang, Guangbei; Gao, Xiaoya

    2017-09-01

    The paper presents a rational design of highly efficient and affordable catalysts for CO oxidation with a low operating temperature. A series of ceria-iron catalysts were inversely built via a co-precipitation method. The catalytic activity of low-temperature CO oxidation was much higher with CeO2-modified Fe2O3 (CeO2sbnd Fe2O3) than with Fe2O3-modified CeO2 (Fe2O3sbnd CeO2). In particular, the 7.5% CeO2sbnd Fe2O3 catalyst had the highest activity, reaching 96.17% CO conversion at just 25 °C. Catalyst characterization was carried out to explore the cause of the significantly different CO conversion efficiencies between the Fe2O3sbnd CeO2 and Fe2O3sbnd CeO2 catalysts. HRTEM showed a significant inhomogeneous phase in 7.5% CeO2sbnd Fe2O3 with small CeO2 nanoparticles highly dispersed on the rod-shaped Fe2O3 surface. Furthermore, the 7.5% CeO2sbnd Fe2O3 composite catalyst exhibited the highest ratios of Fe2+/Fe3+ and Ce3+/Ce4+ as well as the largest pore volume. These properties are believed to benefit the CO conversion in 7.5% CeO2sbnd Fe2O3.

  11. Aspects of the affine superalgebra sl(2-vertical bar-1) at fractional level

    International Nuclear Information System (INIS)

    Johnstone, Gavin Balfour

    2001-04-01

    In this thesis we study the affine superalgebra s-tilde-l(2-vertical bar-1; C) at fractional levels of the form k = 1/u - 1, u is an element of N-back slash {1}. It is for these levels that admissible representations exist, which transform into each other under modular transformations. In the second chapter we review background material on conformal field theory, particularly the Wess-Zumino-Witten model and the connection with modular transformations. The superalgebra sl(2-vertical bar-1; C) is introduced, as is its affine version. The next chapter studies the modular transformation properties of s-tilde-l(2-vertical bar-1; C) characters. We derive formulae for these transformations for all levels of the form k = 1/u - 1, u is an element of N-back slash {1}. We also investigate some modular invariant combinations of characters and find two series of modular invariants, analogous to the A- and D-series of the classification of s-tilde-l(2) modular invariants. In chapter 4 we turn to the study of fusion rules. We concentrate on the case k = -1/2. By considering the decoupling of singular vectors, we are able to find consistent fusion rules for this particular level. These fusion rules correspond to a modular invariant found in chapter 3. This study suggests that one may consistently define a conformal field theory based on s-tilde-l(2-vertical bar-1; C) at fractional level. (author)

  12. Methyl Cation Affinities of Neutral and Anionic Maingroup-Element Hydrides: Trends Across the Periodic Table and Correlation with Proton Affinities

    NARCIS (Netherlands)

    Mulder, R. Joshua; Guerra, Celia Fonseca; Bickelhaupt, F. Matthias

    2010-01-01

    We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and

  13. TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation.

    Science.gov (United States)

    Zhang, Junying; Zhu, Hailing; Zheng, Shukai; Pan, Feng; Wang, Tianmin

    2009-10-01

    Coupling a narrow-band-gap semiconductor with TiO(2) is an effective method to produce photocatalysts that work under UV-vis light irradiation. Usually photocatalytic coupled-semiconductors exist mainly as powders, and photocatalytic activity is only favored when a small loading amount of narrow-band-gap semiconductor is used. Here we propose a heavy-loading photocatalyst configuration in which 51% of the surface of the TiO(2) film is covered by a Cu(2)O microgrid. The coupled system shows higher photocatalytic activity under solar light irradiation than TiO(2) and Cu(2)O films. This improved performance is due to the efficient charge transfer between the two phases and the similar opportunity each has to be exposed to irradiation and adsorbates.

  14. Characterization and densification studies on ThO{sub 2}-UO{sub 2} pellets derived from ThO{sub 2} and U{sub 3}O{sub 8} powders

    Energy Technology Data Exchange (ETDEWEB)

    Kutty, T.R.G. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)]. E-mail: tkutty@magnum.barc.ernet.in; Hegde, P.V. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Khan, K.B. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Jarvis, T. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sengupta, A.K. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Majumdar, S. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kamath, H.S. [Nuclear Fuels Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2004-12-01

    ThO{sub 2} containing around 2-3% {sup 233}UO{sub 2} is the proposed fuel for the forthcoming Indian Advanced Heavy Water Reactor (AHWR). This fuel is prepared by powder metallurgy technique using ThO{sub 2} and U{sub 3}O{sub 8} powders as the starting material. The densification behaviour of the fuel was evaluated using a high temperature dilatometer in four different atmospheres Ar, Ar-8%H{sub 2}, CO{sub 2} and air. Air was found to be the best medium for sintering among them. For Ar and Ar-8%H{sub 2} atmospheres, the former gave a slightly higher densification. Thermogravimetric studies carried out on ThO{sub 2}-2%U{sub 3}O{sub 8} granules in air showed a continuous decrease in weight up to 1500 deg. C. The effectiveness of U{sub 3}O{sub 8} in enhancing the sintering of ThO{sub 2} has been established.

  15. The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses

    Science.gov (United States)

    Moreira, L. M.; Anjos, V.; Bell, M. J. V.; Ramos, C. A. R.; Kassab, L. R. P.; Doualan, D. J. L.; Camy, P.; Moncorgé, R.

    2016-08-01

    The present work reports the modification introduced by different Nd2O3 concentration on optical properties and the laser operation of Nd3+ doped (TeO2-ZnO) bulk tellurite glass. The spectroscopic data are analyzed within the Judd Ofelt formalism framework and the results are compared to the fluorescence lifetime and emission measurements to derive values for the quantum efficiency and the stimulated emission cross section of the considered 4F3/2 → 4I11/2 infrared laser transition around 1062.5 nm. Continuous-wave laser action is achieved with this bulk tellurite glass by pumping the sample inside a standard plan-concave mirror laser cavity with different output couplers. It is possible to observe coherent emission only for the lower concentration (0.5%(wt.) of Nd2 O3). Also laser action could only be observed for this sample with threshold pump power of 73 mW associated with a laser slope efficiency of 8% for an output coupler transmission of 4% indicating that TeO2-ZnO are potential materials for laser action. The results presented in this work together with those previously reported with higher concentration (1.0% (wt) of Nd2O3) determine the adequate Nd2O3 concentration for laser action and guide the correct experimental procedure for TeO2-ZnO glasses preparation.

  16. Methyl cation affinities of neutral and anionic maingroup-element hydrides: trends across the periodic table and correlation with proton affinities.

    Science.gov (United States)

    Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias

    2010-07-22

    We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values.

  17. Zr O/sub 2/ and ZrSiO/sub 4/ addition influence in mechanical resistance and thermical shock of Al/sub 2/TiO/sub 5/

    Energy Technology Data Exchange (ETDEWEB)

    Marinho, P A; Longo, E; Varela, J A; Pandolfelli, V C

    1985-01-01

    The ZrO/sub 2/ and ZrSiO/sub 4/ addition on the Al/sub 2/O/sub 3/TiO/sub 2/ composition showed to be efficient on higher the mechanical and thermal shock resistence of the compound formed. The reactions that formed the phases and the influence of the ones on thermal and mechanical behaviour of the compound Al/sub 2/TiO/sub 5/ were discussed. (L.M.J.).

  18. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  19. Affinity Labeling of Membrane Receptors Using Tissue-Penetrating Radiations

    Directory of Open Access Journals (Sweden)

    Franklin C. Wong

    2013-01-01

    Full Text Available Photoaffinity labeling, a useful in vivo biochemical tool, is limited when applied in vivo because of the poor tissue penetration by ultraviolet (UV photons. This study investigates affinity labeling using tissue-penetrating radiation to overcome the tissue attenuation and irreversibly label membrane receptor proteins. Using X-ray (115 kVp at low doses (<50 cGy or Rad, specific and irreversible binding was found on striatal dopamine transporters with 3 photoaffinity ligands for dopamine transporters, to different extents. Upon X-ray exposure (115 kVp, RTI-38 and RTI-78 ligands showed irreversible and specific binding to the dopamine transporter similar to those seen with UV exposure under other conditions. Similarly, gamma rays at higher energy (662 keV also affect irreversible binding of photoreactive ligands to peripheral benzodiazepine receptors (by PK14105 and to the dopamine (D2 membrane receptors (by azidoclebopride, respectively. This study reports that X-ray and gamma rays induced affinity labeling of membrane receptors in a manner similar to UV with photoreactive ligands of the dopamine transporter, D2 dopamine receptor (D2R, and peripheral benzodiazepine receptor (PBDZR. It may provide specific noninvasive irreversible block or stimulation of a receptor using tissue-penetrating radiation targeting selected anatomic sites.

  20. Heteroaggregation, transformation and fate of CeO2 nanoparticles in wastewater treatment

    International Nuclear Information System (INIS)

    Barton, Lauren E.; Auffan, Melanie; Olivi, Luca; Bottero, Jean-Yves; Wiesner, Mark R.

    2015-01-01

    Wastewater Treatment Plants (WWTPs) are a key pathway by which nanoparticles (NPs) enter the environment following release from NP-enabled products. This work considers the fate and exposure of CeO 2 NPs in WWTPs in a two-step process of heteroaggregation with bacteria followed by the subsequent reduction of Ce(IV) to Ce(III). Measurements of NP association with solids in sludge were combined with experimental estimates of reduction rate constants for CeO 2 NPs in Monte Carlo simulations to predict the concentrations and speciation of Ce in WWTP effluents and biosolids. Experiments indicated preferential accumulation of CeO 2 NPs in biosolids where reductive transformation would occur. Surface functionalization was observed to impact both the distribution coefficient and the rates of transformation. The relative affinity of CeO 2 NPs for bacterial suspensions in sludge appears to explain differences in the observed rates of Ce reduction for the two types of CeO 2 NPs studied. - Highlights: • We combine experimental and computational methods to track CeO 2 NPs through WWTPs. • We investigate the importance of environmental transformations on NP exposure. • We estimate the concentrations of CeO 2 NPs and reductive transformation byproducts. - CeO 2 nanoparticles that are released to the waste stream will preferentially associate with the solid phase (∼96%), where they will undergo significant transformation (∼50%)

  1. Synthesis, modelling, and mu-opioid receptor affinity of N-3(9)-arylpropenyl-N-9(3)-propionyl-3,9-diazabicycl.

    Science.gov (United States)

    Pinna, G A; Murineddu, G; Curzu, M M; Villa, S; Vianello, P; Borea, P A; Gessi, S; Toma, L; Colombo, D; Cignarella, G

    2000-08-01

    A series of N-3-arylpropenyl-N-9-propionyl-3,9-diazabicyclo[3.3.1]nonanes (1a-g) and of reverted N-3-propionyl-N-9-arylpropenyl isomers (2a-g), as homologues of the previously reported analgesic 3,8-diazabicyclo[3.2.1]octanes (I-II), were synthesized and evaluated for the binding affinity towards opioid receptor subtypes mu, delta and kappa. Compounds 1a-g and 2a-g exhibited a strong selective mu-affinity with Ki values in the nanomolar range, which favourably compared with those of I and II. In addition, contrary to the trend observed for DBO-I, II, the mu-affinity of series 2 is markedly higher than that of the isomeric series 1. This aspect was discussed on the basis of the conformational studies performed on DBN which allowed hypotheses on the mode of interaction of these compounds with the mu receptor.

  2. Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10

    International Nuclear Information System (INIS)

    Urbach, J.S.; Mitzi, D.B.; Kapitulnik, A.; Wei, J.Y.T.; Morris, D.E.; Physics Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720)

    1989-01-01

    We report specific-heat measurements from 2 to 15 K on single crystals of Bi 2 CaSr 2 Cu 2 O 8 and Tl 2 Ca 2 Ba 2 Cu 3 O 10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0) less than or equal to 1 mJ/mole K 2

  3. TiO2 and Cu/TiO2 Thin Films Prepared by SPT

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-12-01

    Full Text Available Titanium oxide (TiO2 and copper (Cu doped titanium oxide (Cu/TiO2 thin films have been prepared by spray pyrolysis technique. Titanium chloride (TiCl4 and copper acetate (Cu(CH3COO2.H2O were used as source of Ti and Cu. The doping concentration of Cu was varied from 1-10 wt. %. The X-ray diffraction studies show that TiO2 thin films are tetragonal structure and Cu/TiO2 thin films implies CuO has present with monoclinic structure. The optical properties of the TiO2 thin films have been investigated as a function of Cu-doping level. The optical transmission of the thin films was found to increase from 88 % to 94 % with the addition of Cu up to 8 % and then decreases for higher percentage of Cu doping. The optical band gap (Eg for pure TiO2 thin film is found to be 3.40 eV. Due to Cu doping, the band gap is shifted to lower energies and then increases further with increasing the concentration of Cu. The refractive index of the TiO2 thin films is found to be 2.58 and the variation of refractive index is observed due to Cu doped. The room temperature resistivity of the films decreases with increasing Cu doping and is found to be 27.50 - 23.76 W·cm. It is evident from the present study that the Cu doping promoted the thin film morphology and thereby it is aspect for various applications.

  4. Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method and their photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Li-Li; Han, Qiao-Feng; Zhao, Jin; Zhu, Jun-Wu; Wang, Xin; Ma, Wei-Hua

    2014-01-01

    Graphical abstract: Flowerlike α-Bi 2 O 3 architectures assembled by nanobrick-based petals with pineapple surface were firstly synthesized by precipitation method at room temperature in DMF–H 2 O solution. - Highlights: • Nanobrick-based flowerlike Bi 2 O 3 crystals with pineapple surface were synthesized by precipitation method. • Good solubility of Bi(NO 3 ) 3 in DMF played a crucial role in the growth of flowerlike Bi 2 O 3 . • The growth mechanism of Bi 2 O 3 microcrystallites has been explained in detail. - Abstract: Well-crystalline flowerlike α-Bi 2 O 3 hierarchical architectures with pineapple-shaped petals have been synthesized by precipitation method at a volume ratio of DMF/H 2 O of 5, where DMF and H 2 O were used to dissolve Bi(NO 3 ) 3 and KOH, respectively. If the DMF/H 2 O ratio was decreased to 2:1, 1:1 and 0:30, flower-, bundle- and dendrite-shaped α-Bi 2 O 3 microcrystallites aggregated by nanorods were formed, respectively. The simple synthetic route and thus obtained Bi 2 O 3 architectures of various morphologies provide a basis insight for their formation mechanism. The photocatalytic activity of the as-prepared Bi 2 O 3 particles for degradation of Rhodamine B (RhB) under visible-light irradiation was obviously influenced by their morphologies. Bi 2 O 3 of nanorod-based microstructures exhibited higher photodegradation activity than nanobrick-based ones, owing to higher light absorption and carrier separation efficiency in one-dimensional (1D) nanostructured materials

  5. Lp-mixed affine surface area

    Science.gov (United States)

    Wang, Weidong; Leng, Gangsong

    2007-11-01

    According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.

  6. Sol-gel synthesis of TiO2-SiO2 photocatalyst for β-naphthol photodegradation

    International Nuclear Information System (INIS)

    Qourzal, S.; Barka, N.; Tamimi, M.; Assabbane, A.; Nounah, A.; Ihlal, A.; Ait-Ichou, Y.

    2009-01-01

    Silica gel supported titanium dioxide particles (TiO 2 -SiO 2 ) prepared by sol-gel method was as photocatalyst in the degradation of β-naphthol in water under UV-illumination. The prepared sample has been characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The supported catalyst had large surface area and good sedimentation ability. The photodegradation rate of β-naphthol under UV-irradiation depended strongly on adsorption capacity of the catalyst, and the photoactivity of the supported catalyst was much higher than that of the pure titanium dioxides. The experiments were measured by high performance liquid chromatography (HPLC). The photodegradation rate of β-naphthol using 60% TiO 2 -SiO 2 particles was faster than that using TiO 2 'Degussa P-25', TiO 2 'PC-50' and TiO 2 'Aldrich' as photocatalyst by 2.7, 4 and 7.8 times, respectively. The kinetics of photocatalytic β-naphthol degradation was found to follow a pseudo-first-order rate law. The effect of the TiO 2 loading on the photoactivity of TiO 2 -SiO 2 particles was also discussed. With good photocatalytic activity under UV-irradiation and the ability to be readily separated from the reaction system, this novel kind of catalyst exhibited the potential effective in the treatment of organic pollutants in aqueous systems.

  7. Affinity isolation and I-DIRT mass spectrometric analysis of the Escherichia coli O157:H7 Sakai RNA polymerase complex.

    Science.gov (United States)

    Lee, David J; Busby, Stephen J W; Westblade, Lars F; Chait, Brian T

    2008-02-01

    Bacteria contain a single multisubunit RNA polymerase that is responsible for the synthesis of all RNA. Previous studies of the Escherichia coli K-12 laboratory strain identified a group of effector proteins that interact directly with RNA polymerase to modulate the efficiency of transcription initiation, elongation, or termination. Here we used a rapid affinity isolation technique to isolate RNA polymerase from the pathogenic Escherichia coli strain O157:H7 Sakai. We analyzed the RNA polymerase enzyme complex using mass spectrometry and identified associated proteins. Although E. coli O157:H7 Sakai contains more than 1,600 genes not present in the K-12 strain, many of which are predicted to be involved in transcription regulation, all of the identified proteins in this study were encoded on the "core" E. coli genome.

  8. Synthesis of CaO-SiO2-P2O5 mesoporous bioactive glasses with high P2O5 content by evaporation induced self assembly process.

    Science.gov (United States)

    Zhao, Shan; Li, Yanbao; Li, Dongxu

    2011-02-01

    Mesoporous bioactive glasses (MBGs) of the CaO-SiO(2)-P(2)O(5) system containing relatively high P(2)O(5) contents (10-30 mol%) were prepared from a sol-gel. An evaporation-induced self-assembly (EISA) technique was used with poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (EO(20)-PO(70)-EO(20), P123) acting as a template. The structural, morphological and textural properties of MBGs were investigated by small-angle X-ray diffraction (SAXRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and a N(2) sorption/desorption technique. SAXRD and TEM results display the reduced long-range ordering of mesopores with increasing P(2)O(5) content. N(2) sorption/desorption analysis shows that all three samples exhibit a type IV isotherm with type H1 hysteresis loops, characteristic of independent cylindrical slim pore channels and this material has a Barret-Joyner-Halenda (BJH) model pore size of ~4 nm and BET specific surface area ~430 m(2)/g. NMR results indicate a more condensed framework for samples with 30 mol% P(2)O(5) than samples with 10 mol% P(2)O(5). For in vitro bioactivity tests where samples were soaked in simulated body fluid (SBF), samples with 30 mol% P(2)O(5) showed higher crystallinity than those with lower P(2)O(5) contents Silicon concentration increased in SBF solution during the soaking period, which indicates MBGs can be degradable in SBF solution.

  9. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms.

    Directory of Open Access Journals (Sweden)

    Christopher J Brown

    Full Text Available The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19-26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this region of the p53 peptides can yield tightly binding peptides. The peptide variants may differ by a single residue that vary little in their structural conformations and yet are characterized by large differences in their binding affinities. In this study a systematic analysis into the role of single C-terminal mutations of a 12 residue fragment of the p53 transactivation domain (TD and an equivalent phage optimized peptide (12/1 were undertaken to elucidate their mechanistic and thermodynamic differences in interacting with the N-terminal of MDM2. The experimental results together with atomistically detailed dynamics simulations provide insight into the principles that govern peptide design protocols with regard to protein-protein interactions and peptidomimetic design.

  10. Preparation of Microkernel-Based Mesoporous (SiO2-CdTe-SiO2)@SiO2 Fluorescent Nanoparticles for Imaging Screening and Enrichment of Heat Shock Protein 90 Inhibitors from Tripterygium Wilfordii.

    Science.gov (United States)

    Hu, Yue; Miao, Zhao-Yi; Zhang, Xiao-Jing; Yang, Xiao-Tong; Tang, Ying-Ying; Yu, Sheng; Shan, Chen-Xiao; Wen, Hong-Mei; Zhu, Dong

    2018-05-01

    The currently utilized ligand fishing for bioactive molecular screening from complex matrixes cannot perform imaging screening. Here, we developed a new solid-phase ligand fishing coupled with an in situ imaging protocol for the specific enrichment and identification of heat shock protein 90 (Hsp 90) inhibitors from Tripterygium wilfordii, utilizing a multiple-layer and microkernel-based mesoporous nanostructure composed of a protective silica coating CdTe quantum dot (QD) core and a mesoporous silica shell, i.e., microkernel-based mesoporous (SiO 2 -CdTe-SiO 2 )@SiO 2 fluorescent nanoparticles (MMFNPs) as extracting carries and fluorescent probes. The prepared MMFNPs showed a highly uniform spherical morphology, retention of fluorescence emission, and great chemical stability. The fished ligands by Hsp 90α-MMFNPs were evaluated via the preliminary bioactivity based on real-time cellular morphology imaging by confocal laser scanning microscopy (CLSM) and then identified by mass spectrometry (MS). Celastrol was successfully isolated as an Hsp 90 inhibitor, and two other specific components screened by Hsp 90α-MMFNPs, i.e., demecolcine and wilforine, were preliminarily identified as potential Hsp 90 inhibitors through the verification of strong affinity to Hsp 90 and antitumor bioactivity. The approach based on the MMFNPs provides a strong platform for imaging screening and discovery of plant-derived biologically active molecules with high efficiency and selectivity.

  11. Effects of N2-O2 and CO2-O2 Tensions on Growth of Fungi Isolated from Damaged Flue-Cured Tobacco 1

    Science.gov (United States)

    Yang, H.; Lucas, G. B.

    1970-01-01

    Ten fungi, Aspergillus niger, A. flavus, A. ochraceus, A. ruber, A. repens, A. amstelodami, Alternaria tenuis, Penicillium brevi-compactum, Cladosporium herbarum, and Chaetomium dolicotrichum, were isolated from moldy flue-cured tobacco and grown in various mixtures of N2-O2 or CO2-O2. A 1 to 5% concentration of O2 in an N2 atmosphere caused the greatest change in growth of the nine species, and a 10 to 20% concentration of O2 for A. flavus. All species, except A. amstelodami and A. ruber, grew faster in air than in mixtures containing 10% O2. High O2 concentrations generally inhibited furrow production in the mycelial mats. In an atmosphere of 5 to 40% O2 in the N2 atmosphere, furrows formed in mycelial mats between 5 and 40% O2 in the species except for A. ruber, A. repens, and A. amstelodami, which produced none in any concentration. As O2 decreased below 20%, spore production was progressively decreased, colony color faded to white, and cleistothecia formation was suppressed. In CO2-O2 mixtures radial growth of all species increased with each quantitative decrease of CO2. All species except A. niger grew faster in air than in 10% CO2. In contrast to N2-O2 mixtures, the fungi formed furrows, sporulation and cleistothecial formation were suppressed, and colony color changed to white in higher O2 concentrations. PMID:5461786

  12. Alteration of the α1β22β1 subunit interface contributes to the increased hemoglobin-oxygen affinity of high-altitude deer mice

    Energy Technology Data Exchange (ETDEWEB)

    Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki; Kumasaka, Takashi; Natarajan, Chandrasekhar; Storz, Jay F.; Moriyama, Hideaki; Permyakov, Eugene A.

    2017-03-31

    Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetrameric hemoglobin molecules. The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β22β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites.

  13. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin

    Directory of Open Access Journals (Sweden)

    Mora Xavier

    2007-05-01

    Full Text Available Abstract Background Histone H1 is involved in the formation and maintenance of chromatin higher order structure. H1 has multiple isoforms; the subtypes differ in timing of expression, extent of phosphorylation and turnover rate. In vertebrates, the amino acid substitution rates differ among subtypes by almost one order of magnitude, suggesting that each subtype might have acquired a unique function. We have devised a competitive assay to estimate the relative binding affinities of histone H1 mammalian somatic subtypes H1a-e and H1° for long chromatin fragments (30–35 nucleosomes in physiological salt (0.14 M NaCl at constant stoichiometry. Results The H1 complement of native chromatin was perturbed by adding an additional amount of one of the subtypes. A certain amount of SAR (scaffold-associated region DNA was present in the mixture to avoid precipitation of chromatin by excess H1. SAR DNA also provided a set of reference relative affinities, which were needed to estimate the relative affinities of the subtypes for chromatin from the distribution of the subtypes between the SAR and the chromatin. The amounts of chromatin, SAR and additional H1 were adjusted so as to keep the stoichiometry of perturbed chromatin similar to that of native chromatin. H1 molecules freely exchanged between the chromatin and SAR binding sites. In conditions of free exchange, H1a was the subtype of lowest affinity, H1b and H1c had intermediate affinities and H1d, H1e and H1° the highest affinities. Subtype affinities for chromatin differed by up to 19-fold. The relative affinities of the subtypes for chromatin were equivalent to those estimated for a SAR DNA fragment and a pUC19 fragment of similar length. Avian H5 had an affinity ~12-fold higher than H1e for both DNA and chromatin. Conclusion H1 subtypes freely exchange in vitro between chromatin binding sites in physiological salt (0.14 M NaCl. The large differences in relative affinity of the H1 subtypes for

  14. Piper Ornatum and Piper Betle as Organic Dyes for TiO2 and SnO2 Dye Sensitized Solar Cells

    Science.gov (United States)

    Hayat, Azwar; Putra, A. Erwin E.; Amaliyah, Novriany; Hayase, Shuzi; Pandey, Shyam. S.

    2018-03-01

    Dye sensitized solar cell (DSSC) mimics the principle of natural photosynthesis are now currently investigated due to low manufacturing cost as compared to silicon based solar cells. In this report, we utilized Piper ornatum (PO) and Piper betle (PB) as sensitizer to fabricate low cost DSSCs. We compared the photovoltaic performance of both sensitizers with Titanium dioxide (TiO2) and Tin dioxide (SnO2) semiconductors. The results show that PO and PB dyes have higher Short circuit current (Jsc) when applied in SnO2 compared to standard TiO2 photo-anode film even though the Open circuit voltage (Voc) was hampered on SnO2 device. In conclusion, from the result, higher electron injections can be achieved by choosing appropriate semiconductors with band gap that match with dyes energy level as one of strategy for further low cost solar cell.

  15. The denitrification paradox: The role of O2 in sediment N2O production

    Science.gov (United States)

    Barnes, Jonathan; Upstill-Goddard, Robert C.

    2018-01-01

    We designed a novel laboratory sediment flux chamber in which we maintained the headspace O2 partial pressure at preselected values, allowing us to experimentally regulate "in-situ" O2 to evaluate its role in net N2O production by an intertidal estuarine sediment (Tyne, UK). In short-term (30 h) incubations with 10 L of overlying estuarine water (∼3 cm depth) and headspace O2 regulation (headspace: sediment/water ratio ∼9:1), net N2O production was highest at 1.2% O2 (sub-oxic; 32.3 nmol N2O m-2 d-1), an order of magnitude higher than at either 0.0% (anoxic; 2.5 N2O nmol m-2 d-1) or 20.85% (ambient; 2.3 nmol N2O m-2 d-1) O2. In a longer-term sealed incubation (∼490 h) without O2 control, time-dependent behaviour of N2O in the tank headspace was highly non-linear with time, showing distinct phases: (i) an initial period of no or little change in O2 or N2O up to ∼ 100 h; (ii) a quasi-linear, inverse correlation between O2 and N2O to ∼360 h, in which O2 declined to ∼2.1% and N2O rose to ∼7800 natm; (iii) over the following 50 h a slower O2 decline, to ∼1.1%, and a more rapid N2O increase, to ∼12000 natm; (iv) over the next 24 h a slowed O2 decline towards undetectable levels and a sharp fall in N2O to ∼4600 natm; (iv) a continued N2O decrease at zero O2, to ∼3000 natm by ∼ 490 h. These results show clearly that rapid N2O consumption (∼115 nmol m-2 d-1), presumably via heterotrophic denitrification (HD), occurs under fully anoxic conditions and therefore that N2O production, which was optimal for sub-oxic O2, results from other nitrogen transformation processes. In experiments in which we amended sediment overlying water to either 1 mM NH4+ or 1 mM NO3-, N2O production rates were 2-134 nmol N2O m-2 d-1 (NH4+ addition) and 0.4-2.2 nmol N2O m-2 d-1 (NO3- addition). We conclude that processes involving NH4+ oxidation (nitrifier nitrification; nitrifier denitrification; nitrification-coupled denitrification) are principally responsible for N2O

  16. Automated FiO2-SpO2 control system in neonates requiring respiratory support: a comparison of a standard to a narrow SpO2 control range.

    Science.gov (United States)

    Wilinska, Maria; Bachman, Thomas; Swietlinski, Janusz; Kostro, Maria; Twardoch-Drozd, Marta

    2014-05-28

    Managing the oxygen saturation of preterm infants to a target range has been the standard of care for a decade. Changes in target ranges have been shown to significantly impact mortality and morbidity. Selecting and implementing the optimal target range are complicated not only by issues of training, but also the realities of staffing levels and demands. The potential for automatic control is becoming a reality. Results from the evaluation of different systems have been promising and our own experience encouraging. This study was conducted in two tertiary level newborn nurseries, routinely using an automated FiO2-SpO2 control system (Avea-CLiO2, Yorba Linda CA, USA). The aim of this study was to compare the performance of the system as used routinely (set control range of 87-93% SpO2), to a narrower higher range (90-93%). We employed a 12-hour cross-over design with the order of control ranges randomly assigned for each of up to three days. The primary prospectively identified end points were time in the 87-93% SpO2 target range, time at SpO2 extremes and the distribution of the SpO2 exposure. Twenty-one infants completed the study. The infants were born with a median EGA of 27 weeks and studied at a median age of 17 days and weight of 1.08 kg. Their median FiO2 was 0.32; 8 were intubated, and the rest noninvasively supported (7 positive pressure ventilation and 6 CPAP). The control in both arms was excellent, and required less than 2 manual FiO2 adjustments per day. There were no differences in the three primary endpoints. The narrower/higher set control range resulted in tighter control (IQR 3.0 vs. 4.3 p < 0.001), and less time with the SpO2 between 80-86 (6.2% vs. 8.4%, p = 0.006). We found that a shift in the median of the set control range of an automated FiO2-SpO2 control system had a proportional effect on the median and distribution of SpO2 exposure. We found that a dramatic narrowing of the set control range had a disproportionally smaller impact. Our

  17. Metallic Nanoparticle (TiO2 and Fe3O4) Application Modifies Rhizosphere Phosphorus Availability and Uptake by Lactuca sativa.

    Science.gov (United States)

    Zahra, Zahra; Arshad, Muhammad; Rafique, Rafia; Mahmood, Arshad; Habib, Amir; Qazi, Ishtiaq A; Khan, Saud A

    2015-08-12

    Application of engineered nanoparticles (NPs) with respect to nutrient uptake in plants is not yet well understood. The impacts of TiO2 and Fe3O4 NPs on the availability of naturally soil-bound inorganic phosphorus (Pi) to plants were studied along with relevant parameters. For this purpose, Lactuca sativa (lettuce) was cultivated on the soil amended with TiO2 and Fe3O4 (0, 50, 100, 150, 200, and 250 mg kg(-1)) over a period of 90 days. Different techniques, such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and Fourier transform infrared spectroscopy (FTIR) were used to monitor translocation and understand the possible mechanisms for phosphorus (P) uptake. The trends for P accumulation were different for roots (TiO2 > Fe3O4 > control) and shoots (Fe3O4 > TiO2 > control). Cystine and methionine were detected in the rhizosphere in Raman spectra. Affinities of NPs to adsorb phosphate ions, modifications in P speciation, and NP stress in the rhizosphere had possibly contributed to enhanced root exudation and acidification. All of these changes led to improved P availability and uptake by the plants. These promising results can help to develop an innovative strategy for using NPs for improved nutrient management to ensure food security.

  18. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  19. Synthesis, Characterization and Properties of CeO2-doped TiO2 Composite Nanocrystals

    Directory of Open Access Journals (Sweden)

    Oman ZUAS

    2013-12-01

    Full Text Available Pure TiO2 and CeO2-doped TiO2 (3 % CeO2-97 %TiO2 composite nanocrystals were synthesized via co-precipitation method and characterized using TGA, XRD, FTIR, DR-UV-vis and TEM. The XRD data revealed that the phase structure of the synthesized samples was mainly in pure anatase having crystallite size in the range of 7 nm – 11 nm. Spherical shapes with moderate aggregation of the crystal particles were observed under the TEM observation. The presence of the CeO2 at TiO2 site has not only affected morphologically but also induced the electronic property of the TiO2 by lowering the band gap energy from 3.29 eV (Eg-Ti to 3.15 eV (Eg-CeTi. Performance evaluation of the synthesized samples showed that both samples have a strong adsorption capacity toward Congo red (CR dye in aqueous solution at room temperature experiment, where  the capacity of the CeTi was higher than the Ti sample. Based on DR-UV data, the synthesized samples obtained in this study may also become promising catalysts for photo-assisted removal of synthetic dye in aqueous solution. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2732

  20. Enhanced Optical and Electrical Properties of TiO{sub 2} Buffered IGZO/TiO{sub 2} Bi-Layered Films

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyun-Joo; Kim, Daeil [University of Ulsan, Ulsan (Korea, Republic of)

    2016-08-15

    In and Ga doped ZnO (IGZO, 100-nm thick) thin films were deposited by radio frequency magnetron sputtering without intentional substrate heating on a bare glass substrate and a TiO{sub 2}-deposited glass substrate to determine the effect of the thickness of a thin TiO{sub 2} buffer layer on the structural, optical, and electrical properties of the films. The thicknesses of the TiO{sub 2} buffer layers were 5, 10 and 15 nm, respectively. As-deposited IGZO films with a 10 nm-thick TiO{sub 2} buffer layer had an average optical transmittance of 85.0% with lower resistivity (1.83×10-2 Ω cm) than that of IGZO single layer films. The figure of merit (FOM) reached a maximum of 1.44×10-4 Ω-1 for IGZO/10 nm-thick TiO{sub 2} bi-layered films, which is higher than the FOM of 6.85×10-5 Ω-1 for IGZO single layer films. Because a higher FOM value indicates better quality transparent conducting oxide (TCO) films, the IGZO/10 nm-thick TiO{sub 2} bi-layered films are likely to perform better in TCO applications than IGZO single layer films.

  1. THE THERMODYNAMIC PROPERTIES OF MELTS OF DOUBLE SYSTEM MgO – Al2O3, MgO – SiO2, MgO – CaF2, Al2O3 – SiO2, Al2O3 – CaF2, SiO2 – CaF2

    Directory of Open Access Journals (Sweden)

    В. Судавцова

    2012-04-01

    Full Text Available Methodology of prognostication of thermodynamics properties of melts is presented from the coordinatesof liquidus of diagram of the state in area of equilibria a hard component is solution, on which energies ofmixing of Gibbs are expected in the double border systems of MgO – Al2O3, MgO – SiO2, MgO – CaF2,Al2O3 – SiO2, Al2O3 - CaF2, SiO2 - CaF2. For the areas of equilibrium there is quasibinary connection(MgAl2O4, Mg2SiO4, Al6Si2O13 – a grout at calculations was used equalization of Hauffe-Wagner. Theobtained data comport with literary

  2. Mapping Affinities in Academic Organizations

    Directory of Open Access Journals (Sweden)

    Dario Rodighiero

    2018-02-01

    Full Text Available Scholarly affinities are one of the most fundamental hidden dynamics that drive scientific development. Some affinities are actual, and consequently can be measured through classical academic metrics such as co-authoring. Other affinities are potential, and therefore do not leave visible traces in information systems; for instance, some peers may share interests without actually knowing it. This article illustrates the development of a map of affinities for academic collectives, designed to be relevant to three audiences: the management, the scholars themselves, and the external public. Our case study involves the School of Architecture, Civil and Environmental Engineering of EPFL, hereinafter ENAC. The school consists of around 1,000 scholars, 70 laboratories, and 3 institutes. The actual affinities are modeled using the data available from the information systems reporting publications, teaching, and advising scholars, whereas the potential affinities are addressed through text mining of the publications. The major challenge for designing such a map is to represent the multi-dimensionality and multi-scale nature of the information. The affinities are not limited to the computation of heterogeneous sources of information; they also apply at different scales. The map, thus, shows local affinities inside a given laboratory, as well as global affinities among laboratories. This article presents a graphical grammar to represent affinities. Its effectiveness is illustrated by two actualizations of the design proposal: an interactive online system in which the map can be parameterized, and a large-scale carpet of 250 square meters. In both cases, we discuss how the materiality influences the representation of data, in particular the way key questions could be appropriately addressed considering the three target audiences: the insights gained by the management and their consequences in terms of governance, the understanding of the scholars’ own

  3. Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst

    Science.gov (United States)

    Zhang, Jinjun; Wang, Xiaoyan; Wang, Jimei; Wang, Jing; Ji, Zhijiang

    2016-01-01

    TiO2 nanoparticles were immobilized on diatomite by hydrolysis-deposition method using titanium tetrachloride as precursor. The effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst was characterized by TG-DSC, XRD, BET surface area, SEM, FT-IR spectroscopy, XPS and UV-vis diffuse reflectance spectra. The results indicate that addition of a small amount of sulfate ions promotes the formation of anatase phase and inhibits the transformation from anatase to rutile. On the other hand, sulfate ions immobilized on the surface of TiO2/diatomite have strong affinity for electrons, capturing the photo-generated electrons, which hinders the recombination of electrons and holes.

  4. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    OpenAIRE

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-01-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affi...

  5. The performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate

    Directory of Open Access Journals (Sweden)

    Shulong Wang

    2016-11-01

    Full Text Available In this study, the performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate is studied with the help of atomic layer deposition (ALD and magnetron sputtering technology. The surface morphology of the bilayer films with different structures are observed after rapid thermal annealing (RTA by atomic force microscopy (AFM. The results show that Y2O3/Al2O3/Si structure has a larger number of small spikes on the surface and its surface roughness is worse than Al2O3/Y2O3/Si structure. The reason is that the density of Si substrate surface is much higher than that of ALD growth Al2O3. With the help of high-frequency capacitance-voltage(C-V measurement and conductivity method, the density of interface traps can be calculated. After a high temperature annealing, the metal silicate will generate at the substrate interface and result in silicon dangling bond and interface trap charge, which has been improved by X-ray photoelectron spectroscopy (XPS and interface trap charge density calculation. The interface trapped charge density of La2O3/Al2O3/Si stacked gate structure is lower than that of La2O3/Y2O3/Si gate structure. If Y2O3 is used to replace Al2O3 as the interfacial layer, the accumulation capacitance will increase obviously, which means lower equivalent oxide thickness (EOT. Our results show that interface layer Y2O3 grown by magnetron sputtering can effectively ensure the interface traps near the substrate at relative small level while maintain a relative higher dielectric constant than Al2O3.

  6. Comparative Study of Catalytic Systems T iO2 and N b2O5 Estudio catalítico comparativo de los sistemas TiO2 y Nb2O5 en la degradación de cianuro en función del tipo de oxidante

    Directory of Open Access Journals (Sweden)

    Aida Liliana Barbosa López

    2012-12-01

    Full Text Available This article discusses the viability of using agents such as niobium photocatalyst in decreasing higher energy of the band gap. To do so competitively withT iO2, the presence of oxidation helpers such as H2O2 and O3 could presentsurprising results in the catalytic performance due to higher generation ofOH o radicals. Oxidation helpers are shown to assist in obtaining larger areaoxides and textural properties different from commercial niobium oxide, andenhancing its catalytic activity in free cyanide removing. The article presentsexperimental results of cyanide photodegradation of 100mg/l with Degussa P-25 T iO2 and Nb2O53H2O, using a type CPC photoreactor and sunlight as theradiation source. Taking an inclination equal to Cartagena latitude of 10,450,the results show a clear effect of pH, catalyst type and oxidation auxiliar agenton photodegradation reaction. The ion cyanide reduction of polluted effluentwas enhanced by oxidizing agent (O3 and H2O2 addition. This may suggesta greater susceptibility to free cyanide oxidation and cianate indirect oxidation due to higher hydroxyl radical generation, which was induced by H2O2or O3 presence under solar radiation. The results showed free cyanide photocatalytic oxidation percentages between 64% and 72% using Nb2O5 3H2Oand 67% and 71% using T iO2 Degussa P-25. The catalysts were characterizedstructurally by XRD, BET, Raman and FTIR, with the purpose of correlatingmorphological changes in catalytic performing.La viabilidad del uso de otros agentes fotocatalizadores como el niobio, radicaen disminuir las energías altas de la banda prohibida para hacerlo competitivofrente al TiO2, sin embargo la presencia de coayudantes de oxidación, talescomo H2O2 y O3 podrían presentar resultados sorprendentes en el desempeñocatalítico, debido a una mayor generación del radicales OH. La obtención deóxidos de mayor área y propiedades texturales diferentes al oxido de niobiocomercial, mejoran su actividad catal

  7. Student Engagement and Neoliberalism: Mapping an Elective Affinity

    Science.gov (United States)

    Zepke, Nick

    2015-01-01

    The purpose of this article is to argue that student engagement, an important area for research about learning and teaching in formal higher education, has an elective affinity with neoliberalism, a hegemonic ideology in many countries of the developed world. The paper first surveys an extensive research literature examining student engagement and…

  8. Optical and structural properties of TiO2/Ti/Ag/TiO2 and TiO2/ITO/Ag/ITO/TiO2 metal-dielectric multilayers by RF magnetron sputtering for display application

    International Nuclear Information System (INIS)

    Lee, Jang-Hoon; Lee, Seung-Hyu; Hwangbo, Chang-Kwon; Lee, Kwang-Su

    2004-01-01

    Electromagnetic-interference (EMI) shielding and near-infrared (NIR) cutoff filters for plasma display panels, based on fundamental structures (ITO/Ag/ITO), (TiO 2 /Ti/Ag/TiO 2 ) and (TiO 2 /ITO/Ag/ITO/TiO 2 ), were designed and prepared by RF-magnetron sputtering. The optical, structural and electrical properties of the filters were investigated by using spectrophotometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, atomic force microscopy and four-point-probe measurements. The results show that ITO films as the barriers and base layers lead to higher transmittance in the visible spectrum and smoother surface roughness than Ti metal barriers, while maintaining high NIR cutoff characteristics and chemical stability, which may be attributed to the lower absorption in the interfacial layers and better protection of the Ag layers by the ITO layers.

  9. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application

    Science.gov (United States)

    Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik

    2018-05-01

    In the present work, we report on the use of organized TiO2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe2O3 nano-needles in the interspace. These α-Fe2O3 decorated TiO2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe2O3. We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm-2 compared to bare spaced NTs with a capacitance of 54 μAh cm-2, the hierarchical decoration with secondary metal oxide, α-Fe2O3, remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe2O3 decoration have an areal capacitance of 477 μAh cm-2, i.e. they have nearly ˜8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe2O3 decoration saturates at 208 μAh cm-2, i.e. is limited to ˜3 times increase.

  10. Bioactivity studies on TiO2-bearing Na2O–CaO–SiO2–B2O3 glasses

    International Nuclear Information System (INIS)

    Jagan Mohini, G.; Sahaya Baskaran, G.; Ravi Kumar, V.; Piasecki, M.; Veeraiah, N.

    2015-01-01

    Soda lime silica borate glasses mixed with different concentrations of TiO 2 are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~ 21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO 2 on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO 2 concentration indicated that about 6.0 mol% of TiO 2 is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. - Highlights: • Soda lime silica borate glasses mixed with TiO 2 are synthesized. • Bioactivity of the glasses is studied by immersing them in SBF solution. • XRD and SEM studies indicated the formation of hydroxyapatite layer on the surface. • Quantum of degradability is the highest in the glasses mixed with 6.0 mol% of TiO 2. • The results are analyzed using IR and optical absorption studies

  11. Stability of Zn-Ni-TiO{sub 2} and Zn-TiO{sub 2} nanocomposite coatings in near-neutral sulphate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, A., E-mail: aboavida@fc.ul.pt; Almeida, I.; Frade, T. [CCMM, Departamento Quimica e Bioquimica da Faculdade de Ciencias da Universidade de Lisboa (Portugal); Tavares, A. C. [Institut National de la Recherche Scientifique-Energie Materiaux et Telecommunications (INRS-EMT) (Canada)

    2012-02-15

    Zn-Ni-TiO{sub 2} and Zn-TiO{sub 2} nanocomposites were prepared by galvanostatic cathodic square wave deposition. X-ray diffraction analysis and scanning electron microscopy revealed that the occlusion of TiO{sub 2} nanoparticles (spherical shaped with diameter between 19.5 and 24.2 nm) promotes the formation of the {gamma}-Ni{sub 5}Zn{sub 21} phase, changes the preferred crystallographic orientation of Zn from (101) and (102) planes to (002), and decreases the particle size of the metallic matrices. The stability of the nanocomposites immersed in near-neutral 0.05 mold m{sup -3} Na{sub 2}SO{sub 4} solution (pH 6.2) was investigated over 24 h. The initial open circuit potential for the Zn-Ni-TiO{sub 2} and Zn-TiO{sub 2} coatings were -1.32 and -1.51 V (vs. Hg/Hg{sub 2}SO{sub 4}), respectively, and changed to -1.10 and -1.49 V (vs. Hg/Hg{sub 2}SO{sub 4}) after 24 h of immersion. Data extracted from the steady state polarization curves demonstrated that the metal-TiO{sub 2} nanocomposites have, with respect to the metal coatings, a higher corrosion potential in the case of the Zn-Ni alloy composite; a lower corrosion potential in the case of Zn-based nanocomposite albeit the predominant (002) crystallographic orientation; and a lower initial corrosion resistance due to the smaller grain size and higher porosity in the Zn-Ni-TiO{sub 2} and Zn-TiO{sub 2} nanocomposites. Morphological and chemical analyses showed that a thicker passive layer is formed on the surface of the Zn-Ni-TiO{sub 2} and Zn-TiO{sub 2} deposits. After 24 h of immersion in the sulphate solution, the Zn-Ni-TiO{sub 2} coating has the highest corrosion stability due to the double-protective action created by the deposit's surface enrichment in Ni plus the higher amount of corrosion products.

  12. Enhanced Activity and Durability of Nanosized Pt-SnO2/IrO2/CNTs Catalyst for Methanol Electrooxidation.

    Science.gov (United States)

    Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao

    2015-05-01

    Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.

  13. Methanol steam reforming over Pd/ZnO and Pd/CeO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Easwar S.; Bej, Shyamal K.; Thompson, Levi T. [University of Michigan, Department of Chemical Engineering, 3026 H.H. Dow Building, 2300 Hayward Avenue, Ann Arbor, MI 48109-2136 (United States)

    2005-08-10

    The goal of work described in this paper was to better understand the methanol steam reforming (MSR) activity and selectivity patterns of ZnO and CeO{sub 2} supported Pd catalysts. This reaction is being used to produce H{sub 2}-rich gas for a number of applications including hydrogen fuel cells. The Pd/ZnO catalysts had lower MSR rates but were more selective for the production of CO{sub 2} than the Pd/CeO{sub 2} catalysts. The CH{sub 3}OH conversion rates were proportional to the H{sub 2} chemisorption uptake suggesting that the rate determining step was catalyzed by Pd. The corresponding turnover frequencies averaged 0.8+/-0.3s{sup -1} and 0.4+/-0.2s{sup -1} at 230{sup o}C for the Pd/ZnO and Pd/CeO{sub 2} catalysts, respectively. The selectivities are explained based on the reaction pathways, and characteristics of the support. The key surface intermediate appeared to be a formate. The ZnO supported catalysts had a higher density of acidic sites and favored pathways where the intermediate was converted to CO{sub 2} while the CeO{sub 2} supported catalysts had a higher density of basic sites and favored the production of CO.

  14. Depth-selective 2D-ACAR and coincidence Doppler investigation of embedded Au nanocrystals in MgO

    International Nuclear Information System (INIS)

    Eijt, S.W.H.; Veen, A. van; Falub, C.V.; Schut, H.; Huis, M.A. van; Mijnarends, P.E.

    2004-01-01

    We present a depth-selective 2D-ACAR and two-detector Doppler broadening study on Au nanocrystals in monocrystalline MgO(100), produced in sub-surface layers by ion implantation and subsequent thermal annealing to temperatures beyond the stability range of vacancy clusters in MgO. In contrast to the case of Li nanocrystals, it was found that positrons do not trap inside the Au nanocrystals, but only in defects at the nanocrystal-to-host interface (attached vacancy clusters). This is interpreted in terms of the positron affinity of Au, MgO and the defects. (orig.)

  15. Depth-selective 2D-ACAR and coincidence Doppler investigation of embedded Au nanocrystals in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Eijt, S.W.H.; Veen, A. van; Falub, C.V.; Schut, H.; Huis, M.A. van [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands); Mijnarends, P.E. [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands); Dept. of Physics, Northeastern Univ., Boston, MA (United States)

    2004-07-01

    We present a depth-selective 2D-ACAR and two-detector Doppler broadening study on Au nanocrystals in monocrystalline MgO(100), produced in sub-surface layers by ion implantation and subsequent thermal annealing to temperatures beyond the stability range of vacancy clusters in MgO. In contrast to the case of Li nanocrystals, it was found that positrons do not trap inside the Au nanocrystals, but only in defects at the nanocrystal-to-host interface (attached vacancy clusters). This is interpreted in terms of the positron affinity of Au, MgO and the defects. (orig.)

  16. Synthetic Receptors for the High-Affinity Recognition of O-GlcNAc Derivatives

    NARCIS (Netherlands)

    Rios, Pablo; Carter, Tom S; Mooibroek, Tiddo J; Crump, Matthew P; Lisbjerg, Micke; Pittelkow, Michael; Supekar, Nitin T; Boons, Geert-Jan|info:eu-repo/dai/nl/088245489; Davis, Anthony P

    2016-01-01

    The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water-soluble carbohydrate receptors ("synthetic lectins"). Both systems show outstanding affinities for derivatives of N-acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside

  17. Effect of Y2O3 Nanoparticles on Critical Current Density of YBa2Cu3O7-x Thin Films

    International Nuclear Information System (INIS)

    Tran, H. D.; Reddy, Sreekantha; Wie, C. H.; Kang, B.; Oh, Sang Jun; Lee, Sung Ik

    2009-01-01

    Introduction of proper impurity into YBa 2 Cu 3 O 7-x (YBCO) thin films is an effective way to enhance its flux-pinning properties. We investigate effect of Y 2 O 3 nanoparticles on the critical current density J c of the YBCO thin films. The Y 2 O 3 nanoparticles were created perpendicular to the film surface (parallel with the c-axis) either between YBCO and substrate or on top of YBCO, YBCO/Y 2 O 3 /LAO or Y 2 O 3 /YBCO/STO, by pulsed laser deposition. The deposition temperature of the YBCO films were varied (780 degree C and 800 degree C) to modify surface morphology of the YBCO films. Surface morphology characterization revealed that the lower deposition temperature of 780 degree C created nano-sized holes on the YBCO film surface which may behave as intrinsic pinning centers, while the higher deposition temperature produced much denser and smoother surface. J-c values of the YBCO films with Y 2 O 3 particles were either remained nearly the same or decreased for the samples in which YBCO is grown at 780 degree C. On the other hand, J-c values were enhanced for the samples in which YBCO is grown at higher temperature of 800 degree C. The difference in the effect of Y 2 O 3 can be explained by the fact that the higher deposition temperature of 800 degree C reduces intrinsic pinning centers and J c is enhanced by introduction of artificial pinning centers in the form of Y 2 O 3 nanoparticles.

  18. Na2MoO2As2O7

    Directory of Open Access Journals (Sweden)

    Raja Jouini

    2012-12-01

    Full Text Available Disodium molybdenum dioxide diarsenate, Na2MoO2As2O7, has been synthesized by a solid-state reaction. The structure is built up from MoAs2O12 linear units sharing corners to form a three-dimensional framework containing tunnels running along the a-axis direction in which the Na+ cations are located. In this framework, the AsV atoms are tetrahedrally coordinated and form an As2O7 group. The MoVI atom is displaced from the center of an octahedron of O atoms. Two Na+ cations are disordered about inversion centres. Structural relationships between different compounds: A2MoO2As2O7 (A = K, Rb, AMOP2O7 (A = Na, K, Rb; M = Mo, Nb and MoP2O7 are discussed.

  19. Generation of high-affinity, internalizing anti-FGFR2 single-chain variable antibody fragment fused with Fc for targeting gastrointestinal cancers.

    Science.gov (United States)

    Borek, Aleksandra; Sokolowska-Wedzina, Aleksandra; Chodaczek, Grzegorz; Otlewski, Jacek

    2018-01-01

    Fibroblast growth factor receptors (FGFRs) are promising targets for antibody-based cancer therapies, as their substantial overexpression has been found in various tumor cells. Aberrant activation of FGF receptor 2 (FGFR2) signaling through overexpression of FGFR2 and/or its ligands, mutations, or receptor amplification has been reported in multiple cancer types, including gastric, colorectal, endometrial, ovarian, breast and lung cancer. In this paper, we describe application of the phage display technology to produce a panel of high affinity single chain variable antibody fragments (scFvs) against the extracellular ligand-binding domain of FGFR2 (ECD_FGFR2). The binders were selected from the human single chain variable fragment scFv phage display libraries Tomlinson I + J and showed high specificity and binding affinity towards human FGFR2 with nanomolar KD values. To improve the affinity of the best binder selected, scFvF7, we reformatted it to a bivalent diabody format, or fused it with the Fc region (scFvF7-Fc). The scFvF7-Fc antibody construct presented the highest affinity for FGFR2, with a KD of 0.76 nM, and was selectively internalized into cancer cells overexpressing FGFR2, Snu-16 and NCI-H716. Finally, we prepared a conjugate of scFvF7-Fc with the cytotoxic drug monomethyl-auristatin E (MMAE) and evaluated its cytotoxicity. The conjugate delivered MMAE selectively to FGFR2-positive tumor cells. These results indicate that scFvF7-Fc-vcMMAE is a highly potent molecule for the treatment of cancers with FGFR2 overexpression.

  20. Preparation and characterization of Fe3O4/SiO2/Bi2MoO6 composite as magnetically separable photocatalyst

    International Nuclear Information System (INIS)

    Hou, Xuemei; Tian, Yanlong; Zhang, Xiang; Dou, Shuliang; Pan, Lei; Wang, Wenjia; Li, Yao; Zhao, Jiupeng

    2015-01-01

    Highlights: • Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite was prepared by a hydrothermal method. • The composite has an enhanced visible absorption compared with pure Bi 2 MoO 6 . • The magnetic photocatalyst displayed excellent stability and reusability. • O 2 ·− and · OH play a major role during the photocatalytic process. - Abstract: In this paper, Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres were prepared by a facile hydrothermal method. The scanning electron microscope (SEM) results revealed that flower-like three dimensional (3D) Bi 2 MoO 6 microspheres were decorated with Fe 3 O 4 /SiO 2 magnetic nanoparticles. The UV–vis diffuse reflection spectra showed extended absorption within the visible light range compared with pure Bi 2 MoO 6 . We evaluated the photocatalytic activities of Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres on the degradation of Rhodamine B (RhB) under visible light irradiation and found that the obtained composite exhibited higher photocatalytic activity than pure Bi 2 MoO 6 and P25. Moreover, the Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite also displayed excellent stability and their photocatalytic activity decreased slightly after reusing 5 cycles. Meanwhile, the composite could be easily separated by applying an external magnetic field. The trapping experiment results suggest that superoxide radical species O 2 ·− and hydroxyl radicals · OH play a major role in Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 system under visible light irradiation. The combination of flower-like three dimensional (3D) Bi 2 MoO 6 microspheres and Fe 3 O 4 /SiO 2 magnetic nanospheres provides a useful strategy for designing multifunctional nanostructure materials with enhanced photocatalytic activities in the potential applications of water purification

  1. Fundamentals of affinity cell separations.

    Science.gov (United States)

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Graphene-enhanced Raman imaging of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Naumenko, Denys; Snitka, Valentinas; Snopok, Boris; Arpiainen, Sanna; Lipsanen, Harri

    2012-01-01

    The interaction of anatase titanium dioxide (TiO 2 ) nanoparticles with chemical vapour deposited graphene sheets transferred on glass substrates is investigated by using atomic force microscopy, Raman spectroscopy and imaging. Significant electronic interactions between the nanoparticles of TiO 2 and graphene were found. The changes in the graphene Raman peak positions and intensity ratios indicate that charge transfer between graphene and TiO 2 nanoparticles occurred, increasing the Raman signal of the TiO 2 nanoparticles up to five times. The normalized Raman intensity of TiO 2 nanoparticles per their volume increased with the disorder of the graphene structure. The complementary reason for the observed enhancement is that due to the higher density of states in the defect sites of graphene, a higher electron transfer occurs from the graphene to the anatase TiO 2 nanoparticles. (paper)

  3. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    Directory of Open Access Journals (Sweden)

    Jingbin Yang

    2017-06-01

    Full Text Available C-A-S-H (CaO-Al2O3-SiO2-H2O and N-A-S-H (Na2O-Al2O3-SiO2-H2O have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali

  4. ZnO/TiO{sub 2} particles and their solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Kerli, S., E-mail: suleymankerli@ksu.edu.tr [Department of EnergySystemsEngineering, Faculty of Elbistan Technology, Kahramanmaras SutcuImamUniversity, Kahramanmaras (Turkey); Akgül, Ö., E-mail: omeraakgul@gmail.com [Kahramanmaras Sutcu Imam University, Dept. of Physics, 46100 K.Maras-Turkey (Turkey); Alver, Ü., E-mail: ualver@ktu.edu.tr [Karadeniz Technical University, Dept. of Metallurgical and Materials Eng. 61080, Trabzon-Turkey (Turkey)

    2016-03-25

    ZnO/TiO{sub 2} particles were investigated for dye-sensitized solar cells (DSSC). Nano-structured ZnO particles were produced by the hydrothermal method. TiO{sub 2} (P25) nanoparticles, was bought from the company of Degussa. Crystal structures and morphological properties of particles were examined by XRD and SEM. As an application, dye sensitized solar cells were fabricated from nano-structured produced metal oxide particles. The working electrodes of the DSSCs were obtained by mixture of ZnO and TiO{sub 2} powders. I-V characteristics of the cells were measured by using a solar simulator and the efficiency of the solar cells were obtained by using I-V graphs. ZnO cells sensitized with Ruthenium 535-bisTBA (N719) dyes yield higher efficiencies than corresponding TiO{sub 2} cells. By increasing TiO{sub 2} amount in the mixture of ZnO/TiO{sub 2}, it was observed that efficiencies of cells are getting lower.

  5. Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1.

    Science.gov (United States)

    Muro, Silvia; Dziubla, Thomas; Qiu, Weining; Leferovich, John; Cui, Xiumin; Berk, Erik; Muzykantov, Vladimir R

    2006-06-01

    Targeting of diagnostic and therapeutic agents to endothelial cells (ECs) provides an avenue to improve treatment of many maladies. For example, intercellular adhesion molecule 1 (ICAM-1), a constitutive endothelial cell adhesion molecule up-regulated in many diseases, is a good determinant for endothelial targeting of therapeutic enzymes and polymer nanocarriers (PNCs) conjugated with anti-ICAM (anti-ICAM/PNCs). However, intrinsic and extrinsic factors that control targeting of anti-ICAM/PNCs to ECs (e.g., anti-ICAM affinity and PNC valency and flow) have not been defined. In this study we tested in vitro and in vivo parameters of targeting to ECs of anti-ICAM/PNCs consisting of either prototype polystyrene or biodegradable poly(lactic-coglycolic) acid polymers (approximately 200 nm diameter spheres carrying approximately 200 anti-ICAM molecules). Anti-ICAM/PNCs, but not control IgG/PNCs 1) rapidly (t1/2 approximately 5 min) and specifically bound to tumor necrosis factor-activated ECs in a dose-dependent manner (Bmax approximately 350 PNC/cell) at both static and physiological shear stress conditions and 2) bound to ECs and accumulated in the pulmonary vasculature after i.v. injection in mice. Anti-ICAM/PNCs displayed markedly higher EC affinity versus naked anti-ICAM (Kd approximately 80 pM versus approximately 8 nM) in cell culture and, probably because of this factor, higher value (185.3 +/- 24.2 versus 50.5 +/- 1.5% injected dose/g) and selectivity (lung/blood ratio 81.0 +/- 10.9 versus 2.1 +/- 0.02, in part due to faster blood clearance) of pulmonary targeting. These results 1) show that reformatting monomolecular anti-ICAM into high-affinity multivalent PNCs boosts their vascular immuno-targeting, which withstands physiological hydrodynamics and 2) support potential anti-ICAM/PNCs utility for medical applications.

  6. ODE/IM correspondence and Bethe ansatz for affine Toda field equations

    Directory of Open Access Journals (Sweden)

    Katsushi Ito

    2015-07-01

    Full Text Available We study the linear problem associated with modified affine Toda field equation for the Langlands dual gˆ∨, where gˆ is an untwisted affine Lie algebra. The connection coefficients for the asymptotic solutions of the linear problem are found to correspond to the Q-functions for g-type quantum integrable models. The ψ-system for the solutions associated with the fundamental representations of g leads to Bethe ansatz equations associated with the affine Lie algebra gˆ. We also study the A2r(2 affine Toda field equation in massless limit in detail and find its Bethe ansatz equations as well as T–Q relations.

  7. Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds - Applications in acidic modification-specific proteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin R

    2011-01-01

    biomolecules due to its unique ion and ligand exchange properties and high stability towards pH and temperature. Recently, titanium dioxide chromatography was introduced in proteomics as a highly specific method for enriching phosphorylated peptides - a method, which has been widely adapted by the field...... matrices for further characterization is affinity chromatography, which relies on the specific interaction between an analyte in solution and a solid adsorbent. Titanium dioxide-based affinity chromatography has proven to be a versatile tool in enrichment of various compounds such as phosphorylated....... The development of TiO(2)-based chromatographic strategies for separation of various biomolecules from its introduction for small molecules more than 20years ago until recent proteomics applications today will be reviewed here....

  8. Light emission efficiency and imaging performance of Lu{sub 2}O{sub 3}:Eu nanophosphor under X-ray radiography conditions: Comparison with Gd{sub 2}O{sub 2}S:Eu

    Energy Technology Data Exchange (ETDEWEB)

    Seferis, I. [Faculty of Chemistry, Wroclaw University, 14F Joliot-Curie Street, 50-383 Wroclaw (Poland); Department of Medical Physics, Medical School, University of Patras, 265 00 Patras (Greece); Michail, C.; Valais, I. [Department of Biomedical Engineering, Technological Educational Institute of Athens, 122 10 Athens (Greece); Zeler, J. [Faculty of Chemistry, Wroclaw University, 14F Joliot-Curie Street, 50-383 Wroclaw (Poland); Liaparinos, P.; Fountos, G.; Kalyvas, N.; David, S. [Department of Biomedical Engineering, Technological Educational Institute of Athens, 122 10 Athens (Greece); Stromatia, F. [Department of Radiology and Nuclear Medicine, “IASO” General Hospital, Mesogion 264, 15562 Holargos (Greece); Zych, E. [Faculty of Chemistry, Wroclaw University, 14F Joliot-Curie Street, 50-383 Wroclaw (Poland); Kandarakis, I., E-mail: kandarakis@teiath.gr [Department of Biomedical Engineering, Technological Educational Institute of Athens, 122 10 Athens (Greece); Panayiotakis, G. [Department of Medical Physics, Medical School, University of Patras, 265 00 Patras (Greece)

    2014-07-01

    Nanocrystallic europium-activated lutetium oxide (Lu{sub 2}O{sub 3}:Eu) is a strong candidate for use in digital medical imaging applications, due to its spectroscopic and structural properties. The aim of the present study was to investigate the imaging and efficiency properties of a 33.3 mg/cm{sup 2} Lu{sub 2}O{sub 3}:Eu scintillating screen coupled to a high resolution RadEye HR CMOS photodetector under radiographic imaging conditions. Since Lu{sub 2}O{sub 3}:Eu emits light in the red wavelength range, the light emission efficiency and the imaging performance were compared with results for a Gd{sub 2}O{sub 2}S:Eu phosphor screen. Parameters such as the Absolute Efficiency (AE), the X-ray Luminescence Efficiency (XLE), and the Detector Quantum Gain (DQG), were investigated. The imaging characteristics of Lu{sub 2}O{sub 3}:Eu nanophosphor screen were investigated in terms of the Modulation Transfer Function (MTF), the Normalized Noise Power Spectrum (NNPS) and the Detective Quantum Efficiency (DQE). It was found that Lu{sub 2}O{sub 3}:Eu nanophosphor has higher AE and XLE by a factor of 1.32 and 1.37 on average, respectively, in the whole radiographic energy range in comparison with the Gd{sub 2}O{sub 2}S:Eu screen. DQG was also found higher in the energy range from 50 kVp to 100 kVp and comparable thereafter. The imaging quality of Lu{sub 2}O{sub 3}:Eu nanophosphor coupled to the CMOS sensor was found to outmatch in any aspect in comparison with the Gd{sub 2}O{sub 2}S:Eu screen. These results indicate that Lu{sub 2}O{sub 3}:Eu nanophosphor could be considered for further research in order to be used in medical imaging applications. - Highlights: • AE and XLE of Lu{sub 2}O{sub 3}:Eu nanophosphor were higher by a factor of 1.32 and 1.37 than Gd{sub 2}O{sub 2}S:Eu. • DQG was higher from 50 to 100 kVp and comparable thereafter. • Imaging performance of Lu{sub 2}O{sub 3}:Eu/CMOS was better than that of Gd{sub 2}O{sub 2}S:Eu/CMOS.

  9. Investigating the Effect of Glass Ion Release on the Cytocompatibility, Antibacterial Eflcacy and Antioxidant Activity of Y2O3 / CeO2 doped SiO2-SrO-Na2O glasses

    Directory of Open Access Journals (Sweden)

    Placek L. M.

    2018-02-01

    Full Text Available The effect on ion release and cytocompatibility of Yttrium (Y and Cerium (Ce are investigated when substituted for Sodium (Na in a 0.52SiO2-0.24SrO-0.24-Na2OMOglass series (where MO= Y2O3 or CeO2. Glass leaching was evaluated through pH measurements and Inductive Coupled Plasma-Optical Emission Spectrometry (ICP-OES analysiswhere the extract pH increased during incubation (11.2 - 12.5. Ion release of Silicon (Si, Na and Strontium (Sr from the Con glass was at higher than that of glasses containing Y or Ce, and reached a limit after 1 day. Ion release from Y and Ce containing glasses reached a maximum of 1800 μg/mL, 1800 μg/mL, and 10 μg/mL for Si, Na, and Sr, respectively. Release of Y and Cewas below the ICP- OES detection limit 75% of bacteria at a 9% extract concentration. Antioxidant capacity (mechanism for neuroprotection was evaluated using the ABTS assay. All glasses had inherent radical oxygen species (ROS scavenging capability with Con reaching 9.5 mMTE.

  10. Electrical conductivity studies of Bi2O3–Li2O–ZnO–B2O3 glasses

    International Nuclear Information System (INIS)

    Bale, Shashidhar; Rahman, Syed

    2012-01-01

    Highlights: ► Ac conductivity measurements and its analysis has been performed on Bi 2 O 3 –Li 2 O–ZnO–B 2 O 3 glasses in the temperature range 30–300 °C and a frequency range of 100 Hz to 1 MHz. ► The dc conductivity increased and the activation energy decreased with lithium content. ► The frequency dependent conductivity has been analyzed employing conductivity and modulus formalisms. ► The onset of conductivity relaxation shifts towards higher frequencies with temperature. ► The Almond–West conductivity formalism is used to explain the scaling behavior, and the relaxation mechanism is independent of temperature. -- Abstract: Ac conductivity measurements and its analysis has been performed on xBi 2 O 3 –(65−x)Li 2 O–20ZnO–15B 2 O 3 (0 ≤ x ≤ 20) glasses in the temperature range 30–300 °C and a frequency range of 100 Hz to 1 MHz. The dc conductivity increased and the activation energy decreased with lithium content. The frequency dependent conductivity has been analyzed employing conductivity and modulus formalisms. The onset of conductivity relaxation shifts towards higher frequencies with temperature. The Almond–West conductivity formalism is used to explain the scaling behavior, and the relaxation mechanism is independent of temperature.

  11. Affinity Isolation and I-DIRT Mass Spectrometric Analysis of the Escherichia coli O157:H7 Sakai RNA Polymerase Complex▿

    Science.gov (United States)

    Lee, David J.; Busby, Stephen J. W.; Westblade, Lars F.; Chait, Brian T.

    2008-01-01

    Bacteria contain a single multisubunit RNA polymerase that is responsible for the synthesis of all RNA. Previous studies of the Escherichia coli K-12 laboratory strain identified a group of effector proteins that interact directly with RNA polymerase to modulate the efficiency of transcription initiation, elongation, or termination. Here we used a rapid affinity isolation technique to isolate RNA polymerase from the pathogenic Escherichia coli strain O157:H7 Sakai. We analyzed the RNA polymerase enzyme complex using mass spectrometry and identified associated proteins. Although E. coli O157:H7 Sakai contains more than 1,600 genes not present in the K-12 strain, many of which are predicted to be involved in transcription regulation, all of the identified proteins in this study were encoded on the “core” E. coli genome. PMID:18083804

  12. CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand

    Directory of Open Access Journals (Sweden)

    N. Srisittipokakun

    Full Text Available In this research, glass productions from rice husk ash (RHA and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm and Fe2+ (1050 nm ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction. Keywords: Rice husk ash, Glass, Optical, Physical

  13. Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content.

    Science.gov (United States)

    Smith, J M; King, S P; Barney, E R; Hanna, J V; Newport, R J; Pickup, D M

    2013-01-21

    Calcium phosphate based biomaterials are extensively used in the context of tissue engineering: small changes in composition can lead to significant changes in properties allowing their use in a wide range of applications. Samples of composition (Al(2)O(3))(x)(Na(2)O)(0.11-x)(CaO)(0.445)(P(2)O(5))(0.445), where x = 0, 0.03, 0.05, and 0.08, were prepared by melt quenching. The atomic-scale structure has been studied using neutron diffraction and solid state (27)Al MAS NMR, and these data have been rationalised with the determined density of the final glass product. With increasing aluminium concentration the density increases initially, but beyond about 3 mol. % Al(2)O(3) the density starts to decrease. Neutron diffraction data show a concomitant change in the aluminium speciation, which is confirmed by (27)Al MAS NMR studies. The NMR data reveal that aluminium is present in 4, 5, and 6-fold coordination and that the relative concentrations of these environments change with increasing aluminium concentration. Materials containing aluminium in 6-fold coordination tend to have higher densities than analogous materials with the aluminium found in 4-fold coordination. Thus, the density changes may readily be explained in terms of an increase in the relative concentration of 4-coordinated aluminium at the expense of 6-fold aluminium as the Al(2)O(3) content is increased beyond 3 mol. %.

  14. Mössbauer spectroscopy study of 60P2O5-40Fe2O3 glass crystallization

    Directory of Open Access Journals (Sweden)

    Stoch Paweł

    2015-03-01

    Full Text Available 60P2O5-40Fe2O3 glass was synthesized and 57Fe Mössbauer spectroscopy study was presented. The main goal of the research was to investigate structural changes of local environment of iron ions during gradual crystallization of the glass. It was observed that some changes were evidenced at temperature of heat treatment higher than 400°C, above which content of tetrahedrally coordinated Fe3+ was increased in cost of octahedral sites. This led to formation of areas of nucleation of α-FePO4. Crystallization of α-Fe3(P2O72 and Fe2P2O7 was also observed.

  15. Preparation of Affinity Column Based on Zr4+ Ion for Phosphoproteins Isolation

    International Nuclear Information System (INIS)

    Lee, Seon Mi; Bae, In Ae; Park, Jung Hyen; Kim, Tae Dong; Choi, Seong Ho

    2009-01-01

    This paper has described about preparation of Zr 4+ affinity column based on the poly(styreneco- glycidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The Zr 4+ ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of Zr 4+ -immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for Zr 4+ affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for Zr 4+ affinity polymeric microsphere by liquid chromatography. This Zr 4+ affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography

  16. Higher spin black holes with soft hair

    Energy Technology Data Exchange (ETDEWEB)

    Grumiller, Daniel [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Tempo, David; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-10-21

    We construct a new set of boundary conditions for higher spin gravity, inspired by a recent “soft Heisenberg hair”-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin-N, many of which resemble the spin-2 results: the generators of the asymptotic W{sub 3} algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call “higher spin black flowers”, are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W-algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.

  17. Removal of aqueous Pb(II) by adsorption on Al{sub 2}O{sub 3}-pillared layered MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haipeng; Gu, Liqin; Zhang, Ling; Zheng, Shourong; Wan, Haiqin; Sun, Jingya [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhu, Dongqiang [School of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Xu, Zhaoyi, E-mail: zhaoyixu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2017-06-01

    Highlights: • Al{sub 2}O{sub 3}-pillared layered MnO{sub 2} (p-MnO{sub 2}) was prepared from δ-MnO{sub 2} precursor. • p-MnO{sub 2} showed markedly higher Pb(II) adsorption capacity than pristine δ-MnO{sub 2.}. • Pillaring of Al{sub 2}O{sub 3} into the layer of δ-MnO{sub 2} enhanced the Pb(II) adsorption. - Abstract: In the present study, Al{sub 2}O{sub 3}-pillared layered MnO{sub 2} (p-MnO{sub 2}) was synthesized using δ-MnO{sub 2} as precursor and Pb(II) adsorption on p-MnO{sub 2} and δ-MnO{sub 2} was investigated. To clarify the adsorption mechanism, Al{sub 2}O{sub 3} was also prepared as an additional sorbent. The adsorbents were characterized by X-ray fluorescence analysis, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and N{sub 2} adsorption-desorption. Results showed that in comparison with pristine δ-MnO{sub 2}, Al{sub 2}O{sub 3} pillaring led to increased BET surface area of 166.3 m{sup 2} g{sup −1} and enlarged basal spacing of 0.85 nm. Accordingly, p-MnO{sub 2} exhibited a higher adsorption capacity of Pb(II) than δ-MnO{sub 2}. The adsorption isotherms of Pb(II) on δ-MnO{sub 2} and Al{sub 2}O{sub 3} pillar fitted well to the Freundlich model, while the adsorption isotherm of Pb(II) on p-MnO{sub 2} could be well described using a dual-adsorption model, attributed to Pb(II) adsorption on both δ-MnO{sub 2} and Al{sub 2}O{sub 3}. Additionally, Pb(II) adsorption on δ-MnO{sub 2} and p-MnO{sub 2} followed the pseudo second-order kinetics, and a lower adsorption rate was observed on p-MnO{sub 2} than δ-MnO{sub 2}. The Pb(II) adsorption capacity of p-MnO{sub 2} increased with solution pH and co-existing cation concentration, and the presence of dissolved humic acid (10.2 mg L{sup −1}) did not markedly impact Pb(II) adsorption. p-MnO{sub 2} also displayed good adsorption capacities for aqueous Cu(II) and Cd(II). Findings in this study indicate that p-MnO{sub 2} could be used as a highly effective

  18. A graphene–SnO{sub 2}–TiO{sub 2} ternary nanocomposite electrode as a high stability lithium-ion anode material

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jicai [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Roll Forging Research Institute, Jilin University, Changchun, 130025, Jilin (China); Wang, Juan; Zhou, Meixin; Li, Yi [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Wang, Xiaofeng [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China); Yu, Kaifeng, E-mail: yukf@jlu.edu.cn [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China)

    2016-07-15

    In this work, a solvothermal method combined with a hydrothermal two-step method is developed to synthesize graphene–SnO{sub 2}–TiO{sub 2} ternary nanocomposite, in which the nanometer-sized TiO{sub 2} and SnO{sub 2} nanoparticles form in situ uniformly anchored on the surface of graphene sheets, as high stability and capacity lithium-ion anode materials. Compared to graphene–TiO{sub 2}, bulk TiO{sub 2} and grapheme–SnO{sub 2} composites, the as-prepared nanocomposite delivers a superior rate performance of 499.3 mAhg{sup −1} at 0.2 C and an outstanding stability cycling capability (1073.4 mAhg{sup −1} at 0.2 C after 50 cycles), due to the synergistic effects contributed from individual components, for example, high specific capacity of SnO{sub 2}, excellent conductivity of 3D graphene networks. - Graphical abstract: Graphene–SnO{sub 2}–TiO{sub 2} nanocomposite is synthesized by a hydrothermal two-step method. The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure. - Highlights: • We have synthesized a graphene–SnO{sub 2}–TiO{sub 2} nanocomposite by a two-step method to improve the cycling performance. • Graphene–SnO{sub 2}–TiO{sub 2} nanocomposite is synthesized by a hydrothermal two-step method. • The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure.

  19. Electronic structures and Eu{sup 3+} photoluminescence behaviors in Y{sub 2}Si{sub 2}O{sub 7} and La{sub 2}Si{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiya, E-mail: zhangzhiya@lzu.edu.cn [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000 (China); Wang Yuhua [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000 (China); Zhang Feng [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 (China); Cao Haining [Computational Science Center, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of)

    2011-04-14

    Research highlights: > Host excitation near the band gap of Y{sub 2}Si{sub 2}O{sub 7} and La{sub 2}Si{sub 2}O{sub 7} is analyzed. > The calculated result well explains Eu{sup 3+} PL behaviors in Y{sub 2}Si{sub 2}O{sub 7} and La{sub 2}Si{sub 2}O{sub 7}. > The electronic structure and Eu{sup 3+} VUV PL in La{sub 2}Si{sub 2}O{sub 7} are first estimated. - Abstract: The electronic structures and linear optical properties of Y{sub 2}Si{sub 2}O{sub 7} (YSO) and La{sub 2}Si{sub 2}O{sub 7} (LSO) are calculated by LDA method based on the theory of DFT. Both YSO and LSO are direct-gap materials with the direct band gap of 5.89 and 6.06 eV, respectively. The calculated total and partial density of states indicate that in both YSO and LSO the valence band (VB) is mainly constructed from O 2p and the conduction band (CB) is mostly formed from Y 4d or La 5d. Both the calculated VB and CB of YSO exhibit relatively wider dispersion than that of LSO. In addition, the CB of YSO presents more electronic states. Meanwhile, the VB of LSO shows narrower energy distribution with higher electronic states density. The theoretical absorption of YSO shows larger bandwidth and higher intensity than that of LSO. The results are compared with the experimental host excitations and impurity photoluminescence in Eu{sup 3+}-doped YSO and LSO.

  20. Investigation of UO2 as an accelerator for quantitative extraction of F- and Cl- in ThO2 and sintered ThO2

    International Nuclear Information System (INIS)

    Pandey, Ashish; Fulzele, Ajit; Das, D.K.; Prakash, Amrit; Behere, P.G.; Afzal, Mohd

    2013-01-01

    This paper presents UO 2 as an effective accelerator for the quantitative extraction of F - and Cl - from ThO 2 and sintered ThO 2 . Thoria requires higher temperature to loose its structural integrity to release halides. Sample composed of UO 2 and ThO 2 or UO 2 and sintered ThO 2 gives quantitative yield of F - and Cl - even at lower temperature. Accelerator amount and pyrohydrolysis conditions were optimized. The pyrohydrolyzate was analyzed for F - and Cl - by ISE. The limit of detection was 1 μg/g in the samples with good recovery (95%) and relative standard deviation less than 5%. (author)

  1. Evaluation of micro-abrasion-corrosion on SiO2-TiO2-ZrO2 coatings synthesized by the sol-gel method

    Science.gov (United States)

    Bautista Ruiz, J.; Aperador, W.; Caballero Gómez, J.

    2016-02-01

    The medical science and the engineering, work to improve the materials used in the manufacture of joint implants, since they have a direct impact on the quality of people life. The surgical interventions are increasing worldwide with a high probability of a second or even a third intervention. Around these circumstances, it was evaluated the behaviour against microabrasion-corrosion phenomena on SiO2 TiO2 ZrO2 coatings, synthesized by the sol-gel method with concentration of the Si/Ti/Zr precursors: 10/70/20 and 10/20/70. The coatings were deposited on AISI 316 LVM stainless steel substrates. The morphological characterization of the wear was made by AFM techniques. It was observed that the coatings with higher levels of titanium have a good response to the phenomena of microabrasion-corrosion.

  2. First assessment of Li2O-Bi2O3 ceramic oxides for high temperature carbon dioxide capture

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá(n)ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O-Bi2O3 system.The compounds (Li7BiO6,Li5BiOs,Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction,scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 ℃ under the CO2 atmosphere to evaluate the carbonate formation,which is indicative of the capacity of CO2 capture.Moreover,Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g,which is considerably higher than those of other previously reported ceramics.Li7BiO6 is able to react with CO2 from 240 ℃ to approximately 660 ℃ showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  3. High-Affinity Low-Capacity and Low-Affinity High-Capacity N-Acetyl-2-Aminofluorene (AAF) Macromolecular Binding Sites Are Revealed During the Growth Cycle of Adult Rat Hepatocytes in Primary Culture.

    Science.gov (United States)

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.

  4. Paper-based immune-affinity arrays for detection of multiple mycotoxins in cereals.

    Science.gov (United States)

    Li, Li; Chen, Hongpu; Lv, Xiaolan; Wang, Min; Jiang, Xizhi; Jiang, Yifei; Wang, Heye; Zhao, Yongfu; Xia, Liru

    2018-03-01

    Mycotoxins produced by different species of fungi may coexist in cereals and feedstuffs, and could be highly toxic for humans and animals. For quantification of multiple mycotoxins in cereals, we developed a paper-based mycotoxin immune-affinity array. First, paper-based microzone arrays were fabricated by photolithography. Then, monoclonal mycotoxin antibodies were added in a copolymerization reaction with a cross-linker to form an immune-affinity monolith on the paper-based microzone array. With use of a competitive immune-response format, paper-based mycotoxin immune-affinity arrays were successfully applied to detect mycotoxins in samples. The detection limits for deoxynivalenol, zearalenone, T-2 toxin, and HT-2 toxin were 62.7, 10.8, 0.36, and 0.23 μg·kg -1 , respectively, which meet relevant requirements for these compounds in food. The recovery rates were 81-86% for deoxynivalenol, 89-117% for zearalenone, 79-86% for T-2 toxin, and 78-83% for HT-2 toxin, and showed the paper-based immune-affinity arrays had good reproducibility. In summary, the paper-based mycotoxin immune-affinity array provides a sensitive, rapid, accurate, stable, and convenient platform for detection of multiple mycotoxins in agro-foods. Graphical abstract Paper-based immune-affinity monolithic array. DON deoxynivalenol, HT-2 HT-2 toxin, T-2 T-2 toxin, PEGDA polyethylene glycol diacrylate, ZEN zearalenone.

  5. Hydrogen production by photoelectrolytic decomposition of H2O using solar energy

    Science.gov (United States)

    Rauh, R. D.; Alkaitis, S. A.; Buzby, J. M.; Schiff, R.

    1980-01-01

    Photoelectrochemical systems for the efficient decomposition of water are discussed. Semiconducting d band oxides which would yield the combination of stability, low electron affinity, and moderate band gap essential for an efficient photoanode are sought. The materials PdO and Fe-xRhxO3 appear most likely. Oxygen evolution yields may also be improved by mediation of high energy oxidizing agents, such as CO3(-). Examination of several p type semiconductors as photocathodes revealed remarkable stability for p-GaAs, and also indicated p-CdTe as a stable H2 photoelectrode. Several potentially economical schemes for photoelectrochemical decomposition of water were examined, including photoelectrochemical diodes and two stage, four photon processes.

  6. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    Science.gov (United States)

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  7. Nanocrystal in Er3+-doped SiO2-ZrO2 Planar Waveguide with Yb3+ Sensitizer

    International Nuclear Information System (INIS)

    Razaki, N. Iznie; Jais, U. Sarah; Abd-Rahman, M. Kamil; Bhaktha, S. N. B.; Chiasera, A.; Ferrari, M.

    2010-01-01

    Higher doping of Er 3+ in glass ceramic waveguides would cause concentration and pair-induced quenching which lead to inhomogeneous line-width of luminescence spectrum thus reduce output intensity. Concentration quenching can be overcome by introducing ZrO 2 in the glass matrix while co-doping with Yb 3+ which acts as sensitizer would improve the excitation efficiency of Er 3+ . In this study, SiO 2 -ZrO 2 planar waveguides having composition in mol percent of 70SiO 2 -30ZrO 2 doped with Er 3+ and co-doped with Yb 3+ , were prepared via sol-gel route. Narrower and shaper peaks of PL and XRD shows the formation of nanocrystals. Intensity is increase with addition amount of Yb 3+ shows sensitizing effect on Er 3+ .

  8. ??????????? ??????????????? ????? ??????-???????? ????????????? ?????????? ??????? ?aO?Al2O3?TiO2 ??? ???????? ?????? ?????

    OpenAIRE

    ???????, ????; ??????, ?????????

    2011-01-01

    ? ????? ?????? ?????????? ???????? ?????????????? ??????????? ????????????? ??? ??????-????????? ???????????????? ?????????? ??????? ?aO?Al2O3?TiO2, ?? ???????? ??????? ? ???????????? ??????? ??? ???????? ? ?????? ????????? ?????? ?????. ???????? ?????????? ???????? ??? ??????????? ?????????? ??????? ????????? ???????????? ?????????? ??? ??????????? 12000?, ?? ????????? ?????????????? ????????????? ???????, ????????? ???? ? ?????????? ????? ???????? ??????? ???????????. ????????, ?? ?? ...

  9. Crystal structure and spectroscopic behavior of synthetic novgorodovaite Ca2(C2O4)Cl2·2H2O and its twinned triclinic heptahydrate analog

    Science.gov (United States)

    Piro, Oscar E.; Echeverría, Gustavo A.; González-Baró, Ana C.; Baran, Enrique J.

    2018-02-01

    Synthetic novgorodovaite analog Ca2(C2O4)Cl2·2H2O is identical to its natural counterpart. It crystallizes in the monoclinic I2/ m space group with a = 6.9352(3), b = 7.3800(4), c = 7.4426(3) Å, β = 94.303(4)°, V = 379.85(3) Å3 and Z = 2. The heptahydrate analog, Ca2(C2O4)Cl2·7H2O, crystallizes as triclinic twins in the P \\overline{1} space group with a = 7.3928(8), b = 8.9925(4), c = 10.484(2) Å, α = 84.070(7), β = 70.95(1), γ = 88.545(7)°, V = 655.3(1) Å3 and Z = 2. The crystal packing of both calcium oxalate-chloride double salts favors the directional bonding of oxalate, C2O4 2-, ligands to calcium ions as do other related calcium oxalate minerals. The π-bonding between C and O atoms of the C2O4 2- oxalate group leaves sp 2-hydridised orbitals of the oxygen atoms available for bonding to Ca. Thus, the Ca-O bonds in both calcium oxalate-chloride double salts are directed so as to lie in the plane of the oxalate group. This behavior is reinforced by the short O···O distances between the oxygens attached to a given carbon atom, which favors them bonding to a shared Ca atom in bidentate fashion. Strong bonding in the plane of the oxalate anion and wide spacing perpendicular to that plane due to repulsion between oxalate π-electron clouds gives rise to a polymerized structural units which are common to both hydrates, explaining the nearly equal cell constants 7.4 Å which are defined by the periodicity of Ca-oxalate chains in the framework (monoclinic b ≈ triclinic a). When compared with novgorodovaite, the higher water content of Ca2(C2O4)Cl2·7H2O leads to some major differences in their structures and ensuing physical properties. While novgorodovaite has a three-dimensional framework structure, in the higher hydrate, the highly polar water molecules displace chloride ions from the calcium coordination sphere and surround them through OwH···Cl hydrogen bonds. As a result, polymerization in Ca2(C2O4)Cl2·7H2O solid is limited to the formation

  10. One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties

    KAUST Repository

    Chen, Jun Song

    2009-01-01

    In this work, uniform SnO2 hollow nanospheres with large void space have been synthesized by a modified facile method. The void space can be easily controlled by varying the reaction time. The formation of interior void space is based on an inside-out Ostwald ripening mechanism. More importantly, this facile one-pot process can be extended to fabricate rattle-type hollow structures using α-Fe2O3@SnO2 as an example. Furthermore, the electrochemical lithium storage properties have been investigated. It is found that α-Fe2O3@SnO 2 nanorattles manifest a much lower initial irreversible loss and higher reversible capacity compared to SnO2 hollow spheres. This interesting finding supports a general hypothesis that a synergistic effect between functional core and shell materials can lead to improved lithium storage capabilities. © The Royal Society of Chemistry 2009.

  11. V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries

    Science.gov (United States)

    Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun

    2016-09-01

    The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design.

  12. Solvothermal preparation of nanocrystalline anatase containing TiO{sub 2} and TiO{sub 2}/SiO{sub 2} coating agents for application of photocatalytic treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mahltig, B., E-mail: boris.mahltig@hs-niederrhein.de [University of Applied Sciences Niederrhein, Faculty of Textile and Clothing Technology, Webschulstrasse 31, D-41065 Moenchengladbach (Germany); Gesellschaft zur Foerderung von Medizin-, Bio- und Umwelttechnologien e.V., GMBU e.V., Postfach 520165, D-01317 Dresden (Germany); Gutmann, E. [Technische Universitaet Dresden, Institut fuer Strukturphysik, D-01062 Dresden (Germany); Meyer, D.C. [Technische Universitaet Dresden, Institut fuer Strukturphysik, D-01062 Dresden (Germany); Technische Universitaet Bergakademie Freiberg, Institut fuer Experimentelle Physik, D-09596 Freiberg (Germany)

    2011-05-16

    Research highlights: {yields} TiO{sub 2} and TiO{sub 2}/SiO{sub 2} materials prepared by a solvothermal sol-gel process. {yields} Photodecomposition with oxygen increases with increasing solvothermal process temperature. {yields} In presence of H{sub 2}O{sub 2} the dye decomposition is observed even without UV light illumination. {yields} The materials contain potential for cleaning waste water containing dye stuffs. - Abstract: This paper reports on TiO{sub 2} and TiO{sub 2}/SiO{sub 2} materials prepared by a sol-gel process under solvothermal conditions with process temperatures between 120 deg. C and 180 deg. C. Under the preparation conditions chosen, the formation of anatase crystallites starts at a process temperature of 160 deg. C, as observed by X-ray diffraction. From TiO{sub 2} and TiO{sub 2}/SiO{sub 2} sols coatings on viscose fabrics and powders have been prepared. The photoactivity of both materials - coated textiles and powders - is determined by the decomposition of the dye AcidOrange under UV light illumination. Significant dye decomposition is only observed for samples containing a high ratio of TiO{sub 2} and that are solvothermally prepared at 180 deg. C. In contrast, when the photoactivity is determined in presence of H{sub 2}O{sub 2} totally different results are obtained and the degree of AcidOrange decomposition is higher for most of the samples. Furthermore, in presence of H{sub 2}O{sub 2} the dye decomposition is observed even without UV light illumination. Especially samples prepared with the polymer Pluronic P123 under lower solvothermal process temperatures exhibit strong dye decomposition without illumination in presence of H{sub 2}O{sub 2}. Therefore, these materials could be of high interest for cleaning waste water containing dye stuffs from textile industry.

  13. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    International Nuclear Information System (INIS)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-01-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB 1 Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB 2 Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB 2 Rs (hCB 2 Rs). The affinity of cannabinoids for hCB 2 Rs was determined by competition binding studies employing CHO-hCB 2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB 2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB 2 Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB 2 Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ 9 -tetrahydrocannabinol (Δ 9 -THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB 2 R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB 2 Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB 2 Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB 1 and CB 2 Rs. - Highlights: • JWH-018 and JWH-073 are synthetic cannabinoids present in abused K2

  14. Electron affinities: theoretical

    International Nuclear Information System (INIS)

    Kaufman, J.J.

    1976-01-01

    A brief description is given of the conceptual background and formalism of the various ab-initio and semi-ab-initio quantum computational techniques for calculating atomic and molecular electron affinities: Hartree--Fock--Roothaan SCF, configuration interaction (CI), multiconfiguration SCF (MC-SCF), Bethe--Goldstone, superposition of configurations (SOC), ab-initio effective core model potentials, Xα-MS, plus other less common methods. Illustrative and comparative examples of electron affinities calculated by these various methods are presented

  15. The Effect of Chronic Hypercapnia on Oxygen Affinity and 2, 3 Diphosphoglycerate as Related to Submarine Exposure

    Science.gov (United States)

    The relationship between oxygen affinity and 2,3 diphosphoglycerate (2,3 DPG) in the red cell has been studied in chronic hypercapnia induced by...initial values after seven days of exposure. Both oxygen half-saturation pressure (P50) and the level of 2,3 DPG of the red cells followed the time

  16. Hydrogen Production by Steam Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO2, ZrO2, and La2O3 as Supports

    Directory of Open Access Journals (Sweden)

    Bernay Cifuentes

    2015-11-01

    Full Text Available CeO2-, ZrO2-, and La2O3-supported Rh-Pt catalysts were tested to assess their ability to catalyze the steam reforming of ethanol (SRE for H2 production. SRE activity tests were performed using EtOH:H2O:N2 (molar ratio 1:3:51 at a gaseous space velocity of 70,600 h−1 between 400 and 700 °C at atmospheric pressure. The SRE stability of the catalysts was tested at 700 °C for 27 h time on stream under the same conditions. RhPt/CeO2, which showed the best performance in the stability test, also produced the highest H2 yield above 600 °C, followed by RhPt/La2O3 and RhPt/ZrO2. The fresh and aged catalysts were characterized by TEM, XPS, and TGA. The higher H2 selectivity of RhPt/CeO2 was ascribed to the formation of small (~5 nm and stable particles probably consistent of Rh-Pt alloys with a Pt surface enrichment. Both metals were oxidized and acted as an almost constant active phase during the stability test owing to strong metal-support interactions, as well as the superior oxygen mobility of the support. The TGA results confirmed the absence of carbonaceous residues in all the aged catalysts.

  17. Theoretical study for the reduction of N2O with CO Mediated by alkaline-earth metal oxide cations 2MO+(M=Ca, Sr, Ba)

    International Nuclear Information System (INIS)

    Zhang Jianhui; Leng Yanli; Wang Yongcheng

    2013-01-01

    The reaction mechanism of the reaction N 2 O( 0 Σ + ) + CO ( 1 Σ + )→N 2 ( 1 Σ g + ) + CO 2 ( 1 Σ g + ) mediated by alkaline-earth metal oxide cations 2 MO + (m=Ca, Sr, Ba) have been investigated by using the UB3LYP and CCSD (T) levels of theory. The O-atom affinities (OA) testified that only the 2 CaO + can capture O from N 2 O and transfer O to CO is thermodynamically allowed in three ions. The processes can be expressed as channels l and 2 for the reaction of N 2 O and CO mediated by 2 MO + (M=Ca, Sr, Ba). For the former, the main reaction processes in a two-step manner to products, the 2 MO + , as a catalyzer, transports an oxygen atom from N 2 O to CO. For the latter, firstly, the N 2 O interact with the 2 MO + to form IM1, then IM1 interact with the CO to form IM2', along the reaction pathway the intermediate species convert into products 2 1MO + , N 2 and CO 2 . From above results, the following conclusion was drawn. The channel 2 is kinetically and thermodynamically feasible. Our calculated results show the title reactions are accord with the experiment. (authors)

  18. Hemoglobin–Albumin Cluster Incorporating a Pt Nanoparticle: Artificial O2 Carrier with Antioxidant Activities

    Science.gov (United States)

    Hosaka, Hitomi; Haruki, Risa; Yamada, Kana; Böttcher, Christoph; Komatsu, Teruyuki

    2014-01-01

    A covalent core–shell structured protein cluster composed of hemoglobin (Hb) at the center and human serum albumins (HSA) at the periphery, Hb-HSAm, is an artificial O2 carrier that can function as a red blood cell substitute. Here we described the preparation of a novel Hb-HSA3 cluster with antioxidant activities and its O2 complex stable in aqueous H2O2 solution. We used an approach of incorporating a Pt nanoparticle (PtNP) into the exterior HSA unit of the cluster. A citrate reduced PtNP (1.8 nm diameter) was bound tightly within the cleft of free HSA with a binding constant (K) of 1.1×107 M−1, generating a stable HSA-PtNP complex. This platinated protein showed high catalytic activities for dismutations of superoxide radical anions (O2 •–) and hydrogen peroxide (H2O2), i.e., superoxide dismutase and catalase activities. Also, Hb-HSA3 captured PtNP into the external albumin unit (K = 1.1×107 M−1), yielding an Hb-HSA3(PtNP) cluster. The association of PtNP caused no alteration of the protein surface net charge and O2 binding affinity. The peripheral HSA-PtNP shell prevents oxidation of the core Hb, which enables the formation of an extremely stable O2 complex, even in H2O2 solution. PMID:25310133

  19. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery

    International Nuclear Information System (INIS)

    Yu Lihong; Qiu Xinping; Xi Jingyu; Zhu Wentao; Chen Liquan

    2006-01-01

    The surface of spinel LiMn 2 O 4 was modified with TiO 2 by a simple sol-gel method to improve its electrochemical performance at elevated temperatures and higher working potentials. Compared with pristine LiMn 2 O 4 , surface-modification improved the cycling stability of the material. The capacity retention of TiO 2 -modified LiMn 2 O 4 was more than 85% after 60 cycles at high potential cycles between 3.0 and 4.8 V at room temperature and near to 90% after 30 cycles at elevated temperature of 55 deg. C at 1C charge-discharge rate. SEM studies shows that the surface morphology of TiO 2 -modified LiMn 2 O 4 was different from that of pristine LiMn 2 O 4 . Powder X-ray diffraction indicated that spinel was the only detected phase in TiO 2 -modified LiMn 2 O 4 . Introduction of Ti into LiMn 2 O 4 changed the electronic structures of the particle surface. Therefore a surface solid compound of LiTi x Mn 2-x O 4 may be formed on LiMn 2 O 4 . The improved electrochemical performance of surface-modified LiMn 2 O 4 was attributed to the improved stability of crystalline structure and the higher Li + conductivity

  20. Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o.

    Science.gov (United States)

    Barranco-Medina, Sergio; Krell, Tino; Bernier-Villamor, Laura; Sevilla, Francisca; Lázaro, Juan-José; Dietz, Karl-Josef

    2008-01-01

    Mitochondria from plants, yeast, and animals each contain at least one peroxiredoxin (Prx) that is involved in peroxide detoxification and redox signalling. The supramolecular dynamics of atypical type II Prx targeted to the mitochondrion was addressed in pea. Microcalorimetric (ITC) titrations identified an extremely high-affinity binding between the mitochondrial PsPrxIIF and Trx-o with a K(D) of 126+/-14 pM. Binding was driven by a favourable enthalpy change (DeltaH= -60.6 kcal mol(-1)) which was counterbalanced by unfavourable entropy changes (TDeltaS= -47.1 kcal mol(-1)). This is consistent with the occurrence of large conformational changes during binding which was abolished upon site-directed mutaganesis of the catalytic C59S and C84S. The redox-dependent interaction was confirmed by gel filtration of mitochondrial extracts and co-immunoprecipitation from extracts. The heterocomplex of PsPrxIIF and Trx-o reduced peroxide substrates more efficiently than free PsPrxIIF suggesting that Trx-o serves as an efficient and specific electron donor to PsPrxIIF in vivo. Other Trx-s tested by ITC analysis failed to interact with PsPrxIIF indicating a specific recognition of PsPrxIIF by Trx-o. PsPrxIIF exists primarily as a dimer or a hexamer depending on the redox state. In addition to the well-characterized oligomerization of classical 2-Cys Prx the results also show that atypical Prx undergo large structural reorganization with implications for protein-protein interaction and function.

  1. SnO2 anode surface passivation by atomic layer deposited HfO2 improves li-ion battery performance

    KAUST Repository

    Yesibolati, Nulati

    2014-03-14

    For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2-based anodes. Specifically, the measured battery capacity at a current density of 150 mAg -1 after 100 cycles is 548 and 853 mAhg-1 for the uncoated and HfO2-coated anodes, respectively. Material analysis reveals that the HfO2 layers are amorphous in nature and conformably coat the SnO2-based anodes. In addition, the analysis reveals that ALD HfO2 not only protects the SnO2-based anodes from irreversible reactions with the electrolyte and buffers its volume change, but also chemically interacts with the SnO2 anodes to increase battery capacity, despite the fact that HfO2 is itself electrochemically inactive. The amorphous nature of HfO2 is an important factor in explaining its behavior, as it still allows sufficient Li diffusion for an efficient anode lithiation/delithiation process to occur, leading to higher battery capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Crystallization behavior of (1 - x)Li2O.xNa2O.Al2O3.4SiO2 glasses

    International Nuclear Information System (INIS)

    Wang, Moo-Chin; Cheng, Chih-Wei; Chang, Kuo-Ming; Hsi, Chi-Shiung

    2010-01-01

    The crystallization behavior of the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and energy dispersive spectroscopy (EDS). The crystalline phase was composed of β-spodumene. The isothermal crystallization kinetics of β-spodumene from the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses has also been studied by a quantitative X-ray diffraction method. The activation energy of β-spodumene formation decreases from 359.2 to 317.8 kJ/mol when the Na 2 O content increases from 0 to 0.4 mol and it increases from 317.8 to 376.9 kJ/mol when the Na 2 O content increases from 0.4 to 0.6 mol. The surface nucleation and plate-like growth were dominant in the crystallization of the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses.

  3. N-TiO2/gamma-Al2O3 granules: preparation, characterization and photocatalytic activity for the degradation of 2,4-dichlorophenol.

    Science.gov (United States)

    Huang, Donggen; Xie, Wenfa; Tu, Zhibin; Zhang, Feng; Quan, Shuiqing; Liu, Lei

    2013-01-01

    Nitrogen doping TiO2 and gamma-Al2O3 composite oxide granules (N-TiO2/gamma-Al2O3) were prepared by co-precipitation/oil-drop/calcination in gaseous NH3 process using titanium sulphate and aluminum nitrate as raw materials. After calcination at 550 degrees C in NH3 atmosphere, the composite granules showed anatase TiO2 and gamma-Al2O3 phases with the granularity of 0.5-1.0 mm. The anatase crystallite size of composite granules was range from 3.5-25 nm calculated from XRD result. The UV-Vis spectra and N 1s XPS spectra indicated that N atoms were incorporated into the TiO2 crystal lattice. The product granules could be used as a photocatalyst in moving bed reactor, and was demonstrated a higher visible-light photocatalytic activity for 2,4-dichlorophenol degradation compared with commercial P25 TiO2. When the mole ratio of TiO2 to Al2O3 equal to 1.0 showed the highest catalytic activity, the degradation percentage of 2,4-chlorophenol could be up to 92.5%, under 60 W fluorescent light irradiation for 9 hours. The high visible-light photocatalytic activity might be a synergetic effect of nitrogen doping and the form of binary metal oxide of TiO2 and gamma-Al2O3.

  4. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    Science.gov (United States)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  5. Photocatalytic degradation of textile dye direct orange 26 by using CoFe2O4/Ag2O

    International Nuclear Information System (INIS)

    Azhdari, F.; Mehdipour Ghazi, M.

    2016-01-01

    The magnetic and recyclable nanoparticles of CoFe 2 O 4 were synthesized by a reverse co-precipitation process. Sonication was used to couple the CoFe 2 O 4 surface with Ag 2 O. The characteristics and optical properties of the catalyst were studied by powder X-ray diffraction, UV–visible reflectance spectroscopy and scanning electron microscopy analyses. Pure CoFe 2 O 4 and CoFe 2 O 4 /Ag 2 O were utilized to determine the visible light photo catalytic degradation of Direct Orange 26. The effects of p H, the initial concentration of catalyst and initial dye concentration on the photo catalytic process were investigated. It was found that the presence of Ag 2 O remarkably improved the photo catalytic adsorption capacity and degradation efficiency of CoFe 2 O 4 /Ag 2 O when compared with the pure CoFe 2 O 4 . Moreover, due to the magnetic behavior of CoFe 2 O 4 , these coupled nanoparticles can be easily separated from the aqueous solution by applying an external magnetic field. The prepared Ag 2 O-modified CoFe 2 O 4 exhibited much higher (about 40%) photo catalytic activity than the unmodified one. The results showed that the loading of the Ag 2 O significantly improved the photo catalytic performance of the CoFe 2 O 4 in which the Ag 2 O acted as a charge carrier to capture the delocalized electrons.

  6. Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses

    Science.gov (United States)

    Sayyed, M. I.; Lakshminarayana, G.; Dong, M. G.; Ersundu, M. Çelikbilek; Ersundu, A. E.; Kityk, I. V.

    2018-04-01

    In this work, mass attenuation coefficients (μ/ρ), effective atomic number (Zeff), electron density (Ne), mean free path (MFP), and half-value layer (HVL) of 20 BaO/SrO‒(x) Bi2O3‒(80‒x) B2O3 glasses (where x=10, 20, 30, 40, 50 and 60 mol%) were calculated using WinXCom program and MCNP5 code. The obtained (μ/ρ) results using both MCNP5 code and WinXCom program were in good agreement. It is found that the addition of Bi2O3 leads to increase the Zeff values in both BaO/SrO‒Bi2O3‒B2O3 glass systems. However, the Zeff values of the BaO‒Bi2O3‒B2O3 glass system are higher than those of the SrO‒Bi2O3‒B2O3 glasses. The fast neutrons effective removal cross sections (ΣR) for 20 SrO‒40 Bi2O3‒40 B2O3 glass is the highest among all studied glasses. The calculated half-value layer values were compared with different glass systems and it was found that the shielding properties of the selected glasses are comparable or even better than other glass systems such as phosphate glasses.

  7. Raman and Fluorescence Spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7

    Directory of Open Access Journals (Sweden)

    Jianlan Cui

    2015-01-01

    Full Text Available To better understand and ascertain the mechanisms of flotation reagent interaction with rare earth (RE minerals, it is necessary to determine the physical and chemical properties of the constituent components. Seven rare earth oxides (CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7 that cover the rare earth elements (REEs from light to heavy REEs have been investigated using Raman spectroscopy. Multiple laser sources (wavelengths of 325 nm, 442 nm, 514 nm, and 632.8 nm for the Raman shift ranges from 100 cm−1 to 5000 cm−1 of these excitations were used for each individual rare earth oxide. Raman shifts and fluorescence emission have been identified. Theoretical energy levels for Er, Nd, and Yb were used for the interpretation of fluorescence emission. The experimental results showed good agreement with the theoretical calculation for Er2O3 and Nd2O3. Additional fluorescence emission was observed with Yb2O3 that did not fit the reported energy level diagram. Tb4O7 was observed undergoing laser induced changes during examination.

  8. Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2/Zn2SnO4 Coupled Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tiekun Jia

    2014-01-01

    Full Text Available Zn-doped SnO2/Zn2SnO4 nanocomposites were prepared via a two-step hydrothermal synthesis method. The as-prepared samples were characterized by X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, UV-vis diffuse reflection spectroscopy, and adsorption-desorption isotherms. The results of FESEM and TEM showed that the as-prepared Zn-doped SnO2/Zn2SnO4 nanocomposites are composed of numerous nanoparticles with the size ranging from 20 nm to 50 nm. The specific surface area of the as-prepared Zn-doped SnO2/Zn2SnO4 nanocomposites is estimated to be 71.53 m2/g by the Brunauer-Emmett-Teller (BET method. The photocatalytic activity was evaluated by the degradation of methylene blue (MB, and the resulting showed that Zn-doped SnO2/Zn2SnO4 nanocomposites exhibited excellent photocatalytic activity due to their higher specific surface area and surface charge carrier transfer.

  9. Higher-order quasi-phase matched second harmonic generation in periodically poled MgO-doped stoichiometric LiTaO3

    International Nuclear Information System (INIS)

    Yu, Nan Ei; Kurimura, Sunao; Kitamura, Kenji

    2005-01-01

    A periodically poled device was investigated by using fourth-order quasi-phase-matched (QPM) second harmonic generation (SHG) in MgO-doped stoichiometric lithium tantalate (LiTaO 3 ). The effective nonlinear coefficient was found be 2.4 pm/V by using fourth-order QPM SHG at the fundamental wavelength of 1064 nm. For first-order QPM SHG, the effective value of d 33 could be 9.2 pm/V. Using the sensitive higher-order QPM SHG method, we investigated the relationship between the domain duty ratio and the conversion efficiency.

  10. Ab initio and transition state theory study of the OH + HO2 → H2O + O2(3Σg−)/O2(1Δg) reactions: yield and role of O2(1Δg) in H2O2 decomposition and in combustion of H2

    KAUST Repository

    Monge Palacios, Manuel

    2018-01-22

    Reactions of hydroxyl (OH) and hydroperoxyl (HO2) are important for governing the reactivity of combustion systems. We performed post-CCSD(T) ab initio calculations at the W3X-L//CCSD = FC/cc-pVTZ level to explore the triplet ground-state and singlet excited-state potential energy surfaces of the OH + HO2 → H2O + O2(3Σg−)/O2(1Δg) reactions. Using microcanonical and multistructural canonical transition state theories, we calculated the rate constant for the triplet and singlet channels over the temperature range 200–2500 K, represented by k(T) = 3.08 × 1012T0.07 exp(1151/RT) + 8.00 × 1012T0.32 exp(−6896/RT) and k(T) = 2.14 × 106T1.65 exp(−2180/RT) in cm3 mol−1 s−1, respectively. The branching ratios show that the yield of singlet excited oxygen is small (<0.5% below 1000 K). To ascertain the importance of singlet oxygen channel, our new kinetic information was implemented into the kinetic model for hydrogen combustion recently updated by Konnov (Combust. Flame, 2015, 162, 3755–3772). The updated kinetic model was used to perform H2O2 thermal decomposition simulations for comparison against shock tube experiments performed by Hong et al. (Proc. Combust. Inst., 2013, 34, 565–571), and to estimate flame speeds and ignition delay times in H2 mixtures. The simulation predicted a larger amount of O2(1Δg) in H2O2 decomposition than that predicted by Konnov\\'s original model. These differences in the O2(1Δg) yield are due to the use of a higher ab initio level and a more sophisticated methodology to compute the rate constant than those used in previous studies, thereby predicting a significantly larger rate constant. No effect was observed on the rate of the H2O2 decomposition and on the flame speeds and ignition delay times of different H2–oxidizer mixtures. However, if the oxidizer is seeded with O3, small differences appear in the flame speed. Given that O2(1Δg) is much more reactive than O2(3Σg−), we do not preclude an effect of the

  11. In situ modification of cell-culture scaffolds by photocatalysis of visible-light-responsive TiO2 film

    Science.gov (United States)

    Kono, Sho; Furusawa, Kohei; Kurotobi, Atsushi; Hattori, Kohei; Yamamoto, Hideaki; Hirano-Iwata, Ayumi; Tanii, Takashi

    2018-02-01

    We propose a novel process to modify the cell affinity of scaffolds in a cell-culture environment using the photocatalytic activity of visible-light (VL)-responsive TiO2. The proposed process is the improved version of our previous demonstration in which ultraviolet (UV)-responsive TiO2 was utilized. In that demonstration, we showed that cell-repellent molecules on TiO2 were decomposed and replaced with cell-permissive molecules upon UV exposure in the medium where cells are being cultured. However, UV irradiation involves taking the risk of inducing damage to the cells. In this work, a TiO2 film was sputter-deposited on a quartz coverslip at 640 °C without O2 gas injection to create a rutile structure containing oxygen defects, which is known to exhibit photocatalytic activity upon VL exposure. We show that the cell adhesion site and migration area can be controlled with the photocatalytic activity of the VL-responsive TiO2 film, while the cellular oxidative stress is reduced markedly by the substitution of VL for UV.

  12. Structural and photoluminescence study of Er-Yb codoped nanocrystalline ZrO{sub 2}-B{sub 2}O{sub 3} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro 76000 (Mexico); Borja-Urby, R. [Grupo de Espectroscopia de Materiales Avanzados y nanoestructurados (EMANA), Centro de Investigaciones en Optica, A. C., Loma del Bosque 115, Col. Lomas del Campestre, C.P. 37150 Leon, Gto. (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Grupo de Espectroscopia de Materiales Avanzados y nanoestructurados (EMANA), Centro de Investigaciones en Optica, A. C., Loma del Bosque 115, Col. Lomas del Campestre, C.P. 37150 Leon, Gto. (Mexico); Rodriguez, G. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro 76000 (Mexico); Vega, M. [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, A.P. 14-805, 07730 Mexico, DF (Mexico)

    2012-09-20

    Codoped Er{sup 3+} and Yb{sup 3+} nanocrystalline ZrO{sub 2}-B{sub 2}O{sub 3} phosphor obtained by a modified sol-gel method is demonstrated. The addition of up to 2.5 mol% B{sub 2}O{sub 3} to nanocrystalline ZrO{sub 2}:Yb(2%), Er(1%) keep the tetragonal rare-earth stabilized ZrO{sub 2} phase; whereas higher B{sub 2}O{sub 3} content destabilize the tetragonal phase, leading to the tetragonal to monoclinic transition with no tetragonal ZrO{sub 2} phase segregation. Visible upconversion of the luminescent active ions, Er{sup 3+} and Yb{sup 3+}, depend strongly on B{sub 2}O{sub 3} content. The PL intensity is strongly quenched for high B{sub 2}O{sub 3} content due to increasing multiphonon relaxation processes related to B-O and B-O-B vibronic modes.

  13. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    Science.gov (United States)

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. K2V2O2(AsO42

    Directory of Open Access Journals (Sweden)

    Thierry Roisnel

    2012-07-01

    Full Text Available The vanadium oxide arsenate with formula K2V2O2(AsO42, dipotassium divanadium(IV dioxide diarsenate, has been synthesized by solid-state reaction in an evacuated silica ampoule. Its structure is isotypic with K2V2O2(PO42. The framework is built up from corner-sharing VO6 octahedra and AsO4 tetrahedra, creating an infinite [VAsO8]∞ chain running along the a- and c-axis directions. The K+ cations are located in hexagonal tunnels, which are delimited by the connection of the [VAsO8]∞ chains.

  15. A comparative study of charge trapping in HfO{sub 2}/Al{sub 2}O{sub 3} and ZrO{sub 2}/Al{sub 2}O{sub 3} based multilayered metal/high-k/oxide/Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Spassov, D., E-mail: d_spassov@abv.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Skeparovski, A. [Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Paskaleva, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Novkovski, N. [Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)

    2016-09-01

    The electrical properties of multilayered HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2}/SiO{sub 2} and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} metal-oxide semiconductor capacitors were investigated in order to evaluate the possibility of their application in charge-trapping non-volatile memory devices. The stacks were deposited by reactive radiofrequency magnetron sputtering on Si substrates with thermal SiO{sub 2} with a thickness ranging from 2 to 5 nm. Both types of stacks show negative initial oxide charge and its density is higher for HfO{sub 2}-based structures. Memory window up to 6V at sweeping voltage range of ± 16V was obtained for HfO{sub 2}-based stacks. The hysteresis in these structures is mainly due to a trapping of electrons injected from the Si substrate. The charge-trapping properties of ZrO{sub 2}-based samples are compromised by the high leakage currents and the dielectric breakdown. The conduction through the capacitors at low applied voltages results from hopping of thermally excited electrons from one isolated state to another. The energy depth of the traps participating in the hopping conduction was determined as ~ 0.7 eV for the HfO{sub 2}-based layers and ~ 0.6 eV for ZrO{sub 2}-based ones, originating from negatively charged oxygen vacancies. At high electric fields, the current voltage characteristics were interpreted in terms of space charge limited currents, Fowler–Nordheim tunneling, Schottky emission, and Poole–Frenkel mechanism. The charge retention characteristics do not depend on the thickness of the tunnel SiO{sub 2}. - Highlights: • Sputtered HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2} and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2} charge-trapping layers were studied. • HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2} stacks show memory window up to 6 V and good retention times. • Negatively charged oxygen vacancies were identified as main defects in the stacks. • Electrical breakdown compromise the charge-trapping properties

  16. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    Science.gov (United States)

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-07-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affinity for delta receptors than the previously characterized deltorphin, which contains D-methionine as the second amino acid. These peptides show some similarity to another constituent of Phyllomedusa skin, dermorphin, which is highly selective for mu-opioid receptors. These peptides all have the N-terminal sequence Tyr-D-Xaa-Phe, where D-Xaa is either D-alanine or D-methionine. While this structure seems to be capable of activating both mu and delta opioid receptors, differences in the C-terminal regions of these peptides are probably responsible for the observed high receptor selectivity of dermorphin and deltorphin.

  17. Transcriptional and post-transcriptional regulation of pst2 operon expression in Vibrio cholerae O1.

    Science.gov (United States)

    da C Leite, Daniel M; Barbosa, Livia C; Mantuano, Nathalia; Goulart, Carolina L; Veríssimo da Costa, Giovani C; Bisch, Paulo M; von Krüger, Wanda M A

    2017-07-01

    One of the most abundant proteins in V. cholerae O1 cells grown under inorganic phosphate (Pi) limitation is PstS, the periplasmic Pi-binding component of the high-affinity Pi transport system Pst2 (PstSCAB), encoded in pst2 operon (pstS-pstC2-pstA2-pstB2). Besides its role in Pi uptake, Pst2 has been also associated with V. cholerae virulence. However, the mechanisms regulating pst2 expression and the non-stoichiometric production of the Pst2 components under Pi-limitation are unknown. A computational-experimental approach was used to elucidate the regulatory mechanisms behind pst2 expression in V. cholerae O1. Bioinformatics analysis of pst2 operon nucleotide sequence revealed start codons for pstS and pstC genes distinct from those originally annotated, a regulatory region upstream pstS containing potential PhoB-binding sites and a pstS-pstC intergenic region longer than predicted. Analysis of nucleotide sequence between pstS-pstC revealed inverted repeats able to form stem-loop structures followed by a potential RNAse E-cleavage site. Another putative RNase E recognition site was identified within the pstA-pstB intergenic sequence. In silico predictions of pst2 operon expression regulation were subsequently tested using cells grown under Pi limitation by promoter-lacZ fusion, gel electrophoresis mobility shift assay and quantitative RT-PCR. The experimental and in silico results matched very well and led us to propose a pst2 promoter sequence upstream of pstS gene distinct from the previously annotated. Furthermore, V. cholerae O1 pst2 operon transcription is PhoB-dependent and generates a polycistronic mRNA molecule that is rapidly processed into minor transcripts of distinct stabilities. The most stable was the pstS-encoding mRNA, which correlates with PstS higher levels relative to other Pst2 components in Pi-starved cells. The relatively higher stability of pstS and pstB transcripts seems to rely on the secondary structures at their 3' untranslated regions

  18. Glass-ceramic enamels derived from the Li2O-Na2O-Al2O3-TiO2-SiO2 system

    Directory of Open Access Journals (Sweden)

    SNEZANA R. GRUJIC

    2002-02-01

    Full Text Available The results of research on the conditions for obtaining model glass-ceramic enamels, derived from the basic Li2O-Na2O-Al2O3-TiO2-SiO2 system, by varying the initial composition and thermal treatment conditions, are presented in this paper. Segregation of the crystal phases in the glassy-matrix was carried out during subsequent thermal treatment. The formation of different crystal phases was evidenced through the results of differential-thermal analysis and X-ray powder diffraction analysis.

  19. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  20. NaTaO3 photocatalysts of different crystalline structures for water splitting into H2 and O2

    International Nuclear Information System (INIS)

    Lin, W.-H.; Cheng, C.; Hu, C.-C.; Teng, H.

    2006-01-01

    Perovskite-type NaTaO 3 derived from a sol-gel synthesis exhibited a larger surface area and a remarkably higher photocatalytic activity in water splitting than the solid-state synthesized NaTaO 3 . The sol-gel and solid-state NaTaO 3 had different crystalline structures of monoclinic P2/m and orthorhombic Pcmn, respectively. Diffuse reflectance spectra showed that the sol-gel specimen had a slightly larger band gap. The band structure analysis revealed an indirect band gap for the sol-gel NaTaO 3 , contrary to the direct band gap of the solid-state one. The difference in the electronic structure and surface area explained the higher photocatalytic activity of the sol-gel NaTaO 3

  1. Development and characterization of nickel catalysts supported in CeO2-ZrO2-Al2O3, CeO2-La2O3-Al2O3 e ZrO2-La2O3-Al2O3 matrixes evaluated for methane reforming reactions

    International Nuclear Information System (INIS)

    Abreu, Amanda Jordão de

    2012-01-01

    Nowadays, the methane reforming is large interest industrial for the take advantage of these gas in production the hydrogen and synthesis gas (syngas). Among in the reactions of methane stand of the reactions steam reforming and carbon dioxide reforming of methane. The main catalysts uses in the methane reforming is Ni/Al 2 O 3 . However, the supported-nickel catalyst is susceptible to the deactivation or the destruction by coke deposition. The carbon dissolves in the nickel crystallite and its diffuses through the nickel, leading for formation of the carbon whiskers, which results in fragmentation of the catalyst. Modification of such catalysts, like incorporation of suitable promoters, is desirable to achieve reduction of the methane hydrogenolysis and/or promotion of the carbon gasification. Catalysts 5%Ni/Al 2 O 3 supported on solid solutions formed by ZrO 2 -CeO 2 , La 2 O 3 and CeO 2 -ZrO 2 -La 2 O 3 were prepared, characterized and evaluated in reactions steam and carbon dioxide reforming and partial oxidation of methane with objective the value effect loading solution solid in support. The supports were prepared by co-precipitation method and catalysts were prepared by impregnation method and calcined at 500 deg C. The supports and catalysts were characterized by Nitrogen Adsorption, method -rays diffraction (XRD), X-rays dispersive spectroscopy (XDS), spectroscopy in the region of the ultraviolet and the visible (UV-vis NIR) to and temperature programmed reduction (TPR), Raman Spectroscopy, X-ray absorption spectroscopy and Thermogravimetric Analysis. After all the catalytic reactions check which the addition of solid solution is beneficial for Ni/Al 2 O 3 catalysts and the best catalysts are Ni/CeO 2 -La 2 O 3 -Al 2 O 3 . (author)

  2. Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.

    Science.gov (United States)

    Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G

    2016-06-09

    Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH ≤ 8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.

  3. Soil invertebrate fauna affect N2 O emissions from soil.

    Science.gov (United States)

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  4. State-of-the-art flux pinning in YBa2Cu3O7-δ by the creation of highly linear, segmented nanorods of Ba2(Y /Gd)(Nb/Ta)O6 together with nanoparticles of (Y /Gd)2O3 and (Y /Gd)Ba2Cu4O8

    International Nuclear Information System (INIS)

    Ercolano, G; Bianchetti, M; Wimbush, S C; Harrington, S A; MacManus-Driscoll, J L; Wang, H; Lee, J H

    2011-01-01

    Self-assembled, segmented nanorods of c-axis-aligned Ba 2 (Y /Gd)(Nb/Ta)O 6 as well as randomly distributed nanoparticles of (Y /Gd) 2 O 3 and (Y /Gd)Ba 2 Cu 4 O 8 were grown into YBa 2 Cu 3 O 7-δ (YBCO) thin films by pulsed-laser deposition. The complex pinning landscape proves to be extremely effective, particularly at higher fields where the segmented vortices yield a plateau in critical current density (J c ) with field angle around 60 0 . In 0.3 μm thick films, the J c values are higher than 1 MA cm -2 at 2.5 T (H||c axis). Owing to the combined interactions of the vortices with the different pinning centres, interesting new features are observed at high fields in the angular dependence of J c .

  5. Characterization of Ni-P-SiO_2-Al_2O_3 nanocomposite coatings on aluminum substrate

    International Nuclear Information System (INIS)

    Rahemi Ardakani, S.; Afshar, A.; Sadreddini, S.; Ghanbari, A.A.

    2017-01-01

    In the present work, nano-composites of Ni-P-SiO_2-Al_2O_3 were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO_2 in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO_2 and Al_2O_3 in Ni-P coating at the SiO_2 concentration of 10 g/L and 14 g/L Al_2O_3 led to the lowest corrosion rate (i_c_o_r_r = 0.88 μA/cm"2), the most positive E_c_o_r_r and maximum microhardness (537 μHV). Furthermore, increasing the amount of nanoparticles in the coating was found to decrease CPE_d_l and improve porosity. - Highlights: • The maximum content of Al_2O_3 and SiO_2 in the coating was increased to 14.02%wt and 4.54%wt, respectively. • By enhancing the amount of nanoparticles in the coating, there was higher corrosion resistance. • Increasing the nanoparticles content in the coating improved microhardness of coating. • The maximum of microhardness of Ni-P-SiO_2-Al_2O_3 was measured to be 537 μHV.

  6. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor.

    Directory of Open Access Journals (Sweden)

    Bryan L Roth

    Full Text Available In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as 'designer drugs' and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS-2-(ethylamino-2-(3-methoxyphenylcyclohexanone and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenylcyclohexanamine and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenylcyclohexyl]piperidine and 1-[1-(4-methoxyphenylcyclohexyl]piperidine, were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.

  7. Synergetic Effect of Ni2P/SiO2 and γ-Al2O3 Physical Mixture in Hydrodeoxygenation of Methyl Palmitate

    Directory of Open Access Journals (Sweden)

    Ivan V. Shamanaev

    2017-11-01

    Full Text Available The Ni2P/SiO2 catalyst, which was prepared by in situ temperature-programmed reduction and in the mixture with the inert (SiC, SiO2 or acidic (γ-Al2O3 material was studied in methyl palmitate hydrodeoxygenation (HDO. Methyl palmitate HDO was carried out at temperatures of 270–330 °C, H2/feed volume ratio of 600 Nm3/m3, and H2 pressure of 3.0 MPa. Ni2P/SiO2 catalyst, diluted with γ-Al2O3 showed a higher activity than Ni2P/SiO2 catalyst diluted with SiC or SiO2. The conversion of methyl palmitate increased significantly in the presence of γ-Al2O3 most probably due to the acceleration of the acid-catalyzed reaction of ester hydrolysis. The synergism of Ni2P/SiO2 and γ-Al2O3 in methyl palmitate HDO can be explained by the cooperation of the metal sites of Ni2P/SiO2 and the acid sites of γ-Al2O3 in consecutive metal-catalyzed and acid-catalyzed reactions of HDO. The obtained results let us conclude that the balancing of metal and acid sites plays an important role in the development of the efficient catalyst for the HDO of fatty acid esters over supported phosphide catalysts.

  8. TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.

    Science.gov (United States)

    Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu

    2012-01-01

    TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances.

  9. Effect of polymorphism of Al2O3 on the sintering and microstructure of transparent MgAl2O4 ceramics

    Science.gov (United States)

    Han, Dan; Zhang, Jian; Liu, Peng; Wang, Shiwei

    2017-09-01

    Transparent MgAl2O4 ceramics were fabricated by reactive sintering in air followed by hot isostatic press treatment using commercial Al2O3 powder (γ-Al2O3 or α-Al2O3) and MgO powder as raw materials. The densification rate, microstructure and optical properties of the ceramics were investigated. Densification temperature of the sample from γ-Al2O3/MgO was lower than that from α-Al2O3/MgO. However, in-line transmission (2 mm thick) of the sample from α-Al2O3/MgO at the wavelength of 600 nm and 1100 nm were respectively 77.7% and 84.3%, higher than those (66.7%, 81.4%) of the sample from γ-Al2O3/MgO. SEM observation revealed that the sample from α-Al2O3/MgO exhibited a homogeneous and pore-free microstructure, while, the sample from γ-Al2O3/MgO showed an apparent bimodal microstructure containing pores.

  10. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    Directory of Open Access Journals (Sweden)

    Duong Ngoc Huyen

    2011-02-01

    Full Text Available A nanocomposite of titanium dioxide (TiO2 and polyaniline (PANi was synthesized by in-situ chemical polymerization using aniline (ANi monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules.

  11. MgFe{sub 2}O{sub 4}/ZrO{sub 2} composite nanoparticles for hyperthermia applications

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Amin ur [Magnetism Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Department of Applied Physical and Material Sciences, University of Swat, Khyber Pakhtunkhwa (Pakistan); Humayun, Asif [Magnetism Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Manzoor, Sadia, E-mail: sadia_manzoor@comsats.edu.pk [Magnetism Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2017-04-15

    MgFe{sub 2}O{sub 4}/ZrO{sub 2} composites containing ZrO{sub 2} in different weight percentages from 0% to 80% were prepared via the citrate gel technique as potential candidate materials for magnetic hyperthermia. The biocompatible ceramic ZrO{sub 2} was introduced to prevent MgFe{sub 2}O{sub 4} nanoparticles from aggregation and to reduce their dipolar interactions in order to enhance the specific absorption rate (SAR). Structural and magnetic properties of the samples were studied using powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and a vibrating sample magnetometer (VSM). Magnetically induced heating in radio frequency (RF) magnetic fields was observed in all samples. Most significantly, the sample with only 20 wt% MgFe{sub 2}O{sub 4} has been found to have a SAR that is larger than that of pure MgFe{sub 2}O{sub 4}. This is an important finding from the point of view of biomedical applications, because ZrO{sub 2} in known to have low toxicity and a higher biocompatibility as compared to ferrites. - Highlights: • MgFe{sub 2}O{sub 4} and ZrO{sub 2} composite nanoparticles with different weight percentages of ZrO{sub 2} were prepared via the citrate gel technique. • Significant variation in magnetic properties was observed with increasing the weight % of ZrO{sub 2}. • Magnetically induced heating was observed when the composites were subjected to RF magnetic field. • Most significantly, the sample 80 wt% ZrO{sub 2} has been found to have SAR that is larger than that of pure MgFe{sub 2}O{sub 4}. • The SAR was found to have a strong dependence on magnetic dipolar interactions.

  12. Interactions of ciprofloxacin (CIP), titanium dioxide (TiO{sub 2}) nanoparticles and natural organic matter (NOM) in aqueous suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Elke, E-mail: elke.fries@bgr.de [Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Bureau de Recherches Géologiques et Minières (BRGM), Orléans (France); Crouzet, Catherine; Michel, Caroline; Togola, Anne [Bureau de Recherches Géologiques et Minières (BRGM), Orléans (France)

    2016-09-01

    The aim of the present study was to investigate interactions of the antibiotic ciprofloxacin (CIP), titanium dioxide nanoparticles (TiO{sub 2} NP) and natural organic matter (NOM) in aqueous suspensions. The mean hydrodynamic diameter of particles of TiO{sub 2} NP and NOM in the suspensions ranged from 113 to 255 nm. During batch experiments the radioactivity resulting from {sup 14}CIP was determined in the filtrate (filter pore size 100 nm) by scintillation measurements. Up to 72 h, no significant sorption of NOM to TiO{sub 2} NP was observed at a TiO{sub 2} NP concentration of 5 mg/L. When the concentration of TiO{sub 2} NP was increased to 500 mg/L, a small amount of NOM of 9.5% ± 0.6% was sorbed at 72 h. The low sorption affinity of NOM on TiO{sub 2} NP surfaces could be explained by the negative charge of both components in alkaline media or by the low hydrophobicity of the NOM contents. At a TiO{sub 2} NP concentration of 5 mg L{sup −1}, the sorption of CIP on TiO{sub 2} NP was insignificant (TiO{sub 2} NP/CIP ratio: 10). When the TiO{sub 2} NP/CIP ratio was increased to 1000, a significant amount of 53.6% ± 7.2% of CIP was sorbed on TiO{sub 2} NP under equilibrium conditions at 64 h. In alkaline media, CIP is present mainly as zwitterions which have an affinity to sorb on negatively charged TiO{sub 2} NP surfaces. The sorption of CIP on TiO{sub 2} NP in the range of TiO{sub 2} NP concentrations currently estimated for municipal wastewater treatment plants is estimated to be rather low. The Freundlich sorption coefficients (K{sub F}) in the presence of NOM of 2167 L{sup n} mg mg{sup −n} kg{sup −1} was about 10 times lower than in the absence of NOM. This is an indication that the particle fraction of NOM < 100 nm could play a role as a carrier for ionic organic micro-pollutants as CIP. - Highlights: • Ciprofloxacine (CIP) and titanium dioxide nanoparticles (TiO{sub 2} NP) interact. • Organic carbon (OC) could influence such interactions. • Batch

  13. Effects of Fe{sub 2}O{sub 3} content on ionic conductivity of Li{sub 2}O-TiO{sub 2}-P{sub 2}O{sub 5} glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Mohaghegh, E., E-mail: elnaz.mohaghegh@gmail.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11155-9466 (Iran, Islamic Republic of); Nemati, A. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11155-9466 (Iran, Islamic Republic of); Eftekhari Yekta, B. [Ceramic Division, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 16846-13114 (Iran, Islamic Republic of); Banijamali, S. [Ceramic Division, Materials & Energy Research Center, Alborz, 31787-316 (Iran, Islamic Republic of)

    2017-04-01

    In this study, Li{sub 2}O-TiO{sub 2}-P{sub 2}O{sub 5}-x(Fe{sub 2}O{sub 3}) (x = 0, 2.5, 5 and 7.5 weight part) glass and glass-ceramics were synthesized through conventional melt-quenching method and subsequently heat treatment. Glass samples were studied by UV–visible spectroscopy and crystallized samples were characterized by differential thermal analysis, X-ray diffractometry and field emission scanning electron microscopy. Besides, electrical properties were examined according to the electrochemical impedance spectroscopy techniques. Experimental optical spectra of the Fe{sub 2}O{sub 3}-doped glasses revealed strong UV absorption band in the range of 330–370 nm, which were attributed to the presence of Fe{sup 3+} ions. The major crystalline phase of the fabricated glass-ceramics was LiTi{sub 2}(PO{sub 4}){sub 3}. However, Li{sub 3}PO{sub 4} was also identified as the minor one. Considering the impedance spectroscopy studies, ionic conductivity of Fe{sub 2}O{sub 3} containing glasses was higher than that of the base glass. Additionally, the maximum bulk ionic conductivity of 1.38 × 10{sup −3} S/cm was achieved as well as activation energy as low as 0.26 eV at room temperature for x = 5. - Highlights: • Bulk and total ionic conductivity was extracted by using impedance spectroscopy. • Ionic conductivity of the studied glasses and glass-ceramics increased with increasing Fe{sub 2}O{sub 3} content. • The highest bulk ionic conductivity at room temperature was found to be 1.38 × 10{sup −3} S/cm for GC{sub 5}.

  14. Improvement in performance of Si-based thin film solar cells with a nanocrystalline SiO{sub 2}–TiO{sub 2} layer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yang-Shih [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, ROC (China); Lien, Shui-Yang [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan, ROC (China); Wuu, Dong-Sing, E-mail: dsw@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, ROC (China); Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan, ROC (China); Huang, Yu-Xuan; Kung, Chung-Yuan [Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan, ROC (China)

    2014-11-03

    In this paper, titanium dioxide (TiO{sub 2}) solution with grain sizes of 1–5 nm is prepared by microwave hydrothermal synthesis, and then mixed with silicon dioxide (SiO{sub 2}) solution to yield different SiO{sub 2}/TiO{sub 2} ratios. The mixed solution is then sol–gel spin-coated on glass as an anti-reflecting and self-cleaning bi-functional layer. The experimental results show that the transmittance is optimized not only by minimizing the reflectance by reflective index matching at the glass/air interface, but also by improving the film/glass interface adhesion. Adding SiO{sub 2} into TiO{sub 2} in a weight ratio of 5 leads to the highest average transmittance of 93.6% which is 3% higher than that of glass. All of the SiO{sub 2}–TiO{sub 2} films exhibit a remarkable inherent hydrophilicity even when not illuminated by ultra-violet light. Using the optimized SiO{sub 2}–TiO{sub 2} film in a hydrogenated amorphous silicon/microcrystalline silicon tandem, solar cell increases its conversion efficiency by 5.2%. Two months of outdoor testing revealed that cells with the SiO{sub 2}–TiO{sub 2} film avoid 1.7% of the degradation loss that is caused by dust and dirt in the environment. - Highlights: • High-transmittance and self-cleaning nano-sized SiO{sub 2}–TiO{sub 2} films are prepared. • Using SiO{sub 2}–TiO{sub 2} film can increase average transmittance from 90.5% (glass) to 93.6%. • The SiO{sub 2}–TiO{sub 2} films have naturally hydrophilicity with water contact angles < 13°. • Cells with the film have a 4.9% higher photocurrent than cells without the film.

  15. SnO2/PPy Screen-Printed Multilayer CO2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    S.A. WAGHULEY

    2007-05-01

    Full Text Available Tin dioxide (SnO2 plays a dominant role in solid state gas sensors and exhibit sensitivity towards oxidizing and reducing gases by a variation of its electrical properties. The electrical conducting polymer-polypyrrole (PPy has high anisotropy of electrical conduction and used as a gas sensor. SnO2/PPy multilayer, pure SnO2, pure PPy sensors were prepared by screen-printing method on Al2O3 layer followed by glass substrate. The sensors were used for different concentration (ppm of CO2 gas investigation at room temperature (303 K. The sensitivity of SnO2/PPy multilayer sensor was found to be higher, compared with pure SnO2 and pure PPy sensors. The multilayer sensor exhibited improved stability. The response and recovery time of multilayer sensor were found to be ~2 min and ~10 min respectively.

  16. Towards Isotropic Vortex Pinning in YBCO Films with Double-doping BHO-Y2O3 and BZO-Y2O3 Artificial Pining Centers

    Science.gov (United States)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Haugan, Timothy; Chen, Yanbin; Xing, Zhongwen; Prestigiacomo, Joseph; Osofsky, Mike; Wu, Judy

    2017-12-01

    Strong and isotropic vortex pinning landscape is demanded for high field applications of YaBa2Cu3O7-x (YBCO) epitaxial thin films. Double-doping (DD) of artificial pinning centers (APCs) of mixed morphologies has been identified as a viable approach for this purpose. This work presents a comparative study on the transport critical current density J c (H, θ) of 3.0 vol.%Y2O3+2.0 (or 6.0) vol.% BaZrO3 (BZO DD) and 3.0 vol.%Y2O3+ 2.0 (or 6.0) vol.% BaHfO3 (BHO DD) films. Based on the elastic strain model, BaHfO3 (BHO) nanorods have lower rigidity than their BaZrO3 (BZO) counterparts, which means their c-axis alignment is more susceptible to the local strain generated by the secondary dopant of Y2O3. Considering the increasing strain field with higher BZO (or BHO doping), the higher susceptibility may result in a large portion of the BHO APCs moving away from perfect c-axis alignment and enhancing isotropic pinning with respect to the H orientation. This is confirmed since the BHO DD films illustrate a less pronounced J c peak at H//c-axis and hence more isotropic J c(θ) than their BZO DD counterparts. At 9.0 T, the variation of the J c across the entire θ range (0-90 degree) is less than 18% for the BHO DD film, in contrast to about 100% for the 2.0 vol.% BZO DD counterpart. At the higher BHO concentration of 6.0 vol.%, this higher tunability of the Y2O3 leads to increased ab-plane aligned BHO APCs and hence enhanced J c at H//ab-plane.

  17. Photocatalytic effects for the TiO2-coated phosphor materials

    International Nuclear Information System (INIS)

    Yoon, Jin-Ho; Jung, Sang-Chul; Kim, Jung-Sik

    2011-01-01

    Research highlights: → The photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. → The photobleaching of an MB aqueous solution under visible light irradiation. → The ALD TiO 2 -coated phosphor composite showed much higher photocatalytic reactivity. → The light emitted from the phosphors contributed to the photo-generation. - Abstract: This study investigated the photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. A TiO 2 thin film was deposited on CaAl 2 O 4 :Eu 2+ ,Nd 3+ phosphor particles by using atomic layer deposition (ALD), and its photocatalytic reaction was investigated by the photobleaching of an aqueous solution of methylene-blue (MB) under visible light irradiation. To clarify the mechanism of the TiO 2 -phosphorescent materials, two different samples of TiO 2 -coated phosphor and TiO 2 -Al 2 O 3 -coated phosphor particles were prepared. The photocatalytic mechanisms of the ALD TiO 2 -coated phosphor powders were different from those of the pure TiO 2 and TiO 2 -Al 2 O 3 -coated phosphor. The absorbance in a solution of the ALD TiO 2 -coated phosphor decreased much faster than that of pure TiO 2 under visible irradiation. In addition, the ALD TiO 2 -coated phosphor showed moderately higher photocatalytic degradation of MB solution than the TiO 2 -Al 2 O 3 -coated phosphor did. The TiO 2 -coated phosphorescent materials were characterized by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS).

  18. Photocatalytic degradation of Acephate, Omethoate, and Methyl parathion by Fe_3O_4@SiO_2@mTiO_2 nanomicrospheres

    International Nuclear Information System (INIS)

    Zheng, Lingling; Pi, Fuwei; Wang, Yifan; Xu, Hui; Zhang, Yinzhi; Sun, Xiulan

    2016-01-01

    Highlights: • An efficient photocatalyst Fe_3O_4@SiO_2@mTiO_2 with high magnetic response and large specific surface area was synthesized. • Photocatalytic efficiency of Fe_3O_4@SiO_2@mTiO_2 on Acephate, Omethoate, and Methyl Parathion was higher than TiO_2 P-25. • Possible photocatalytic degradation mechanisms for the Acephate, Omethoate, and Methyl Parathion were proposed. - Abstract: A novel magnetic mesoporous nanomicrospheres Fe_3O_4@SiO_2@mTiO_2 were synthetized and characterized by a series of techniques including FE-TEM, EDS, FE-SEM, PXRD, XPS, BET, TGA as well as VSM, and subsequently tested as a photocatalyst for the degradation of Acephate, Omethoate, and Methyl parathion under UV irradiation. The well-designed nanomicrospheres exhibit a pure and highly crystalline anatase TiO_2 layer, large specific surface area, and high-magnetic-response. Photocatalytic degradation of the three organophosphorus pesticides (OPPs) and the formation intermediates were identified using HPLC, TOC-V_c_p_n, IC, pH meter and GC–MS. Acephate, Omethoate, and Methyl parathion disappeared after 45 min, 45 min, and 80 min UV illumination, respectively. At the end of the treatment, the total organic carbon (TOC) of the OPPs was reduced 80–85%. The main mineralization products were SO_4"2"−, NO_3"− and PO_4"3"− and Omethoate additionally formed NO_2"−. Based on the results, we proposed the photocatalytic degradation pathways for Acephate, Omethoate, and Methyl parathion.

  19. Preparation and characterization of chitosan/ZnAl2O4 films

    International Nuclear Information System (INIS)

    Araujo, P.M.A.G.; Santos, P.T.A.; Rodrigues, P.A.; Costa, A.C.F.M.; Araujo, E.M.

    2012-01-01

    Chitosan films have been explored for biomedical application, as the chitosan to be, low toxicity, abundant in nature, show affinity for dispersion loads and high mechanical strength. On the other hand, ZnAl 2 O 4 has energy gap of approximately 3.8 eV, which makes it useful for use as photoelectric device ultraviolet. Thus, this work has as objective to prepare films of quitosana/ZnAl 2 O 4 in proportions of 5:1, 5:2, 5:3, 5:4 and evaluate the structural, morphological and thermals characteristics. To this end, ZnAl2O4 first nanoparticles (NPs) was deagglomerated and 325 mesh sieve and added to chitosan diluted in 1% acetic acid, and dried at 60°C. After drying, a solution of 1M sodium hydroxide was added to obtain a film with neutral pH. The films were characterized by XRD, SEM and TG. For all proportions evaluated it was verified the presence of ZnAl 2 O)4 and chitosan phases. By micrographs, it was observed that there was formation of agglomerates of ZnAl 2 O 4 NPs both on the surface of the films, the encapsulated in chitosan. In all samples the ratio 5:4 showed the greatest consistency both in relation to the film surface of the nanoparticles in the chitosan matrix. TG/DTA curves of quitosana/ZnAl 2 O 4 film for all the samples showed that for the concentration of 5:1 to 5:3 occurred three mass loss while for concentration of 5:2 to 5:4 were only two stages decomposition. (author)

  20. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    Science.gov (United States)

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. H_2O_2-assisted photocatalysis on flower-like rutile TiO_2 nanostructures: Rapid dye degradation and inactivation of bacteria

    International Nuclear Information System (INIS)

    Kőrösi, László; Prato, Mirko; Scarpellini, Alice; Kovács, János; Dömötör, Dóra; Kovács, Tamás; Papp, Szilvia

    2016-01-01

    Graphical abstract: - Highlights: • Hierarchically assembled rutile TiO_2 was synthesized at room temperature. • Hydrothermal treatment enhanced the crystallinity, while morphology was maintained. • Hydrothermal treatment also led to larger crystallites and a lower surface area. • Effective K. pneumoniae killing and MO degradation were achieved with the use of H_2O_2. • Higher crystallinity enhanced the reaction rate in the presence of H_2O_2. - Abstract: Hierarchically assembled flower-like rutile TiO_2 (FLH-R-TiO_2) nanostructures were successfully synthesized from TiCl_4 at room temperature without the use of surfactants or templates. An initial sol–gel synthesis at room temperature allowed long-term hydrolysis and condensation of the precursors. The resulting FLH-R-TiO_2 possessed relatively high crystallinity (85 wt%) and consisted of rod-shaped subunits assembling into cauliflower-like nanostructures. Hydrothermal evolution of FLH-R-TiO_2 at different temperatures (150, 200 and 250 °C) was followed by means of X-ray diffraction, transmission and scanning electron microscopy. These FLH-R-TiO_2 nanostructures were tested as photocatalysts under simulated daylight (full-spectrum lighting) in the degradation of methyl orange and in the inactivation of a multiresistant bacterium, Klebsiella pneumoniae. The effects of hydrothermal treatment on the structure, photocatalytic behavior and antibacterial activity of FLH-R-TiO_2 are discussed.

  2. APPLICATION OF IMMUNOGLOBULIN-BINDING PROTEINS A, G, L IN THE AFFINITY CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    О. V. Sviatenko

    2014-04-01

    Full Text Available Proteins A, G and L are native or recombinant proteins of microbial origin that bind to mammalian immunoglobulins. Preferably recombinant variants of proteins A, G, L are used in biotechnology for affinity sorbents production. Сomparative characteristics of proteins A, G, L and affinity sorbents on the basis of them, advantages and disadvantages of these proteins application as ligands in the affinity chromatography are done. Analysis of proteins A, G, L properties is presented. Binding specificities and affinities of these proteins differ between species and antibody subclass. Protein А has high affinity to human IgG1, IgG2, IgG4, mouse IgG2a, IgG2b, IgG3, goat and sheep IgG2, dog, cat, guinea pig, rabbit IgG. Protein G binds strongly to human, mouse, cow, goat, sheep and rabbit IgG. Protein L has ability of strong binding to immunoglobulin kappa-chains of human, mouse, rat and pig. Expediency of application of affinity chromatography with usage of sorbents on the basis of immobilized proteins A, G, L are shown for isolation and purification of antibodies different classes. Previously mentioned method is used as an alternative to conventional methods of protein purification, such as ion-exchange, hydrophobic interactions, metal affinity chromatography, ethanol precipitation due to simplicity in usage, possibility of one-step purification process, obtaining of proteins high level purity, multiuse at maintenance of proper storage and usage conditions. Affinity sorbents on the basis of immobilized proteins A, G, L are used not only for antibodies purification, but also for extraction of different antibodies fractions from blood serum.

  3. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    Science.gov (United States)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  4. Effect of isotopic substitution upon the gas phase and solution electron affinities of nitrobenzene

    International Nuclear Information System (INIS)

    Stevenson, G.R.; Reiter, R.C.; Espe, M.E.; Bartmess, J.E.

    1987-01-01

    Ion cyclotron resonance and electron spin resonance have been utilized to determine the equilibrium constant for the electron transfer from the nitrobenzene anion radical to 15 N labeled nitrobenzene (Ph 14 NO 2 - + Ph 15 NO 2 ↔ Ph 14 NO 2 + Ph 15 NO 2 9 . It was found that the equilibrium constant is within experimental error of unity at 305 K. Molecular orbital calculations indicate that this might be accounted for by the shortening of the C-N bond and a counterbalancing lengthening of the N-O bonds upon electron attachment to nitrobenzene. An equilibrium constant that is much larger than unity can be observed in liquid ammonia at 208 K when K + serves as the gegenion (K/sub eq/ = 2.1). However, when Na + serves as the gegenion, the solution electron affinity of Ph 14 NO 2 is greater than that of Ph 15 NO 2 (K/sub eq/ = 0.4). These results are explained in terms of ion association. When the hydrogen atoms are replaced with deuteriums, the gas phase electron affinity is decreased. A similar decrease is observed in liquid ammonia. In the gas phase this is attributed to the slight lengthening of all the C-H bonds upon electron attachment

  5. Structure and defect studies of In2O3:Zn,Zr for higher stability TCO

    Science.gov (United States)

    Herwadkar, Aditi; Kim, Kwiseon

    2010-03-01

    The defects structures among the transparent conducting oxides (TCO) plays a major role in determining stability of the oxide over a temperature range and in tuning electrical and optical properties for the different TCO applications In2O3 crystallizes in the cubic bixbyite structure. The structure can be derived from the related fluorite structure by removing one fourth of the anions and allowing for small shifts of the ionic positions. In2O3 has two non-equivalent six-fold coordinated cation sites. For one of the sites, the cation is bounded by two structural vacancy along the body diagonal and for the other non-equivalent site the vacancies lie along the face diagonal. These vacancies are actually empty oxygen vacancy positions. Indium is in +3 charge state. ZnO on the other hand crystallizes to form wurtzite structure with four-fold coordination for Zn and is in +2 charge state where as the crystal structure of ZrO is rulite with Zr in +4 charge state and is four fold coordinated. Co-doping of Zn and Zr with each substituting the In atom satisfies the octet rule and is lower in energy then the individual substitutions with overall neutrality. The formation enthalpy as a function of pair (Zn, Zr) shows a minimum at experimental composition of In2(Zn,Zr)3O24. We in this work present the electronic structure optimization and study the defect states in this material.

  6. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  7. A feasibility study on SnO{sub 2}/NiFe{sub 2}O{sub 4} nanocomposites as anodes for Li ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, S., E-mail: sbalaji@tce.edu [Department of Chemistry, Thiagarajar College of Engineering, Madurai 625 015 (India); Vasuki, R. [Department of Physics, Thiagarajar College of Engineering, Madurai (India); Mutharasu, D. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2013-03-25

    Highlights: ► The morphological analysis performed has shown the existence of nanocomposite. ► Sp. capacity after 50 cycles of pure NiFe{sub 2}O{sub 4}, 5 and 10 wt.% SnO{sub 2} are 450, 750 and 780 mA h/g. ► The results are higher than the theoretical capacity of graphite (374 mA h/g). ► The capacity retention is also found to increase with SnO{sub 2} addition in the NiFe{sub 2}O{sub 4}. ► Charge and discharge capacities of LiMn{sub 2}O{sub 4} vs. 10 wt.% SnO{sub 2}/NiFe{sub 2}O{sub 4} are 232 and 138 mA h/g. -- Abstract: The SnO{sub 2}/NiFe{sub 2}O{sub 4} nanocomposite samples with varying concentration of SnO{sub 2} such as 5 wt.% and 10 wt.% were synthesized via urea assisted combustion synthesis. The kinetics of the combustion reactions were studied using thermo gravimetry analysis and from which the compound formation temperature of all the samples were observed to be below 400 °C. From the morphological analysis the grain size of NiFe{sub 2}O{sub 4}, 5 wt.% SnO{sub 2}/NiFe{sub 2}O{sub 4} and 10 wt.% SnO{sub 2}/NiFe{sub 2}O{sub 4} samples were observed to be around 1.7, 2.3 and 3.5 μm. The chrono potentiometry analyses of the samples were performed against lithium metal electrode. The capacity retention was found to be higher for composite with 10 wt.% SnO{sub 2}. The discharge capacity of 10 wt.% SnO{sub 2} sample with respect to Li metal and LiMn{sub 2}O{sub 4} electrode was observed to be around 980 mA h/g and 138 mA h/g respectively.

  8. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  9. Controlled preparation of M(Ag, Au)/TiO2 through sulfydryl-assisted method for enhanced photocatalysis

    Science.gov (United States)

    Xia, Hongbo; Wu, Suli; Bi, Jiajie; Zhang, Shufen

    2017-11-01

    Here a simple and effective method was explored to fabricate M/TiO2 (M = Ag, Au) composites, which required neither pre-treatment of TiO2 nor any additives as reducing agent. Using amorphous TiO2 spheres functionalized with SH groups as starting materials, the noble metallic ions (Ag, Au) can be adsorbed by TiO2 due to their special affinity with SH groups, which is beneficial to the uniform dispersion of metallic ions on the surface of TiO2. Then the adsorbed ions were reduced to form noble metal nanoparticles by heating process (95 °C) directly without additive as reduction agent. Meanwhile, the amorphous TiO2 was transformed into anatase phase during the heating process. Thus, the transformation of TiO2 along with the reduction of noble metallic ions (Ag, Au) was simultaneously carried out by heating. The XRD patterns proved the formation of anatase TiO2 after heating. The characterizations of XPS and TEM proved the formation of Ag and Au nanoparticles on the surface of TiO2. The element mapping indicated that Ag nanoparticles are dispersed uniformly on the surface of TiO2. The photocatalytic activity of the composites has been investigated by the degradation of methyl orange under visible light irradiation. The results showed that when Ag/TiO2 (2.8 wt%) was used as photocatalyst, about 98% of the MO molecules were degraded in 70 min.

  10. Preparation of Affinity Column Based on Zr{sup 4+} Ion for Phosphoproteins Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seon Mi; Bae, In Ae; Park, Jung Hyen; Kim, Tae Dong; Choi, Seong Ho [Hannam University, Daejeon (Korea, Republic of)

    2009-06-15

    This paper has described about preparation of Zr{sup 4+} affinity column based on the poly(styreneco- glycidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The Zr{sup 4+} ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of Zr{sup 4+}-immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for Zr{sup 4+} affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for Zr{sup 4+} affinity polymeric microsphere by liquid chromatography. This Zr{sup 4+} affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography.

  11. Studies of surface adsorption on LiAlO2

    International Nuclear Information System (INIS)

    Fischer, A.K.; Johnson, C.E.; McDaniel, J.A.

    1986-01-01

    Computational and experimental approaches are being taken to understanding surface adsorption/desorption effects on tritium inventory and release. The computational survey integrates a thermodynamic treatment of surface adsorption and bulk phase effects such as solubility and gas phase composition. The system T 2 O:T 2 :LiAlO 2 was examined. The calculations indicate that surface adsorption can be expected to contribute most to tritium inventory under the conditions of lower temperatures and higher oxygen activities. Higher temperature and lower oxygen activity favor lower surface inventory. In the experimental work, a high temperature gas chromatograph was constructed in order to measure the H 2 O:H 2 surface adsorption isotherms and the solubility of hydroxide in LiAlO 2 . Preliminary data indicate that at 478 K approximately 15% of the surface is coverred for a partial pressure of H 2 O of approximately 52 Pa. Calculated values can be obtained that are in reasonable agreement with this. (orig.)

  12. Studies of surface adsorption on LiAlO2

    International Nuclear Information System (INIS)

    Fischer, A.K.; McDaniel, J.A.; Johnson, C.E.

    1986-01-01

    Computational and experimental approaches are being taken to understanding surface adsorption/desorption effects on tritium inventory and release. The computational survey integrates a thermodynamic treatment of surface adsorption and bulk phase effects such as solubility and gas phase composition. The system T 2 O:T 2 :LiAlO 2 was examined. The calculations indicate that surface adsorption can be expected to contribute most to tritium inventory under the conditions of lower temperatures and higher oxygen activities. Higher temperature and lower oxygen activity favor lower surface inventory. In the experimental work, a high temperature gas chromatograph was constructed in order to measure the H 2 O:H 2 surface adsorption isotherms and the solubility of hydroxide in LiAlO 2 . Preliminary data indicate that at 478K approximately 15% of the surface is covered for a partial pressure of H 2 O of approximately 52 Pa. Calculated values can be obtained that are in reasonable agreement with this

  13. Microestructura de Al2O3/TZP codopado con Fe2O3 y TiO2 fabricado por reacción (RBAO

    Directory of Open Access Journals (Sweden)

    Jiménez, M.

    2003-02-01

    Full Text Available Reaction-bonded 80 vol% Al2O3/TZP (2 mol% Y2O3-stabilized tetragonal zirconia polycrystals composites co-doped with 1 vol% Fe2O3 and 1 vol% TiO2 have been produced, and then presureless sintered (1450 ºC, 60 min or sinter-forged (20 MPa, 1200 ºC, 60 min. The resulting microstructures have been characterized using scanning electron microscopy. Both types of materials are dense, with a fine and homogeneous dual microstructure consisting of Al2O3 and TZP grains without intermediate grain boundary phases. Sinter-forged composites exhibit a very narrow pore size distribution, essentially smaller than the grain size of the alumina and zirconia phases. Co-doping promotes the sintering of alumina at lower temperatures, while still retains a fine grain size due to the presence of the dispersed zirconia phase. First results on presureless sintered RBAO materials show a fracture strength higher than in conventionally sintered and sinter-forged composites.Se han fabricado compuestos de 80% vol. Al2O3/TZP (ZrO2 estabilizada con 2% mol Y2O3 codopados con 1% vol. Fe2O3 y 1% vol. TiO2 mediante la tecnología RBAO (“Reaction Bonding of Aluminum Oxide”, que se han sinterizado libremente (1450 ºC, 60 min y bajo carga uniaxial (20 MPa, 1200 ºC, 60 min. Se ha caracterizado la microestructura mediante microscopía electrónica de barrido. Ambos materiales son densos con una microestructura homogénea formada por granos de alúmina y de circona, sin fases en juntas de grano. En el caso de la sinterización bajo carga, la distribución del tamaño de los poros es muy estrecha, y esencialmente menor que las correspondientes a los granos de Al2O3 y TZP. El codopado promueve la sinterización de la alúmina, mientras que los granos dispersos de circona inhiben su crecimiento de grano. Los ensayos preliminares de flexión en cuatro puntos realizados sobre los materiales sinterizados sin carga indican una resistencia a la fractura superior a la que presentan los

  14. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol-gel technique

    Science.gov (United States)

    Hu, Weida; Wan, Long; Liu, Xiaopan; Li, Qiang; Wang, Zhiqi

    2011-04-01

    The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.

  15. Affine analogues of the Sasaki-Shchepetilov connection

    Directory of Open Access Journals (Sweden)

    Maria Robaszewska

    2016-07-01

    Full Text Available For two-dimensional manifold M with locally symmetric connection ∇ and with ∇-parallel volume element vol one can construct a flat connection on the vector bundle TM⊕E, where E is a trivial bundle. The metrizable case, when M is a Riemannian manifold of constant curvature, together with its higher dimension generalizations, was studied by A.V. Shchepetilov [J. Phys. A: 36 (2003, 3893-3898]. This paper deals with the case of non-metrizable locally symmetric connection. Two flat connections on TM⊕(R⨯M and two on TM⊕(R2⨯M are constructed. It is shown that two of those connections - one from each pair - may be identified with the standard flat connection in RN, after suitable local affine embedding of (M,∇ into RN.

  16. Synergy effects in mixed Bi2O3, MoO3 and V2O5 catalysts for selective oxidation of propylene

    DEFF Research Database (Denmark)

    Nguyen, Tien The; Le, Thang Minh; Truong, Duc Duc

    2012-01-01

    % Bi2Mo3O12 and 78.57 mol% BiVO4), corresponding to the compound Bi1-x/3V1-xMoxO4 with x = 0.45 (Bi0.85V0.55Mo0.45O4), exhibited the highest activity for the selective oxidation of propylene to acrolein. The mixed sample prepared chemically by a sol–gel method possessed higher activity than...

  17. 2017 Guralp Affinity Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J.

    2018-03-01

    Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  18. Unbiased Selective Isolation of Protein N-Terminal Peptides from Complex Proteome Samples Using Phospho Tagging PTAG) and TiO2-based Depletion

    NARCIS (Netherlands)

    Mommen, G.P.M.; Waterbeemd, van de B.; Meiring, H.D.; Kersten, G.; Heck, A.J.R.; Jong, de A.P.J.M.

    2012-01-01

    A positional proteomics strategy for global N-proteome analysis is presented based on phospho tagging (PTAG) of internal peptides followed by depletion by titanium dioxide (TiO2) affinity chromatography. Therefore, N-terminal and lysine amino groups are initially completely dimethylated with

  19. Experimental study on ZnO-TiO_2 sorbents for the removal of elemental mercury

    International Nuclear Information System (INIS)

    Qiu, Kunzan; Zhou, Jinsong; Qi, Pan; Zhou, Qixin; Gao, Xiang; Luo, Zhongyang

    2017-01-01

    ZnO-TiO_2 sorbents synthesized by an impregnation method were characterized through XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and EDS (Energy dispersive spectrometer) analyses. An experiment concerning the adsorption of Hg0 by ZnO-TiO_2 under a simulated fuel gas atmosphere was then conducted in a benchscale fixed-bed reactor. The effects of ZnO loading amounts and reaction temperatures on Hg"0 removal performance were analyzed. The results showed that ZnO-TiO_2 sorbents exhibited excellent Hg removal capacity in the presence of H2S at 150 .deg. C and 200 .deg. C; 95.2% and 91.2% of Hg0 was removed, respectively, under the experimental conditions. There are two possible causes for the H_2S reacting on the surface of ZnO-TiO_2: (1) H_2S directly reacted with ZnO to form ZnS, (2) H_2S was oxidized to elemental sulfur (S_a_d) by means of active oxygen on the sorbent surface, and then Sad provided active absorption sites for Hg0 to form HgS. This study identifies three reasons why higher temperatures limit mercury removal. First, the reaction between Hg"0 and H_2S is inhibited at high temperatures. Second, HgS, as the resulting product in the reaction of mercury removal, becomes unstable at high temperatures. Third, the desulfurization reaction strengthens at higher temperatures, and it is likely that H_2S directly reacts with ZnO, thus decreasing the Sad on the sorbent surfaces.

  20. Effect of pH values on surface modification and solubility of phosphate bioglass-ceramics in the CaO-P 2O 5-Na 2O-SrO-ZnO system

    Science.gov (United States)

    Li, Xudong; Cai, Shu; Zhang, Wenjuang; Xu, Guohua; Zhou, Wei

    2009-08-01

    The bioactive glass-ceramics in the CaO-P 2O 5-Na 2O-SrO-ZnO system were synthesized by the sol-gel technique, and then chemically treated at different pH values to study the solubility and surface modification. Samples sintered at 650 °C for 4 h consisted of the crystalline phase β-Ca 2P 2O 7 and the glass matrix. After soaking in the solution at pH 1.0, the residual glass matrix on the surface appeared entirely dissolved and no new phase could be detected. Whereas at pH 3.0, web-like layer exhibiting peaks corresponding to CaP 2O 6 was formed and covered the entire surface of the sample. When conducted at pH 10.0, only part of the glass matrix was dissolved and a new phase Ca 4P 6O 19 was precipitated, forming the petaline layer. The chemical treatment can easily change the surface morphologies and phase composition of this bioactive glass-ceramics. The higher level of surface roughness resulting from the new-formed layer would improve the interface bonding and benefit for cell adhesion.

  1. Ag+ implantation in Al2O3, LiNbO3 and quartz

    International Nuclear Information System (INIS)

    Rahmani, M.; Townsend, P.D.

    1989-01-01

    Silver implantation in insulators produces colloids whose growth is a function of ion dose, ion energy, implant temperature and crystal orientation. Data for three materials are compared. Colloid growth is favoured by higher energy implants at temperatures where the silver is mobile. Preferential diffusion along the Z axis of Al 2 O 3 , LiNbO 3 and quartz results in a higher fraction of the implanted silver ions appearing in the form of colloids for Y cut crystals than for those of Z cut. Annealing characteristics also show a strong dependence on crystal cut. For the LiNbO 3 the colloids in Z cut crystals anneal most rapidly whereas for Al 2 O 3 those in Y cut material are least stable, their loss being accompanied by a reduction in F centres. (author)

  2. TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment.

    Science.gov (United States)

    Kovacic, Marin; Kusic, Hrvoje; Fanetti, Mattia; Stangar, Urska Lavrencic; Valant, Matjaz; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2017-08-01

    The study is aimed at evaluating TiO 2 -SnS 2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO 2 -SnS 2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO 2 and SnS 2 ) within the immobilization step. The as-prepared TiO 2 -SnS 2 composites and their sole components (TiO 2 or SnS 2 ) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO 2 -SnS 2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO 2 -SnS 2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO 2 -SnS 2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO 2 -SnS 2 composites showed higher activity at neutral pH.

  3. Charge transportation in polyaniline/V2O5 composites

    International Nuclear Information System (INIS)

    Huguenin, Fritz; Torresi, Roberto M.

    2004-01-01

    In this work, composites formed from a mixture of V 2 O 5 and polyaniline (PANI) were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM) data show that charge compensation in the [PANI] 0.3 V 2 O 5 nanocomposite is achieved predominantly by Li + migration. However, the charge compensation in the [PANI]V 2 O 5 microcomposite occurs by Li + and Cl O 4 - transport. Electrochemical Impedance Spectroscopy (EIS) measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties. (author)

  4. Higher spin currents in Wolf space. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Changhyun [Department of Physics, Kyungpook National University,Taegu 702-701 (Korea, Republic of)

    2014-03-20

    For the N=4 superconformal coset theory described by ((SU(N+2))/(SU(N))) (that contains a Wolf space) with N=3, the N=2 WZW affine current algebra with constraints is obtained. The 16 generators of the large N=4 linear superconformal algebra are described by those WZW affine currents explicitly. By factoring out four spin-(1/2) currents and the spin-1 current from these 16 generators, the remaining 11 generators (spin-2 current, four spin-(3/2) currents, and six spin-1 currents) corresponding to the large N=4 nonlinear superconformal algebra are obtained. Based on the recent work by Gaberdiel and Gopakumar on the large N=4 holography, the extra 16 currents, with spin contents (1,(3/2),(3/2),2), ((3/2),2,2,(5/2)), ((3/2),2,2,(5/2)), and (2,(5/2),(5/2),3) described in terms of N=2 multiplets, are obtained and realized by the WZW affine currents. As a first step towards N=4W algebra (which is NOT known so far), the operator product expansions (OPEs) between the above 11 currents and these extra 16 higher spin currents are found explicitly. It turns out that the composite fields with definite U(1) charges, made of above (11+16) currents (which commute with the Wolf space subgroup SU(N=3)×SU(2)×U(1) currents), occur in the right hand sides of these OPEs.

  5. Characterization of a high affinity cocaine binding site in rat brain

    International Nuclear Information System (INIS)

    Calligaro, D.; Eldefrawi, M.

    1986-01-01

    Binding of [ 3 H]cocaine to synaptic membranes from whole rat brain was reversible and saturable. Nonlinear regression analysis of binding isotherms indicated two binding affinities: one with k/sub d/ = 16 nM, B/sub max/ = 0.65 pmoles/mg protein and the other with K/sub d/ = 660 nM, B/sub max/ = 5.1 pmoles/mg protein. The high-affinity binding of [ 3 H]cocaine was sensitive to the actions of trypsin and chymotrypsin but not carboxypeptidase, and was eliminated by exposure of the membranes to 95 0 C for 5 min. Specific binding at 2 nM was higher at pH 8.8 than at pH 7.0. Binding of [ 3 H]cocaine (15 nM) was inhibited by increasing concentrations of Na + ions. Several cocaine analogues, neurotransmitter uptake inhibitors and local anesthetics displaced specific [ 3 H]cocaine binding at 2 nM with various potencies. The cocaine analogue (-)-norcocaine was the most potent (IC 50 = 10 nM), while the local anesthetic tetracaine was the least potent in inhibiting [ 3 H]cocaine binding. Several biogenic amine uptake inhibitors, including tricyclic antidepressants and phencyclidine, had IC 50 values below μM concentrations

  6. Estudo da viabilidade de obtenção de cerâmicas de SiC por infiltração espontânea de misturas eutéticas de Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN Study of the viability to produce SiC ceramics by Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN spontaneous infiltration

    Directory of Open Access Journals (Sweden)

    G. C. R. Garcia

    2008-06-01

    Full Text Available As cerâmicas de carbeto de silício, SiC, apresentam excelentes propriedades quando obtidas por infiltração de determinados líquidos. Na infiltração o tempo de contato entre o líquido e o SiC a temperaturas elevadas é muito curto, diminuindo a probabilidade de formação dos produtos gasosos que interferem negativamente na resistência da peça final, como ocorre na sinterização via fase líquida. O objetivo deste trabalho é mostrar uma correlação entre molhabilidade e capacidade de infiltração de alguns aditivos em compactos de SiC. Foram preparados compactos de SiC por prensagem isostática a frio e posterior pré-sinterização via fase sólida. Nesses compactos foram infiltradas misturas de Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN, nas composições eutéticas, 10 ºC acima da temperatura de fusão das respectivas misturas por 4, 8 e 12 min. Após infiltração, as amostras foram analisadas quanto à densidade aparente e real, fases cristalinas, microestrutura e grau de infiltração, sendo que as amostras infiltradas com Y2O3-AlN apresentaram melhores resultados.Silicon carbide ceramics, SiC, obtained by liquid infiltration have shown excellent properties. In infiltration process the contact time of the liquid with SiC at elevated temperature is short, decreasing the probability to form gaseous products that contribute negatively in the final product properties. This phenomenon occurs during SiC liquid phase sintering. The purpose of the present study was to investigate the correlation between wettability and infiltration tendency of some additives in SiC compacts. SiC compacts were prepared by cold isostatic pressing followed by solid phase pre-sintering. Into the compacts were introduced Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN liquids with eutectic compositions at a temperature 10 ºC higher than the melting point of each mixture for 4, 8 and 12 min. Before infiltration, the samples were analyzed by determining densities, crystalline phases

  7. Popcorn balls-like ZnFe{sub 2}O{sub 4}-ZrO{sub 2} microsphere for photocatalytic degradation of 2,4-dinitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Liu, Yutang [Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Xia, Xinnian, E-mail: xnxia@hnu.edu.cn [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Wang, Longlu [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2017-06-15

    Highlights: • Popcorn balls-like microsphere photocatalyst. • High photocatalytic activity toward 2,4-DNP degradation. • Degradation kinetics, mechanism, active species were analyzed. • Excellent stable recycling performance. - Abstract: In this paper, novel popcorn balls-like ZnFe{sub 2}O{sub 4}-ZrO{sub 2} composite microspheres were successfully fabricated by a simple hydrothermal method. The morphology, structure and optical property of the microspheres were characterized. The microspheres were used as the photocatalysts to degrade 2,4-dinitrophenol, and exhibited superior photocatalytic performance. Under simulated solar visible light irradiation, the degradation rate of ZnFe{sub 2}O{sub 4}-ZrO{sub 2} photocatalyst (mass ratio of ZnFe{sub 2}O{sub 4}/ZrO{sub 2} = 2:1) was almost 7.4 and 2.4 times higher than those of pure ZnFe{sub 2}O{sub 4} and ZrO{sub 2}. The enhancement could attribute to stronger light absorption, lower carrier recombination and multi-porous structure of the microspheres. Moreover, the popcorn balls-like photocatalysts can be easily separated, because of the magnetism of the samples. After five times runs, the photocatalyst still showed 90% of its photocatalytic degradation efficiency. This work demonstrated a good prospect for removing organic pollutants in water.

  8. Enrichment of Sc{sub 2}O{sub 3} and TiO{sub 2} from bauxite ore residues

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Bona; Li, Guanghui, E-mail: liguangh@csu.edu.cn; Luo, Jun; Ye, Qing; Liu, Mingxia; Peng, Zhiwei; Jiang, Tao

    2017-06-05

    Highlights: • Sc{sub 2}O{sub 3} and TiO{sub 2} from bauxite ore residue were successfully enriched. • H{sub 3}PO{sub 4} and NaOH were efficient for enriching Sc{sub 2}O{sub 3} and TiO{sub 2} by removing SiO{sub 2}, Al{sub 2}O{sub 3}, and partial Fe{sub 2}O{sub 3} and CaO. • Enriching mechanism of Sc{sub 2}O{sub 3} and TiO{sub 2} was explicitly explained. - Abstract: As a major byproduct generated in the alumina industry, bauxite ore residue is an important reserve of scandium and titanium. In this study, the feasibility and mechanism of enriching Sc{sub 2}O{sub 3} and TiO{sub 2} from a non-magnetic material, which was obtained from carbothermal reductive roasting and magnetic separation of bauxite ore residue, were investigated based on a two-step (acidic and alkali) leaching process. It was revealed that approximately 78% SiO{sub 2} and 30–40% of CaO, FeO and Al{sub 2}O{sub 3} were removed from a non-magnetic material with 0.0134 wt.% Sc{sub 2}O{sub 3} and 7.64 wt.% TiO{sub 2} by phosphoric acidic leaching, while about 95% Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} were further leached by subsequent sodium hydroxide leaching of the upper-stream leach residue. A Sc{sub 2}O{sub 3}-, TiO{sub 2}- rich material containing 0.044 wt.% Sc{sub 2}O{sub 3} and 25.5 wt.% TiO{sub 2} was obtained, the recovery and the enrichment factor of Sc{sub 2}O{sub 3} and TiO{sub 2} were about 85% and 5, respectively. The enrichment of Sc{sub 2}O{sub 3} was attributed to higher pH (>3.3) of phosphoric acid solution than its dissolution pH{sup 0}, and the enrichment of TiO{sub 2} was mainly associated with the insoluble perovskite (CaTiO{sub 3}) in the acidic solution at ambient temperature. As Sc{sub 2}O{sub 3} and TiO{sub 2} cannot be dissolved in the alkali solution, they were further enriched in the leach residue.

  9. Dynamic Hydrogen Production from Methanol/Water Photo-Splitting Using Core@Shell-Structured CuS@TiO2 Catalyst Wrapped by High Concentrated TiO2 Particles

    Directory of Open Access Journals (Sweden)

    Younghwan Im

    2013-01-01

    Full Text Available This study focused on the dynamic hydrogen production ability of a core@shell-structured CuS@TiO2 photocatalyst coated with a high concentration of TiO2 particles. The rectangular-shaped CuS particles, 100 nm in length and 60 nm in width, were surrounded by a high concentration of anatase TiO2 particles (>4~5 mol. The synthesized core@shell-structured CuS@TiO2 particles absorbed a long wavelength (a short band gap above 700 nm compared to that pure TiO2, which at approximately 300 nm, leading to easier electronic transitions, even at low energy. Hydrogen evolution from methanol/water photo-splitting over the core@shell-structured CuS@TiO2 photocatalyst increased approximately 10-fold compared to that over pure CuS. In particular, 1.9 mmol of hydrogen gas was produced after 10 hours when 0.5 g of 1CuS@4TiO2 was used at pH = 7. This level of production was increased to more than 4-fold at higher pH. Cyclic voltammetry and UV-visible absorption spectroscopy confirmed that the CuS in CuS@TiO2 strongly withdraws the excited electrons from the valence band in TiO2 because of the higher reduction potential than TiO2, resulting in a slower recombination rate between the electrons and holes and higher photoactivity.

  10. Transporte de carga em compósitos de polianilina/V2O5 Charge transportation in polyaniline/V2O5 composites

    Directory of Open Access Journals (Sweden)

    Fritz Huguenin

    2004-06-01

    Full Text Available In this work, composites formed from a mixture of V2O5 and polyaniline (PANI were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM data show that charge compensation in the [PANI]0.3V2O5 nanocomposite is achieved predominantly by Li+ migration. However, the charge compensation in the [PANI]V2O5 microcomposite occurs by Li+ and ClO4- transport. Electrochemical Impedance Spectroscopy (EIS measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties.

  11. Optical and structural properties of TiO{sub 2}/Ti/Ag/TiO{sub 2} and TiO{sub 2}/ITO/Ag/ITO/TiO{sub 2} metal-dielectric multilayers by RF magnetron sputtering for display application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang-Hoon; Lee, Seung-Hyu; Hwangbo, Chang-Kwon [Inha University, Incheon (Korea, Republic of); Lee, Kwang-Su [Quantum Photonic Science Research Center, Hanyang University, Seoul (Korea, Republic of)

    2004-03-15

    Electromagnetic-interference (EMI) shielding and near-infrared (NIR) cutoff filters for plasma display panels, based on fundamental structures (ITO/Ag/ITO), (TiO{sub 2}/Ti/Ag/TiO{sub 2}) and (TiO{sub 2}/ITO/Ag/ITO/TiO{sub 2}), were designed and prepared by RF-magnetron sputtering. The optical, structural and electrical properties of the filters were investigated by using spectrophotometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, atomic force microscopy and four-point-probe measurements. The results show that ITO films as the barriers and base layers lead to higher transmittance in the visible spectrum and smoother surface roughness than Ti metal barriers, while maintaining high NIR cutoff characteristics and chemical stability, which may be attributed to the lower absorption in the interfacial layers and better protection of the Ag layers by the ITO layers.

  12. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    Science.gov (United States)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  13. Photo-induced tunneling currents in MOS structures with various HfO2/SiO2 stacking dielectrics

    Directory of Open Access Journals (Sweden)

    Chin-Sheng Pang

    2014-04-01

    Full Text Available In this study, the current conduction mechanisms of structures with tandem high-k dielectric in illumination are discussed. Samples of Al/SiO2/Si (S, Al/HfO2/SiO2/Si (H, and Al/3HfO2/SiO2/Si (3H were examined. The significant observation of electron traps of sample H compares to sample S is found under the double bias capacitance-voltage (C-V measurements in illumination. Moreover, the photo absorption sensitivity of sample H is higher than S due to the formation of HfO2 dielectric layer, which leads to larger numbers of carriers crowded through the sweep of VG before the domination of tunneling current. Additionally, the HfO2 dielectric layer would block the electrons passing through oxide from valance band, which would result in less electron-hole (e−-h+ pairs recombination effect. Also, it was found that both of the samples S and H show perimeter dependency of positive bias currents due to strong fringing field effect in dark and illumination; while sample 3H shows area dependency of positive bias currents in strong illumination. The non-uniform tunneling current through thin dielectric and through HfO2 stacking layers are importance to MOS(p tunneling photo diodes.

  14. Haemoglobin Rahere (beta Lys-Thr): A new high affinity haemoglobin associated with decreased 2, 3-diphosphoglycerate binding and relative polycythaemia.

    Science.gov (United States)

    Lorkin, P A; Stephens, A D; Beard, M E; Wrigley, P F; Adams, L; Lehmann, H

    1975-01-01

    A new haemoglobin with increased oxygen affinity, beta82 (EF6) lysine leads to threonine (Hb Rahere), was found during the investigation of a patient who was found to have a raised haemoglobin concentration after a routine blood count. The substitution affects one of the 2, 3-diphosphoglycerate binding sites, resulting in an increased affinity for oxygen, but both the haem-haem interaction and the alkaline Bohr effect are normal in the haemolysate. This variant had the same mobility as haemoglobin A on electrophoresis at alkaline pH but was detected by measuring the whole blood oxygen affinity; it could be separated from haemoglobin A, however, by electrophoresis in agar at acid pH. The raised haemoglobin concentration was mainly due to a reduction in plasma volume (a relative polycythaemia) and was associated with a persistently raised white blood count. This case emphasises the need to measure the oxygen affinity of haemoglobin in all patients with absolute or relative polycythaemia when some obvious cause is not evident. PMID:124

  15. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks.

    Science.gov (United States)

    Yu, Jiamei; Ma, Yuguang; Balbuena, Perla B

    2012-05-29

    Molecular modeling methods are used to estimate the influence of impurity species: water, O(2), and SO(2) in flue gas mixtures present in postcombustion CO(2) capture using a metal organic framework, HKUST-1, as a model sorbent material. Coordinated and uncoordinated water effects on CO(2) capture are analyzed. Increase of CO(2) adsorption is observed for both cases, which can be attributed to the enhanced binding energy between CO(2) and HKUST-1 due to the introduction of a small amount of water. Density functional theory calculations indicate that the binding energy between CO(2) and HKUST-1 with coordinated water is ~1 kcal/mol higher than that without coordinated water. It is found that the improvement of CO(2)/N(2) selectivity induced by coordinated water may mainly be attributed to the increased CO(2) adsorption on the hydrated HKUST-1. On the other hand, the enhanced selectivity induced by uncoordinated water in the flue gas mixture can be explained on the basis of the competition of adsorption sites between water and CO(2) (N(2)). At low pressures, a significant CO(2)/N(2) selectivity increase is due to the increase of CO(2) adsorption and decrease of N(2) adsorption as a consequence of competition of adsorption sites between water and N(2). However, with more water molecules adsorbed at higher pressures, the competition between water and CO(2) leads to the decrease of CO(2) adsorption capacity. Therefore, high pressure operation should be avoided in HKUST-1 sorbents for CO(2) capture. In addition, the effects of O(2) and SO(2) on CO(2) capture in HKUST-1 are investigated: The CO(2)/N(2) selectivity does not change much even with relatively high concentrations of O(2) in the flue gas (up to 8%). A slightly lower CO(2)/N(2) selectivity of a CO(2)/N(2)/H(2)O/SO(2) mixture is observed compared with that in a CO(2)/N(2)/H(2)O mixture, especially at high pressures, due to the strong SO(2) binding with HKUST-1.

  16. Sol-gel synthesis of TiO{sub 2}-SiO{sub 2} photocatalyst for {beta}-naphthol photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Qourzal, S., E-mail: samir_qourzal@yahoo.fr [Equipe de Materiaux Photocatalyse et Environnement, Departement de Chimie, Faculte des Sciences, Universite Ibn Zohr, B. P. 8106 Cite Dakhla, Agadir (Morocco); Barka, N.; Tamimi, M.; Assabbane, A. [Equipe de Materiaux Photocatalyse et Environnement, Departement de Chimie, Faculte des Sciences, Universite Ibn Zohr, B. P. 8106 Cite Dakhla, Agadir (Morocco); Nounah, A. [Ecole Superieure de Technologie, Avenue Prince Heritier Sidi Mohamed, B. P. 227, Sale-Medina (Morocco); Ihlal, A. [Laboratoire de Physique des Semi-conducteurs et Energie Solaire, Departement de Physique, Faculte, des Sciences, Universite Ibn Zohr, B. P. 8106 Cite Dakhla, Agadir (Morocco); Ait-Ichou, Y. [Equipe de Materiaux Photocatalyse et Environnement, Departement de Chimie, Faculte des Sciences, Universite Ibn Zohr, B. P. 8106 Cite Dakhla, Agadir (Morocco)

    2009-06-01

    Silica gel supported titanium dioxide particles (TiO{sub 2}-SiO{sub 2}) prepared by sol-gel method was as photocatalyst in the degradation of {beta}-naphthol in water under UV-illumination. The prepared sample has been characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The supported catalyst had large surface area and good sedimentation ability. The photodegradation rate of {beta}-naphthol under UV-irradiation depended strongly on adsorption capacity of the catalyst, and the photoactivity of the supported catalyst was much higher than that of the pure titanium dioxides. The experiments were measured by high performance liquid chromatography (HPLC). The photodegradation rate of {beta}-naphthol using 60% TiO{sub 2}-SiO{sub 2} particles was faster than that using TiO{sub 2} 'Degussa P-25', TiO{sub 2} 'PC-50' and TiO{sub 2} 'Aldrich' as photocatalyst by 2.7, 4 and 7.8 times, respectively. The kinetics of photocatalytic {beta}-naphthol degradation was found to follow a pseudo-first-order rate law. The effect of the TiO{sub 2} loading on the photoactivity of TiO{sub 2}-SiO{sub 2} particles was also discussed. With good photocatalytic activity under UV-irradiation and the ability to be readily separated from the reaction system, this novel kind of catalyst exhibited the potential effective in the treatment of organic pollutants in aqueous systems.

  17. Synthesis And Characterization Of SiO2, SnO2 And TiO2 Metal Oxide Shells Covering Cu2O Particles

    Directory of Open Access Journals (Sweden)

    Yu Ri

    2015-06-01

    Full Text Available In this work is described a means of improving the chemical stability of Cu2O@SiO2, Cu2O@SnO2 and Cu2O@TiO2 materials. The SiO2, SnO2 and TiO2 coated samples were stable from pH 3 to pH 10 for up to seven days. To determine the stability of the coated nanoparticles, and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Details of the effect of variations in pH on the phase stability of core-shell type Cu2O were characterized using transmission electron microscopy and X-ray diffraction.

  18. DAYA ANTIBAKTERI EKSTRAK ETANOL DAUN SENGGANI (Melastoma affine D. Don

    Directory of Open Access Journals (Sweden)

    Ika Trisharyanti Dian Kusumowati

    2014-08-01

    Full Text Available Melastoma affine D. Don had some activities such as anthelmintic, antibacteria, antiinfiammation, antifungal, and antitumor. The aims of this research was determine antibacteria activity of ethanolic extract of Melastoma affine D. Don. The antimicrobial activity was tested by solid dilution method to get Minimum Inhibition Concentration (MIC. The compounds in Melastoma affine D. Don was analyzed by tube test method and Thin Layer Chromatography (TLC with chloroform : methanol : formic acid (8,5:1,5:0,5 as mobile phase and silica gel GF254 as stationary phase. The result showed ethanolic extract of Melastoma affine D. Don contains alkaloid, polyphenol, fiavonoid, saponin, and essential oil. The MIC of Senggani against Staphylococcus aureus was 2% and 3% against Escherichia coli and the extract could not inhibit Staphylococcus aureus and Escherichia coli multiresistant until concentration 7% extract ethanol. Keywords: Melastoma affine D. Don, Staphylococcus aureus, Escherichia coli

  19. Comparative study of pinning and creep in Tl2Ba2CaCu2O8 and Bi2Sr2CaCu2O8 single crystals

    International Nuclear Information System (INIS)

    Oussena, M.; Porter, S.; Volkozub, A.V.; de Groot, P.A.J.; Lanchester, P.C.; Ogborne, D.; Weller, M.T.; Balakrishnan, G.; Paul, D.M.

    1993-01-01

    We have compared the pinning and creep in two identically shaped single crystals, Tl 2 Ba 2 CaCu 2 O 8 (Tl 2:2:1:2) and Bi 2 Sr 2 CaCu 2 O 8 (Bi 2:2:1:2) using magnetometry. The critical current density, J c , deduced from the M-H hysteresis loops is found to be the highest in Bi 2:2:1:2 at low temperatures (T c , in this temperature range, is similar for both crystals. At higher temperatures, J c is found to decrease more rapidly with magnetic field in Bi 2:2:1:2 than in Tl 2:2:1:2. The critical current also decreases more quickly with temperature in Bi 2:2:1:2 leading to a vanishing J c at temperatures lower than in the case of Tl 2:2:1:2. I-V characteristic curves have been obtained from measurements of magnetic-sweep-rate dependencies of the hysteresis loops. We have found that the characteristic temperature at which flux motion becomes important is significantly higher in Tl 2:2:1:2 than in Bi 2:2:1:2

  20. O2(a1Δ) quenching in O/O2/O3/CO2/He/Ar mixtures

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-02-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ))+O+M-->2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ)) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ)) quenching were followed by observing the 1268 nm fluorescence of the O2 a1Δ-X3Ε transition. Fast quenching of O2(a1Δ)) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  1. Espumas vítreas do sistema Li2O-ZrO2-SiO2-Al2O 3 produzidas pelo processo gelcasting Li2O-ZrO2-SiO2 -Al2O3 glass-ceramic foams produced by the gelcasting process

    OpenAIRE

    E. de Sousa; C. R. Rambo; F. S. Ortega; A. P. N. de Oliveira; V. C. Pandolfelli

    2009-01-01

    Espumas vítreas do sistema Li2O-ZrO2-SiO2-Al2O 3 (LZSA) foram produzidas pelo processo gelcasting, associado à aeração de suspensões cerâmicas, sem controle atmosférico. Por meio da adição de diferentes concentrações de agente espumante (Fongraminox) foi possível obter espumas vítreas com densidade relativa variando entre uma estreita faixa (0,10-0,15). As espumas vítreas apresentaram resistência à compressão de 2,5-3,7 MPa, que correspondem a porosidade entre 85 e 89% e macroestrutra com por...

  2. Preparación y propiedades de materiales cerámicos bioinertes en el sistema Al2O3-TiO2-SiO2

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.

    1998-12-01

    Full Text Available Very fine and sinterable ceramic powders (100-600 nm in the system Al2O3-TiO2-SiO2 were obtained by the method of cohydrolisis from organo-metallic precursors. Isostatically pressed powder compacts could be densified to a relative high density (~ 92 % th. density at relative low temperatures (1320-1380ºC. The technical coefficient of thermal expansion was measured by dilatometry. The value obtained (8.8 10-6 1/ºC corresponds closely to that of Ti, opening the possibility to use Al2O3-TiO2-SiO2 ceramics to fabricate metal/ceramic composite implants. The measured mechanical properties of dense sintered Al2O3-TiO2-SiO2 material: Young´s modulus, flexure strength and compression strength, are higher than those of pure TiO2. Highly porous Al2O3-TiO2-SiO2 ceramics (P~ 65% were obtained by the method of evaporation of hydrogen peroxide. These materials exhibited interconnected porosity and their properties, particularly the Young´s modulus, resulted very similar to those of bone, which is an important pre-requisite for the design of quirurgical implants.Se han obtenido polvos cerámicos muy finos (100- 600 nm y de alta sinterabilidad, en el sistema Al2O3-TiO2-SiO2, por el método de co-hidrólisis controlada a partir de precursores organo-metálicos. Los compactos fabricados a partir del polvo de cohidrólisis calcinado fueron sinterizados en el rango de temperaturas 1320-1380 ºC, obteniéndose densidades elevadas (~ 92% D.T.. El coeficiente de expansión térmica técnico del material cerámico sinterizado fue medido por dilatometría. El valor obtenido, 8.8 10-6 ºC-1, es muy similar al de titanio metálico y por lo tanto el material cerámico Al2O3-TiO2-SiO2 puede ser candidato para la fabricación de implantes compuestos cerámico/metal. Las propiedades mecánicas: módulo de elasticidad, resistencia a la flexión y resistencia a la compresión, del material denso sinterizado, fueron determinadas, resultando muy superiores a las de TiO2 puro

  3. One-pot electrospinning and gas-sensing properties of LaMnO3 perovskite/SnO2 heterojunction nanofibers

    Science.gov (United States)

    Chen, Dongdong; Yi, Jianxin

    2018-03-01

    Using nanostructured composite materials is an effective way to obtain high-performance gas sensors. This work used p-type LaMnO3 perovskite-structured semiconductor as a novel promoter for SnO2 nanofibers and studied the gas-sensing characteristics. Nanofibers of 0-2.5-mol% LaMnO3/SnO2 were synthesized via one-pot electrospinning. Compared with pristine SnO2, LaMnO3/SnO2 composite nanofibers exhibited smaller particle size (10-30 nm) and higher BET surface area. XPS revealed that oxygen surface absorption decreased with increasing LaMnO3 content. 0.3-mol% LaMnO3/SnO2 exhibited significantly enhanced ethanol sensitivity relative to pristine SnO2. A response of 20 was obtained at the optimum temperature of 260 °C for 100-ppm ethanol. Higher LaMnO3 loading led to decrease of the ethanol response. The impact of LaMnO3 loading on the sensing behavior of SnO2 nanofibers was discussed in terms of p-n heterojunction formation and changes in the microstructure and catalytic properties.

  4. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

  5. Control of the Shell Thickness of TiO{sub 2} SiO{sub 2} Particles and Its Surface Functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Junho; Jung, Sung Ho; Lee, Ji Ha; Kwon, Kiyoung; Jung, Jong Hwa [Gyeongsang National Univ., Jinju (Korea, Republic of)

    2013-11-15

    TiO{sub 2} SiO{sub 2} yolk/core shell particles were obtained by a sol-gel polymerization. The shell thickness of TiO{sub 2} SiO{sub 2} can successfully be controlled by sol-gel reaction times. The anatase structure of TiO{sub 2} SiO{sub 2} was more stable than that of TiO{sub 2} particles calcinated at higher temperature. Moreover, acrylate-functionalized TiO{sub 2} SiO{sub 2} particles were also successfully synthesized using the TiO{sub 2} SiO{sub 2} particles as building blocks by copolymerization of trimethoxysilyl groups of MPA with the existing hydroxyl groups on the surface of TiO{sub 2} SiO{sub 2} particles. Furthermore, TEM, EDX, and FTIR studies confirmed that MPA had been successfully grafted to the surface of TiO{sub 2} SiO{sub 2} particles. Finally, we believe that the present results showing the development of surface functionalized particles can be very useful in the fields of various functional applications, and could be extended to more sophisticated hybrid materials.The fabrication of functional hollow particles is of great scientific and technological interest for purposes of applications ranging from drug delivery, coatings, photonic devices, and nanoscale reaction vessels. Various methods, including approaches such as spray drying, emulsion templating techniques, and self-assembly processes, have been described for the preparation of hollow spheres out of latex, metal, and inorganic materials.

  6. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    Science.gov (United States)

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications.

  7. Luminescence of Y2O2S-Eu3+ and Ln2O2S-Tb3+ films grown by the method of photostimulated epitaxy

    International Nuclear Information System (INIS)

    Maksimovskij, S.N.; Sidorov, P.P.; Sluch, M.I.

    1990-01-01

    Study of luminescence of Y 2 O 2 S-Eu 3+ (1) and La 2 O 2 S-Tb 3+ (2) films, grown from vapor phase by photostimulated epitaxy method is carried out. Spectroscopic analysis data showed that films(1) spectra contain narrow lines, relating to C 3V symmetry centre, and wider lines, relating to C S symmetry centre. Films(2) possess intensive luminescence in green spectral region, but luminescence lines are wider due to higher number of defects. As to production of film luminescent screens the method is shown to be promising

  8. Electrical conduction of glasses in the system Fe2O3-Sb2O3-TeO2; Fe2O3-Sb2O3-TeO2 kei garasu no denki dendo

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Honghua; Mori, H; Sakata, H; Hirayama, T [Tokai Univ., Tokyo (Japan). Faculty of Engineering

    1995-01-01

    In this study, taking into consideration that TeO2 is a component of the glass network and Sb2O3 shows the redox effect in the glasses reducing its possibility of transformation of Sb{sup 3+} to Sb{sup 5+} as well as glass basicity, highly conductive tellurite based glasses have been prepared by the press-quenching method selecting the Fe2O3-Sb2O3-TeO2 system, and the electroconductive mechanism of the glasses has been examined by measuring its D.C. conductivity {sigma}. Part of the obtained information is as follows; the glass formation range of the Fe2O3-Sb2O3-TeO2 system has been 0 {le} Fe2O3 {le} 15mol%, 0 {le} Sb2O3 {le} 18mol% and 78 {le} TeO2 {le} 100mol% and about 15mol% of the additional amount of Fe2O3 has been the limit of glass formation. As the amount of Fe2O3 has increased, C{sub Fe} has also increased and with this, the linear electroconductivity of the glasses has increased from 1.86 {times} 10{sup -7}S{center_dot}cm{sup -1} to 1.62 {times} 10{sup -6}S{center_dot}cm{sup -1} and the glasses have been confirmed as the n-type semiconductor. The factor determining {sigma} of the glasses has been C{sub Fe} which has increased as the amount of Fe2O3 has increased. 34 refs., 8 figs., 2 tabs.

  9. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Stone

    2013-08-01

    Full Text Available Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional alpha-beta T cell receptor (TCR against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR consisting of a single-chain antibody as an Fv fragment (scFv linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the alpha-beta TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.

  10. Diaqua-2κ2O-bis(μ-1-oxido-2-naphthoato-1:2κ3O1,O2:O2′;2:3κ3O2:O1,O2′-bis(1-oxido-2-naphthoato-1κ1O2,O2;3κ2O1,O2-hexapyridine-1κ2N,2κ2N,3κ2N-trimanganese(II/III pyridine disolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Daqi Wang

    2008-12-01

    Full Text Available The title complex, [Mn3(C11H6O34(C5H5N6(H2O22H22C5H5N, is a trinuclear mixed oxidation state complex of overline1 symmetry. The three Mn atoms are six-coordinated in the shape of distorted octahedra, each coordinated with an O4N2 set of donor atoms, where the ligands exhibit mono- and bidentate modes. However, the coordination of the MnII ion located on the inversion centre involves water molecules at two coordination sites, whereas that of the two symmetry-related MnIII ions involves an O4N2 set of donor atoms orginating from the organic ligands. Intramolecular C—H...π interactions between neighbouring pyridine ligands stabilize this arrangement. A two-dimensional network parallel to (001 is formed by intermolecular O—H...O hydrogen bonds.

  11. Synthesis of Cu2O from CuO thin films: Optical and electrical properties

    Directory of Open Access Journals (Sweden)

    Dhanya S. Murali

    2015-04-01

    Full Text Available Hole conducting, optically transparent Cu2O thin films on glass substrates have been synthesized by vacuum annealing (5×10−6 mbar at 700 K for 1 hour of magnetron sputtered (at 300 K CuO thin films. The Cu2O thin films are p-type and show enhanced properties: grain size (54.7 nm, optical transmission 72% (at 600 nm and Hall mobility 51 cm2/Vs. The bulk and surface Valence band spectra of Cu2O and CuO thin films are studied by temperature dependent Hall effect and Ultra violet photo electron Spectroscopy (UPS. CuO thin films show a significant band bending downwards (due to higher hole concentration than Cu2O thin films.

  12. Materiais SiO2-TiO2 para a degradação fotocatalítica de diuron

    Directory of Open Access Journals (Sweden)

    Arthur Alaím Bernardes

    2011-01-01

    Full Text Available SiO2-TiO2 materials prepared by sol-gel method were evaluated in the photocatalytic degradation of diuron. The materials were prepared with and without surfactant cetyltrimethylammonium chloride at different temperatures (25, 50 and 100 ºC. The samples were characterized by N2 adsorption-desorption measurements, scanning electron microscopy, X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy and infrared diffuse reflectance spectroscopy. The results showed that the materials synthesized with the surfactant had higher surface areas and band-gap values similar to anatase. All materials were more active than the commercial catalyst P-25 and better performance was achieved using the surfactant in the material synthesis.

  13. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  14. On the Lp affine isoperimetric inequalities

    Indian Academy of Sciences (India)

    surface area measure on convex bodies. We also establish the reverse version of -Petty projection inequality and an affine isoperimetric inequality of − p K . Author Affiliations. Wuyang Yu1 Gangsong Leng2. Institute of Management Decision ...

  15. Mutational analysis of affinity and selectivity of kringle-tetranectin interaction. Grafting novel kringle affinity ontp the trtranectin lectin scaffold

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Jacobsen, C; Sigurskjold, B W

    2000-01-01

    -type lectin-like domain of tetranectin, involving Lys-148, Glu-150, and Asp-165, which mediates calcium-sensitive binding to plasminogen kringle 4. Here, we investigate the effect of conservative substitutions of these and a neighboring amino acid residue. Substitution of Thr-149 in tetranectin...... with a tyrosine residue considerably increases the affinity for plasminogen kringle 4, and, in addition, confers affinity for plasminogen kringle 2. As shown by isothermal titration calorimetry analysis, this new interaction is stronger than the binding of wild-type tetranectin to plasminogen kringle 4...

  16. Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.

    Science.gov (United States)

    Peng, Mingying; Qiu, Jianrong; Chen, Danping; Meng, Xiangeng; Zhu, Congshan

    2005-09-05

    The broadband emission in the 1.2~1.6mum region from Li2O-Al2O3-ZnO-SiO2 ( LAZS ) glass codoped with 0.01mol.%Cr2O3 and 1.0mol.%Bi2O3 when pumped by the 808nm laser at room temperature is not initiated from Cr4+ ions, but from bismuth, which is remarkably different from the results reported by Batchelor et al. The broad ~1300nm emission from Bi2O3-containing LAZS glasses possesses a FWHM ( Full Width at Half Maximum ) more than 250nm and a fluorescent lifetime longer than 500mus when excited by the 808nm laser. These glasses might have the potential applications in the broadly tunable lasers and the broadband fiber amplifiers.

  17. Binding of ReO[subscript 4];#8722; with an engineered MoO[subscript 4 superscript 2];#8722;-binding protein: towards a new approach in radiopharmaceutical applications

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, Baikuntha P.; Brugarolas, Pedro; He, Chuan (UC)

    2012-05-25

    Radiolabeled biomolecules are routinely used for clinical diagnostics. {sup 99m}Tc is the most commonly used radioactive tracer in radiopharmaceuticals. {sup 188}Re and {sup 186}Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO{sub 4}{sup -}) ion as a new way to label proteins. We found that a molybdate (MoO{sub 4}{sup 2-})-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetry measurements, we determined the dissociation constant of ModA for ReO{sub 4}{sup -} to be 541 nM and we solved a crystal structure of ModA with a bound ReO{sub 4}{sup -}. On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (K{sub d} = 104 nM). High-resolution crystal structures of ModA (1.7 {angstrom}) and A11C/R153C mutant (2.0 {angstrom}) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond.

  18. Mixed Matrix Membranes for O2/N2 Separation: The Influence of Temperature

    Directory of Open Access Journals (Sweden)

    Ana Fernández-Barquín

    2016-05-01

    Full Text Available In this work, mixed matrix membranes (MMMs composed of small-pore zeolites with various topologies (CHA (Si/Al = 5, LTA (Si/Al = 1 and 5, and Rho (Si/Al = 5 as dispersed phase, and the hugely permeable poly(1-trimethylsilyl-1-propyne (PTMSP as continuous phase, have been synthesized via solution casting, in order to obtain membranes that could be attractive for oxygen-enriched air production. The O2/N2 gas separation performance of the MMMs has been analyzed in terms of permeability, diffusivity, and solubility in the temperature range of 298–333 K. The higher the temperature of the oxygen-enriched stream, the lower the energy required for the combustion process. The effect of temperature on the gas permeability, diffusivity, and solubility of these MMMs is described in terms of the Arrhenius and Van’t Hoff relationships with acceptable accuracy. Moreover, the O2/N2 permselectivity of the MMMs increases with temperature, the O2/N2 selectivities being considerably higher than those of the pure PTMSP. In consequence, most of the MMMs prepared in this work exceeded the Robeson’s upper bound for the O2/N2 gas pair in the temperature range under study, with not much decrease in the O2 permeabilities, reaching O2/N2 selectivities of up to 8.43 and O2 permeabilities up to 4,800 Barrer at 333 K.

  19. Hydrogen isotope effect on muonic x-ray spectra of (CH2)/sub x/ and H2O

    International Nuclear Information System (INIS)

    Mausner, L.F.; Knight, J.D.; Orth, C.J.; Schillaci, M.E.; Naumann, R.A.

    1977-01-01

    We have measured the muonic x-ray intensity patterns of C in (CH 2 )/sub x/ and (CD 2 )/sub x/ and of O in H 2 O and D 2 O. In both cases the relative intensities of the higher Lyman series members are significantly lower in the deuterium compounds, indicating that the initial angular momentum distribution of the muons captured on C and O is weighted to higher l states compared to the normal hydrogen compounds. This isotope effect has not been predicted by any model of negative-meson capture

  20. Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110).

    Science.gov (United States)

    Migani, Annapaola; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje

    2015-01-13

    Knowledge of the frontier levels' alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O-TiO2(110) interface. Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O-TiO2(110) interface.