WorldWideScience

Sample records for higher molecular-mass samples

  1. Newer methods for the characterization of higher molecular mass coal derivatives

    International Nuclear Information System (INIS)

    Bartle, K.D.

    1983-01-01

    Recent developments in a number of areas in the analytical chemistry of higher molecular mass coal derivatives are critically reviewed, viz. supercritical fluid chromatography, size-exclusion chromatography, charge-transfer fractionation, nmr spectroscopy, mass spectrometry and electrochemical analysis. (orig.) [de

  2. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    Science.gov (United States)

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  3. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Cool, Terrill A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States); Westmoreland, Phillip R. [Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003 (United States); Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany)

    2009-04-15

    Flame-sampling molecular-beam mass spectrometry of premixed, laminar, low-pressure flat flames has been demonstrated to be an efficient tool to study combustion chemistry. In this technique, flame gases are sampled through a small opening in a quartz probe, and after formation of a molecular beam, all flame species are separated using mass spectrometry. The present review focuses on critical aspects of the experimental approach including probe sampling effects, different ionization processes, and mass separation procedures. The capability for isomer-resolved flame species measurements, achievable by employing tunable vacuum-ultraviolet radiation for single-photon ionization, has greatly benefited flame-sampling molecular-beam mass spectrometry. This review also offers an overview of recent combustion chemistry studies of flames fueled by hydrocarbons and oxygenates. The identity of a variety of intermediates in hydrocarbon flames, including resonantly stabilized radicals and closed-shell intermediates, is described, thus establishing a more detailed understanding of the fundamentals of molecular-weight growth processes. Finally, molecular-beam mass-spectrometric studies of reaction paths in flames of alcohols, ethers, and esters, which have been performed to support the development and validation of kinetic models for bio-derived alternative fuels, are reviewed. (author)

  4. Applications of free-jet, molecular beam, mass spectrometric sampling: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Milne, T. [ed.

    1995-03-01

    Over the past 35 years, the study of die behavior and uses of free-jet expansions for laboratory experiments has greatly expanded and matured. Not the least of these uses of free-jet expansions, is that of extractive sampling from high temperature, reactive systems. The conversion of the free-jet expanded gases to molecular flow for direct introduction into the ion source of a mass spectrometer offers several advantages, to be illustrated in these pages. Two meetings on this subject were held in 1965 and 1972 in Missouri, sponsored by the Office of Naval Research and Midwest Research Institute. At these meetings rarefied gas dynamicists came together with scientists using free-jet sampling for analytical purposes. After much too long a time, this workshop was convened to bring together modem practitioners of FJMBS (Free-jet, Molecular-beam, mass spectrometry) and long time students of the free-jet process itself, to assess the current state of the art and to forge a community that can foster the development of this novel analytical approach. This proceedings is comprised of 38 individually submitted papers. Individual papers are indexed separately on the Energy Data Base.

  5. Influence of the tip mass on the tip-sample interactions in TM-AFM

    Energy Technology Data Exchange (ETDEWEB)

    Pishkenari, Hossein Nejat, E-mail: nejat@mech.sharif.edu [Nano-Robotics Laboratory, Center of Excellence in Design, Robotics and Automation, School of Mechanical Engineering, Sharif University of Technology, Tehran, P.O. Box 11365-9465 (Iran, Islamic Republic of); Meghdari, Ali [Nano-Robotics Laboratory, Center of Excellence in Design, Robotics and Automation, School of Mechanical Engineering, Sharif University of Technology, Tehran, P.O. Box 11365-9465 (Iran, Islamic Republic of)

    2011-07-15

    This paper focuses on the influences of the tip mass ratio (the ratio of the tip mass to the cantilever mass), on the excitation of higher oscillation eigenmodes and also on the tip-sample interaction forces in tapping mode atomic force microscopy (TM-AFM). A precise model for the cantilever dynamics capable of accurate simulations is essential for the investigation of the tip mass effects on the interaction forces. In the present work, the finite element method (FEM) is used for modeling the AFM cantilever to consider the oscillations of higher eigenmodes oscillations. In addition, molecular dynamics (MD) is used to calculate precise data for the tip-sample force as a function of tip vertical position with respect to the sample. The results demonstrate that in the presence of nonlinear tip-sample interaction forces, the tip mass ratio plays a significant role in the excitations of higher eigenmodes and also in the normal force applied on the surface. Furthermore, it has been shown that the difference between responses of the FEM and point-mass models in different system operational conditions is highly affected by the tip mass ratio. -- Highlights: {yields} A strong correlation exists between the tip mass ratio and the 18th harmonic amplitude. {yields} Near the critical tip mass ratio a small change in the tip mass may lead to a significant force change. {yields} Inaccuracy of the lumped model depends significantly on the tip mass ratio.

  6. Low-mass molecular dynamics simulation: A simple and generic technique to enhance configurational sampling

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yuan-Ping, E-mail: pang@mayo.edu

    2014-09-26

    Highlights: • Reducing atomic masses by 10-fold vastly improves sampling in MD simulations. • CLN025 folded in 4 of 10 × 0.5-μs MD simulations when masses were reduced by 10-fold. • CLN025 folded as early as 96.2 ns in 1 of the 4 simulations that captured folding. • CLN025 did not fold in 10 × 0.5-μs MD simulations when standard masses were used. • Low-mass MD simulation is a simple and generic sampling enhancement technique. - Abstract: CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.

  7. High- and low-molecular-mass microbial surfactants.

    Science.gov (United States)

    Rosenberg, E; Ron, E Z

    1999-08-01

    Microorganisms synthesize a wide variety of high- and low-molecular-mass bioemulsifiers. The low-molecular-mass bioemulsifiers are generally glycolipids, such as trehalose lipids, sophorolipids and rhamnolipids, or lipopeptides, such as surfactin, gramicidin S and polymyxin. The high-molecular-mass bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers. The low-molecular-mass bioemulsifiers lower surface and interfacial tensions, whereas the higher-molecular-mass bioemulsifiers are more effective at stabilizing oil-in-water emulsions. Three natural roles for bioemulsifiers have been proposed: (i) increasing the surface area of hydrophobic water-insoluble growth substrates; (ii) increasing the bioavailability of hydrophobic substrates by increasing their apparent solubility or desorbing them from surfaces; (iii) regulating the attachment and detachment of microorganisms to and from surfaces. Bioemulsifiers have several important advantages over chemical surfactants, which should allow them to become prominent in industrial and environmental applications. The potential commercial applications of bioemulsifiers include bioremediation of oil-polluted soil and water, enhanced oil recovery, replacement of chlorinated solvents used in cleaning-up oil-contaminated pipes, vessels and machinery, use in the detergent industry, formulations of herbicides and pesticides and formation of stable oil-in-water emulsions for the food and cosmetic industries.

  8. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Bonatto, Cínthia C; Silva, Luciano P

    2015-06-01

    Chocolate authentication is a key aspect of quality control and safety. Matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of cells, tissues, and even food. The present study evaluated if MALDI-TOF MS analysis on low molecular mass profile may classify chocolate samples according to the cocoa content. The molecular profiles of seven processed commercial chocolate samples were compared by using MALDI-TOF MS. Some ions detected exclusively in chocolate samples corresponded to the metabolites of cocoa or other constituents. This method showed the presence of three distinct clusters according to confectionery and sensorial features of the chocolates and was used to establish a mass spectra database. Also, novel chocolate samples were evaluated in order to check the validity of the method and to challenge the database created with the mass spectra of the primary samples. Thus, the method was shown to be reliable for clustering unknown samples into the main chocolate categories. Simple sample preparation of the MALDI-TOF MS approach described will allow the surveillance and monitoring of constituents during the molecular profiling of chocolates. © 2014 Society of Chemical Industry.

  9. Chemical analysis and genotoxicity of high molecular mass PAH in sediment samples and biota

    International Nuclear Information System (INIS)

    McCarry, B.E.; Marvin, C.H.; Smith, R.W.; Bryant, D.W.

    1995-01-01

    A normal phase liquid chromatography (NPLC) method was used to fractionate the organic extracts of prepared from coal tar-contaminated sediments from hamilton Harbor in Ontario and from Sydney Harbor in Nova Scotia into molecular mass classes. Each PAH fraction up to 302 amu was analyzed by GC-MS and fractions containing PAH with molecular masses greater than 302 amu were analyzed by atmospheric pressure chemical ionization (APCI) LC-MS.Each fraction was also subjected to Ames bioassays using a TA100-like strain of Salmonella typhimurium (YG1025 + S9). The 300/302 amu, 326/328 and 350/352 amu PAH fractions accounted for 25% of the total genotoxic response of the extract; these PAH constitute a substantial genotoxic burden. A number of 300, 302, 326, 350, 374 and 400 amu PAH were identified using APCI LC-MS and comparison with authentic standards. The non-polar aromatic extracts of bottom sediments, suspended sediments and zebra mussels from Hamilton Harbor were also examined by GC-MS, APCI LC-MS and genotoxicity bioassays. The profiles of the priority and high mass PAH in these samples were identical showing that all PAH up to and exceeding 400 amu were readily bioavailable to biota such as Zebra mussels. In addition, the pseudo faeces of the Zebra mussels and amphipod detritivores which fed on the pseudo faeces had chemical profiles identical to the Zebra mussels. Since many sport fish prize amphipods as food, this observation demonstrates a pathway for organic contaminants adsorbed to suspended sediments to enter the food chain of non-bottom-feeding fish in areas infested by Zebra mussels

  10. [Sample preparation and bioanalysis in mass spectrometry].

    Science.gov (United States)

    Bourgogne, Emmanuel; Wagner, Michel

    2015-01-01

    The quantitative analysis of compounds of clinical interest of low molecular weight (sample preparation. Sample preparation is a crucial part of chemical/biological analysis and in a sense is considered the bottleneck of the whole analytical process. The main objectives of sample preparation are the removal of potential interferences, analyte preconcentration, and converting (if needed) the analyte into a more suitable form for detection or separation. Without chromatographic separation, endogenous compounds, co-eluted products may affect a quantitative method in mass spectrometry performance. This work focuses on three distinct parts. First, quantitative bioanalysis will be defined, different matrices and sample preparation techniques currently used in bioanalysis by mass spectrometry of/for small molecules of clinical interest in biological fluids. In a second step the goals of sample preparation will be described. Finally, in a third step, sample preparation strategies will be made either directly ("dilute and shoot") or after precipitation.

  11. Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography-mass spectrometry for trace analysis of bisphenol A in water sample

    International Nuclear Information System (INIS)

    Kawaguchi, Migaku; Hayatsu, Yoshio; Nakata, Hisao; Ishii, Yumiko; Ito, Rie; Saito, Koichi; Nakazawa, Hiroyuki

    2005-01-01

    We have developed a molecularly imprinted polymer (MIP) using a stable isotope labeled compound as the template molecule and called it the ''isotope molecularly imprinted polymer'' (IMIP). In this study, bisphenol A (BPA) was used as the model compound. None imprinted polymer (NIP), MIP, dummy molecularly imprinted polymer (DMIP) and IMIP were prepared by the suspension polymerization method using without template, BPA, 4-tert-butylphenol (BP) and bisphenol A-d 16 (BPA-d 16 ), respectively. The polymers were subjected to molecularly imprinted solid phase extraction (MI-SPE), and the extracted samples were subjected to liquid chromatography-mass spectrometry (LC-MS). Although the leakage of BPA-d 16 from the IMIP was observed and that of BPA was not observed. The selectivity factors of MIP and IMIP for BPA were 4.45 and 4.43, respectively. Therefore, IMIP had the same molecular recognition ability as MIP. When MI-SPE with IMIP was used and followed by LC-MS in the analysis of river water sample, the detection limit of BPA was 1 ppt with high sensitivity. Moreover, the average recovery was higher than 99.8% (R.S.D.: 3.7%) by using bisphenol A- 13 C 12 (BPA- 13 C 12 ) as the surrogate standard. In addition, the IMIP were employed in MI-SPE of BPA in river water sample by LC-MS. The concentration of BPA in the river water sample was determined to be 32 pg ml -1 . We confirmed that it was possible to measure trace amounts of a target analyte by MI-SPE using IMIP

  12. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    Science.gov (United States)

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  13. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  14. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review.

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.

  15. Detection of irradiated food by the changes in protein molecular mass distribution

    International Nuclear Information System (INIS)

    Niciforovic, A.; Radojcic, M.; Milosavljevic, B.H.

    1998-01-01

    Complete text of publication follows. The present work deals with the radiation-induced damage of proteins, which is followed by the change in the molecular mass. The phenomenon was studied on protein rich samples, i.e., chicken meat and dehydrated egg white. The radiation dose applied was in the range of the ones used for food microbial control. Chicken drumstick and chicken white meat proteins were separated according to their molecular mass. The protein profile was compared to the meat samples irradiated in the frozen state with 5 kGy at 60 Co source. In the case of chicken white meat, irradiation produces both nonselective protein scission (e.g. the amount of proteins of molecular mass larger than 30 kDa decreases, while the amount of proteins of molecular mass smaller than 30 kDa increases), and selective protein scission (e.g. appearance of a protein fragment of molecular mass equal to 18 kDa). In the case of chicken drumstick proteins the irradiation induces both the protein scission and the aggregation. The changes are nonspecific as well as specific and the generation of Mm = 18 kDa protein fragment was observed again. Irradiation of aerated dehydrated egg white proteins produces only nonselective protein scission. The results are discussed in view of the routine application of SDS-PAGE method for the detection of irradiated foodstuff

  16. Molecular dynamics of nanodroplet impact: The effect of the projectile’s molecular mass on sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Fernan [Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, SW7 2A7 (United Kingdom); Gamero-Castaño, Manuel, E-mail: mgameroc@uci.edu [Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, 92697 (United States)

    2016-06-15

    The impact of electrosprayed nanodroplets on ceramics at several km/s alters the atomic order of the target, causing sputtering, surface amorphization and cratering. The molecular mass of the projectile is known to have a strong effect on the impact phenomenology, and this article aims to rationalize this dependency using molecular dynamics. To achieve this goal, the article models the impact of four projectiles with molecular masses between 45 and 391 amu, and identical diameters and kinetic energies, 10 nm and 63 keV, striking a silicon target. In agreement with experiments, the simulations show that the number of sputtered atoms strongly increases with molecular mass. This is due to the increasing intensity of collision cascades with molecular mass: when the fixed kinetic energy of the projectile is distributed among fewer, more massive molecules, their collisions with the target produce knock-on atoms with higher energies, which in turn generate more energetic and larger numbers of secondary and tertiary knock-on atoms. The more energetic collision cascades intensify both knock-on sputtering and, upon thermalization, thermal sputtering. Besides enhancing sputtering, heavier molecules also increase the fraction of the projectile’s energy that is transferred to the target, as well as the fraction of this energy that is dissipated.

  17. Molecular dynamics of nanodroplet impact: The effect of the projectile’s molecular mass on sputtering

    International Nuclear Information System (INIS)

    Saiz, Fernan; Gamero-Castaño, Manuel

    2016-01-01

    The impact of electrosprayed nanodroplets on ceramics at several km/s alters the atomic order of the target, causing sputtering, surface amorphization and cratering. The molecular mass of the projectile is known to have a strong effect on the impact phenomenology, and this article aims to rationalize this dependency using molecular dynamics. To achieve this goal, the article models the impact of four projectiles with molecular masses between 45 and 391 amu, and identical diameters and kinetic energies, 10 nm and 63 keV, striking a silicon target. In agreement with experiments, the simulations show that the number of sputtered atoms strongly increases with molecular mass. This is due to the increasing intensity of collision cascades with molecular mass: when the fixed kinetic energy of the projectile is distributed among fewer, more massive molecules, their collisions with the target produce knock-on atoms with higher energies, which in turn generate more energetic and larger numbers of secondary and tertiary knock-on atoms. The more energetic collision cascades intensify both knock-on sputtering and, upon thermalization, thermal sputtering. Besides enhancing sputtering, heavier molecules also increase the fraction of the projectile’s energy that is transferred to the target, as well as the fraction of this energy that is dissipated.

  18. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.

    Science.gov (United States)

    Uludağ, Yildiz; Piletsky, Sergey A; Turner, Anthony P F; Cooper, Matthew A

    2007-11-01

    Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.

  19. The effect of the molecular mass on the sputtering by electrosprayed nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Borrajo-Pelaez, Rafael; Gamero-Castaño, Manuel, E-mail: mgameroc@uci.edu

    2015-07-30

    Highlights: • We study the effect of the molecular mass on nanodroplet sputtering of silicon. • The impact phenomenology is a strong function of the projectile’s molecular mass. • Nanodroplet sputtering intrinsically is a molecular scale phenomenon. - Abstract: Energetic bombardment of covalently bonded materials by electrosprayed nanodroplets causes sputtering and topographic changes on the surface of the target. This work investigates the influence of the projectile's molecular mass on these phenomena by sputtering single-crystal silicon wafers with a variety of liquids (molecular masses between 45.0 and 773.3 amu), and acceleration voltages. The electrosprays are characterized via time of flight to determine the charge to mass ratio of the nanodroplets which, together with the acceleration voltage, yield the impact velocity, the stagnation pressure, and the molecular kinetic energy of the projectile. The estimated range of droplet diameters is 20–79 nm, while the impact velocity, the stagnation pressure and the molecular kinetic energy range between 2.9–10 km/s, 4.7–63 GPa, and 2.1–98 eV. We find that the damage on the surface of the targets strongly depends on the molecular mass of the projectile: liquids with low molecular mass sputter significantly less and produce nanometric indentations and low surface roughness, the latter increasing moderately with stagnation pressure; in contrast, the roughness and sputtering caused by the impacts of droplets with larger molecular mass reach significantly higher values, and exhibit non-monotonic behaviors. The maximum sputtering yields for formamide, EAN, EMI-BF{sub 4}, EMI-Im, TES, and TPP are 0.20, 0.75, 1.20, 2.80, 4.00 and 2.90 silicon atoms per molecule in the projectile. These trends indicate that despite their rather large diameters, the sputtering by electrosprayed nanodroplets is intrinsically a molecular scale phenomenon.

  20. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation.

    Science.gov (United States)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi 3 + beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm 2 . The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  1. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation

    Science.gov (United States)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  2. Static secondary ion mass spectrometry for organic and inorganic molecular analysis in solids

    International Nuclear Information System (INIS)

    Ham, Rita van; Vaeck, Luc van; Adriaens, Annemie; Adams, Freddy

    2003-01-01

    The use of mass spectra in secondary ion mass spectrometry (S-SIMS) to characterise the molecular composition of inorganic and organic analytes at the surface of solid samples is investigated. Methodological aspects such as mass resolution, mass accuracy, precision and accuracy of isotope abundance measurements, influence of electron flooding and sample morphology are addressed to assess the possibilities and limitations that the methodology can offer to support the structural assignment of the detected ions. The in-sample and between-sample reproducibility of relative peak intensities under optimised conditions is within 10%, but experimental conditions and local hydration, oxidation or contamination can drastically affect the mass spectra. As a result, the use of fingerprinting for identification becomes compromised. Therefore, the preferred way of interpretation becomes the deductive structural approach, based on the use of the empirical desorption-ionisation model. This approach is shown to allow the molecular composition of inorganic and organic components at the surface of solids to be characterised. Examples of inorganic speciation and identification of organic additives with unknown composition in inorganic salt mixtures are given. The methodology is discussed in terms of foreseen developments with respect to the use of polyatomic primary ions

  3. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  4. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard

    2005-07-01

    The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

  5. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  6. Cluster chemical ionization for improved confidence level in sample identification by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Fialkov, Alexander B; Amirav, Aviv

    2003-01-01

    Upon the supersonic expansion of helium mixed with vapor from an organic solvent (e.g. methanol), various clusters of the solvent with the sample molecules can be formed. As a result of 70 eV electron ionization of these clusters, cluster chemical ionization (cluster CI) mass spectra are obtained. These spectra are characterized by the combination of EI mass spectra of vibrationally cold molecules in the supersonic molecular beam (cold EI) with CI-like appearance of abundant protonated molecules, together with satellite peaks corresponding to protonated or non-protonated clusters of sample compounds with 1-3 solvent molecules. Like CI, cluster CI preferably occurs for polar compounds with high proton affinity. However, in contrast to conventional CI, for non-polar compounds or those with reduced proton affinity the cluster CI mass spectrum converges to that of cold EI. The appearance of a protonated molecule and its solvent cluster peaks, plus the lack of protonation and cluster satellites for prominent EI fragments, enable the unambiguous identification of the molecular ion. In turn, the insertion of the proper molecular ion into the NIST library search of the cold EI mass spectra eliminates those candidates with incorrect molecular mass and thus significantly increases the confidence level in sample identification. Furthermore, molecular mass identification is of prime importance for the analysis of unknown compounds that are absent in the library. Examples are given with emphasis on the cluster CI analysis of carbamate pesticides, high explosives and unknown samples, to demonstrate the usefulness of Supersonic GC/MS (GC/MS with supersonic molecular beam) in the analysis of these thermally labile compounds. Cluster CI is shown to be a practical ionization method, due to its ease-of-use and fast instrumental conversion between EI and cluster CI, which involves the opening of only one valve located at the make-up gas path. The ease-of-use of cluster CI is analogous

  7. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    Science.gov (United States)

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective

  8. Dual Source Time-of-flight Mass Spectrometer and Sample Handling System

    Science.gov (United States)

    Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.

    We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging

  9. Time-of-flight mass spectrometry of laser exploding foil initiated PETN samples

    Science.gov (United States)

    Fajardo, Mario E.; Molek, Christopher D.; Fossum, Emily C.

    2017-01-01

    We report the results of time-of-flight mass spectrometry (TOFMS) measurements of the gaseous products of thin-film pentaerythritol tetranitrate [PETN, C(CH2NO3)4] samples reacting in vacuo. The PETN sample spots are produced by masked physical vapor deposition [A.S. Tappan, et al., AIP Conf. Proc. 1426, 677 (2012)] onto a first-surface aluminum mirror. A pulsed laser beam imaged through the soda lime glass mirror substrate converts the aluminum layer into a high-temperature high-pressure plasma which initiates chemical reactions in the overlying PETN sample. We had previously proposed [E.C. Fossum, et al., AIP Conf. Proc. 1426, 235 (2012)] to exploit differences in gaseous product chemical identities and molecular velocities to provide a chemically-based diagnostic for distinguishing between "detonation-like" and deflagration responses. Briefly: we expect in-vacuum detonations to produce hyperthermal (v˜10 km/s) thermodynamically-stable products such as N2, CO2, and H2O, and for deflagrations to produce mostly reaction intermediates, such as NO and NO2, with much slower molecular velocities - consistent with the expansion-quenched thermal decomposition of PETN. We observe primarily slow reaction intermediates (NO2, CH2NO3) at low laser pulse energies, the appearance of NO at intermediate laser pulse energies, and the appearance of hyperthemal CO/N2 at mass 28 amu at the highest laser pulse energies. However, these results are somewhat ambiguous, as the NO, NO2, and CH2NO3 intermediates persist and all species become hyperthermal at the higher laser pulse energies. Also, the purported CO/N2 signal at 28 amu may be contaminated by silicon ablated from the glass mirror substrate. We plan to mitigate these problems in future experiments by adopting the "Buelow" sample configuration which employs an intermediate foil barrier to shield the energetic material from the laser and the laser driven plasma [S.J. Buelow, et al., AIP Conf. Proc. 706, 1377 (2003)].

  10. Classical electron ionization mass spectra in gas chromatography/mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Gordin, Alexander; Fialkov, Alexander B; Amirav, Aviv

    2008-09-01

    A major benefit of gas chromatography/mass spectrometry (GC/MS) with a supersonic molecular beam (SMB) interface and its fly-through ion source is the ability to obtain electron ionization of vibrationally cold molecules (cold EI), which show enhanced molecular ions. However, GC/MS with an SMB also has the flexibility to perform 'classical EI' mode of operation which provides mass spectra to mimic those in commercial 70 eV electron ionization MS libraries. Classical EI in SMB is obtained through simple reduction of the helium make-up gas flow rate, which reduces the SMB cooling efficiency; hence the vibrational temperatures of the molecules are similar to those in traditional EI ion sources. In classical EI-SMB mode, the relative abundance of the molecular ion can be tuned and, as a result, excellent identification probabilities and very good matching factors to the NIST MS library are obtained. Classical EI-SMB with the fly-through dual cage ion source has analyte sensitivity similar to that of the standard EI ion source of a basic GC/MS system. The fly-through EI ion source in combination with the SMB interface can serve for cold EI, classical EI-SMB, and cluster chemical ionization (CCI) modes of operation, all easily exchangeable through a simple and quick change (not involving hardware). Furthermore, the fly-through ion source eliminates sample scattering from the walls of the ion source, and thus it offers full sample inertness, tailing-free operation, and no ion-molecule reaction interferences. It is also robust and enables increased column flow rate capability without affecting the sensitivity.

  11. Use of Capillary Blood Samples Leads to Higher Parasitemia Estimates and Higher Diagnostic Sensitivity of Microscopic and Molecular Diagnostics of Malaria than Venous Blood Samples.

    Science.gov (United States)

    Mischlinger, Johannes; Pitzinger, Paul; Veletzky, Luzia; Groger, Mirjam; Zoleko-Manego, Rella; Adegnika, Ayola A; Agnandji, Selidji T; Lell, Bertrand; Kremsner, Peter G; Tannich, Egbert; Mombo-Ngoma, Ghyslain; Mordmüller, Benjamin; Ramharter, Michael

    2018-05-25

    Diagnosis of malaria is usually based on samples of peripheral blood. However, it is unclear whether capillary (CAP) or venous (VEN) blood samples provide better diagnostic performance. Quantitative differences of parasitemia between CAP and VEN blood and diagnostic performance characteristics were investigated. Patients were recruited between September 2015 and February 2016 in Gabon. Light microscopy and qPCR quantified parasitemia of paired CAP and VEN samples, whose preparation followed the exact same methodology. CAP and VEN performance characteristics using microscopy were evaluated against a qPCR gold-standard. Microscopy revealed a median (IQR) parasites/L of 495 (853,243) in CAP and 429 (524,074) in VEN samples manifesting in a +16.6% (p=0.04) higher CAPparasitemia compared with VENparasitemia. Concordantly, qPCR demonstrated that -0.278 (p=0.006) cycles were required for signal detection in CAP samples. CAPsensitivity of microscopy relative to the gold-standard was 81.5% (77.485.6%) versus VENsensitivity of 73.4% (68.878.1%), while CAPspecificity and VENspecificity were 91%. CAPsensitivity and VENsensitivity dropped to 63.3% and 45.9%, respectively for a sub-population of low-level parasitemias while specificities were 92%. CAP sampling leads to higher parasitemias compared to VEN sampling and improves diagnostic sensitivity. These findings may have important implications for routine diagnostics, research and elimination campaigns of malaria.

  12. Molecular identification of Mucorales in human tissues: contribution of PCR electrospray-ionization mass spectrometry.

    Science.gov (United States)

    Alanio, A; Garcia-Hermoso, D; Mercier-Delarue, S; Lanternier, F; Gits-Muselli, M; Menotti, J; Denis, B; Bergeron, A; Legrand, M; Lortholary, O; Bretagne, S

    2015-06-01

    Molecular methods are crucial for mucormycosis diagnosis because cultures are frequently negative, even if microscopy suggests the presence of hyphae in tissues. We assessed PCR/electrospray-ionization mass spectrometry (PCR/ESI-MS) for Mucorales identification in 19 unfixed tissue samples from 13 patients with proven or probable mucormycosis and compared the results with culture, quantitative real-time PCR, 16S-23S rRNA gene internal transcribed spacer region (ITS PCR) and 18S PCR sequencing. Concordance with culture identification to both genus and species levels was higher for PCR/ESI-MS than for the other techniques. Thus, PCR/ESI-MS is suitable for Mucorales identification, within 6 hours, for tissue samples for which microscopy results suggest the presence of hyphae. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Computer automated mass spectrometer for isotope analysis on gas samples

    International Nuclear Information System (INIS)

    Pamula, A.; Kaucsar, M.; Fatu, C.; Ursu, D.; Vonica, D.; Bendea, D.; Muntean, F.

    1998-01-01

    A low resolution, high precision instrument was designed and realized in the mass spectrometry laboratory of the Institute of Isotopic and Molecular Technology, Cluj-Napoca. The paper presents the vacuum system, the sample inlet system, the ion source, the magnetic analyzer and the ion collector. The instrument is almost completely automated. There are described the analog-to-digital conversion circuits, the local control microcomputer, the automation systems and the performance checking. (authors)

  14. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality : Effect of sample preparation on MALDI-MS of synthetic polymers

    NARCIS (Netherlands)

    Kooijman, Pieter C.; Kok, Sander; Honing, Maarten

    2017-01-01

    Rationale: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the

  15. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, James P., E-mail: james.tonks@awe.co.uk [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk; King, Martin O. [AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Kerherve, Gwilherm [VACGEN Ltd, St. Leonards-On-Sea, East Sussex TN38 9NN (United Kingdom); Watts, John F. [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2016-08-15

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  16. Gas chromatography-mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Amirav, Aviv; Gordin, Alexander; Poliak, Marina; Fialkov, Alexander B

    2008-02-01

    Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI). Cold EI, as a main mode, provides enhanced molecular ions combined with an effective library sample identification, which is supplemented and complemented by a powerful isotope abundance analysis method and software. The range of low-volatility and thermally labile compounds amenable for analysis is significantly increased owing to the use of the contact-free, fly-through ion source and the ability to lower sample elution temperatures through the use of high column carrier gas flow rates. Effective, fast GC-MS is enabled particularly owing to the possible use of high column flow rates and improved system selectivity in view of the enhancement of the molecular ion. This fast GC-MS with SMB can be further improved via the added selectivity of MS-MS, which by itself benefits from the enhancement of the molecular ion, the most suitable parent ion for MS-MS. Supersonic GC-MS is characterized by low limits of detection (LOD), and its sensitivity is superior to that of standard GC-MS, particularly for samples that are hard for analysis. The GC separation of the Supersonic GC-MS can be improved with pulsed flow modulation (PFM) GC x GC-MS. Electron ionization LC-MS with SMB can also be combined with the Supersonic GC-MS, with fast and easy switching between these two modes of operation. (c) 2008 John Wiley & Sons, Ltd.

  17. Molecular weight determination of bisbenzyl-isoquinoline alkaloids by 252Cf-plasma desorption mass spectrometer

    International Nuclear Information System (INIS)

    Kohno, Hiroyuki; Tatsunami, Shinobu; Hiroi, Tomoko; Kouyama, Hiroshi; Taniguchi, Masashi; Yago, Nagasumi; Nakamura, Iwao

    1995-01-01

    Bisbenzylisoquinoline alkaloids of Stephania cepharantha have been used for various clinical purposes and recently reevaluated as stimulators of interleukin secretion in tissues. We analyzed molecular stuctures of bisbenzylisoquinoline alkaloids by determining their molecular weights using the 252 Cf-plasma desorption mass spectrometry (PDMS). The spectra were accumulated for 500 000 fission events. The acceleration voltage used here was 15 kV. Samples were analyzed using nitrocellulose-coated sample targets. Of the 5 alkaloids studied here, cepharanthine gave a main peak of molecular weight of 606.1 for the theoretical molecular weight of 606.7. The other minor peaks were considered to be demethylated fragment ions. 252 Cf-PDMS should be quite useful in studying structure, metabolism and pharmacokinetics of various drugs with extremely low coefficients of variation. (author)

  18. Nanosecond and femtosecond mass spectroscopic analysis of a molecular beam produced by the spray-jet technique

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Kamikado, Toshiya; Okuno, Yoshishige; Suzuki, Hitoshi; Mashiko, Shinro; Yokoyama, Shiyoshi

    2008-01-01

    The spray-jet molecular beam apparatus enabled us to produce a molecular beam of non-volatile molecules under high vacuum from a sprayed mist of sample solutions. The apparatus has been used in spectroscopic studies and as a means of molecular beam deposition. We analyzed the molecular beam, consisting of non-volatile, solvent, and carrier-gas molecules, by using femtosecond- and nanosecond- laser mass spectroscopy. The information thus obtained provided insight into the molecular beam produced by the spray-jet technique

  19. Application of molecular beam mass spectrometry to chemical vapor deposition studies

    International Nuclear Information System (INIS)

    Hsu, W.L.; Tung, D.M.

    1992-01-01

    A molecular beam mass spectrometer system has been designed and constructed for the specific purpose of measuring the gaseous composition of the vapor environment during chemical vapor deposition of diamond. By the intrinsic nature of mass analysis, this type of design is adaptable to a broad range of other applications that rely either on thermal- or plasma-induced chemical kinetics. When gas is sampled at a relatively high process pressure (∼2700 Pa for our case), supersonic gas expansion at the sampling orifice can cause the detected signals to have a complicated dependence on the operating conditions. A comprehensive discussion is given on the effect of gas expansion on mass discrimination and signal scaling with sampling pressure and temperature, and how these obstacles can be overcome. This paper demonstrates that radical species can be detected with a sensitivity better than 10 ppm by the use of threshold ionization. A detailed procedure is described whereby one can achieve quantitative analysis of the detected species with an accuracy of ±20%. This paper ends with an example on the detection of H, H 2 , CH 3 , CH 4 , and C 2 H 2 during diamond growth

  20. WISDOM Project - II. Molecular gas measurement of the supermassive black hole mass in NGC 4697

    Science.gov (United States)

    Davis, Timothy A.; Bureau, Martin; Onishi, Kyoko; Cappellari, Michele; Iguchi, Satoru; Sarzi, Marc

    2017-07-01

    As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project, we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotating early-type galaxy NGC 4697. This estimate is based on Atacama Large Millimeter/submillimeter Array (ALMA) cycle-3 observations of the 12CO(2-1) emission line with a linear resolution of 29 pc (0.53 arcsec). We find that NGC 4697 hosts a small relaxed central molecular gas disc with a mass of 1.6 × 107 M⊙, co-spatial with the obscuring dust disc visible in optical Hubble Space Telescope imaging. We also resolve thermal 1 mm continuum emission from the dust in this disc. NGC 4697 is found to have a very low molecular gas velocity dispersion, σgas = 1.65^{+0.68}_{-0.65} km s-1. This seems to be partially because the giant molecular cloud mass function is not fully sampled, but other mechanisms such as chemical differentiation in a hard radiation field or morphological quenching also seem to be required. We detect a Keplerian increase of the rotation of the molecular gas in the very centre of NGC 4697, and use forward modelling of the ALMA data cube in a Bayesian framework with the KINematic Molecular Simulation (kinms) code to estimate an SMBH mass of (1.3_{-0.17}^{+0.18}) × 108 M⊙ and an I-band mass-to-light ratio of 2.14_{-0.05}^{+0.04} M⊙/L⊙ (at the 99 per cent confidence level). Our estimate of the SMBH mass is entirely consistent with previous measurements from stellar kinematics. This increases confidence in the growing number of SMBH mass estimates being obtained in the ALMA era.

  1. Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lariviere, Dominic; Taylor, Vivien F.; Evans, R. Douglas; Cornett, R. Jack

    2006-01-01

    The determination of naturally occurring and anthropogenic radionuclides in the environment by inductively coupled plasma mass spectrometry has gained recognition over the last fifteen years, relative to radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment, and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels (fg range) of many radioisotopes, including those with half-lives between 1 and 1000 years, without requiring very complex sample pre-concentration schemes. However, the identification and quantification of radioisotopes in environmental matrices is still hampered by a variety of analytical issues such as spectral (both atomic and molecular ions) and non-spectral (matrix effect) interferences and instrumental limitations (e.g., abundance sensitivity). The scope of this review is to highlight recent analytical progress and issues associated with the determination of radionuclides by inductively coupled plasma mass spectrometry. The impact of interferences, instrumental limitations (e.g., degree of ionization, abundance sensitivity, detection limits) and low sample-to-plasma transfer efficiency on the measurement of radionuclides by inductively coupled plasma mass spectrometry will be described. Solutions that overcome these issues will be discussed, highlighting their pros and cons and assessing their impact on the measurement of environmental radioactivity. Among the solutions proposed, mass and chemical resolution through the use of sector-field instruments and chemical reactions/collisions in a pressurized cell, respectively, will be described. Other methods, such as unique sample introduction equipment (e.g., laser ablation, electrothermal vaporisation, high efficiency nebulization) and instrumental modifications/optimizations (e.g., instrumental vacuum, radiofrequency power, guard electrode) that improve sensitivity and performance

  2. Formation of truncated proteins and high-molecular-mass aggregates upon soft illumination of photosynthetic proteins

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Campostrini, Natascia; Antonioli, Paolo

    2005-01-01

    Different spot profiles were observed in 2D gel electrophoresis of thylakoid membranes performed either under complete darkness or by leaving the sample for a short time to low visible light. In the latter case, a large number of new spots with lower molecular masses, ranging between 15,000 and 25......,000 Da, were observed, and high-molecular-mass aggregates, seen as a smearing in the upper part of the gel, appeared in the region around 250 kDa. Identification of protein(s) contained in these new spots by MS/MS revealed that most of them are simply truncated proteins deriving from native ones...

  3. Representative mass reduction in sampling

    DEFF Research Database (Denmark)

    Petersen, Lars; Esbensen, Harry Kim; Dahl, Casper Kierulf

    2004-01-01

    We here present a comprehensive survey of current mass reduction principles and hardware available in the current market. We conduct a rigorous comparison study of the performance of 17 field and/or laboratory instruments or methods which are quantitatively characterized (and ranked) for accuracy...... dividers, the Boerner Divider, the ??spoon method??, alternate/fractional shoveling and grab sampling. Only devices based on riffle splitting principles (static or rotational) passes the ultimate representativity test (with minor, but significant relative differences). Grab sampling, the overwhelmingly...... most often used mass reduction method, performs appallingly?its use must be discontinued (with the singular exception for completely homogenized fine powders). Only proper mass reduction (i.e. carried out in complete compliance with all appropriate design principles, maintenance and cleaning rules) can...

  4. Nuclear molecular structure in heavy mass systems

    International Nuclear Information System (INIS)

    Arctaedius, T.; Bargholtz, C.

    1989-04-01

    A study is made of nuclear molecular configurations involving one heavy mass partner. The stability of these configurations to mass flow and to fission is investigated as well as their population in fusion reactions. It is concluded that shell effects in combination with the effects of angular momentum may be important in stabilizing certain configurations. A possible relation of these configurations to the so called superdeformed states is pointed out. The spectrum of rotational and vibrational trasitions within molecular configurations is investigated. For sufficiently mass-asymmetric systems the engergies of vibrational transitions are comparable to the neutron separation energy. Gamma radiation from such transitions may then be observable above the background of statistical transitions. The gamma spectrum and the directional distribution of the radioation following fusion reactions with 12 C and 16 O are calculated. (authors)

  5. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat.

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-07-18

    The naked mole rat (Heterocephalus glaber) displays exceptional longevity, with a maximum lifespan exceeding 30 years. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years. In addition to their longevity, naked mole rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer. Here we identify a mechanism responsible for the naked mole rat's cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high-molecular-mass hyaluronan (HA), which is over five times larger than human or mouse HA. This high-molecular-mass HA accumulates abundantly in naked mole-rat tissues owing to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signalling, as they have a higher affinity to HA compared with mouse or human cells. Perturbation of the signalling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high-molecular-mass HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, HYAL2, naked mole-rat cells become susceptible to malignant transformation and readily form tumours in mice. We speculate that naked mole rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.

  6. The observation of quasi-molecular ions from a tiger snake venom component (Msub(r) 13309) using 252Cf-plasma desorption mass spectrometry

    International Nuclear Information System (INIS)

    Kamensky, I.; Haakansson, P.; Kjellberg, J.; Sundqvist, B.; Fohlman, J.; Peterson, P.A.

    1983-01-01

    A method involving fast heavy-ion bombardment of a solid sample called 252 Cf-plasma desorption mass spectrometry has been used to study a non-enzymatic, non-toxic phospholipase homolog from Australian tiger snake (Notechis scutatus) venom. The protein consists of 119 amino acids in a single polypeptide chain cross-linked by 7 disulfide bridges. The isotopically averaged molecular mass as determined by protein sequence analysis is 13309 atomic mass units (amu). The mass distributions were studied by means of time-of-flight measurements. Quasi-molecular ions associated to the molecule and its dimer were observed. The mass of the quasi-molecular ion corresponding to the molecule was determined to be 13285 +- 25 amu. (Auth.)

  7. Mass extrapolation of quarks and leptons to higher generations

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N [Utkal Univ., Bhubaneswar (India). Dept. of Physics

    1981-05-01

    An empirical mass formula is tested for the basic fermion sequences of charged quarks and leptons. This relation is a generalization of Barut's mass formula for the lepton sequence (e, ..mu.., tau ....). It is found that successful mass extrapolation to the third and possibly to other higher generations (N > 2) can be obtained with the first and second generation masses as inputs, which predicts the top quark mass msub(t) to be around 20 GeV. This also leads to the mass ratios between members of two different sequences (i) and (i') corresponding to the same higher generations (N > 2).

  8. Mass extrapolation of quarks and leptons to higher generations

    International Nuclear Information System (INIS)

    Barik, N.

    1981-01-01

    An empirical mass formula is tested for the basic fermion sequences of charged quarks and leptons. This relation is a generalization of Barut's mass formula for the lepton sequence (e, μ, tau ....). It is found that successful mass extrapolation to the third and possibly to other higher generations (N > 2) can be obtained with the first and second generation masses as inputs, which predicts the top quark mass msub(t) to be around 20 GeV. This also leads to the mass ratios between members of two different sequences (i) and (i') corresponding to the same higher generations (N > 2). (author)

  9. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    Science.gov (United States)

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  10. Offender and offense characteristics of a nonrandom sample of mass murderers.

    Science.gov (United States)

    Hempel, A G; Meloy, J R; Richards, T C

    1999-01-01

    A nonrandom sample (N = 30) of mass murderers in the United States and Canada during the past 50 years was studied. Data suggest that such individuals are single or divorced males in their fourth decade of life with various Axis I paranoid and/or depressive conditions and Axis II personality traits and disorders, usually Clusters A and B. The mass murder is precipitated by a major loss related to employment or relationship. A warrior mentality suffuses the planning and attack behavior of the subject, and greater deaths and higher casualty rates are significantly more likely if the perpetrator is psychotic at the time of the offense. Alcohol plays a very minor role. A large proportion of subjects will convey their central motivation in a psychological abstract, a phrase or sentence yelled with great emotion at the beginning of the mass murder; but in our study sample, only 20 percent directly threatened their victims before the offense. Death by suicide or at the hands of others is the usual outcome for the mass murderer.

  11. Point of Injury Sampling Technology for Battlefield Molecular Diagnostics

    Science.gov (United States)

    2011-11-14

    Injury" Sampling Technology for Battlefield Molecular Diagnostics November 14, 2011 Sponsored by Defense Advanced Research Projects Agency (DOD...Date of Contract: April 25, 2011 Short Title of Work: "Point of Injury" Sampling Technology for Battlefield Molecular Diagnostics " Contract...PHASE I FINAL REPORT: Point of Injury, Sampling Technology for Battlefield Molecular Diagnostics . W31P4Q-11-C-0222 (UNCLASSIFIED) P.I: Bernardo

  12. Eggshell membranes as a noninvasive sampling for molecular ...

    African Journals Online (AJOL)

    Noninvasive sampling is of prime essential on conservation genetics and molecular ecology. It is particularly preferred to use in the genetic identification of individuals and genetic analysis. A simple and efficient sampling is described for molecular studies from eggshell membranes in an endemic population of Chinese ...

  13. Insulin-like growth factor II (IGF II) in human brain: regional distribution of IGF II and of higher molecular mass forms

    International Nuclear Information System (INIS)

    Haselbacher, G.K.; Schwab, M.E.; Pasi, A.; Humbel, R.E.

    1985-01-01

    Twenty-four distinct areas of human brain were analyzed for the presence of insulin-like growth factor (IGF). As reported for cerebrospinal fluid, only IGF II-like immunoreactivity, but no significant amounts of IGF I-like immunoreactivity, could be found. Upon gel permeation chromatography, two to five distinct size classes were separated on the basis of their immunoreactivity. Radioimmunoassays and a bioassay also gave results indistinguishable from those of serum IGF II. The highest amounts of IGF II-like immunoreactivity occur in the anterior pituitary. This is up to 100 times more than in most other brain regions analyzed. The higher molecular mass immunoreactive species were partially characterized. After immunoaffinity purification, the 38- and 26-kDa species are active in a bioassay. Specific IGF-binding protein activity could be shown after purification of the 38- and 26-kDa species on an IGF-affinity column. The 13-kDa species released significant amounts of 7.5-kDa material. The results are interpreted as evidence for the presence of IGF II synthesized locally in human brain

  14. Analysis of sulfates on low molecular weight heparin using mass spectrometry: structural characterization of enoxaparin.

    Science.gov (United States)

    Gupta, Rohitesh; Ponnusamy, Moorthy P

    2018-05-21

    Structural characterization of Low Molecular Weight Heparin (LMWH) is critical to meet biosimilarity standards. In this context, the review focuses on structural analysis of labile sulfates attached to the side-groups of LMWH using mass spectrometry. A comprehensive review of this topic will help readers to identify key strategies for tackling the problem related to sulfate loss. At the same time, various mass spectrometry techniques are presented to facilitate compositional analysis of LMWH, mainly Enoxaparin. Areas covered: This review summarizes findings on mass spectrometry application for LMWH, including modulation of sulfates, using enzymology and sample preparation approaches. Furthermore, popular open-source software packages for automated spectral data interpretation are also discussed. Successful use of LC/MS can decipher structural composition for LMWH and help evaluate their sameness or biosimilarity with the innovator molecule. Overall, the literature has been searched using PubMed by typing various search queries such as "enoxaparin", "mass spectrometry", "low molecular weight heparin", "structural characterization", etc. Expert commentary: This section highlights clinically relevant areas that need improvement to achieve satisfactory commercialization of LMWHs. It also primarily emphasizes the advancements in instrumentation related to mass spectrometry, and discusses building automated software for data interpretation and analysis.

  15. Equilibrium Molecular Thermodynamics from Kirkwood Sampling

    OpenAIRE

    Somani, Sandeep; Okamoto, Yuko; Ballard, Andrew J.; Wales, David J.

    2015-01-01

    We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys. 2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, wher...

  16. Application of Mass Lumped Higher Order Finite Elements

    International Nuclear Information System (INIS)

    J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau

    2005-01-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied

  17. Microwave synthesis of gibberellin acid 3 magnetic molecularly imprinted polymer beads for the trace analysis of gibberellin acids in plant samples by liquid chromatography-mass spectrometry detection.

    Science.gov (United States)

    Zhang, Zhuomin; Tan, Wei; Hu, Yuling; Li, Gongke; Zan, Song

    2012-02-21

    In this study, novel GA3 magnetic molecularly imprinted polymer (mag-MIP) beads were synthesized by a microwave irradiation method, and the beads were applied for the trace analysis of gibberellin acids (GAs) in plant samples including rice and cucumber coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS). The microwave synthetic procedure was optimized in detail. In particular, the interaction between GA3 and functional monomers was further studied for the selection of the optimal functional monomers during synthesis. It can be seen that the interaction between GA3 and acrylamide (AM) finally selected was stronger than that between GA3 and other functional monomers. GA3 mag-MIP beads were characterized by a series of physical tests. GA3 mag-MIP beads had a porous and homogeneous surface morphology with stable chemical, thermal and magnetic properties. Moreover, GA3 mag-MIP beads demonstrated selective and specific absorption behavior for the target compounds during unsaturated extraction, which resulted in a higher extraction capacity (∼708.4 pmol for GA3) and selectivity than GA3 mag-non-imprinted polymer beads. Finally, an analytical method of GA3 mag-AM-MIP bead extraction coupled with HPLC-MS detection was established and applied for the determination of trace GA1, GA3, GA4 and GA7 in rice and cucumber samples. It was satisfactory that GA4 could be actually found to be 121.5 ± 1.4 μg kg(-1) in real rice samples by this novel analytical method. The recoveries of spiked rice and cucumber samples were found to be 76.0-109.1% and 79.9-93.6% with RSDs of 2.8-8.8% and 3.1-7.7% (n = 3), respectively. The proposed method is efficient and applicable for the trace analysis of GAs in complicated plant samples.

  18. Molecular beam sampling from a rocket-motor combustion chamber

    International Nuclear Information System (INIS)

    Houseman, John; Young, W.S.

    1974-01-01

    A molecular-beam mass-spectrometer sampling apparatus has been developed to study the reactive species concentrations as a function of position in a rocket-motor combustion chamber. Unique design features of the sampling system include (a) the use of a multiple-nozzle end plate for preserving the nonuniform properties of the flow field inside the combustion chamber, (b) the use of a water-injection heat shield, and (c) the use of a 300 CFM mechanical pump for the first vacuum stage (eliminating the use of a huge conventional oil booster pump). Preliminary rocket-motor tests have been performed using the highly reactive propellants nitrogen tetroxide/hydrazine (N 2 O 4 /N 2 H 4 ) at an oxidizer/fuel ratio of 1.2 by weight. The combustion-chamber pressure is approximately 60psig. Qualitative results on unreacted oxidizer/fuel ratio, relative abundance of oxidizer and fuel fragments, and HN 3 distribution across the chamber are presented

  19. Atmospheric-pressure solution-cathode glow discharge: A versatile ion source for atomic and molecular mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Andrew J. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Williams, Kelsey L. [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Hieftje, Gary M. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Shelley, Jacob T., E-mail: shellj@rpi.edu [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States)

    2017-01-15

    An atmospheric-pressure solution-cathode glow discharge (SCGD) has been evaluated as an ion source for atomic, molecular, and ambient desorption/ionization mass spectrometry. The SCGD consists of a direct-current plasma, supported in the ambient air in the absence of gas flows, and sustained upon the surface of a flowing liquid cathode. Analytes introduced in the flowing liquid, as an ambient gas, or as a solid held near the plasma are vaporized and ionized by interactions within or near the discharge. Introduction of acidic solutions containing metal salts produced bare elemental ions as well as H{sub 2}O, OH{sup −} and NO{sub 3}{sup −} adducts. Detection limits for these elemental species ranged from 0.1 to 4 ppb, working curves spanned more than 4 orders of linear dynamic range, and precision varied between 5 and 16% relative standard deviation. Small organic molecules were also efficiently ionized from solution, and both the intact molecular ion and fragments were observed in the resulting SCGD mass spectra. Fragmentation of molecular species was found to be tunable; high discharge currents led to harder ionization, while low discharge currents produced stronger molecular-ion signals. Ambient gases and solids, desorbed by the plasma from a glass probe, were also readily ionized by the SCGD. Indeed, strong analyte signals were obtained from solid samples placed at least 2 cm from the plasma. These findings indicate that the SCGD might be useful also for ambient desorption/ionization mass spectrometry. Combined with earlier results that showed the SCGD is useful for ionization of labile biomolecules, the results here indicate that the SCGD is a highly versatile ion source capable of providing both elemental and molecular mass-spectral information. - Highlights: • Solution-cathode glow discharge used as an ionization source for mass spectrometry. • SCGD-MS can provide atomic as well as intact molecular mass spectra. • Atomic limits of detection range

  20. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry.

    Science.gov (United States)

    Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis

    2015-03-03

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.

  1. Molecular beam sampling of a hollow cathode arc

    International Nuclear Information System (INIS)

    Theuws, P.

    1981-01-01

    This thesis deals with the description of the process of molecular beam sampling of a Hollow Cathode Arc. The aim of the study is twofold, i.e. investigation of the applicability of molecular beam sampling as a plasma diagnostic and the use of a Hollow Cathode Arc as a high intensity beam source for ground state atoms and metastable state atoms in the superthermal energy range. Suitable models are introduced, describing the process of molecular beam sampling of both ground state atoms and metastable state atoms. Fast ground state atoms produced by ion-atom collisions. The experimental facilities, i.e. the Hollow Cathode Arc, the time-of-flight machine and the dye laser system are described. And an alternative detection scheme for ground state atoms is presented and experimental results on the molecular beam sampling of a low density plasma (densities 10 19 -10 20 m -3 ) in the long arc configuration are reported. The results on the short arc configuration (densities 10 21 -10 22 m -3 ) are discussed. (Auth.)

  2. Planck/SDSS Cluster Mass and Gas Scaling Relations for a Volume-Complete redMaPPer Sample

    Science.gov (United States)

    Jimeno, Pablo; Diego, Jose M.; Broadhurst, Tom; De Martino, I.; Lazkoz, Ruth

    2018-04-01

    Using Planck satellite data, we construct Sunyaev-Zel'dovich (SZ) gas pressure profiles for a large, volume-complete sample of optically selected clusters. We have defined a sample of over 8,000 redMaPPer clusters from the Sloan Digital Sky Survey (SDSS), within the volume-complete redshift region 0.100 trend towards larger break radius with increasing cluster mass. Our SZ-based masses fall ˜16% below the mass-richness relations from weak lensing, in a similar fashion as the "hydrostatic bias" related with X-ray derived masses. Finally, we derive a tight Y500-M500 relation over a wide range of cluster mass, with a power law slope equal to 1.70 ± 0.07, that agrees well with the independent slope obtained by the Planck team with an SZ-selected cluster sample, but extends to lower masses with higher precision.

  3. [Determination of the distribution of relative molecular mass of organic matter by high pressure size exclusion chromatography with UV and TOC detectors].

    Science.gov (United States)

    Zhang, Han; Dong, Bing-Zhi

    2012-09-01

    An on-line high pressure size exclusion chromatography (HPSEC) with UV and TOC detectors was adapted to examine the distribution of relative molecular mass of natural organic matter (NOM). Through synchronous determination of UV254 and TOC responses in a wide range of relative molecular mass, it was possible to accurately characterize the structure of NOM, especially for some non-aromatic and non-conjugated double bond organics which have low response to UV. It was found that, TOC detector was capable of detecting all kinds of organic matters, including sucrose, sodium alginate and other hydrophilic organic compounds. The sample volume had a positively linear correlation with the TOC response, indicating that the larger volume would produce stronger responses. The effect of ion strength was relatively low, shown by the small decrease of peak area (1.2% ) from none to 0.2 mol x L(-1) NaCl. The pH value of tested samples should be adjusted to neutral or acidic because when the samples were alkaline, the results might be inaccurate. Compared to the sample solvents adopted as ultrapure water, the samples prepared by mobile phase solvents had less interference to salt boundary peak. The on-line HPSEC-UV-TOC can be used accurately to characterize the distribution of relative molecular mass and its four fractions in River Xiang.

  4. Molecular engineering problems in heat and mass transfer

    International Nuclear Information System (INIS)

    Kotake, S.

    1991-01-01

    As for developing, manufacturing and applying new materials of advanced functions such as high-performance devices and high-temperature materials, fundamental understanding of the phenomena from the standpoint of molecular and atomic levels has been required. In these problems, the processes of heat and mass transfer play an important role, being one of the rate-controlling factors. But the energy levels associated with heat and mass transfer are of the orders much less than those of chemical reaction, and it is not easy to understand the thermal problems on the molecular and atomic basis. This paper views the processes of heat and mass transfer from the dynamical motions of atom and molecule for thermal engineering problems. Especially, problems are considered of heat conduction in fine-ceramics, sintered materials of high heat conductivity or high heat-insulation, phase change of condensation in vapor deposition processes such as CVD and PVD, and radiation in laser processing

  5. Preparation and evaluation of molecularly imprinted solid-phase micro-extraction fibers for selective extraction of phthalates in an aqueous sample

    International Nuclear Information System (INIS)

    He Juan; Lv Ruihe; Zhan Haijun; Wang Huizhi; Cheng Jie; Lu Kui; Wang Fengcheng

    2010-01-01

    A novel molecularly imprinted polymer (MIP) that was applied to a solid-phase micro-extraction (SPME) device, which could be coupled directly to gas chromatograph and mass spectrometer (GC/MS), was prepared using dibutyl phthalate (DBP) as the template molecule. The characteristics and application of this fiber were investigated. Electron microscope images indicated that the MIP-coated solid-phase micro-extraction (MI-SPME) fibers were homogeneous and porous. The extraction yield of DBP with the MI-SPME fibers was higher than that of the non-imprinted polymer (NIP)-coated SPME (NI-SPME) fibers. The MI-SPME fibers had a higher selectivity to other phthalates that had similar structures as DBP. A method was developed for the determination of phthalates using MI-SPME fibers coupled with GC/MS. The extraction conditions were optimized. Detection limits for the phthalate samples were within the range of 2.17-20.84 ng L -1 . The method was applied to five kinds of phthalates dissolved in spiked aqueous samples and resulted in recoveries of up to 94.54-105.34%, respectively. Thus, the MI-SPME fibers are suitable for the extraction of trace phthalates in complicated samples.

  6. Direct sampling of chemical weapons in water by photoionization mass spectrometry.

    Science.gov (United States)

    Syage, Jack A; Cai, Sheng-Suan; Li, Jianwei; Evans, Matthew D

    2006-05-01

    The vulnerability of water supplies to toxic contamination calls for fast and effective means for screening water samples for multiple threats. We describe the use of photoionization (PI) mass spectrometry (MS) for high-speed, high-throughput screening and molecular identification of chemical weapons (CW) threats and other hazardous compounds. The screening technology can detect a wide range of compounds at subacute concentrations with no sample preparation and a sampling cycle time of approximately 45 s. The technology was tested with CW agents VX, GA, GB, GD, GF, HD, HN1, and HN3, in addition to riot agents and precursors. All are sensitively detected and give simple PI mass spectra dominated by the parent ion. The target application of the PI MS method is as a routine, real-time early warning system for CW agents and other hazardous compounds in air and in water. In this work, we also present comprehensive measurements for water analysis and report on the system detection limits, linearity, quantitation accuracy, and false positive (FP) and false negative rates for concentrations at subacute levels. The latter data are presented in the form of receiver operating characteristic curves of the form of detection probability P(D) versus FP probability P(FP). These measurements were made using the CW surrogate compounds, DMMP, DEMP, DEEP, and DIMP. Method detection limits (3sigma) obtained using a capillary injection method yielded 1, 6, 3, and 2 ng/mL, respectively. These results were obtained using 1-microL injections of water samples without any preparation, corresponding to mass detection limits of 1, 6, 3, and 2 pg, respectively. The linear range was about 3-4 decades and the dynamic range about 4-5 decades. The relative standard deviations were generally <10% at CW subacute concentrations levels.

  7. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  8. Mass transport thermodynamics in nonisothermal molecular liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Semen N [Institute for Biochemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Schimpf, M E [Department of Chemistry and Biochemistry, Boise State University, Boise, ID (United States)

    2009-10-31

    Mass transport in a nonisothermal binary molecular mixture is systematically discussed in terms of nonequilibrium thermodynamics, which for the first time allows a consistent and unambiguous description of the process. The thermodynamic and hydrodynamic approaches are compared, revealing that nonequilibrium thermodynamics and physicochemical hydrodynamics yield essentially the same results for molecular systems. The applicability limits for the proposed version of the thermodynamic approach are determined for large particles. (methodological notes)

  9. Rapid fingerprinting and classification of extra virgin olive oil by microjet sampling and extractive electrospray ionization mass spectrometry.

    Science.gov (United States)

    Law, Wai Siang; Chen, Huan Wen; Balabin, Roman; Berchtold, Christian; Meier, Lukas; Zenobi, Renato

    2010-04-01

    Microjet sampling in combination with extractive electrospray ionization (EESI) mass spectrometry (MS) was applied to the rapid characterization and classification of extra virgin olive oil (EVOO) without any sample pretreatment. When modifying the composition of the primary ESI spray solvent, mass spectra of an identical EVOO sample showed differences. This demonstrates the capability of this technique to extract molecules with varying polarities, hence generating rich molecular information of the EVOO. Moreover, with the aid of microjet sampling, compounds of different volatilities (e.g.E-2-hexenal, trans-trans-2,4-heptadienal, tyrosol and caffeic acid) could be sampled simultaneously. EVOO data was also compared with that of other edible oils. Principal Component Analysis (PCA) was performed to discriminate EVOO and EVOO adulterated with edible oils. Microjet sampling EESI-MS was found to be a simple, rapid (less than 2 min analysis time per sample) and powerful method to obtain MS fingerprints of EVOO without requiring any complicated sample pretreatment steps.

  10. A liquid chromatography-mass spectrometry method based on class characteristic fragmentation pathways to detect the class of indole-derivative synthetic cannabinoids in biological samples.

    Science.gov (United States)

    Mazzarino, Monica; de la Torre, Xavier; Botrè, Francesco

    2014-07-21

    This article describes a liquid chromatographic/tandem mass spectrometric method, based on the use of precursor ion scan as the acquisition mode, specifically developed to detect indole-derived cannabinoids (phenylacetylindoles, naphthoylindoles and benzoylindoles) in biological fluids (saliva, urine and blood). The method is designed to recognize one or more common "structural markers", corresponding to mass spectral fragments originating from the specific portion of the molecular structure that is common to the aminoalkylindole analogues and that is fundamental for their pharmacological classification. As such, the method is also suitable for detecting unknown substances, provided they contain the targeted portion of the molecular structure. The pre-treatment procedure consists in a liquid/liquid extraction step carried out at neutral pH: this is the only pretreatment in the case of analyses carried out in saliva, while it follows an enzymatic hydrolysis procedure in the case of urine samples, or a protein precipitation step in the case of blood samples. The chromatographic separation is achieved using an octadecyl reverse-phase 5 μm fused-core particle column; while the mass spectrometric detection is carried out by a triple-quadrupole instrument in positive electrospray ionization and precursor ion scan as acquisition mode, selecting, as mass spectral fragments, the indole (m/z 144), the carbonylnaphthalenyl (m/z 155) and the naphthalenyl (m/z 127) moieties. Once developed and optimized, the analytical procedure was validated in term of sensitivity (lower limits of detection in the range of 0.1-0.5 ng mL(-1)), specificity (no interference was detected at the retention times of the analytes under investigation), recovery (higher than 65% with a satisfactory repeatability: CV% lower than 10), matrix effect (lower than 30% for all the biological specimens tested), repeatability of the retention times (CV% lower than 0.1), robustness, and carry over (the positive

  11. Method for the elucidation of the elemental composition of low molecular mass chemicals using exact masses of product ions and neutral losses: application to environmental chemicals measured by liquid chromatography with hybrid quadrupole/time-of-flight mass spectrometry.

    Science.gov (United States)

    Suzuki, Shigeru; Ishii, Tetsuko; Yasuhara, Akio; Sakai, Shinichi

    2005-01-01

    A method for elucidating the elemental compositions of low molecular weight chemicals, based primarily on mass measurements made using liquid chromatography (LC) with time-of-flight mass spectrometry (TOFMS) and quadrupole/time-of-flight mass spectrometry (LC/QTOFMS), was developed and tested for 113 chemicals of environmental interest with molecular masses up to approximately 400 Da. As the algorithm incorporating the method is not affected by differences in the instrument used, or by the ionization method and other ionization conditions, the method is useful not only for LC/TOFMS, but also for all kinds of mass spectra measured with higher accuracy and precision (uncertainties of a few mDa) employing all ionization methods and on-line separation techniques. The method involves calculating candidate compositions for intact ionized molecules (ionized forms of the sample molecule that have lost or gained no more than a proton, i.e., [M+H](+) or [M-H](-)) as well as for fragment ions and corresponding neutral losses, and eliminating those atomic compositions for the molecules that are inconsistent with the corresponding candidate compositions of fragment ions and neutral losses. Candidate compositions were calculated for the measured masses of the intact ionized molecules and of the fragment ions and corresponding neutral losses, using mass uncertainties of 2 and 5 mDa, respectively. Compositions proposed for the ionized molecule that did not correspond to the sum of the compositions of a candidate fragment ion and its corresponding neutral loss were discarded. One, 2-5, 6-10, 11-20, and >20 candidate compositions were found for 65%, 39%, 1%, 1%, and 0%, respectively, for the 124 ionized molecules formed from the 113 chemicals tested (both positive and negative ions were obtained from 11 of the chemicals). However, no candidate composition was found for 2% of the test cases (i.e., 3 chemicals), for each of which the measured mass of one of the product ions was in

  12. Intact molecular characterization of cord factor (trehalose 6,6'-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Fujita, Yukiko; Naka, Takashi; McNeil, Michael R; Yano, Ikuya

    2005-10-01

    Cord factor (trehalose 6,6'-dimycolate, TDM) is an unique glycolipid with a trehalose and two molecules of mycolic acids in the mycobacterial cell envelope. Since TDM consists of two molecules of very long branched-chain 3-hydroxy fatty acids, the molecular mass ranges widely and in a complex manner. To characterize the molecular structure of TDM precisely and simply, an attempt was made to determine the mycolic acid subclasses of TDM and the molecular species composition of intact TDM by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for the first time. The results showed that less than 1 microg mycolic acid methyl ester of TDM from nine representative species of mycobacteria and TDM from the same species was sufficient to obtain well-resolved mass spectra composed of pseudomolecular ions [M+Na]+. Although the mass ion distribution was extremely diverse, the molecular species of each TDM was identified clearly by constructing a molecular ion matrix consisting of the combination of two molecules of mycolic acids. The results showed a marked difference in the molecular structure of TDM among mycobacterial species and subspecies. TDM from Mycobacterium tuberculosis (H37Rv and Aoyama B) showed a distinctive mass pattern and consisted of over 60 molecular ions with alpha-, methoxy- and ketomycolate. TDM from Mycobacterium bovis BCG Tokyo 172 similarly showed over 35 molecular ions, but that from M. bovis BCG Connaught showed simpler molecular ion clusters consisting of less than 35 molecular species due to a complete lack of methoxymycolate. Mass ions due to TDM from M. bovis BCG Connaught and Mycobacterium kansasii showed a biphasic distribution, but the two major peaks of TDM from M. kansasii were shifted up two or three carbon units higher compared with M. bovis BCG Connaught. Within the rapid grower group, in TDM consisting of alpha-, keto- and wax ester mycolate from Mycobacterium phlei and Mycobacterium flavescens, the

  13. Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer

    Directory of Open Access Journals (Sweden)

    Stobiecki Maciej

    2009-07-01

    Full Text Available Abstract Background Mass spectrometric analysis of the blood proteome is an emerging method of clinical proteomics. The approach exploiting multi-protein/peptide sets (fingerprints detected by mass spectrometry that reflect overall features of a specimen's proteome, termed proteome pattern analysis, have been already shown in several studies to have applicability in cancer diagnostics. We aimed to identify serum proteome patterns specific for early stage breast cancer patients using MALDI-ToF mass spectrometry. Methods Blood samples were collected before the start of therapy in a group of 92 patients diagnosed at stages I and II of the disease, and in a group of age-matched healthy controls (104 women. Serum specimens were purified and the low-molecular-weight proteome fraction was examined using MALDI-ToF mass spectrometry after removal of albumin and other high-molecular-weight serum proteins. Protein ions registered in a mass range between 2,000 and 10,000 Da were analyzed using a new bioinformatic tool created in our group, which included modeling spectra as a sum of Gaussian bell-shaped curves. Results We have identified features of serum proteome patterns that were significantly different between blood samples of healthy individuals and early stage breast cancer patients. The classifier built of three spectral components that differentiated controls and cancer patients had 83% sensitivity and 85% specificity. Spectral components (i.e., protein ions that were the most frequent in such classifiers had approximate m/z values of 2303, 2866 and 3579 Da (a biomarker built from these three components showed 88% sensitivity and 78% specificity. Of note, we did not find a significant correlation between features of serum proteome patterns and established prognostic or predictive factors like tumor size, nodal involvement, histopathological grade, estrogen and progesterone receptor expression. In addition, we observed a significantly (p = 0

  14. Modeling keV particle interactions with molecular and polymeric samples

    International Nuclear Information System (INIS)

    Delcorte, Arnaud

    2005-01-01

    Organic surfaces are locally submitted to extreme, out of equilibrium conditions when they are bombarded by kiloelectronvolt particles (atoms, ions, clusters). The time scale of the energy transfer is from tens of femtoseconds to several picoseconds depending on the material and the average energy per atom in the energized volume is of the order of a few eV, i.e. sufficient to break bonds in the solid. As a result, atoms, molecules and their fragments are released in the gas phase, which makes sputtering/desorption methods useful for surface treatment (ion beam patterning) and analysis (mass spectrometry). The radicals created in the sample also induce branching and cross-linking reactions that can be useful for surface modification purposes. Molecular dynamics simulations have provided an invaluable help for the elucidation of keV particle-induced processes in organic overlayers and, most recently, bulk materials. In this review, I illustrate the various mechanisms at play using case studies taken from our recent investigations and from the literature. They include the Ar-induced sputtering of a large polymeric molecule on a metal substrate and a molecular sample made of polystyrene oligomers. The emphasis is placed on the understanding of the energy transfer processes in the disturbed surface region and the mechanisms of molecule desorption, fragmentation and recombination, crucial for ion beam-based analytical methods

  15. Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Reyzer, Michelle L; Chaurand, Pierre; Angel, Peggi M; Caprioli, Richard M

    2010-01-01

    The determination of the localization of various compounds in a whole animal is valuable for many applications, including pharmaceutical absorption, distribution, metabolism, and excretion (ADME) studies and biomarker discovery. Imaging mass spectrometry is a powerful tool for localizing compounds of biological interest with molecular specificity and relatively high resolution. Utilizing imaging mass spectrometry for whole-body animal sections offers considerable analytical advantages compared to traditional methods, such as whole-body autoradiography, but the experiment is not straightforward. This chapter addresses the advantages and unique challenges that the application of imaging mass spectrometry to whole-body animal sections entails, including discussions of sample preparation, matrix application, signal normalization, and image generation. Lipid and protein images obtained from whole-body tissue sections of mouse pups are presented along with detailed protocols for the experiments.

  16. Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Fujita, Yukiko; Naka, Takashi; Doi, Takeshi; Yano, Ikuya

    2005-05-01

    Direct estimation of the molecular mass of single molecular species of trehalose 6-monomycolate (TMM), a ubiquitous cell-wall component of mycobacteria, was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. When less than 1 microg TMM was analysed by MALDI-TOF mass spectrometry, quasimolecular ions [M+Na]+ of each molecular species were demonstrated and the numbers of carbons and double bonds (or cyclopropane rings) were determined. Since the introduction of oxygen atoms such as carbonyl, methoxy and ester groups yielded the appropriate shift of mass ions, the major subclasses of mycolic acid (alpha, methoxy, keto and wax ester) were identified without resorting to hydrolytic procedures. The results showed a marked difference in the molecular species composition of TMM among mycobacterial species. Unexpectedly, differing from other mycoloyl glycolipids, TMM from Mycobacterium tuberculosis showed a distinctive mass pattern, with abundant odd-carbon-numbered monocyclopropanoic (or monoenoic) alpha-mycolates besides dicyclopropanoic mycolate, ranging from C75 to C85, odd- and even-carbon-numbered methoxymycolates ranging from C83 to C94 and even- and odd-carbon-numbered ketomycolates ranging from C83 to C90. In contrast, TMM from Mycobacterium bovis (wild strain and BCG substrains) possessed even-carbon-numbered dicyclopropanoic alpha-mycolates. BCG Connaught strain lacked methoxymycolates almost completely. These results were confirmed by MALDI-TOF mass analysis of mycolic acid methyl esters liberated by alkaline hydrolysis and methylation of the original TMM. Wax ester-mycoloyl TMM molecular species were demonstrated for the first time as an intact form in the Mycobacterium avium-intracellulare group, M. phlei and M. flavescens. The M. avium-intracellulare group possessed predominantly C85 and C87 wax ester-mycoloyl TMM, while M. phlei and the rapid growers tested contained C80, C81, C82 and C83 wax ester

  17. Atomistic simulation of damage production by atomic and molecular ion irradiation in GaN

    International Nuclear Information System (INIS)

    Ullah, M. W.; Kuronen, A.; Nordlund, K.; Djurabekova, F.; Karaseov, P. A.; Titov, A. I.

    2012-01-01

    We have studied defect production during single atomic and molecular ion irradiation having an energy of 50 eV/amu in GaN by molecular dynamics simulations. Enhanced defect recombination is found in GaN, in accordance with experimental data. Instantaneous damage shows non-linearity with different molecular projectile and increasing molecular mass. Number of instantaneous defects produced by the PF 4 molecule close to target surface is four times higher than that for PF 2 molecule and three times higher than that calculated as a sum of the damage produced by one P and four F ion irradiation (P+4×F). We explain this non-linearity by energy spike due to molecular effects. On the contrary, final damage created by PF 4 and PF 2 shows a linear pattern when the sample cools down. Total numbers of defects produced by Ag and PF 4 having similar atomic masses are comparable. However, defect-depth distributions produced by these species are quite different, also indicating molecular effect.

  18. An algorithm for mass matrix calculation of internally constrained molecular geometries

    International Nuclear Information System (INIS)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-01

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model

  19. An algorithm for mass matrix calculation of internally constrained molecular geometries.

    Science.gov (United States)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-28

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model.

  20. Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators.

    Science.gov (United States)

    Bircher, Benjamin A; Duempelmann, Luc; Renggli, Kasper; Lang, Hans Peter; Gerber, Christoph; Bruns, Nico; Braun, Thomas

    2013-09-17

    A microcantilever based method for fluid viscosity and mass density measurements with high temporal resolution and microliter sample consumption is presented. Nanomechanical cantilever vibration is driven by photothermal excitation and detected by an optical beam deflection system using two laser beams of different wavelengths. The theoretical framework relating cantilever response to the viscosity and mass density of the surrounding fluid was extended to consider higher flexural modes vibrating at high Reynolds numbers. The performance of the developed sensor and extended theory was validated over a viscosity range of 1-20 mPa·s and a corresponding mass density range of 998-1176 kg/m(3) using reference fluids. Separating sample plugs from the carrier fluid by a two-phase configuration in combination with a microfluidic flow cell, allowed samples of 5 μL to be sequentially measured under continuous flow, opening the method to fast and reliable screening applications. To demonstrate the study of dynamic processes, the viscosity and mass density changes occurring during the free radical polymerization of acrylamide were monitored and compared to published data. Shear-thinning was observed in the viscosity data at higher flexural modes, which vibrate at elevated frequencies. Rheokinetic models allowed the monomer-to-polymer conversion to be tracked in spite of the shear-thinning behavior, and could be applied to study the kinetics of unknown processes.

  1. Selective solid-phase extraction based on molecularly imprinted technology for the simultaneous determination of 20 triazole pesticides in cucumber samples using high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhao, Fengnian; She, Yongxin; Zhang, Chao; Cao, Xiaolin; Wang, Shanshan; Zheng, Lufei; Jin, Maojun; Shao, Hua; Jin, Fen; Wang, Jing

    2017-10-01

    A selective analytical method for the simultaneous determination of 20 triazole fungicides and plant growth regulators in cucumber samples was developed using solid-phase extraction with specific molecularly imprinted polymers (MIPs) as adsorbents. The MIPs were successfully prepared by precipitation polymerization using triadimefon as the template molecule, methacrylic acid as the functional monomer, trimethylolpropane trimethacrylate as the crosslinker, and acetonitrile as the porogen. The performance and recognition mechanism for both the MIPs and non-molecularly imprinted polymers were evaluated using adsorption isotherms and adsorption kinetics. Liquid chromatography-tandem quadrupole mass spectrometry was used to identify and quantify the target analytes. The solid-phase extraction using the MIPs was rapid, convenient, and efficient for extraction and enrichment of the 20 triazole pesticides from cucumber samples. The recoveries obtained at three concentration levels (1, 2, and 10μgL -1 ) ranged from 82.3% to 117.6% with relative standard deviations of less than 11.8% (n=5) for all analytes. The limits of detection for the 20 triazole pesticides were all less than 0.4μgL -1 , and were sufficient to meet international standards. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mass generation and related issues from exotic higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Colatto, Luiz Paulo [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET), Petropolis, RJ (Brazil); Andrade, Marco Antonio de [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil); Assis, Leonardo Paulo Guimaraes de; Helayel-Neto, Jose Abdalla [Centro Brasileiro de Pesquisas Fisicas(LAFEX/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Experimental de Altas Energias; Matheus-Valle, Jose Luiz [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil); Rojas, Moises [Universidade Federal de Lavras, MG (Brazil)

    2011-07-01

    Full text: he main purpose of this work is to show that massless Dirac equation formulated for non-interacting Majorana-Weyl spinors in higher dimensions, particularly in D = 1 + 9 and D = 5 + 5, may yield to an interpretation of massive Majorana and Dirac spinors in D = 1 + 3 dimensions. The particular case of a dimensional reduction from D = 4 + 4 to D = 1 + 3 has already been fairly-well discussed in the literature. By adopting suitable representations of the Dirac matrices in higher dimensions, we pursue the investigation of which higher dimensional space-times and which metric signatures concerning massless Dirac equations in highermay induce massive spinors in D = 1+3 dimensions. The mixing of the chiral fermions in higher dimensions may induce a mechanism such that four massive Majorana fermions may show up and, at an appropriate limit an almost zero and a huge mass show up with corresponding left-handed and right-handed eigenstates. This mechanism could reassess a peculiar connection with the See-Saw scheme associated to neutrino with Majorana-type masses. The masses of the particle are fixed by the dimensional reduction scheme, which the decoupled dimensions contribute coordinates and depend on the mass invariants in lower dimensions. This proposal should allow us to understand the generation of hierarchies for the fermionic masses in D = 1 + 3, or in lower dimensions in general, starting from the constraints between the energy and the momentum in (n; n) dimensions. For the initial D = 5 + 5 Majorana-Weyl spinors framework using the Weyl representation to the Dirac matrices we observe an intriguing decomposition of space-time that result in two equivalent D = 1 + 4 massive spinors which mass term, in D = 1 + 3 included, is originated from the remained component and that could induce a Brane-World mechanism. (author)

  3. Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Cha, Hyung Ki; Kim, Duk Hyeon; Min, Ki Hyun

    2004-01-01

    The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ∼1,500 for the ytterbium

  4. Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Chen Ligang; Zhang Xiaopan; Xu Yang; Du Xiaobo; Sun Xin; Sun Lei; Wang Hui; Zhao Qi; Yu Aimin; Zhang Hanqi; Ding Lan

    2010-01-01

    A simple method based on magnetic separation for selective extraction of fluoroquinolones (FQs) from environmental water samples has been developed using magnetic molecularly imprinted polymer (MMIP) as sorbent. The MMIP has been prepared using ciprofloxacin as template molecule, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linking agent and Fe 3 O 4 magnetite as magnetic component. The polymer has been characterized by scanning electron microscopy, Fourier-transform infrared spectrometry and vibrating sample magnetometry. Various parameters affecting the extraction efficiency were evaluated in order to achieve optimal concentration and reduce non-specific interactions. The analytes desorbed from the polymers were determined by liquid chromatography-tandem mass spectrometry. The matrix effect was evaluated by using different washing solvents for removing interfering compounds from the MMIPs after sample loading. Under the optimal conditions, the linearity of the method obtained is in the range of 20-2000 ng L -1 . The detection limits of FQs are in the range of 3.2-6.2 ng L -1 . The relative standard deviations of intra- and inter-day tests ranging from 2.5 to 7.2% and from 3.6 to 9.1% are obtained. In all three spiked levels (20, 100 and 200 ng L -1 ), the recoveries of FQs are in the range of 76.3-94.2%. The proposed method was successfully applied to determine FQs including ciprofloxacin, enrofloxacin, lomefloxacin, levofloxacin, fleroxacin and sparfloxacin in different water samples, such as lake water, river water, primary and final sewage effluent. Ciprofloxacin and fleroxacin were found in primary and final sewage effluent samples with the contents in the range of 26-87 ng L -1 .

  5. Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ligang; Zhang Xiaopan; Xu Yang [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin (China); Du Xiaobo; Sun Xin [College of Physics, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Sun Lei; Wang Hui; Zhao Qi; Yu Aimin; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin (China); Ding Lan, E-mail: dinglan@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin (China)

    2010-03-03

    A simple method based on magnetic separation for selective extraction of fluoroquinolones (FQs) from environmental water samples has been developed using magnetic molecularly imprinted polymer (MMIP) as sorbent. The MMIP has been prepared using ciprofloxacin as template molecule, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linking agent and Fe{sub 3}O{sub 4} magnetite as magnetic component. The polymer has been characterized by scanning electron microscopy, Fourier-transform infrared spectrometry and vibrating sample magnetometry. Various parameters affecting the extraction efficiency were evaluated in order to achieve optimal concentration and reduce non-specific interactions. The analytes desorbed from the polymers were determined by liquid chromatography-tandem mass spectrometry. The matrix effect was evaluated by using different washing solvents for removing interfering compounds from the MMIPs after sample loading. Under the optimal conditions, the linearity of the method obtained is in the range of 20-2000 ng L{sup -1}. The detection limits of FQs are in the range of 3.2-6.2 ng L{sup -1}. The relative standard deviations of intra- and inter-day tests ranging from 2.5 to 7.2% and from 3.6 to 9.1% are obtained. In all three spiked levels (20, 100 and 200 ng L{sup -1}), the recoveries of FQs are in the range of 76.3-94.2%. The proposed method was successfully applied to determine FQs including ciprofloxacin, enrofloxacin, lomefloxacin, levofloxacin, fleroxacin and sparfloxacin in different water samples, such as lake water, river water, primary and final sewage effluent. Ciprofloxacin and fleroxacin were found in primary and final sewage effluent samples with the contents in the range of 26-87 ng L{sup -1}.

  6. TRIMS: Validating T2 Molecular Effects for Neutrino Mass Experiments

    Science.gov (United States)

    Lin, Ying-Ting; Trims Collaboration

    2017-09-01

    The Tritium Recoil-Ion Mass Spectrometer (TRIMS) experiment examines the branching ratio of the molecular tritium (T2) beta decay to the bound state (3HeT+). Measuring this branching ratio helps to validate the current molecular final-state theory applied in neutrino mass experiments such as KATRIN and Project 8. TRIMS consists of a magnet-guided time-of-flight mass spectrometer with a detector located on each end. By measuring the kinetic energy and time-of-flight difference of the ions and beta particles reaching the detectors, we will be able to distinguish molecular ions from atomic ones and hence derive the ratio in question. We will give an update on the apparatus, simulation software, and analysis tools, including efforts to improve the resolution of our detectors and to characterize the stability and uniformity of our field sources. We will also share our commissioning results and prospects for physics data. The TRIMS experiment is supported by U.S. Department of Energy Office of Science, Office of Nuclear Physics, Award Number DE-FG02-97ER41020.

  7. Higher-speed coronal mass ejections and their geoeffectiveness

    Science.gov (United States)

    Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha

    2018-06-01

    We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.

  8. Accurate EPR radiosensitivity calibration using small sample masses

    Science.gov (United States)

    Hayes, R. B.; Haskell, E. H.; Barrus, J. K.; Kenner, G. H.; Romanyukha, A. A.

    2000-03-01

    We demonstrate a procedure in retrospective EPR dosimetry which allows for virtually nondestructive sample evaluation in terms of sample irradiations. For this procedure to work, it is shown that corrections must be made for cavity response characteristics when using variable mass samples. Likewise, methods are employed to correct for empty tube signals, sample anisotropy and frequency drift while considering the effects of dose distribution optimization. A demonstration of the method's utility is given by comparing sample portions evaluated using both the described methodology and standard full sample additive dose techniques. The samples used in this study are tooth enamel from teeth removed during routine dental care. We show that by making all the recommended corrections, very small masses can be both accurately measured and correlated with measurements of other samples. Some issues relating to dose distribution optimization are also addressed.

  9. Accurate EPR radiosensitivity calibration using small sample masses

    International Nuclear Information System (INIS)

    Hayes, R.B.; Haskell, E.H.; Barrus, J.K.; Kenner, G.H.; Romanyukha, A.A.

    2000-01-01

    We demonstrate a procedure in retrospective EPR dosimetry which allows for virtually nondestructive sample evaluation in terms of sample irradiations. For this procedure to work, it is shown that corrections must be made for cavity response characteristics when using variable mass samples. Likewise, methods are employed to correct for empty tube signals, sample anisotropy and frequency drift while considering the effects of dose distribution optimization. A demonstration of the method's utility is given by comparing sample portions evaluated using both the described methodology and standard full sample additive dose techniques. The samples used in this study are tooth enamel from teeth removed during routine dental care. We show that by making all the recommended corrections, very small masses can be both accurately measured and correlated with measurements of other samples. Some issues relating to dose distribution optimization are also addressed

  10. Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. M. Dickhut

    2008-09-01

    Full Text Available Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS was utilized in this study to provide detailed molecular level characterization of the high molecular weight (HMW; m/z>223 component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223–600 for each sample. Approximately 86% (Virginia and 78% (New York of these peaks were assigned molecular formulas using only carbon (C, hydrogen (H, oxygen (O, nitrogen (N, and sulfur (S as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1–4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition, several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC.

  11. Molecular-level evidence provided by ultrahigh resolution mass spectrometry for oil-derived doc in groundwater at Bemidji, Minnesota

    Science.gov (United States)

    Islam, Ananna; Ahmed, Arif; Hur, Manhoi; Thorn, Kevin A.; Kim, Sunghwan

    2016-01-01

    Dissolved organic matter samples extracted from ground water at the USGS Bemidji oil spill site in Minnesota were investigated by ultrahigh resolution mass spectrometry. Principle component analysis (PCA) of the elemental composition assignments of the samples showed that the score plots for the contaminated sites were well separated from those for the uncontaminated sites. Additionally, spectra obtained from the same sampling site 7 and 19 years after the spill were grouped together in the score plot, strongly suggesting a steady state of contamination within the 12 year interval. The double bond equivalence (DBE) of Ox class compounds was broader for the samples from the contaminated sites, because of the complex nature of oil and the consequent formation of compounds with saturated and/or aromatic structures from the oxygenated products of oil. In addition, Ox class compounds with a relatively smaller number of x (x < 8; x = number of oxygen) and OxS1 class compounds were more abundant in the samples from the contaminated sites, because of the lower oxygen and higher sulfur contents of the oil compared to humic substances. The molecular-level signatures presented here can be a fundamental basis for in-depth analysis of oil contamination.

  12. Black hole mass measurement using molecular gas kinematics: what ALMA can do

    Science.gov (United States)

    Yoon, Ilsang

    2017-04-01

    We study the limits of the spatial and velocity resolution of radio interferometry to infer the mass of supermassive black holes (SMBHs) in galactic centres using the kinematics of circum-nuclear molecular gas, by considering the shapes of the galaxy surface brightness profile, signal-to-noise ratios (S/Ns) of the position-velocity diagram (PVD) and systematic errors due to the spatial and velocity structure of the molecular gas. We argue that for fixed galaxy stellar mass and SMBH mass, the spatial and velocity scales that need to be resolved increase and decrease, respectively, with decreasing Sérsic index of the galaxy surface brightness profile. We validate our arguments using simulated PVDs for varying beam size and velocity channel width. Furthermore, we consider the systematic effects on the inference of the SMBH mass by simulating PVDs including the spatial and velocity structure of the molecular gas, which demonstrates that their impacts are not significant for a PVD with good S/N unless the spatial and velocity scale associated with the systematic effects are comparable to or larger than the angular resolution and velocity channel width of the PVD from pure circular motion. Also, we caution that a bias in a galaxy surface brightness profile owing to the poor resolution of a galaxy photometric image can largely bias the SMBH mass by an order of magnitude. This study shows the promise and the limits of ALMA observations for measuring SMBH mass using molecular gas kinematics and provides a useful technical justification for an ALMA proposal with the science goal of measuring SMBH mass.

  13. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  14. The influence of starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Benes, K.; Wit, D. de

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5–30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  15. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    Science.gov (United States)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  16. ’Point of Injury’ Sampling Technology for Battlefield Molecular Diagnostics

    Science.gov (United States)

    2012-03-17

    Injury" Sampling Technology for Battlefield Molecular Diagnostics March 17,2012 Sponsored by Defense Advanced Research Projects Agency (DOD) Defense...Contract: April 25, 2011 Short Title of Work: "Point of Injury" Sampling Technology for Battlefield Molecular Diagnostics " Contract Expiration Date...SBIR PHASE I OPTION REPORT: Point of Injury, Sampling Technology for Battlefield Molecular Diagnostics . W31P4Q-1 l-C-0222 (UNCLASSIFIED) P.I

  17. Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial-sample UPGMA.

    Science.gov (United States)

    Drummond, A; Rodrigo, A G

    2000-12-01

    Reconstruction of evolutionary relationships from noncontemporaneous molecular samples provides a new challenge for phylogenetic reconstruction methods. With recent biotechnological advances there has been an increase in molecular sequencing throughput, and the potential to obtain serial samples of sequences from populations, including rapidly evolving pathogens, is fast being realized. A new method called the serial-sample unweighted pair grouping method with arithmetic means (sUPGMA) is presented that reconstructs a genealogy or phylogeny of sequences sampled serially in time using a matrix of pairwise distances. The resulting tree depicts the terminal lineages of each sample ending at a different level consistent with the sample's temporal order. Since sUPGMA is a variant of UPGMA, it will perform best when sequences have evolved at a constant rate (i.e., according to a molecular clock). On simulated data, this new method performs better than standard cluster analysis under a variety of longitudinal sampling strategies. Serial-sample UPGMA is particularly useful for analysis of longitudinal samples of viruses and bacteria, as well as ancient DNA samples, with the minimal requirement that samples of sequences be ordered in time.

  18. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography

    Science.gov (United States)

    Winter, Gregory T.; Wilhide, Joshua A.; LaCourse, William R.

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  19. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.

  20. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    Science.gov (United States)

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-04

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  1. Synthesis and application of magnetic molecularly imprinted polymers in sample preparation.

    Science.gov (United States)

    Huang, Shuyao; Xu, Jianqiao; Zheng, Jiating; Zhu, Fang; Xie, Lijun; Ouyang, Gangfeng

    2018-04-12

    Magnetic molecularly imprinted polymers (MMIPs) have superior advantages in sample pretreatment because of their high selectivity for target analytes and the fast and easy isolation from samples. To meet the demand of both good magnetic property and good extraction performance, MMIPs with various structures, from traditional core-shell structures to novel composite structures with a larger specific surface area and more accessible binding sites, are fabricated by different preparation technologies. Moreover, as the molecularly imprinted polymer (MIP) layers determine the affinity, selectivity, and saturated adsorption amount of MMIPs, the development and innovation of the MIP layer are attracting attention and are reviewed here. Many studies that used MMIPs as sorbents in dispersive solid-phase extraction of complex samples, including environmental, food, and biofluid samples, are summarized. Graphical abstract The application of magnetic molecularly imprinted polymers (MIPs) in the sample preparation procedure improves the analytical performances for complex samples. MITs molecular imprinting technologies.

  2. Calibration samples for accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Hershberger, R.L.; Flynn, D.S.; Gabbard, F.

    1981-01-01

    Radioactive samples with precisely known numbers of atoms are useful as calibration sources for lifetime measurements using accelerator mass spectrometry. Such samples can be obtained in two ways: either by measuring the production rate as the sample is created or by measuring the decay rate after the sample has been obtained. The latter method requires that a large sample be produced and that the decay constant be accurately known. The former method is a useful and independent alternative, especially when the decay constant is not well known. The facilities at the University of Kentucky for precision measurements of total neutron production cross sections offer a source of such calibration samples. The possibilities, while quite extensive, would be limited to the proton rich side of the line of stability because of the use of (p,n) and (α,n) reactions for sample production

  3. MALDI-TOF mass spectrometry analysis of small molecular weight compounds (under 10 KDa) as biomarkers of rat hearts undergoing arecoline challenge.

    Science.gov (United States)

    Chen, Tung-Sheng; Chang, Mu-Hsin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Day, Cecilia Hsuan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang

    2013-04-01

    Statistical and clinical reports indicate that betel nut chewing is strongly associated with progression of oral cancer because some ingredients in betel nuts are potential cancer promoters, especially arecoline. Early diagnosis for cancer biomarkers is the best strategy for prevention of cancer progression. Several methods are suggested for investigating cancer biomarkers. Among these methods, gel-based proteomics approach is the most powerful and recommended tool for investigating biomarkers due to its high-throughput. However, this proteomics approach is not suitable for screening biomarkers with molecular weight under 10 KDa because of the characteristics of gel electrophoresis. This study investigated biomarkers with molecular weight under 10 KDa in rats with arecoline challenge. The centrifuging vials with membrane (10 KDa molecular weight cut-off) played a crucial role in this study. After centrifuging, the filtrate (containing compounds with molecular weight under 10 KDa) was collected and spotted on a sample plate for MALDI-TOF mass spectrometry analysis. Compared to control, three extra peaks (m/z values were 1553.1611, 1668.2097 and 1740.1832, respectively) were found in sera and two extra peaks were found in heart tissue samples (408.9719 and 524.9961, respectively). These small compounds should play important roles and may be potential biomarker candidates in rats with arecoline. This study successfully reports a mass-based method for investigating biomarker candidates with small molecular weight in different types of sample (including serum and tissue). In addition, this reported method is more time-efficient (1 working day) than gel-based proteomics approach (5~7 working days).

  4. Burn-up determination of irradiated thoria samples by isotope dilution-thermal ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.; Telmore, V.M.; Shah, R.V.; Sant, V.L.; Sasibhushan, K.; Parab, A.R.; Alamelu, D.

    2010-03-01

    Burn-up was determined experimentally using thermal ionization mass spectrometry for two samples from ThO 2 bundles irradiated in KAPS-2. This involved quantitative dissolution of the irradiated fuel samples followed by separation and determination of Th, U and a stable fission product burn-up monitor in the dissolved fuel solution. Stable fission product 148 Nd was used as a burn-up monitor for determining the number of fissions. Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) using natural U, 229 Th and enriched 142 Nd as spikes was employed for the determination of U, Th and Nd, respectively. Atom % fission values of 1.25 ± 0.03 were obtained for both the samples. 232 U content in 233 U determined by alpha spectrometry was about 500 ppm and this was higher by a factor of 5 compared to the theoretically predicted value by ORIGEN-2 code. (author)

  5. The influence of extruded starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Soest, van J.J.G.; Benes, K.; Wit, de D.; Vliegenthart, J.F.G.

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5-30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  6. Sampling and analyte enrichment strategies for ambient mass spectrometry.

    Science.gov (United States)

    Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei

    2018-01-01

    Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.

  7. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives.

    Science.gov (United States)

    Ashley, Jon; Shahbazi, Mohammad-Ali; Kant, Krishna; Chidambara, Vinayaka Aaydha; Wolff, Anders; Bang, Dang Duong; Sun, Yi

    2017-05-15

    Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high loading capacity. MIPs have been intensively employed in classical solid-phase extraction and solid-phase microextraction. More recently, MIPs have been combined with magnetic bead extraction, which greatly simplifies sample handling procedures. Studies have consistently shown that MIPs can effectively minimize complex food matrix effects, and improve recoveries and detection limits. In addition to sample preparation, MIPs have also been viewed as promising alternatives to bio-receptors due to the inherent molecular recognition abilities and the high stability in harsh chemical and physical conditions. MIPs have been utilized as receptors in biosensing platforms such as electrochemical, optical and mass biosensors to detect various analytes in food. In this review, we will discuss the current state-of-the-art of MIP synthesis and applications in the context of food analysis. We will highlight the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fluoride sample matrices and reaction cells — new capabilities for isotope measurements in accelerator mass spectrometry

    Directory of Open Access Journals (Sweden)

    Eliades J.

    2012-04-01

    Full Text Available Two new techniques, which extend the range of elements that can be analyzed by Accelerator Mass Spectrometry (AMS, and which increase its isobar selection capabilities, have been recently introduced. The first consists of embedding the sample material in a fluoride matrix (e.g. PbF2, which facilitates the production, in the ion source, of fluoride molecular anions that include the isotope of interest. In addition to forming anions with large electron binding energies and thereby increasing the range of analysable elements, in many cases by selection of a molecular form with a particular number of fluorine atoms, some isobar discrimination can be obtained. The second technique, for the significant reduction of atomic isobar interferences, is used following mass selection of the rare isotope. It consists of the deceleration, cooling and reaction of the rare mass beam with a gas, selected so that unwanted isobars are greatly attenuated in comparison with the isotope of interest. Proof of principle measurements for the analysis of 36C1 and 41Ca have provided encouraging results and work is proceeding on the integration of these techniques in a new AMS system planned for installation in late 2012 at the University of Ottawa.

  9. Pulsed flow modulation two-dimensional comprehensive gas chromatography-tandem mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Poliak, Marina; Fialkov, Alexander B; Amirav, Aviv

    2008-11-07

    Pulsed flow modulation (PFM) two-dimensional comprehensive gas chromatography (GC x GC) was combined with quadrupole-based mass spectrometry (MS) via a supersonic molecular beam (SMB) interface using a triple-quadrupole system as the base platform, which enabled tandem mass spectrometry (MS-MS). PFM is a simple GC x GC modulator that does not consume cryogenic gases while providing tunable second GC x GC column injection time for enabling the use of quadrupole-based mass spectrometry regardless its limited scanning speed. The 20-ml/min second column flow rate involved with PFM is handled, splitless, by the SMB interface without affecting the sensitivity. The combinations of PFM GC x GC-MS with SMB and PFM GC x GC-MS-MS with SMB were explored with the analysis of diazinon and permethrin in coriander. PFM GC x GC-MS with SMB is characterized by enhanced molecular ion and tailing-free fast ion source response time. It enables universal pesticide analysis with full scan and data analysis with reconstructed single ion monitoring on the enhanced molecular ion and another prominent high mass fragment ion. The elimination of the third fragment ion used in standard three ions method results in significantly reduced matrix interference. GC x GC-MS with SMB improves the GC separation, and thereby our ability for sample identification using libraries. GC-MS-MS with SMB provides better reduction (elimination) of matrix interference than GC x GC-MS. However, it is a target method, which is not always applicable. GC x GC-MS-MS does not seem to further reduce matrix interferences over GC-MS-MS and unlike GC x GC-MS, it is incompatible with library identification, but it is beneficial to have both GC x GC and MS-MS capabilities in the same system.

  10. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  11. Use of a free-jet expansion, molecular beam mass spectrometer to understand processes involving volatile corrosion products

    International Nuclear Information System (INIS)

    Jacobson, N.S.

    1997-01-01

    Many high-temperature corrosion processes generate volatile products in addition to condensed phase products. Examples of these volatile products are chlorides, oxychlorides, and certain oxides and hydroxyl species. One of the best techniques to identify high temperature vapor molecules is mass spectrometry. Most mass spectrometers operate in high vacuum and are generally used to examine processes ocurring at greatly reduced pressures. However, a free-jet expansion, molecular beam mass spectrometer system allows direct sampling of volatile corrosion products. This instrument is described. Several examples from our studies on chlorination/oxidation of metals and ceramics are discussed. In addition, reactions of Cr 2 O 3 , SiO 2 , and Al 2 O 3 with water vapor, which produce volatile hydroxyl species are discussed. (orig.)

  12. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    Science.gov (United States)

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  13. Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River

    Science.gov (United States)

    Roth, Vanessa-Nina; Dittmar, Thorsten; Gaupp, Reinhard; Gleixner, Gerd

    2013-12-01

    We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) to identify the molecular composition of dissolved organic matter (DOM) collected from different ecosystems along a transect crossing Siberia’s northern and middle Taiga. This information is urgently needed to help elucidate global carbon cycling and export through Russian rivers. In total, we analyzed DOM samples from eleven Yenisei tributaries and seven bogs. Freeze-dried and re-dissolved DOM was desalted via solid phase extraction (SPE) and eluted in methanol for ESI-FT-ICR-MS measurements. We recorded 15209 different masses and identified 7382 molecular formulae in the mass range between m/z = 150 and 800. We utilized the relative FT-ICR-MS signal intensities of 3384 molecular formulae above a conservatively set limit of detection and summarized the molecular characteristics for each measurement using ten magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (DBE)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w and (AI)w) for redundancy analysis. Consequently, we revealed that the molecular composition of DOM depends mainly on pH and geographical latitude. After applying variation partitioning to the peak data, we isolated molecular formulae that were strongly positive or negatively correlated with latitude and pH. We used the chemical information from 13 parameters (C#, H#, N#, O#, O/C, H/C, DBE, DBE/C, DBE/O, AI, N/C, DBE-O and MW) to characterize the extracted molecular formulae. Using latitude along the gradient representing climatic variation, we found a higher abundance of smaller molecules, nitrogen-containing compounds and unsaturated Cdbnd C functionalities at higher latitudes. As possible reasons for the different molecular characteristics occurring along this gradient, we suggested that the decomposition was temperature dependent resulting to a higher abundance of non-degraded lignin-derived phenolic substances. We demonstrated that bog samples

  14. MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) of skin: Aspects of sample preparation.

    Science.gov (United States)

    de Macedo, Cristiana Santos; Anderson, David M; Schey, Kevin L

    2017-11-01

    MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) allows molecular analysis of biological materials making possible the identification and localization of molecules in tissues, and has been applied to address many questions on skin pathophysiology, as well as on studies about drug absorption and metabolism. Sample preparation for MALDI IMS is the most important part of the workflow, comprising specimen collection and preservation, tissue embedding, cryosectioning, washing, and matrix application. These steps must be carefully optimized for specific analytes of interest (lipids, proteins, drugs, etc.), representing a challenge for skin analysis. In this review, critical parameters for MALDI IMS sample preparation of skin samples will be described. In addition, specific applications of MALDI IMS of skin samples will be presented including wound healing, neoplasia, and infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. 15N sample preparation for mass spectroscopy analysis

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Salati, E.; Matsui, E.

    1973-01-01

    Technics for preparing 15 N samples to be analised is presented. Dumas method and oxidation by sodium hypobromite method are described in order to get the appropriate sample. Method to calculate 15 N ratio from mass spectrometry dates is also discussed [pt

  16. Molecular dynamics coupled with a virtual system for effective conformational sampling.

    Science.gov (United States)

    Hayami, Tomonori; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi

    2018-07-15

    An enhanced conformational sampling method is proposed: virtual-system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free-energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  17. Cyclodextrin--piroxicam inclusion complexes: analyses by mass spectrometry and molecular modelling

    Science.gov (United States)

    Gallagher, Richard T.; Ball, Christopher P.; Gatehouse, Deborah R.; Gates, Paul J.; Lobell, Mario; Derrick, Peter J.

    1997-11-01

    Mass spectrometry has been used to investigate the natures of non-covalent complexes formed between the anti-inflammatory drug piroxicam and [alpha]-, [beta]- and [gamma]-cyclodextrins. Energies of these complexes have been calculated by means of molecular modelling. There is a correlation between peak intensities in the mass spectra and the calculated energies.

  18. Photoionization mass spectrometric studies of selected compounds in a molecular beam

    Energy Technology Data Exchange (ETDEWEB)

    Trott, W.M.

    1979-03-01

    Photoionization efficiency curves have been measured at moderate to high resolution for several species produced in supersonic molecular beams of acetone, acetone-d/sub 6/ and CS/sub 2/. The molecular beam photoionization mass spectrometer which has been assembled for this work is described. The performance of this instrument has been characterized by a number of experiments and calculations.

  19. Photoionization mass spectrometric studies of selected compounds in a molecular beam

    International Nuclear Information System (INIS)

    Trott, W.M.

    1979-03-01

    Photoionization efficiency curves have been measured at moderate to high resolution for several species produced in supersonic molecular beams of acetone, acetone-d 6 and CS 2 . The molecular beam photoionization mass spectrometer which has been assembled for this work is described. The performance of this instrument has been characterized by a number of experiments and calculations

  20. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    Science.gov (United States)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  1. Some connections between importance sampling and enhanced sampling methods in molecular dynamics.

    Science.gov (United States)

    Lie, H C; Quer, J

    2017-11-21

    In molecular dynamics, enhanced sampling methods enable the collection of better statistics of rare events from a reference or target distribution. We show that a large class of these methods is based on the idea of importance sampling from mathematical statistics. We illustrate this connection by comparing the Hartmann-Schütte method for rare event simulation (J. Stat. Mech. Theor. Exp. 2012, P11004) and the Valsson-Parrinello method of variationally enhanced sampling [Phys. Rev. Lett. 113, 090601 (2014)]. We use this connection in order to discuss how recent results from the Monte Carlo methods literature can guide the development of enhanced sampling methods.

  2. Detection of sputtered molecular doubly charged anions: a comparison of secondary-ion mass spectrometry (SIMS) and accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Gnaser, Hubert; Golser, Robin; Kutschera, Walter; Priller, Alfred; Steier, Peter; Vockenhuber, Christof

    2004-01-01

    The detection of small molecular dianions by secondary-ion mass spectrometry (SIMS) and by accelerator mass spectrometry (AMS) is compared. In SIMS, the existence of these dianions can be identified safely if the total mass number of the molecule is odd and the dianion is hence detected at a half-integral mass number. The occurrence of fragmentation processes which may interfere with this scheme, is illustrated by means of the energy spectra of singly and doubly charged negative cluster ions. As compared to SIMS, AMS can rely, in addition, on the break-up of molecular species in the stripping process: this allows to monitor the simultaneous arrival of several atomic constituents with a clear energetic pattern in coincidence at the detector. This feature is exemplified for the C 10 2- dianion

  3. Small Body GN and C Research Report: G-SAMPLE - An In-Flight Dynamical Method for Identifying Sample Mass [External Release Version

    Science.gov (United States)

    Carson, John M., III; Bayard, David S.

    2006-01-01

    G-SAMPLE is an in-flight dynamical method for use by sample collection missions to identify the presence and quantity of collected sample material. The G-SAMPLE method implements a maximum-likelihood estimator to identify the collected sample mass, based on onboard force sensor measurements, thruster firings, and a dynamics model of the spacecraft. With G-SAMPLE, sample mass identification becomes a computation rather than an extra hardware requirement; the added cost of cameras or other sensors for sample mass detection is avoided. Realistic simulation examples are provided for a spacecraft configuration with a sample collection device mounted on the end of an extended boom. In one representative example, a 1000 gram sample mass is estimated to within 110 grams (95% confidence) under realistic assumptions of thruster profile error, spacecraft parameter uncertainty, and sensor noise. For convenience to future mission design, an overall sample-mass estimation error budget is developed to approximate the effect of model uncertainty, sensor noise, data rate, and thrust profile error on the expected estimate of collected sample mass.

  4. A modified FASP protocol for high-throughput preparation of protein samples for mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Jeremy Potriquet

    Full Text Available To facilitate high-throughput proteomic analyses we have developed a modified FASP protocol which improves the rate at which protein samples can be processed prior to mass spectrometry. Adapting the original FASP protocol to a 96-well format necessitates extended spin times for buffer exchange due to the low centrifugation speeds tolerated by these devices. However, by using 96-well plates with a more robust polyethersulfone molecular weight cutoff membrane, instead of the cellulose membranes typically used in these devices, we could use isopropanol as a wetting agent, decreasing spin times required for buffer exchange from an hour to 30 minutes. In a typical work flow used in our laboratory this equates to a reduction of 3 hours per plate, providing processing times similar to FASP for the processing of up to 96 samples per plate. To test whether our modified protocol produced similar results to FASP and other FASP-like protocols we compared the performance of our modified protocol to the original FASP and the more recently described eFASP and MStern-blot. We show that all FASP-like methods, including our modified protocol, display similar performance in terms of proteins identified and reproducibility. Our results show that our modified FASP protocol is an efficient method for the high-throughput processing of protein samples for mass spectral analysis.

  5. Molecular characterization and expression analysis of fat mass and ...

    Indian Academy of Sciences (India)

    Keywords. fat mass and obesity-associated gene (FTO); rabbit; mRNA expression patterns; sequence analysis; Oryctolagus cuniculus. ... In this work, the molecular characterization and expression features of rabbit (Oryctolagus cuniculus) FTO cDNA were analysed. The rabbit FTO cDNA with a size of 2158 bp was cloned, ...

  6. The Anomalies of Hyaluronan Structures in Presence of Surface Active Phospholipids—Molecular Mass Dependence

    Directory of Open Access Journals (Sweden)

    Piotr Bełdowski

    2018-03-01

    Full Text Available Interactions between hyaluronan (A- and phospholipids play a key role in many systems in the human body. One example is the articular cartilage system, where the synergistic effect of such interactions supports nanoscale lubrication. A molecular dynamics simulation has been performed to understand the process of formation of hydrogen bonds inside the hyaluronan network, both in the presence and absence of phospholipids. Additionally, the effect of the molecular mass of (A- was analyzed. The main finding of this work is a robust demonstration of the optimal parameters (H-bond energy, molecular mass influencing the facilitated lubrication mechanism of the articular cartilage system. Simulation results show that the presence of phospholipids has the greatest influence on hyaluronan at low molecular mass. We also show the specific sites of H-bonding between chains. Simulation results can help to understand how hyaluronan and phospholipids interact at several levels of articular cartilage system functioning.

  7. Mass spectral chemical fingerprints reveal the molecular dependence of exhaust particulate matters on engine speeds.

    Science.gov (United States)

    Li, Yi; Zhang, Hua; Zhao, Zongshan; Tian, Yong; Liu, Kun; Jie, Feifan; Zhu, Liang; Chen, Huanwen

    2018-05-01

    Particulate matters (PMs) emitted by automobile exhaust contribute to a significant fraction of the global PMs. Extractive atmospheric pressure chemical ionization mass spectrometry (EAPCI-MS) was developed to explore the molecular dependence of PMs collected from exhaust gases produced at different vehicle engine speeds. The mass spectral fingerprints of the organic compounds embedded in differentially sized PMs (e.g., 0.22-0.45, 0.45-1.00, 1.00-2.00, 2.00-3.00, 3.00-5.00, and 5.00-10.00μm) generated at different engine speeds (e.g., 1000, 1500, 2000, 2500, and 3000r/min) were chemically profiled in the mass range of mass to charge ratio (m/z) 50-800. Organic compounds, including alcohols, aldehydes, and esters, were detected in all the PMs tested, with varied concentration levels for each individual PM sample. At relatively low engine speeds (≤1500r/min), the total amount of organic species embedded in PMs of 0.22-1.00μm was greater than in PMs of other sizes, while more organic species were found in PMs of 5.00-10.00μm at high engine speeds (≥3000r/min), indicating that the organic compounds distributed in different sizes of PMs strongly correlated with the engine speed. The experimental data showed that the EAPCI-MS technique enables molecular characterization of PMs in exhaust, revealing the chemical dependence of PMs on the engine speeds (i.e., the combustion conditions) of automobiles. Copyright © 2017. Published by Elsevier B.V.

  8. Analysis of hydroxamate siderophores in soil solution using liquid chromatography with mass spectrometry and tandem mass spectrometry with on-line sample preconcentration.

    Science.gov (United States)

    Olofsson, Madelen A; Bylund, Dan

    2015-10-01

    A liquid chromatography with electrospray ionization mass spectrometry method was developed to quantitatively and qualitatively analyze 13 hydroxamate siderophores (ferrichrome, ferrirubin, ferrirhodin, ferrichrysin, ferricrocin, ferrioxamine B, D1 , E and G, neocoprogen I and II, coprogen and triacetylfusarinine C). Samples were preconcentrated on-line by a switch-valve setup prior to analyte separation on a Kinetex C18 column. Gradient elution was performed using a mixture of an ammonium formate buffer and acetonitrile. Total analysis time including column conditioning was 20.5 min. Analytes were fragmented by applying collision-induced dissociation, enabling structural identification by tandem mass spectrometry. Limit of detection values for the selected ion monitoring method ranged from 71 pM to 1.5 nM with corresponding values of two to nine times higher for the multiple reaction monitoring method. The liquid chromatography with mass spectrometry method resulted in a robust and sensitive quantification of hydroxamate siderophores as indicated by retention time stability, linearity, sensitivity, precision and recovery. The analytical error of the methods, assessed through random-order, duplicate analysis of soil samples extracted with a mixture of 10 mM phosphate buffer and methanol, appears negligible in relation to between-sample variations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    International Nuclear Information System (INIS)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-01-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N 2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N 2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH 3 · radicals is successfully demonstrated

  10. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    Science.gov (United States)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.

    2006-05-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.

  11. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: Effect of sample preparation on MALDI-MS of synthetic polymers.

    Science.gov (United States)

    Kooijman, Pieter C; Kok, Sander; Honing, Maarten

    2017-02-28

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the aim of the experiment. Because the underlying principles of MALDI are still not fully known, a priori determination of optimal sample preparation protocols is often not possible. Employing an automated sample preparation quality assessment method recently presented by us we quantified the sample preparation quality obtained using various sample preparation protocols. Six conventional matrices with and without added potassium as a cationization agent and six ionic liquid matrices (ILMs) were assessed using poly(ethylene glycol) (PEG), polytetrahydrofuran (PTHF) and poly(methyl methacrylate) (PMMA) as samples. All sample preparation protocols were scored and ranked based on predefined quality parameters and spot-to-spot repeatability. Clearly distinctive preferences were observed in matrix identity and cationization agent for PEG, PTHF and PMMA, as the addition of an excess of potassium cationization agent results in an increased score for PMMA and a contrasting matrix-dependent effect for PTHF and PEG. The addition of excess cationization agent to sample mixtures dissipates any overrepresentation of high molecular weight polymer species. Our results show reduced ionization efficiency and similar sample deposit homogeneity for all tested ILMs, compared with well-performing conventional MALDI matrices. The results published here represent a start in the unsupervised quantification of sample preparation quality for MALDI samples. This method can select the best sample preparation parameters for any synthetic polymer sample and the results can be used to formulate hypotheses on MALDI principles. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Online sample concentration in partial-filling chiral electrokinetic chromatography – mass spectrometry.

    Science.gov (United States)

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P

    2014-11-01

    The concentration sensitivity of a racemic drug (chlorpheniramine maleate) in chiral capillary electrophoresis with electrospray ionization – mass spectrometric detection was improved ~500-fold via stacking. Enantiomeric separation was achieved through the use of a neutral chiral pseudostationary phase (2-hydroxpropyl-β-cyclodextrin), untreated fused-silica capillaries, and the application of a partial-filling technique to prevent the pseudostationary phase from entering the detector. A concentration factor of 50 resulted from field-enhanced sample injection(FESI). However, the higher concentration factor was achieved by combining FESI with micelle-to-solvent stacking (MSS) to increase sample load and focus the analyte band. MSS was achieved by injection of an ammonium lauryl sulfate micellar plug prior to sample injection. The sample diluent was a 20-fold dilution of the background electrolyte (50 mM ammonium acetate, pH 3.5) with 60% acetonitrile. This methodology provided a limit of detection (LOD) of as low as 5 ng/ml of the racemate.

  13. High molecular weight non-polar hydrocarbons as pure model substances and in motor oil samples can be ionized without fragmentation by atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Hourani, Nadim; Kuhnert, Nikolai

    2012-10-15

    High molecular weight non-polar hydrocarbons are still difficult to detect by mass spectrometry. Although several studies have targeted this problem, lack of good self-ionization has limited the ability of mass spectrometry to examine these hydrocarbons. Failure to control ion generation in the atmospheric pressure chemical ionization (APCI) source hampers the detection of intact stable gas-phase ions of non-polar hydrocarbon in mass spectrometry. Seventeen non-volatile non-polar hydrocarbons, reported to be difficult to ionize, were examined by an optimized APCI methodology using nitrogen as the reagent gas. All these analytes were successfully ionized as abundant and intact stable [M-H](+) ions without the use of any derivatization or adduct chemistry and without significant fragmentation. Application of the method to real-life hydrocarbon mixtures like light shredder waste and car motor oil was demonstrated. Despite numerous reports to the contrary, it is possible to ionize high molecular weight non-polar hydrocarbons by APCI, omitting the use of additives. This finding represents a significant step towards extending the applicability of mass spectrometry to non-polar hydrocarbon analyses in crude oil, petrochemical products, waste or food. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry.

    Science.gov (United States)

    Remucal, Christina K; Cory, Rose M; Sander, Michael; McNeill, Kristopher

    2012-09-04

    Suwannee River fulvic acid (SRFA) was dialyzed through a 100-500 molecular weight cutoff dialysis membrane, and the dialysate and retentate were analyzed by UV-visible absorption and high-resolution Orbitrap mass spectrometry (MS). A significant fraction (36% based on dissolved organic carbon) of SRFA passed through the dialysis membrane. The fraction of SRFA in the dialysate had a different UV-visible absorption spectrum and was enriched in low molecular weight molecules with a more aliphatic composition relative to the initial SRFA solution. Comparison of the SRFA spectra collected by Orbitrap MS and Fourier transform ion cyclotron resonance MS (FT-ICR MS) demonstrated that the mass accuracy of the Orbitrap MS is sufficient for determination of unique molecular formulas of compounds with masses masses detected by Orbitrap MS were found in the 100-200 Da mass range. Many of these low molecular masses corresponded to molecular formulas of previously identified compounds in organic matter, lignin, and plants, and the use of the standard addition method provided an upper concentration estimate of selected target compounds in SRFA. Collectively, these results provide evidence that SRFA contains low molecular weight components that are present individually or in loosely bound assemblies.

  15. Pathology interface for the molecular analysis of tissue by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jeremy L Norris

    2016-01-01

    Full Text Available Background: Imaging mass spectrometry (IMS generates molecular images directly from tissue sections to provide better diagnostic insights and expand the capabilities of clinical anatomic pathology. Although IMS technology has matured over recent years, the link between microscopy imaging currently used by pathologists and MS-based molecular imaging has not been established. Methods: We adapted the Vanderbilt University Tissue Core workflow for IMS into a web-based system that facilitates remote collaboration. The platform was designed to perform within acceptable web response times for viewing, annotating, and processing high resolution microscopy images. Results: We describe a microscopy-driven approach to tissue analysis by IMS. Conclusion: The Pathology Interface for Mass Spectrometry is designed to provide clinical access to IMS technology and deliver enhanced diagnostic value.

  16. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    Science.gov (United States)

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  17. Orientation and properties of the blends on high-molecular mass polyacrylonitrile with trihydroxyethylenedimethacrylate under electron irradiation

    International Nuclear Information System (INIS)

    Lomonosova, N.V.

    1998-01-01

    Molecular orientation of the drawn blends of high- molecular-mass poly(acrylonitrile) containing 5-50 wt % of trihydroxyethylenedimethacrylate and a change in the orientation of the drawn samples upon irradiation with accelerated electrons was studied by methods of birefringence, isometric heating, and IR dichroism. The degree of orientation of the unirradiated blends containing certain amounts of oligomer exceed that of the individual polymer. In the region of large drawing ratios, the differential degree of orientation of the polymer matrix is not affected by the irradiation, while the orientation of the oligomer component increase. High values of the strength (600-730 MPa) and the modulus (18-22 GPa) of the compositions are due to the presence of a crystalline skeleton formed by unfolded chains of the polymer matrix stabilized by the electron irradiation induced cross-linking

  18. Reinterpreting Higher Education Quality in Response to Policies of Mass Education: The Australian Experience

    Science.gov (United States)

    Pitman, Tim

    2014-01-01

    This article explores the relationship between mass education, higher education quality and policy development in Australia in the period 2008-2014, during which access to higher education was significantly increased. Over this time, which included a change of national government, the discursive relationship between mass higher education and…

  19. TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE HERSCHEL CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A

    International Nuclear Information System (INIS)

    Polychroni, D.; Schisano, E.; Elia, D.; Molinari, S.; Turrini, D.; Rygl, K. L. J.; Benedettini, M.; Busquet, G.; Di Giorgio, A. M.; Pestalozzi, M.; Pezzuto, S.; Roy, A.; André, Ph.; Hennemann, M.; Hill, T.; Könyves, V.; Martin, P.; Di Francesco, J.; Arzoumanian, D.; Bontemps, S.

    2013-01-01

    We present Herschel survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of the dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there, is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 M ☉ and drives the shape of the core mass function (CMF) at higher masses, which we fit with a power law of the form dN/dlogM∝M –1.4±0.4 . The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 M ☉ and leads to a flattening of the CMF at masses lower than ∼4 M ☉ . We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud

  20. TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE HERSCHEL CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A

    Energy Technology Data Exchange (ETDEWEB)

    Polychroni, D. [Department of Astrophysics, University of Athens, Astronomy and Mechanics, Faculty of Physics, Panepistimiopolis, 15784 Zografos, Athens (Greece); Schisano, E.; Elia, D.; Molinari, S.; Turrini, D.; Rygl, K. L. J.; Benedettini, M.; Busquet, G.; Di Giorgio, A. M.; Pestalozzi, M.; Pezzuto, S. [Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Roy, A.; André, Ph.; Hennemann, M.; Hill, T.; Könyves, V. [Laboratoire AIM, CEA/IRFU CNRS/INSU Université Paris Diderot, Paris-Saclay, F-91191 Gif-sur-Yvette (France); Martin, P. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Di Francesco, J. [National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Arzoumanian, D. [IAS, CNRS (UMR 8617), Université Paris-Sud, Bâtiment 121, F-91400 Orsay (France); Bontemps, S., E-mail: dpolychroni@phys.uoa.gr [Université de Bordeaux, Laboratoire d' Astrophysique de Bordeaux, CNRS/INSU, UMR 5804, BP 89, F-33271, Floirac Cedex (France); and others

    2013-11-10

    We present Herschel survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of the dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there, is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 M {sub ☉} and drives the shape of the core mass function (CMF) at higher masses, which we fit with a power law of the form dN/dlogM∝M {sup –1.4±0.4}. The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 M {sub ☉} and leads to a flattening of the CMF at masses lower than ∼4 M {sub ☉}. We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud.

  1. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  2. Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level.

    Science.gov (United States)

    Grabowsky, Jana; Streibel, Thorsten; Sklorz, Martin; Chow, Judith C; Watson, John G; Mamakos, Athanasios; Zimmermann, Ralf

    2011-12-01

    The carbonaceous fraction of airborne particulate matter (PM) is of increasing interest due to the adverse health effects they are linked to. Its analytical ascertainment on a molecular level is still challenging. Hence, analysis of carbonaceous fractions is often carried out by determining bulk parameters such as the overall content of organic compounds (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC), however, no information about the individual substances or substance classes, of which the single fractions consist can be obtained. In this work, a carbon analyzer and a photo-ionization time-of-flight mass spectrometer (PI-TOF-MS) were hyphenated to investigate individual compounds especially from the OC fractions. The carbon analyzer enables the stepwise heating of particle samples and provides the bulk parameters. With the PI-TOF-MS, it is possible to detect the organic compounds released during the single-temperature steps due to soft ionization and fast detection of the molecular ions. The hyphenation was designed, built up, characterized by standard substances, and applied to several kinds of samples, such as ambient aerosol, gasoline, and diesel emission as well as wood combustion emission samples. The ambient filter sample showed a strong impact of wood combustion markers. This was revealed by comparison to the product pattern of the similar analysis of pure cellulose and lignin and the wood combustion PM. At higher temperatures (450 °C), a shift to smaller molecules occurred due to the thermal decomposition of larger structures of oligomeric or polymeric nature comparable to lignocelluloses and similar oxygenated humic-like substances. Finally, particulate matter from gasoline and diesel containing 10% biodiesel vehicle exhaust has been analyzed. Gasoline-derived PM exhibited large polycyclic aromatic hydrocarbons, whereas diesel PM showed a much higher total organic content. The detected pattern revealed a strong

  3. Document authentication at molecular levels using desorption atmospheric pressure chemical ionization mass spectrometry imaging.

    Science.gov (United States)

    Li, Ming; Jia, Bin; Ding, Liying; Hong, Feng; Ouyang, Yongzhong; Chen, Rui; Zhou, Shumin; Chen, Huanwen; Fang, Xiang

    2013-09-01

    Molecular images of documents were obtained by sequentially scanning the surface of the document using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS), which was operated in either a gasless, solvent-free or methanol vapor-assisted mode. The decay process of the ink used for handwriting was monitored by following the signal intensities recorded by DAPCI-MS. Handwritings made using four types of inks on four kinds of paper surfaces were tested. By studying the dynamic decay of the inks, DAPCI-MS imaging differentiated a 10-min old from two 4 h old samples. Non-destructive forensic analysis of forged signatures either handwritten or computer-assisted was achieved according to the difference of the contour in DAPCI images, which was attributed to the strength personalized by different writers. Distinction of the order of writing/stamping on documents and detection of illegal printings were accomplished with a spatial resolution of about 140 µm. A Matlab® written program was developed to facilitate the visualization of the similarity between signature images obtained by DAPCI-MS. The experimental results show that DAPCI-MS imaging provides rich information at the molecular level and thus can be used for the reliable document analysis in forensic applications. © 2013 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons, Ltd.

  4. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry.

    Science.gov (United States)

    Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas

    2014-01-01

    This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.

  5. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%). - Highlights: • High-resolution Graphite Furnace Molecular Absorption Spectrometry (HR-GF MAS) • Fluorine has been determined using HR-GF MAS of the CaF molecule. • The CaF molecule was generated in a graphite furnace at a temperature of 2100 °C • Coal samples have been analyzed using direct solid sample introduction. • Aqueous standard solutions have been used for calibration.

  6. Influence of interface potential on the effective mass in Ge nanostructures

    International Nuclear Information System (INIS)

    Barbagiovanni, E. G.; Cosentino, S.; Terrasi, A.; Mirabella, S.; Lockwood, D. J.; Costa Filho, R. N.

    2015-01-01

    The role of the interface potential on the effective mass of charge carriers is elucidated in this work. We develop a new theoretical formalism using a spatially dependent effective mass that is related to the magnitude of the interface potential. Using this formalism, we studied Ge quantum dots (QDs) formed by plasma enhanced chemical vapour deposition (PECVD) and co-sputtering (sputter). These samples allowed us to isolate important consequences arising from differences in the interface potential. We found that for a higher interface potential, as in the case of PECVD QDs, there is a larger reduction in the effective mass, which increases the confinement energy with respect to the sputter sample. We further understood the action of O interface states by comparing our results with Ge QDs grown by molecular beam epitaxy. It is found that the O states can suppress the influence of the interface potential. From our theoretical formalism, we determine the length scale over which the interface potential influences the effective mass

  7. Deriving Stellar Masses for the ALFALFA α.100 Sample

    Science.gov (United States)

    Hess, Logan; Cornell 2017 Summer REU

    2018-01-01

    For this project, we explore different methods of deriving the stellar masses of galaxies in the ALFALFA (Arecibo Legacy Fast ALFA) α.100 survey. In particular, we measure the effectiveness of SED (Spectral Energy Distribution) on the sample. SED fitting was preformed by MAGPHYS (Multi-wavelength Analysis of Galaxy Physical Properties), utilizing a wide range of photometry in the UV, optical, and IR bands. Photometry was taken from GALAX GR6/7 (UV), SDSS DR13 (optical), WISE All-Sky (near-IR), and Herschel PACS/SPIRE (far-IR). The efficiency of SED fitting increases with a broader range of photometry, however detection rates varied significantly across the different bands. Using a more “comprehensive” sample of galaxies, the GSWLC-A (GALAX, SDSS, WISE Legacy Catalog All-Sky Survey), we aimed to measure which combination of bands provided the largest sample return with the lowest amount of uncertainty, which could then be used to estimate the masses of the galaxies in the α.100 sample.

  8. HICOSMO - cosmology with a complete sample of galaxy clusters - I. Data analysis, sample selection and luminosity-mass scaling relation

    Science.gov (United States)

    Schellenberger, G.; Reiprich, T. H.

    2017-08-01

    The X-ray regime, where the most massive visible component of galaxy clusters, the intracluster medium, is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these objects. The aim of this project is to analyse a complete sample of galaxy clusters in detail and constrain cosmological parameters, like the matter density, Ωm, or the amplitude of initial density fluctuations, σ8. The purely X-ray flux-limited sample (HIFLUGCS) consists of the 64 X-ray brightest galaxy clusters, which are excellent targets to study the systematic effects, that can bias results. We analysed in total 196 Chandra observations of the 64 HIFLUGCS clusters, with a total exposure time of 7.7 Ms. Here, we present our data analysis procedure (including an automated substructure detection and an energy band optimization for surface brightness profile analysis) that gives individually determined, robust total mass estimates. These masses are tested against dynamical and Planck Sunyaev-Zeldovich (SZ) derived masses of the same clusters, where good overall agreement is found with the dynamical masses. The Planck SZ masses seem to show a mass-dependent bias to our hydrostatic masses; possible biases in this mass-mass comparison are discussed including the Planck selection function. Furthermore, we show the results for the (0.1-2.4) keV luminosity versus mass scaling relation. The overall slope of the sample (1.34) is in agreement with expectations and values from literature. Splitting the sample into galaxy groups and clusters reveals, even after a selection bias correction, that galaxy groups exhibit a significantly steeper slope (1.88) compared to clusters (1.06).

  9. Ligand pose and orientational sampling in molecular docking.

    Directory of Open Access Journals (Sweden)

    Ryan G Coleman

    Full Text Available Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys-Enhanced (DUD-E benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20,000 molecular orientations in the binding site (and so from about 1×10(10 to 4×10(10 to 1×10(11 to 2×10(11 to 5×10(11 mean atoms scored per target, since multiple conformations are sampled per orientation, the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field.

  10. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags

    Science.gov (United States)

    Mochalski, Paweł; King, Julian; Unterkofler, Karl; Amann, Anton

    2016-01-01

    The stability of 41 selected breath constituents in three types of polymer sampling bags, Tedlar, Kynar, and Flexfilm, was investigated using solid phase microextraction and gas chromatography mass spectrometry. The tested molecular species belong to different chemical classes (hydrocarbons, ketones, aldehydes, aromatics, sulphurs, esters, terpenes, etc.) and exhibit close-to-breath low ppb levels (3–12 ppb) with the exception of isoprene, acetone and acetonitrile (106 ppb, 760 ppb, 42 ppb respectively). Stability tests comprised the background emission of contaminants, recovery from dry samples, recovery from humid samples (RH 80% at 37 °C), influence of the bag’s filling degree, and reusability. Findings yield evidence of the superiority of Tedlar bags over remaining polymers in terms of background emission, species stability (up to 7 days for dry samples), and reusability. Recoveries of species under study suffered from the presence of high amounts of water (losses up to 10%). However, only heavier volatiles, with molecular masses higher than 90, exhibited more pronounced losses (20–40%). The sample size (the degree of bag filling) was found to be one of the most important factors affecting the sample integrity. To sum up, it is recommended to store breath samples in pre-conditioned Tedlar bags up to 6 hours at the maximum possible filling volume. Among the remaining films, Kynar can be considered as an alternative to Tedlar; however, higher losses of compounds should be expected even within the first hours of storage. Due to the high background emission Flexfilm is not suitable for sampling and storage of samples for analyses aiming at volatiles at a low ppb level. PMID:23323261

  11. [Search for potential gastric cancer biomarkers using low molecular weight blood plasma proteome profiling by mass spectrometry].

    Science.gov (United States)

    Shevchenko, V E; Arnotskaia, N E; Ogorodnikova, E V; Davydov, M M; Ibraev, M A; Turkin, I N; Davydov, M I

    2014-01-01

    Gastric cancer, one of the most widespread malignant tumors, still lacks reliable serum/plasma biomarkers of its early detection. In this study we have developed, unified, and tested a new methodology for search of gastric cancer biomarkers based on profiling of low molecular weight proteome (LMWP) (1-17 kDa). This approach included three main components: sample pre-fractionation, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), data analysis by a bioinformatics software package. Applicability and perspectives of the developed approach for detection of potential gastric cancer markers during LMWP analysis have been demonstrated using 69 plasma samples from patients with gastric cancer (stages I-IV) and 238 control samples. The study revealed peptides/polypeptides, which may be potentially used for detection of this pathology.

  12. Resonance ionization mass spectrometry system for measurement of environmental samples

    International Nuclear Information System (INIS)

    Pibida, L.; McMahon, C.A.; Noertershaeuser, W.; Bushaw, B.A.

    2002-01-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4x10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed

  13. A High-Mass Cold Core in the Auriga-California Giant Molecular Cloud

    Science.gov (United States)

    Magnus McGehee, Peregrine; Paladini, Roberta; Pelkonen, Veli-Matti; Toth, Viktor; Sayers, Jack

    2015-08-01

    The Auriga-California Giant Molecular Cloud is noted for its relatively low star formation rate, especially at the high-mass end of the Initial Mass Function. We combine maps acquired by the Caltech Submillimeter Observatory's Multiwavelength Submillimeter Inductance Camera [MUSIC] in the wavelength range 0.86 to 2.00 millimeters with Planck and publicly-available Herschel PACS and SPIRE data in order to characterize the mass, dust properties, and environment of the bright core PGCC G163.32-8.41.

  14. Detection of high molecular weight proteins by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Mainini, Veronica; Bovo, Giorgio; Chinello, Clizia; Gianazza, Erica; Grasso, Marco; Cattoretti, Giorgio; Magni, Fulvio

    2013-06-01

    MALDI imaging mass spectrometry (IMS) is a unique technology to explore the spatial distribution of biomolecules directly on tissues. It allows the in situ investigation of a large number of small proteins and peptides. Detection of high molecular weight proteins through MALDI IMS still represents an important challenge, as it would allow the direct investigation of the distribution of more proteins involved in biological processes, such as cytokines, enzymes, neuropeptide precursors and receptors. In this work we compare the traditional method performed with sinapinic acid with a comparable protocol using ferulic acid as the matrix. Data show a remarkable increase of signal acquisition in the mass range of 20k to 150k Th. Moreover, we report molecular images of biomolecules above 70k Th, demonstrating the possibility of expanding the application of this technology both in clinical investigations and basic science.

  15. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  16. Field Sample Preparation Method Development for Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    Leibman, C.; Weisbrod, K.; Yoshida, T.

    2015-01-01

    Non-proliferation and International Security (NA-241) established a working group of researchers from Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to evaluate the utilization of in-field mass spectrometry for safeguards applications. The survey of commercial off-the-shelf (COTS) mass spectrometers (MS) revealed no instrumentation existed capable of meeting all the potential safeguards requirements for performance, portability, and ease of use. Additionally, fieldable instruments are unlikely to meet the International Target Values (ITVs) for accuracy and precision for isotope ratio measurements achieved with laboratory methods. The major gaps identified for in-field actinide isotope ratio analysis were in the areas of: 1. sample preparation and/or sample introduction, 2. size reduction of mass analyzers and ionization sources, 3. system automation, and 4. decreased system cost. Development work in 2 through 4, numerated above continues, in the private and public sector. LANL is focusing on developing sample preparation/sample introduction methods for use with the different sample types anticipated for safeguard applications. Addressing sample handling and sample preparation methods for MS analysis will enable use of new MS instrumentation as it becomes commercially available. As one example, we have developed a rapid, sample preparation method for dissolution of uranium and plutonium oxides using ammonium bifluoride (ABF). ABF is a significantly safer and faster alternative to digestion with boiling combinations of highly concentrated mineral acids. Actinides digested with ABF yield fluorides, which can then be analyzed directly or chemically converted and separated using established column chromatography techniques as needed prior to isotope analysis. The reagent volumes and the sample processing steps associated with ABF sample digestion lend themselves to automation and field

  17. Mass spectrometric identification of molecular species of phosphatidylcholine and lysophosphatidycholine extracted from shark liver

    NARCIS (Netherlands)

    Chen, S.; Li, K.W.

    2007-01-01

    The profile and structural characterization of molecular species of phosphatidylcholine (PC) and lysophosphatidylcholine (LysoPC) from shark liver using liquid chromatographic/electrospray ionization mass spectrometry (LC-ESI/MS) and tandem mass spectrometry (MS/MS) are described for the first time

  18. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    Science.gov (United States)

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques.

  19. THE PERILS OF CLUMPFIND: THE MASS SPECTRUM OF SUBSTRUCTURES IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Pineda, Jaime E.; Goodman, Alyssa A.; Rosolowsky, Erik W.

    2009-01-01

    We study the mass spectrum of substructures in the Perseus Molecular Cloud Complex traced by 13 CO(1-0), finding that dN/dM ∝ M -2.4 for the standard Clumpfind parameters. This result does not agree with the classical dN/dM ∝ M -1.6 . To understand this discrepancy, we study the robustness of the mass spectrum derived using the Clumpfind algorithm. Both two- and three-dimensional Clumpfind versions are tested, using 850 μm dust emission and 13 CO spectral-line observations of Perseus, respectively. The effect of varying threshold is not important, but varying stepsize produces a different effect for two- and three-dimensional cases. In the two-dimensional case, where emission is relatively isolated (associated with only the densest peaks in the cloud), the mass spectrum variability is negligible compared to the mass function fit uncertainties. In the three-dimensional case, however, where the 13 CO emission traces the bulk of the molecular cloud (MC), the number of clumps and the derived mass spectrum are highly correlated with the stepsize used. The distinction between 'two dimension' and 'three dimension' here is more importantly also a distinction between 'sparse' and 'crowded' emission. In any 'crowded' case, Clumpfind should not be used blindly to derive mass functions. Clumpfind's output in the 'crowded' case can still offer a statistical description of emission useful in intercomparisons, but the clump-list should not be treated as a robust region decomposition suitable to generate a physically meaningful mass function. We conclude that the 13 CO mass spectrum depends on the observations resolution, due to the hierarchical structure of the MC.

  20. Molecular mass spectrometry imaging in biomedical and life science research

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Strohalm, Martin; Havlíček, Vladimír; Volný, Michael

    2010-01-01

    Roč. 134, č. 5 (2010), s. 423-443 ISSN 0948-6143 R&D Projects: GA MŠk LC545; GA ČR GPP206/10/P018 Institutional research plan: CEZ:AV0Z50200510 Keywords : Mass spectrometry * Chemical imaging * Molecular imaging Subject RIV: EE - Microbiology, Virology Impact factor: 4.727, year: 2010

  1. Internal calibration on adjacent samples (InCAS) with Fourier transform mass spectrometry.

    Science.gov (United States)

    O'Connor, P B; Costello, C E

    2000-12-15

    Using matrix-assisted laser desorption/ionization (MAL DI) on a trapped ion mass spectrometer such as a Fourier transform mass spectrometer (FTMS) allows accumulation of ions in the cell from multiple laser shots prior to detection. If ions from separate MALDI samples are accumulated simultaneously in the cell, ions from one sample can be used to calibrate ions from the other sample. Since the ions are detected simultaneously in the cell, this is, in effect, internal calibration, but there are no selective desorption effects in the MALDI source. This method of internal calibration with adjacent samples is demonstrated here on cesium iodide clusters, peptides, oligosaccharides, poly(propylene glycol), and fullerenes and provides typical FTMS internal calibration mass accuracy of < 1 ppm.

  2. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D. [Nanosciences Group, CEMES, CNRS UPR 8011 and University Toulouse III - Paul Sabatier, 29 rue Jeanne Marvig, BP94347, F-31055 Toulouse Cedex 4 (France)

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  3. Mass transfer ranking of polylysine, poly-ornithine and poly-methylene-co-guanidine microcapsule membranes using a single low molecular mass marker

    Directory of Open Access Journals (Sweden)

    Rosinski Stefan

    2003-01-01

    Full Text Available On the long way to clinical transplantable hybrid systems, comprising of cells, acting as immuno-protected bioreactors microencapsulated in a polymeric matrix and delivering desired factors (proteins, hormones, enzymes etc to the patient's body, an important step is the optimization of the microcapsule. This topic includes the selection of a proper coating membrane which could fulfil, first of all, the mass transfer as well as biocompatibility, stability and durability requirements. Three different membranes from polymerised aminoacids, formed around exactly identical alginate gel cores, were considered, concerning their mass transport properties, as potential candidates in this task. The results of the evaluation of the mass ingress and mass transfer coefficient h for the selected low molecular mass marker, vitamin B12, in poly-L-lysine (HPLL poly-L-ornithine (HPLO and poly-methylene-co-guanidine hydrochloride (HPMCG membrane alginate microcapsules demonstrate the advantage of using the mass transfer approach to a preliminary screening of various microcapsule formulations. Applying a single marker and evaluating mass transfer coefficients can help to quickly rank the investigated membranes and microcapsules according to their permeability. It has been demonstrated that HPLL, HPLO and HPMCG microcapsules differ from each other by a factor of two concerning the rate of low molecular mass marker transport. Interesting differences in mass transfer through the membrane in both directions in-out was also found, which could possibly be related to the membrane asymmetry.

  4. Identification and imaging of modern paints using Secondary Ion Mass Spectrometry with MeV ions

    DEFF Research Database (Denmark)

    Bogdanović Radović, Iva; Siketić, Zdravko; Jembrih-Simbürger, Dubravka

    2017-01-01

    Secondary Ion Mass Spectrometry using MeV ion excitation was applied to analyse modern paint materials containing synthetic organic pigments and binders. It was demonstrated that synthetic organic pigments and binder components with molecular masses in the m/z range from 1 to 1200 could be identi......Secondary Ion Mass Spectrometry using MeV ion excitation was applied to analyse modern paint materials containing synthetic organic pigments and binders. It was demonstrated that synthetic organic pigments and binder components with molecular masses in the m/z range from 1 to 1200 could...... be identified in different paint samples with a high efficiency and in a single measurement. Different ways of mounting of mostly insulating paint samples were tested prior to the analysis in order to achieve the highest possible yield of pigment main molecular ions. As Time-of-Flight mass spectrometer for Me......V Secondary Ion Mass Spectrometry is attached to the heavy ion microprobe, molecular imaging on cross-sections of small paint fragments was performed using focused ions. Due to the fact that molecules are extracted from the uppermost layer of the sample and to avoid surface contamination, the paint samples...

  5. STAR FORMATION LAWS: THE EFFECTS OF GAS CLOUD SAMPLING

    International Nuclear Information System (INIS)

    Calzetti, D.; Liu, G.; Koda, J.

    2012-01-01

    Recent observational results indicate that the functional shape of the spatially resolved star formation-molecular gas density relation depends on the spatial scale considered. These results may indicate a fundamental role of sampling effects on scales that are typically only a few times larger than those of the largest molecular clouds. To investigate the impact of this effect, we construct simple models for the distribution of molecular clouds in a typical star-forming spiral galaxy and, assuming a power-law relation between star formation rate (SFR) and cloud mass, explore a range of input parameters. We confirm that the slope and the scatter of the simulated SFR-molecular gas surface density relation depend on the size of the sub-galactic region considered, due to stochastic sampling of the molecular cloud mass function, and the effect is larger for steeper relations between SFR and molecular gas. There is a general trend for all slope values to tend to ∼unity for region sizes larger than 1-2 kpc, irrespective of the input SFR-cloud relation. The region size of 1-2 kpc corresponds to the area where the cloud mass function becomes fully sampled. We quantify the effects of selection biases in data tracing the SFR, either as thresholds (i.e., clouds smaller than a given mass value do not form stars) or as backgrounds (e.g., diffuse emission unrelated to current star formation is counted toward the SFR). Apparently discordant observational results are brought into agreement via this simple model, and the comparison of our simulations with data for a few galaxies supports a steep (>1) power-law index between SFR and molecular gas.

  6. Development of stereotactic mass spectrometry for brain tumor surgery.

    Science.gov (United States)

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  7. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    Science.gov (United States)

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  8. ACYLTRANSFERASE ACTIVITIES OF THE HIGH-MOLECULAR-MASS ESSENTIAL PENICILLIN-BINDING PROTEINS

    NARCIS (Netherlands)

    ADAM, M; DAMBLON, C; JAMIN, M; ZORZI, W; DUSART, [No Value; GALLENI, M; ELKHARROUBI, A; PIRAS, G; SPRATT, BG; KECK, W; COYETTE, J; GHUYSEN, JM; NGUYENDISTECHE, M; FRERE, JM

    1991-01-01

    The high-molecular-mass penicillin-binding proteins (HMM-PBPs), present in the cytoplasmic membranes of all eubacteria, are involved in important physiological events such as cell elongation, septation or shape determination. Up to now it has, however, been very difficult or impossible to study the

  9. Adaptive sampling strategies with high-throughput molecular dynamics

    Science.gov (United States)

    Clementi, Cecilia

    Despite recent significant hardware and software developments, the complete thermodynamic and kinetic characterization of large macromolecular complexes by molecular simulations still presents significant challenges. The high dimensionality of these systems and the complexity of the associated potential energy surfaces (creating multiple metastable regions connected by high free energy barriers) does not usually allow to adequately sample the relevant regions of their configurational space by means of a single, long Molecular Dynamics (MD) trajectory. Several different approaches have been proposed to tackle this sampling problem. We focus on the development of ensemble simulation strategies, where data from a large number of weakly coupled simulations are integrated to explore the configurational landscape of a complex system more efficiently. Ensemble methods are of increasing interest as the hardware roadmap is now mostly based on increasing core counts, rather than clock speeds. The main challenge in the development of an ensemble approach for efficient sampling is in the design of strategies to adaptively distribute the trajectories over the relevant regions of the systems' configurational space, without using any a priori information on the system global properties. We will discuss the definition of smart adaptive sampling approaches that can redirect computational resources towards unexplored yet relevant regions. Our approaches are based on new developments in dimensionality reduction for high dimensional dynamical systems, and optimal redistribution of resources. NSF CHE-1152344, NSF CHE-1265929, Welch Foundation C-1570.

  10. Fluorographene as a Mass Spectrometry Probe for High-Throughput Identification and Screening of Emerging Chemical Contaminants in Complex Samples.

    Science.gov (United States)

    Huang, Xiu; Liu, Qian; Huang, Xiaoyu; Nie, Zhou; Ruan, Ting; Du, Yuguo; Jiang, Guibin

    2017-01-17

    Mass spectrometry techniques for high-throughput analysis of complex samples are of profound importance in many areas such as food safety, omics studies, and environmental health science. Here we report the use of fluorographene (FG) as a new mass spectrometry probe for high-throughput identification and screening of emerging chemical contaminants in complex samples. FG was facilely synthesized by one-step exfoliation of fluorographite. With FG as a matrix or probe in matrix-assisted or surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (MALDI- or SELDI-TOF MS), higher sensitivity (detection limits at ppt or subppt levels), and better reproducibility were achieved than with other graphene-based materials due to the unique chemical structure and self-assembly properties of FG. The method was validated with different types of real complex samples. By using FG as a SELDI probe, we could easily detect trace amount of bisphenol S in paper products and high-fat canned food samples. Furthermore, we have successfully identified and screened as many as 28 quaternary ammonium halides in sewage sludge samples collected from municipal wastewater treatment plants. These results demonstrate that FG probe is a powerful tool for high-throughput analysis of complex samples by MS.

  11. A high precision mass spectrometer for hydrogen isotopic analysis of water samples

    International Nuclear Information System (INIS)

    Murthy, M.S.; Prahallada Rao, B.S.; Handu, V.K.; Satam, J.V.

    1979-01-01

    A high precision mass spectrometer with two ion collector assemblies and direct on line reduction facility (with uranium at 700 0 C) for water samples for hydrogen isotopic analysis has been designed and developed. The ion source particularly gives high sensitivity and at the same tike limits the H 3 + ions to a minimum. A digital ratiometer with a H 2 + compensator has also been developed. The overall precision obtained on the spectrometer is 0.07% 2sub(sigmasub(10)) value. Typical results on the performance of the spectrometer, which is working since a year and a half are given. Possible methods of extending the ranges of concentration the spectrometer can handle, both on lower and higher sides are discussed. Problems of memory between samples are briefly listed. A multiple inlet system to overcome these problems is suggested. This will also enable faster analysis when samples of highly varying concentrations are to be analyzed. A few probable areas in which the spectrometer will be shortly put to use are given. (auth.)

  12. Mass Absorption Coefficients At 661,6 keV Energy In Various Samples

    International Nuclear Information System (INIS)

    Suhariyono, Gatot; Bunawas

    2000-01-01

    Determination mass absorption coefficients (mum) at 661.6 keV energy in the samples various, such as lysine, coffee, chocolate, nutrisari, coconut oil, monosodium glutamate (MSG), tea, tin fish and the soil with experiment method has been carried out. The mum research was carried out in effort to give the measurement result of Cs-137 concentration that more accurate to the samples, because the sample density increases, mass absorption coefficients (mum) decreases. The mum correction on measurement of Cs-137 concentration in the samples various around between 0 and 13%, the highest is on the chocolate sample and the lowest is on the tin fish sample. Density of the samples decreases, the mum influence increases on the counting of Cs-137 concentration in the sample (Bq/kg)

  13. Accelerator mass spectrometry of small biological samples.

    Science.gov (United States)

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  14. Sample preparations for spark source mass spectrography

    International Nuclear Information System (INIS)

    Catlett, C.W.; Rollins, M.B.; Griffin, E.B.; Dorsey, J.G.

    1977-10-01

    Methods have been developed for the preparation of various materials for spark source mass spectrography. The essential features of these preparations (all which can provide adequate precision in a cost-effective manner) consist in obtaining spark-stable electrode sample pieces, a common matrix, a reduction of anomolous effects in the spark, the incorporation of a suitable internal standard for plate response normalization, and a reduction in time

  15. Optimal sample to tracer ratio for isotope dilution mass spectrometry: the polyisotopic case

    International Nuclear Information System (INIS)

    Laszlo, G.; Ridder, P. de; Goldman, A.; Cappis, J.; Bievre, P. de

    1991-01-01

    The Isotope Dilution Mass Spectrometry (IDMS) measurement technique provides a means for determining the unknown amount of various isotopes of an element in a sample solution of known mass. The sample solution is mixed with an auxiliary solution, or tracer, containing a known amount of the same element having the same isotopes but of different relative abundances or isotopic composition and the induced change in the isotopic composition measured by isotope mass spectrometry. The technique involves the measurement of the abundance ratio of each isotope to a (same) reference isotope in the sample solution, in the tracer solution and in the blend of the sample and tracer solution. These isotope ratio measurements, the known element amount in the tracer and the known mass of sample solution are used to calculate the unknown amount of one isotope in the sample solution. Subsequently the unknown amount of element is determined. The purpose of this paper is to examine the optimization of the ratio of the estimated unknown amount of element in the sample solution to the known amount of element in the tracer solution in order to minimize the relative uncertainty in the determination of the unknown amount of element

  16. Helium-3 mass spectrometry for low-level tritium analysis of environmental samples

    International Nuclear Information System (INIS)

    Surano, K.A.; Hudson, G.B.; Failor, R.A.; Sims, J.M.; Holland, R.C.; MacLean, S.C.; Garrison, J.C.

    1991-04-01

    Helium-3 ( 3 He) mass spectrometry for the analysis of low-level tritium ( 3 H) concentrations in environmental sample matrices was compared with conventional low-level β-decay counting methods. The mass-spectrometry method compared favorably, equaling or surpassing conventional decay-counting methods with respect to most criteria. Additional research and method refinements may make 3 He mass spectrometry the method of choice for routine, low-level to very-low-level 3 H measurements in a wide variety of environmental samples in the future

  17. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    Science.gov (United States)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  18. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.

  19. Surface Ionization and Soft Landing Techniques in Mass Spectrometry

    International Nuclear Information System (INIS)

    Futrell, Jean H.; Laskin, Julia

    2010-01-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has extended mass spectrometric methods to large molecules and molecular complexes. This both greatly expands applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of large molecule mass spectrometry. A corollary of the much greater number of internal degrees of freedom and high density of states associated with molecular complexity is that internal energies much higher than the dissociation energies for competing fragmentation processes are required for observable fragmentation in time scales sampled by mass spectrometers. This article describes the kinetics of surface-induced dissociation (SID), a particularly efficient activation method for complex ions. Two very important characteristics of SID are very rapid, sub-picosecond activation and precise control of ion internal energy by varying ion collision energy. The nature of the surface plays an important role in SID, determining both efficiency and mechanism of ion activation. Surface composition and morphology strongly influence the relative importance of competing reactions of SID, ion capture (soft-landing), surface reaction and neutralization. The important features of SID and ion soft-landing are described briefly in this review and more fully in the recommended reading list.

  20. [Mass spectrometry technology and its application in analysis of biological samples].

    Science.gov (United States)

    Zhao, Long-Shan; Li, Qing; Guo, Chao-Wei; Chen, Xiao-Hui; Bi, Kai-Shun

    2012-02-01

    With the excellent merits of wide analytical range, high sensitivity, small sample size, fast analysis speed, good repeatability, simple operation, low mobile phase consumption, as well as its capability of simultaneous isolation and identification, etc, mass spectrometry techniques have become widely used in the area of environmental science, energy chemical industry, biological medicine, and so on. This article reviews the application of mass spectrometry technology in biological sample analysis in the latest three years with the focus on the new applications in pharmacokinetics and bioequivalence, toxicokinetics, pharmacokinetic-pharmacodynamic, population pharmacokinetics, identification and fragmentation pathways of drugs and their metabolites and metabonomics to provide references for further study of biological sample analysis.

  1. Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants

    DEFF Research Database (Denmark)

    Carroll, L.; Davies, Michael J.; Pattison, D. I.

    2015-01-01

    Selenium is an essential trace element in mammals, with the majority specifically encoded as seleno-L-cysteine into a range of selenoproteins. Many of these proteins play a key role in modulating oxidative stress, via either direct detoxification of biological oxidants, or repair of oxidised...... the chemistry of low-molecular-mass organoselenium compounds (e.g. selenoethers, diselenides and selenols) with inflammatory oxidants, with a particular focus on the reaction kinetics and product studies, with the differences in reactivity between selenium and sulphur analogues described in the selected...... examples. These data provide insight into the therapeutic potential of low-molecular-mass selenium-containing compounds to modulate the activity of both radical and molecular oxidants and provide protection against inflammation-induced damage. Progress in their therapeutic development (including modulation...

  2. Sample handling and contamination encountered when coupling offline normal phase high performance liquid chromatography fraction collection of petroleum samples to Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Oro, Nicole E; Whittal, Randy M; Lucy, Charles A

    2012-09-05

    Normal phase high performance liquid chromatography (HPLC) is used to separate a gas oil petroleum sample, and the fractions are collected offline and analyzed on a high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The separation prior to MS analysis dilutes the sample significantly; therefore the fractions need to be prepared properly to achieve the best signal possible. The methods used to prepare the HPLC fractions for MS analysis are described, with emphasis placed on increasing the concentration of analyte species. The dilution effect also means that contamination in the MS spectra needs to be minimized. The contamination from molecular sieves, plastics, soap, etc. and interferences encountered during the offline fraction collection process are described and eliminated. A previously unreported MS contamination of iron formate clusters with a 0.8 mass defect in positive mode electrospray is also described. This interference resulted from the stainless steel tubing in the HPLC system. Contamination resulting from what has tentatively been assigned as palmitoylglycerol and stearoylglycerol was also observed; these compounds have not previously been reported as contaminant peaks. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    Science.gov (United States)

    Getty, S. A.; Brinckerhoff, W. B.; Cornish, T.; Ecelberger, S. A.; Li, X.; Floyd, M. A. Merrill; Chanover, N.; Uckert, K.; Voelz, D.; Xiao, X.; hide

    2012-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.

  4. [Detection and typing by molecular biology of human papillomavirus in genital samples].

    Science.gov (United States)

    Suárez Moya, A; Esquivias Gómez, J I; Vidart Aragón, J A; Picazo de la Garza, J J

    2006-06-01

    Recently, there has been a marked increase in human papillomavirus (HPV) infection, and the etiological relationship between some HPV genotypes and genital cancer has been confirmed. Therefore, we used current molecular biology techniques to evaluate the prevalence of these viruses and their genotype in genital samples. We processed 401 genital samples from 281 women and 120 men, all with a diagnosis compatible with HPV infection. Virus was detected using PCR, and positive samples were typed using an array technique which enabled us to detect the 35 most common types of mucous-associated HPV. Of the 401 patients studied, 185 (46.1%) were positive, and only one type of HPV was detected in 133 cases. We found that 41.6% of the women and 56.7% of the men were positive. A total of 260 HPVs were typed; 154 were high oncogenic risk. They infected 16 men (23.5%) and 88 women (75.2%). The difference was statistically significant (pHVP 16 in 52 cases. We found a 46% prevalence of HPV infection. More than half of these patients were infected by high-risk HPV. The presence of high-risk HPV was significantly higher in women.

  5. WISDOM project - I. Black hole mass measurement using molecular gas kinematics in NGC 3665

    Science.gov (United States)

    Onishi, Kyoko; Iguchi, Satoru; Davis, Timothy A.; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2017-07-01

    As a part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project, we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotator early-type galaxy NGC 3665. We obtained the Combined Array for Research in Millimeter Astronomy (CARMA) B and C array observations of the 12CO(J = 2 - 1) emission line with a combined angular resolution of 0.59 arcsec. We analysed and modelled the three-dimensional molecular gas kinematics, obtaining a best-fitting SMBH mass M_BH=5.75^{+1.49}_{-1.18} × 108 M⊙, a mass-to-light ratio at H-band (M/L)H = 1.45 ± 0.04 (M/L)⊙,H and other parameters describing the geometry of the molecular gas disc (statistical errors, all at 3σ confidence). We estimate the systematic uncertainties on the stellar M/L to be ≈0.2 (M/L)⊙,H, and on the SMBH mass to be ≈0.4 × 108 M⊙. The measured SMBH mass is consistent with that estimated from the latest correlations with galaxy properties. Following our older works, we also analysed and modelled the kinematics using only the major-axis position-velocity diagram, and conclude that the two methods are consistent.

  6. Molecular identification of Coccidioides spp. in soil samples from Brazil.

    Science.gov (United States)

    de Macêdo, Regina C L; Rosado, Alexandre S; da Mota, Fabio F; Cavalcante, Maria A S; Eulálio, Kelsen D; Filho, Antônio D; Martins, Liline M S; Lazéra, Márcia S; Wanke, Bodo

    2011-05-16

    Since 1991 several outbreaks of acute coccidioidomycosis (CM) were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of Coccidioides posadasii, which, once inhaled, cause the mycosis. We report on the identification of C. posadasii in soil samples related to outbreaks of CM. Twenty four soil samples had their DNA extracted and subsequently submitted to a semi-nested PCR technique using specific primers. While only 6 (25%) soil samples were positive for C. posadasii by mice inoculation, all (100%) were positive by the molecular tool. This methodology represents a simple, sensitive and specific molecular technique to determine the environmental distribution of Coccidioides spp. in endemic areas, but cannot distinguish the species. Moreover, it may be useful to identify culture isolates. Key-words: 1. Coccidioidomycosis. 2. Coccidioides spp. 3. C. posadasii. 4. Semi-arid. 5. Semi-nested PCR.

  7. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples

    NARCIS (Netherlands)

    Horvatovich, Peter; Hoekman, Berend; Govorukhina, Natalia; Bischoff, Rainer

    Multidimensional chromatography coupled to mass spectrometry (LC(n)-MS) provides more separation power and an extended measured dynamic concentration range to analyse complex proteomics samples than one dimensional liquid chromatography coupled to mass spectrometry (1D-LC-MS). This review gives an

  8. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry.

    Science.gov (United States)

    Yung, Yeni P; Wickramasinghe, Raveendra; Vaikkinen, Anu; Kauppila, Tiina J; Veryovkin, Igor V; Hanley, Luke

    2017-07-18

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples.

  9. A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, J. B.; Kelly, O.; Calvert, C. R.; Duffy, M. J.; King, R. B.; Belshaw, L.; Graham, L.; Alexander, J. D.; Williams, I. D. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Bryan, W. A. [Department of Physics, Swansea University, Swansea SA2 8PP (United Kingdom); Turcu, I. C. E.; Cacho, C. M.; Springate, E. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2011-04-15

    In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components.

  10. Studies on cellular distribution of elements in human hepatocellular carcinoma samples by molecular activation analysis

    International Nuclear Information System (INIS)

    Deng Guilong; Chen Chunying; Zhang Peiqun; Zhao Jiujiang; Chai Zhifang

    2005-01-01

    The distribution patterns of 17 elements in the subcellular fractions of nuclei, mitochondria, lysosome, microsome and cytosol of human hepatocellular carcinoma (HCC) and normal liver samples were investigated by using molecular activation analysis (MAA) and differential centrifugation. Their significant difference was checked by the Studient's t-test. These elements exhibit inhomogeneous distributions in each subcellular fraction. Some elements have no significant difference between hepatocellular carcinoma and normal liver samples. However, the concentrations of Br, Ca, Cd and Cs are significantly higher in each component of hepatocarcinoma than in normal liver. The content of Fe in microsome of HCC is significantly lower, almost half of normal liver samples, but higher in other subcellular fractions than in those of normal tissues. The rare earth elements of La and Ce have the patterns similar to Fe. The concentrations of Sb and Zn in nuclei of HCC are obviously lower (P<0.05, P<0.05). The contents of K and Na are higher in cytosol of HCC (P<0.05). The distributions of Ba and Rb show no significant difference between two groups. The relationships of Fe, Cd and K with HCC were also discussed. The levels of some elements in subcellular fractions of tumor were quite different from those of normal liver, which suggested that trace elements might play important roles in the occurrence and development of hepatocellular carcinoma. (authors)

  11. Studies on cellular distribution of elements in human hepatocellular carcinoma samples by molecular activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guilong, Deng [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics, Key Laboratory of Nuclear Analytical Techniques; Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang Univ., Hangzhou (China); Chunying, Chen; Peiqun, Zhang; Jiujiang, Zhao; Zhifang, Chai [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics, Key Laboratory of Nuclear Analytical Techniques; Yingbin, Liu; Jianwei, Wang; Bin, Xu; Shuyou, Peng [Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang Univ., Hangzhou (China)

    2005-07-15

    The distribution patterns of 17 elements in the subcellular fractions of nuclei, mitochondria, lysosome, microsome and cytosol of human hepatocellular carcinoma (HCC) and normal liver samples were investigated by using molecular activation analysis (MAA) and differential centrifugation. Their significant difference was checked by the Studient's t-test. These elements exhibit inhomogeneous distributions in each subcellular fraction. Some elements have no significant difference between hepatocellular carcinoma and normal liver samples. However, the concentrations of Br, Ca, Cd and Cs are significantly higher in each component of hepatocarcinoma than in normal liver. The content of Fe in microsome of HCC is significantly lower, almost half of normal liver samples, but higher in other subcellular fractions than in those of normal tissues. The rare earth elements of La and Ce have the patterns similar to Fe. The concentrations of Sb and Zn in nuclei of HCC are obviously lower (P<0.05, P<0.05). The contents of K and Na are higher in cytosol of HCC (P<0.05). The distributions of Ba and Rb show no significant difference between two groups. The relationships of Fe, Cd and K with HCC were also discussed. The levels of some elements in subcellular fractions of tumor were quite different from those of normal liver, which suggested that trace elements might play important roles in the occurrence and development of hepatocellular carcinoma. (authors)

  12. Preparation of higher-actinide burnup and cross section samples

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.; Quinby, T.C.; Thomas, D.K.; Dailey, J.M.

    1981-01-01

    A joint research program involving the United States and the United Kingdom was instigated about four years ago for the purpose of studying burnup of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of cross sections of a wide variety of higher actinide isotopes was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the burnup and cross section samples. The higher actinide samples chosen for the burnup study were 241 Am and 244 Cm in the forms of Am 2 O 3 , Cm 2 O 3 , and Am 6 Cm(RE) 7 O 21 , where (RE) represents a mixture of lanthanide sesquioxides. It is the purpose of this paper to describe technology development and its application in the preparation of the fuel specimens and the cross section specimens that are being used in this cooperative program

  13. The atomic and molecular content of disks around very low-mass stars and brown dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Herczeg, G. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Carr, J. S. [Naval Research Laboratory, Code 7211, Washington, DC 20375 (United States); Bruderer, S., E-mail: pascucci@lpl.arizona.edu [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2013-12-20

    There is growing observational evidence that disk evolution is stellar-mass-dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from eight very low mass star and brown dwarf disks. We report the first detections of Ne{sup +}, H{sub 2}, CO{sub 2}, and tentative detections of H{sub 2}O toward these faint and low-mass disks. Two of our [Ne II] 12.81 μm emission lines likely trace the hot (≥5000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H{sub 2} S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [Ne II] emission in gas at ∼600 K. We confirm the higher C{sub 2}H{sub 2}/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H{sub 2}O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H{sub 2}O lines trace warm ≥600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks, which may result from a more efficient formation of non-migrating icy planetesimals. An O/C = 1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low mass stars and brown dwarfs.

  14. Higher body mass index associated with severe early childhood caries.

    Science.gov (United States)

    Davidson, Katherine; Schroth, Robert J; Levi, Jeremy A; Yaffe, Aaron B; Mittermuller, Betty-Anne; Sellers, Elizabeth A C

    2016-08-20

    Severe Early Childhood Caries (S-ECC) is an aggressive form of tooth decay in preschool children affecting quality of life and nutritional status. The purpose was to determine whether there is an association between Body Mass Index (BMI) and S-ECC. Children with S-ECC were recruited on the day of their slated dental surgery under general anesthesia. Age-matched, caries-free controls were recruited from the community. All children were participating in a larger study on nutrition and S-ECC. Analysis was restricted to children ≥ 24 months of age. Parents completed a questionnaire and heights and weights were recorded. BMI scores and age and gender adjusted BMI z-scores and percentiles were calculated. A p-value ≤ 0.05 was significant. Two hundred thirty-five children were included (141 with S-ECC and 94 caries-free). The mean age was 43.3 ± 12.8 months and 50.2 % were male. Overall, 34.4 % of participants were overweight or obese. Significantly more children with S-ECC were classified as overweight or obese when compared to caries-free children (p = 0.038) and had significantly higher mean BMI z-scores than caries-free children (0.78 ± 1.26 vs. 0.22 ± 1.36, p = 0.002). Those with S-ECC also had significantly higher BMI percentiles (69.0 % ± 29.2 vs. 56.8 % ± 31.7, p = 0.003). Multiple linear regression analyses revealed that BMI z-scores were significantly and independently associated with S-ECC and annual household income as were BMI percentiles. Children with S-ECC in our sample had significantly higher BMI z-scores than caries-free peers.

  15. Implementation of Mass Spectrometry for Bulk Analysis of Environmental and Nuclear Material Inspection Samples

    International Nuclear Information System (INIS)

    Bulyha, S.; Cunningham, A.; Koepf, A.; Macsik, Z.; Poths, J.

    2015-01-01

    In the frame of the ECAS project (Enhancing Capabilities of Safeguards Analytical Services) the IAEA Office of Safeguards Analytical Services has implemented the latest-generation inductively coupled plasma mass spectrometers, or ICP-MS, for (i) bulk analysis of uranium and plutonium isotopes in environmental inspection samples and (ii) impurity analyzes in uranium samples. The measurement accuracy for n(U-235)/ n(U-238) ratios has been improved by approximately five times with the new multi-collector ICP-MS equipment. Use of modern ICP-MS enabled also an improvement of instrumental detection limits for U-233 and U-236 and Pu isotopes by at least one order of magnitude in comparison to the values, which had been achieved with the previously used methods. The improved accuracy and precision for isotope ratio measurements is mainly due to the higher sensitivity and the possibility to simultaneously detect several U isotopes with a multi-collector detector block. Implementation of the ICP-MS has also demonstrated a possibility for an increased sample throughput. In parallel to the implementation of the ICP-MS, a new version of the ''modified total evaporation'' (MTE) method has been developed for isotopic analysis of uranium samples by multi-collector thermal ionization mass spectrometry (TIMS). The MTE method provides a measurement performance which is, in particular for minor uranium isotopes, by several orders of magnitude superior compared to the commonly used ''total evaporation'' method. The new mass spectrometric techniques significantly improve the capability of the IAEA safeguards laboratories to detect the presence of non-natural uranium and plutonium isotopes in environmental swipe samples and to identify previously imperceptible differences in nuclear ''signatures''. Thus, they enhance the IAEA's ability to obtain independent, timely and quality-assured safeguards-relevant data and ensure

  16. Molecular theory of mass transfer kinetics and dynamics at gas-water interface

    International Nuclear Information System (INIS)

    Morita, Akihiro; Garrett, Bruce C

    2008-01-01

    The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.

  17. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    International Nuclear Information System (INIS)

    He, X.N.; Xie, Z.Q.; Gao, Y.; Hu, W.; Guo, L.B.; Jiang, L.; Lu, Y.F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  18. Mass Notification for Higher Education

    Science.gov (United States)

    Schneider, Tod

    2010-01-01

    Mass notification is a high priority in educational institutions. As the number of electronic communication devices has diversified, so has the complexity of designing an effective mass notification system. Picking the right system, with the right features, support services and price, can be daunting. This publication, updated quarterly due to…

  19. Molecular-level evidence provided by ultrahigh resolution mass spectrometry for oil-derived doc in groundwater at Bemidji, Minnesota

    Science.gov (United States)

    Islam, Ananna; Ahmed, Arif; Hur, Manhoi; Thorn, Kevin A.; Kim, Sunghwan

    2016-01-01

    Dissolved organic matter samples extracted from ground water at the USGS Bemidji oil spill site in Minnesota were investigated by ultrahigh resolution mass spectrometry. Principle component analysis (PCA) of the elemental composition assignments of the samples showed that the score plots for the contaminated sites were well separated from those for the uncontaminated sites. Additionally, spectra obtained from the same sampling site 7 and 19 years after the spill were grouped together in the score plot, strongly suggesting a steady state of contamination within the 12 year interval. The double bond equivalence (DBE) of Ox class compounds was broader for the samples from the contaminated sites, because of the complex nature of oil and the consequent formation of compounds with saturated and/or aromatic structures from the oxygenated products of oil. In addition, Ox class compounds with a relatively smaller number of x (x molecular-level signatures presented here can be a fundamental basis for in-depth analysis of oil contamination.

  20. Stepwise classification of cancer samples using clinical and molecular data

    Directory of Open Access Journals (Sweden)

    Obulkasim Askar

    2011-10-01

    Full Text Available Abstract Background Combining clinical and molecular data types may potentially improve prediction accuracy of a classifier. However, currently there is a shortage of effective and efficient statistical and bioinformatic tools for true integrative data analysis. Existing integrative classifiers have two main disadvantages: First, coarse combination may lead to subtle contributions of one data type to be overshadowed by more obvious contributions of the other. Second, the need to measure both data types for all patients may be both unpractical and (cost inefficient. Results We introduce a novel classification method, a stepwise classifier, which takes advantage of the distinct classification power of clinical data and high-dimensional molecular data. We apply classification algorithms to two data types independently, starting with the traditional clinical risk factors. We only turn to relatively expensive molecular data when the uncertainty of prediction result from clinical data exceeds a predefined limit. Experimental results show that our approach is adaptive: the proportion of samples that needs to be re-classified using molecular data depends on how much we expect the predictive accuracy to increase when re-classifying those samples. Conclusions Our method renders a more cost-efficient classifier that is at least as good, and sometimes better, than one based on clinical or molecular data alone. Hence our approach is not just a classifier that minimizes a particular loss function. Instead, it aims to be cost-efficient by avoiding molecular tests for a potentially large subgroup of individuals; moreover, for these individuals a test result would be quickly available, which may lead to reduced waiting times (for diagnosis and hence lower the patients distress. Stepwise classification is implemented in R-package stepwiseCM and available at the Bioconductor website.

  1. Heterogeneous chemical kinetics by modulated molecular beam mass spectrometry: limitations of technique

    International Nuclear Information System (INIS)

    Olander, D.R.

    1977-01-01

    The advantages and limitations of modulated molecular beam, mass spectrometry as applied to the study of heterogeneous chemical kinetics are reviewed. The process of deducing a model of the surface reaction from experimental data is illustrated by analysis of the hydrogen reduction of uranium dioxide

  2. Electronic sputtering of large organic molecules and its application in bio molecular mass spectrometry

    International Nuclear Information System (INIS)

    Sundqvist, B.U.R.

    1992-01-01

    This is a review of research which has its origin in the discovery of Plasma Desorption Mass Spectrometry (PDMS). Two main fields of research have developed, namely fundamental studies of the ejection process at fast ion impact and studies of applications of the new mass spectrometric technique. In this review the emphasis will be on the process of electronic sputtering of organic solids but also applications of this process in bio molecular mass spectrometry will be discussed. (author)

  3. Field test and calibration of neutron coincidence counters for high-mass plutonium samples

    International Nuclear Information System (INIS)

    Menlove, H.O.; Dickinson, R.J.; Douglas, I.

    1987-02-01

    Five different neutron coincidence systems were evaluated and calibrated for high-mass PuO 2 samples. The samples were from 2 to 7.2 kg of PuO 2 in mass, with a large range of burnup. This report compares the equipment and the results, with an evaluation of deadtime and multiplication corrections

  4. A Uniformly Selected Sample of Low-mass Black Holes in Seyfert 1 Galaxies. II. The SDSS DR7 Sample

    Science.gov (United States)

    Liu, He-Yang; Yuan, Weimin; Dong, Xiao-Bo; Zhou, Hongyan; Liu, Wen-Juan

    2018-04-01

    A new sample of 204 low-mass black holes (LMBHs) in active galactic nuclei (AGNs) is presented with black hole masses in the range of (1–20) × 105 M ⊙. The AGNs are selected through a systematic search among galaxies in the Seventh Data Release (DR7) of the Sloan Digital Sky Survey (SDSS), and careful analyses of their optical spectra and precise measurement of spectral parameters. Combining them with our previous sample selected from SDSS DR4 makes it the largest LMBH sample so far, totaling over 500 objects. Some of the statistical properties of the combined LMBH AGN sample are briefly discussed in the context of exploring the low-mass end of the AGN population. Their X-ray luminosities follow the extension of the previously known correlation with the [O III] luminosity. The effective optical-to-X-ray spectral indices α OX, albeit with a large scatter, are broadly consistent with the extension of the relation with the near-UV luminosity L 2500 Å. Interestingly, a correlation of α OX with black hole mass is also found, with α OX being statistically flatter (stronger X-ray relative to optical) for lower black hole masses. Only 26 objects, mostly radio loud, were detected in radio at 20 cm in the FIRST survey, giving a radio-loud fraction of 4%. The host galaxies of LMBHs have stellar masses in the range of 108.8–1012.4 M ⊙ and optical colors typical of Sbc spirals. They are dominated by young stellar populations that seem to have undergone continuous star formation history.

  5. Molecular outflows driven by low-mass protostars. I. Correcting for underestimates when measuring outflow masses and dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Arce, Héctor G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Matthews, Brenda C. [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Williams, Jonathan P., E-mail: mdunham@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-03-01

    We present a survey of 28 molecular outflows driven by low-mass protostars, all of which are sufficiently isolated spatially and/or kinematically to fully separate into individual outflows. Using a combination of new and archival data from several single-dish telescopes, 17 outflows are mapped in {sup 12}CO (2-1) and 17 are mapped in {sup 12}CO (3-2), with 6 mapped in both transitions. For each outflow, we calculate and tabulate the mass (M {sub flow}), momentum (P {sub flow}), kinetic energy (E {sub flow}), mechanical luminosity (L {sub flow}), and force (F {sub flow}) assuming optically thin emission in LTE at an excitation temperature, T {sub ex}, of 50 K. We show that all of the calculated properties are underestimated when calculated under these assumptions. Taken together, the effects of opacity, outflow emission at low velocities confused with ambient cloud emission, and emission below the sensitivities of the observations increase outflow masses and dynamical properties by an order of magnitude, on average, and factors of 50-90 in the most extreme cases. Different (and non-uniform) excitation temperatures, inclination effects, and dissociation of molecular gas will all work to further increase outflow properties. Molecular outflows are thus almost certainly more massive and energetic than commonly reported. Additionally, outflow properties are lower, on average, by almost an order of magnitude when calculated from the {sup 12}CO (3-2) maps compared to the {sup 12}CO (2-1) maps, even after accounting for different opacities, map sensitivities, and possible excitation temperature variations. It has recently been argued in the literature that the {sup 12}CO (3-2) line is subthermally excited in outflows, and our results support this finding.

  6. Identification and imaging of modern paints using Secondary Ion Mass Spectrometry with MeV ions

    Science.gov (United States)

    Bogdanović Radović, Iva; Siketić, Zdravko; Jembrih-Simbürger, Dubravka; Marković, Nikola; Anghelone, Marta; Stoytschew, Valentin; Jakšić, Milko

    2017-09-01

    Secondary Ion Mass Spectrometry using MeV ion excitation was applied to analyse modern paint materials containing synthetic organic pigments and binders. It was demonstrated that synthetic organic pigments and binder components with molecular masses in the m/z range from 1 to 1200 could be identified in different paint samples with a high efficiency and in a single measurement. Different ways of mounting of mostly insulating paint samples were tested prior to the analysis in order to achieve the highest possible yield of pigment main molecular ions. As Time-of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry is attached to the heavy ion microprobe, molecular imaging on cross-sections of small paint fragments was performed using focused ions. Due to the fact that molecules are extracted from the uppermost layer of the sample and to avoid surface contamination, the paint samples were not embedded in the resin as is usually done when imaging of paint samples using different techniques in the field of cultural heritage.

  7. Linking high resolution mass spectrometry data with exposure ...

    Science.gov (United States)

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe results of a study that links HRMS data with exposure predictions from the U.S. EPA's ExpoCast™ program and in vitro bioassay data from the U.S. interagency Tox21 consortium. Vacuum dust samples were collected from 56 households across the U.S. as part of the American Healthy Homes Survey (AHHS). Sample extracts were analyzed using liquid chromatography time-of-flight mass spectrometry (LC–TOF/MS) with electrospray ionization. On average, approximately 2000 molecular features were identified per sample (based on accurate mass) in negative ion mode, and 3000 in positive ion mode. Exact mass, isotope distribution, and isotope spacing were used to match molecular features with a unique listing of chemical formulas extracted from EPA's Distributed Structure-Searchable Toxicity (DSSTox) database. A total of 978 DSSTox formulas were consistent with the dust LC–TOF/molecular feature data (match score ≥ 90); these formulas mapped to 3228 possible chemicals in the database. Correct assignment of a unique chemical to a given formula required additional validation steps. Each suspect chemical was prioritized for follow-up confirmation using abundance and detection frequency results, along wi

  8. Molecular identification of Coccidioides spp. in soil samples from Brazil

    Directory of Open Access Journals (Sweden)

    Filho Antônio D

    2011-05-01

    Full Text Available Abstract Background Since 1991 several outbreaks of acute coccidioidomycosis (CM were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of Coccidioides posadasii, which, once inhaled, cause the mycosis. We report on the identification of C. posadasii in soil samples related to outbreaks of CM. Results Twenty four soil samples had their DNA extracted and subsequently submitted to a semi-nested PCR technique using specific primers. While only 6 (25% soil samples were positive for C. posadasii by mice inoculation, all (100% were positive by the molecular tool. Conclusion This methodology represents a simple, sensitive and specific molecular technique to determine the environmental distribution of Coccidioides spp. in endemic areas, but cannot distinguish the species. Moreover, it may be useful to identify culture isolates. Key-words: 1. Coccidioidomycosis. 2. Coccidioides spp. 3. C. posadasii. 4. Semi-arid. 5. Semi-nested PCR

  9. Reforming Iraqi Journalism and Mass Communication Higher Education: Adapting the UNESCO Model Curricula for Journalism Education to Iraqi Higher Education

    Science.gov (United States)

    Pavlik, John V.; Laufer, Peter D.; Burns, David P.; Ataya, Ramzi T.

    2012-01-01

    Journalism and mass communication higher education in Iraq is well established but largely isolated from global developments since the 1970s. In the post-Iraq war period, the United Nations Educational, Scientific and Cultural Organization (UNESCO) implemented a multiyear project to work with the leadership of Iraqi higher education to help update…

  10. Detection of enterotoxigenic Clostridium perfringens in meat samples by using molecular methods.

    Science.gov (United States)

    Kaneko, Ikuko; Miyamoto, Kazuaki; Mimura, Kanako; Yumine, Natsuko; Utsunomiya, Hirotoshi; Akimoto, Shigeru; McClane, Bruce A

    2011-11-01

    To prevent food-borne bacterial diseases and to trace bacterial contamination events to foods, microbial source tracking (MST) methods provide important epidemiological information. To apply molecular methods to MST, it is necessary not only to amplify bacterial cells to detection limit levels but also to prepare DNA with reduced inhibitory compounds and contamination. Isolates carrying the Clostridium perfringens enterotoxin gene (cpe) on the chromosome or a plasmid rank among the most important food-borne pathogens. Previous surveys indicated that cpe-positive C. perfringens isolates are present in only ∼5% of nonoutbreak food samples and then only at low numbers, usually less than 3 cells/g. In this study, four molecular assays for the detection of cpe-positive C. perfringens isolates, i.e., ordinary PCR, nested PCR, real-time PCR, and loop-mediated isothermal amplification (LAMP), were developed and evaluated for their reliability using purified DNA. For use in the artificial contamination of meat samples, DNA templates were prepared by three different commercial DNA preparation kits. The four molecular assays always detected cpe when >10³ cells/g of cpe-positive C. perfringens were present, using any kit. Of three tested commercial DNA preparation kits, the InstaGene matrix kit appeared to be most suitable for the testing of a large number of samples. By using the InstaGene matrix kit, the four molecular assays efficiently detected cpe using DNA prepared from enrichment culture specimens of meat samples contaminated with low numbers of cpe-positive C. perfringens vegetative cells or spores. Overall, the current study developed molecular assay protocols for MST to detect the contamination of foods with low numbers of cells, and at a low frequency, of cpe-positive C. perfringens isolates.

  11. Detection of Enterotoxigenic Clostridium perfringens in Meat Samples by Using Molecular Methods▿

    Science.gov (United States)

    Kaneko, Ikuko; Miyamoto, Kazuaki; Mimura, Kanako; Yumine, Natsuko; Utsunomiya, Hirotoshi; Akimoto, Shigeru; McClane, Bruce A.

    2011-01-01

    To prevent food-borne bacterial diseases and to trace bacterial contamination events to foods, microbial source tracking (MST) methods provide important epidemiological information. To apply molecular methods to MST, it is necessary not only to amplify bacterial cells to detection limit levels but also to prepare DNA with reduced inhibitory compounds and contamination. Isolates carrying the Clostridium perfringens enterotoxin gene (cpe) on the chromosome or a plasmid rank among the most important food-borne pathogens. Previous surveys indicated that cpe-positive C. perfringens isolates are present in only ∼5% of nonoutbreak food samples and then only at low numbers, usually less than 3 cells/g. In this study, four molecular assays for the detection of cpe-positive C. perfringens isolates, i.e., ordinary PCR, nested PCR, real-time PCR, and loop-mediated isothermal amplification (LAMP), were developed and evaluated for their reliability using purified DNA. For use in the artificial contamination of meat samples, DNA templates were prepared by three different commercial DNA preparation kits. The four molecular assays always detected cpe when >103 cells/g of cpe-positive C. perfringens were present, using any kit. Of three tested commercial DNA preparation kits, the InstaGene matrix kit appeared to be most suitable for the testing of a large number of samples. By using the InstaGene matrix kit, the four molecular assays efficiently detected cpe using DNA prepared from enrichment culture specimens of meat samples contaminated with low numbers of cpe-positive C. perfringens vegetative cells or spores. Overall, the current study developed molecular assay protocols for MST to detect the contamination of foods with low numbers of cells, and at a low frequency, of cpe-positive C. perfringens isolates. PMID:21890671

  12. Accelerator mass spectrometry of ultra-small samples with applications in the biosciences

    International Nuclear Information System (INIS)

    Salehpour, Mehran; Håkansson, Karl; Possnert, Göran

    2013-01-01

    An overview is presented covering the biological accelerator mass spectrometry activities at Uppsala University. The research utilizes the Uppsala University Tandem laboratory facilities, including a 5 MV Pelletron tandem accelerator and two stable isotope ratio mass spectrometers. In addition, a dedicated sample preparation laboratory for biological samples with natural activity is in use, as well as another laboratory specifically for 14 C-labeled samples. A variety of ongoing projects are described and presented. Examples are: (1) Ultra-small sample AMS. We routinely analyze samples with masses in the 5–10 μg C range. Data is presented regarding the sample preparation method, (2) bomb peak biological dating of ultra-small samples. A long term project is presented where purified and cell-specific DNA from various part of the human body including the heart and the brain are analyzed with the aim of extracting regeneration rate of the various human cells, (3) biological dating of various human biopsies, including atherosclerosis related plaques is presented. The average built up time of the surgically removed human carotid plaques have been measured and correlated to various data including the level of insulin in the human blood, and (4) In addition to standard microdosing type measurements using small pharmaceutical drugs, pre-clinical pharmacokinetic data from a macromolecular drug candidate are discussed.

  13. Accelerator mass spectrometry of ultra-small samples with applications in the biosciences

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, Mehran, E-mail: mehran.salehpour@physics.uu.se [Department of Physics and Astronomy, Ion Physics, PO Box 516, SE-751 20 Uppsala (Sweden); Hakansson, Karl; Possnert, Goeran [Department of Physics and Astronomy, Ion Physics, PO Box 516, SE-751 20 Uppsala (Sweden)

    2013-01-15

    An overview is presented covering the biological accelerator mass spectrometry activities at Uppsala University. The research utilizes the Uppsala University Tandem laboratory facilities, including a 5 MV Pelletron tandem accelerator and two stable isotope ratio mass spectrometers. In addition, a dedicated sample preparation laboratory for biological samples with natural activity is in use, as well as another laboratory specifically for {sup 14}C-labeled samples. A variety of ongoing projects are described and presented. Examples are: (1) Ultra-small sample AMS. We routinely analyze samples with masses in the 5-10 {mu}g C range. Data is presented regarding the sample preparation method, (2) bomb peak biological dating of ultra-small samples. A long term project is presented where purified and cell-specific DNA from various part of the human body including the heart and the brain are analyzed with the aim of extracting regeneration rate of the various human cells, (3) biological dating of various human biopsies, including atherosclerosis related plaques is presented. The average built up time of the surgically removed human carotid plaques have been measured and correlated to various data including the level of insulin in the human blood, and (4) In addition to standard microdosing type measurements using small pharmaceutical drugs, pre-clinical pharmacokinetic data from a macromolecular drug candidate are discussed.

  14. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter

    Directory of Open Access Journals (Sweden)

    N. Hertkorn

    2013-03-01

    exceptional resolution and depicted resolved molecular signatures in excess of a certain minimum abundance. Classical methyl groups terminating aliphatic chains represented ~15% of total methyl in all samples investigated. A noticeable fraction of methyl (~2% was bound to olefinic carbon. Methyl ethers were abundant in surface marine SPE-DOM, and the chemical diversity of carbohydrates was larger than that of freshwater and soil DOM. In all samples, we identified sp2-hybridized carbon chemical environments with discrimination of isolated and conjugated olefins and α,β-unsaturated double bonds. Olefinic proton and carbon atoms were more abundant than aromatic ones; olefinic unsaturation in marine SPE-DOM will be more directly traceable to ultimate biogenic precursors than aromatic unsaturation. The abundance of furan, pyrrol and thiophene derivatives was marginal, whereas benzene derivatives, phenols and six-membered nitrogen heterocycles were prominent; a yet unassigned set of six-membered N-heterocycles with likely more than one single nitrogen occurred in all samples. Various key polycyclic aromatic hydrocarbon substructures suggested the presence of thermogenic organic matter at all water depths. Progressive NMR cross-peak attenuation from surface to deep marine SPE-DOM was particularly strong in COSY NMR spectra and indicated a continual disappearance of biosignatures as well as entropy gain from an ever increased molecular diversity. Nevertheless, a specific near-seafloor SPE-DOM signature of unsaturated molecules recognized in both NMR and Fourier transform ion cyclotron mass spectrometry (FTICR/MS possibly originated from sediment leaching. The conformity of key NMR and FTICR/MS signatures suggested the presence of a large set of identical molecules throughout the entire ocean column even though the investigated water masses belonged to different oceanic regimes and currents. FTICR/MS showed abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing

  15. The Laser Ablation Ion Funnel: Sampling for in situ Mass Spectrometry on Mars

    Science.gov (United States)

    Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.

    2011-01-01

    A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.

  16. Molecularly Imprinted Polymers (MIP for Selective Solid Phase Extraction of Celecoxib in Urine Samples Followed by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Saeedeh Ansari

    2017-09-01

    Full Text Available In this study, for the analysis of human urine samples, a novel method explained for the determination of celecoxib, a nonsteroidal anti-inflammatory drug (NSAID, using molecularly imprinted solid-phase extraction (MISPE coupled with high-performance liquid chromatography (HPLC. The synthesis of the MIP was performed by precipitation polymerization in methacrylic acid (MAA, ethylene glycol dimethacrylate (EGDMA, chloroform, 2,2′-azobisisobutyronitrile (AIBN and celecoxib as the functional monomer, cross-linker monomer, solvent, initiator and target drug, respectively. The celecoxib imprinted polymer was utilized as a specific sorbent for the solid phase extraction (SPE of celecoxib from samples. The molecularly imprinted polymer (MIP performance was compared with the synthesized non-molecularly imprinted polymer (NIP. Scanning electron microscopy (SEM, FT-IR spectroscopy, UV-VIS spectrophotometry and thermogravimetric analysis (TGA/DTG were used for characterizing the synthesized polymers. Moreover, the MISPE procedure parameters such as pH, eluent solvent flow rate, eluent volume and sorbent mass that probably influence the extraction process have been optimized to achieve the highest celecoxib extraction efficiency. The relative standard deviation (RSD %, recovery percent, limit of detection (LOD and limit of quantification (LOQ of this proposed method were 1.12%, 96%, 8 µg L-1 and 26.7 µg L-1, respectively. The proposed MISPE-HPLC-UV method can be used for the separation and enrichment of trace amounts of celecoxib in human urine and biological samples.

  17. Comparing hair-morphology and molecular methods to identify fecal samples from Neotropical felids.

    Directory of Open Access Journals (Sweden)

    Carlos C Alberts

    Full Text Available To avoid certain problems encountered with more-traditional and invasive methods in behavioral-ecology studies of mammalian predators, such as felids, molecular approaches have been employed to identify feces found in the field. However, this method requires a complete molecular biology laboratory, and usually also requires very fresh fecal samples to avoid DNA degradation. Both conditions are normally absent in the field. To address these difficulties, identification based on morphological characters (length, color, banding, scales and medullar patterns of hairs found in feces could be employed as an alternative. In this study we constructed a morphological identification key for guard hairs of eight Neotropical felids (jaguar, oncilla, Geoffroy's cat, margay, ocelot, Pampas cat, puma and jaguarundi and compared its efficiency to that of a molecular identification method, using the ATP6 region as a marker. For this molecular approach, we simulated some field conditions by postponing sample-conservation procedures. A blind test of the identification key obtained a nearly 70% overall success rate, which we considered equivalent to or better than the results of some molecular methods (probably due to DNA degradation found in other studies. The jaguar, puma and jaguarundi could be unequivocally discriminated from any other Neotropical felid. On a scale ranging from inadequate to excellent, the key proved poor only for the margay, with only 30% of its hairs successfully identified using this key; and have intermediate success rates for the remaining species, the oncilla, Geoffroy's cat, ocelot and Pampas cat, were intermediate. Complementary information about the known distributions of felid populations may be necessary to substantially improve the results obtained with the key. Our own molecular results were even better, since all blind-tested samples were correctly identified. Part of these identifications were made from samples kept in suboptimal

  18. Offender and offense characteristics of a nonrandom sample of adolescent mass murderers.

    Science.gov (United States)

    Meloy, J R; Hempel, A G; Mohandie, K; Shiva, A A; Gray, B T

    2001-06-01

    The authors conducted a descriptive, archival study of adolescent (murderers-subjects who intentionally killed three or more victims in one event-to identify demographic, clinical, and forensic characteristics. A nonrandom sample of convenience of adolescent mass murderers was utilized. Thirty-four subjects, acting alone or in pairs, committed 27 mass murders between 1958 and 1999. The sample consisted of males with a median age of 17. A majority were described as "loners" and abused alcohol or drugs; almost half were bullied by others, preoccupied with violent fantasy, and violent by history. Although 23% had a documented psychiatric history, only 6% were judged to have been psychotic at the time of the mass murder. Depressive symptoms and historical antisocial behaviors were predominant. There was a precipitating event in most cases--usually a perceived failure in love or school--and most subjects made threatening statements regarding the mass murder to third parties. The majority of the sample clustered into three types: the family annihilator, the classroom avenger, and the criminal opportunist. The adolescent mass murderer is often predatorily rather than affectively violent and typically does not show any sudden or highly emotional warning signs. Although the act of mass murder is virtually impossible to predict because of its extremely low frequency, certain clinical and forensic findings can alert the clinician to the need for further, intensified primary care, including family, school, community, law enforcement, and mental health intervention.

  19. Molecular size evolution of oligomers in organic aerosols collected in urban atmospheres and generated in a smog chamber.

    Science.gov (United States)

    Kalberer, Markus; Sax, Mirjam; Samburova, Vera

    2006-10-01

    Only a minor fraction of the total organic aerosol mass can be resolved on a molecular level. High molecular weight compounds in organic aerosols have recently gained much attention because this class of compound potentially explains a major fraction of the unexplained organic aerosol mass. These compounds have been identified with different mass spectrometric methods, and compounds with molecular masses up to 1000 Da are found in secondary organic aerosols (SOA) generated from aromatic and terpene precursors in smog chamber experiments. Here, we apply matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to SOA particles from two biogenic precursors, alpha-pinene and isoprene. Similar oligomer patterns are found in these two SOA systems, but also in SOA from trimethylbenzene, an anthropogenic SOA precursor. However, different maxima molecular sizes were measured for these three SOA systems. While oligomers in alpha-pinene and isoprene have sizes mostly below 600-700 Da, they grow up to about 1000 Da in trimethylbenzene-SOA. The final molecular size of the oligomers is reached early during the particle aging process, whereas other particle properties related to aging, such as the overall acid concentration or the oligomer concentration, increase continuously over a much longer time scale. This kinetic behavior of the oligomer molecular size growth can be explained by a chain growth kinetic regime. Similar oligomer mass patterns were measured in aqueous extracts of ambient aerosol samples (measured with the same technique). Distinct differences between summer and winter were observed. In summer a few single mass peaks were measured with much higher intensity than in winter, pointing to a possible difference in the formation processes of these compounds in winter and summer.

  20. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  1. [Confirming Indicators of Qualitative Results by Chromatography-mass Spectrometry in Biological Samples].

    Science.gov (United States)

    Liu, S D; Zhang, D M; Zhang, W; Zhang, W F

    2017-04-01

    Because of the exist of complex matrix, the confirming indicators of qualitative results for toxic substances in biological samples by chromatography-mass spectrometry are different from that in non-biological samples. Even in biological samples, the confirming indicators are different in various application areas. This paper reviews the similarities and differences of confirming indicators for the analyte in biological samples by chromatography-mass spectrometry in the field of forensic toxicological analysis and other application areas. These confirming indicators include retention time (RT), relative retention time (RRT), signal to noise (S/N), characteristic ions, relative abundance of characteristic ions, parent ion-daughter ion pair and abundance ratio of ion pair, etc. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  2. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    Science.gov (United States)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  3. Automated Online Solid-Phase Derivatization for Sensitive Quantification of Endogenous S-Nitrosoglutathione and Rapid Capture of Other Low-Molecular-Mass S-Nitrosothiols.

    Science.gov (United States)

    Wang, Xin; Garcia, Carlos T; Gong, Guanyu; Wishnok, John S; Tannenbaum, Steven R

    2018-02-06

    S-Nitrosothiols (RSNOs) constitute a circulating endogenous reservoir of nitric oxide and have important biological activities. In this study, an online coupling of solid-phase derivatization (SPD) with liquid chromatography-mass spectrometry (LC-MS) was developed and applied in the analysis of low-molecular-mass RSNOs. A derivatizing-reagent-modified polymer monolithic column was prepared and adapted for online SPD-LC-MS. Analytes from the LC autosampler flowed through the monolithic column for derivatization and then directly into the LC-MS for analysis. This integration of the online derivatization, LC separation, and MS detection facilitated system automation, allowing rapid, laborsaving, and sensitive detection of RSNOs. S-Nitrosoglutathione (GSNO) was quantified using this automated online method with good linearity (R 2 = 0.9994); the limit of detection was 0.015 nM. The online SPD-LC-MS method has been used to determine GSNO levels in mouse samples, 138 ± 13.2 nM of endogenous GSNO was detected in mouse plasma. Besides, the GSNO concentrations in liver (64.8 ± 11.3 pmol/mg protein), kidney (47.2 ± 6.1 pmol/mg protein), heart (8.9 ± 1.8 pmol/mg protein), muscle (1.9 ± 0.3 pmol/mg protein), hippocampus (5.3 ± 0.9 pmol/mg protein), striatum (6.7 ± 0.6 pmol/mg protein), cerebellum (31.4 ± 6.5 pmol/mg protein), and cortex (47.9 ± 4.6 pmol/mg protein) were also successfully quantified. When the derivatization was performed within 8 min, followed by LC-MS detection, samples could be rapidly analyzed compared with the offline manual method. Other low-molecular-mass RSNOs, such as S-nitrosocysteine and S-nitrosocysteinylglycine, were captured by rapid precursor-ion scanning, showing that the proposed method is a potentially powerful tool for capture, identification, and quantification of RSNOs in biological samples.

  4. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  5. Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry.

    Science.gov (United States)

    Wang, Shunhai; Liu, Anita P; Yan, Yuetian; Daly, Thomas J; Li, Ning

    2018-05-30

    Traditional SDS-PAGE method and its modern equivalent CE-SDS method are both widely applied to assess the purity of therapeutic monoclonal antibody (mAb) drug products. However, structural identification of low molecular weight (LMW) impurities using those methods has been challenging and largely based on empirical knowledges. In this paper, we present that hydrophilic interaction chromatography (HILIC) coupled with mass spectrometry analysis is a novel and orthogonal method to characterize such LMW impurities present within a purified mAb drug product sample. We show here that after removal of N-linked glycans, the HILIC method separates mAb-related LMW impurities with a size-based elution order. The subsequent mass measurement from a high-resolution accurate mass spectrometer provides direct and unambiguous identification of a variety of low-abundance LMW impurities within a single LC-MS analysis. Free light chain, half antibody, H2L species (antibody possessing a single light chain) and protein backbone-truncated species can all be confidently identified and elucidated in great detail, including the truncation sites and associated post-translational modifications. It is worth noting that this study provides the first example where the H2L species can be directly detected in a mAb drug product sample by intact mass analysis without prior enrichment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Molecular effects in the neutrino mass determination from beta-decay of the tritium molecule

    International Nuclear Information System (INIS)

    Fackler, O.; Jeziorski, B.; Kolos, W.; Szalewicz, K.; Monkhorst, H.J.; Mugge, M.

    1986-03-01

    Molecular final state energies and transition probabilities have been computed for beta-decay of the tritium molecule. The results are of sufficient accuracy to make a determination of the electron neutrino rest mass with an error not exceeding a few tenths of an electron volt. Effects of approximate models of tritium beta-decay on the neutrino mass determination are discussed. 14 refs., 3 figs., 1 tab

  7. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies - II. The sample and surface mass density profiles

    Science.gov (United States)

    Riffel, R. A.; Storchi-Bergmann, T.; Riffel, R.; Davies, R.; Bianchin, M.; Diniz, M. R.; Schönell, A. J.; Burtscher, L.; Crenshaw, M.; Fischer, T. C.; Dahmer-Hahn, L. G.; Dametto, N. Z.; Rosario, D.

    2018-02-01

    We present and characterize a sample of 20 nearby Seyfert galaxies selected for having BAT 14-195 keV luminosities LX ≥ 1041.5 erg s-1, redshift z ≤ 0.015, being accessible for observations with the Gemini Near-Infrared Field Spectrograph (NIFS) and showing extended [O III]λ5007 emission. Our goal is to study Active Galactic Nucleus (AGN) feeding and feedback processes from near-infrared integral-field spectra, which include both ionized (H II) and hot molecular (H2) emission. This sample is complemented by other nine Seyfert galaxies previously observed with NIFS. We show that the host galaxy properties (absolute magnitudes MB, MH, central stellar velocity dispersion and axial ratio) show a similar distribution to those of the 69 BAT AGN. For the 20 galaxies already observed, we present surface mass density (Σ) profiles for H II and H2 in their inner ˜500 pc, showing that H II emission presents a steeper radial gradient than H2. This can be attributed to the different excitation mechanisms: ionization by AGN radiation for H II and heating by X-rays for H2. The mean surface mass densities are in the range (0.2 ≤ ΣH II ≤ 35.9) M⊙ pc-2, and (0.2 ≤ ΣH2 ≤ 13.9)× 10-3 M⊙ pc-2, while the ratios between the H II and H2 masses range between ˜200 and 8000. The sample presented here will be used in future papers to map AGN gas excitation and kinematics, providing a census of the mass inflow and outflow rates and power as well as their relation with the AGN luminosity.

  8. Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Betti, M.; Rasmussen, G.; Koch, L.

    1996-01-01

    A double-focusing glow discharge mass spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from thermal ionization mass spectrometry (TIMS). For boron and lithium at μg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques. (orig.). With 2 figs., 4 tabs

  9. Mass Spectrometry-based Approaches to Understand the Molecular Basis of Memory

    Directory of Open Access Journals (Sweden)

    Arthur Henriques Pontes

    2016-10-01

    Full Text Available The central nervous system is responsible for an array of cognitive functions such as memory, learning, language and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS have enable the identification and quantification of thousand of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.

  10. Mass of 17O from Penning-trap mass spectrometry and molecular spectroscopy: A precision test of the Dunham-Watson model in carbon monoxide

    International Nuclear Information System (INIS)

    Mount, Brianna J.; Redshaw, Matthew; Myers, Edmund G.; Mueller, Holger S. P.

    2010-01-01

    By fitting the Dunham-Watson model to extensive rotational and vibrational spectroscopic data of isotopic variants of CO, and by using existing precise masses of 13 C, 16 O, and 18 O from Penning-trap mass spectrometry, we determine the atomic mass of 17 O to be M[ 17 O]=16.999 131 644(30) u, where the uncertainty is purely statistical. Using Penning-trap mass spectrometry, we have also directly determined the atomic mass of 17 O with the more precise result M[ 17 O]=16.999 131 756 6(9) u. The Dunham-Watson model applied to the molecular spectroscopic data hence predicts the mass of 17 O to better than 1 part in 10 8 .

  11. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples

    International Nuclear Information System (INIS)

    Souza, Israel D.; Melo, Lidervan P.; Jardim, Isabel C.S.F.; Monteiro, Juliana C.S.; Nakano, Ana Marcia S.; Queiroz, Maria Eugênia C.

    2016-01-01

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL"−"1 (LLOQ) to 400 ng mL"−"1 with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from −1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. - Highlights: • Molecularly imprinted polymer modified with a hydrophilic external layer (RAM-MIP) was synthesized in a silica capillary. • RAM-MIP capillary, used as sorbent for in-tube SPME, established specific interaction with parabens present in milk samples. • The matrix components that interacted only with the hydrophilic external layer (non-adsorptive network) were excluded. • The

  12. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Israel D.; Melo, Lidervan P. [Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Jardim, Isabel C.S.F. [Instituto de Química, Universidade Estadual de Campinas, Campinas, SP (Brazil); Monteiro, Juliana C.S.; Nakano, Ana Marcia S. [Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Queiroz, Maria Eugênia C., E-mail: mariaeqn@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL{sup −1} (LLOQ) to 400 ng mL{sup −1} with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from −1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. - Highlights: • Molecularly imprinted polymer modified with a hydrophilic external layer (RAM-MIP) was synthesized in a silica capillary. • RAM-MIP capillary, used as sorbent for in-tube SPME, established specific interaction with parabens present in milk samples. • The matrix components that interacted only with the hydrophilic external layer (non-adsorptive network) were excluded.

  13. Study of molecular iodine-epoxy paint mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Belval-Haltier, E [Inst. de Protection et Surete Nucleaire, IPSN, CEN Cadarache, St. Paul-lez-Durance (France)

    1996-12-01

    The mass transfer phenomena may have a significant influence on the quantity of I{sub 2} which could be released following a severe accident of a nuclear power plant and specially the mass transfer of iodine onto containment surfaces. So, the objective of the present work was to evaluate which phase limited the adsorption process of iodine onto gaseous epoxy paint under a range of conditions which may be relevant to a severe reactor accident. In this aim, a series of experiments was conducted in which the sorption kinetics of molecular iodine, labelled with {sup 131}I, was measured by monitoring continuously the accumulation of this species on the epoxy surface. For each test condition, the initial deposition velocity was determined and the corresponding gas phase mass transfer, kg, was estimated by using the heat transfer analogy for a laminar flow passing over a flat plate. Then, the surface reaction rate, Kr, was deduced from these two values. Experiments performed indicated that iodine adsorption onto epoxy paint is highly dependent on temperature, relative humidity of the carrier gas and moisture content of the painted coupon. In dry air flow conditions, the adsorption of iodine onto paint was found to increase with temperature and to be limited by the surface reaction rate, Kr. The I{sub 2} adsorption rate was found to increase with the humidity of carrier gas and in some studied conditions, the initial deposition velocity appeared to be controlled by gas phase mass transfer rather than surface interaction. The same phenomenon has been observed with an increase of the initial water content of the painted coupon. (author) 6 figs., 1 tab., 8 refs.

  14. Application of Laser Mass Spectrometry to Art and Archaeology

    Science.gov (United States)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  15. Sensitive thermal transitions of nanoscale polymer samples using the bimetallic effect: application to ultra-thin polythiophene.

    Science.gov (United States)

    Ahumada, O; Pérez-Madrigal, M M; Ramirez, J; Curcó, D; Esteves, C; Salvador-Matar, A; Luongo, G; Armelin, E; Puiggalí, J; Alemán, C

    2013-05-01

    A sensitive nanocalorimetric technology based on microcantilever sensors is presented. The technology, which combines very short response times with very small sample consumption, uses the bimetallic effect to detect thermal transitions. Specifically, abrupt variations in the Young's modulus and the thermal expansion coefficient produced by temperature changes have been employed to detect thermodynamic transitions. The technology has been used to determine the glass transition of poly(3-thiophene methyl acetate), a soluble semiconducting polymer with different nanotechnological applications. The glass transition temperature determined using microcantilevers coated with ultra-thin films of mass = 10(-13) g is 5.2 °C higher than that obtained using a conventional differential scanning calorimeter for bulk powder samples of mass = 5 × 10(-3) g. Atomistic molecular dynamics simulations on models that represent the bulk powder and the ultra-thin films have been carried out to provide understanding and rationalization of this feature. Simulations indicate that the film-air interface plays a crucial role in films with very small thickness, affecting both the organization of the molecular chains and the response of the molecules against the temperature.

  16. THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Adam S.; Brownstein, Joel R.; Shu Yiping; Arneson, Ryan A. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Weaver, Benjamin A., E-mail: bolton@astro.utah.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-09-20

    We present an analysis of the evolution of the central mass-density profile of massive elliptical galaxies from the SLACS and BELLS strong gravitational lens samples over the redshift interval z Almost-Equal-To 0.1-0.6, based on the combination of strong-lensing aperture mass and stellar velocity-dispersion constraints. We find a significant trend toward steeper mass profiles (parameterized by the power-law density model with {rho}{proportional_to}r {sup -{gamma}}) at later cosmic times, with magnitude d < {gamma} > /dz = -0.60 {+-} 0.15. We show that the combined lens-galaxy sample is consistent with a non-evolving distribution of stellar velocity dispersions. Considering possible additional dependence of <{gamma} > on lens-galaxy stellar mass, effective radius, and Sersic index, we find marginal evidence for shallower mass profiles at higher masses and larger sizes, but with a significance that is subdominant to the redshift dependence. Using the results of published Monte Carlo simulations of spectroscopic lens surveys, we verify that our mass-profile evolution result cannot be explained by lensing selection biases as a function of redshift. Interpreted as a true evolutionary signal, our result suggests that major dry mergers involving off-axis trajectories play a significant role in the evolution of the average mass-density structure of massive early-type galaxies over the past 6 Gyr. We also consider an alternative non-evolutionary hypothesis based on variations in the strong-lensing measurement aperture with redshift, which would imply the detection of an 'inflection zone' marking the transition between the baryon-dominated and dark-matter halo-dominated regions of the lens galaxies. Further observations of the combined SLACS+BELLS sample can constrain this picture more precisely, and enable a more detailed investigation of the multivariate dependences of galaxy mass structure across cosmic time.

  17. Modulated molecular beam mass spectrometry: A generalized expression for the ''reaction product vector'' for linear systems

    International Nuclear Information System (INIS)

    Chang, H.; Weinberg, W.H.

    1977-01-01

    A generalized expression is developed that relates the ''reaction product vector'', epsilon exp(-iphi), to the kinetic parameters of a linear system. The formalism is appropriate for the analysis of modulated molecular beam mass spectrometry data and facilitates the correlation of experimental results to (proposed) linear models. A study of stability criteria appropriate for modulated molecular beam mass spectrometry experiments is also presented. This investigation has led to interesting inherent limitations which have not heretofore been emphasized, as well as a delineation of the conditions under which stable chemical oscillations may occur in the reacting system

  18. Molecular dynamics based enhanced sampling of collective variables with very large time steps

    Science.gov (United States)

    Chen, Pei-Yang; Tuckerman, Mark E.

    2018-01-01

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  19. New simultaneous thermogravimetry and modulated molecular beam mass spectrometry apparatus for quantitative thermal decomposition studies

    International Nuclear Information System (INIS)

    Behrens, R. Jr.

    1987-01-01

    A new type of instrument has been designed and constructed to measure quantitatively the gas phase species evolving during thermal decompositions. These measurements can be used for understanding the kinetics of thermal decomposition, determining the heats of formation and vaporization of high-temperature materials, and analyzing sample contaminants. The new design allows measurements to be made on the same time scale as the rates of the reactions being studied, provides a universal detection technique to study a wide range of compounds, gives quantitative measurements of decomposition products, and minimizes interference from the instrument on the measurements. The instrument design is based on a unique combination of thermogravimetric analysis (TGA), differential thermal analysis (DTA), and modulated beam mass spectroscopy (MBMS) which are brought together into a symbiotic relationship through the use of differentially pumped vacuum systems, modulated molecular beam techniques, and computer control and data-acquisition systems. A data analysis technique that calculates partial pressures in the reaction cell from the simultaneous microbalance force measurements and the modulated mass spectrometry measurements has been developed. This eliminates the need to know the ionization cross section, the ion dissociation channels, the quadrupole transmission, and the ion detector sensitivity for each thermal decomposition product prior to quantifying the mass spectral data. The operation of the instrument and the data analysis technique are illustrated with the thermal decomposition of contaminants from a precipitated palladium powder

  20. The determination of precious metals in geological samples by ICP - Mass Spectrometry

    International Nuclear Information System (INIS)

    Denoyer, E.; Ediger, R.; Hager, J.

    1989-01-01

    ICP - mass spectrometry with laser sampling has been used to determine gold directly in solid fire assay beads. A small portion of the lead bead is vaporized by Nd: YAG laser, and the resulting particulate material is passed by a flow of argon an ICP-mass spectrometer for quantitation of the gold content. Calibration with known geological materials gives linear calibration curves, and detection limits for gols are estimated to be 0.07 micrograms/gram in the original ore sample. The repeatability of the method is similar to that expected for traditional fire assay methods, and the analysis time for the solid lead bead is less than five minutes per sample. (author) [pt

  1. Extended phase-space methods for enhanced sampling in molecular simulations: a review

    Directory of Open Access Journals (Sweden)

    Hiroshi eFujisaki

    2015-09-01

    Full Text Available Molecular Dynamics simulations are a powerful approach to study biomolecular conformational changes or protein-ligand, protein-protein and protein-DNA/RNA interactions. Straightforward applications however are often hampered by incomplete sampling, since in a typical simulated trajectory the system will spend most of its time trapped by high energy barriers in restricted regions of the configuration space. Over the years, several techniques have been designed to overcome this problem and enhance space sampling. Here, we review a class of methods that rely on the idea of extending the set of dynamical variables of the system by adding extra ones associated to functions describing the process under study. In particular, we illustrate the Temperature Accelerated Molecular Dynamics (TAMD, Logarithmic Mean Force Dynamics (LogMFD, andMultiscale Enhanced Sampling (MSES algorithms. We also discuss combinations with techniques for searching reaction paths. We show the advantages presented by this approach and how it allows to quickly sample important regions of the free energy landscape via automatic exploration.

  2. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics.

    Science.gov (United States)

    Gong, Zhi-Gang; Hu, Jing; Wu, Xi; Xu, Yong-Jiang

    2017-07-04

    Metabolomics is a critical member in systems biology. Although great progress has been achieved in metabolomics, there are still some problems in sample preparation, data processing and data interpretation. In this review, we intend to explore the roles, challenges and trends in sample preparation for mass spectrometry- (MS-) based metabolomics. The newly emerged sample preparation methods were also critically examined, including laser microdissection, in vivo sampling, dried blood spot, microwave, ultrasound and enzyme-assisted extraction, as well as microextraction techniques. Finally, we provide some conclusions and perspectives for sample preparation in MS-based metabolomics.

  3. Tandem mass spectrometry at low kinetic energy

    International Nuclear Information System (INIS)

    Cooks, R.G.; Hand, O.W.

    1987-01-01

    Recent progress in mass spectrometry, as applied to molecular analysis, is reviewed with emphasis on tandem mass spectrometry. Tandem instruments use multiple analyzers (sector magnets, quadrupole mass filters and time-of-flight devices) to select particular molecules in ionic form, react them in the gas-phase and then record the mass, momenta or kinetic energies of their products. The capabilities of tandem mass spectrometry for identification of individual molecules or particular classes of compounds in complex mixtures are illustrated. Several different types of experiments can be run using a tandem mass spectrometer; all share the feature of sifting the molecular mixture being analyzed on the basis of chemical properties expressed in terms of ionic mass, kinetic energy or charge state. Applications of mass spectrometry to biological problems often depend upon desorption methods of ionization in which samples are bombarded with particle beams. Evaporation of preformed charged species from the condensed phase into the vacuum is a particularly effective method of ionization. It is suggested that the use of accelerator mass spectrometers be extended to include problems of molecular analysis. In such experiments, low energy tandem mass spectrometry conducted in the eV or keV range of energies, would be followed by further characterization of the production ion beam using high selective MeV collision processes

  4. Functional speciation of metal-dissolved organic matter complexes by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry and deconvolution analysis

    International Nuclear Information System (INIS)

    Laborda, Francisco; Ruiz-Begueria, Sergio; Bolea, Eduardo; Castillo, Juan R.

    2009-01-01

    High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (HP-SEC-ICP-MS), in combination with deconvolution analysis, has been used to obtain multielemental qualitative and quantitative information about the distributions of metal complexes with different forms of natural dissolved organic matter (DOM). High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry chromatograms only provide continuous distributions of metals with respect to molecular masses, due to the high heterogeneity of dissolved organic matter, which consists of humic substances as well as biomolecules and other organic compounds. A functional speciation approach, based on the determination of the metals associated to different groups of homologous compounds, has been followed. Dissolved organic matter groups of homologous compounds are isolated from the aqueous samples under study and their high performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry elution profiles fitted to model Gaussian peaks, characterized by their respective retention times and peak widths. High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry chromatograms of the samples are deconvoluted with respect to these model Gaussian peaks. This methodology has been applied to the characterization of metal-dissolved organic matter complexes in compost leachates. The most significant groups of homologous compounds involved in the complexation of metals in the compost leachates studied have been hydrophobic acids (humic and fulvic acids) and low molecular mass hydrophilic compounds. The environmental significance of these compounds is related to the higher biodegradability of the low molecular mass hydrophilic compounds and the lower mobility of humic acids. In general, the hydrophilic compounds accounted for the complexation of around 50% of the leached

  5. Screening disrupted molecular functions and pathways associated with clear cell renal cell carcinoma using Gibbs sampling.

    Science.gov (United States)

    Nan, Ning; Chen, Qi; Wang, Yu; Zhai, Xu; Yang, Chuan-Ce; Cao, Bin; Chong, Tie

    2017-10-01

    To explore the disturbed molecular functions and pathways in clear cell renal cell carcinoma (ccRCC) using Gibbs sampling. Gene expression data of ccRCC samples and adjacent non-tumor renal tissues were recruited from public available database. Then, molecular functions of expression changed genes in ccRCC were classed to Gene Ontology (GO) project, and these molecular functions were converted into Markov chains. Markov chain Monte Carlo (MCMC) algorithm was implemented to perform posterior inference and identify probability distributions of molecular functions in Gibbs sampling. Differentially expressed molecular functions were selected under posterior value more than 0.95, and genes with the appeared times in differentially expressed molecular functions ≥5 were defined as pivotal genes. Functional analysis was employed to explore the pathways of pivotal genes and their strongly co-regulated genes. In this work, we obtained 396 molecular functions, and 13 of them were differentially expressed. Oxidoreductase activity showed the highest posterior value. Gene composition analysis identified 79 pivotal genes, and survival analysis indicated that these pivotal genes could be used as a strong independent predictor of poor prognosis in patients with ccRCC. Pathway analysis identified one pivotal pathway - oxidative phosphorylation. We identified the differentially expressed molecular functions and pivotal pathway in ccRCC using Gibbs sampling. The results could be considered as potential signatures for early detection and therapy of ccRCC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comparing molecular composition of dissolved organic matter in soil and stream water: Influence of land use and chemical characteristics.

    Science.gov (United States)

    Seifert, Anne-Gret; Roth, Vanessa-Nina; Dittmar, Thorsten; Gleixner, Gerd; Breuer, Lutz; Houska, Tobias; Marxsen, Jürgen

    2016-11-15

    Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) was used to examine the molecular composition of dissolved organic matter (DOM) from soils under different land use regimes and how the DOM composition in the catchment is reflected in adjacent streams. The study was carried out in a small area of the Schwingbach catchment, an anthropogenic-influenced landscape in central Germany. We investigated 30 different soil water samples from 4 sites and different depths (managed meadow (0-5cm, 40-50cm), deciduous forest (0-5cm), mixed-coniferous forest (0-5cm) and agricultural land (0-5cm, 40-50cm)) and 8 stream samples. 6194 molecular formulae and their magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (AI-mod)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w) were used to describe the molecular composition of the samples. The samples can be roughly divided in three groups. Group 1 contains samples from managed meadow 40-50cm and stream water, which are characterized by high saturation compared to samples from group 2 including agricultural samples and samples from the surface meadow (0-5cm), which held more nitrogen containing and aromatic compounds. Samples from both forested sites (group 3) are characterized by higher molecular weight and O/C ratio. Environmental parameters vary between sites and among these parameters pH and nitrate significantly affect chemical composition of DOM. Results indicate that most DOM in streams is of terrestrial origin. However, 120 molecular formulae were detected only in streams and not in any of the soil samples. These compounds share molecular formulae with peptides, unsaturated aliphatics and saturated FA-CHO/FA-CHOX. Compounds only found in soil samples are much more aromatic, have more double bonds and a much lower H/C ratio but higher oxygen content, which indicates the availability of fresh plant material and less microbial processed material compared to stream samples. Copyright

  7. Mass spectrometry imaging: Towards mapping the elemental and molecular composition of the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Veličković, Dušan; Anderton, Christopher R.

    2017-06-01

    This short review will discuss and provide perspective into the utilization of mass spectrometry imaging (MSI) in studying the rhizosphere. It also serves to compliment the multi-omic focused review by White et al. in this journal issue, as MSI is capable of elucidating chemical distributions within samples of interest in an in situ fashions, and thus can provide spatial context to MS omics data in complementary experimental endeavors. The majority of reported MSI-based studies of plant-microbe interactions have focused on the phyllosphere and ‘associated rhizosphere’ (e.g., material that is not removed during harvesting), as sample preparation for these in situ analyses tends to be a limiting factor. These studies have provided valuable insight into the spatial arrangement of proteins, peptides, lipids, and other metabolites within these systems. We intend for this short review to be a primer about the history of MSI and its role in plant-microbe analysis. Along the way we reference many comprehensive reviews for the interested reader. Lastly, we offer a perspective on the future of MSI and its use in understanding the molecular transformations beyond what we coined as the ‘associated rhizosphere’ to the rest of rhizosphere zone and into the bulk soil.

  8. Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping

    Science.gov (United States)

    Lu, Jianfeng; Zhou, Zhennan

    2018-02-01

    To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.

  9. A Probabilistic Mass Estimation Algorithm for a Novel 7- Channel Capacitive Sample Verification Sensor

    Science.gov (United States)

    Wolf, Michael

    2012-01-01

    A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.

  10. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples.

    Science.gov (United States)

    Souza, Israel D; Melo, Lidervan P; Jardim, Isabel C S F; Monteiro, Juliana C S; Nakano, Ana Marcia S; Queiroz, Maria Eugênia C

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL(-1) (LLOQ) to 400 ng mL(-1) with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from -1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene.

    Science.gov (United States)

    Kim, Young Hwan; Kim, Sunghwan

    2010-03-01

    Positive-ion atmospheric pressure chemical ionization (APCI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses of petroleum sample were performed with higher sensitivity by switching the solvent composition from toluene and methanol or acetonitrile to a one-component system consisting only of toluene. In solvent blends, molecular ions were more abundant than were protonated ions with increasing percentages of toluene. In 100% toluene, the double-bond equivalence (DBE) distributions of molecular ions obtained by APCI MS for each compound class were very similar to those obtained in dopant assisted atmospheric pressure photo ionization (APPI) MS analyses. Therefore, it was concluded that charge-transfer reaction, which is important in toluene-doped APPI processes, also plays a major role in positive-ion APCI. In the DBE distributions of S(1), S(2), and SO heteroatom classes, a larger enhancement in the relative abundance of molecular ions at fairly specific DBE values was observed as the solvent was progressively switched to toluene. This enhanced abundance of molecular ions was likely dependent on molecular structure. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  12. Use of plasma-source multicollector magnetic-sector mass spectrometry for uranium and plutonium analysis in environmental samples

    International Nuclear Information System (INIS)

    Price Russ, G.; Williams, Ross

    2001-01-01

    Full text: The ability to detect and isotopically characterize uranium and plutonium in environmental samples is of primary importance in the search for nuclear proliferation. The utility of isotope ratio measurements for environmental monitoring is limited by sample preparation costs, measurement precision, and sensitivity. This is particularly true for wide-area monitoring where the number of samples required varies inversely with obtainable precision and sensitivity. Historically isotopic measurements have been made by thermal ionization mass spectrometry (TIMS). While requiring extensive sample preparation, no other technique matched its precision and sensitivity for such measurements. Inductively-coupled-plasma, magnetic-sector, multicollector, mass spectrometry offers the prospect of extending the state-of-the-art to higher precision while increasing sensitivity and reducing costs through more rapid analysis and reduced sample preparation. At LLNL this technique is being implemented in the form of an IsoProbe (Micromass, UK). This paper will present data for both standards and IAEA supplied samples demonstrating the power and limitations of the technique. The precision and sensitivity of the IsoProbe results will be compared to TIMS performance for comparable samples. For 48 determinations of natural uranium, using the double spike to correct for bias, a relative standard deviation of 0.04% (1σ) for 238 U/ 235 U has been obtained in a preliminary study. This is a substantial improvement over the TIMS result of 0.1% reported at the previous conference. Further improvements can be expected as we gain a better understanding of the background peaks occurring in the IsoProbe spectra. (author)

  13. Subcritical water extraction combined with molecular imprinting technology for sample preparation in the detection of triazine herbicides.

    Science.gov (United States)

    Zhao, Fengnian; Wang, Shanshan; She, Yongxin; Zhang, Chao; Zheng, Lufei; Jin, Maojun; Shao, Hua; Jin, Fen; Du, Xinwei; Wang, Jing

    2017-09-15

    A selective, environmentally friendly, and cost-effective sample extraction method based on a combination of subcritical water extraction (SWE) and molecularly imprinted solid-phase extraction (MISPE) was developed for the determination of eight triazine herbicides in soil samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In SWE, the highest extraction yields of triazine herbicides were obtained under 150°C for 15min using 20% ethanol as the organic modifier. Addition of MIP during SWE increased the extraction efficiency, and using MIP as a selective SPE sorbent improved the enrichment capability. Soil samples were treated with the optimized extraction MIP/SWE-MISPE method and analyzed by LC-MS/MS. The novel technique was then applied to soil samples for the determination of triazine herbicides, and better recoveries (78.9%-101%) were obtained compared with using SWE-MISPE (30%-67%). Moreover, this newly developed method displayed good linearity (R 2 >0.99) and precision (2.7-9.8%), and low enough detection limits (0.4-3.3μgkg -1 ). This combination of SWE and MIP technology is a simple, effective and promising method to selectively extract class-specific compounds in complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Characterization of organic matter in cloud waters sampled at the puy de Dôme mountain using FT-ICR-MS

    Science.gov (United States)

    Bianco, A.; Chaumerliac, N.; Vaitilingom, M.; Deguillaume, L.; Bridoux, M. C.

    2017-12-01

    The chemical composition of organic matter in cloud water is highly complex. The organic species result from their dissolution from the gas phase or from the soluble fraction of the particle phase. They are also produced by aqueous phase reactivity. Several low molecular weight organic species have been quantified such as aldehydes and carboxylic acids. Recently, amino acids were also detected in cloud water and their presence is related to the presence of microorganisms. Compounds presenting similarities with high molecular weight organic substances or HULIS found in aerosols were also observed in clouds. Overall, these studies mainly focused on individual compounds or functional groups rather than the complex mixture at the molecular level. This study presents a non-targeted approach to characterize the organic matter in clouds. Samples were collected at the puy de Dôme Mountain (France). Two cloud water samples (June & July 2016) were analyzed using high resolution mass spectrometry (ESI-FT-ICR-MS 9.4T). A reversed solid phase extraction (SPE) procedure was performed to concentrate dissolved organic matter components. Composer (v.1.5.3) software was used to filter the mass spectral data, recalibrate externally the dataset and calculate all possible formulas for detected anions. The first cloud sample (June) resulted from air mass coming from the North (North Sea) while the second one (July) resulted from air mass coming from the West (Atlantic Ocean). Thus, both cloud events derived from marine air masses but were characterized by different hydrogen peroxide concentration and dissolved organic carbon content and were sampled at different periods during the day. Elemental compositions of 6487 and 3284 unique molecular species were identified in each sample. Nitrogen-containing compounds (CHNO compounds), sulfur-containing compounds (CHOS & CHNOS compounds) and other oxygen-containing compounds (CHO compounds) with molecular weights up to 800 Da were detected

  15. High-Throughput and Rapid Screening of Low-Mass Hazardous Compounds in Complex Samples.

    Science.gov (United States)

    Wang, Jing; Liu, Qian; Gao, Yan; Wang, Yawei; Guo, Liangqia; Jiang, Guibin

    2015-07-07

    Rapid screening and identification of hazardous chemicals in complex samples is of extreme importance for public safety and environmental health studies. In this work, we report a new method for high-throughput, sensitive, and rapid screening of low-mass hazardous compounds in complex media without complicated sample preparation procedures. This method is achieved based on size-selective enrichment on ordered mesoporous carbon followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis with graphene as a matrix. The ordered mesoporous carbon CMK-8 can exclude interferences from large molecules in complex samples (e.g., human serum, urine, and environmental water samples) and efficiently enrich a wide variety of low-mass hazardous compounds. The method can work at very low concentrations down to part per trillion (ppt) levels, and it is much faster and more facile than conventional methods. It was successfully applied to rapidly screen and identify unknown toxic substances such as perfluorochemicals in human serum samples from athletes and workers. Therefore, this method not only can sensitively detect target compounds but also can identify unknown hazardous compounds in complex media.

  16. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry

    Directory of Open Access Journals (Sweden)

    Fiehn Oliver

    2007-03-01

    Full Text Available Abstract Background Structure elucidation of unknown small molecules by mass spectrometry is a challenge despite advances in instrumentation. The first crucial step is to obtain correct elemental compositions. In order to automatically constrain the thousands of possible candidate structures, rules need to be developed to select the most likely and chemically correct molecular formulas. Results An algorithm for filtering molecular formulas is derived from seven heuristic rules: (1 restrictions for the number of elements, (2 LEWIS and SENIOR chemical rules, (3 isotopic patterns, (4 hydrogen/carbon ratios, (5 element ratio of nitrogen, oxygen, phosphor, and sulphur versus carbon, (6 element ratio probabilities and (7 presence of trimethylsilylated compounds. Formulas are ranked according to their isotopic patterns and subsequently constrained by presence in public chemical databases. The seven rules were developed on 68,237 existing molecular formulas and were validated in four experiments. First, 432,968 formulas covering five million PubChem database entries were checked for consistency. Only 0.6% of these compounds did not pass all rules. Next, the rules were shown to effectively reducing the complement all eight billion theoretically possible C, H, N, S, O, P-formulas up to 2000 Da to only 623 million most probable elemental compositions. Thirdly 6,000 pharmaceutical, toxic and natural compounds were selected from DrugBank, TSCA and DNP databases. The correct formulas were retrieved as top hit at 80–99% probability when assuming data acquisition with complete resolution of unique compounds and 5% absolute isotope ratio deviation and 3 ppm mass accuracy. Last, some exemplary compounds were analyzed by Fourier transform ion cyclotron resonance mass spectrometry and by gas chromatography-time of flight mass spectrometry. In each case, the correct formula was ranked as top hit when combining the seven rules with database queries. Conclusion The

  17. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach.

    Science.gov (United States)

    Santa, Cátia; Anjo, Sandra I; Manadas, Bruno

    2016-07-01

    Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH-MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Obesity as defined by waist circumference but not body mass index is associated with higher renal mass complexity.

    Science.gov (United States)

    Bertrand, Laura A; Thomas, Lewis J; Li, Peng; Buchta, Claire M; Boi, Shannon K; Orlandella, Rachael M; Brown, James A; Nepple, Kenneth G; Norian, Lyse A

    2017-11-01

    Obesity, typically defined as a body mass index (BMI)≥30kg/m 2 , is an established risk factor for renal cell carcinoma (RCC) but is paradoxically linked to less advanced disease at diagnosis and improved outcomes. However, BMI has inherent flaws, and alternate obesity-defining metrics that emphasize abdominal fat are available. We investigated 3 obesity-defining metrics, to better examine the associations of abdominal fat vs. generalized obesity with renal tumor stage, grade, or R.E.N.A.L. nephrometry score. In a prospective cohort of 99 subjects with renal masses undergoing resection and no evidence of metastatic disease, obesity was assessed using 3 metrics: body mass index (BMI), radiographic waist circumference (WC), and retrorenal fat (RRF) pad distance. R.E.N.A.L. nephrometry scores were calculated based on preoperative CT or MRI. Univariate and multivariate analyses were performed to identify associations between obesity metrics and nephrometry score, tumor grade, and tumor stage. In the 99 subjects, surgery was partial nephrectomy in 51 and radical nephrectomy in 48. Pathology showed benign masses in 11 and RCC in 88 (of which 20 had stage T3 disease). WC was positively correlated with nephrometry score, even after controlling for age, sex, race, and diabetes status (P = 0.02), whereas BMI and RRF were not (P = 0.13, and P = 0.57, respectively). WC in stage T2/T3 subjects was higher than in subjects with benign masses (P = 0.03). In contrast, subjects with Fuhrman grade 1 and 2 tumors had higher BMI (Pobesity measured by WC, but not BMI or RRF, is associated with increased renal mass complexity. Tumor Fuhrman grade exhibited a different trend, with both high WC and BMI associated with lower-grade tumors. Our findings indicate that WC and BMI are not interchangeable obesity metrics. Further evaluation of RCC-specific outcomes using WC vs. BMI is warranted to better understand the complex relationship between general vs. abdominal obesity and RCC

  19. Surface Acoustic Wave Nebulisation Mass Spectrometry for the Fast and Highly Sensitive Characterisation of Synthetic Dyes in Textile Samples

    Science.gov (United States)

    Astefanei, Alina; van Bommel, Maarten; Corthals, Garry L.

    2017-10-01

    Surface acoustic wave nebulisation (SAWN) mass spectrometry (MS) is a method to generate gaseous ions compatible with direct MS of minute samples at femtomole sensitivity. To perform SAWN, acoustic waves are propagated through a LiNbO3 sampling chip, and are conducted to the liquid sample, which ultimately leads to the generation of a fine mist containing droplets of nanometre to micrometre diameter. Through fission and evaporation, the droplets undergo a phase change from liquid to gaseous analyte ions in a non-destructive manner. We have developed SAWN technology for the characterisation of organic colourants in textiles. It generates electrospray-ionisation-like ions in a non-destructive manner during ionisation, as can be observed by the unmodified chemical structure. The sample size is decreased by tenfold to 1000-fold when compared with currently used liquid chromatography-MS methods, with equal or better sensitivity. This work underscores SAWN-MS as an ideal tool for molecular analysis of art objects as it is non-destructive, is rapid, involves minimally invasive sampling and is more sensitive than current MS-based methods. [Figure not available: see fulltext.

  20. HIghMass-high H I mass, H I-rich galaxies at z ∼ 0 sample definition, optical and Hα imaging, and star formation properties

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shan; Matsushita, Satoki [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, National Taiwan University, Taipei 10617, Taiwan (China); Haynes, Martha P.; Giovanelli, Riccardo; Hallenbeck, Gregory; Jones, Michael G.; Adams, Elizabeth A. K. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Brinchmann, Jarle [Sterrewacht Leiden, Leiden University, NL-2300 RA Leiden (Netherlands); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune 411007 (India); Hunt, Leslie K. [INAF-Osservatorio Astrofisico di Arcetri, Largo East Fermi 5, I-50125, Firenze (Italy); Masters, Karen L. [Institute of Cosmology and Gravitation, Dennis Sciama Building, Burnaby Road, Portsmouth POI 3FX (United Kingdom); Saintonge, Amelie [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Spekkens, Kristine, E-mail: shan@asiaa.sinica.edu.tw [Royal Military College of Canada, Department of Physics, P.O. Box 17000, Station Forces, Kingston, ON K7K 7B4 (Canada)

    2014-09-20

    We present first results of the study of a set of exceptional H I sources identified in the 40% ALFALFA extragalactic H I survey catalog α.40 as both being H I massive (M{sub HI}>10{sup 10} M{sub ⊙}) and having high gas fractions for their stellar masses: the HIghMass galaxy sample. We analyze UV- and optical-broadband and Hα images to understand the nature of their relatively underluminous disks in optical and to test whether their high gas fractions can be tracked to higher dark matter halo spin parameters or late gas accretion. Estimates of their star formation rates (SFRs) based on spectral energy distribution fitting agree within uncertainties with the Hα luminosity inferred current massive SFRs. The H II region luminosity functions, parameterized as dN/dlog L∝L {sup α}, have standard slopes at the luminous end (α ∼ –1). The global SFRs demonstrate that the HIghMass galaxies exhibit active ongoing star formation (SF) with moderate SF efficiency but, relative to normal spirals, a lower integrated SFR in the past. Because the SF activity in these systems is spread throughout their extended disks, they have overall lower SFR surface densities and lower surface brightness in the optical bands. Relative to normal disk galaxies, the majority of HIghMass galaxies have higher Hα equivalent widths and are bluer in their outer disks, implying an inside-out disk growth scenario. Downbending double exponential disks are more frequent than upbending disks among the gas-rich galaxies, suggesting that SF thresholds exist in the downbending disks, probably as a result of concentrated gas distribution.

  1. High-Resolution Liquid Chromatography Tandem Mass Spectrometry Enables Large Scale Molecular Characterization of Dissolved Organic Matter

    Directory of Open Access Journals (Sweden)

    Daniel Petras

    2017-12-01

    Full Text Available Dissolved organic matter (DOM is arguably one of the most complex exometabolomes on earth, and is comprised of thousands of compounds, that together contribute more than 600 × 1015 g carbon. This reservoir is primarily the product of interactions between the upper ocean's microbial food web, yet abiotic processes that occur over millennia have also modified many of its molecules. The compounds within this reservoir play important roles in determining the rate and extent of element exchange between inorganic reservoirs and the marine biosphere, while also mediating microbe-microbe interactions. As such, there has been a widespread effort to characterize DOM using high-resolution analytical methods including nuclear magnetic resonance spectroscopy (NMR and mass spectrometry (MS. To date, molecular information in DOM has been primarily obtained through calculated molecular formulas from exact mass. This approach has the advantage of being non-targeted, accessing the inherent complexity of DOM. Molecular structures are however still elusive and the most commonly used instruments are costly. More recently, tandem mass spectrometry has been employed to more precisely identify DOM components through comparison to library mass spectra. Here we describe a data acquisition and analysis workflow that expands the repertoire of high-resolution analytical approaches available to access the complexity of DOM molecules that are amenable to electrospray ionization (ESI MS. We couple liquid chromatographic separation with tandem MS (LC-MS/MS and a data analysis pipeline, that integrates peak extraction from extracted ion chromatograms (XIC, molecular formula calculation and molecular networking. This provides more precise structural characterization. Although only around 1% of detectable DOM compounds can be annotated through publicly available spectral libraries, community-wide participation in populating and annotating DOM datasets could rapidly increase the

  2. HASE - The Helsinki adaptive sample preparation line

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, V., E-mail: vesa.palonen@helsinki.fi [Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 (Finland); Pesonen, A. [Laboratory of Chronology, Finnish Museum of Natural History, P.O. Box 64, FI-00014 (Finland); Herranen, T.; Tikkanen, P. [Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 (Finland); Oinonen, M. [Laboratory of Chronology, Finnish Museum of Natural History, P.O. Box 64, FI-00014 (Finland)

    2013-01-15

    We have designed and built an adaptive sample preparation line with separate modules for combustion, molecular sieve handling, CO{sub 2} gas cleaning, CO{sub 2} storage, and graphitization. The line is also connected to an elemental analyzer. Operation of the vacuum equipment, a flow controller, pressure sensors, ovens, and graphitization reactors are automated with a reliable NI-cRIO real-time system. Stepped combustion can be performed in two ovens at temperatures up to 900 Degree-Sign C. Depending on the application, CuO or O{sub 2}-flow combustion can be used. A flow controller is used to adjust the O{sub 2} flow and pressure during combustion. For environmental samples, a module for molecular sieve regeneration and sample desorption is attached to the line replacing the combustion module. In the storage module, CO{sub 2} samples can be stored behind a gas-tight diaphragm valve and either stored for later graphitization or taken for measurements with separate equipment (AMS gas ion source or a separate mass spectrometer). The graphitization module consists of four automated reactors, capable of graphitizing samples with masses from 3 mg down to 50 {mu}g.

  3. Complete removal of a breast mass by US-guided mammotome biopsy: histologic assessment by marginal sampling

    International Nuclear Information System (INIS)

    Kim, Youn Jeong; Choi, Hye Young; Moon, Byung In; Lee, Shi Nae

    2005-01-01

    The aim of this study was to assess whether the complete removal of a breast mass using ultrasound (US) guided mammotome biopsy was successful using a marginal biopsy after insuring the total visual excision of the breast mass on US images. The relationship of complete breast mass removal, and the hematoma, mass size and shape were also evaluated. A US guided mammotome biopsy was performed in a total of 136 cases in 133 patients, with marginal biopsies also added when the complete removal of breast mass had been identified by sonography. The results of the marginal biopsies were serially dividing into three groups, as follows: group I were the cases in the initial 6 months, group II after the initial 6 months and group III having undergone two marginal biopsies. The marginal biopsies were performed in four directions around the probe, with 'marginal positivity' defined as the same histopathological findings to that of the main mass in at least one direction. A statistical analysis was also used to evaluate between the marginal positivity and the hematoma, mass size and shape. The marginal positivities of groups I, II and III were 48.8, 29.4 and 45.5%, respectively. The marginal positivity of those with a lobular shaped mass was significantly higher (ρ = 0.0121) than those with round or oval shaped masses (61.5 vs 33.7 vs 50%), but showed no statistical relationship with hematoma size of the lesions. Although the lesions were removed by US using a US-guided mammotome biopsy, many residual lesions were still histologically present in the marginal samplings, especially in the lobular shaped masse

  4. Tandem Mass Spectrometry on a Miniaturized Laser Desorption Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Li, Xiang; Cornish, Timothy; Getty, Stephanie A.; Brinckerhoff, William B.

    2016-01-01

    Tandem mass spectrometry (MSMS) is a powerful and widely-used technique for identifying the molecular structure of organic constituents of a complex sample. Application of MSMS to the study of unknown planetary samples on a remote space mission would contribute to our understanding of the origin, evolution, and distribution of extraterrestrial organics in our solar system. Here we report on the realization of MSMS on a miniaturized laser desorption time-of-flight mass spectrometer (LD-TOF-MS), which is one of the most promising instrument types for future planetary missions. This achievement relies on two critical components: a curved-field reflectron and a pulsed-pin ion gate. These enable use of the complementary post-source decay (PSD) and laser-assisted collision induced dissociation (L-CID) MSMS methods on diverse measurement targets with only modest investment in instrument resources such as volume and weight. MSMS spectra of selected molecular targets in various organic standards exhibit excellent agreement when compared with results from a commercial, laboratory-scale TOF instrument, demonstrating the potential of this powerful technique in space and planetary environments.

  5. Occurrence of Radio Minihalos in a Mass-limited Sample of Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Giacintucci, Simona; Clarke, Tracy E. [Naval Research Laboratory, 4555 Overlook Avenue SW, Code 7213, Washington, DC 20375 (United States); Markevitch, Maxim [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cassano, Rossella; Venturi, Tiziana; Brunetti, Gianfranco, E-mail: simona.giacintucci@nrl.navy.mil [INAF—Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy)

    2017-06-01

    We investigate the occurrence of radio minihalos—diffuse radio sources of unknown origin observed in the cores of some galaxy clusters—in a statistical sample of 58 clusters drawn from the Planck Sunyaev–Zel’dovich cluster catalog using a mass cut ( M {sub 500} > 6 × 10{sup 14} M {sub ⊙}). We supplement our statistical sample with a similarly sized nonstatistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for nine clusters), we reanalyzed the Very Large Array archival radio data to determine whether a minihalo is present. Our total sample includes all 28 currently known and recently discovered radio minihalos, including six candidates. We classify clusters as cool-core or non-cool-core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores—at least 12 out of 15 (80%)—in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool cores or “warm cores.” These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.

  6. Quantifying Protein-Carbohydrate Interactions Using Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Yao, Yuyu; Shams-Ud-Doha, Km; Daneshfar, Rambod; Kitova, Elena N.; Klassen, John S.

    2015-01-01

    The application of liquid sample desorption electrospray ionization mass spectrometry (liquid sample DESI-MS) for quantifying protein-carbohydrate interactions in vitro is described. Association constants for the interactions between lysozyme and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc, and between a single chain antibody and α-D-Galp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 and β-D-Glcp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 measured using liquid sample DESI-MS were found to be in good agreement with values measured by isothermal titration calorimetry and the direct ESI-MS assay. The reference protein method, which was originally developed to correct ESI mass spectra for the occurrence of nonspecific ligand-protein binding, was shown to reliably correct liquid sample DESI mass spectra for nonspecific binding. The suitability of liquid sample DESI-MS for quantitative binding measurements carried out using solutions containing high concentrations of the nonvolatile biological buffer phosphate buffered saline (PBS) was also explored. Binding of lysozyme to β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc in aqueous solutions containing up to 1× PBS was successfully monitored using liquid sample DESI-MS; with ESI-MS the binding measurements were limited to concentrations less than 0.02 X PBS.

  7. Chemistry of the High-mass Protostellar Molecular Clump IRAS 16562–3959

    Science.gov (United States)

    Guzmán, Andrés E.; Guzmán, Viviana V.; Garay, Guido; Bronfman, Leonardo; Hechenleitner, Federico

    2018-06-01

    We present molecular line observations of the high-mass molecular clump IRAS 16562‑3959 taken at 3 mm using the Atacama Large Millimeter/submillimeter Array at 1.″7 angular resolution (0.014 pc spatial resolution). This clump hosts the actively accreting high-mass young stellar object (HMYSO) G345.4938+01.4677, which is associated with a hypercompact H II region. We identify and analyze emission lines from 22 molecular species (encompassing 34 isomers) and classify them into two groups, depending on their spatial distribution within the clump. One of these groups gathers shock tracers (e.g., SiO, SO, HNCO) and species formed in dust grains like methanol (CH3OH), ethenone or ketene (H2CCO), and acetaldehyde (CH3CHO). The second group collects species closely resembling the dust continuum emission morphology and are formed mainly in the gas phase, like hydrocarbons (CCH, c-C3H2, CH3CCH), cyanopolyynes (HC3N and HC5N), and cyanides (HCN and CH3C3N). Emission from complex organic molecules (COMs) like CH3OH, propanenitrile (CH3CH2CN), and methoxymethane (CH3OCH3) arise from gas in the vicinity of a hot molecular core (T ≳ 100 K) associated with the HMYSO. Other COMs such as propyne (CH3CCH), acrylonitrile (CH2CHCN), and acetaldehyde seem to better trace warm (T ≲ 80 K) dense gas. In addition, deuterated ammonia (NH2D) is detected mostly in the outskirts of IRAS 16562‑3959 and associated with near-infrared dark globules, probably gaseous remnants of the clump’s prestellar phase. The spatial distribution of molecules in IRAS 16562‑3959 supports the view that in protostellar clumps, chemical tracers associated with different evolutionary stages—starless to hot cores/H II regions—exist coevally.

  8. Bioavailability of sediment-associated and low-molecular-mass species of radionuclides/trace metals to the mussel Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Borretzen, Peer [Department of Plant and Environmental Sciences, P.O. Box 50003, Norwegian University of Life Sciences, N-1432 As (Norway)], E-mail: peer.borretzen@gmail.com; Salbu, Brit [Department of Plant and Environmental Sciences, P.O. Box 50003, Norwegian University of Life Sciences, N-1432 As (Norway)

    2009-04-15

    Sediments can act as a sink for contaminants in effluents from industrial and nuclear installations or when released from dumped waste. However, contaminated sediments may also act as a potential source of radionuclides and trace metals to the water phase due to remobilisation of metals as dissolved species and resuspension of particles. The marine mussel Mytilus edulis is a filter-feeding organism that via the gills is subjected to contaminants in dissolved form and from contaminants associated to suspended particles via the digestive system. In this paper the bioavailability of sediment-associated and seawater diluted Cs, Co, Cd and Zn radioactive tracers to the filtering bivalve M. edulis has been examined. The mussels were exposed to tracers diluted in ultrafiltered (<10 kDa) seawater (Low Molecular Mass form) or to tracers associated with sediment particles from the Stepovogo Fjord at Novaya Zemlya in short-term uptake experiments, followed by 1-month depuration experiments in flow-through tanks. A toxicokinetic model was fitted to the uptake and depuration data, and the obtained parameters were used to simulate the significance of the two uptake pathways at different suspended sediment loads and sediment-seawater distribution coefficients. The results of the model simulations, assuming steady state conditions, suggest that resuspended particles from contaminated sediments can be a highly significant pathway for mussels in the order {sup 109}Cd {approx_equal} {sup 65}Zn < {sup 134}Cs < {sup 60}Co. The significance increases with higher suspended sediment load and with higher K{sub d}. Furthermore, the experimental depuration data suggest that Cs is retained longer and Co, Cd and Zn shorter by the mussels when associated with ingested sediments, than if the metals are taken up from the low molecular mass (LMM) phase.

  9. Proteomic Biomarker Discovery in 1000 Human Plasma Samples with Mass Spectrometry.

    Science.gov (United States)

    Cominetti, Ornella; Núñez Galindo, Antonio; Corthésy, John; Oller Moreno, Sergio; Irincheeva, Irina; Valsesia, Armand; Astrup, Arne; Saris, Wim H M; Hager, Jörg; Kussmann, Martin; Dayon, Loïc

    2016-02-05

    The overall impact of proteomics on clinical research and its translation has lagged behind expectations. One recognized caveat is the limited size (subject numbers) of (pre)clinical studies performed at the discovery stage, the findings of which fail to be replicated in larger verification/validation trials. Compromised study designs and insufficient statistical power are consequences of the to-date still limited capacity of mass spectrometry (MS)-based workflows to handle large numbers of samples in a realistic time frame, while delivering comprehensive proteome coverages. We developed a highly automated proteomic biomarker discovery workflow. Herein, we have applied this approach to analyze 1000 plasma samples from the multicentered human dietary intervention study "DiOGenes". Study design, sample randomization, tracking, and logistics were the foundations of our large-scale study. We checked the quality of the MS data and provided descriptive statistics. The data set was interrogated for proteins with most stable expression levels in that set of plasma samples. We evaluated standard clinical variables that typically impact forthcoming results and assessed body mass index-associated and gender-specific proteins at two time points. We demonstrate that analyzing a large number of human plasma samples for biomarker discovery with MS using isobaric tagging is feasible, providing robust and consistent biological results.

  10. PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE-BULGE RELATIONS AT LOW MASS

    International Nuclear Information System (INIS)

    Greene, Jenny E.; Peng, Chien Y.; Kim, Minjin; Kuo, Cheng-Yu; Braatz, James A.; Impellizzeri, C. M. Violette; Condon, James J.; Lo, K. Y.; Henkel, Christian; Reid, Mark J.

    2010-01-01

    The black hole (BH)-bulge correlations have greatly influenced the last decade of efforts to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M BH ∼>10 8 M sun ) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L 2 O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al., yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B and C spectrograph on the Dupont telescope and the Dual Imaging Spectrograph on the 3.5 m telescope at Apache Point. We also perform bulge-to-disk decomposition of a subset of five of these galaxies with Sloan Digital Sky Survey imaging. The maser galaxies as a group fall below the M BH -σ * relation defined by elliptical galaxies. We show, now with very precise BH mass measurements, that the low-scatter power-law relation between M BH and σ * seen in elliptical galaxies is not universal. The elliptical galaxy M BH -σ * relation cannot be used to derive the BH mass function at low mass or the zero point for active BH masses. The processes (perhaps BH self-regulation or minor merging) that operate at higher mass have not effectively established an M BH -σ * relation in this low-mass regime.

  11. Radon mass exhalation rate in soil samples at South Bengaluru city, Karnataka, India

    International Nuclear Information System (INIS)

    Poojitha, C.G.; Pranesha, T.S.; Ganesh, K.E.; Sahoo, B.K.; Sapra, B.K.

    2017-01-01

    Radon mass exhalation rate in soil samples collected from different locations of South Bengaluru city were measured using scintillation based Smart radon thoron monitor (RnDuo). It has been observed that the mass exhalation rate estimated due to presence of radon concentration in soil samples ranges from 39.18 - 265.58 mBq/kg/h with an average value of 115.64 mBq/kg/h. Finally we compare our results with similar investigation from different parts of India. (author)

  12. Molecular Characterization and Reactivity of Dissolved Organic Matter by High Resolution Nanospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS)

    Science.gov (United States)

    Sleighter, R. L.; Hatcher, S. A.; Hatcher, P. G.

    2006-12-01

    The ultrahigh resolving power of FTICR-MS allows for the intense characterization of dissolved organic matter (DOM). DOM is the largest reactive component of the global carbon cycle, and an improved understanding of its composition is necessary to determine the transport and eventual fate of pollutants. The seasonal and spatial variations in DOM composition are investigated by taking surface water samples from five different sampling sites, four times a year. Water sampling begins at the Dismal Swamp in North Carolina, continues north up the Elizabeth River to the Chesapeake Bay, and concludes approximately ten miles off the coast in the Atlantic Ocean. DOM was extracted from the water samples using C18 extraction disks and were prepared in 50:50 methanol:water. Ammonium hydroxide was added prior to nanospray in order to solubilize the DOM as well as to increase the ionization efficiency. The samples were continuously infused into the Apollo II ion source with an Advion TriVersa NanoMate system of a Bruker 12 Tesla Apex QE FTICR-MS with resolving powers exceeding 400,000. All samples were analyzed in negative ion mode and were externally and internally calibrated prior to data analysis. Our DOM mass spectra consist of a multitude of peaks spanning the range of 200-850 m/z. Complexity is apparent from the detection of up to 20 peaks per nominal mass at nearly every mass throughout that range. A molecular formula calculator generated molecular formula matches from which van Krevelen plots were constructed for characterization purposes. A wide range of molecules were observed each containing oxygen, sulfur and nitrogen functional groups. We utilize the van Krevelen diagram to assist in clustering the molecules according to their functional group compositions. To test the hypothesis that formation of adducts to DOM serve to protect peptides from bacterial degradation, microcosm experiments were performed with a small isotopically enriched peptide, GGGR. This peptide

  13. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  14. Structural features of lipoarabinomannan from Mycobacterium bovis BCG. Determination of molecular mass by laser desorption mass spectrometry.

    Science.gov (United States)

    Venisse, A; Berjeaud, J M; Chaurand, P; Gilleron, M; Puzo, G

    1993-06-15

    It was recently shown that mycobacterial lipoarabinomannan (LAM) can be classified into two types (Chatterjee, D., Lowell, K., Rivoire B., McNeil M. R., and Brennan, P. J. (1992) J. Biol. Chem. 267, 6234-6239) according to the presence or absence of mannosyl residues (Manp) located at the nonreducing end of the oligoarabinosyl side chains. These two types of LAM were found in a pathogenic Mycobacterium tuberculosis strain and in an avirulent M. tuberculosis strain, respectively, suggesting that LAM with Manp characterizes virulent and "disease-inducing strains." We now report the structure of the LAM from Mycobacterium bovis Bacille Calmette-Guérin (BCG) strain Pasteur, largely used throughout the world as vaccine against tuberculosis. Using an up-to-date analytical approach, we found that the LAM of M. bovis BCG belongs to the class of LAMs capped with Manp. By means of two-dimensional homonuclear and heteronuclear scalar coupling NMR analysis and methylation data, the sugar spin system assignments were partially established, revealing that the LAM contained two types of terminal Manp and 2-O-linked Manp. From the following four-step process: (i) partial hydrolysis of deacylated LAM (dLAM), (ii) oligosaccharide derivatization with aminobenzoic ethyl ester, (iii) HPLC purification, (iv) FAB/MS-MS analysis; it was shown that the dimannosyl unit alpha-D-Manp-(1-->2)-alpha-D-Manp is the major residue capping the termini of the arabinan of the LAM. In this report, LAM molecular mass determination was established using matrix-assisted UV-laser desorption/ionization mass spectrometry which reveals that the LAM molecular mass is around 17.4 kDa. The similarity of the LAM structures between M. bovis BCG and M. tuberculosis H37Rv is discussed in regard to their function in the immunopathology of mycobacterial infection.

  15. A needle extraction utilizing a molecularly imprinted-sol-gel xerogel for on-line microextraction of the lung cancer biomarker bilirubin from plasma and urine samples.

    Science.gov (United States)

    Moein, Mohammad Mahdi; Jabbar, Dunia; Colmsjö, Anders; Abdel-Rehim, Mohamed

    2014-10-31

    In the present work, a needle trap utilizing a molecularly imprinted sol-gel xerogel was prepared for the on-line microextraction of bilirubin from plasma and urine samples. Each prepared needle could be used for approximately one hundred extractions before it was discarded. Imprinted and non-imprinted sol-gel xerogel were applied for the extraction of bilirubin from plasma and urine samples. The produced molecularly imprinted sol-gel xerogel polymer showed high binding capacity and fast adsorption/desorption kinetics for bilirubin in plasma and urine samples. The adsorption capacity of molecularly imprinted sol-gel xerogel polymer was approximately 60% higher than that of non-imprinted polymer. The effect of the conditioning, washing and elution solvents, pH, extraction time, adsorption capacity and imprinting factor were investigated. The limit of detection and the lower limit of quantification were set to 1.6 and 5nmolL(-1), respectively using plasma or urine samples. The standard calibration curves were obtained within the concentration range of 5-1000nmolL(-1) in both plasma and urine samples. The coefficients of determination values (R(2)) were ≥0.998 for all runs. The extraction recovery was approximately 80% for BR in the human plasma and urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Romonosky, Dian E.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-03-19

    A significant fraction of atmospheric organic compounds is predominantly found in condensed phases, such as aerosol particles and cloud droplets. Many of these compounds are photolabile and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of aqueous droplets (hours) and particles (days). This paper presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d- limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features, and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx generated SOA had more unique visual appearance, and indicated a lower extent of products overlap. Furthermore, the fraction of nitrogen containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone driven oxidation. Comparison of the SOA constituents

  17. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of dextromethorphan in human plasma samples.

    Science.gov (United States)

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Akbari-Adergani, Behrouz

    2011-04-01

    In this paper, a novel method is described for automated determination of dextromethorphan in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and dextromethorphan as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the extraction of dextromethorphan from human plasma samples. Various parameters affecting the extraction efficiency of the MIP cartridges were evaluated. The high selectivity of the sorbent coupled to the high performance liquid chromatographic system permitted a simple and rapid analysis of this drug in plasma samples with limits of detection (LOD) and quantification (LOQ) of 0.12 ng/mL and 0.35 ng/mL, respectively. The MIP selectivity was evaluated by analyzing of the dextromethorphan in presence of several substances with similar molecular structures and properties. Results from the HPLC analyses showed that the recoveries of dextromethorphan using MIP cartridges from human plasma samples in the range of 1-50 ng/mL were higher than 87%. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    Science.gov (United States)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  19. UNUSUALLY LUMINOUS GIANT MOLECULAR CLOUDS IN THE OUTER DISK OF M33

    International Nuclear Information System (INIS)

    Bigiel, F.; Blitz, L.; Plambeck, R. L.; Bolatto, A. D.; Leroy, A. K.; Walter, F.; Rosolowsky, E. W.; Lopez, L. A.

    2010-01-01

    We use high spatial resolution (∼7 pc) observations from the Combined Array for Research in Millimeter Wave Astronomy (CARMA) to derive detailed properties for eight giant molecular clouds (GMCs) at a galactocentric radius corresponding to approximately two CO scale lengths, or ∼0.5 optical radii (r 25 ), in the Local Group spiral galaxy M33. At this radius, molecular gas fraction, dust-to-gas ratio, and metallicity are much lower than in the inner part of M33 or in a typical spiral galaxy. This allows us to probe the impact of environment on GMC properties by comparing our measurements to previous data from the inner disk of M33, the Milky Way, and other nearby galaxies. The outer disk clouds roughly fall on the size-linewidth relation defined by extragalactic GMCs, but are slightly displaced from the luminosity-virial mass relation in the sense of having high CO luminosity compared to the inferred virial mass. This implies a different CO-to-H 2 conversion factor, which is on average a factor of 2 lower than the inner disk and the extragalactic average. We attribute this to significantly higher measured brightness temperatures of the outer disk clouds compared to the ancillary sample of GMCs, which is likely an effect of enhanced radiation levels due to massive star formation in the vicinity of our target field. Apart from brightness temperature, the properties we determine for the outer disk GMCs in M33 do not differ significantly from those of our comparison sample. In particular, the combined sample of inner and outer disk M33 clouds covers roughly the same range in size, line width, virial mass, and CO luminosity than the sample of Milky Way GMCs. When compared to the inner disk clouds in M33, however, we find even the brightest outer disk clouds to be smaller than most of their inner disk counterparts. This may be due to incomplete sampling or a potentially steeper cloud mass function at larger radii.

  20. MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION σ v AND X-RAY Y X MEASUREMENTS

    International Nuclear Information System (INIS)

    Bocquet, S.; Saro, A.; Mohr, J. J.; Bazin, G.; Chiu, I.; Desai, S.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.

    2015-01-01

    We present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg 2 of the survey along with 63 velocity dispersion (σ v ) and 16 X-ray Y X measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σ v and Y X are consistent at the 0.6σ level, with the σ v calibration preferring ∼16% higher masses. We use the full SPT CL data set (SZ clusters+σ v +Y X ) to measure σ 8 (Ω m /0.27) 0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is ∑m ν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger ∑m ν further reconciles the results. When we combine the SPT CL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the Y X calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (∼44% and ∼23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ω m = 0.299 ± 0.009 and σ 8 = 0.829 ± 0.011. Within a νCDM model we find ∑m ν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation-of-state parameter w to vary, we find γ = 0.73 ± 0.28 and w = –1.007 ± 0.065, demonstrating that the

  1. Sample contamination with NMP-oxidation products and byproduct-free NMP removal from sample solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cesar Berrueco; Patricia Alvarez; Silvia Venditti; Trevor J. Morgan; Alan A. Herod; Marcos Millan; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2009-05-15

    1-Methyl-2-pyrrolidinone (NMP) is widely used as a solvent for coal-derived products and as eluent in size exclusion chromatography. It was observed that sample contamination may take place, through reactions of NMP, during extraction under refluxing conditions and during the process of NMP evaporation to concentrate or isolate samples. In this work, product distributions from experiments carried out in contact with air and under a blanket of oxygen-free nitrogen have been compared. Gas chromatography/mass spectrometry (GC-MS) clearly shows that oxidation products form when NMP is heated in the presence of air. Upon further heating, these oxidation products appear to polymerize, forming material with large molecular masses. Potentially severe levels of interference have been encountered in the size exclusion chromatography (SEC) of actual samples. Laser desorption mass spectrometry and SEC agree in showing an upper mass limit of nearly 7000 u for a residue left after distilling 'pure' NMP in contact with air. Furthermore, experiments have shown that these effects could be completely avoided by a strict exclusion of air during the refluxing and evaporation of NMP to dryness. 45 refs., 13 figs.

  2. MOLECULAR OUTFLOWS IN THE SUBSTELLAR DOMAIN: MILLIMETER OBSERVATIONS OF YOUNG VERY LOW MASS OBJECTS IN TAURUS AND ρ OPHIUCHI

    International Nuclear Information System (INIS)

    Ngoc Phan-Bao; Lee, Chin-Fei; Ho, Paul T. P.; Tang, Ya-Wen

    2011-01-01

    We report here our search for molecular outflows from young very low mass stars and brown dwarfs in Taurus and ρ Ophiuchi. Using the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy, we have observed four targets at 1.3 mm wavelength (230 GHz) to search for CO J = 2 → 1 outflows. A young very low mass star MHO 5 (in Taurus) with an estimated mass of 90 M J , which is just above the hydrogen-burning limit, shows two gas lobes that are likely outflows. While the CO map of MHO 5 does not show a clear structure of outflow, possibly due to environment gas, its position-velocity diagram indicates two distinct blue- and redshifted components. We therefore conclude that they are components of a bipolar molecular outflow from MHO 5. We estimate an outflow mass of 7.0 x 10 -5 M sun and a mass-loss rate of 9.0 x 10 -10 M sun . These values are over two orders of magnitude smaller than the typical ones for T Tauri stars and somewhat weaker than those we have observed in the young brown dwarf ISO-Oph 102 of 60 M J in ρ Ophiuchi. This makes MHO 5 the first young very low mass star showing a bipolar molecular outflow in Taurus. The detection boosts the scenario that very low mass objects form like low-mass stars but in a version scaled down by a factor of over 100.

  3. Two-Year Monitoring of Water Samples from Dam of Iskar and the Black Sea, Bulgaria, by Molecular Analysis: Focus on Mycobacterium spp.

    Directory of Open Access Journals (Sweden)

    Stefan Panaiotov

    2015-06-01

    Full Text Available The coast of the Bulgarian Black Sea is a popular summer holiday destination. The Dam of Iskar is the largest artificial dam in Bulgaria, with a capacity of 675 million m3. It is the main source of tap water for the capital Sofia and for irrigating the surrounding valley. There is a close relationship between the quality of aquatic ecosystems and human health as many infections are waterborne. Rapid molecular methods for the analysis of highly pathogenic bacteria have been developed for monitoring quality. Mycobacterial species can be isolated from waste, surface, recreational, ground and tap waters and human pathogenicity of nontuberculose mycobacteria (NTM is well recognized. The objective of our study was to perform molecular analysis for key-pathogens, with a focus on mycobacteria, in water samples collected from the Black Sea and the Dam of Iskar. In a two year period, 38 water samples were collected—24 from the Dam of Iskar and 14 from the Black Sea coastal zone. Fifty liter water samples were concentrated by ultrafiltration. Molecular analysis for 15 pathogens, including all species of genus Mycobacterium was performed. Our results showed presence of Vibrio spp. in the Black Sea. Rotavirus A was also identified in four samples from the Dam of Iskar. Toxigenic Escherichia coli was present in both locations, based on markers for stx1 and stx2 genes. No detectable amounts of Cryptosporidium were detected in either location using immunomagnetic separation and fluorescence microscopy. Furthermore, mass spectrometry analyses did not detect key cyanobacterial toxins. On the basis of the results obtained we can conclude that for the period 2012–2014 no Mycobacterium species were present in the water samples. During the study period no cases of waterborne infections were reported.

  4. Detection and Molecular Characterization of Gemycircularvirus from Environmental Samples in Brazil.

    Science.gov (United States)

    da Silva Assis, Matheus Ribeiro; Vieira, Carmen Baur; Fioretti, Julia Monassa; Rocha, Mônica Simões; de Almeida, Pedro Ivo Neves; Miagostovich, Marize Pereira; Fumian, Tulio Machado

    2016-12-01

    Gemycircularvirus (GemyCV) is a group of viruses which has been recently proposed as a new viral genus detected in fecal and environmental samples around the world. GemyCVs have been detected in human blood, brain tissue, cerebrospinal fluid, and stool sample. In the present study, we demonstrate for the first time, through molecular detection and characterization, the presence of GemyCVs in environmental samples from Brazil. Our results show a percentage of positivity ranging from 69 (25/36) to 97 % (35/36) in river water samples collected in Manaus, Amazon region, and wastewater from a wastewater treatment plant located in Rio de Janeiro, respectively, revealing GemyCVs as an important environmental contaminant.

  5. Absorption Mode FT-ICR Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O' Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  6. Packaging and Unpackaging Knowledge in Mass Higher Education--A Knowledge Management Perspective

    Science.gov (United States)

    Guzman, Gustavo; Trivelato, Luiz F.

    2011-01-01

    The progressive deployment of market-oriented regulatory frameworks in mass Higher Education Institutions (MHEI hereafter) triggered, in a wide variety of forms and degrees, the application of Knowledge Management principles in MHEI. This means the application of the knowledge "codification strategy", where the focus is on the economies of the…

  7. Hybrid Imaging Labels: Providing the Link Between Mass Spectrometry-Based Molecular Pathology and Theranostics

    Science.gov (United States)

    Buckle, Tessa; van der Wal, Steffen; van Malderen, Stijn J.M.; Müller, Larissa; Kuil, Joeri; van Unen, Vincent; Peters, Ruud J.B.; van Bemmel, Margaretha E.M.; McDonnell, Liam A.; Velders, Aldrik H.; Koning, Frits; Vanhaeke, Frank; van Leeuwen, Fijs W. B.

    2017-01-01

    Background: Development of theranostic concepts that include inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) imaging can be hindered by the lack of a direct comparison to more standardly used methods for in vitro and in vivo evaluation; e.g. fluorescence or nuclear medicine. In this study a bimodal (or rather, hybrid) tracer that contains both a fluorescent dye and a chelate was used to evaluate the existence of a direct link between mass spectrometry (MS) and in vitro and in vivo molecular imaging findings using fluorescence and radioisotopes. At the same time, the hybrid label was used to determine whether the use of a single isotope label would allow for MS-based diagnostics. Methods: A hybrid label that contained both a DTPA chelate (that was coordinated with either 165Ho or 111In) and a Cy5 fluorescent dye was coupled to the chemokine receptor 4 (CXCR4) targeting peptide Ac-TZ14011 (hybrid-Cy5-Ac-TZ4011). This receptor targeting tracer was used to 1) validate the efficacy of (165Ho-based) mass-cytometry in determining the receptor affinity via comparison with fluorescence-based flow cytometry (Cy5), 2) evaluate the microscopic binding pattern of the tracer in tumor cells using both fluorescence confocal imaging (Cy5) and LA-ICP-MS-imaging (165Ho), 3) compare in vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) after intravenous administration of hybrid-Cy5-Ac-TZ4011 in tumor-bearing mice. Finally, LA-ICP-MS-imaging (165Ho) was linked to fluorescence-based analysis of excised tissue samples (Cy5). Results: Analysis with both mass-cytometry and flow cytometry revealed a similar receptor affinity, respectively 352 ± 141 nM and 245 ± 65 nM (p = 0.08), but with a much lower detection sensitivity for the first modality. In vitro LA-ICP-MS imaging (165Ho) enabled clear discrimination between CXCR4 positive and negative cells, but fluorescence microscopy was required to determine the

  8. The measurement of mass spectrometric peak height ratio of helium isotope in trace samples

    International Nuclear Information System (INIS)

    Sun Mingliang

    1989-01-01

    An experiment study on the measurement of mass spectrometric peak height ratio of helium isotope in the trace gaseous sample is discussed by using the gas purification line designed by the authors and model VG-5400 static-vacuum noble gas mass spectrometer imported and air helium as a standard. The results show that the amount of He and Ne in natural gas sample is 99% after purification. When the amount of He in Mass Spectrometer is more than 4 x 10 -7 cm 3 STP, it's sensitivity remains stable, about 10 -4 A/cm 3 STP He and the precision of 3 He/ 4 He ratio within the following 17 days is 1.32%. The 'ABA' pattern and experiment condition in the measurement of mass spectrometric peak height ratio of He isotope are presented

  9. Sample collection and preparation of biofluids and extracts for gas chromatography-mass spectrometry.

    Science.gov (United States)

    Emwas, Abdul-Hamid M; Al-Talla, Zeyad A; Kharbatia, Najeh M

    2015-01-01

    To maximize the utility of gas chromatography-mass spectrometry (GC-MS) in metabonomics research, all stages of the experimental design should be standardized, including sample collection, storage, preparation, and sample separation. Moreover, the prerequisite for any GC-MS analysis is that a compound must be volatile and thermally stable if it is to be analyzed using this technique. Since many metabolites are nonvolatile and polar in nature, they are not readily amenable to analysis by GC-MS and require initial chemical derivatization of the polar functional groups in order to reduce the polarity and to increase the thermal stability and volatility of the analytes. In this chapter, an overview is presented of the optimum approach to sample collection, storage, and preparation for gas chromatography-mass spectrometry-based metabonomics with particular focus on urine samples as example of biofluids.

  10. Linking the formation of molecular clouds and high-mass stars: a multi-tracer and multi-scale study

    International Nuclear Information System (INIS)

    Nguyen-Luong, Quang

    2012-01-01

    Star formation is a complex process involving many physical processes acting from the very large scales of the galaxy to the very small scales of individual stars. Among the highly debated topics, the gas to star-formation-rate (SFR) relation is an interesting topic for both the galactic and extragalactic communities. Although it is studied extensively for external galaxies, how this relation behaves with respect to the molecular clouds of the Milky Way is still unclear. The detailed mechanisms of the formation of molecular clouds and stars, especially high-mass stars, are still not clear. To tackle these two questions, we investigate the molecular cloud formation and the star formation activities in the W43 molecular cloud complex and the G035.39-00.33 filament. The first goal is to infer the connections of the gas-SFR relations of these two objects to those of other galactic molecular clouds and to extragalactic ones. The second goal is to look for indications that the converging flows theory has formed the W43 molecular cloud since it is the first theory to explain star formation self-consistently, from the onset of molecular clouds to the formation of seeds of (high-mass) stars. We use a large dataset of continuum tracers at 3.6--870 μm extracted from Galaxy-wide surveys such as HOBYS, EPOS, Hi-GAL, ATLASGAL, GLIMPSE, and MIPSGAL to trace the cloud structure, mass and star formation activities of both the W43 molecular cloud complex and the G035.39-00.33 filament. To explore the detailed formation mechanisms of the molecular cloud in W43 from low-density to very high-density gas, we take advantage of the existing H_I, "1"3CO 1-0 molecular line data from the VGPS and GRS surveys in combination with the new dedicated molecular line surveys with the IRAM 30 m. We characterise the W43 molecular complex as being a massive complex (M(total) ∼ 7.1 *10"6 M. over spatial extent of ∼ 140 pc), which has a high concentration of dense clumps (M(clumps) ∼ 8.4*10"5 M

  11. Capture compound mass spectrometry sheds light on the molecular mechanisms of liver toxicity of two Parkinson drugs.

    Science.gov (United States)

    Fischer, Jenny J; Michaelis, Simon; Schrey, Anna K; Graebner, Olivia Graebner nee; Glinski, Mirko; Dreger, Mathias; Kroll, Friedrich; Koester, Hubert

    2010-01-01

    Capture compound mass spectrometry (CCMS) is a novel technology that helps understand the molecular mechanism of the mode of action of small molecules. The Capture Compounds are trifunctional probes: A selectivity function (the drug) interacts with the proteins in a biological sample, a reactivity function (phenylazide) irreversibly forms a covalent bond, and a sorting function (biotin) allows the captured protein(s) to be isolated for mass spectrometric analysis. Tolcapone and entacapone are potent inhibitors of catechol-O-methyltransferase (COMT) for the treatment of Parkinson's disease. We aimed to understand the molecular basis of the difference of both drugs with respect to side effects. Using Capture Compounds with these drugs as selectivity functions, we were able to unambiguously and reproducibly isolate and identify their known target COMT. Tolcapone Capture Compounds captured five times more proteins than entacapone Capture Compounds. Moreover, tolcapone Capture Compounds isolated mitochondrial and peroxisomal proteins. The major tolcapone-protein interactions occurred with components of the respiratory chain and of the fatty acid beta-oxidation. Previously reported symptoms in tolcapone-treated rats suggested that tolcapone might act as decoupling reagent of the respiratory chain (Haasio et al., 2002b). Our results demonstrate that CCMS is an effective tool for the identification of a drug's potential off targets. It fills a gap in currently used in vitro screens for drug profiling that do not contain all the toxicologically relevant proteins. Thereby, CCMS has the potential to fill a technological need in drug safety assessment and helps reengineer or to reject drugs at an early preclinical stage.

  12. Detailed molecular characterization of castor oil ethoxylates by liquid chromatography multistage mass spectrometry.

    Science.gov (United States)

    Nasioudis, Andreas; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2011-10-07

    The molecular characterization of castor oil ethoxylates (CASEOs) was studied by reverse-phase liquid chromatography (RPLC) mass spectrometry (MS) and multistage mass spectrometry (MS(n)). The developed RPLC method allowed the separation of the various CASEO components, and especially, the baseline separation of multiple nominal isobars (same nominal mass) and isomers (same exact mass). MS and MS(n) were used for the determination and structure elucidation of various structures and for the discrimination of the isobars and isomers. Different ionization techniques and adduct ions were also tested for optimization of the MS detection and the MS(n) fragmentation. A unique fragmentation pathway of ricinoleic acid is proposed, which can be used as a marker of the polymerization process and the topology of ethoxylation in the CASEO. In addition, characteristic neutral losses of ricinoleic acid reveal its (terminal or internal) position in the molecule. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Hydrophilic interaction chromatography coupled matrix assisted laser desorption/ionization mass spectrometry for molecular analysis of organic compounds in medicines, tea, and coffee.

    Science.gov (United States)

    Wang, Ren-Qi; Bao, Kai; Croué, Jean-Philippe; Ng, Siu Choon

    2013-11-21

    Natural occurring organic compounds from food, natural organic matter, as well as metabolic products have received intense attention in current chemical and biological studies. Examination of unknown compounds in complex sample matrices is hampered by the limited choices for data readout and molecular elucidation. Herein, we report a generic method of hydrophilic interaction chromatography (HILIC) coupled with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid characterization of ingredients in pharmaceutical compounds, tea, and coffee. The analytes were first fractionated using a cationic HILIC column prior to MALDI-MS analyses. It was found that the retention times of a compound arising from different samples were consistent under the same conditions. Accordingly, molecules can be readily characterized by both the mass and chromatographic retention time. The retention behaviors of acidic and basic compounds on the cationic HILIC column were found to be significantly influenced by the pH of mobile phases, whereas neutral compounds depicted a constant retention time at different pH. The general HILIC-MALDI-MS method is feasible for fast screening of naturally occurring organic compounds. A series of homologs can be determined if they have the same retention behavior. Their structural features can be elucidated by considering their mass differences and hydrophilic properties as determined by HILIC chromatogram.

  14. Environmental Forensics: Molecular Insight into Oil Spill Weathering Helps Advance High Magnetic Field FT-ICR Mass Spectrometry

    Science.gov (United States)

    McKenna, Amy

    2013-03-01

    events in the FT-ICR experiment. For example, the high density of peaks at each nominal mass unit provides unprecedented insight into how excitation conditions affect ion motion during detection. Aggregated oil (i.e., tar balls, tar mats) that reached the surface exhibits a more than two-fold increase in the total number of detected species, with an increased number of oxygenated species. Principal component analysis (PCA) applied to two possible source oils (contained within the same ship) and weathered samples provide the first application of FT-ICR MS for source identification. Molecular formulae from parent and weathered oil indicate that the lightest petroleum fractions (saturated hydrocarbons) are the most readily oxidized components, and can serve as a template to determine chemical transformations that occur throughout the water column. The ability to differentiate and catalogue compositional changes that occur to oil after its release into the environment relies heavily on gains achieved in nearly all steps in the FT-ICR mass spectral experiment required to accommodate larger ion populations inherent to heavily weathered crude oil. Here, we present the requirement for FT-ICR MS for comprehensive oil spill characterization, and highlight advances made to FT-ICR MS experimental conditions developed from petroleum characterization. Work supported by DMR-06-54118, NSF CHE-10-49753 (RAPID), BP/The Gulf of Mexico Research Initiative, and the State of Florida

  15. Detection of Amyloid Beta (Aβ) Oligomeric Composition Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS)

    Science.gov (United States)

    Wang, Jasmine S.-H.; Whitehead, Shawn N.; Yeung, Ken K.-C.

    2018-02-01

    The use of MALDI MS as a fast and direct method to detect the Aβ oligomers of different masses is examined in this paper. Experimental results suggest that Aβ oligomers are ionized and detected as singly charged ions, and thus, the resulting mass spectrum directly reports the oligomer size distribution. Validation experiments were performed to verify the MS data against artifacts. Mass spectra collected from modified Aβ peptides with different propensities for aggregation were compared. Generally, the relative intensities of multimers were higher from samples where oligomerization was expected to be more favorable, and vice versa. MALDI MS was also able to detect the differences in oligomeric composition before and after the incubation/oligomerization step. Such differences in sample composition were also independently confirmed with an in vitro Aβ toxicity study on primary rat cortical neurons. An additional validation was accomplished through removal of oligomers from the sample using molecular weight cutoff filters; the resulting MS data correctly reflected the removal at the expected cutoff points. The results collectively validated the ability of MALDI MS to assess the monomeric/multimeric composition of Aβ samples. [Figure not available: see fulltext.

  16. Determination of rare earth elements, thorium and uranium by inductively coupled plasma mass spectrometry and strontium isotopes by thermal ionization mass spectrometry in soil samples of Bryansk region contaminated due to Chernobyl accident

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Yonehara, H.; Kurotaki, K.; Shiraishi, K.; Ramzaev, V.; Barkovski, A.

    2001-01-01

    Inductively coupled plasma mass spectrometric (ICP-MS) determination of rare earth elements (REEs), thorium and uranium in forest, pasture, field and kitchen garden soils from a Russian territory and in certified reference materials (JLK-1, JSD-2 and BCR-1) is described. In addition to concentration data, strontium isotopic composition of the soil samples were measured by thermal ionization mass spectrometry. The measurements contributed to the understanding of the background levels of these elements in an area contaminated due to Chernobyl accident. There was not a significant variation in the concentration of REEs at different depth levels in forest soil samples, however, the ratio of Th/U varied from 3.32 to 3.60. Though concentration of U and Th varied to some extent, the ratio did not show much variation. The value of 87 Sr/ 86 Sr ratio, was in the top layer soil sample relatively higher than in the lower layers. (author)

  17. [Screening and confirmation of 24 hormones in cosmetics by ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry].

    Science.gov (United States)

    Li, Zhaoyong; Wang, Fengmei; Niu, Zengyuan; Luo, Xin; Zhang, Gang; Chen, Junhui

    2014-05-01

    A method of ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry (UPLC-LTQ/Orbitrap MS) was established to screen and confirm 24 hormones in cosmetics. Various cosmetic samples were extracted with methanol. The extract was loaded onto a Waters ACQUITY UPLC BEH C18 column (50 mm x 2.1 mm, 1.7 microm) using a gradient elution of acetonitrile/water containing 0.1% (v/v) formic acid for the separation. The accurate mass of quasi-molecular ion was acquired by full scanning of electrostatic field orbitrap. The rapid screening was carried out by the accurate mass of quasi-molecular ion. The confirmation analysis for targeted compounds was performed with the retention time and qualitative fragments obtained by data dependent scan mode. Under the optimal conditions, the 24 hormones were routinely detected with mass accuracy error below 3 x 10(-6) (3 ppm), and good linearities were obtained in their respective linear ranges with correlation coefficients higher than 0.99. The LODs (S/N = 3) of the 24 compounds were hormones in 50 cosmetic samples. The results demonstrate that the method is a useful tool for the rapid screening and identification of the hormones in cosmetics.

  18. Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography-mass spectrometry

    Science.gov (United States)

    Ding, W.; Hsu, C.

    2008-12-01

    Currently, the investigations on aerosol water-soluble organic compounds (WSOCs) formed by burning biomass have become increasingly concerned with the role of these compounds in atmospheric chemistry and their effect on climate, because they have great potential to influence cloud formation, precipitation, and climate on both global and regional scales. Of these compounds, low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) have attracted the most interest because of their properties as specific tracers for the burning of biomass. In this study, a modified injection-port derivatization and gas chromatography - mass spectrometry method was developed and evaluated for rapid determination of LMW dicarboxylic acids in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) dissolved in methanol used as the ion-pair solution gave excellent yield for di-butyl ester low-molecular weight derivatives. Solid-phase extraction method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 67 to 86% with relative standard deviation (RSD) less than 13%. The concentrations of dicarboxylated C2, C3, C4, C5 and C6-C10 in atmospheric aerosols ranged from 91-240 ng/m3, 11-56 ng/m3, 12-49 ng/m3, 8-35 ng/m3 and n.d. to 17 ng/m3, respectively. Oxalic (C2) acid was the dominant dicarboxylic acids detected in aerosol samples. The total concentrations of the LMW dicarboxylic acids (from C2 to C10) correspond to 2.2 to 2.6% of the total aerosol mass.

  19. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Directory of Open Access Journals (Sweden)

    Nichola Eliza Davies Calvani

    2017-09-01

    Full Text Available Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples.A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76 was observed between the real-time PCR values and the faecal egg count (FEC using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic

  20. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    Background Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. Methodology/Principal findings A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74–0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling

  1. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-09-01

    Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non

  2. THE MASS-SIZE RELATION FROM CLOUDS TO CORES. I. A NEW PROBE OF STRUCTURE IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kauffmann, J.; Shetty, R.; Goodman, A. A.; Pillai, T.; Myers, P. C.

    2010-01-01

    We use a new contour-based map analysis technique to measure the mass and size of molecular cloud fragments continuously over a wide range of spatial scales (0.05 ≤ r/pc ≤ 10), i.e., from the scale of dense cores to those of entire clouds. The present paper presents the method via a detailed exploration of the Perseus molecular cloud. Dust extinction and emission data are combined to yield reliable scale-dependent measurements of mass. This scale-independent analysis approach is useful for several reasons. First, it provides a more comprehensive characterization of a map (i.e., not biased toward a particular spatial scale). Such a lack of bias is extremely useful for the joint analysis of many data sets taken with different spatial resolution. This includes comparisons between different cloud complexes. Second, the multi-scale mass-size data constitute a unique resource to derive slopes of mass-size laws (via power-law fits). Such slopes provide singular constraints on large-scale density gradients in clouds.

  3. The analysis of uranium in environmental sample by mass spectrometer combined with isotopic dilution

    International Nuclear Information System (INIS)

    Fu Zhonghua; Jia Baoting; Han Jun

    2003-01-01

    Uranium in the environmental sample was analyzed by mass spectrometer combined with isotopic dilution. Before mass spectrometer analysis, samples were dissolved in a concentrated acidic solution containing HNO 3 , HF and HClO 4 and chemically processed to suit the analysis requirement. Analysis results indicated that the uranium content was 0.08 μg/g in river water, 0.1 μg/g in evergreen foliage, and 5-11 μg/g in surface soil respectively. (authors)

  4. Accelerator mass spectrometry of Strontium-90 for homeland security, environmental monitoring, and human health

    Energy Technology Data Exchange (ETDEWEB)

    Tumey, S J; Brown, T A; Hamilton, T F; Hillegonds, D J

    2008-03-03

    Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of {sup 90}Sr by accelerator mass spectrometry. Despite a pervasive interference from {sup 90}Zr, our initial development has yielded an instrumental background of {approx} 10{sup 8} atoms (75 mBq) per sample. Further refinement of our system (e.g., redesign of our detector, use of alternative target materials) is expected to push the background below 10{sup 6} atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring, and human health.

  5. Reduction of Martian Sample Return Mission Launch Mass with Solar Sail Propulsion

    Science.gov (United States)

    Russell, Tiffany E.; Heaton, Andrew; Thomas, Scott; Thomas, Dan; Young, Roy; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Hornsby, Linda; Maples, Dauphne; hide

    2013-01-01

    Solar sails have the potential to provide mass and cost savings for spacecraft traveling within the inner solar system. Companies like L'Garde have demonstrated sail manufacturability and various in-space deployment methods. The purpose of this study was to evaluate a current Mars sample return architecture and to determine how cost and mass would be reduced by incorporating a solar sail propulsion system. The team validated the design proposed by L'Garde, and scaled the design based on a trajectory analysis. Using the solar sail design reduced the required mass, eliminating one of the three launches required in the original architecture.

  6. Characterization of polyesters by matrix-assisted laser desorption/ionization and Fourier transform mass spectrometry.

    Science.gov (United States)

    Mize, Todd H; Simonsick, William J; Amster, I Jonathan

    2003-01-01

    Two homopolyesters, poly(neopentyl glycol-alt-isophthalic acid) and poly(hexanediol-alt-azelaic acid), and two copolyesters, poly(dipropoxylated bisphenol-A-alt-(isophthalic acid-co-adipic acid)) and poly(neopentyl glycol-alt-(adipic acid-co-isophthalic acid)) were analyzed by internal source matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS). The high resolution and high mass accuracy provided by FTMS greatly facilitate the characterization of the polyester and copolyester samples. Isobaric resolution allows the ion abundances of overlapping isotopic envelopes to be assessed. Repeat units were confirmed and end functionality assigned. Single shot mass spectra of the entire polymeric distribution demonstrate that the dynamic range of this internal MALDI source instrument and the analyzer cell exceeds performance of those previously reported for higher field instruments. Corrections of space charge mass shift effects are demonstrated for the analytes using an external calibrant and (subsequent to confirmation of structure) via internal calibration which removes ambiguity due to space charge differences in calibrant and analyte spectra. Capillary gel permeation chromatography was used to prepare low polydispersity samples from a high polydispersity polyester, improving the measurement of molecular weight distribution two-fold while retaining the benefits of high resolution mass spectrometry for elucidation of oligomer identity.

  7. Optical molecular fluorescence determination of ultra-trace beryllium in occupational and environmental samples using highly alkaline conditions.

    Science.gov (United States)

    Adams, Lori; Agrawal, Anoop; Cronin, John P; Ashley, Kevin

    2017-01-01

    Exposures to beryllium (Be), even at extremely low levels, can cause severe health effects in a percentage of those exposed; consequently, occupational exposure limits (OELs) promulgated for this element are the lowest established for any element. This work describes the advantages of using highly alkaline dye solutions for determination of Be in occupational hygiene and environmental samples by means of an optical molecular fluorescence technique after sample extraction in 1-3% (w˖w -1 ) aqueous ammonium bifluoride (NH 4 HF 2 ). Improved attributes include the ability to further enhance the detection limits of Be in extraction solutions of high acidity with minimal dilution, which is particularly beneficial when NH 4 HF 2 solutions of higher concentration are used for extraction of Be from soil samples. Significant improvements in Be method detection limits (MDLs) are obtained at levels many-fold below those reported previously for this methodology. Notably, MDLs for Be of health organizations and regulatory agencies in the USA and internationally. Applications of enhanced Be measurements to air filter samples, surface wipe samples, soils and newly-designed occupational air sampler inserts are illustrated.

  8. Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins

    Science.gov (United States)

    Carroll, Joe; Fearnley, Ian M.; Walker, John E.

    2006-01-01

    The covalent structure of a protein is incompletely defined by its gene sequence, and mass spectrometric analysis of the intact protein is needed to detect the presence of any posttranslational modifications. Because most membrane proteins are purified in detergents that are incompatible with mass spectrometric ionization techniques, this essential measurement has not been made on many hydrophobic proteins, and so proteomic data are incomplete. We have extracted membrane proteins from bovine mitochondria and detergent-purified NADH:ubiquinone oxidoreductase (complex I) with organic solvents, fractionated the mixtures by hydrophilic interaction chromatography, and measured the molecular masses of the intact membrane proteins, including those of six subunits of complex I that are encoded in mitochondrial DNA. These measurements resolve long-standing uncertainties about the interpretation of the mitochondrial genome, and they contribute significantly to the definition of the covalent composition of complex I. PMID:17060615

  9. The analysis study of plutonium in the environmental sample by mass spectrum combined with isotopic dilution

    International Nuclear Information System (INIS)

    Han Jun; Fu Zhonghua; Mao Xingen; Meng Fanben

    2004-01-01

    The technology of the rhenium filament carbonization was used to increase the ionization efficiency in this paper. The plutonium in the environmental sample was analyzed by Mass Spectrum combined with isotope dilution. Analysis of the 239 Pu blank in the process: The analysis of 239 Pu from the chemical process was carried out in order to establish the influence of the 239 Pu introduced from the process. The analysis results were shown in Table 1 sample 1 was not gone through the process, sample 2 and sample 3 were gone through the process. It was clear that there was no influence of the 239 Pu from the process within the deviation. Results and Discussions: The environmental samples which were dealed with the chemical method were prepared the sample of mass spectrum, The atomic ratio of the 239 Pu and 242 Pu in the environmental samples was measured by Mass Spectrum. The atomic ratio in the tracer 242 Pu was 0.01476±0.00007.The results for nuclide content in environment were given in Table 2. The content of 239 Pu in the tracer was high, so the existing of 239 Pu in the environmental samples can be determined by the changing of the atomic ratio of 242 Pu to 239 Pu. It was clear that there was 239 Pu in the environmental samples except the cypress leaves-2 and the pine leaves-3 within the deviation, and the content of 239 Pu were given in Table 2. Conclusion: a. Plutonium was separated and purified from the impurity by the anion-exchange and the electrodeposition, it was possible to provide the eligible mass spectrum sample. b. The measurement of plutonium in the environmental samples was not influenced by the flow of the background in the experiment. c. As the technology of the rhenium carbonization was used to increase the ionization efficiency, the content of plutonium which was about 10 -13 g in the environmental sample could be quantitatively analyzed by Mass Spectrum combined with isotope dilution. (authors)

  10. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  11. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  12. Determination of the neutrino mass from the beta decay of gaseous molecular tritium

    International Nuclear Information System (INIS)

    Decman, D.J.; Stoeffl, W.

    1992-06-01

    We set an upper limit of 8 eV for the mass of the electron antineutrino from studying the beta decay of tritium. We use a gaseous molecular tritium source, a high resolution magnetic spectrometer and a low background counting system to minimize the systematic errors encountered in these measurements. Our calibration data with radioactive 83m Kr enables us to measure our system response function and a good deal of atomic physics data. In addition to our end point results we have made the first measurement of the tritium beta decay spectrum below 200 keV. We find an excess of very low energy electrons which arise from molecular processes of the 3 He-T + ion

  13. In situ monitoring of molecular changes during cell differentiation processes in marine macroalgae through mass spectrometric imaging.

    Science.gov (United States)

    Kessler, Ralf W; Crecelius, Anna C; Schubert, Ulrich S; Wichard, Thomas

    2017-08-01

    Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to discriminate between cell differentiation processes in macroalgae. One of the key developmental processes in the algal life cycle is the production of germ cells (gametes and zoids). The gametogenesis of the marine green macroalga Ulva mutabilis (Chlorophyta) was monitored by metabolomic snapshots of the surface, when blade cells differentiate synchronously into gametangia and giving rise to gametes. To establish MSI for macroalgae, dimethylsulfoniopropionate (DMSP), a known algal osmolyte, was determined. MSI of the surface of U. mutabilis followed by chemometric data analysis revealed dynamic metabolomic changes during cell differentiation. DMSP and a total of 55 specific molecular biomarkers, which could be assigned to important stages of the gametogenesis, were detected. Our research contributes to the understanding of molecular mechanisms underlying macroalgal cell differentiation. Graphical abstract Molecular changes during cell differentiation of the marine macroalga Ulva were visualized by matrix assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI).

  14. Effect of the different chain transfer agents on molecular weight and optical properties of poly(methyl methacrylate)

    Science.gov (United States)

    Çetinkaya, Onur; Demirci, Gökhan; Mergo, Paweł

    2017-08-01

    Investigation of molecular weight and optical properties of poly(methyl metacrylate) (PMMA) polymerized in house with different chain transfer agents was studied. Isopropyl alcohol (IPA), n-butyl mercaptan (nBMC) and pentamethyl disilane (PMDS) were used as chain transfer agents. The molecular weight (Mw) of PMMA samples were measured by Ostwald viscometer. Mw of bulk polymer samples were decreased with increase the concentration of chain transfer agents (CTA). Since reactivity of used CTAs is not same, molecular weights of samples which were produced with different type of CTA but same concentration of CTA was varied. Higher concentration of n-BMC showed higher scattering. Transmission of samples could not be correlated with different concentration of CTA. Refractive index of samples was not affected by concentration of CTA nevertheless higher molecular weight of CTA showed higher refractive index.

  15. Small sample analysis using sputter atomization/resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Christie, W.H.; Goeringer, D.E.

    1986-01-01

    We have used secondary ion mass spectrometry (SIMS) to investigate the emission of ions via argon sputtering from U metal, UO 2 , and U 3 O 8 samples. We have also used laser resonance ionization techniques to study argon-sputtered neutral atoms and molecules emitted from these same samples. For the case of U metal, a significant enhancement in detection sensitivity for U is obtained via SA/RIMS. For U in the fully oxidized form (U 3 O 8 ), SA/RIMS offers no improvement in U detection sensitivity over conventional SIMS when sputtering with argon. 9 refs., 1 fig., 2 tabs

  16. Direct molecular diagnosis of aspergillosis and CYP51A profiling from respiratory samples of French patients

    Directory of Open Access Journals (Sweden)

    Yanan Zhao

    2016-07-01

    Full Text Available Background: Microbiological diagnosis of aspergillosis and triazole resistance is limited by poor culture yield. To better estimate this shortcoming, we compared culture and molecular detection of A. fumigatus in respiratory samples from French patients at risk for aspergillosis. Methods: A total of 97 respiratory samples including bronchoalveolar lavages (BAL, bronchial aspirates (BA, tracheal aspirates, sputa, pleural fluids, and lung biopsy were collected from 33 patients having invasive aspergillosis (n=12, chronic pulmonary aspergillosis (n=3, allergic bronchopulmonary aspergillosis (n=7 or colonization (n=11 and 28 controls. Each specimen was evaluated by culture, pan-Aspergillus qPCR, and CYP51A PCR and sequencing. Results: One A. flavus and 19 A. fumigatus with one multiazole resistant strain (5.3% were cultured from 20 samples. Culture positivity was 62.5%, 75%, 42.9%, and 15.8% in ABPA, CPA, IA and colonized patients, respectively. Aspergillus detection rate was significantly higher by pan-Aspergillus qPCR than by culture in IA (90.5% vs 42.9%; P<0.05 and colonization group (73.7% vs 15.8%; P<0.05. The CYP51A PCR found one TR34/L98H along with 5 novel cyp51A mutations (4 non-synonymous and 1 promoter mutations, yet no association can be established currently between these novel mutations and azole resistance. The analysis of 11 matched pairs of BA and BAL samples found that 9/11 BA carried greater fungal load than BAL and CYP51A detection was more sensitive in BA than in BAL. Conclusion: Direct molecular detection of Aspergillus spp. and azole resistance markers are useful adjunct tools for comprehensive aspergillosis diagnosis. The observed superior diagnostic value of BAs to BAL fluids warrants more in-depth study.

  17. Higher surface mass balance of the Greenland ice sheet revealed by high - resolution climate modeling

    NARCIS (Netherlands)

    Ettema, Janneke; van den Broeke, Michiel R.; van Meijgaard, Erik; van de Berg, Willem Jan; Bamber, Jonathan L.; Box, Jason E.; Bales, Roger C.

    2009-01-01

    High‐resolution (∼11 km) regional climate modeling shows total annual precipitation on the Greenland ice sheet for 1958–2007 to be up to 24% and surface mass balance up to 63% higher than previously thought. The largest differences occur in coastal southeast Greenland, where the much higher

  18. Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fooshee, David R.; Aiona, Paige K.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey; Baldi, Pierre

    2015-10-22

    Squalene is a major component of skin and plant surface lipids, and is known to be present at high concentrations in indoor dust. Its high reactivity toward ozone makes it an important ozone sink and a natural protectant against atmospheric oxidizing agents. While the volatile products of squalene ozonolysis are known, the condensed-phase products have not been characterized. We present an analysis of condensed-phase products resulting from an extensive oxidation of squalene by ozone probed by electrospray ionization (ESI) high-resolution mass spectrometry (HR-MS). A complex distribution of nearly 1,300 peaks assignable to molecular formulas is observed in direct infusion positive ion mode ESI mass spectra. The distribution of peaks in the mass spectra suggests that there are extensive cross-coupling reactions between hydroxy-carbonyl products of squalene ozonolysis. To get additional insights into the mechanism, we apply a Computational Brewing Application (COBRA) to simulate the oxidation of squalene in the presence of ozone, and compare predicted results with those observed by the HR-MS experiments. The system predicts over one billion molecular structures between 0-1450 Da, which correspond to about 27,000 distinct elemental formulas. Over 83% of the squalene oxidation products inferred from the mass spectrometry data are matched by the simulation. Simulation indicates a prevalence of peroxy groups, with hydroxyl and ether groups being the second-most important O-containing functional groups formed during squalene oxidation. These highly oxidized products of squalene ozonolysis may accumulate on indoor dust and surfaces, and contribute to their redox capacity.

  19. Supermassive black holes with higher Eddington ratios preferentially form in gas-rich galaxies

    Science.gov (United States)

    Izumi, Takuma

    2018-05-01

    The Eddington ratio (λEdd) of supermassive black holes (SMBHs) is a fundamental parameter that governs their cosmic growth. Although gas mass accretion onto SMBHs is sustained when they are surrounded by large amounts of gas, little is known about the molecular content of galaxies, particularly those hosting super-Eddington SMBHs (λEdd > 1: the key phase of SMBH growth). Here, we have compiled reported optical and 12CO(1-0) data of local quasars to characterize their hosts. We found that higher-λEdd SMBHs tend to reside in gas-rich (i.e., high gas mass to stellar mass fraction = fgas) galaxies. We used two methods to make this conclusion: one uses black hole mass as a surrogate for stellar mass by assuming a local co-evolutionary relationship, and the other directly uses stellar masses estimated from near-infrared observations. The fgas-λEdd correlation we found concurs with the cosmic decreasing trend in λEdd, as cold molecular gas is primarily consumed by star formation. This correlation qualitatively matches predictions of recent semi-analytic models of the cosmic downsizing of SMBHs as well. As the gas mass surface density would eventually be a key parameter controlling mass accretion, we need high-resolution observations to identify further differences in the molecular properties around super-Eddington and sub-Eddington SMBHs.

  20. Supermassive black holes with higher Eddington ratios preferentially form in gas-rich galaxies

    Science.gov (United States)

    Izumi, Takuma

    2018-06-01

    The Eddington ratio (λEdd) of supermassive black holes (SMBHs) is a fundamental parameter that governs their cosmic growth. Although gas mass accretion onto SMBHs is sustained when they are surrounded by large amounts of gas, little is known about the molecular content of galaxies, particularly those hosting super-Eddington SMBHs (λEdd > 1: the key phase of SMBH growth). Here, we have compiled reported optical and 12CO(1-0) data of local quasars to characterize their hosts. We found that higher-λEdd SMBHs tend to reside in gas-rich (i.e., high gas mass to stellar mass fraction = fgas) galaxies. We used two methods to make this conclusion: one uses black hole mass as a surrogate for stellar mass by assuming a local co-evolutionary relationship, and the other directly uses stellar masses estimated from near-infrared observations. The fgas-λEdd correlation we found concurs with the cosmic decreasing trend in λEdd, as cold molecular gas is primarily consumed by star formation. This correlation qualitatively matches predictions of recent semi-analytic models of the cosmic downsizing of SMBHs as well. As the gas mass surface density would eventually be a key parameter controlling mass accretion, we need high-resolution observations to identify further differences in the molecular properties around super-Eddington and sub-Eddington SMBHs.

  1. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    Science.gov (United States)

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.

  2. Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Son N.; Liyu, Andrey V.; Chu, Rosalie K.; Anderton, Christopher R.; Laskin, Julia

    2017-01-17

    A new approach for constant distance mode mass spectrometry imaging of biological samples using nanospray desorption electrospray ionization (nano-DESI MSI) was developed by integrating a shear-force probe with nano-DESI probe. The technical concept and basic instrumental setup as well as general operation of the system are described. Mechanical dampening of resonant oscillations due to the presence of shear forces between the probe and the sample surface enables constant-distance imaging mode via a computer controlled closed feedback loop. The capability of simultaneous chemical and topographic imaging of complex biological samples is demonstrated using living Bacillus Subtilis ATCC 49760 colonies on agar plates. The constant-distance mode nano-DESI MSI enabled imaging of many metabolites including non-ribosomal peptides (surfactin, plipastatin and iturin) and iron-bound heme on the surface of living bacterial colonies ranging in diameter from 10 mm to 13 mm with height variations of up to 0.8 mm above the agar plate. Co-registration of ion images to topographic images provided higher-contrast images. Constant-mode nano-DESI MSI is ideally suited for imaging biological samples of complex topography in their native state.

  3. Preparation of the low molecular weight serum proteome for mass spectrometry analysis.

    Science.gov (United States)

    Waybright, Timothy J; Chan, King C; Veenstra, Timothy D; Xiao, Zhen

    2013-01-01

    The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.

  4. Drop-on-demand sample introduction system coupled with the flowing atmospheric-pressure afterglow for direct molecular analysis of complex liquid microvolume samples.

    Science.gov (United States)

    Schaper, J Niklas; Pfeuffer, Kevin P; Shelley, Jacob T; Bings, Nicolas H; Hieftje, Gary M

    2012-11-06

    One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed "drop-on-demand" (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (∼17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 μg/mL, without sample pretreatment, were obtained.

  5. Determination of ruthenium in photographic emulsions - Development and comparison of different sample treatments and mass spectrometric methods

    NARCIS (Netherlands)

    Krystek, Petra; Heumann, Klaus G.

    1999-01-01

    Different sample treatment procedures were combined with inductively coupled plasma mass spectrometry (ICP-MS) and negative thermal ionisation mass spectrometry (NTI-MS) for the determination of ruthenium traces in photographic emulsions. Dissolution of the samples in concentrated ammonia solution

  6. SUPERGIANT SHELLS AND MOLECULAR CLOUD FORMATION IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J. R.; Dickey, John M. [School of Mathematics and Physics, University of Tasmania, Sandy Bay Campus, Churchill Avenue, Sandy Bay, TAS 7005 (Australia); McClure-Griffiths, N. M. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield NSW 2122 (Australia); Wong, T. [Astronomy Department, University of Illinois, Urbana, IL 61801 (United States); Hughes, A. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany); Fukui, Y. [Department of Physics and Astrophysics, Nagoya University, Chikusa-ku, Nagoya (Japan); Kawamura, A., E-mail: joanne.dawson@utas.edu.au [National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan)

    2013-01-20

    We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between H I and {sup 12}CO(J = 1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects ({approx}70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that {approx}12%-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to {approx}4%-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.

  7. High field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter from the South Atlantic Ocean

    Science.gov (United States)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-01-01

    resonance envelopes typical of an intricate mixture of natural organic matter with noticeable peaks of anomerics and C-aromatics carbon whereas oxygenated aromatics and ketones were of too low abundance to result in noticeable humps at the S/N ratio provided. Integration according to major substructure regimes revealed continual increase of carboxylic acids and ketones from surface to deep marine DOM, reflecting a progressive oxygenation of marine DOM, with concomitant decline of carbohydrate-related substructures. Isolation of marine DOM by means of SPE likely discriminated against carbohydrates but produced materials with beneficial NMR relaxation properties: a substantial fraction of dissolved organic molecules present allowed the acquisition of two-dimensional NMR spectra with exceptional resolution. JRES, COSY and HMBC NMR spectra were capable to depict resolved molecular signatures of compounds exceeding a certain minimum abundance. Here, JRES spectra suffered from limited resolution whereas HMBC spectra were constrained because of limited S/N ratio. Hence, COSY NMR spectra appeared best suited to depict organic complexity in marine DOM. The intensity and number of COSY cross peaks was found maximal for sample FMAX and conformed to about 1500 molecules recognizable in variable abundance. Surface DOM (FISH) produced a slightly (~25%) lesser number of cross peaks with remarkable positional accordance to FMAX (~80% conforming COSY cross peaks were found in FISH and FMAX). With increasing water depth, progressive attenuation of COSY cross peaks was caused by fast transverse NMR relaxation of yet unknown origin. However, most of the faint COSY cross peak positions of deep water DOM conformed to those observed in the surface DOM, suggesting the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. Aliphatic chemical environments of methylene (CH2) and

  8. Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging

    Science.gov (United States)

    Kim, Shin Hye; Kim, Jeongkwon; Lee, Young Jin; Lee, Tae Geol; Yoon, Sohee

    2017-08-01

    Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed.

  9. Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging.

    Science.gov (United States)

    Kim, Shin Hye; Kim, Jeongkwon; Lee, Young Jin; Lee, Tae Geol; Yoon, Sohee

    2017-08-01

    Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed. Graphical Abstract ᅟ.

  10. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    Science.gov (United States)

    Siposova, Katarina; Pospiskova, Kristyna; Bednarikova, Zuzana; Safarik, Ivo; Safarikova, Mirka; Kubovcikova, Martina; Kopcansky, Peter; Gazova, Zuzana

    2017-04-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe3O4-based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15-20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15-20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran).

  11. Improved limit on the mass of ν/sub e/ from the beta decay of molecular tritium

    International Nuclear Information System (INIS)

    Bowles, T.J.; Friar, J.L.; Robertson, R.G.H.; Stephenson, G.J. Jr.; Wark, D.L.; Wilkerson, J.F.; Knapp, D.A.

    1989-01-01

    We report a new upper limit of 13.4 eV (95% confidence level) on the mass of the electron antineutrino from a study of the shape of the beta spectrum of free molecular tritium. This result appears to be inconsistent with a reported value for the mass of 26(5) eV. The electron neutrino is evidently not massive enough to close the universe by itself. 23 refs., 1 fig., 2 tabs

  12. Improved limit on the mass of bar νe from the beta decay of molecular tritium

    International Nuclear Information System (INIS)

    Bowles, T.J.; Robertson, R.G.H.; Wark, D.L.; Wilkerson, J.F.; Stephenson, G.J.; Friar, J.L.; Knapp, D.A.

    1990-01-01

    We report a new upper limit of 13.4 eV (95% confidence level) on the mass of the electron antineutrino from a study of the shape of the beta spectrum of free molecular tritium. This result appears to be inconsistent with a reported value for the mass of 26(5) eV. The electron neutrino is evidently not massive enough to close the universe by itself. 21 refs., 1 fig., 2 tabs

  13. Substrate specificity of low-molecular mass bacterial DD-peptidases.

    Science.gov (United States)

    Nemmara, Venkatesh V; Dzhekieva, Liudmila; Sarkar, Kumar Subarno; Adediran, S A; Duez, Colette; Nicholas, Robert A; Pratt, R F

    2011-11-22

    The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD

  14. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Milic, Ivana; Hoffmann, Ralf; Fedorova, Maria

    2013-01-02

    Reactive oxygen species (ROS) and other oxidative agents such as free radicals can oxidize polyunsaturated fatty acids (PUFA) as well as PUFA in lipids. The oxidation products can undergo consecutive reactions including oxidative cleavages to yield a chemically diverse group of products, such as lipid peroxidation products (LPP). Among them are aldehydes and ketones ("reactive carbonyls") that are strong electrophiles and thus can readily react with nucleophilic side chains of proteins, which can alter the protein structure, function, cellular distribution, and antigenicity. Here, we report a novel technique to specifically derivatize both low molecular and high molecular weight carbonylated LPP with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) and analyze all compounds by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. CHH-derivatized compounds were identified by specific neutral losses or fragment ions. The fragment ion spectra displayed additional signals that allowed unambiguous identification of the lipid, fatty acids, cleavage sites, and oxidative modifications. Oxidation of docosahexaenoic (DHA, 22:6), arachidonic (AA, 20:4), linoleic (LA, 18:2), and oleic acids (OA, 18:1) yielded 69 aliphatic carbonyls, whose structures were all deduced from the tandem mass spectra. When four phosphatidylcholine (PC) vesicles containing the aforementioned unsaturated fatty acids were oxidized, we were able to deduce the structures of 122 carbonylated compounds from the tandem mass spectra of a single shotgun analysis acquired within 15 min. The high sensitivity (LOD ∼ 1 nmol/L for 4-hydroxy-2-nonenal, HNE) and a linear range of more than 3 orders of magnitude (10 nmol/L to 10 μmol/L for HNE) will allow further studies on complex biological samples including plasma.

  15. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations.

    Directory of Open Access Journals (Sweden)

    Kecheng Yang

    Full Text Available Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE, is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD-Monte Carlo (MC approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.

  16. Analysis of iminosugars and other low molecular weight carbohydrates in Aglaonema sp. extracts by hydrophilic interaction liquid chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Rodríguez-Sánchez, S; García-Sarrió, M J; Quintanilla-López, J E; Soria, A C; Sanz, M L

    2015-12-04

    A method by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS(2)) has been successfully developed for the simultaneous analysis of bioactive iminosugars and other low molecular weight carbohydrates in Aglaonema leaf extracts. Among other experimental chromatographic conditions, mobile phase eluents, additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry provided for target carbohydrates. In general, narrow peaks (wh: 0.2-0.6min) with good symmetry (As: 0.9-1.3) and excellent resolution (Rs>1.8) were obtained for iminosugars using an acetonitrile:water gradient with 5mM ammonium acetate in both eluents at 55°C. Tandem mass spectra were used to confirm the presence of previously detected iminosugars in Aglaonema extracts and to tentatively identify for the first time others such as miglitol isomer, glycosyl-miglitol isomers and glycosyl-DMDP isomers. Concentration of total iminosugars varied from 1.35 to 2.84mgg(-1) in the extracts of the different Aglaonema samples analyzed. To the best of our knowledge, this is the first time that a HILIC-MS(2) method has been proposed for the simultaneous analysis of iminosugars and other low molecular weight carbohydrates of Aglaonema sp. extracts. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hydrophilic interaction chromatography coupled matrix assisted laser desorption/ionization mass spectrometry for molecular analysis of organic compounds in medicines, tea, and coffee

    KAUST Repository

    Wang, Renqi

    2013-01-01

    Natural occurring organic compounds from food, natural organic matter, as well as metabolic products have received intense attention in current chemical and biological studies. Examination of unknown compounds in complex sample matrices is hampered by the limited choices for data readout and molecular elucidation. Herein, we report a generic method of hydrophilic interaction chromatography (HILIC) coupled with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid characterization of ingredients in pharmaceutical compounds, tea, and coffee. The analytes were first fractionated using a cationic HILIC column prior to MALDI-MS analyses. It was found that the retention times of a compound arising from different samples were consistent under the same conditions. Accordingly, molecules can be readily characterized by both the mass and chromatographic retention time. The retention behaviors of acidic and basic compounds on the cationic HILIC column were found to be significantly influenced by the pH of mobile phases, whereas neutral compounds depicted a constant retention time at different pH. The general HILIC-MALDI-MS method is feasible for fast screening of naturally occurring organic compounds. A series of homologs can be determined if they have the same retention behavior. Their structural features can be elucidated by considering their mass differences and hydrophilic properties as determined by HILIC chromatogram. © 2013 The Royal Society of Chemistry.

  18. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. E. Altieri

    2012-04-01

    Full Text Available Atmospheric water soluble organic nitrogen (WSON is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W, which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+, CHON compounds that contained sulfur (CHONS+, CHON compounds that contained phosphorus (CHONP+, CHON compounds that contained both sulfur and phosphorus (CHONSP+, and compounds that contained only carbon, hydrogen, and nitrogen (CHN+. Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March which have anthropogenic air mass origins and samples collected during the warm season (April to September with remote

  19. Prevalence and molecular characterization of Cryptosporidum spp. and Giardia spp. in environmental samples in Hanam province, Vietnam

    DEFF Research Database (Denmark)

    Nguyen, Tram Thuy; Traub, Rebecca J.; Pham, Phuc Duc

    2016-01-01

    Cryptosporidium and Giardia are protozoan parasites that cause human diarrheal disease worldwide. This study was done to evaluate the prevalence and concentrations of these protozoa in environmental samples in Hanam, Vietnam and to assess potential contamination sources using molecular...... Giardia and Cryptosporidium were detected in 25.4% and 35.0% of samples analyzed, respectively. In water, a higher percentage of Cryptosporidium spp. (41.7%; 43/103) contamination was observed compared to that of Giardia spp. 28.2% (29/103). Both Giardia spp. and Cryptosporidium spp. were found...... contaminating vegetables at the same level, at 15.4% (4/26) each. Concentrations of Cryptosporidium in samples ranged from 10 to 1900 oocysts per 100 ml water or 100 g vegetable/composted waste sample with a median number of 100 oocysts per 100 ml/g. The concentration of Giardia cysts ranged from 10 to 1836 per...

  20. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean

    Science.gov (United States)

    Lechtenfeld, Oliver J.; Kattner, Gerhard; Flerus, Ruth; McCallister, S. Leigh; Schmitt-Kopplin, Philippe; Koch, Boris P.

    2014-02-01

    More than 90% of the global ocean dissolved organic carbon (DOC) is refractory, has an average age of 4000-6000 years and a lifespan from months to millennia. The fraction of dissolved organic matter (DOM) that is resistant to degradation is a long-term buffer in the global carbon cycle but its chemical composition, structure, and biochemical formation and degradation mechanisms are still unresolved. We have compiled the most comprehensive molecular dataset of 197 Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses from solid-phase extracted marine DOM covering two major oceans, the Atlantic sector of the Southern Ocean and the East Atlantic Ocean (ranging from 50° N to 70° S). Molecular trends and radiocarbon dating of 34 DOM samples (comprising Δ14C values from -229‰ to -495‰) were combined to model an integrated degradation rate for bulk DOC resulting in a predicted age of >24 ka for the most persistent DOM fraction. First order kinetic degradation rates for 1557 mass peaks indicate that numerous DOM molecules cycle on timescales much longer than the turnover of the bulk DOC pool (estimated residence times of up to ~100 ka) and the range of validity of radiocarbon dating. Changes in elemental composition were determined by assigning molecular formulae to the detected mass peaks. The combination of residence times with molecular information enabled modelling of the average elemental composition of the slowest degrading fraction of the DOM pool. In our dataset, a group of 361 molecular formulae represented the most stable composition in the oceanic environment (“island of stability”). These most persistent compounds encompass only a narrow range of the molecular elemental ratios H/C (average of 1.17 ± 0.13), and O/C (average of 0.52 ± 0.10) and molecular masses (360 ± 28 and 497 ± 51 Da). In the Weddell Sea DOC concentrations in the surface waters were low (46.3 ± 3.3 μM) while the organic radiocarbon was significantly

  1. Molecular profiling of synchronous and metachronous cancers of the pancreas reveal molecular mimicry between samples from the same patient.

    Science.gov (United States)

    Talbott, Vanessa A; Yeo, Charles J; Brody, Jonathan R; Witkiewicz, Agnieszka K

    2012-07-01

    Pancreatic ductal adenocarcinoma (PDA) is rarely a survivable disease. In rare cases, separate synchronous tumors are discovered at the time of resection, while in others, patients present with a metachronous cancer after prior surgical resection. Studying molecular markers of synchronous and metachronous lesions may aid to clarify the biology of this often deadly disease. Two patients presented with synchronous tumors (each one with a tumor in the pancreatic head/neck and the other in the tail, designated patients A and B). An additional patient (patient C) underwent an R0 resection for PDA of the head and recurred 1.5 y later with PDA in the tail. Genomic DNA was laser capture microdissected (LCM) from the tumor and molecular analysis was performed. K-ras status and loss of heterozygosity (LOH) were determined from multiple specimens for each case. All samples from each patient harbored identical K-ras mutations. In patient A, the tumor at the head of the pancreas had more clonal genetic instability as reflected by LOH analysis over multiple LCM samples. Patient B had more genetic instability in the tail lesion compared with the neck. Patient C had virtually the identical molecular profile in both tumors, supporting the notion that both tumors were related. We conclude that the synchronous and metachronous tumors likely are initiated from identical precursor lesions and/or events (i.e., K-ras mutations). Future studies will need to investigate if these tumors will respond similarly to adjuvant therapies targeted against the clonal molecular events in the tumor. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Molecular cloud-scale star formation in NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Menten, Karl M. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Bouy, Hervé [Centro de Astrobiología, (INTA-CSIC), Departamento de Astrofísica, POB 78, ESAC Campus, 28691 Villanueva dela Cañada (Spain)

    2014-07-01

    We present the results of a galaxy-wide study of molecular gas and star formation in a sample of 76 H II regions in the nearby spiral galaxy NGC 300. We have measured the molecular gas at 250 pc scales using pointed CO(J = 2-1) observations with the Atacama Pathfinder Experiment telescope. We detect CO in 42 of our targets, deriving molecular gas masses ranging from our sensitivity limit of ∼10{sup 5} M {sub ☉} to 7 × 10{sup 5} M {sub ☉}. We find a clear decline in the CO detection rate with galactocentric distance, which we attribute primarily to the decreasing radial metallicity gradient in NGC 300. We combine Galaxy Evolution Explorer far-ultraviolet, Spitzer 24 μm, and Hα narrowband imaging to measure the star formation activity in our sample. We have developed a new direct modeling approach for computing star formation rates (SFRs) that utilizes these data and population synthesis models to derive the masses and ages of the young stellar clusters associated with each of our H II region targets. We find a characteristic gas depletion time of 230 Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky Way giant molecular clouds than the longer (>2 Gyr) global depletion times derived for entire galaxies and kiloparsec-sized regions within them. This difference is partially due to the fact that our study accounts for only the gas and stars within the youngest star-forming regions. We also note a large scatter in the NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent with the Milky Way cloud results. This scatter likely represents real differences in giant molecular cloud physical properties such as the dense gas fraction.

  3. Characterization of different cassava samples by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Iulianelli, Gisele C.V.; Tavares, Maria I.B.

    2011-01-01

    Cassava root (Manihot esculenta Crantz) is grown in all Brazilian states, being an important product in the diet of Brazilians. For many families of the North and Northeast states, it may represent the main energy source. The cassava root flour has high levels of starch, in addition to containing fiber, lipids and some minerals. There is, however, great genetic variability, which results in differentiation in its chemical composition and structural aspect. Motivated by the economic, nutritional and pharmacological importance of this product, this work is aimed at characterizing six cassava flour samples by NMR spectroscopy. The spectra revealed the main chemical groups. Furthermore, the results confirmed differences on chemical and structural aspect of the samples. For instance, the F1 sample is richer in carbohydrates, while the F4 sample has higher proportion of glycolipids, the F2 sample has higher amylose content and the F6 sample exhibits a greater diversity of glycolipid types. Regarding the molecular structure, the NMR spectra indicated that the F1 sample is more organized at the molecular level, while the F3 and F5 samples are similar in amorphicity and in the molecular packing. (author)

  4. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Charles S. [Instituto Federal Sul-rio-grandense, Câmpus Pelotas, Pelotas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC (Brazil); Andrade, Jailson B. [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg{sup −1} and 4.7 mg kg{sup −1}, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol.

  5. Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry.

    Science.gov (United States)

    Scheerlinck, E; Dhaenens, M; Van Soom, A; Peelman, L; De Sutter, P; Van Steendam, K; Deforce, D

    2015-12-01

    Sample preparation is the crucial starting point to obtain high-quality mass spectrometry data and can be divided into two main steps in a bottom-up proteomics approach: cell/tissue lysis with or without detergents and a(n) (in-solution) digest comprising denaturation, reduction, alkylation, and digesting of the proteins. Here, some important considerations, among others, are that the reagents used for sample preparation can inhibit the digestion enzyme (e.g., 0.1% sodium dodecyl sulfate [SDS] and 0.5 M guanidine HCl), give rise to ion suppression (e.g., polyethylene glycol [PEG]), be incompatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) (e.g., SDS), and can induce additional modifications (e.g., urea). Taken together, all of these irreproducible effects are gradually becoming a problem when label-free quantitation of the samples is envisioned such as during the increasingly popular high-definition mass spectrometry (HDMS(E)) and sequential window acquisition of all theoretical fragment ion spectra (SWATH) data-independent acquisition strategies. Here, we describe the detailed validation of a reproducible method with sufficient protein yield for sample preparation without any known LC-MS/MS interfering substances by using 1% sodium deoxycholate (SDC) during both cell lysis and in-solution digest. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. A novel minimally-invasive method to sample human endothelial cells for molecular profiling.

    Directory of Open Access Journals (Sweden)

    Stephen W Waldo

    Full Text Available The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34/CD105/CD146 with the concomitant absence of leukocyte and platelet specific markers (CD11b/CD45. Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR.A median of 4,212 (IQR: 2161-6583 endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001, nitric oxide synthase 3 (NOS3, P<0.001 and vascular cell adhesion molecule 1 (VCAM-1, P<0.003 in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001.This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.

  7. PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

    Science.gov (United States)

    Tacconi, L. J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; Contini, T.; Förster Schreiber, N. M.; Lilly, S.; Lutz, D.; Wuyts, S.; Accurso, G.; Boissier, J.; Boone, F.; Bouché, N.; Bournaud, F.; Burkert, A.; Carollo, M.; Cooper, M.; Cox, P.; Feruglio, C.; Freundlich, J.; Herrera-Camus, R.; Juneau, S.; Lippa, M.; Naab, T.; Renzini, A.; Salome, P.; Sternberg, A.; Tadaki, K.; Übler, H.; Walter, F.; Weiner, B.; Weiss, A.

    2018-02-01

    This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M */M ⊙) = 9.0–11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10‑1.3 to 102.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z)‑0.6 × (δMS)‑0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (1+z{)}2.5× {(δ {MS})}0.52× {({M}* )}-0.36, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z. Based on observations of an IRAM Legacy Program carried out with the NOEMA, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  8. [Latest development in mass spectrometry for clinical application].

    Science.gov (United States)

    Takino, Masahiko

    2013-09-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.

  9. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns.

    Science.gov (United States)

    Azzam, Sausan; Broadwater, Laurie; Li, Shuo; Freeman, Ernest J; McDonough, Jennifer; Gregory, Roger B

    2013-05-01

    Da) levels were lower in EAE samples with advanced disease relative to controls, while an MBP fragment (12. 4kDa), likely due to calpain digestion, was increased in EAE relative to controls. The appearance of MBP in mitochondrially enriched fractions is due to tissue freezing and storage, as MBP was not found associated with mitochondria obtained from fresh tissue. SELDI mass spectrometry can be employed to explore the proteome of a complex tissue (brain) and obtain protein profiles of differentially expressed proteins from protein fractions. Appropriate homogenization protocols and protein fractionation using anion exchange beads can be employed to reduce sample complexity without introducing significant additional variation into the SELDI mass spectra beyond that inherent in the SELDI- MS method itself. SELDI-MS coupled with principal component analysis and hierarchical cluster analysis provides protein patterns that can clearly distinguish the disease state from controls. However, identification of individual differentially expressed proteins requires a separate purification of the proteins of interest by polyacrylamide electrophoresis prior to trypsin digestion and peptide mass fingerprint analysis, and unambiguous identification of differentially expressed proteins can be difficult if protein bands consist of several proteins with similar molecular weights.

  10. Screening of Chlamydomonas reinhardtii Populations with Single-Cell Resolution by Using a High-Throughput Microscale Sample Preparation for Matrix-Assisted Laser Desorption Ionization Mass Spectrometry.

    Science.gov (United States)

    Krismer, Jasmin; Sobek, Jens; Steinhoff, Robert F; Fagerer, Stephan R; Pabst, Martin; Zenobi, Renato

    2015-08-15

    The consequences of cellular heterogeneity, such as biocide persistence, can only be tackled by studying each individual in a cell population. Fluorescent tags provide tools for the high-throughput analysis of genomes, RNA transcripts, or proteins on the single-cell level. However, the analysis of lower-molecular-weight compounds that elude tagging is still a great challenge. Here, we describe a novel high-throughput microscale sample preparation technique for single cells that allows a mass spectrum to be obtained for each individual cell within a microbial population. The approach presented includes spotting Chlamydomonas reinhardtii cells, using a noncontact microarrayer, onto a specialized slide and controlled lysis of cells separated on the slide. Throughout the sample preparation, analytes were traced and individual steps optimized using autofluorescence detection of chlorophyll. The lysates of isolated cells are subjected to a direct, label-free analysis using matrix-assisted laser desorption ionization mass spectrometry. Thus, we were able to differentiate individual cells of two Chlamydomonas reinhardtii strains based on single-cell mass spectra. Furthermore, we showed that only population profiles with real single-cell resolution render a nondistorted picture of the phenotypes contained in a population. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples.

    Science.gov (United States)

    Zhu, Wenting; Peng, Hailong; Luo, Mei; Yu, Ningxiang; Xiong, Hua; Wang, Ronghui; Li, Yanbin

    2018-09-30

    Zipper-like on/off-switchable and magnetic molecularly imprinted microspheres (SM-MIMs) were constructed using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers for 17β-estradiol (17β-E 2 ) recognition and extraction. The imprinted polymer interactions between poly(AAm) (PAAm) and poly(AMPS) (PAMPS) with on/off-switchable property to temperature, exhibited dissociation at relatively higher temperatures (such as 30 °C) and helped 17β-E 2 enter into imprinted sites, leading to higher binding capability. Conversely, the interpolymer complexes between PAAm and PAMPS formed and blocked 17β-E 2 access to imprinted sites at lower temperature (such as 20 °C). SM-MIMs were used as dispersive solid phase extraction (SPE) adsorbent with HPLC for 17β-E 2 pretreatment and detection in food samples, and low limit detection (2.52 µg L -1 ) and quantification (10.76 µg L -1 ) with higher recovery were obtained. Therefore, SM-MIMs may be a promising adsorbent for 17β-E 2 pretreatment in food samples owing to its advantages of on/off-switchable recognition, eco-friendly elution, and efficient separation. Copyright © 2018. Published by Elsevier Ltd.

  12. Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS

    Science.gov (United States)

    Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason

    2018-01-01

    Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when

  13. Molecular diagnosis of lyssaviruses and sequence comparison of Australian bat lyssavirus samples.

    Science.gov (United States)

    Foord, A J; Heine, H G; Pritchard, L I; Lunt, R A; Newberry, K M; Rootes, C L; Boyle, D B

    2006-07-01

    To evaluate and implement molecular diagnostic tests for the detection of lyssaviruses in Australia. A published hemi-nested reverse transcriptase polymerase chain reaction (RT-PCR) for the detection of all lyssavirus genotypes was modified to a fully nested RT-PCR format and compared with the original assay. TaqMan assays for the detection of Australian bat lyssavirus (ABLV) were compared with both the nested and hemi-nested RT-PCR assays. The sequences of RT-PCR products were determined to assess sequence variations of the target region (nucleocapsid gene) in samples of ABLV originating from different regions. The nested RT-PCR assay was highly analytically specific, and at least as analytically sensitive as the hemi-nested assay. The TaqMan assays were highly analytically specific and more analytically sensitive than either RT-PCR assay, with a detection level of approximately 10 genome equivalents per microl. Sequence of the first 544 nucleotides of the nucleocapsid protein coding sequence was obtained from all samples of ABLV received at Australian Animal Health Laboratory during the study period. The nested RT-PCR provided a means for molecular diagnosis of all tested genotypes of lyssavirus including classical rabies virus and Australian bat lyssavirus. The published TaqMan assay proved to be superior to the RT-PCR assays for the detection of ABLV in terms of analytical sensitivity. The TaqMan assay would also be faster and cross contamination is less likely. Nucleotide sequence analyses of samples of ABLV from a wide geographical range in Australia demonstrated the conserved nature of this region of the genome and therefore the suitability of this region for molecular diagnosis.

  14. CHARACTERIZATION OF TANK 18F WALL AND SCALE SAMPLES

    International Nuclear Information System (INIS)

    Hay, Michael; Click, Damon; Diprete, C.; Diprete, David

    2010-01-01

    Samples from the wall of Tank 18F were obtained to determine the associated source term using a special wall sampling device. Two wall samples and a scale sample were obtained and characterized at the Savannah River National Laboratory (SRNL). All the analyses of the Tank 18F wall and scale samples met the targeted detection limits. The upper wall samples show ∼2X to 6X higher concentrations for U, Pu, and Np on an activity per surface area basis than the lower wall samples. On an activity per mass basis, the upper and lower wall samples show similar compositions for U and Pu. The Np activity is still ∼2.5X higher in the upper wall sample on a per mass basis. The scale sample contains 2-3X higher concentrations of U, Pu, and Sr-90 than the wall samples on an activity per mass basis. The plutonium isotopics differ for all three wall samples (upper, lower, and scale samples). The Pu-238 appears to increase as a proportion of total plutonium as you move up the tank wall from the lowest sample (scale sample) to the upper wall sample. The elemental composition of the scale sample appears similar to other F-Area PUREX sludge compositions. The composition of the scale sample is markedly different than the material on the floor of Tank 18F. However, the scale sample shows elevated Mg and Ca concentrations relative to typical PUREX sludge as do the floor samples.

  15. Walking, body mass index, and self-rated health in a representative sample of Spanish adults

    Directory of Open Access Journals (Sweden)

    Vicente Romo-Perez

    2016-01-01

    Full Text Available Abstract Obesity and physical inactivity (PI are risk factors for chronic diseases and are associated with lifestyle and environmental factors. The study tested the association between PI, body mass index (BMI, and self-rated health in a representative sample of the Spanish adult population (N = 21,486. The sample included 41.5% men, with mean age 52.3 years (± 18.03, and age range 20-82 years. Prevalence of overweight/obesity was 34.2%/12.7% in women and 52.1%/12.7% in men (p < 0.001 for obesity in both sexes. 53% of women and 57.5% of men met recommended levels of physical activity by walking (≥ 150 minutes/week. According to logistic regression analysis, individuals that walked less had higher risk of overweight or obesity. Data from the population-based surveillance study support suggestions that regular walking by adults is associated with positive self-rated health and better BMI profile. Obesity and low/very low self-rated health have low prevalence rates to meet the recommendations.

  16. Molecular fountain.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  17. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source

    International Nuclear Information System (INIS)

    Cool, Terrill A.; McIlroy, Andrew; Qi, Fei; Westmoreland, Phillip R.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid

    2005-01-01

    A flame-sampling molecular-beam photoionization mass spectrometer, recently designed and constructed for use with a synchrotron-radiation light source, provides significant improvements over previous molecular-beam mass spectrometers that have employed either electron-impact ionization or vacuum ultraviolet laser photoionization. These include superior signal-to-noise ratio, soft ionization, and photon energies easily and precisely tunable [E/ΔE(FWHM)≅250-400] over the 7.8-17-eV range required for quantitative measurements of the concentrations and isomeric compositions of flame species. Mass resolution of the time-of-flight mass spectrometer is m/Δm=400 and sensitivity reaches ppm levels. The design of the instrument and its advantages for studies of flame chemistry are discussed

  18. Molecular environmental geochemistry

    Science.gov (United States)

    O'Day, Peggy A.

    1999-05-01

    mineral surfaces and mineral-water interfaces. A review of recent studies employing molecular characterizations of soils, sediments, and biological samples from contaminated sites exemplifies the utility and benefits, as well as the challenge, of applying molecular probes to complicated natural materials. New techniques, technological advances, and the crossover of methods from other disciplines such as biochemistry and materials science promise better examination of environmental chemical processes in real time and at higher resolution, and will further the integration of molecular information into field-scale chemical and hydrologic models.

  19. Anti-theft device staining on banknotes detected by mass spectrometry imaging.

    Science.gov (United States)

    Correa, Deleon Nascimento; Zacca, Jorge Jardim; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Augusti, Rodinei; Eberlin, Marcos Nogueira; Vendramini, Pedro Henrique

    2016-03-01

    We describe the identification and limits of detection of ink staining by mass spectrometry imaging (MSI), as used in anti-theft devices (ATDs). Such ink staining is applied to banknotes during automated teller machine (ATM) explosions. Desorption electrospray ionization (DESI) coupled with high-resolution and high-accuracy orbitrap mass spectrometry (MS) and a moving stage device were applied to obtain 2D molecular images of the major dyes used for staining, that is, 1-methylaminoanthraquinone (MAAQ), rhodamine B (RB) and rhodamine 6G (R6G). MAAQ could not be detected because of its inefficient desorption by DESI from the banknote cellulose surface. By contrast, ATD staining on banknotes is perceptible by the human naked eye only at concentrations higher than 0.2 μg cm(-2), whereas both RB and R6G at concentrations 200 times lower (as low as 0.001 μg cm(-2)) could be easily detected and imaged by DESI-MSI, with selective and specific identification of each analyte and their spatial distribution on samples from suspects. This technique is non-destructive, and no sample preparation is required, which ensures sample preservation for further forensic investigations. Copyright © 2016. Published by Elsevier Ireland Ltd.

  20. Lean body mass, interleukin 18, and metabolic syndrome in apparently healthy Chinese.

    Directory of Open Access Journals (Sweden)

    Liang Sun

    Full Text Available OBJECTIVE: We aimed to investigate how lean body mass is related to circulating Interleukin 18 (IL-18 and its association with metabolic syndrome (MetS among apparently healthy Chinese. METHODS: A population-based sample of 1059 Chinese men and women aged 35-54 years was used to measure plasma IL-18, glucose, insulin, lipid profile, inflammatory markers and high-molecular-weight (HMW-adiponectin. Fat mass index (FMI and lean mass index (LMI were measured by dual-energy X-ray absorptiometry. MetS was defined by the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian-Americans. RESULTS: Circulating IL-18 was positively correlated with LMI after adjustment for FMI (correlation coefficient = 0.11, P<0.001. The association with the MetS (odds ratio 3.43, 95% confidence interval 2.01-5.85 was substantially higher in the highest than the lowest quartile of IL-18 after multiple adjustments including body mass index. In the stratified multivariable regression analyses, the positive association between IL-18 and MetS was independent of tertiles of FMI, inflammatory markers and HMW-adiponectin, but significantly interacted with tertile of LMI (P for interaction = 0.010. CONCLUSION: Elevated plasma IL-18 was associated with higher MetS prevalence in apparently healthy Chinese, independent of traditional risk factors, FMI, inflammatory markers and HMW-adiponectin. More studies are needed to clarify the role of lean mass in IL-18 secretion and its associated cardio-metabolic disorders.

  1. [Imaging Mass Spectrometry in Histopathologic Analysis].

    Science.gov (United States)

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  2. Molecularly imprinted polymers for extraction of malachite green from fish samples prior to its determination by HPLC

    International Nuclear Information System (INIS)

    Li, Lu; Chen, Xiao-mei; Zhang, Hong-yuan; Lin, Yi-dong; Lin, Zheng-zhong; Huang, Zhi-yong; Lai, Zhu-zhi

    2015-01-01

    Molecularly imprinted polymer (MIP) particles for malachite green (MG) were prepared by emulsion polymerization using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, and a combination of Span-80 and Tween-80 as an emulsifier. The MIP particles were characterized by SEM micrographs and FT-IR spectra. Their binding capacity for MG was evaluated based on kinetic and isothermal adsorption experiments and compared to non-imprinted polymer particles. Analytical figures of merit include an adsorption equilibrium time of 15 min, an adsorption capacity of 1.9 mg∙g -1 in acetonitrile-water (20:80), and an imprinting factor of 1.85. The MIP particles were successfully applied to the extraction of MG from fish samples spiked with MG and the other interfering substances prior to its determination of MG by HPLC. Spiked samples gave recoveries of MG that ranged from 86 to 104 %, much higher than that of the other interfering substance. (author)

  3. Molecular biogeochemical provinces in the Atlantic Surface Ocean

    Science.gov (United States)

    Koch, B. P.; Flerus, R.; Schmitt-Kopplin, P.; Lechtenfeld, O. J.; Bracher, A.; Cooper, W.; Frka, S.; Gašparović, B.; Gonsior, M.; Hertkorn, N.; Jaffe, R.; Jenkins, A.; Kuss, J.; Lara, R. J.; Lucio, M.; McCallister, S. L.; Neogi, S. B.; Pohl, C.; Roettgers, R.; Rohardt, G.; Schmitt, B. B.; Stuart, A.; Theis, A.; Ying, W.; Witt, M.; Xie, Z.; Yamashita, Y.; Zhang, L.; Zhu, Z. Y.; Kattner, G.

    2010-12-01

    One of the most important aspects to understand marine organic carbon fluxes is to resolve the molecular mechanisms which convert fresh, labile biomolecules into semi-labile and refractory dissolved and particulate organic compounds in the ocean. In this interdisciplinary project, which was performed on a cruise with RV Polarstern, we carried out a detailed molecular characterisation of dissolved organic matter (DOM) on a North-South transect in the Atlantic surface ocean in order to relate the data to different biological, climatic, oceanographic, and meteorological regimes as well as to terrestrial input from riverine and atmospheric sources. Our goal was to achieve a high resolution data set for the biogeochemical characterisation of the sources and reactivity of DOM. We applied ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), nutrient, trace element, amino acid, and lipid analyses and other biogeochemical measurements for 220 samples from the upper water column (0-200m) and eight deep profiles. Various spectroscopic techniques were applied continuously in a constant sample water flow supplied by a fish system and the moon pool. Radiocarbon dating enabled assessing DOC residence time. Bacterial abundance and production provided a metabolic context for the DOM characterization work and pCO2 concentrations. Combining molecular organic techniques and inductively coupled plasma mass spectrometry (ICP-MS) established an important link between organic and inorganic biogeochemical studies. Multivariate statistics, primarily based on FT-ICR-MS data for 220 samples, allowed identifying geographical clusters which matched ecological provinces proposed previously by Longhurst (2007). Our study demonstrated that marine DOM carries molecular information reflecting the “history” of ocean water masses. This information can be used to define molecular biogeochemical provinces and to improve our understanding of element fluxes in

  4. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Fialkov, Alexander B; Moragn, Mati; Amirav, Aviv

    2011-12-30

    A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of

  5. From elite to mass to universal higher education: from distance to open education

    Directory of Open Access Journals (Sweden)

    Larry Cooperman

    2014-01-01

    Full Text Available In 1970, Martin Trow, a professor at the University of California, Berkeley, identified a transition “underway in every advanced society, from elite to mass higher education and subsequently to universal access.” This article adapts this framework of the historical and structural development of higher education as a phased process in which absolute and relative growth of university enrollment transforms the institutions of higher education and alters its functions. The transition to universal access may support economic development, social mobility and greater income equality, in turn buttressing even the institution of democracy. Arriving at those optimal social outcomes is not automatic, however, because of a variety of remaining issues: how universality of higher education translates to economic growth and social equality. The problem of the ‘next 1%,’ shorthand for the continued entrance of new social layers into higher education presents novel challenges that ‘access’ alone may not solve.

  6. Method for simultaneous imaging of endogenous low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry.

    Science.gov (United States)

    Shrivas, Kamlesh; Hayasaka, Takahiro; Sugiura, Yuki; Setou, Mitsutoshi

    2011-10-01

    We report the detection of a group of endogenous low molecular weight metabolites (LMWM) in mouse brain (80-500 Da) using TiO(2) nanoparticles (NPs) in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry (Nano-PALDI-IMS) without any washing and separation step prior to MS analysis. The identification of metabolites using TiO(2) NPs was compared with a conventional organic matrix 2,5-dihydroxybenzoic acid (DHB) where signals of 179 molecules were specific to TiO(2) NPs, 4 were specific to DHB, and 21 were common to both TiO(2) NPs and DHB. The use of TiO(2) NPs enabled the detection of a higher number of LMWM as compared to DHB and gold NPs as a matrix. This approach is a simple, inexpensive, washing, and separation free for imaging and identification of LMWM in mouse brain. We believe that the biochemical information from distinct regions of the brain using a Nano-PALDI-IMS will be helpful in elucidating the imbalances linked with diseases in biomedical samples.

  7. Spring meeting of the scientific associations for atomic physics, high speed physics, mass spectrometry, molecular physics, plasma physics

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains the abstracts of the contributions to the Spring Meeting in Rostock with aspects of atomic physics, molecular physics, high speed physics, plasma physics and mass spectrometry. (MM)

  8. Media optimization for elevated molecular weight and mass production of pigment-free pullulan.

    Science.gov (United States)

    Yu, Xiaoliu; Wang, Yulei; Wei, Gongyuan; Dong, Yingying

    2012-07-01

    In this study, an Aureobasidium pullulans SZU 1001 mutant, deficient in pigment production, was screened by complex UV and γ-ray mutagenesis. Medium composition optimization for increased pullulan molecular weight and production was conducted using this mutant. Six nutrients: yeast extract, (NH4)2SO4, K2HPO4, NaCl, MgSO4·7H2O and CaCl2 were detected within pullulan production in flasks. It is shown that NaCl and K2HPO4 have significant influences on molecular weight of pullulan, while yeast extract and (NH4)2SO4 significantly affect pullulan yield. To achieve a higher molecular weight and more efficient pullulan production, a response surface methodology approach was introduced to predict an optimal nutrient combination. A molecular weight of 5.74 × 10(6) and pullulan yield on glucose of 51.30% were obtained under batch pullulan fermentation with the optimized media, which increased molecular weight and pullulan production by 97.25% and 11.04%, respectively compared with the control media. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Evaporation of liquid droplets of nano- and micro-meter size as a function of molecular mass and intermolecular interactions: experiments and molecular dynamics simulations.

    Science.gov (United States)

    Hołyst, Robert; Litniewski, Marek; Jakubczyk, Daniel

    2017-09-13

    Transport of heat to the surface of a liquid is a limiting step in the evaporation of liquids into an inert gas. Molecular dynamics (MD) simulations of a two component Lennard-Jones (LJ) fluid revealed two modes of energy transport from a vapour to an interface of an evaporating droplet of liquid. Heat is transported according to the equation of temperature diffusion, far from the droplet of radius R. The heat flux, in this region, is proportional to temperature gradient and heat conductivity in the vapour. However at some distance from the interface, Aλ, (where λ is the mean free path in the gas), the temperature has a discontinuity and heat is transported ballistically i.e. by direct individual collisions of gas molecules with the interface. This ballistic transport reduces the heat flux (and consequently the mass flux) by the factor R/(R + Aλ) in comparison to the flux obtained from temperature diffusion. Thus it slows down the evaporation of droplets of sizes R ∼ Aλ and smaller (practically for sizes from 10 3 nm down to 1 nm). We analyzed parameter A as a function of interactions between molecules and their masses. The rescaled parameter, A(k B T b /ε 11 ) 1/2 , is a linear function of the ratio of the molecular mass of the liquid molecules to the molecular mass of the gas molecules, m 1 /m 2 (for a series of chemically similar compounds). Here ε 11 is the interaction parameter between molecules in the liquid (proportional to the enthalpy of evaporation) and T b is the temperature of the gas in the bulk. We tested the predictions of MD simulations in experiments performed on droplets of ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol. They were suspended in an electrodynamic trap and evaporated into dry nitrogen gas. A changes from ∼1 (for ethylene glycol) to approximately 10 (for tetraethylene glycol) and has the same dependence on molecular parameters as obtained for the LJ fluid in MD simulations. The value of x = A

  10. Molecular Characterization of Vibrio cholerae Isolated From Clinical Samples in Kurdistan Province, Iran.

    Science.gov (United States)

    Ramazanzadeh, Rashid; Rouhi, Samaneh; Shakib, Pegah; Shahbazi, Babak; Bidarpour, Farzam; Karimi, Mohammad

    2015-05-01

    Vibrio cholerae causes diarrhoeal disease that afflicts thousands of people annually. V. cholerae is classified on the basis of somatic antigens into serovars or serogroups and there are at least 200 known serogroup. Two serogroups, O1 and O139 have been associated with epidemic diseases. Virulence genes of these bacteria are OmpW, ctxA and tcpA. Due to the importance of V. cholerae infection and developing molecular diagnostics of this organism in medical and microbiology sciences, this study aimed to describe molecular characterization of V. cholerae isolated from clinical samples using a molecular method. In this study, 48 samples were provided during summer 2013 (late August and early September) by reference laboratory. Samples were assessed using biochemical tests initially. The primer of OmpW, ctxA and tcpA genes was used in Polymerase Chain Reaction (PCR) protocols. Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR and Repetitive Extragenic Palindromic (REP)-PCR methods were used to subtype V. cholerae. In this study, from a total of 48 clinical stool samples 39 (81.2 %) were positive for V. cholerae in biochemical tests and bacteria culture tests. The PCR results showed that of 39 positive isolates 35 (89.7%), 34 (87.1%) and 37 (94.8%) were positive for ctxA, tcpA and OmpW gene, respectively. Also, in the REP-PCR method with ERIC primer strains were divided into 10 groups. In the REP-PCR method with REP primer, strains were divided into 13 groups. Polymerase chain reaction has specificity and accuracy for identification of the organism and is able to differentiate biotypes. Enterobacterial repetitive intergenic consensus sequence is one of the informative and discriminative methods for the analysis of V. cholerae diversity. The REP-PCR is a less informative and discriminative method compared to other methods for the analysis of V. cholerae diversity.

  11. Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration

    Directory of Open Access Journals (Sweden)

    Cameron Abrams

    2013-12-01

    Full Text Available We review a selection of methods for performing enhanced sampling in molecular dynamics simulations. We consider methods based on collective variable biasing and on tempering, and offer both historical and contemporary perspectives. In collective-variable biasing, we first discuss methods stemming from thermodynamic integration that use mean force biasing, including the adaptive biasing force algorithm and temperature acceleration. We then turn to methods that use bias potentials, including umbrella sampling and metadynamics. We next consider parallel tempering and replica-exchange methods. We conclude with a brief presentation of some combination methods.

  12. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Matthias, E-mail: matthias.schindler@physik.uni-erlangen.de; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-15

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO{sub 2} and reduced to graphite to determine {sup 14}C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  13. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    Science.gov (United States)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  14. Enhanced configurational sampling with hybrid non-equilibrium molecular dynamics-Monte Carlo propagator

    Science.gov (United States)

    Suh, Donghyuk; Radak, Brian K.; Chipot, Christophe; Roux, Benoît

    2018-01-01

    Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield

  15. The one-sample PARAFAC approach reveals molecular size distributions of fluorescent components in dissolved organic matter

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin

    2017-01-01

    Molecular size plays an important role in dissolved organic matter (DOM) biogeochemistry, but its relationship with the fluorescent fraction of DOM (FDOM) remains poorly resolved. Here high-performance size exclusion chromatography (HPSEC) was coupled to fluorescence emission-excitation (EEM...... but not their spectral properties. Thus, in contrast to absorption measurements, bulk fluorescence is unlikely to reliably indicate the average molecular size of DOM. The one-sample approach enables robust and independent cross-site comparisons without large-scale sampling efforts and introduces new analytical...... opportunities for elucidating the origins and biogeochemical properties of FDOM...

  16. Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.

    Science.gov (United States)

    Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A

    2015-10-26

    Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pulsed glow discharge mass spectrometry for molecular depth profiling of polymers

    International Nuclear Information System (INIS)

    Lobo, L.; Pereiro, R.; Sanz-Medel, A.; Bordel, N.; Pisonero, J.; Licciardello, A.; Tuccitto, N.; Tempez, A.; Chapon, P.

    2009-01-01

    Full text: Nowadays thin films of polymeric materials involve a wide range of industrial applications, so techniques capable of providing in-depth profile information are required. Most of the techniques available for this purpose are based on the use of energetic particle beams which interact with polymers producing undesirable physicochemical modifications. Radiofrequency pulsed glow discharge (rf-pulsed-GD) coupled to time-of-flight mass spectrometry (TOFMS) could afford the possibility of acquiring both elemental and molecular information creating minimal damage to surfaces and thereby obtaining depth profiles. This work will evaluate rf-GDs coupled to an orthogonal TOFMS for direct analysis of polymers. (author)

  18. MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION σ {sub v} AND X-RAY Y {sub X} MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, S.; Saro, A.; Mohr, J. J.; Bazin, G.; Chiu, I.; Desai, S. [Department of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ashby, M. L. N.; Bayliss, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bautz, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Benson, B. A. [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Cho, H. M. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Clocchiatti, A. [Departamento de Astronomia y Astrosifica, Pontificia Universidad Catolica (Chile); De Haan, T., E-mail: bocquet@usm.lmu.de [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); and others

    2015-02-01

    We present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg{sup 2} of the survey along with 63 velocity dispersion (σ {sub v}) and 16 X-ray Y {sub X} measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σ {sub v} and Y {sub X} are consistent at the 0.6σ level, with the σ {sub v} calibration preferring ∼16% higher masses. We use the full SPT{sub CL} data set (SZ clusters+σ {sub v}+Y {sub X}) to measure σ{sub 8}(Ω{sub m}/0.27){sup 0.3} = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is ∑m {sub ν} = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger ∑m {sub ν} further reconciles the results. When we combine the SPT{sub CL} and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the Y {sub X} calibration and 0.8σ higher than the σ {sub v} calibration. Given the scale of these shifts (∼44% and ∼23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ω{sub m} = 0.299 ± 0.009 and σ{sub 8} = 0.829 ± 0.011. Within a νCDM model we find ∑m {sub ν} = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation

  19. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs.

    Directory of Open Access Journals (Sweden)

    Dimitar V Pachov

    2015-07-01

    Full Text Available Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key

  20. Trace analysis of plutonium in environmental samples by resonance ionization mass spectroscopy (RIMS)

    International Nuclear Information System (INIS)

    Erdmann, N.; Herrmann, G.; Huber, G.; Koehler, S.; Kratz, J.V.; Mansel, A.; Nunnemann, M.; Passler, G.; Trautmann, N.; Waldek, A.

    1997-01-01

    Trace amounts of plutonium in the environment can be detected by resonance ionization mass spectroscopy (RIMS). An atomic beam of plutonium is produced after its chemical separation and deposition on a filament. The atoms are ionized by a three-step excitation using pulsed dye-lasers. The ions are mass-selectively detected in a time-of-flight (TOF) mass spectrometer. With this setup a detection limit of 1·10 6 atoms of plutonium has been achieved. Furthermore, the isotopic composition can be determined. Different samples, including soil from the Chernobyl area, IAEA-certified sediments from the Mururoa Atoll and urine, have been investigated. copyright 1997 American Institute of Physics

  1. Poly[n]catenanes: Synthesis of molecular interlocked chains

    Science.gov (United States)

    Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong; Wojtecki, Rudy J.; de Pablo, Juan J.; Hore, Michael J. A.; Rowan, Stuart J.

    2017-12-01

    As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (~75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass ~21.4 kilograms per mole) to a mixture of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.

  2. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for

  3. The fate of injectant coal in blast furnaces: The origin of extractable materials of high molecular mass in blast furnace carryover dusts

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.N.; Wu, L.; Paterson, N.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [University of London Imperial College of Science & Technology, London (United Kingdom). Dept. of Chemical Engineering

    2005-07-01

    The aim of the work was to investigate the fate of injectant coal in blast furnaces and the origin of extractable materials in blast furnace carryover dusts. Two sets of samples including injectant coal and the corresponding carryover dusts from a full sized blast furnace and a pilot scale rig have been examined. The samples were extracted using 1-methyl-2-pyrrolidinone (NMP) solvent and the extracts studied by size exclusion chromatography (SEC). The blast furnace carryover dust extracts contained high molecular weight carbonaceous material, of apparent mass corresponding to 10{sup 7}-10{sup 8} u, by polystyrene calibration. In contrast, the feed coke and char prepared in a wire mesh reactor under high temperature conditions did not give any extractable material. Meanwhile, controlled combustion experiments in a high-pressure wire mesh reactor suggest that the extent of combustion of injectant coal in the blast furnace tuyeres and raceways is limited by time of exposure and very low oxygen concentration. It is thus likely that the extractable, soot-like material in the blast furnace dust originated in tars is released by the injectant coal. Our results suggest that the unburned tars were thermally altered during the upward path within the furnace, giving rise to the formation of heavy molecular weight (soot-like) materials.

  4. Heat impact caused molecular level changes in solid and dissolved soil organic matter

    Science.gov (United States)

    Hofmann, Diana; Steffen, Bernhard; Eckhardt, Kai-Uwe; Leinweber, Peter

    2015-04-01

    resolution (used 400.000 at m/z 400 Da) and mass accuracy (≤ 1 ppm), simultaneously providing molecular level details of thousands of compounds. The characteristics and differences of the FTICR-MS spectra with as many as ten or more peaks at each nominal mass are discussed: heated samples showed considerable higher intensities of even numbered peaks. An in-house developed, automated post processing was used for further exploitation of the data with the aim of an unambiguous assignment of as many peaks as possible. Obtained mass lists were transformed for sorting and preparation/ interpretation of graphics like Kendrick and van Krevelen plots. The heat-treated solid samples show decreasing C/N ratios and the formation cyclic and N-heterocyclic compounds in good agreement among the various methods (Py-FIMS and C- and N-XANES). Detailed insight into the hot-water extracts by FTICR-MS showed clear qualitative as well as quantitative changes in the number and the intensity of nitrogen and nitrogen + sulfur containing compounds, respectively, which generally became enriched under soil heating. This demonstrates for the first time, that not only the bulk SOM is affected in structure by heat impact but also the more mobile DOM. We assume, that heat impact volatilizes and oxidizes parts of the organic substances is as expected but another part of the substances incorporates (further) nitrogen atom(s) similar to the generation of new compounds under the conditions of plasma etching in nitrogen atmosphere. This would explain to some extent, why soils are e.g. after fire clearing of vegetation are highly fertile for a short period (better plant acceptable compounds) but become more infertile in the long run, especially under tropical conditions with frequently heavy rain that would lead to an increased leaching of compounds with higher polarity.

  5. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers

    Science.gov (United States)

    Ferrer, I.; Lanza, F.; Tolokan, A.; Horvath, V.; Sellergren, B.; Horvai, G.; Barcelo, D.

    2000-01-01

    Two molecularly imprinted polymers were synthesized using either dichloromethane or toluene as the porogen and terbuthylazine as the template and were used as solid-phase extraction cartridges for the enrichment of six chlorotriazines (deisopropylatrazine, deethylatrazine, simazine, atrazine, propazine, and terbuthylazine) in natural water and sediment samples. The extracted samples were analyzed by liquid chromatography/diode array detection (LC/DAD). Several washing solvents, as well as different volumes, were tested for their ability to remove the matrix components nonspecifically adsorbed on the sorbents. This cleanup step was shown to be of prime importance to the successful extraction of the pesticides from the aqueous samples. The optimal analytical conditions were obtained when the MIP imprinted using dichloromethane was the sorbent, 2 mL of dichloromethane was used in the washing step, and the preconcentrated analytes were eluted with 8 mL of methanol. The recoveries were higher than 80% for all the chlorotriazines except for propazine (53%) when 50- or 100-mL groundwater samples, spiked at 1 ??g/L level, were analyzed. The limits of detection varied from 0.05 to 0.2 ??g/L when preconcentrating a 100-mL groundwater sample. Natural sediment samples from the Ebre Delta area (Tarragona, Spain) containing atrazine and deethylatrazine were Soxhlet extracted and analyzed by the methodology developed in this work. No significant interferences from the sample matrix were noticed, thus indicating good selectivity of the MIP sorbents used.

  6. Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study

    OpenAIRE

    Kourtchev, I; Godoi, RHM; Connors, S; Levine, JG; Archibald, AT; Godoi, AFL; Paralovo, SL; Barbosa, CGG; Souza, RAF; Manzi, AO; Seco, R; Sjostedt, S; Park, J-H; Guenther, A; Kim, S

    2016-01-01

    The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM$_{2.5}$ aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagr...

  7. De novo analysis of electron impact mass spectra using fragmentation trees

    International Nuclear Information System (INIS)

    Hufsky, Franziska; Rempt, Martin; Rasche, Florian; Pohnert, Georg; Böcker, Sebastian

    2012-01-01

    Highlights: ► We present a method for de novo analysis of accurate mass EI mass spectra of small molecules. ► This method identifies the molecular ion and thus the molecular formula where the molecular ion is present in the spectrum. ► Fragmentation trees are constructed by automated signal extraction and evaluation. ► These trees explain relevant fragmentation reactions. ► This method will be very helpful in the automated analysis of unknown metabolites. - Abstract: The automated fragmentation analysis of high resolution EI mass spectra based on a fragmentation tree algorithm is introduced. Fragmentation trees are constructed from EI spectra by automated signal extraction and evaluation. These trees explain relevant fragmentation reactions and assign molecular formulas to fragments. The method enables the identification of the molecular ion and the molecular formula of a metabolite if the molecular ion is present in the spectrum. These identifications are independent of existing library knowledge and, thus, support assignment and structural elucidation of unknown compounds. The method works even if the molecular ion is of very low abundance or hidden under contaminants with higher masses. We apply the algorithm to a selection of 50 derivatized and underivatized metabolites and demonstrate that in 78% of cases the molecular ion can be correctly assigned. The automatically constructed fragmentation trees correspond very well to published mechanisms and allow the assignment of specific relevant fragments and fragmentation pathways even in the most complex EI-spectra in our dataset. This method will be very helpful in the automated analysis of metabolites that are not included in common libraries and it thus has the potential to support the explorative character of metabolomics studies.

  8. Determination of Oxidized Phosphatidylcholines by Hydrophilic Interaction Liquid Chromatography Coupled to Fourier Transform Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pia Sala

    2015-04-01

    Full Text Available A novel liquid chromatography-mass spectrometry (LC-MS approach for analysis of oxidized phosphatidylcholines by an Orbitrap Fourier Transform mass spectrometer in positive electrospray ionization (ESI coupled to hydrophilic interaction liquid chromatography (HILIC was developed. This method depends on three selectivity criteria for separation and identification: retention time, exact mass at a resolution of 100,000 and collision induced dissociation (CID fragment spectra in a linear ion trap. The process of chromatography development showed the best separation properties with a silica-based Kinetex column. This type of chromatography was able to separate all major lipid classes expected in mammalian samples, yielding increased sensitivity of oxidized phosphatidylcholines over reversed phase chromatography. Identification of molecular species was achieved by exact mass on intact molecular ions and CID tandem mass spectra containing characteristic fragments. Due to a lack of commercially available standards, method development was performed with copper induced oxidation products of palmitoyl-arachidonoyl-phosphatidylcholine, which resulted in a plethora of lipid species oxidized at the arachidonoyl moiety. Validation of the method was done with copper oxidized human low-density lipoprotein (LDL prepared by ultracentrifugation. In these LDL samples we could identify 46 oxidized molecular phosphatidylcholine species out of 99 possible candidates.

  9. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption.

    Science.gov (United States)

    Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina

    2014-10-07

    Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation).

  10. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1983-01-01

    Galactic CO line emission at 115 GHz has been surveyed in the region 12 0 less than or equal to l less than or equal to 60 0 and -1 0 less than or equal to b less than or equal to 1 0 in order to study the distribution of molecular clouds in the inner galaxy; an inner strip 0 0 .5 wide has been sampled every beamwidth (0 0 .125), the rest every two beamwidths. Comparison of the survey with similar HI data reveals a detailed correlation with the most intense 21-cm features, implying that the CO and HI trace the same galactic features and have the same large-scale kinematics. To each of the classical 21-cm (HI) spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is developed in which all of the CO emission from the inner galaxy arises from spiral arms. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide. A variety of methods are employed to estimate distances and masses for the largest clouds detected by the inner-galaxy survey and a catalogue is compiled. The catalogued clouds, the largest of which have masses of several 10 6 M/sub sunmass/ and linear dimensions in excess of 100 pc, are found to be excellent spiral-arm tracers. One of the nearest of the clouds, that associated with the supernova remnant W44, is fully mapped in both CO and 13 CO and is discussed in detail

  11. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry.

    Science.gov (United States)

    Byliński, Hubert; Gębicki, Jacek; Dymerski, Tomasz; Namieśnik, Jacek

    2017-07-04

    One of the major sources of error that occur during chemical analysis utilizing the more conventional and established analytical techniques is the possibility of losing part of the analytes during the sample preparation stage. Unfortunately, this sample preparation stage is required to improve analytical sensitivity and precision. Direct techniques have helped to shorten or even bypass the sample preparation stage; and in this review, we comment of some of the new direct techniques that are mass-spectrometry based. The study presents information about the measurement techniques using mass spectrometry, which allow direct sample analysis, without sample preparation or limiting some pre-concentration steps. MALDI - MS, PTR - MS, SIFT - MS, DESI - MS techniques are discussed. These solutions have numerous applications in different fields of human activity due to their interesting properties. The advantages and disadvantages of these techniques are presented. The trends in development of direct analysis using the aforementioned techniques are also presented.

  12. Application of secondary ion mass spectrometry (SIMS) to biological sample analysis

    International Nuclear Information System (INIS)

    Tamura, Hifumi

    1990-01-01

    Some major issues and problems related with the analysis of biological samples are discussed, focusing on demonstrated and possible solutions and the application of secondary ion mass spectrometry (SIMS) to investigation of the composition of biological samples. The effective use of secondary electrons in combination with negative ions is most practical for the analysis of biological samples. Regardless of whether positive or negative ions are used, the electric potential at the surface of a sample stays around a constant value because of the absense of the accumulation of electric charges at the surface, leading to almost complete avoidance of the charging of the biological sample. A soft tissue sample can suffer damage to the tissue or migration of atoms in removing water from the sample. Some processes including fixation and freeze drying are available to prevent this. The application of SIMS to biological analysis is still in the basic research stage and further studies will be required to develop practical methods. Possible areas of its application include medicine, pathology, toxicology, pharmacology, plant physiology and other areas related with marine life and marine contamination. (N.K.)

  13. Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.

    Science.gov (United States)

    Fu, Qin; Kowalski, Michael P; Mastali, Mitra; Parker, Sarah J; Sobhani, Kimia; van den Broek, Irene; Hunter, Christie L; Van Eyk, Jennifer E

    2018-01-05

    Sample preparation for protein quantification by mass spectrometry requires multiple processing steps including denaturation, reduction, alkylation, protease digestion, and peptide cleanup. Scaling these procedures for the analysis of numerous complex biological samples can be tedious and time-consuming, as there are many liquid transfer steps and timed reactions where technical variations can be introduced and propagated. We established an automated sample preparation workflow with a total processing time for 96 samples of 5 h, including a 2 h incubation with trypsin. Peptide cleanup is accomplished by online diversion during the LC/MS/MS analysis. In a selected reaction monitoring (SRM) assay targeting 6 plasma biomarkers and spiked β-galactosidase, mean intraday and interday cyclic voltammograms (CVs) for 5 serum and 5 plasma samples over 5 days were samples repeated on 3 separate days had total CVs below 20%. Similar results were obtained when the workflow was transferred to a second site: 93% of peptides had CVs below 20%. An automated trypsin digestion workflow yields uniformly processed samples in less than 5 h. Reproducible quantification of peptides was observed across replicates, days, instruments, and laboratory sites, demonstrating the broad applicability of this approach.

  14. Cis-to- Trans Isomerization of Azobenzene Derivatives Studied with Transition Path Sampling and Quantum Mechanical/Molecular Mechanical Molecular Dynamics.

    Science.gov (United States)

    Muždalo, Anja; Saalfrank, Peter; Vreede, Jocelyne; Santer, Mark

    2018-04-10

    Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of

  15. Molecular analysis of intact preen waxes of Calidris canutus (Aves : Scolopacidae) by gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Dekker, MHA; Piersma, T; Damste, JSS; Dekker, Marlèn H.A.; Sinninghe Damsté, Jaap S.

    The intact preen wax esters of the red knot Calidris canutus were studied with gas chromatography/mass spectrometry (GC/MS) and GC/MS/MS. In this latter technique, transitions from the molecular ion to fragment ions representing the fatty acid moiety of the wax esters were measured, providing

  16. [Advances in mass spectrometry-based approaches for neuropeptide analysis].

    Science.gov (United States)

    Ji, Qianyue; Ma, Min; Peng, Xin; Jia, Chenxi; Ji, Qianyue

    2017-07-25

    Neuropeptides are an important class of endogenous bioactive substances involved in the function of the nervous system, and connect the brain and other neural and peripheral organs. Mass spectrometry-based neuropeptidomics are designed to study neuropeptides in a large-scale manner and obtain important molecular information to further understand the mechanism of nervous system regulation and the pathogenesis of neurological diseases. This review summarizes the basic strategies for the study of neuropeptides using mass spectrometry, including sample preparation and processing, qualitative and quantitative methods, and mass spectrometry imagining.

  17. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  18. Identification of the chemical constituents of Chinese medicine Yi-Xin-Shu capsule by molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation.

    Science.gov (United States)

    Wang, Hong-ping; Chen, Chang; Liu, Yan; Yang, Hong-Jun; Wu, Hong-Wei; Xiao, Hong-Bin

    2015-11-01

    The incomplete identification of the chemical components of traditional Chinese medicinal formula has been one of the bottlenecks in the modernization of traditional Chinese medicine. Tandem mass spectrometry has been widely used for the identification of chemical substances. Current automatic tandem mass spectrometry acquisition, where precursor ions were selected according to their signal intensity, encounters a drawback in chemical substances identification when samples contain many overlapping signals. Compounds in minor or trace amounts could not be identified because most tandem mass spectrometry information was lost. Herein, a molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation method for complex Chinese medicine chemical constituent analysis was developed. The precursor ions were selected according to their two-dimensional characteristics of retention times and mass-to-charge ratio ranges from herbal compounds, so that all precursor ions from herbal compounds were included and more minor chemical constituents in Chinese medicine were identified. Compared to the conventional automatic tandem mass spectrometry setups, the approach is novel and can overcome the drawback for chemical substances identification. As an example, 276 compounds from the Chinese Medicine of Yi-Xin-Shu capsule were identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Direct determination of trace rare earth elements in ancient porcelain samples with slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Xiang Guoqiang; Jiang Zucheng; He Man; Hu Bin

    2005-01-01

    A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 deg. C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l -1 . The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g -1 (Eu)-33.3 ng g -1 (Nd) with the precisions of 4.1% (Yb)-10% (La) (c = 1 μg l -1 , n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory

  20. The C242T polymorphism of the p22-phox gene (CYBA is associated with higher left ventricular mass in Brazilian hypertensive patients

    Directory of Open Access Journals (Sweden)

    Krieger José E

    2011-08-01

    Full Text Available Abstract Background Reactive oxygen species have been implicated in the physiopathogenesis of hypertensive end-organ damage. This study investigated the impact of the C242T polymorphism of the p22-phox gene (CYBA on left ventricular structure in Brazilian hypertensive subjects. Methods We cross-sectionally evaluated 561 patients from 2 independent centers [Campinas (n = 441 and Vitória (n = 120] by clinical history, physical examination, anthropometry, analysis of metabolic and echocardiography parameters as well as p22-phox C242T polymorphism genotyping. In addition, NADPH-oxidase activity was quantified in peripheral mononuclear cells from a subgroup of Campinas sample. Results Genotype frequencies in both samples were consistent with the Hardy- Weinberg equilibrium. Subjects with the T allele presented higher left ventricular mass/height2.7 than those carrying the CC genotype in Campinas (76.8 ± 1.6 vs 70.9 ± 1.4 g/m2.7; p = 0.009, and in Vitória (45.6 ± 1.9 vs 39.9 ± 1.4 g/m2.7; p = 0.023 samples. These results were confirmed by stepwise regression analyses adjusted for age, gender, blood pressure, metabolic variables and use of anti-hypertensive medications. In addition, increased NADPH-oxidase activity was detected in peripheral mononuclear cells from T allele carriers compared with CC genotype carriers (p = 0.03. Conclusions The T allele of the p22-phox C242T polymorphism is associated with higher left ventricular mass/height2.7 and increased NADPH-oxidase activity in Brazilian hypertensive patients. These data suggest that genetic variation within NADPH-oxidase components may modulate left ventricular remodeling in subjects with systemic hypertension.

  1. Planning schistosomiasis control: investigation of alternative sampling strategies for Schistosoma mansoni to target mass drug administration of praziquantel in East Africa.

    Science.gov (United States)

    Sturrock, Hugh J W; Gething, Pete W; Ashton, Ruth A; Kolaczinski, Jan H; Kabatereine, Narcis B; Brooker, Simon

    2011-09-01

    In schistosomiasis control, there is a need to geographically target treatment to populations at high risk of morbidity. This paper evaluates alternative sampling strategies for surveys of Schistosoma mansoni to target mass drug administration in Kenya and Ethiopia. Two main designs are considered: lot quality assurance sampling (LQAS) of children from all schools; and a geostatistical design that samples a subset of schools and uses semi-variogram analysis and spatial interpolation to predict prevalence in the remaining unsurveyed schools. Computerized simulations are used to investigate the performance of sampling strategies in correctly classifying schools according to treatment needs and their cost-effectiveness in identifying high prevalence schools. LQAS performs better than geostatistical sampling in correctly classifying schools, but at a cost with a higher cost per high prevalence school correctly classified. It is suggested that the optimal surveying strategy for S. mansoni needs to take into account the goals of the control programme and the financial and drug resources available.

  2. Crave, like, eat: determinants of food intake in a sample of children and adolescents with a wide range in body mass

    Directory of Open Access Journals (Sweden)

    Johannes Hofmann

    2016-09-01

    Full Text Available Obesity is heterogeneous condition with obese individuals displaying different eating patterns. Growing evidence suggests that there is a subgroup of obese adults that is marked by frequent and intense food cravings and addiction-like consumption of high-calorie foods. Little is known, however, about such a subgroup of obese individuals in childhood and adolescence. In the present study, a sample of children and adolescents with a wide range in body mass was investigated and trait food craving, liking for and intake of high- and low-calorie foods was measured. One-hundred and forty-two children and adolescents (51.4% female, n = 73; Mage = 13.7 years, SD = 2.25; MBMI-SDS = 1.26, SD = 1.50 completed the Food Cravings Questionnaire - Trait, then viewed pictures of high- and low-calorie foods and rated their liking for them, and subsequently consumed some of these foods in a bogus taste test. Contrary to expectations, higher body mass was associated with lower consumption of high-calorie foods. However, there was an interaction between body mass and trait food craving when predicting food consumption: in obese participants, higher trait food craving was associated with higher consumption of high-calorie foods and this association was not found in normal-weight participants. The relationship between trait food craving and high-calorie food consumption within obese individuals was mediated by higher liking for high-calorie foods (but not by liking for low-calorie foods. Thus, similar to adults, a subgroup of obese children and adolescents - characterized by high trait food craving - seems to exist, calling for specific targeted treatment strategies.

  3. Origin of low-molecular mass aldehydes as disinfection by-products in beverages.

    Science.gov (United States)

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2017-09-01

    A novel, simple and automatic method based on static headspace-gas chromatography-mass spectrometry has been developed to determine 10 low-molecular mass aldehydes that can be found in beverages, coming from the treated water used in their production. These aldehydes are the most frequently found in treated water as water disinfection by-products, so they can be used as indicators of the addition of treated water to beverages. The study covered a large number of fruit juices and soft drinks. The presence of the whole array of analytes is related to the contact with treated water during beverage production, mainly by the addition of treated water as ingredient. In particular, propionaldehyde, valeraldehyde and benzaldehyde can be used as indicators of the addition of treated water in these kinds of beverages. Among the ten aldehydes, only formaldehyde and acetaldehyde are naturally present in all kinds of fruit, and their concentrations are related to stage of the ripening of the fruit.

  4. A retrospective cross-sectional quantitative molecular approach in biological samples from patients with syphilis.

    Science.gov (United States)

    Pinto, Miguel; Antelo, Minia; Ferreira, Rita; Azevedo, Jacinta; Santo, Irene; Borrego, Maria José; Gomes, João Paulo

    2017-03-01

    Syphilis is the sexually transmitted disease caused by Treponema pallidum, a pathogen highly adapted to the human host. As a multistage disease, syphilis presents distinct clinical manifestations that pose different implications for diagnosis. Nevertheless, the inherent factors leading to diverse disease progressions are still unknown. We aimed to assess the association between treponemal loads and dissimilar disease outcomes, to better understand syphilis. We retrospectively analyzed 309 DNA samples distinct anatomic sites associated with particular syphilis manifestations. All samples had previously tested positive by a PCR-based diagnostic kit. An absolute quantitative real-time PCR procedure was used to precisely quantify the number of treponemal and human cells to determine T. pallidum loads in each sample. In general, lesion exudates presented the highest T. pallidum loads in contrast with blood-derived samples. Within the latter, a higher dispersion of T. pallidum quantities was observed for secondary syphilis. T. pallidum was detected in substantial amounts in 37 samples of seronegative individuals and in 13 cases considered as syphilis-treated. No association was found between treponemal loads and serological results or HIV status. This study suggests a scenario where syphilis may be characterized by: i) heterogeneous and high treponemal loads in primary syphilis, regardless of the anatomic site, reflecting dissimilar duration of chancres development and resolution; ii) high dispersion of bacterial concentrations in secondary syphilis, potentially suggesting replication capability of T. pallidum while in the bloodstream; and iii) bacterial evasiveness, either to the host immune system or antibiotic treatment, while remaining hidden in privileged niches. This work highlights the importance of using molecular approaches to study uncultivable human pathogens, such as T. pallidum, in the infection process. Copyright © 2017 Elsevier Ltd. All rights

  5. Analysis of arsenic and calcium in soil samples by laser ablation mass spectrometry

    International Nuclear Information System (INIS)

    Beccaglia, Ana M.; Rinaldi, Carlos A.; Ferrero, Juan C.

    2006-01-01

    We present an analytical procedure based on laser ablation mass spectrometry (LAMS) in order to detect and quantify arsenic and calcium in soil samples and we analyze the diverse factors that influence the precision of LAMS, such as laser fluence and matrix effect. The results indicate that a Zn matrix is a good choice for the analysis of those metals in soil samples. This work also provides a method for the direct determination of As in soil samples whose concentrations are lower than 100 ppm with a 70 ppm minimum detection limits (MDL)

  6. Gas chromatographic/mass spectrometric determination of carbon isotope composition in unpurified samples: methamphetamine example.

    Science.gov (United States)

    Low, I A; Liu, R H; Legendre, M G; Piotrowski, E G; Furner, R L

    1986-10-01

    A gas chromatograph/quadrupole mass spectrometer system, operated in electron impact/selected ion monitoring mode, is used to determine the intensity ratio of the m/z 59 and the m/z 58 ions of the [C3H8N]+ fragment derived from methamphetamine samples synthesized with varying amounts of 13C-labeled methylamine. Crude products are introduced into the gas chromatograph without prior cleanup. The ratios measured were in excellent agreement with those calculated. A change in 0.25% use of 13C-methylamine is sufficient for product differentiation. The feasibility of using isotope labeling and subsequent mass spectrometric isotope ratio measurement as the basis of a compound tracing mechanism is discussed. Specifically, if methamphetamine samples manufactured from legal sources are asked to incorporate distinct 13C compositions, their sources can be traced when samples are diverted into illegal channels. Samples derived from illicit preparations can also be traced if the manufacturers of a precursor (methylamine in this case) incorporate distinct 13C compositions in their products.

  7. KINEMATIC STRUCTURE OF MOLECULAR GAS AROUND HIGH-MASS YSO, PAPILLON NEBULA, IN N159 EAST IN THE LARGE MAGELLANIC CLOUD: A NEW PERSPECTIVE WITH ALMA

    International Nuclear Information System (INIS)

    Saigo, Kazuya; Harada, Ryohei; Kawamura, Akiko; Onishi, Toshikazu; Tokuda, Kazuki; Morioka, Yuuki; Nayak, Omnarayani; Meixner, Margaret; Sewiło, Marta; Indebetouw, Remy; Torii, Kazufumi; Ohama, Akio; Hattori, Yusuke; Yamamoto, Hiroaki; Tachihara, Kengo; Minamidani, Tetsuhiro; Inoue, Tsuyoshi; Madden, Suzanne; Lebouteiller, Vianney; Galametz, Maud

    2017-01-01

    We present the ALMA Band 3 and Band 6 results of 12 CO(2-1), 13 CO(2-1), H30 α recombination line, free–free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star-forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ∼1 pc and several parsecs. The total molecular mass is 0.92 × 10 5 M ⊙ from the 13 CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation H ii region. We found that a YSO associated with the Papillon Nebula has the mass of 35 M ⊙ and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. reported a similar kinematic structure toward two YSOs in the N159 West region, which are the other YSOs that have the mass of ≳35 M ⊙ . This suggests that the collision of filamentary clouds is a primary mechanism of high-mass star formation. We found a small molecular hole around the YSO in Papillon Nebula with a sub-parsec scale. It is filled by free–free and H30 α emission. The temperature of the molecular gas around the hole reaches ∼80 K. It indicates that this YSO has just started the distruction of parental molecular cloud.

  8. KINEMATIC STRUCTURE OF MOLECULAR GAS AROUND HIGH-MASS YSO, PAPILLON NEBULA, IN N159 EAST IN THE LARGE MAGELLANIC CLOUD: A NEW PERSPECTIVE WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Saigo, Kazuya; Harada, Ryohei; Kawamura, Akiko [Chile Observatory, National Astronomical Observatory of Japan, National Institutes of Natural Science, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Onishi, Toshikazu; Tokuda, Kazuki; Morioka, Yuuki [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Nayak, Omnarayani; Meixner, Margaret [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Sewiło, Marta [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Indebetouw, Remy [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Torii, Kazufumi; Ohama, Akio; Hattori, Yusuke; Yamamoto, Hiroaki; Tachihara, Kengo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Minamidani, Tetsuhiro [Nobeyama Radio Observatory, 462-2 Nobeyama Minamimaki-mura, Minamisaku-gun, Nagano 384-1305 (Japan); Inoue, Tsuyoshi [Division of Theoretical Astronomy, National Astronomical Observatory (Japan); Madden, Suzanne; Lebouteiller, Vianney [Laboratoire AIM, CEA, Universite Paris VII, IRFU/Service d’Astrophysique, Bat. 709, F-91191 Gif-sur-Yvette (France); Galametz, Maud [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); and others

    2017-01-20

    We present the ALMA Band 3 and Band 6 results of {sup 12}CO(2-1), {sup 13}CO(2-1), H30 α recombination line, free–free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star-forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ∼1 pc and several parsecs. The total molecular mass is 0.92 × 10{sup 5} M {sub ⊙} from the {sup 13}CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation H ii region. We found that a YSO associated with the Papillon Nebula has the mass of 35 M {sub ⊙} and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. reported a similar kinematic structure toward two YSOs in the N159 West region, which are the other YSOs that have the mass of ≳35 M {sub ⊙}. This suggests that the collision of filamentary clouds is a primary mechanism of high-mass star formation. We found a small molecular hole around the YSO in Papillon Nebula with a sub-parsec scale. It is filled by free–free and H30 α emission. The temperature of the molecular gas around the hole reaches ∼80 K. It indicates that this YSO has just started the distruction of parental molecular cloud.

  9. A photoionization study of hydrogen-bound clusters in a supersonic molecular beam

    International Nuclear Information System (INIS)

    Cook, K.D.; Jones, G.G.; Taylor, J.W.

    1980-01-01

    Hydrogen bonding of methanol, methanol-d, ethanol, and trifluoroethanol is investigated with a supersonic molecular beam as a sampling system for a photoionization quadrupole mass spectrometer. Monochromatized vacuum ultraviolet synchrotron radiation is used as the ionizing source. Cluster ions belonging to the series (ROH)sub(n)H + are detected when sampling up to 100-torr alcohol vapor with the molecular beam. No parent cluster molecular ions are detected. Experiments are described which exclude ion-molecule reactions in the mass spectrometer ion source as a possible origin of the cluster ions. Experimental evidence shows that nozzle temperature primarily influences the equilibrium distribution of clusters present in the nozzle source. From the dependences of relative cluster ion intensities on nozzle source temperature, the heats of formation of oligomers of the alcohols are estimated. Cooperative hydrogen bonding is not detected, expect for trifluoroethanol, where the trimer is found to be the most stable cluster. (orig.)

  10. Molecular gas in dusty high-redshift galaxies

    Science.gov (United States)

    Sharon, Chelsea Electra

    2013-12-01

    We present high-resolution observations of carbon monoxide (CO) emission lines for three high-redshift galaxies in order to determine their molecular gas and star formation properties. These galaxies (SMM J14011+0252, SMM J00266+1708, and SDSS J0901+1814) have large infrared luminosities, which imply high dust enshrouded star formation rates and substantial molecular gas masses. We observed these sources using the Robert C. Byrd Green Bank Telescope, the Karl G. Jansky Very Large Array, the Plateau de Bure Interferometer, and the Submillimeter Array in order to obtain measurements of multiple CO spectral lines, allowing us to determine the physical conditions of the molecular gas. Our high resolution and multi-line CO mapping of SMM J00266+1708 reveals that it is a pair of merging galaxies, whose two components have different gas excitation conditions and different gas kinematics. For SMM J14011+0252 (J14011), we find a near-unity CO(3--2)/CO(1--0) intensity ratio, consistent with a single phase (i.e., a single temperature and density) of molecular gas and different from the average population value for dusty galaxies selected at submillimeter wavelengths. Our radiative transfer modeling (using the large velocity gradient approximation) indicates that converting the CO line luminosity to molecular gas mass requires a Galactic (disk-like) scale factor rather than the typical conversion factor assumed for starbursts. Despite this choice of conversion factor, J14011 falls in the same region of star formation rate surface density and gas mass surface density (the Schmidt-Kennicutt relation) as other starburst galaxies. SDSS J0901+1814 (J0901) was initially selected as a star-forming galaxy at ultraviolet wavelengths, but also has a large infrared luminosity. We use the magnification provided by the strong gravitational lensing affecting this system to examine the spatial variation of the CO excitation within J0901. We find that the CO(3--2)/CO(1--0) line ratio is

  11. Direct trace-elemental analysis of urine samples by laser ablation-inductively coupled plasma mass spectrometry after sample deposition on clinical filter papers.

    Science.gov (United States)

    Aramendía, Maite; Rello, Luis; Vanhaecke, Frank; Resano, Martín

    2012-10-16

    Collection of biological fluids on clinical filter papers shows important advantages from a logistic point of view, although analysis of these specimens is far from straightforward. Concerning urine analysis, and particularly when direct trace elemental analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is aimed at, several problems arise, such as lack of sensitivity or different distribution of the analytes on the filter paper, rendering obtaining reliable quantitative results quite difficult. In this paper, a novel approach for urine collection is proposed, which circumvents many of these problems. This methodology consists on the use of precut filter paper discs where large amounts of sample can be retained upon a single deposition. This provides higher amounts of the target analytes and, thus, sufficient sensitivity, and allows addition of an adequate internal standard at the clinical lab prior to analysis, therefore making it suitable for a strategy based on unsupervised sample collection and ulterior analysis at referral centers. On the basis of this sampling methodology, an analytical method was developed for the direct determination of several elements in urine (Be, Bi, Cd, Co, Cu, Ni, Sb, Sn, Tl, Pb, and V) at the low μg L(-1) level by means of LA-ICPMS. The method developed provides good results in terms of accuracy and LODs (≤1 μg L(-1) for most of the analytes tested), with a precision in the range of 15%, fit-for-purpose for clinical control analysis.

  12. Determination of average molecular weights on organic reactor coolants. I.- Freezing-point depression method for benzene solutions; Determinaciond e masas moleculares medias en refrigerantes nucleares organicos. I.- Crioscopia de disolucion bencenicas

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, M

    1965-07-01

    As a working method for determination of changes in molecular mass that may occur by irradiation (pyrolytic-radiolytic decomposition) of polyphenyl reactor coolants, a cryoscopic technique has been developed which associated the basic simplicity of Beckman's method with some experimental refinements taken out of the equilibrium methods. A total of 18 runs were made on samples of napthalene, biphenyl, and the commercial mixtures OM-2 (Progil) and Santowax-R (Monsanto), with an average deviation from the theoretical molecular mass of 0.6%. (Author) 7 refs.

  13. Determination of average molecular weights on organic reactor coolants. I.- Freezing-point depression method for benzene solutions; Determinaciond e masas moleculares medias en refrigerantes nucleares organicos. I.- Crioscopia de disolucion bencenicas

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, M.

    1965-07-01

    As a working method for determination of changes in molecular mass that may occur by irradiation (pyrolytic-radiolytic decomposition) of polyphenyl reactor coolants, a cryoscopic technique has been developed which associated the basic simplicity of Beckman's method with some experimental refinements taken out of the equilibrium methods. A total of 18 runs were made on samples of napthalene, biphenyl, and the commercial mixtures OM-2 (Progil) and Santowax-R (Monsanto), with an average deviation from the theoretical molecular mass of 0.6%. (Author) 7 refs.

  14. Oligo-Alginate with Low Molecular Mass Improves Growth and Physiological Activity of Eucomis autumnalis under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2018-04-01

    Full Text Available Biopolymers have become increasingly popular as biostimulators of plant growth. One of them, oligo-alginate, is a molecule that regulates plant biological processes and may be used in horticultural practice as a plant growth regulator. Biostimulators are mainly used to improve plant tolerance to abiotic stresses, including salinity. The aim of the study was to assess the effects of salinity and oligo-alginate of various molecular masses on the growth and physiological activity of Eucomis autumnalis. The species is an ornamental and medicinal plant that has been used for a long time in the traditional medicine of South Africa. The bulbs of E. autumnalis were coated using depolymerized sodium alginate of molecular mass 32,000; 42,000, and 64,000 g mol−1. All of these oligo-alginates fractions stimulated plant growth, and the effect was the strongest for the fraction of 32,000 g mol−1. This fraction was then selected for the second stage of the study, when plants were exposed to salt stress evoked by the presence of 100 mM NaCl. We found that the oligo-alginate coating mitigated the negative effects of salinity. Plants treated with the oligomer and watered with NaCl showed smaller reduction in the weight of the above-ground parts and bulbs, pigment content and antioxidant activity as compared with those not treated with the oligo-alginate. The study demonstrated for the first time that low molecular mass oligo-alginate may be used as plant biostimulator that limits negative effects of salinity in E. autumnalis.

  15. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  16. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.; Trevor, D.J.; Lee, Y.T.; Shirley, D.A.

    1981-01-01

    A high-resolution photoelectron spectrometer which uses molecular beam sampling is described. Photons from a rare-gas resonance lamp or UV laser are crossed with the beam from a differentially pumped supersonic nozzle source. The resulting photoelectrons are collected by an electrostatic analyzer of a unique design consisting of a 90 0 spherical sector preanalyzer, a system of lenses, and a 180 0 hemispherical deflector. A multichannel detection system based on dual microchannel plates with a resistive anode position encoder provides an increase in counting efficiency by a factor of 12 over the equivalent single channel detector. The apparatus has demonstrated an instrumental resolution of better than 10 meV FWHM, limited largely by the photon source linewidth. A quadrupole mass spectrometer is used to characterize the composition of the molecular beam. Extensive differential pumping is provided to protect the critical surfaces of the analyzer and mass spectrometer from contamination. Because of the near elimination of Doppler and rotational broadenings, the practical resolution is the highest yet obtained in molecular PES

  17. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Deves, Guillaume [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)]. E-mail: deves@cenbg.in2p3.fr; Cohen-Bouhacina, Touria [Centre de Physique Moleculaire Optique et Hertzienne, Universite de Bordeaux 1, 351, cours de la Liberation, F33405 Talence cedex (France); Ortega, Richard [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)

    2004-10-08

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm)

  18. Inorganic mass spectrometry of solid samples

    International Nuclear Information System (INIS)

    Adams, F.; Vertes, A.

    1990-01-01

    In this review some recent developments in the field of inorganic mass spectrometry of solids are described with special emphasis on the actual state of understanding of the ionization processes. It concentrates on the common characteristics of methods such as spark source-, laser-, secondary ion-, inductively coupled plasma- and glow discharge mass spectrometry. (orig.)

  19. Improved analytical sensitivity for uranium and plutonium in environmental samples: Cavity ion source thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Ingeneri, Kristofer; Riciputi, L.

    2001-01-01

    Following successful field trials, environmental sampling has played a central role as a routine part of safeguards inspections since early 1996 to verify declared and to detect undeclared activity. The environmental sampling program has brought a new series of analytical challenges, and driven a need for advances in verification technology. Environmental swipe samples are often extremely low in concentration of analyte (ng level or lower), yet the need to analyze these samples accurately and precisely is vital, particularly for the detection of undeclared nuclear activities. Thermal ionization mass spectrometry (TIMS) is the standard method of determining isotope ratios of uranium and plutonium in the environmental sampling program. TIMS analysis typically employs 1-3 filaments to vaporize and ionize the sample, and the ions are mass separated and analyzed using magnetic sector instruments due to their high mass resolution and high ion transmission. However, the ionization efficiency (the ratio of material present to material actually detected) of uranium using a standard TIMS instrument is low (0.2%), even under the best conditions. Increasing ionization efficiency by even a small amount would have a dramatic impact for safeguards applications, allowing both improvements in analytical precision and a significant decrease in the amount of uranium and plutonium required for analysis, increasing the sensitivity of environmental sampling

  20. Solvent Composition-Dependent Signal-Reduction of Molecular Ions Generated from Aromatic Compounds in (+) Atmospheric Pressure Photo Ionization Mass Spectrometry.

    Science.gov (United States)

    Lee, Seulgidaun; Ahmed, Arif; Kim, Sunghwan

    2018-03-30

    The ionization process is essential for successful mass spectrometry (MS) analysis because of its influence on selectivity and sensitivity. In particular, certain solvents reduce the ionization of the analyte, thereby reducing the overall sensitivity in APPI. Since the sensitivity varies greatly depending on the solvents, a fundamental understanding of the mechanism is required. Standard solutions were analyzed by (+) Atmospheric pressure photo ionization (APPI) QExactive ion trap mass spectrometer (Thermo Scientific). Each solution was infused directly to the APPI source at a flow rate 100 μl/min and the APPI source temperature was 300 °C. Other operating mass spectrometric parameters were maintained under the same conditions. Quantum mechanical calculations were carried out using the Gaussian 09 suite program. Density functional theory was used to calculate the reaction enthalpies (∆H) of reaction between toluene and other solvents. The experimental and theoretical results showed good agreement. The abundances of analyte ions were well correlated with the calculated ∆H values. Therefore, the results strongly support the suggested signal reduction mechanism. In addition, linear correlations between the abundance of toluene and analyte molecular ions were observed, which also supports the suggested mechanism. A solvent composition-dependent signal reduction mechanism was suggested and evaluated for the (+) atmospheric pressure photo ionization (APPI) mass spectrometry analysis of poly-aromatic hydrocarbons (PAHs) generating mainly molecular ions. Overall, the evidence provided in this work suggests that reactions between solvent cluster(s) and toluene molecular ions are responsible for the observed signal reductions. This article is protected by copyright. All rights reserved.

  1. Automated, feature-based image alignment for high-resolution imaging mass spectrometry of large biological samples

    NARCIS (Netherlands)

    Broersen, A.; Liere, van R.; Altelaar, A.F.M.; Heeren, R.M.A.; McDonnell, L.A.

    2008-01-01

    High-resolution imaging mass spectrometry of large biological samples is the goal of several research groups. In mosaic imaging, the most common method, the large sample is divided into a mosaic of small areas that are then analyzed with high resolution. Here we present an automated alignment

  2. Sample preparation for accelerator mass spectrometry at the University of Washington

    International Nuclear Information System (INIS)

    Grootes, P.M.; Stuiver, M.; Farwell, G.W.; Schmidt, F.H.

    1981-01-01

    The adaptation of the University of Washington FN tandem Van de Graaff to accelerator mass spectrometry (AMS), as well as some of the results obtained, are described in another paper in this volume (Farwell et al., 1981). Here we discuss our experiences in preparing carbon and beryllium samples that give large and stable ion beams when used in our Extrion cesium sputter source with an inverted cesium beam geometry

  3. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry

    NARCIS (Netherlands)

    Muramoto, S.; Forbes, T.P.; van Asten, A.C.; Gillen, G.

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal

  4. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions

    Science.gov (United States)

    Vanbellingen, Quentin P.; Elie, Nicolas; Eller, Michael J.; Della‐Negra, Serge; Touboul, David

    2015-01-01

    Rationale In Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS), pulsed and focused primary ion beams enable mass spectrometry imaging, a method which is particularly useful to map various small molecules such as lipids at the surface of biological samples. When using TOF‐SIMS instruments, the focusing modes of the primary ion beam delivered by liquid metal ion guns can provide either a mass resolution of several thousand or a sub‐µm lateral resolution, but the combination of both is generally not possible. Methods With a TOF‐SIMS setup, a delayed extraction applied to secondary ions has been studied extensively on rat cerebellum sections in order to compensate for the effect of long primary ion bunches. Results The use of a delayed extraction has been proven to be an efficient solution leading to unique features, i.e. a mass resolution up to 10000 at m/z 385.4 combined with a lateral resolution of about 400 nm. Simulations of ion trajectories confirm the experimental determination of optimal delayed extraction and allow understanding of the behavior of ions as a function of their mass‐to‐charge ratio. Conclusions Although the use of a delayed extraction has been well known for many years and is very popular in MALDI, it is much less used in TOF‐SIMS. Its full characterization now enables secondary ion images to be recorded in a single run with a submicron spatial resolution and with a mass resolution of several thousand. This improvement is very useful when analyzing lipids on tissue sections, or rare, precious, or very small size samples. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26395603

  5. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies.

    Directory of Open Access Journals (Sweden)

    Jerome C Regier

    Full Text Available Higher-level relationships within the Lepidoptera, and particularly within the species-rich subclade Ditrysia, are generally not well understood, although recent studies have yielded progress. We present the most comprehensive molecular analysis of lepidopteran phylogeny to date, focusing on relationships among superfamilies.483 taxa spanning 115 of 124 families were sampled for 19 protein-coding nuclear genes, from which maximum likelihood tree estimates and bootstrap percentages were obtained using GARLI. Assessment of heuristic search effectiveness showed that better trees and higher bootstrap percentages probably remain to be discovered even after 1000 or more search replicates, but further search proved impractical even with grid computing. Other analyses explored the effects of sampling nonsynonymous change only versus partitioned and unpartitioned total nucleotide change; deletion of rogue taxa; and compositional heterogeneity. Relationships among the non-ditrysian lineages previously inferred from morphology were largely confirmed, plus some new ones, with strong support. Robust support was also found for divergences among non-apoditrysian lineages of Ditrysia, but only rarely so within Apoditrysia. Paraphyly for Tineoidea is strongly supported by analysis of nonsynonymous-only signal; conflicting, strong support for tineoid monophyly when synonymous signal was added back is shown to result from compositional heterogeneity.Support for among-superfamily relationships outside the Apoditrysia is now generally strong. Comparable support is mostly lacking within Apoditrysia, but dramatically increased bootstrap percentages for some nodes after rogue taxon removal, and concordance with other evidence, strongly suggest that our picture of apoditrysian phylogeny is approximately correct. This study highlights the challenge of finding optimal topologies when analyzing hundreds of taxa. It also shows that some nodes get strong support only when

  6. Molecular Weights of Bovine and Porcine Heparin Samples: Comparison of Chromatographic Methods and Results of a Collaborative Survey

    Directory of Open Access Journals (Sweden)

    Sabrina Bertini

    2017-07-01

    Full Text Available In a collaborative study involving six laboratories in the USA, Europe, and India the molecular weight distributions of a panel of heparin sodium samples were determined, in order to compare heparin sodium of bovine intestinal origin with that of bovine lung and porcine intestinal origin. Porcine samples met the current criteria as laid out in the USP Heparin Sodium monograph. Bovine lung heparin samples had consistently lower average molecular weights. Bovine intestinal heparin was variable in molecular weight; some samples fell below the USP limits, some fell within these limits and others fell above the upper limits. These data will inform the establishment of pharmacopeial acceptance criteria for heparin sodium derived from bovine intestinal mucosa. The method for MW determination as described in the USP monograph uses a single, broad standard calibrant to characterize the chromatographic profile of heparin sodium on high-resolution silica-based GPC columns. These columns may be short-lived in some laboratories. Using the panel of samples described above, methods based on the use of robust polymer-based columns have been developed. In addition to the use of the USP’s broad standard calibrant for heparin sodium with these columns, a set of conditions have been devised that allow light-scattering detected molecular weight characterization of heparin sodium, giving results that agree well with the monograph method. These findings may facilitate the validation of variant chromatographic methods with some practical advantages over the USP monograph method.

  7. Molecular Weights of Bovine and Porcine Heparin Samples: Comparison of Chromatographic Methods and Results of a Collaborative Survey.

    Science.gov (United States)

    Bertini, Sabrina; Risi, Giulia; Guerrini, Marco; Carrick, Kevin; Szajek, Anita Y; Mulloy, Barbara

    2017-07-19

    In a collaborative study involving six laboratories in the USA, Europe, and India the molecular weight distributions of a panel of heparin sodium samples were determined, in order to compare heparin sodium of bovine intestinal origin with that of bovine lung and porcine intestinal origin. Porcine samples met the current criteria as laid out in the USP Heparin Sodium monograph. Bovine lung heparin samples had consistently lower average molecular weights. Bovine intestinal heparin was variable in molecular weight; some samples fell below the USP limits, some fell within these limits and others fell above the upper limits. These data will inform the establishment of pharmacopeial acceptance criteria for heparin sodium derived from bovine intestinal mucosa. The method for MW determination as described in the USP monograph uses a single, broad standard calibrant to characterize the chromatographic profile of heparin sodium on high-resolution silica-based GPC columns. These columns may be short-lived in some laboratories. Using the panel of samples described above, methods based on the use of robust polymer-based columns have been developed. In addition to the use of the USP's broad standard calibrant for heparin sodium with these columns, a set of conditions have been devised that allow light-scattering detected molecular weight characterization of heparin sodium, giving results that agree well with the monograph method. These findings may facilitate the validation of variant chromatographic methods with some practical advantages over the USP monograph method.

  8. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples

    International Nuclear Information System (INIS)

    Zhu Rong; Zhao Wenhui; Zhai Meijuan; Wei Fangdi; Cai Zheng; Sheng Na; Hu Qin

    2010-01-01

    Highly selective molecularly imprinted layer-coated silica nanoparticles for bisphenol A (BPA) were synthesized by molecular imprinting technique with a sol-gel process on the supporter of silica nanoparticles. The BPA-imprinted silica nanoparticles were characterized by fourier transform infrared spectrometer, transmission electron microscope, dynamic adsorption and static adsorption tests. The equilibrium association constant, K a , and the apparent maximum number of binding sites, Q max , were estimated to be 1.25 x 10 5 mL μmol -1 and 16.4 μmol g -1 , respectively. The BPA-imprinted silica nanoparticles solid-phase extraction (SPE) column had higher selectivity for BPA than the commercial C18-SPE column. The results of the study indicated that the prepared BPA-imprinted silica nanoparticles exhibited high adsorption capacity and selectivity, and offered a fast kinetics for the rebinding of BPA. The BPA-imprinted silica nanoparticles were successfully used in SPE to selectively enrich and determine BPA from shampoo, bath lotion and cosmetic cream samples.

  9. Qualitative and quantitative analysis of heparin and low molecular weight heparins using size exclusion chromatography with multiple angle laser scattering/refractive index and inductively coupled plasma/mass spectrometry detectors.

    Science.gov (United States)

    Ouyang, Yilan; Zeng, Yangyang; Yi, Lin; Tang, Hong; Li, Duxin; Linhardt, Robert J; Zhang, Zhenqing

    2017-11-03

    Heparin, a highly sulfated glycosaminoglycan, has been used as a clinical anticoagulant over 80 years. Low molecular weight heparins (LMWHs), heparins partially depolymerized using different processes, are widely used as clinical anticoagulants. Qualitative molecular weight (MW) and quantitative mass content analysis are two important factors that contribute to LMWH quality control. Size exclusion chromatography (SEC), relying on multiple angle laser scattering (MALS)/refractive index (RI) detectors, has been developed for accurate analysis of heparin MW in the absence of standards. However, the cations, which ion-pair with the anionic polysaccharide chains of heparin and LMWHs, had not been considered in previous reports. In this study, SEC with MALS/RI and inductively coupled plasma/mass spectrometry detectors were used in a comprehensive analytical approach taking both anionic polysaccharide and ion-paired cations heparin products. This approach was also applied to quantitative analysis of heparin and LMWHs. Full profiles of MWs and mass recoveries for three commercial heparin/LMWH products, heparin sodium, enoxaparin sodium and nadroparin calcium, were obtained and all showed higher MWs than previously reported. This important improvement more precisely characterized the MW properties of heparin/LMWHs and potentially many other anionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. DENSE CORES IN THE PIPE NEBULA: AN IMPROVED CORE MASS FUNCTION

    International Nuclear Information System (INIS)

    Rathborne, J. M.; Lada, C. J.; Muench, A. A.; Alves, J. F.; Kainulainen, J.; Lombardi, M.

    2009-01-01

    In this paper, we derive an improved core mass function (CMF) for the Pipe Nebula from a detailed comparison between measurements of visual extinction and molecular-line emission. We have compiled a refined sample of 201 dense cores toward the Pipe Nebula using a two-dimensional threshold identification algorithm informed by recent simulations of dense core populations. Measurements of radial velocities using complimentary C 18 O (1-0) observations enable us to cull out from this sample those 43 extinction peaks that are either not associated with dense gas or are not physically associated with the Pipe Nebula. Moreover, we use the derived C 18 O central velocities to differentiate between single cores with internal structure and blends of two or more physically distinct cores, superposed along the same line of sight. We then are able to produce a more robust dense core sample for future follow-up studies and a more reliable CMF than was possible previously. We confirm earlier indications that the CMF for the Pipe Nebula departs from a single power-law-like form with a break or knee at M ∼ 2.7 ± 1.3 M sun . Moreover, we also confirm that the CMF exhibits a similar shape to the stellar initial mass function (IMF), but is scaled to higher masses by a factor of ∼4.5. We interpret this difference in scaling to be a measure of the star formation efficiency (22% ± 8%). This supports earlier suggestions that the stellar IMF may originate more or less directly from the CMF.

  11. Radiocarbon accelerator mass spectrometry (AMS) sample preparation laboratory in Brazil

    International Nuclear Information System (INIS)

    Macario, Kita D.; Gomes, Paulo R. S.; Anjos, Roberto M. dos; Linares, Roberto; Queiroz, Eduardo; Oliveira, Fabiana M. de; Cardozo, Laio; Carvalho, Carla R.A.

    2011-01-01

    Full text: For decades Accelerator Mass Spectrometry has been widely used for radiocarbon measurements all over the world with application in several fields of science from archaeology to geosciences. This technique provides ultrasensitive analysis of reduced size samples or even specific compounds since sample atoms are accelerated to high energies and measured using nuclear particle detectors. Sample preparation is extremely important for accurate radiocarbon measurement and includes chemical pre-treatment to remove all possible contaminants. For beam extraction in the accelerator ion source, samples are usually converted to graphite. In this work we report a new radiocarbon sample preparation facility installed at the Physics Institute of Universidade Federal Fluminense (UFF), in Brazil. At the Nuclear Chronology Laboratory (LACRON) samples are chemically treated and converted to carbon dioxide by hydrolysis or combustion. A stainless steel based vacuum line was constructed for carbon dioxide separation and graphitization is performed in sealed quartz tubes in a muffle oven. Successful graphite production is important to provide stable beam currents and to minimize isotopic fractionation. Performance tests for graphite production are currently under way and isotopic analysis will soon be possible with the acquisition of a Single Stage AMS System by our group. The Single Stage Accelerator produced by National Electrostatic Corporation is a 250 kV air insulated accelerator especially constructed to measure the amount of 14 C in small modern graphite samples to a precision of 0.3 % or better. With the installation of such equipment in the first half of 2012, UFF will be ready to perform the 14C -AMS technique. (author)

  12. Analysis of U and Pu resin bead samples with a single stage mass spectrometer

    International Nuclear Information System (INIS)

    Smith, D.H.; Walker, R.L.; Bertram, L.K.; Carter, J.A.

    1979-01-01

    Resin bead sampling enables the shipment of nanogram U and Pu quantities for analysis. Application of this sampling technique to safeguards was investigated with a single-stage mass spectrometer. Standards gave results in good agreement with NBS certified values. External precisions of +-0.5% were obtained on isotopic ratios of approx. 0.01; precisions on quantitative measurements are +-1.0%

  13. Analysis of radioactive mixed hazardous waste using derivatization gas chromatography/mass spectrometry, liquid chromatography, and liquid chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Campbell, J.A.; Lerner, B.D.; Bean, R.M.; Grant, K.E.; Lucke, R.B.; Mong, G.M.; Clauss, S.A.

    1994-08-01

    Six samples of core segments from Tank 101-SY were analyzed for chelators, chelator fragments, and several carboxylic acids by derivatization gas chromatography/mass spectrometry. The major components detected were ethylenediaminetetraacetic acid, nitroso-iminodiacetic acid, nitrilotriacetic acid, citric acid, succinic acid, and ethylenediaminetriacetic acid. The chelator of highest concentration was ethylenediaminetetraacetic acid in all six samples analyzed. Liquid chromatography was used to quantitate low molecular weight acids including oxalic, formic, glycolic, and acetic acids, which are present in the waste as acid salts. From 23 to 61% of the total organic carbon in the samples analyzed was accounted for by these acids

  14. Analysis of Frankincense in Archaeological Samples by Gas Chromatography-Mass Spectrometry

    International Nuclear Information System (INIS)

    Mathe, C.; Archier, P.; Vieillescazes, C.; Connan, J.; Mouton, M.

    2007-01-01

    Four archaeological samples, unearthed from Qana in Yemen were analysed by analytical technique, currently applied in the field of petroleum geochemistry, and by gas chromatography coupled with a mass spectrometer (GC-MS). Sample no 1286 comes from a burned warehouse and samples no 964, 963 and 962 from the central sanctuary. These specimens were probably exposed to a heating source. In each case olibanum resin was identified according to the presence of their chemical markers corresponding to α-, β-boswellic and lupeolic acids (3α-hydroxy-olean-12-en-24-oic, 3α-hydroxy-urs-12-en-24-oic and 3α-hydroxy-lup-20(29)en-24-oic acids) and their respective O-acetyled derivatives (3α- O-acetyl -olean-12-en-24-oic, 3α-O-acetyl-urs-12-en-24-oic and 3α-O-acetyl-lup-20(29)-en-24-oic acids). Concerning the thermal degradation state of samples, the GC-MS results are in agreement with the geochemical ones. Sample no 1286 and 964 correspond to ageing incense which has not undergone any heating action and are consequently relatively well preserved. Lastly, samples no 963 and 962 are thermally degraded resins and their gross composition data permits to conclude that sample no 963 is only partially burnt while sample no 962 has been much more degraded

  15. Galaxy pairs in the SDSS - XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers

    Science.gov (United States)

    Violino, Giulio; Ellison, Sara L.; Sargent, Mark; Coppin, Kristen E. K.; Scudder, Jillian M.; Mendel, Trevor J.; Saintonge, Amelie

    2018-05-01

    We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≤ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios ≤4, projected separations rp ≤ 30 kpc and velocity separations ΔV ≤ 300 km s-1, and have been selected to exhibit enhanced specific star formation rates (sSFRs). We calculate molecular gas (H2) masses, assigning to each galaxy a physically motivated conversion factor αCO, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS; Saintonge et al.) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H2 masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.

  16. The optimally sampled galaxy-wide stellar initial mass function. Observational tests and the publicly available GalIMF code

    Science.gov (United States)

    Yan, Zhiqiang; Jerabkova, Tereza; Kroupa, Pavel

    2017-11-01

    Here we present a full description of the integrated galaxy-wide initial mass function (IGIMF) theory in terms of the optimal sampling and compare it with available observations. Optimal sampling is the method we use to discretize the IMF deterministically into stellar masses. Evidence indicates that nature may be closer to deterministic sampling as observations suggest a smaller scatter of various relevant observables than random sampling would give, which may result from a high level of self-regulation during the star formation process. We document the variation of IGIMFs under various assumptions. The results of the IGIMF theory are consistent with the empirical relation between the total mass of a star cluster and the mass of its most massive star, and the empirical relation between the star formation rate (SFR) of a galaxy and the mass of its most massive cluster. Particularly, we note a natural agreement with the empirical relation between the IMF power-law index and the SFR of a galaxy. The IGIMF also results in a relation between the SFR of a galaxy and the mass of its most massive star such that, if there were no binaries, galaxies with SFR first time, we show optimally sampled galaxy-wide IMFs (OSGIMF) that mimic the IGIMF with an additional serrated feature. Finally, a Python module, GalIMF, is provided allowing the calculation of the IGIMF and OSGIMF dependent on the galaxy-wide SFR and metallicity. A copy of the python code model is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A126

  17. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Bert Lagrain

    Full Text Available The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS, the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC, and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%, the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and

  18. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-10-12

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158 molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).

  19. Accelerator mass spectrometry-current status in techniques and applications

    International Nuclear Information System (INIS)

    Imamura, Mineo; Nagai, Hisao; Kobayashi, Koichi.

    1991-01-01

    Accelerator mass spectrometry (AMS) is the mass spectrometry by incorporating an accelerator. After samples are ionized, they are accelerated to a certain energy, and mass, energy, nuclear charge (atomic number) are distinguished, and ion counting is made one by one with a heavy ion detector. For the measurement of long half-life radioisotopes, mass spectrometry has been used because of the high sensitivity, but in low energy mass spectrometry, there are the difficulties due to the mixing of the molecular ions having nearly same mass and the existence of isobars. One of the methods solving these difficulties is an accelerator which enables background-free measurement. The progress of AMS is briefly described, and at present, it is carried out in about 30 facilities in the world. In AMS, the analysis is carried out in the order of the ionization of samples, the acceleration of beam, the electron stripping with a thin film, the sorting of the momentum and energy of beam and the identification of particles. The efficiency, sensitivity and accuracy of detection and the application are reported. (K.I.)

  20. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels

    International Nuclear Information System (INIS)

    Meng, Liang; Meng, Pinjia; Zhang, Qingqing; Wang, Yanji

    2013-01-01

    Graphical abstract: A novel label-free colorimetric chemosensor: with the increase in the concentration of ketamine, the Bragg diffraction peak of MIPHs gradually shifted to the longer wavelength region. Accompanying the peak shift, the color change of MIPHs was also observed obviously: from green to red. Highlights: ► We developed the label-free colorimetric MIPHs for handy and fast screening of ketamine. ► The obvious color change of MIPHs was observed upon ketamine. ► The MIPHs exhibited good sensing abilities in an aqueous environment. ► The sensing mechanisms of the water-compatible MIPHs were investigated. ► The MIPHs were employed to screening ketamine in real biological samples. -- Abstract: A novel label-free colorimetric chemosensor was developed for handy and fast screening of ketamine with high sensitivity and specificity based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique. The unique inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of ketamine moleculars distributed allowed high sensitive, quick responsive, specific detection of the target analyte, and good regenerating ability in an aqueous environment. Due to the hierarchical inverse opal structural characteristics, the specific ketamine molecular recognition process can induce obvious swelling of the MIPHs to be directly transferred into visually perceptible optical signal (change in color) which can be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. In order to enhance the recognition ability in aqueous environments, the MIPHs were designed as water-compatible and synthesized in a water–methanol system. The molecular recognition mechanisms were investigated. The proposed MIPHs were successfully employed to screen trace level ketamine in human urine and saliva samples, exhibiting high sensitivity, rapid response, and specificity in the

  1. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Liang [Department of Forensic Science, People' s Public Security University of China, Beijing (China); Meng, Pinjia, E-mail: mengpinjia@163.com [Department of Forensic Science, People' s Public Security University of China, Beijing (China); Zhang, Qingqing; Wang, Yanji [Department of Forensic Science, People' s Public Security University of China, Beijing (China)

    2013-04-10

    Graphical abstract: A novel label-free colorimetric chemosensor: with the increase in the concentration of ketamine, the Bragg diffraction peak of MIPHs gradually shifted to the longer wavelength region. Accompanying the peak shift, the color change of MIPHs was also observed obviously: from green to red. Highlights: ► We developed the label-free colorimetric MIPHs for handy and fast screening of ketamine. ► The obvious color change of MIPHs was observed upon ketamine. ► The MIPHs exhibited good sensing abilities in an aqueous environment. ► The sensing mechanisms of the water-compatible MIPHs were investigated. ► The MIPHs were employed to screening ketamine in real biological samples. -- Abstract: A novel label-free colorimetric chemosensor was developed for handy and fast screening of ketamine with high sensitivity and specificity based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique. The unique inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of ketamine moleculars distributed allowed high sensitive, quick responsive, specific detection of the target analyte, and good regenerating ability in an aqueous environment. Due to the hierarchical inverse opal structural characteristics, the specific ketamine molecular recognition process can induce obvious swelling of the MIPHs to be directly transferred into visually perceptible optical signal (change in color) which can be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. In order to enhance the recognition ability in aqueous environments, the MIPHs were designed as water-compatible and synthesized in a water–methanol system. The molecular recognition mechanisms were investigated. The proposed MIPHs were successfully employed to screen trace level ketamine in human urine and saliva samples, exhibiting high sensitivity, rapid response, and specificity in the

  2. Direct coupling of a dense (supercritical) gas chromatograph to a mass spectrometer using a supersonic molecular beam interface

    International Nuclear Information System (INIS)

    Randall, L.G.; Wahrhaftig, A.L.

    1981-01-01

    A detecting mass spectrometer has been successfully coupled to a dense gas (supercritical fluid) chromatograph to produce an instrument (DGC/MS) that may be an alternative to high performance liquid chromatograph/mass spectrometer instruments (HPLC/MS) and gas chromatograph/mass spectrometer instruments (GC/MS) for analysis of involatile and/or thermally labile compounds. The mobile phase in DGC is a gas held at temperatures above the critical temperature and at pressures sufficient to obtain nearly liquid-like densities. DGC combines advantages of GC and HPLC: rapid separations, moderate operating temperatures, and analysis of involatile compounds. An advantage unique to DGC is the solvent power dependence upon pressure. While several groups have studied DGC, its development has been limited by the lack of a sensitive and selective detector. Hence, work has been directed towards the design and construction of a DGC/MS resulting in a trial instrument capable of chromatographic pressures of at least 300 atm and temperatures from 10 0 to 60 0 C. The DGC/MS coupling has been accomplished by the use of a supersonic molecular beam interface. This application of molecular beam formation appears to be unique in its requirements of a large pressure ratio (approx.10 8 ), low flow rates, and low final pressures. The authors outline characteristics of supersonic jets and molecular beams pertinent to the design of such an instrument. The interface which uses pumping speeds of 2400 and 1200 l/s in the beam forming chambers is described in detail, while the other components: the detecting mass spectrometer, the dense gas supply, and the DGC: are briefly described. Preliminary work with this instrument has established the feasibility of DGC/MS as an analytical technique and further development is recommended

  3. THE MAGELLANIC MOPRA ASSESSMENT (MAGMA). I. THE MOLECULAR CLOUD POPULATION OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Wong, Tony; Chu, You-Hua; Gruendl, Robert A.; Looney, Leslie W.; Seale, Jonathan; Welty, Daniel E.; Hughes, Annie; Maddison, Sarah; Ott, Jürgen; Muller, Erik; Fukui, Yasuo; Kawamura, Akiko; Mizuno, Yoji; Pineda, Jorge L.; Bernard, Jean-Philippe; Paradis, Deborah; Henkel, Christian; Klein, Ulrich

    2011-01-01

    We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. Targets were chosen based on a limiting CO flux and peak brightness as measured by the NANTEN survey. The observations were conducted with the ATNF Mopra Telescope as part of the Magellanic Mopra Assessment. We identify clouds as regions of connected CO emission and find that the distributions of cloud sizes, fluxes, and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL∝L –2 , suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a cloud's kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.

  4. Mixed-mode solid-phase extraction followed by acetylation and gas chromatography mass spectrometry for the reliable determination of trans-resveratrol in wine samples

    Energy Technology Data Exchange (ETDEWEB)

    Montes, R.; Garcia-Lopez, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Instituto de Investigacion y Analisis Alimentario, Universidad de Santiago de Compostela, Santiago de Compostela 15782 (Spain); Rodriguez, I., E-mail: isaac.rodriguez@usc.es [Departamento de Quimica Analitica, Nutricion y Bromatologia, Instituto de Investigacion y Analisis Alimentario, Universidad de Santiago de Compostela, Santiago de Compostela 15782 (Spain); Cela, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Instituto de Investigacion y Analisis Alimentario, Universidad de Santiago de Compostela, Santiago de Compostela 15782 (Spain)

    2010-07-12

    This work presents an advantageous analytical procedure for the accurate determination of free trans-resveratrol in red and white wines. The proposed method involves solid-phase extraction (SPE), acetylation of the analyte in aqueous media and further determination by gas chromatography (GC) with mass spectrometry detection (MS). The use of a mixed-mode SPE sorbent provides an improvement in the selectivity of the extraction step; moreover, the presence of several intense ions in the electron impact mass spectra of its acetyl derivative guarantees the unambiguous identification of trans-resveratrol. Considering a sample intake of 10 mL, the method provides a limit of quantification (LOQ) of 0.8 ng mL{sup -1} and linear responses for concentrations up to 2.5 {mu}g mL{sup -1}, referred to wine samples. The average recovery, estimated with samples fortified at different concentrations in the above range, was 99.6% and the inter-day precision stayed below 8%. Trans-resveratrol levels in the analyzed wines varied from 3.4 to 1810 ng mL{sup -1}. Cis-resveratrol was also found in all samples. In most cases, equal or higher responses were measured for this latter form than for the trans-isomer. The reduced form of resveratrol, dihydro-resveratrol, was systematically identified in red wines.

  5. Mixed-mode solid-phase extraction followed by acetylation and gas chromatography mass spectrometry for the reliable determination of trans-resveratrol in wine samples

    International Nuclear Information System (INIS)

    Montes, R.; Garcia-Lopez, M.; Rodriguez, I.; Cela, R.

    2010-01-01

    This work presents an advantageous analytical procedure for the accurate determination of free trans-resveratrol in red and white wines. The proposed method involves solid-phase extraction (SPE), acetylation of the analyte in aqueous media and further determination by gas chromatography (GC) with mass spectrometry detection (MS). The use of a mixed-mode SPE sorbent provides an improvement in the selectivity of the extraction step; moreover, the presence of several intense ions in the electron impact mass spectra of its acetyl derivative guarantees the unambiguous identification of trans-resveratrol. Considering a sample intake of 10 mL, the method provides a limit of quantification (LOQ) of 0.8 ng mL -1 and linear responses for concentrations up to 2.5 μg mL -1 , referred to wine samples. The average recovery, estimated with samples fortified at different concentrations in the above range, was 99.6% and the inter-day precision stayed below 8%. Trans-resveratrol levels in the analyzed wines varied from 3.4 to 1810 ng mL -1 . Cis-resveratrol was also found in all samples. In most cases, equal or higher responses were measured for this latter form than for the trans-isomer. The reduced form of resveratrol, dihydro-resveratrol, was systematically identified in red wines.

  6. Electrospray[+] tandem quadrupole mass spectrometry in the elucidation of ergot alkaloids chromatographed by HPLC: screening of grass or forage samples for novel toxic compounds.

    Science.gov (United States)

    Lehner, Andreas F; Craig, Morrie; Fannin, Neil; Bush, Lowell; Tobin, Tom

    2005-11-01

    , molecular weights of compounds newly revealed by mass spectrometry suggested ergosine, ergostine and ergoptine in four samples, for which standards were not available. Dehydrated products of ergotamine, ergocrystine and ergocornine were discovered, along with dihydrogenated ergocrystine and ergocryptine in seven of the samples, and the issue was raised as to whether dehydration was strictly an instrument-derived artifact. Finally, five of the samples, along with fescue seed standard, evidenced one or more of 14 new ergot alkaloids ranging in size from 381 to 611 molecular weight and with key mass spectral characteristics of ergot alkaloids, specifically the pair of peaks m/z 223 and 208, corresponding to the ergoline ring system and its demethylated variant, respectively. It is anticipated that findings such as these will provide impetus to future development of analytical methodology for these heretofore relatively rare ergot alkaloid species. Copyright 2005 John Wiley & Sons, Ltd

  7. Revisiting shape selectivity in liquid chromatography for polycyclic aromatic hydrocarbons (PAHs) - six-ring and seven-ring Cata-condensed PAH isomers of molecular mass 328 Da and 378 Da.

    Science.gov (United States)

    Oña-Ruales, Jorge O; Sander, Lane C; Wilson, Walter B; Wise, Stephen A

    2018-01-01

    The relationship of reversed-phase liquid chromatography (RPLC) retention on a polymeric C 18 stationary phase and the shape of polycyclic aromatic hydrocarbons (PAHs) was investigated for three-ring to seven-ring cata-condensed isomers. We report the first RPLC separation for six-ring and seven-ring cata-condensed PAH isomers. Correlations of LC retention and shape parameters (length-to-breath ratio, L/B and thickness, T) were investigated for 2 three-ring isomers (molecular mass 178 Da), 5 four-ring isomers (molecular mass 228 Da), 11 five-ring isomers (molecular mass 278 Da), 17 six-ring isomers (molecular mass 328 Da), and 20 seven-ring isomers (molecular mass 378 Da). Significant linear correlations were found for all isomer groups (r = 0.71 to 0.94). Nonplanarity of the PAH isomers was found to influence retention (i.e., nonplanar isomers eluting earlier than expected based on L/B) and linear correlations of retention vs. T for isomer groups containing nonplanar isomers were significant (r = 0.71 to 0.86). Graphical abstract.

  8. Sampling of high molecular weight hydrocarbons with adsorbent tubes

    International Nuclear Information System (INIS)

    Stroemberg, B.

    1996-12-01

    Adsorption tubes have been used to determine the content of hydrocarbons in gas samples from small scale combustion and gasification of biomass. Compounds from benzene (mw 78) to indeno (1,2,3-cd) pyrene (mw 276) have been examined. The results show that it is possible to analyze polyaromatic hydrocarbons (PAH) with 4 aromatic rings (mw 202). Detection limits for these compounds are 3 . PAH with higher molecule weight can be identified and quantified in samples with high amounts of PAH e.g. at gasification of biomass. Sampling on adsorption tubes is extremely quick and easy. The tube is inserted in the gas of interest and the sample is sucked through the tube with a pump. Sampling times of 2-10 minutes are often sufficient. High moisture content in the gas may result in losses of the most volatile compounds, when drying. Even very low concentrations of water in the tube may cause ice formation in the cold-trap and the sample will be destroyed. The analysis is unfortunately time-consuming because the desorption oven must be cooled between every analysis. This will reduce the number of samples which can be analyzed per day. The tubes can be stored for several weeks before analysis without deterioration. 4 refs, 5 figs, 3 tabs

  9. Mass spectrometric detection of siRNA in plasma samples for doping control purposes.

    Science.gov (United States)

    Kohler, Maxie; Thomas, Andreas; Walpurgis, Katja; Schänzer, Wilhelm; Thevis, Mario

    2010-10-01

    Small interfering ribonucleic acid (siRNA) molecules can effect the expression of any gene by inducing the degradation of mRNA. Therefore, these molecules can be of interest for illicit performance enhancement in sports by affecting different metabolic pathways. An example of an efficient performance-enhancing gene knockdown is the myostatin gene that regulates muscle growth. This study was carried out to provide a tool for the mass spectrometric detection of modified and unmodified siRNA from plasma samples. The oligonucleotides are purified by centrifugal filtration and the use of an miRNA purification kit, followed by flow-injection analysis using an Exactive mass spectrometer to yield the accurate masses of the sense and antisense strands. Although chromatography and sensitive mass spectrometric analysis of oligonucleotides are still challenging, a method was developed and validated that has adequate sensitivity (limit of detection 0.25-1 nmol mL(-1)) and performance (precision 11-21%, recovery 23-67%) for typical antisense oligonucleotides currently used in clinical studies.

  10. Molecular responses during cadmium-induced stress in Daphnia magna: Integration of differential gene expression with higher-level effects

    Energy Technology Data Exchange (ETDEWEB)

    Soetaert, Anneleen [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: anneleen.soetaert@ua.ac.be; Vandenbrouck, Tine [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Ven, Karlijn van der [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Maras, Marleen [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Remortel, Piet van [Department of Mathematics and Informatics, Intelligent Systems Laboratory, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp (Belgium); Blust, Ronny [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coen, Wim M. de [Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2007-07-20

    DNA microarrays offer great potential in revealing insight into mechanistic toxicity of contaminants. The aim of the present study was (i) to gain insight in concentration- and time-dependent cadmium-induced molecular responses by using a customized Daphnia magna microarray, and (ii) to compare the gene expression profiles with effects at higher levels of biological organization (e.g. total energy budget and growth). Daphnids were exposed to three cadmium concentrations (nominal value of 10, 50, 100 {mu}g/l) for two time intervals (48 and 96 h). In general, dynamic expression patterns were obtained with a clear increase of gene expression changes at higher concentrations and longer exposure duration. Microarray analysis revealed cadmium affected molecular pathways associated with processes such as digestion, oxygen transport, cuticula metabolism and embryo development. These effects were compared with higher-level effects (energy budgets and growth). For instance, next to reduced energy budgets due to a decline in lipid, carbohydrate and protein content, we found an up-regulated expression of genes related to digestive processes (e.g. {alpha}-esterase, cellulase, {alpha}-amylase). Furthermore, cadmium affected the expression of genes coding for proteins involved in molecular pathways associated with immune response, stress response, cell adhesion, visual perception and signal transduction in the present study.

  11. Utility of Higher Harmonics in Electrospray Ionization Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometry.

    Science.gov (United States)

    Dziekonski, Eric T; Johnson, Joshua T; McLuckey, Scott A

    2017-04-18

    Mass resolution (M/ΔM fwhm) is observed to linearly increase with harmonic order in a Fourier transform electrostatic linear ion trap (ELIT) mass spectrometer. This behavior was predicted by Grosshans and Marshall for frequency-multiple detection in a Fourier transform ion cyclotron resonance mass spectrometer only for situations when the prominent mechanism for signal decay is ion ejection from the trap. As the analyzer pressure in our ELIT chamber is relatively high, such that collisional scattering and collision-induced dissociation are expected to underlie much of the ion loss, we sought to explore the relationship between harmonic order and mass resolution. Mass resolutions of 36 900 (fundamental), 75 850 (2nd harmonic), and 108 200 (3rd harmonic) were obtained for GdO + (avg. m/z 173.919) with a transient length of 300 ms. To demonstrate that the mass resolution was truly increasing with harmonic order, the unresolved isotopes at the fundamental distribution of cytochrome c +8 (m/z ∼ 1549) were nearly baseline, resolved at the third harmonic (mass resolution ≈ 23 000) with a transient length of only 200 ms. This experiment demonstrates that, when the ion density is sufficiently low, ions with frequency differences of less than 4 Hz remain uncoalesced. Higher harmonics can be used to increase the effective mass resolution for a fixed transient length and thereby may enable the resolution of closely spaced masses, determination of a protein ion's charge state, and study of the onset of peak coalescence when the resolution at the fundamental frequency is insufficient.

  12. Selectivity and limitations of carbon sorption tubes for capturing siloxanes in biogas during field sampling.

    Science.gov (United States)

    Tansel, Berrin; Surita, Sharon C

    2016-06-01

    Siloxane levels in biogas can jeopardize the warranties of the engines used at the biogas to energy facilities. The chemical structure of siloxanes consists of silicon and oxygen atoms, alternating in position, with hydrocarbon groups attached to the silicon side chain. Siloxanes can be either in cyclic (D) or linear (L) configuration and referred with a letter corresponding to their structure followed by a number corresponding to the number of silicon atoms present. When siloxanes are burned, the hydrocarbon fraction is lost and silicon is converted to silicates. The purpose of this study was to evaluate the adequacy of activated carbon gas samplers for quantitative analysis of siloxanes in biogas samples. Biogas samples were collected from a landfill and an anaerobic digester using multiple carbon sorbent tubes assembled in series. One set of samples was collected for 30min (sampling 6-L gas), and the second set was collected for 60min (sampling 12-L gas). Carbon particles were thermally desorbed and analyzed by Gas Chromatography Mass Spectrometry (GC/MS). The results showed that biogas sampling using a single tube would not adequately capture octamethyltrisiloxane (L3), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). Even with 4 tubes were used in series, D5 was not captured effectively. The single sorbent tube sampling method was adequate only for capturing trimethylsilanol (TMS) and hexamethyldisiloxane (L2). Affinity of siloxanes for activated carbon decreased with increasing molecular weight. Using multiple carbon sorbent tubes in series can be an appropriate method for developing a standard procedure for determining siloxane levels for low molecular weight siloxanes (up to D3). Appropriate quality assurance and quality control procedures should be developed for adequately quantifying the levels of the higher molecular weight siloxanes in biogas with sorbent tubes

  13. The relation between specific baryon angular momentum and mass for a sample of nearby low-mass galaxies with resolved H I kinematics

    Science.gov (United States)

    Elson, E. C.

    2017-12-01

    This paper investigates the relationship between specific baryon angular momentum jb and baryon mass Mb for a sample of nearby late-type galaxies with resolved H I kinematics. This work roughly doubles the number of galaxies with Mb ≲ 1010 M⊙ used to study the jb-Mb relation. Most of the galaxies in the sample have their baryon mass dominated by their gas content, thereby offering jb and Mb measures that are relatively unaffected by uncertainties arising from the stellar mass-to-light ratio. Measured H I surface density radial profiles together with optical and rotation curve data from the literature are used to derive a best-fitting relation given by j_b=qM_b^{α }, with α = 0.62 ± 0.02 and log10 q = -3.35 ± 0.25. This result is consistent with the j_b∝ M_b^{2/3} relation that is theoretically expected and also measured by Obreschkow & Glazebrook for their full sample of THINGS spiral galaxies, yet differs to their steeper relation found for subsets with fixed bulge fraction. The 30 arcsec spatial resolution of the H I imaging used in this study is significantly lower than that of the THINGS imaging used by Obreschkow & Glazebrook, yet the results presented in this work are clearly shown to contain no significant systematic errors due to the low-resolution imaging.

  14. Selective extraction of dimethoate from cucumber samples by use of molecularly imprinted microspheres

    Directory of Open Access Journals (Sweden)

    Jiao-Jiao Du

    2015-06-01

    Full Text Available Molecularly imprinted polymers for dimethoate recognition were synthesized by the precipitation polymerization technique using methyl methacrylate (MMA as the functional monomer and ethylene glycol dimethacrylate (EGDMA as the cross-linker. The morphology, adsorption and recognition properties were investigated by scanning electron microscopy (SEM, static adsorption test, and competitive adsorption test. To obtain the best selectivity and binding performance, the synthesis and adsorption conditions of MIPs were optimized through single factor experiments. Under the optimized conditions, the resultant polymers exhibited uniform size, satisfactory binding capacity and significant selectivity. Furthermore, the imprinted polymers were successfully applied as a specific solid-phase extractants combined with high performance liquid chromatography (HPLC for determination of dimethoate residues in the cucumber samples. The average recoveries of three spiked samples ranged from 78.5% to 87.9% with the relative standard deviations (RSDs less than 4.4% and the limit of detection (LOD obtained for dimethoate as low as 2.3 μg/mL. Keywords: Molecularly imprinted polymer, Precipitation polymerization, Dimethoate, Cucumber, HPLC

  15. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping

    Science.gov (United States)

    Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph

    2017-06-01

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.

  16. Quality control in diagnostic molecular pathology in the Netherlands; proficiency testing for patient identification in tissue samples

    NARCIS (Netherlands)

    Thunnissen, F. B. J. M.; Tilanus, M. G. J.; Ligtenberg, M. J. L.; Nederlof, P. M.; Dinjens, W. N. M.; Meulemans, E.; van den Brule, A. J. C.; van Noesel, C. J. M.; de Leeuw, W. J. F.; Schuuring, E.

    2004-01-01

    Aims: To describe the evolution of proficiency testing for molecular diagnostic pathology with respect to determining unambiguously the patient identity of tissue samples by microsatellite analysis. Method: Four rounds of quality control exchanges of samples from different patients were sent with

  17. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    International Nuclear Information System (INIS)

    Siposova, Katarina; Pospiskova, Kristyna; Bednarikova, Zuzana; Safarik, Ivo; Safarikova, Mirka; Kubovcikova, Martina; Kopcansky, Peter; Gazova, Zuzana

    2017-01-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe 3 O 4 -based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15–20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15–20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran). - Highlights: • Interference of dextran- magnetite nanoparticles with insulin amyloid aggregation. • Nanoparticles inhibited insulin fibrillization and depolymerized insulin amyloid fibrils. • Size of nanoparticles significantly influences their anti-amyloid activities. • The most effective inhibition of insulin amyloid fibrillization was detected for the smallest nanoparticles. • Contrary, DC 50 values decreased with increasing size of nanoparticles.

  18. Direct Determination of Molecular Weight Distribution of Calf-Thymus DNAs and Study of Their Fragmentation under Ultrasonic and Low-Energy IR Irradiations. A Charge Detection Mass Spectrometry Investigation.

    Science.gov (United States)

    Halim, Mohammad A; Bertorelle, Franck; Doussineau, Tristan; Antoine, Rodolphe

    2018-06-09

    Calf-thymus (CT-DNA) is widely used as binding agent. The commercial samples are known to be "highly polymerized DNA" samples. CT-DNA is known to be fragile in particular upon ultrasonic wave irradiation. Degradation products might have dramatic consequence on its bio-sensing activity, and an accurate determination of the molecular weight distribution and stability of commercial samples is highly demanded. We investigated the sensitivity of charge detection mass spectrometry (CDMS), a single-molecule MS method, both with single-pass and ion trap CDMS ("Benner" trap) modes to the determination of the composition and stability (under multiphoton IR irradiation) of calf-thymus DNAs. We also investigated the changes of molecular weight distributions in the course of sonication by irradiating ultrasonic wave to CT-DNA. We report for the first time, the direct molecular weight (MW) distribution of DNA sodium salt from calf-thymus revealing two populations at high (~10 MDa) and low (~3 MDa) molecular weights. We evidence a transition between the high-MW to the low-MW distribution, confirming that the low-MW distribution results from degradation of CT-DNA. Finally, we report also IRMPD experiments carried out on trapped single-stranded linear DNAs from calf-thymus allowing to extract their activation energy for unimolecular dissociation. We show that single-pass CDMS is a direct, efficient and accurate MS-based approach to determine the composition of calf-thymus DNAs. Furthermore, ion trap CDMS allows us to evaluate the stability (both under multiphoton IR irradiation and in the course of sonication by irradiating ultrasonic wave) of calf-thymus DNAs. This article is protected by copyright. All rights reserved.

  19. Molecular Selectivity of Brown Carbon Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Roach, Patrick J.; Eckert, Peter A.; Gilles, Mary K.; Wang, Bingbing; Lee, Hyun Ji; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and micro-spectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene (LSOA) and a-pinene (PSOA). Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas were detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl- imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the a-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.

  20. Biomedical analysis of formalin-fixed, paraffin-embedded tissue samples: The Holy Grail for molecular diagnostics.

    Science.gov (United States)

    Donczo, Boglarka; Guttman, Andras

    2018-06-05

    More than a century ago in 1893, a revolutionary idea about fixing biological tissue specimens was introduced by Ferdinand Blum, a German physician. Since then, a plethora of fixation methods have been investigated and used. Formalin fixation with paraffin embedment became the most widely used types of fixation and preservation method, due to its proper architectural conservation of tissue structures and cellular shape. The huge collection of formalin-fixed, paraffin-embedded (FFPE) sample archives worldwide holds a large amount of unearthed information about diseases that could be the Holy Grail in contemporary biomarker research utilizing analytical omics based molecular diagnostics. The aim of this review is to critically evaluate the omics options for FFPE tissue sample analysis in the molecular diagnostics field. Copyright © 2018. Published by Elsevier B.V.

  1. THE FAR-INFRARED, UV, AND MOLECULAR GAS RELATION IN GALAXIES UP TO z = 2.5

    International Nuclear Information System (INIS)

    Nordon, R.; Lutz, D.; Saintonge, A.; Berta, S.; Wuyts, S.; Förster Schreiber, N. M.; Genzel, R.; Magnelli, B.; Poglitsch, A.; Popesso, P.; Rosario, D.; Sturm, E.; Tacconi, L. J.

    2013-01-01

    We use the infrared excess (IRX) FIR/UV luminosity ratio to study the relation between the effective UV attenuation (A IRX ) and the UV spectral slope (β) in a sample of 450 1 * ) > 9.3. Thus, we are able to study galaxies on and even below the main SFR-stellar mass relation (main sequence). We find that main-sequence galaxies form a tight sequence in the IRX-β plane, which has a flatter slope than commonly used relations. This slope favors a Small-Magellanic-Cloud-like UV extinction curve, though the interpretation is model dependent. The scatter in the A IRX -β plane correlates with the position of the galaxies in the SFR-M * plane. Using a smaller sample of galaxies with CO gas masses, we study the relation between the UV attenuation and the molecular gas content. We find a very tight relation between the scatter in the IRX-β plane and the specific attenuation S A , a quantity that represents the attenuation contributed by the molecular gas mass per young star. S A is sensitive to both the geometrical arrangement of stars and dust and to the compactness of the star-forming regions. We use this empirical relation to derive a method for estimating molecular gas masses using only widely available integrated rest-frame UV and FIR photometry. The method produces gas masses with an accuracy between 0.12 and 0.16 dex in samples of normal galaxies between z ∼ 0 and z ∼ 1.5. Major mergers and submillimeter galaxies follow a different S A relation.

  2. Automated on-line liquid–liquid extraction system for temporal mass spectrometric analysis of dynamic samples

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Kai-Ta; Liu, Pei-Han [Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd, Hsinchu, 300, Taiwan (China); Urban, Pawel L. [Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd, Hsinchu, 300, Taiwan (China); Institute of Molecular Science, National Chiao Tung University, 1001 University Rd, Hsinchu, 300, Taiwan (China)

    2015-09-24

    Most real samples cannot directly be infused to mass spectrometers because they could contaminate delicate parts of ion source and guides, or cause ion suppression. Conventional sample preparation procedures limit temporal resolution of analysis. We have developed an automated liquid–liquid extraction system that enables unsupervised repetitive treatment of dynamic samples and instantaneous analysis by mass spectrometry (MS). It incorporates inexpensive open-source microcontroller boards (Arduino and Netduino) to guide the extraction and analysis process. Duration of every extraction cycle is 17 min. The system enables monitoring of dynamic processes over many hours. The extracts are automatically transferred to the ion source incorporating a Venturi pump. Operation of the device has been characterized (repeatability, RSD = 15%, n = 20; concentration range for ibuprofen, 0.053–2.000 mM; LOD for ibuprofen, ∼0.005 mM; including extraction and detection). To exemplify its usefulness in real-world applications, we implemented this device in chemical profiling of pharmaceutical formulation dissolution process. Temporal dissolution profiles of commercial ibuprofen and acetaminophen tablets were recorded during 10 h. The extraction-MS datasets were fitted with exponential functions to characterize the rates of release of the main and auxiliary ingredients (e.g. ibuprofen, k = 0.43 ± 0.01 h{sup −1}). The electronic control unit of this system interacts with the operator via touch screen, internet, voice, and short text messages sent to the mobile phone, which is helpful when launching long-term (e.g. overnight) measurements. Due to these interactive features, the platform brings the concept of the Internet-of-Things (IoT) to the chemistry laboratory environment. - Highlights: • Mass spectrometric analysis normally requires sample preparation. • Liquid–liquid extraction can isolate analytes from complex matrices. • The proposed system automates

  3. Automated on-line liquid–liquid extraction system for temporal mass spectrometric analysis of dynamic samples

    International Nuclear Information System (INIS)

    Hsieh, Kai-Ta; Liu, Pei-Han; Urban, Pawel L.

    2015-01-01

    Most real samples cannot directly be infused to mass spectrometers because they could contaminate delicate parts of ion source and guides, or cause ion suppression. Conventional sample preparation procedures limit temporal resolution of analysis. We have developed an automated liquid–liquid extraction system that enables unsupervised repetitive treatment of dynamic samples and instantaneous analysis by mass spectrometry (MS). It incorporates inexpensive open-source microcontroller boards (Arduino and Netduino) to guide the extraction and analysis process. Duration of every extraction cycle is 17 min. The system enables monitoring of dynamic processes over many hours. The extracts are automatically transferred to the ion source incorporating a Venturi pump. Operation of the device has been characterized (repeatability, RSD = 15%, n = 20; concentration range for ibuprofen, 0.053–2.000 mM; LOD for ibuprofen, ∼0.005 mM; including extraction and detection). To exemplify its usefulness in real-world applications, we implemented this device in chemical profiling of pharmaceutical formulation dissolution process. Temporal dissolution profiles of commercial ibuprofen and acetaminophen tablets were recorded during 10 h. The extraction-MS datasets were fitted with exponential functions to characterize the rates of release of the main and auxiliary ingredients (e.g. ibuprofen, k = 0.43 ± 0.01 h"−"1). The electronic control unit of this system interacts with the operator via touch screen, internet, voice, and short text messages sent to the mobile phone, which is helpful when launching long-term (e.g. overnight) measurements. Due to these interactive features, the platform brings the concept of the Internet-of-Things (IoT) to the chemistry laboratory environment. - Highlights: • Mass spectrometric analysis normally requires sample preparation. • Liquid–liquid extraction can isolate analytes from complex matrices. • The proposed system automates the

  4. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    Science.gov (United States)

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-05-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.

  5. New materials for sample preparation techniques in bioanalysis.

    Science.gov (United States)

    Nazario, Carlos Eduardo Domingues; Fumes, Bruno Henrique; da Silva, Meire Ribeiro; Lanças, Fernando Mauro

    2017-02-01

    The analysis of biological samples is a complex and difficult task owing to two basic and complementary issues: the high complexity of most biological matrices and the need to determine minute quantities of active substances and contaminants in such complex sample. To succeed in this endeavor samples are usually subject to three steps of a comprehensive analytical methodological approach: sample preparation, analytes isolation (usually utilizing a chromatographic technique) and qualitative/quantitative analysis (usually with the aid of mass spectrometric tools). Owing to the complex nature of bio-samples, and the very low concentration of the target analytes to be determined, selective sample preparation techniques is mandatory in order to overcome the difficulties imposed by these two constraints. During the last decade new chemical synthesis approaches has been developed and optimized, such as sol-gel and molecularly imprinting technologies, allowing the preparation of novel materials for sample preparation including graphene and derivatives, magnetic materials, ionic liquids, molecularly imprinted polymers, and much more. In this contribution we will review these novel techniques and materials, as well as their application to the bioanalysis niche. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Immediate drop on demand technology (I-DOT) coupled with mass spectrometry via an open port sampling interface.

    Science.gov (United States)

    Van Berkel, Gary J; Kertesz, Vilmos; Boeltz, Harry

    2017-11-01

    The aim of this work was to demonstrate and evaluate the analytical performance of coupling the immediate drop on demand technology to a mass spectrometer via the recently introduced open port sampling interface and ESI. Methodology & results: A maximum sample analysis throughput of 5 s per sample was demonstrated. Signal reproducibility was 10% or better as demonstrated by the quantitative analysis of propranolol and its stable isotope-labeled internal standard propranolol-d7. The ability of the system to multiply charge and analyze macromolecules was demonstrated using the protein cytochrome c. This immediate drop on demand technology/open port sampling interface/ESI-MS combination allowed for the quantitative analysis of relatively small mass analytes and was used for the identification of macromolecules like proteins.

  7. Characterisation of nuclear fuel samples by quadrupole and multi-collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Wernli, Beath; Guenther-Leopold, Ines; Kobler Waldis, Judith; Kopajtic, Zlatan

    2003-01-01

    The characterisation of nuclear fuel cycle materials for trace and minor metallic constituents is of great interest for the nuclear industry and safeguard officials. The main objective of various international programmes dealing with postirradiation examinations is to improve the knowledge of the inventories of actinides, fission and spallation products in spent nuclear fuels. The low detection limits for a large number of elements combined with the ability to analyse the isotopic composition of the elements have established inductively coupled plasma mass spectrometry (ICP-MS) as a powerful multi-element technique in diverse analytical applications for the characterisation of nuclear materials. Because numerous isobaric overlaps restrict the direct determination of many fission products by mass spectrometry, extensive chemical separations are required for these elements. In order to simplify this sample preparation procedure, a high performance liquid chromatography system (HPLC) was online coupled to the mass spectrometer. Since about 10 years a quadrupole based ICP-MS (Q-ICP-MS) combined with an HPLC is used within the Hot Laboratory of the Paul Scherrer Institut for different applications on nuclear fuel samples. Since May 2003 also a new multi-collector ICP-MS (MC-ICP-MS) is used for the mass spectrometric characterisation of nuclear fuel samples, especially for the precise determination of the isotopic vectors of fission products and actinides. Therefore, two complementary analytical systems are now available in the group of 'Isotope and Wet Analytical Chemistry'. A comparison of the analytical performance of both systems (with and without an online coupled HPLC system) for the determination of the isotopic composition and the elemental concentration of different nuclides in nuclear fuel samples, the advantages and limitations of both techniques, the accuracy and precision of the results and typical applications for both methods will be discussed in the

  8. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Cao, Wan; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Hu, Shuai-Shuai

    2015-08-07

    An analytical procedure based on miniaturized solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed and validated for determination of six flavanones in Citrus fruits. The mesoporous molecular sieve SBA-15 as a solid sorbent was characterised by Fourier transform-infrared spectroscopy and scanning electron microscopy. Additionally, compared with reported extraction techniques, the mesoporous SBA-15 based SPE method possessed the advantages of shorter analysis time and higher sensitivity. Furthermore, considering the different nature of the tested compounds, all of the parameters, including the SBA-15 amount, solution pH, elution solvent, and the sorbent type, were investigated in detail. Under the optimum condition, the instrumental detection and quantitation limits calculated were less than 4.26 and 14.29ngmL(-1), respectively. The recoveries obtained for all the analytes were ranging from 89.22% to 103.46%. The experimental results suggested that SBA-15 was a promising material for the purification and enrichment of target flavanones from complex citrus fruit samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Direct Detection of Pharmaceuticals and Personal Care Products from Aqueous Samples with Thermally-Assisted Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Campbell, Ian S.; Ton, Alain T.; Mulligan, Christopher C.

    2011-07-01

    An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.

  10. Frequency-Modulated Continuous Flow Analysis Electrospray Ionization Mass Spectrometry (FM-CFA-ESI-MS) for Sample Multiplexing.

    Science.gov (United States)

    Filla, Robert T; Schrell, Adrian M; Coulton, John B; Edwards, James L; Roper, Michael G

    2018-02-20

    A method for multiplexed sample analysis by mass spectrometry without the need for chemical tagging is presented. In this new method, each sample is pulsed at unique frequencies, mixed, and delivered to the mass spectrometer while maintaining a constant total flow rate. Reconstructed ion currents are then a time-dependent signal consisting of the sum of the ion currents from the various samples. Spectral deconvolution of each reconstructed ion current reveals the identity of each sample, encoded by its unique frequency, and its concentration encoded by the peak height in the frequency domain. This technique is different from other approaches that have been described, which have used modulation techniques to increase the signal-to-noise ratio of a single sample. As proof of concept of this new method, two samples containing up to 9 analytes were multiplexed. The linear dynamic range of the calibration curve was increased with extended acquisition times of the experiment and longer oscillation periods of the samples. Because of the combination of the samples, salt had little effect on the ability of this method to achieve relative quantitation. Continued development of this method is expected to allow for increased numbers of samples that can be multiplexed.

  11. Poly[ n ]catenanes: Synthesis of molecular interlocked chains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong; Wojtecki, Rudy J.; de Pablo, Juan J.; Hore, Michael J. A.; Rowan, Stuart J.

    2017-11-30

    As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (similar to 75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass similar to 21.4 kilograms per mole) to a mixture of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.

  12. Limit on the anti nu/sub e/ mass in free molecular tritium beta decay

    International Nuclear Information System (INIS)

    Bowles, T.J.; Wilkerson, J.F.; Browne, J.C.; Maley, M.P.; Robertson, R.G.H.; Knapp, D.A.; Helffrich, J.A.

    1986-01-01

    The question of a nonzero neutrino mass has received considerable attention since the claims of Lyubimov et al in 1980 were published which showed evidence for an electron antineutrino mass between 14 and 46 eV, with a best fit value of 35 eV. However, there are still considerable concerns about possible systematic problems in thier experiment. Many of these concerns revolve around the use of a tritiated valine source, in which the energy given up in final state excitations of the molecule following the veta decay of one of the tritium atoms is comparable to the size of the neutrino mass observed. The effect of these final state effects is difficult to calculate in a molecule as complex as valine. In addition, ionization energy loss and backscattering of the betas in traversing the solid source are appreciable and must be very accurately accounted for. These concerns have led us to carry out an experiment using free molecular tritium as the source material. The final state effects have been accurately calculated for the tritium molecule and the uncertainties in these calculations cannot generate a spurious neutrino mass greater than 1 eV. in addition, the energy loss in the source is small because the source consists of tritium only and there is no backscattering

  13. Accelerator mass spectrometry analysis of 14C-oxaliplatin concentrations in biological samples and 14C contents in biological samples and antineoplastic agents

    Science.gov (United States)

    Toyoguchi, Teiko; Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi; Kato, Kazuhiro; Tokanai, Fuyuki

    2015-10-01

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the 14C concentration in 14C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) - AMS system. The calibration curves of 14C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a 14C content of water in three vacuum blood collection tubes and a syringe were measured. 14C was not detected from water in these devices. The mean 14C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of 14C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, 14C contents of the antineoplastic agents were quantitated. 14C contents were different among 10 antineoplastic agents; 14C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  14. High protein intake along with paternal part-time employment is associated with higher body fat mass among girls from South China.

    Science.gov (United States)

    Yang, Ming-Zhe; Xue, Hong-Mei; Pan, Jay; Libuda, Lars; Muckelbauer, Rebecca; Yang, Min; Quan, Liming; Cheng, Guo

    2017-05-23

    Protein intake has been suggested to be associated with body composition among western children. Our aim was to determine whether protein intake is associated with body composition among Chinese children and to investigate whether parental socioeconomic status modifies these associations. Cross-sectional data were collected from the baseline survey of an ongoing population-based prospective open cohort study conducted in 2013. In this survey, 2039 children in South China were recruited using cluster random sampling. Information of 1704 children (47% girls), aged 7-12 years from three primary schools (42 classes), on diet and anthropometry was included finally. Their daily protein intake was obtained by 3-day 24-h dietary recalls. Skinfold thickness, body height, and weight were measured to calculate percent body fat (%BF), fat mass index (FMI), and fat-free mass index (FFMI). Parental characteristics were collected by questionnaires. Among girls, protein intake was positively associated with %BF and FMI [estimate (SE) for %BF: 0.007 (0.003), p = 0.04; for FMI: 0.092 (0.002), p = 0.03], adjusted for pubertal stage, breast-feeding, maternal overweight, carbohydrate intake, energy intake, and physical activity level. Furthermore, there was interaction between paternal occupation and the relations of dietary protein with %BF and FMI (p for interaction  ≤ 0.04). None of the associations between protein intake and %BF, FMI, or FFMI was found among boys. Our data indicate that school-aged girls, but not boys, living in South China with higher dietary protein intake might have higher body fat mass, which could be modified by paternal occupation.

  15. Total molecular gas masses of Planck - Herschel selected strongly lensed hyper luminous infrared galaxies

    Science.gov (United States)

    Harrington, K. C.; Yun, M. S.; Magnelli, B.; Frayer, D. T.; Karim, A.; Weiß, A.; Riechers, D.; Jiménez-Andrade, E. F.; Berman, D.; Lowenthal, J.; Bertoldi, F.

    2018-03-01

    We report the detection of CO(1-0) line emission from seven Planck and Herschel selected hyper luminous ({L_{IR (8-1000{μ m})} > 10^{13} L_{⊙}) infrared galaxies with the Green Bank Telescope (GBT). CO(1-0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 1013 - 14 L⊙), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33-3.26). The CO(1-0) lines show similar profiles as compared to Jup = 2-4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 ± 22 L_{⊙} (K km s^{-1} pc^{-2})^{-1} compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of 〈 r21〉 = 0.93 (2 sources), 〈 r31〉 = 0.34 (5 sources), and 〈 r41〉 = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as {μ M_{H2} = (0.9-27.2) × 10^{11} (α _CO/0.8) M_{⊙}, where μ is the magnification factor and αCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times, = 80} Myr, reveal vigorous starburst activity, and contrast the Gyr depletion time-scales observed in local, normal star-forming galaxies.

  16. Quantifying biological samples using Linear Poisson Independent Component Analysis for MALDI-ToF mass spectra

    Science.gov (United States)

    Deepaisarn, S; Tar, P D; Thacker, N A; Seepujak, A; McMahon, A W

    2018-01-01

    Abstract Motivation Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI) facilitates the analysis of large organic molecules. However, the complexity of biological samples and MALDI data acquisition leads to high levels of variation, making reliable quantification of samples difficult. We present a new analysis approach that we believe is well-suited to the properties of MALDI mass spectra, based upon an Independent Component Analysis derived for Poisson sampled data. Simple analyses have been limited to studying small numbers of mass peaks, via peak ratios, which is known to be inefficient. Conventional PCA and ICA methods have also been applied, which extract correlations between any number of peaks, but we argue makes inappropriate assumptions regarding data noise, i.e. uniform and Gaussian. Results We provide evidence that the Gaussian assumption is incorrect, motivating the need for our Poisson approach. The method is demonstrated by making proportion measurements from lipid-rich binary mixtures of lamb brain and liver, and also goat and cow milk. These allow our measurements and error predictions to be compared to ground truth. Availability and implementation Software is available via the open source image analysis system TINA Vision, www.tina-vision.net. Contact paul.tar@manchester.ac.uk Supplementary information Supplementary data are available at Bioinformatics online. PMID:29091994

  17. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    International Nuclear Information System (INIS)

    Taylor, R.E.

    1991-01-01

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ( 14 C) and radiocalcium ( 41 Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS 14 C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO 2 to graphitic carbon which will consistently yield relatively high 13 C - ion currents and blanks which will yield, on a consistent basis, 14 C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP

  18. Investigating the formation mechanism of soot-like materials present in blast furnace coke samples

    Energy Technology Data Exchange (ETDEWEB)

    S. Dong; P. A' lvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2008-09-15

    An attempt to gain an understanding of the formation mechanism of these 'soot-like' materials has been made by means of tracing the changes in the molecular-mass distribution and molecular structure of the NMP-extractable materials from an injectant coal as well as its partially gasified chars and its pyrolytic tars. Variations in the SEC chromatograms provide clues about changes in the apparent molecular-mass distributions of these NMP extracts. Results suggest that the build-up of 'soot-like' materials follows from the secondary reactions of tars evolved from the injectant coal. The likely secondary-reaction pathways have been probed by collating structural information on these NMP extracts. The time-resolved 13-16 and 22-25 min elution fractions from the SEC column have been characterized using UV fluorescence (UV F) spectroscopy. Greater concentrations of larger aromatic ring systems are found present in samples formed under conditions appearing more prone for soot formation. The 11-16 min (large apparent molecular mass) effluent from SEC has been examined by Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). Results from FTIR spectroscopy are consistent with the UV F data, showing more significant extents of dehydrogenation under conditions more prone to form soot. Similarly, TEM results show that larger amount of graphene layers exist in samples exposed to more soot-prone conditions. The emerging picture for the formation of 'soot-like' materials involves a well-defined sequence. Tars evolved from the injectant coal undergo secondary dehydrogenation, condensation, and repolymerization reactions, which eventually lead to the formation of the NMP-extractable 'soot-like' materials of large apparent molecular mass. 44 refs., 7 figs., 3 tabs.

  19. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  20. Consumption Frequency of Foods Away from Home Linked with Higher Body Mass Index and Lower Fruit and Vegetable Intake among Adults: A Cross-Sectional Study

    Science.gov (United States)

    Seguin, Rebecca A.; Aggarwal, Anju; Vermeylen, Francoise; Drewnowski, Adam

    2016-01-01

    Introduction. Consumption of foods prepared away from home (FAFH) has grown steadily since the 1970s. We examined the relationship between FAFH and body mass index (BMI) and fruit and vegetable (FV) consumption. Methods. Frequency of FAFH, daily FV intake, height and weight, and sociodemographic data were collected using a telephone survey in 2008-2009. Participants included a representative sample of 2,001 adult men and women (mean age 54 ± 15 years) residing in King County, WA, with an analytical sample of 1,570. Frequency of FAFH was categorized as 0-1, 2–4, or 5+ times per week. BMI was calculated from self-reported height and weight. We examined the relationship between FAFH with FV consumption and BMI using multivariate models. Results. Higher frequency of FAFH was associated with higher BMI, after adjusting for age, income, education, race, smoking, marital status, and physical activity (women: p = 0.001; men: p = 0.003). There was a negative association between frequency of FAFH and FV consumption. FAFH frequency was significantly (p < 0.001) higher among males than females (43.1% versus 54.0% eating out 0-1 meal per week, resp.). Females reported eating significantly (p < 0.001) more FV than males. Conclusion. Among adults, higher frequency of FAFH was related to higher BMI and less FV consumption. PMID:26925111

  1. Consumption Frequency of Foods Away from Home Linked with Higher Body Mass Index and Lower Fruit and Vegetable Intake among Adults: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Rebecca A. Seguin

    2016-01-01

    Full Text Available Introduction. Consumption of foods prepared away from home (FAFH has grown steadily since the 1970s. We examined the relationship between FAFH and body mass index (BMI and fruit and vegetable (FV consumption. Methods. Frequency of FAFH, daily FV intake, height and weight, and sociodemographic data were collected using a telephone survey in 2008-2009. Participants included a representative sample of 2,001 adult men and women (mean age 54±15 years residing in King County, WA, with an analytical sample of 1,570. Frequency of FAFH was categorized as 0-1, 2–4, or 5+ times per week. BMI was calculated from self-reported height and weight. We examined the relationship between FAFH with FV consumption and BMI using multivariate models. Results. Higher frequency of FAFH was associated with higher BMI, after adjusting for age, income, education, race, smoking, marital status, and physical activity (women: p=0.001; men: p=0.003. There was a negative association between frequency of FAFH and FV consumption. FAFH frequency was significantly (p<0.001 higher among males than females (43.1% versus 54.0% eating out 0-1 meal per week, resp.. Females reported eating significantly (p<0.001 more FV than males. Conclusion. Among adults, higher frequency of FAFH was related to higher BMI and less FV consumption.

  2. Development of a Linear Ion Trap Mass Spectrometer (LITMS) Investigation for Future Planetary Surface Missions

    Science.gov (United States)

    Brinckerhoff, W.; Danell, R.; Van Ameron, F.; Pinnick, V.; Li, X.; Arevalo, R.; Glavin, D.; Getty, S.; Mahaffy, P.; Chu, P.; hide

    2014-01-01

    Future surface missions to Mars and other planetary bodies will benefit from continued advances in miniature sensor and sample handling technologies that enable high-performance chemical analyses of natural samples. Fine-scale (approx.1 mm and below) analyses of rock surfaces and interiors, such as exposed on a drill core, will permit (1) the detection of habitability markers including complex organics in association with their original depositional environment, and (2) the characterization of successive layers and gradients that can reveal the time-evolution of those environments. In particular, if broad-based and highly-sensitive mass spectrometry techniques could be brought to such scales, the resulting planetary science capability would be truly powerful. The Linear Ion Trap Mass Spectrometer (LITMS) investigation is designed to conduct fine-scale organic and inorganic analyses of short (approx.5-10 cm) rock cores such as could be acquired by a planetary lander or rover arm-based drill. LITMS combines both pyrolysis/gas chromatograph mass spectrometry (GCMS) of sub-sampled core fines, and laser desorption mass spectrometry (LDMS) of the intact core surface, using a common mass analyzer, enhanced from the design used in the Mars Organic Molecule Analyzer (MOMA) instrument on the 2018 ExoMars rover. LITMS additionally features developments based on the Sample Analysis at Mars (SAM) investigation on MSL and recent NASA-funded prototype efforts in laser mass spectrometry, pyrolysis, and precision subsampling. LITMS brings these combined capabilities to achieve its four measurement objectives: (1) Organics: Broad Survey Detect organic molecules over a wide range of molecular weight, volatility, electronegativity, concentration, and host mineralogy. (2) Organic: Molecular Structure Characterize internal molecular structure to identify individual compounds, and reveal functionalization and processing. (3) Inorganic Host Environment Assess the local chemical

  3. High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions.

    Science.gov (United States)

    Mazur, Dmitry M; Harir, Mourad; Schmitt-Kopplin, Philippe; Polyakova, Olga V; Lebedev, Albert T

    2016-07-01

    High field Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry analysis of eight snow samples from Moscow city allowed us to identify more than 2000 various elemental compositions corresponding to regional air pollutants. The hierarchical cluster analysis (HCA) of the data showed good concordance of three main groups of samples with the main wind directions. The North-West group (A1) is represented by several homologous CHOS series of aliphatic organic aerosols. They may form as a result of enhanced photochemical reactions including oxidation of hydrocarbons with sulfonations due to higher amount of SO2 emissions in the atmosphere in this region. Group A2, corresponding to the South-East part of Moscow, contains large amount of oxidized hydrocarbons of different sources that may form during oxidation in atmosphere. These hydrocarbons appear correlated to emissions from traffic, neighboring oil refinery, and power plants. Another family of compounds specific for this region involves CHNO substances formed during oxidation processes including NOx and NO3 radical since emissions of NOx are higher in this part of the city. Group A3 is rich in CHO type of compounds with high H/C and low O/C ratios, which is characteristic of oxidized hydrocarbon-like organic aerosol. CHNO types of compounds in A3 group are probably nitro derivatives of condensed hydrocarbons such as PAH. This non-targeted profiling revealed site specific distribution of pollutants and gives a chance to develop new strategies in air quality control and further studies of Moscow environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The ATLAS3D project - XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    Science.gov (United States)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)_JAM≈ (M/L)({r}= {R_e}) within a sphere of radius r= {R_e} centred on the galaxy, as well as stellar (M/L)stars (with the dark matter removed) for the volume-limited and nearly mass-selected (stellar mass M_star ≳ 6× 10^9 { M_{⊙}}) ATLAS3D sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). Here, we use those parameters to study the two orthogonal projections ({M_JAM}, {σ _e}) and ({M_JAM}, {R_e^maj}) of the thin Mass Plane (MP) ({M_JAM}, {σ _e}, {R_e^maj}) which describes the distribution of the galaxy population, where {M_JAM}≡ L× (M/L)_JAM≈ M_star. The distribution of galaxy properties on both projections of the MP is characterized by: (i) the same zone of exclusion (ZOE), which can be transformed from one projection to the other using the scalar virial equation. The ZOE is roughly described by two power laws, joined by a break at a characteristic mass {M_JAM}≈ 3× 10^{10} { M_{⊙}}, which corresponds to the minimum Re and maximum stellar density. This results in a break in the mean {M_JAM}-{σ _e} relation with trends {M_JAM}∝ σ _e^{2.3} and {M_JAM}∝ σ _e^{4.7} at small and large σe, respectively; (ii) a characteristic mass {M_JAM}≈ 2× 10^{11} { M_{⊙}} which separates a population dominated by flat fast rotator with discs and spiral galaxies at lower masses, from one dominated by quite round slow rotators at larger masses; (iii) below that mass the distribution of ETGs' properties on the two projections of the MP tends to be constant along lines of roughly constant σe, or equivalently along lines with {R_e^maj}∝ {M_JAM}, respectively (or even better parallel to the ZOE: {R_e^maj}∝ M_JAM^{0.75}); (iv) it forms a continuous and parallel sequence with the distribution of spiral galaxies; (v) at even lower masses, the distribution of fast-rotator ETGs and late spirals naturally extends to that of dwarf ETGs (Sph

  5. Molecular imaging of cannabis leaf tissue with MeV-SIMS method

    Science.gov (United States)

    Jenčič, Boštjan; Jeromel, Luka; Ogrinc Potočnik, Nina; Vogel-Mikuš, Katarina; Kovačec, Eva; Regvar, Marjana; Siketić, Zdravko; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož

    2016-03-01

    To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.

  6. Molecular imaging of cannabis leaf tissue with MeV-SIMS method

    Energy Technology Data Exchange (ETDEWEB)

    Jenčič, Boštjan, E-mail: bostjan.jencic@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Jeromel, Luka [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potočnik, Nina [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); M4I, Maastricht University, Peter Debijelaan 25A, 6229 HX Maastricht (Netherlands); Vogel-Mikuš, Katarina [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); University of Ljubljana, Biotechnical Faculty, Dept. of Biology, Večna pot 11, SI-1000 Ljubljana (Slovenia); Kovačec, Eva; Regvar, Marjana [University of Ljubljana, Biotechnical Faculty, Dept. of Biology, Večna pot 11, SI-1000 Ljubljana (Slovenia); Siketić, Zdravko [Ruđer Bošković Institute, P.O. Box 180, 10000 Zagreb (Croatia); Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2016-03-15

    To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.

  7. Molecular imaging of cannabis leaf tissue with MeV-SIMS method

    International Nuclear Information System (INIS)

    Jenčič, Boštjan; Jeromel, Luka; Ogrinc Potočnik, Nina; Vogel-Mikuš, Katarina; Kovačec, Eva; Regvar, Marjana; Siketić, Zdravko; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož

    2016-01-01

    To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.

  8. LARGE-SCALE CO MAPS OF THE LUPUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Tothill, N. F. H.; Loehr, A.; Stark, A. A.; Lane, A. P.; Harnett, J. I.; Bourke, T. L.; Myers, P. C.; Parshley, S. C.; Wright, G. A.; Walker, C. K.

    2009-01-01

    Fully sampled degree-scale maps of the 13 CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex-Lupus I, III, and IV-trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13 CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km s -1 . CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B 228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding H I shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an H I shell.

  9. Molecular analysis of sulphur-rich brown coals by flash pyrolysis-gas chromatography-mass spectrometry: The type III-S kerogen

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Leeuw, J.W. de

    1992-01-01

    The molecular composition of five brown coals from three different basins (Maestrazgo, Mequinenza and Rubielos) in Spain was investigated by flash pyrolysis-gas chromatography and flash pyrolysis-gas chromatography-mass spectrometry. In these techniques, the macromolecular material is thermally

  10. In situ measurement of the mass concentration of flame-synthesized nanoparticles using quartz-crystal microbalance

    International Nuclear Information System (INIS)

    Hevroni, A; Golan, H; Fialkov, A; Tsionsky, V; Markovich, G; Cheskis, S; Rahinov, I

    2011-01-01

    A novel in situ method for measurement of mass concentration of nanoparticles (NPs) formed in flames is proposed. In this method, the deposition rate of NPs collected by a molecular beam sampling system is measured by quartz-crystal microbalance (QCM). It is the only existing method which allows direct measurement of NP mass concentration profiles in flames. The feasibility of the method was demonstrated by studying iron oxide NP formation in low-pressure methane/oxygen/nitrogen flames doped with iron pentacarbonyl. The system was tested under fuel-lean and fuel-rich flame conditions. Good agreement between measured QCM deposition rates and their estimations obtained by the transmission electron microscopy analysis of samples collected from the molecular beam has been demonstrated. The sensitivity of the method is comparable to that of particle mass spectrometry (PMS). Combination of the QCM technique with PMS and/or optical measurements can provide new qualitative information which is important for elucidation of the mechanisms governing the NP flame synthesis

  11. Molecular testing guidelines for lung adenocarcinoma: Utility of cell blocks and concordance between fine-needle aspiration cytology and histology samples

    Science.gov (United States)

    Heymann, Jonas J.; Bulman, William A.; Maxfield, Roger A.; Powell, Charles A.; Halmos, Balazs; Sonett, Joshua; Beaubier, Nike T.; Crapanzano, John P.; Mansukhani, Mahesh M.; Saqi, Anjali

    2014-01-01

    Background: Lung cancer is a leading cause of mortality, and patients often present at a late stage. More recently, advances in screening, diagnosing, and treating lung cancer have been made. For instance, greater numbers of minimally invasive procedures are being performed, and identification of lung adenocarcinoma driver mutations has led to the implementation of targeted therapies. Advances in molecular techniques enable use of scant tissue, including cytology specimens. In addition, per recently published consensus guidelines, cytology-derived cell blocks (CBs) are preferred over direct smears. Yet, limited comparison of molecular testing of fine-needle aspiration (FNA) CBs and corresponding histology specimens has been performed. This study aimed to establish concordance of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma (KRAS) virus homolog testing between FNA CBs and histology samples from the same patients. Materials and Methods: Patients for whom molecular testing for EGFR or KRAS was performed on both FNA CBs and histology samples containing lung adenocarcinoma were identified retrospectively. Following microdissection, when necessary, concordance of EGFR and KRAS molecular testing results between FNA CBs and histology samples was evaluated. Results: EGFR and/or KRAS testing was performed on samples obtained from 26 patients. Concordant results were obtained for all EGFR (22/22) and KRAS (17/17) mutation analyses performed. Conclusions: Identification of mutations in lung adenocarcinomas affects clinical decision-making, and it is important that results from small samples be accurate. This study demonstrates that molecular testing on cytology CBs is as sensitive and specific as that on histology. PMID:24987443

  12. Molecular testing guidelines for lung adenocarcinoma: Utility of cell blocks and concordance between fine-needle aspiration cytology and histology samples

    Directory of Open Access Journals (Sweden)

    Jonas J. Heymann

    2014-01-01

    Full Text Available Background: Lung cancer is a leading cause of mortality, and patients often present at a late stage. More recently, advances in screening, diagnosing, and treating lung cancer have been made. For instance, greater numbers of minimally invasive procedures are being performed, and identification of lung adenocarcinoma driver mutations has led to the implementation of targeted therapies. Advances in molecular techniques enable use of scant tissue, including cytology specimens. In addition, per recently published consensus guidelines, cytology-derived cell blocks (CBs are preferred over direct smears. Yet, limited comparison of molecular testing of fine-needle aspiration (FNA CBs and corresponding histology specimens has been performed. This study aimed to establish concordance of epidermal growth factor receptor (EGFR and Kirsten rat sarcoma (KRAS virus homolog testing between FNA CBs and histology samples from the same patients. Materials and Methods: Patients for whom molecular testing for EGFR or KRAS was performed on both FNA CBs and histology samples containing lung adenocarcinoma were identified retrospectively. Following microdissection, when necessary, concordance of EGFR and KRAS molecular testing results between FNA CBs and histology samples was evaluated. Results: EGFR and/or KRAS testing was performed on samples obtained from 26 patients. Concordant results were obtained for all EGFR (22/22 and KRAS (17/17 mutation analyses performed. Conclusions: Identification of mutations in lung adenocarcinomas affects clinical decision-making, and it is important that results from small samples be accurate. This study demonstrates that molecular testing on cytology CBs is as sensitive and specific as that on histology.

  13. New mass-spectrometric facility for the analysis of highly radioactive samples

    International Nuclear Information System (INIS)

    Warmack, R.J.; Landau, L.; Christie, W.H.; Carter, J.A.

    1981-01-01

    A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained

  14. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-up of the First Shear-selected Galaxy Cluster Sample

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Amruta J.; Hughes, John P. [Department of Physics and Astronomy, Rutgers the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Wittman, David, E-mail: amrejd@physics.rutgers.edu, E-mail: jph@physics.rutgers.edu, E-mail: dwittman@physics.ucdavis.edu [Department of Physics, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States)

    2017-04-20

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shear peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L {sub X} − T {sub X} relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (∼48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined.

  15. Extremely stable soluble high molecular mass multi-protein complex with DNase activity in human placental tissue.

    Directory of Open Access Journals (Sweden)

    Evgeniya E Burkova

    Full Text Available Human placenta is an organ which protects, feeds, and regulates the grooving of the embryo. Therefore, identification and characterization of placental components including proteins and their multi-protein complexes is an important step to understanding the placenta function. We have obtained and analyzed for the first time an extremely stable multi-protein complex (SPC, ∼ 1000 kDa from the soluble fraction of three human placentas. By gel filtration on Sepharose-4B, the SPC was well separated from other proteins of the placenta extract. Light scattering measurements and gel filtration showed that the SPC is stable in the presence of NaCl, MgCl2, acetonitrile, guanidinium chloride, and Triton in high concentrations, but dissociates efficiently in the presence of 8 M urea, 50 mM EDTA, and 0.5 M NaCl. Such a stable complex is unlikely to be a casual associate of different proteins. According to SDS-PAGE and MALDI mass spectrometry data, this complex contains many major glycosylated proteins with low and moderate molecular masses (MMs 4-14 kDa and several moderately abundant (79.3, 68.5, 52.8, and 27.2 kDa as well as minor proteins with higher MMs. The SPC treatment with dithiothreitol led to a disappearance of some protein bands and revealed proteins with lower MMs. The SPCs from three placentas efficiently hydrolyzed plasmid supercoiled DNA with comparable rates and possess at least two DNA-binding sites with different affinities for a 12-mer oligonucleotide. Progress in study of placental protein complexes can promote understanding of their biological functions.

  16. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  17. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water

    Science.gov (United States)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.

    2017-12-01

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on

  18. 3D molecular cartography using LC-MS facilitated by Optimus and 'ili software.

    Science.gov (United States)

    Protsyuk, Ivan; Melnik, Alexey V; Nothias, Louis-Felix; Rappez, Luca; Phapale, Prasad; Aksenov, Alexander A; Bouslimani, Amina; Ryazanov, Sergey; Dorrestein, Pieter C; Alexandrov, Theodore

    2018-01-01

    Our skin, our belongings, the world surrounding us, and the environment we live in are covered with molecular traces. Detecting and characterizing these molecular traces is necessary to understand the environmental impact on human health and disease, and to decipher complex molecular interactions between humans and other species, particularly microbiota. We recently introduced 3D molecular cartography for mapping small organic molecules (including metabolites, lipids, and environmental molecules) found on various surfaces, including the human body. Here, we provide a protocol and open-source software for 3D molecular cartography. The protocol includes step-by-step procedures for sample collection and processing, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, quality control (QC), molecular identification using MS/MS, data processing, and visualization with 3D models of the sampled environment. The LC-MS method was optimized for a broad range of small organic molecules. We enable scientists to reproduce our previously obtained results, and illustrate the broad utility of our approach with molecular maps of a rosemary plant and an ATM keypad after a PIN code was entered. To promote reproducibility, we introduce cartographical snapshots: files that describe a particular map and visualization settings, and that can be shared and loaded to reproduce the visualization. The protocol enables molecular cartography to be performed in any mass spectrometry laboratory and, in principle, for any spatially mapped data. We anticipate applications, in particular, in medicine, ecology, agriculture, biotechnology, and forensics. The protocol takes 78 h for a molecular map of 100 spots, excluding the reagent setup.

  19. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  20. Liquid Water from First Principles: Validation of Different Sampling Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, C J; Kuo, W; Siepmann, J; McGrath, M J; Vondevondele, J; Sprik, M; Hutter, J; Parrinello, M; Mohamed, F; Krack, M; Chen, B; Klein, M

    2004-05-20

    A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is found that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.