WorldWideScience

Sample records for higher mass ratios

  1. Comparison of skeletal muscle mass to fat-free mass ratios among different ethnic groups.

    Science.gov (United States)

    Abe, T; Bemben, M G; Kondo, M; Kawakami, Y; Fukunaga, T

    2012-01-01

    Asians seem to have less skeletal muscle mass (SMM) than other ethnic groups, but it is not clear whether relative SMM, i.e., SMM / height square or SMM to fat-free mass (FFM) ratio, differs among different ethnic groups at the same level of body mass index (BMI). To compare the SMM to fat-free mass (FFM) ratio as well as anthropometric variables and body composition among 3 ethnic groups. Three hundred thirty-nine Japanese, 343 Brazilian, and 183 German men and women were recruited for this cross-sectional study. Muscle thickness (MTH) and subcutaneous fat thickness (FTH) were measured by ultrasound at nine sites on the anterior and posterior aspects of the body. FTH was used to estimate the body density, from which fat mass and fat-free mass (FFM) was calculated by using Brozek equation. Total SMM was estimated from ultrasound-derived prediction equations. Percentage body fat was similar among the ethnic groups in men, while Brazilians were higher than Japanese in women. In German men and women, absolute SMM and FFM were higher than in their Japanese and Brazilians counterparts. SMM index and SMM:FFM ratios were similar among the ethnic groups in women, excluding SMM:FFM ratio in Brazilian. In men, however, these relative values (SMM index and SMM:FFM ratio) were still higher in Germans. After adjusting for age and BMI, the SMM index and SMM:FFM ratios were lower in Brazilian men and women compared with the other two ethnic groups, while the SMM index and SMM:FFM ratios were similar in Japanese and German men and women, excluding SMM:FFM ratio in women. Our results suggest that relative SMM is not lower in Asian populations compared with European populations after adjusted by age and BMI.

  2. Mass extrapolation of quarks and leptons to higher generations

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N [Utkal Univ., Bhubaneswar (India). Dept. of Physics

    1981-05-01

    An empirical mass formula is tested for the basic fermion sequences of charged quarks and leptons. This relation is a generalization of Barut's mass formula for the lepton sequence (e, ..mu.., tau ....). It is found that successful mass extrapolation to the third and possibly to other higher generations (N > 2) can be obtained with the first and second generation masses as inputs, which predicts the top quark mass msub(t) to be around 20 GeV. This also leads to the mass ratios between members of two different sequences (i) and (i') corresponding to the same higher generations (N > 2).

  3. Mass extrapolation of quarks and leptons to higher generations

    International Nuclear Information System (INIS)

    Barik, N.

    1981-01-01

    An empirical mass formula is tested for the basic fermion sequences of charged quarks and leptons. This relation is a generalization of Barut's mass formula for the lepton sequence (e, μ, tau ....). It is found that successful mass extrapolation to the third and possibly to other higher generations (N > 2) can be obtained with the first and second generation masses as inputs, which predicts the top quark mass msub(t) to be around 20 GeV. This also leads to the mass ratios between members of two different sequences (i) and (i') corresponding to the same higher generations (N > 2). (author)

  4. Ratio method of measuring W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng [Stony Brook Univ., NY (United States)

    2010-08-01

    This dissertation describes an alternative method of measuring the W boson mass in DØ experiment. Instead of extracting MW from the fitting of W → ev fast Monte Carlo simulations to W → ev data as in the standard method, we make the direct fit of transverse mass between W → ev data and Z → ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (MW/MZ). Given the precisely measured Z boson mass, W mass is directly fitted from W → ev and Z → ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb-1 DØ Run IIa dataset, ratio method gives MW = 80435 ± 43(stat) ± 26(sys) MeV.

  5. Phenomenological approach to the modelling of elliptical galaxies: The problem of the mass-to-light ratio

    Directory of Open Access Journals (Sweden)

    Samurović S.

    2007-01-01

    Full Text Available In this paper the problem of the phenomenological modelling of elliptical galaxies using various available observational data is presented. Recently, Tortora, Cardona and Piedipalumbo (2007 suggested a double power law expression for the global cumulative mass-to-light ratio of elliptical galaxies. We tested their expression on a sample of ellipticals for which we have the estimates of the mass-to-light ratio beyond ~ 3 effective radii, a region where dark matter is expected to play an important dynamical role. We found that, for all the galaxies in our sample, we have α + β > 0, but that this does not necessarily mean a high dark matter content. The galaxies with higher mass (and higher dark matter content also have higher value of α+β. It was also shown that there is an indication that the galaxies with higher value of the effective radius also have higher dark matter content. .

  6. THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS-LUMINOSITY PLANE. II. BLACK HOLE MASS AND EDDINGTON RATIO FUNCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Brandon C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93107 (United States); Shen, Yue [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-02-10

    We employ a flexible Bayesian technique to estimate the black hole (BH) mass and Eddington ratio functions for Type 1 (i.e., broad line) quasars from a uniformly selected data set of {approx}58, 000 quasars from the Sloan Digital Sky Survey (SDSS) DR7. We find that the SDSS becomes significantly incomplete at M {sub BH} {approx}< 3 Multiplication-Sign 10{sup 8} M {sub Sun} or L/L {sub Edd} {approx}< 0.07, and that the number densities of Type 1 quasars continue to increase down to these limits. Both the mass and Eddington ratio functions show evidence of downsizing, with the most massive and highest Eddington ratio BHs experiencing Type 1 quasar phases first, although the Eddington ratio number densities are flat at z < 2. We estimate the maximum Eddington ratio of Type 1 quasars in the observable universe to be L/L {sub Edd} {approx} 3. Consistent with our results in Shen and Kelly, we do not find statistical evidence for a so-called sub-Eddington boundary in the mass-luminosity plane of broad-line quasars, and demonstrate that such an apparent boundary in the observed distribution can be caused by selection effect and errors in virial BH mass estimates. Based on the typical Eddington ratio in a given mass bin, we estimate growth times for the BHs in Type 1 quasars and find that they are comparable to or longer than the age of the universe, implying an earlier phase of accelerated (i.e., with higher Eddington ratios) and possibly obscured growth. The large masses probed by our sample imply that most of our BHs reside in what are locally early-type galaxies, and we interpret our results within the context of models of self-regulated BH growth.

  7. Visceral obesity, fat mass/muscle mass ratio and atherogenic dyslipidemia: cross-sectional study. Riobamba, Ecuador

    Directory of Open Access Journals (Sweden)

    Tomas Marcelo Nicolalde Cifuentes

    2015-10-01

    Full Text Available Introduction: The distribution and composition of fat mass is associated with different metabolic risks. The predominance of brown visceral fat is associated with risk factors for cardiovascular disease (CVD, such as: high triglycerides and apolipoprotein B, increased LDL cholesterol, ratio triglycerides/low HDL cholesterol elevated (atherogenic dyslipidemia indicator, insulin resistance, hyperinsulinemia and cardiovascular risk (CVR. Sarcopenia and obesity may act synergistically in functional and metabolic disorders. The aim of this study was to determine the relationship between visceral obesity, fat mass/muscular mass ratio and atherogenic dyslipidemia in adult individuals in order to determine the association pattern between these variables and set strategies for focused attention.Material and Methods: In a sample of 307 subjects of both sexes (21-71 years there was measured atherogenic dyslipidemia as the ratio of triglyceride/HDL cholesterol, visceral obesity measured by bio impedance as the relative score of visceral fat, and the ratio fat mass/lean mass.Results: A cluster analysis was performed to establish the structure of association between these variables with different risk groups. Three groups were identified: the first had visceral obesity with an average relative level of visceral fat of 13.6, the second group with an average of 8.9 and in the third group were placed individuals with the lowest visceral obesity score averaging 6.5. As for the fat mass/lean mas ratio the first two groups had a similar average of this index with a value of 1.56 and 1.69 respectively and the third group with the lowest average value of 1.3. Group 1 presented visceral obesity and impaired fat mass/lean mass ratio and had a high value of triglyceride/HDL ratio 4.1. Group 2 without visceral obesity and a deterioration in the relative fat mass/lean mass ratio had a triglyceride/HDL cholesterol of 3.6 and Group 3; not recorded visceral obesity or

  8. Differentiation of endogenous and exogenous steroids by gas chromatography-combustion-mass spectrometry isotope ratio

    International Nuclear Information System (INIS)

    Montes de Oca Porto, Rodny; Rosado Perez, Aristides; Correa Vidal, Margarita Teresa

    2007-01-01

    Urinary steroids profiles are used to control the misuse of endogenous steroids such as testosterone and dihydrotestosterone. The testosterone/epistestosterone ratio, measured by Gas Chromatography-Mass Spectrometry, is used to control testosterone administration. When T/E ratio is higher than 4, consumption of testosterone or its precursors is suspected. Recent researches have demonstrated the effectiveness of Carbon Isotope Ratio Mass Spectrometry to detect and confirm endogenous steroids administration. The ratio of the two stable carbon isotopes 1 3 C and 1 2 C allows the differentiation of natural and synthetic steroids because synthetic steroids have lower 1 3 C abundance. In fact, the carbon isotope ratios can be used to determine endogenous steroids administration even when testosterone/epistestosterone ratio is at its normal value. In the current work, some of the most important aspects related to differentiation of endogenous and exogenous steroids by means of Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry are discussed. Also, this article provides a review about the purification and sample preparation previous to the analysis, and diet effects on carbon isotope ratio of endogenous anabolics steroids is presented too

  9. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, Tanja C. W.; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J.; Boschker, Henricus T. S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  10. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  11. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    Rationale: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence,

  12. Model Persamaan Massa Karbon Akar Pohon dan Root-Shoot Ratio Massa Karbon (Equation Models of Tree Root Carbon Mass and Root-Shoot Carbon Mass Ratio

    Directory of Open Access Journals (Sweden)

    Elias .

    2011-03-01

    Full Text Available The case study was conducted in the area of Acacia mangium plantation at BKPH Parung Panjang, KPH Bogor. The objective of the study was to formulate equation models of tree root carbon mass and root to shoot carbon mass ratio of the plantation. It was found that carbon content in the parts of tree biomass (stems, branches, twigs, leaves, and roots was different, in which the highest and the lowest carbon content was in the main stem of the tree and in the leaves, respectively. The main stem and leaves of tree accounted for 70% of tree biomass. The root-shoot ratio of root biomass to tree biomass above the ground and the root-shoot ratio of root biomass to main stem biomass was 0.1443 and 0.25771, respectively, in which 75% of tree carbon mass was in the main stem and roots of tree. It was also found that the root-shoot ratio of root carbon mass to tree carbon mass above the ground and the root-shoot ratio of root carbon mass to tree main stem carbon mass was 0.1442 and 0.2034, respectively. All allometric equation models of tree root carbon mass of A. mangium have a high goodness-of-fit as indicated by its high adjusted R2.Keywords: Acacia mangium, allometric, root-shoot ratio, biomass, carbon mass

  13. Dynamic Responses of Flexible Cylinders with Low Mass Ratio

    Science.gov (United States)

    Olaoye, Abiodun; Wang, Zhicheng; Triantafyllou, Michael

    2017-11-01

    Flexible cylinders with low mass ratios such as composite risers are attractive in the offshore industry because they require lower top tension and are less likely to buckle under self-weight compared to steel risers. However, their relatively low stiffness characteristics make them more vulnerable to vortex induced vibrations. Additionally, numerical investigation of the dynamic responses of such structures based on realistic conditions is limited by high Reynolds number, complex sheared flow profile, large aspect ratio and low mass ratio challenges. In the framework of Fourier spectral/hp element method, the current technique employs entropy-viscosity method (EVM) based large-eddy simulation approach for flow solver and fictitious added mass method for structure solver. The combination of both methods can handle fluid-structure interaction problems at high Reynolds number with low mass ratio. A validation of the numerical approach is provided by comparison with experiments.

  14. Recent development in isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Platzner, I.

    1992-01-01

    Within the limited of this review the following topics will be briefly discussed: a) Accuracy, precision, internal relative standard deviation (RISD) and external relative standard deviation (RESD) of isotope ratio measurements. With advanced instrumentation and use of standard reference materials, high accuracy and RESD = 0.002% (or better) may be achieved; b) The advantages of modern automatic isotope ratio mass spectrometer are briefly described. Computer controlled operation and data acquisition, and multiple ion collection are the recent important improvement; c) The isotopic fractionation during the course of isotope ratio measurement is considered as a major source of errors in thermal ionization of metallic elements. The phenomenon in strontium, neodymium, uranium, lead and calcium and methods to correct the measured data are discussed; d) Applications of isotope ratio mass spectrometry in atomic weight determinations, the isotope dilution technique, isotope geology, and isotope effects in biological systems are described together with specific applications in various research and technology area. (author)

  15. OGLE-2017-BLG-1434Lb: Eighth qTurnover in Planet Mass-Ratio Function

    Science.gov (United States)

    Udalski, A.; Ryu, Y.-H.; Sajadian, S.; Gould, A.; Mrǎłz, P.; Poleski, R.; Szymański, M. K.; Skowron, J.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; Albrow, M. D.; Chung, S.-J.; Han, C.; Hwang, K.-H.; Jung, Y., K.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zang, W.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; Bozza, V.; Dominik, M.; Helling, C.; Hundertmark, M.; Jørgensen, U. G.; Longa-Peña, P.; Lowry, S.; Burgdorf, M.; Campbell-White, J.; Ciceri, S.; Evans, D.; Figuera Jaimes, R.; Fujii, Y. I.; Haikala, L. K.; Henning, T.; Hinse, T. C.; Mancini, L.; Peixinho, N.; Rahvar, S.; Rabus, M.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; von Essen, C.

    2018-03-01

    We report the discovery of a cold Super-Earth planet (mp=4.4±0.5 M⊙) orbiting a low-mass (M=0.23±0.03) M⊙ dwarf at projected separation a⊥=1.18±0.10 a.u., i.e., about 1.9 times the distance the snow line. The system is quite nearby for a microlensing planet, DL=0.86±0.09 kpc. Indeed, it was the large lens-source relative parallax πrel=1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, "microlens parallax" πE∝(πrel/M)1/2 that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio qturnover" in the mass function found by Suzuki et al. relative to the power law of opposite sign n=-0.93±0.13 at higher mass ratios q≳2×10-4. We combine our result with that of Suzuki et al. to obtain p=0.73+0.42-0.34.

  16. Mass-to-light ratios of nearby groups of galaxies

    CERN Document Server

    Materne, J

    1980-01-01

    The application of a probability density function gives the possibility of determining groups of galaxies and membership probabilities of the galaxies in a reliable unbiased way. For the five nearest groups so defined, the mean mass-to-light ratio was derived using the concept of negative energy. These groups have a mass-to- light ratio of 16 M/sub (.)//L/sub (.)/. The probability function gives also the possibility of deriving masses of groups in a direct and independent way. (22 refs).

  17. THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87

    International Nuclear Information System (INIS)

    Gebhardt, Karl; Thomas, Jens

    2009-01-01

    We model the dynamical structure of M87 (NGC4486) using high spatial resolution long-slit observations of stellar light in the central regions, two-dimensional stellar light kinematics out to half of the effective radius, and globular cluster velocities out to eight effective radii. We simultaneously fit for four parameters: black hole mass, dark halo core radius, dark halo circular velocity, and stellar mass-to-light (M/L) ratio. We find a black hole mass of 6.4(±0.5) x 10 9 M sun (the uncertainty is 68% confidence marginalized over the other parameters). The stellar M/L V = 6.3 ± 0.8. The best-fit dark halo core radius is 14 ± 2 kpc, assuming a cored logarithmic potential. The best-fit dark halo circular velocity is 715 ± 15 km s -1 . Our black hole mass is over a factor of 2 larger than previous stellar dynamical measures, and our derived stellar M/L ratio is two times lower than previous dynamical measures. When we do not include a dark halo, we measure a black hole mass and stellar M/L ratio that is consistent with previous measures, implying that the major difference is in the model assumptions. The stellar M/L ratio from our models is very similar to that derived from stellar population models of M87. The reason for the difference in the black hole mass is because we allow the M/L ratio to change with radius. The dark halo is degenerate with the stellar M/L ratio, which is subsequently degenerate with the black hole mass. We argue that dynamical models of galaxies that do not include the contribution from a dark halo may produce a biased result for the black hole mass. This bias is especially large for a galaxy with a shallow light profile such as M87, and may not be as severe in galaxies with steeper light profiles unless they have a large stellar population change with radius.

  18. Higher visceral fat is associated with lower cerebral N-acetyl-aspartate ratios in middle-aged adults.

    Science.gov (United States)

    Kaur, Sonya; Birdsill, Alex C; Steward, Kayla; Pasha, Evan; Kruzliak, Peter; Tanaka, Hirofumi; Haley, Andreana P

    2017-06-01

    Excessive adipose tissue, particularly with a central distribution, consists of visceral fat, which is metabolically active and could impinge upon central nervous system functioning. The aim of the current study was to examine levels of visceral adiposity in relation to key cerebral metabolite ratios localized in the occipitoparietal grey matter. Seventy-three adults, aged between 40 and 60 years, underwent structural magnetic resonance imaging and single voxel 1 H Magnetic Resonance Spectroscopy ( 1 H MRS). Visceral fat was assessed using Dual Energy X Ray Absorptiometry (DXA). Individuals with higher visceral fat mass and volume had significantly lower ratios of N-acetyl-aspartate to total creatine (phosphocreatine + creatine, PCr + Cr) (NAA/PCr + Cr) (β = -0.29, p = 0.03, β = -0.28, p = 0.04). They also had significantly higher ratios of myo-inositol to total creatine (mI/PCr + Cr ) (β = 0.36, p = 0.01, β = 0.36, p = 0.01). Visceral fat mass and volume were not significantly related to ratios of glutamate to total creatine (Glu/PCr + Cr). While future studies are necessary, these results indicate central adiposity is associated with metabolic changes that could impinge upon the central nervous system in middle age.

  19. Microlensing discovery of a tight, low-mass-ratio planetary-mass object around an old field brown dwarf

    Energy Technology Data Exchange (ETDEWEB)

    Han, C.; Jung, Y. K. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Skowron, J.; Kozłowski, S.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Pietrukowicz, P. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Gaudi, B. S.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bennett, D. P. [University of Notre Dame, Department of Physics, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Goleta, CA 93117 (United States); Abe, F. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Collaboration: OGLE Collaboration; MOA Collaboration; μFUN Collaboration; RoboNet Collaboration; and others

    2013-11-20

    Observations of accretion disks around young brown dwarfs (BDs) have led to the speculation that they may form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects around BDs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the discovery of a planetary-mass object orbiting a field BD via gravitational microlensing, OGLE-2012-BLG-0358Lb. The system is a low secondary/primary mass ratio (0.080 ± 0.001), relatively tightly separated (∼0.87 AU) binary composed of a planetary-mass object with 1.9 ± 0.2 Jupiter masses orbiting a BD with a mass 0.022 M {sub ☉}. The relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk around the BD host in a manner analogous to planets.

  20. Reduction of determinate errors in mass bias-corrected isotope ratios measured using a multi-collector plasma mass spectrometer

    International Nuclear Information System (INIS)

    Doherty, W.

    2015-01-01

    A nebulizer-centric instrument response function model of the plasma mass spectrometer was combined with a signal drift model, and the result was used to identify the causes of the non-spectroscopic determinate errors remaining in mass bias-corrected Pb isotope ratios (Tl as internal standard) measured using a multi-collector plasma mass spectrometer. Model calculations, confirmed by measurement, show that the detectable time-dependent errors are a result of the combined effect of signal drift and differences in the coordinates of the Pb and Tl response function maxima (horizontal offset effect). If there are no horizontal offsets, then the mass bias-corrected isotope ratios are approximately constant in time. In the absence of signal drift, the response surface curvature and horizontal offset effects are responsible for proportional errors in the mass bias-corrected isotope ratios. The proportional errors will be different for different analyte isotope ratios and different at every instrument operating point. Consequently, mass bias coefficients calculated using different isotope ratios are not necessarily equal. The error analysis based on the combined model provides strong justification for recommending a three step correction procedure (mass bias correction, drift correction and a proportional error correction, in that order) for isotope ratio measurements using a multi-collector plasma mass spectrometer

  1. Physical Parameters of Late Type Spiral Galaxies - III. Mass and Mass to Luminosity Ratio of NGC 7793

    Directory of Open Access Journals (Sweden)

    Chang-Ha Kim

    1986-12-01

    Full Text Available The mass distribution and other related quantities were calculated by fitting the observed rotation curve(Davoust and de Vaucouleur 1980 to Brandt and Belton's mass distribution model. One of n values for mass model is determined as 1.5(Vm = 95 km/s and two pairs of them are determined as 0.8(Vm = 95 km/s and 2.0 and 0.8(Vm = 55 km/s and 2.0 because f the hump in observed rotation curve. Total masses and integrated mass to luminosity ratios are 1.8 x 10^10*Msolar, 1.5 x 10^10*Msolar, 1.4 x 10^10*Msolar, and 6.57, 5.33, 5.26 for three cases according to n values. Integrated mass to luminosity ratio in Holmberg radius is 3.44, 3.26, 3.00 in good agreement with the typical value of Sd type suggested by Faber and Gallagher(1979. Presented halo masses which are fifty percent of total masses and halo mass to luminosity ratios given as 75.83, 53.50, 58.75 are values less than Turner's(1976.

  2. Supermassive black holes with higher Eddington ratios preferentially form in gas-rich galaxies

    Science.gov (United States)

    Izumi, Takuma

    2018-05-01

    The Eddington ratio (λEdd) of supermassive black holes (SMBHs) is a fundamental parameter that governs their cosmic growth. Although gas mass accretion onto SMBHs is sustained when they are surrounded by large amounts of gas, little is known about the molecular content of galaxies, particularly those hosting super-Eddington SMBHs (λEdd > 1: the key phase of SMBH growth). Here, we have compiled reported optical and 12CO(1-0) data of local quasars to characterize their hosts. We found that higher-λEdd SMBHs tend to reside in gas-rich (i.e., high gas mass to stellar mass fraction = fgas) galaxies. We used two methods to make this conclusion: one uses black hole mass as a surrogate for stellar mass by assuming a local co-evolutionary relationship, and the other directly uses stellar masses estimated from near-infrared observations. The fgas-λEdd correlation we found concurs with the cosmic decreasing trend in λEdd, as cold molecular gas is primarily consumed by star formation. This correlation qualitatively matches predictions of recent semi-analytic models of the cosmic downsizing of SMBHs as well. As the gas mass surface density would eventually be a key parameter controlling mass accretion, we need high-resolution observations to identify further differences in the molecular properties around super-Eddington and sub-Eddington SMBHs.

  3. Supermassive black holes with higher Eddington ratios preferentially form in gas-rich galaxies

    Science.gov (United States)

    Izumi, Takuma

    2018-06-01

    The Eddington ratio (λEdd) of supermassive black holes (SMBHs) is a fundamental parameter that governs their cosmic growth. Although gas mass accretion onto SMBHs is sustained when they are surrounded by large amounts of gas, little is known about the molecular content of galaxies, particularly those hosting super-Eddington SMBHs (λEdd > 1: the key phase of SMBH growth). Here, we have compiled reported optical and 12CO(1-0) data of local quasars to characterize their hosts. We found that higher-λEdd SMBHs tend to reside in gas-rich (i.e., high gas mass to stellar mass fraction = fgas) galaxies. We used two methods to make this conclusion: one uses black hole mass as a surrogate for stellar mass by assuming a local co-evolutionary relationship, and the other directly uses stellar masses estimated from near-infrared observations. The fgas-λEdd correlation we found concurs with the cosmic decreasing trend in λEdd, as cold molecular gas is primarily consumed by star formation. This correlation qualitatively matches predictions of recent semi-analytic models of the cosmic downsizing of SMBHs as well. As the gas mass surface density would eventually be a key parameter controlling mass accretion, we need high-resolution observations to identify further differences in the molecular properties around super-Eddington and sub-Eddington SMBHs.

  4. Electronics for processing of data from a double collector isotopic ratio mass spectrometer

    International Nuclear Information System (INIS)

    Handu, V.K.

    1979-01-01

    The output data available from the mass spectrometer type MS-660 developed in the mass spectrometry section of Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, for the determination of H/D ratios in liquid/gas sample consist of uncompensated mass 3 and mass 2 signals. After the mass 3 signal has been compensated for H 3 + formation, the on-line ratio of compensated mass 3 to mass 2 is calculated, displayed, and then printed on a printer for record. The electronic compensation circuit, the discrete voltage-to-frequency (V/F) converter circuit, the ratio calculating system using V/F converters, and a digital interface system for Hindustan Teleprinter to print out the ratios are explained. Results obtained on mass spectrometer MS-660 are presented. (auth.)

  5. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    Science.gov (United States)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  6. An improved data acquisition system for isotopic ratio mass spectrometers

    International Nuclear Information System (INIS)

    Saha, T.K.; Reddy, B.; Nazare, C.K.; Handu, V.K.

    1999-01-01

    Isotopic ratio mass spectrometers designed and fabricated to measure the isotopic ratios with a precision of better than 0.05%. In order to achieve this precision, the measurement system consisting of ion signal to voltage converters, analog to digital converters, and data acquisition electronics should be at least one order better than the overall precision of measurement. Using state of the art components and techniques, a data acquisition system, which is an improved version of the earlier system, has been designed and developed for use with multi-collector isotopic ratio mass spectrometers

  7. Determination of the mass-ratio distribution, I: single-lined spectroscopic binary stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1992-01-01

    For single-lined spectroscopic binary stars (sbi), the mass ratio q = Msec=Mprim is calculated from the mass function f(m), which is determined from observations. For statistical investigations of the mass-ratio distribution, the term sin^3 i, that remains in the cubic equation from which q is

  8. GUT Scale Fermion Mass Ratios

    International Nuclear Information System (INIS)

    Spinrath, Martin

    2014-01-01

    We present a series of recent works related to group theoretical factors from GUT symmetry breaking which lead to predictions for the ratios of quark and lepton Yukawa couplings at the unification scale. New predictions for the GUT scale ratios y μ /y s , y τ /y b and y t /y b in particular are shown and compared to experimental data. For this comparison it is important to include possibly large supersymmetric threshold corrections. Due to this reason the structure of the fermion masses at the GUT scale depends on TeV scale physics and makes GUT scale physics testable at the LHC. We also discuss how this new predictions might lead to predictions for mixing angles by discussing the example of the recently measured last missing leptonic mixing angle θ 13 making this new class of GUT models also testable in neutrino experiments

  9. Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome.

    Science.gov (United States)

    Ezeh, Uche; Pall, Marita; Mathur, Ruchi; Azziz, Ricardo

    2014-07-01

    Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. We conducted a prospective cross-sectional study of 120 women between the ages of 22-44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-%β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and

  10. Accretion of satellites on to central galaxies in clusters: merger mass ratios and orbital parameters

    Science.gov (United States)

    Nipoti, Carlo; Giocoli, Carlo; Despali, Giulia

    2018-05-01

    We study the statistical properties of mergers between central and satellite galaxies in galaxy clusters in the redshift range 0 identify dark-matter haloes, we construct halo merger trees for different values of the overdensity Δc. While the virial overdensity definition allows us to probe the accretion of satellites at the cluster virial radius rvir, higher overdensities probe satellite mergers in the central region of the cluster, down to ≈0.06rvir, which can be considered a proxy for the accretion of satellite galaxies on to central galaxies. We find that the characteristic merger mass ratio increases for increasing values of Δc: more than 60 per cent of the mass accreted by central galaxies since z ≈ 1 comes from major mergers. The orbits of satellites accreting on to central galaxies tend to be more tangential and more bound than orbits of haloes accreting at the virial radius. The obtained distributions of merger mass ratios and orbital parameters are useful to model the evolution of the high-mass end of the galaxy scaling relations without resorting to hydrodynamic cosmological simulations.

  11. [Effect of elastic strain rate ratio method and virtual touch tissue quantification on the diagnosis of breast masses].

    Science.gov (United States)

    Gong, LiJie; He, Yan; Tian, Peng; Yan, Yan

    2016-07-01

    To determine the effect of elastic strain rate ratio method and virtual touch tissue quantification (VTQ) on the diagnosis of breast masses.
 Sixty female patients with breast cancer, who received surgical treatment in Daqing Oilfield General Hospital, were enrolled. All patients signed the informed consent paperwork and they were treated by routine ultrasound examination, compression elastography (CE) examination, and VTQ examination in turn. Strain ratio (SR) was checked by CE and shear wave velocity (SWV) value was measured by VTQ. The diagnostic values of different methods were evaluated by receiver operating characteristic (ROC) curves in the diagnosis of benign and malignant breast tumors.
 The maximum diameter and SWV value of the benign tumors were lower than those of the malignant tumors, and the SR ratio of benign masses was higher than that of malignant tumors (Pbreast mass than that used alone.

  12. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L ∼> fL * galaxies follows the simple relation dN/dt ≅ 0.03(1+f)Gyr -1 (1+z) 2.1 . Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L * high-redshift galaxies (∼ 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t 0.3) in the last 700 Myr and conclude that mergers almost certainly play an important role in delivering baryons and influencing the kinematic properties of Lyman Break Galaxies (LBGs)

  13. Extreme mass ratio inspiral rates: dependence on the massive black hole mass

    International Nuclear Information System (INIS)

    Hopman, Clovis

    2009-01-01

    We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M . of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M -1/4 . . Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M . → 0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.

  14. Scales of guide field reconnection at the hydrogen mass ratio

    International Nuclear Information System (INIS)

    Lapenta, G.; Markidis, S.; Divin, A.; Goldman, M.; Newman, D.

    2010-01-01

    We analyze the signatures of component reconnection for a Harris current sheet with a guide field using the physical mass ratio of hydrogen. The study uses the fully kinetic particle in cell code IPIC3D to investigate the scaling with mass ratio of the following three main component reconnection features: electron density cavities along the separatrices, channels of fast electron flow within the cavities, and electron phase space holes due to the Buneman instability in the electron high speed channels. The width and strength of the electron holes and of the electron cavities are studied up the mass ratio proper of hydrogen, considering the effect of the simulation box size, and of the boundary conditions. The results compare favorably with the existing data from the Cluster and Themis missions and provide quantitative predictions for realistic conditions to be encountered by the planned magnetospheric multiscale mission.

  15. Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?

    Science.gov (United States)

    Pechetti, Renuka; Seth, Anil; Cappellari, Michele; McDermid, Richard; den Brok, Mark; Mieske, Steffen; Strader, Jay

    2017-11-01

    We present dynamical measurements of the central mass-to-light ratio (M/L) of a sample of 27 low-mass early-type {{ATLAS}}3{{D}} galaxies. We consider all {{ATLAS}}3{{D}} galaxies with 9.7 text{}}M/L{{s}} are higher than dynamical {\\text{}}M/L{{s}} derived at larger radii and stellar population estimates of the galaxy centers in ˜80% of galaxies, with a median enhancement of ˜14% and a statistical significance of 3.3σ. We show that the enhancement in the central M/L is best described either by the presence of black holes in these galaxies or by radial initial mass function variations. Assuming a black hole model, we derive black hole masses for the sample of galaxies. In two galaxies, NGC 4458 and NGC 4660, the data suggest significantly overmassive black holes, while in most others only upper limits are obtained. We also show that the level of M/L enhancements we see in these early-type galaxy nuclei are consistent with the larger enhancements seen in ultracompact dwarf galaxies (UCDs), supporting the scenario where massive UCDs are created by stripping galaxies of these masses.

  16. REVISED MASS-TO-LIGHT RATIOS FOR NEARBY GALAXY GROUPS AND CLUSTERS

    International Nuclear Information System (INIS)

    Shan, Yutong; Courteau, Stéphane; McDonald, Michael

    2015-01-01

    We present a detailed investigation of the cluster stellar mass-to-light (M*/L) ratio and cumulative stellar masses, derived on a galaxy-by-galaxy basis, for 12 massive (M 500 ∼ 10 14 -10 15 M ☉ ), nearby clusters with available optical imaging data from the Sloan Digital Sky Survey Data Release 10 and X-ray data from the Chandra X-ray Observatory. Our method involves a statistical cluster membership using both photometric and spectroscopic redshifts when available to maximize completeness while minimizing contamination effects. We show that different methods of estimating the stellar mass-to-light ratio from observed photometry result in systematic discrepancies in the total stellar masses and average mass-to-light ratios of cluster galaxies. Nonetheless, all conversion methodologies point to a lack of correlation between M*/L i and total cluster mass, even though low-mass groups contain relatively more blue galaxies. We also find no statistically significant correlation between M*/L i and the fraction of blue galaxies (g – i < 0.85). For the mass range covered by our sample, the assumption of a Chabrier initial mass function (IMF) yields an integrated M*/L i ≅ 1.7 ± 0.2 M ☉ /L i, ☉ , a lower value than used in most similar studies, though consistent with the study of low-mass galaxy groups by Leauthaud et al. A light (diet) Salpeter IMF would imply a ∼60% increase in M*/L i

  17. Orientation of X Lines in Asymmetric Magnetic Reconnection-Mass Ratio Dependency

    Science.gov (United States)

    Liu, Yi-Hsin; Hesse, M.; Kuznetsova, M.

    2015-01-01

    Using fully kinetic simulations, we study the X line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single X line, which has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the X line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2-D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in an electron-scale current sheet.

  18. Study of the matrix specific mass discrimination effects during inductively coupled plasma mass spectrometry isotope ratio measurements

    International Nuclear Information System (INIS)

    Vassileva, E.; Quetel, Ch.R.

    2004-01-01

    Sample matrix related effects on mass discrimination during inductively coupled plasma mass spectrometry (ICP-MS) isotope ratio measurements have only been rarely reported. However, they can lead to errors larger than the uncertainty claimed on the ratio results when not properly taken into account or corrected for. These matrix specific affects were experienced during an Isotope Dilution Mass Spectrometry (IDMS) campaign we carried out for the certification of the Cd amount content in some food digest samples (7% acidity and salts content around 450μg g -1 ). Dilution was not possible for Cd only present at the low ng g -1 level. Up to 1% difference was observed on Cd isotope ratio results between measurements performed directly or after matrix separation. This was a significant difference considering that less than 1.5% relative combined uncertainty was eventually estimated for these IDMS measurements. Similar results could be obtained either way after the implementation of necessary corrections. The direct measurement approach associated to a correction for mass discrimination effects using the food digest sample itself (and the IUPAC table values as reference for the natural Cd isotopic composition) was preferred as it was the easiest. Consequently, the impact of matrix effects on mass discrimination during isotope ratio measurements with two types of ICP- MS (quadrupole and magnetic sector instruments) was studied for 4 elements (Li, Cu, Cd and Tl). Samples of varying salinity (up to 0.25%) and acidity (up to 7%) characteristics were prepared using isotopic certified reference materials of these elements. The long term and short-term stability, respectively reproducibility and repeatability, of the results, as well as the evolution of the difference to certified ratio values were monitored. As expected the 13 investigated isotopic ratios were all sensitive to variations in salt and acid concentrations. Our experiments also showed that simultaneous variation

  19. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    International Nuclear Information System (INIS)

    Sotiropoulou, P I; Martini, N D; Koukou, V N; Nikiforidis, G C; Fountos, G P; Michail, C M; Valais, I G; Kandarakis, I S

    2015-01-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant. (paper)

  20. Accurate isotope ratio mass spectrometry. Some problems and possibilities

    International Nuclear Information System (INIS)

    Bievre, P. de

    1978-01-01

    The review includes reference to 190 papers, mainly published during the last 10 years. It covers the following: important factors in accurate isotope ratio measurements (precision and accuracy of isotope ratio measurements -exemplified by determinations of 235 U/ 238 U and of other elements including 239 Pu/ 240 Pu; isotope fractionation -exemplified by curves for Rb, U); applications (atomic weights); the Oklo natural nuclear reactor (discovered by UF 6 mass spectrometry at Pierrelatte); nuclear and other constants; isotope ratio measurements in nuclear geology and isotope cosmology - accurate age determination; isotope ratio measurements on very small samples - archaeometry; isotope dilution; miscellaneous applications; and future prospects. (U.K.)

  1. The Mass-Ratio Distribution of Visual Binary Stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1990-01-01

    The selection effects that govern the observations of Visual Binary Stars are in- vestigated, in order to obtain a realistic statistical distribution of the mass-ratio q = Msec=Mprim. To this end a numerical simulation programme has been developed, which `generates' binary stars and `looks' at

  2. Ratio of dietary ω-3 and ω-6 fatty acids-independent determinants of muscle mass-in hemodialysis patients with diabetes.

    Science.gov (United States)

    Wong, Te-Chih; Chen, Yu-Tong; Wu, Pei-Yu; Chen, Tzen-Wen; Chen, Hsi-Hsien; Chen, Tso-Hsiao; Hsu, Yung-Ho; Yang, Shwu-Huey

    2016-09-01

    ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are essential nutrients in the human diet and possibly affect muscle mass. We evaluated the association between the dietary ratios of ω-3 and ω-6 PUFAs and muscle mass, indicated as skeletal muscle mass (SMM) and appendicular skeletal muscle mass (ASM), in patients with diabetes undergoing hemodialysis (HD). In this cross-sectional study, data on 69 patients with diabetes who underwent standard HD therapy were analyzed. For estimating muscle mass, anthropometric and bioelectrical impedance analyses were conducted following dialysis. In addition, routine laboratory and 3-d dietary data were obtained. The adequate intake (AI) cut-off for ω-3 PUFAs was 1.6 g/d and 1.1 g/d for male and female patients, respectively. The average age of the participants was 63.0 ± 10.4 y. The mean ratios of ω-3/ω-6 PUFA intake, ω-6/ω-3 PUFA intake, SMM, and ASM of the patients were 0.13 ± 0.07, 9.4 ± 6.4, 24.6 ± 5.4 kg, and 18.3 ± 4.6 kg, respectively. Patients who had AI of ω-3 PUFAs had significantly higher SMM and ASM than did their counterparts. Linear and stepwise multivariable adjustment analyses revealed that insulin resistance and the ω-6/ω-3 PUFA ratio were the independent deleterious determinants of ASM normalized to height in HD patients. Patients with AI of ω-3 PUFAs had total-body SMM and ASM that were more appropriate. A higher dietary ratio of ω-6/ω-3 PUFAs was associated with reduced muscle mass in HD patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. BINARY FORMATION MECHANISMS: CONSTRAINTS FROM THE COMPANION MASS RATIO DISTRIBUTION

    International Nuclear Information System (INIS)

    Reggiani, Maddalena M.; Meyer, Michael R.

    2011-01-01

    We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single-object mass function. The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star initial mass function (IMF). We consider samples of companions for M dwarfs, solar-type stars, and intermediate-mass stars, both in the field as well as clusters or associations, and compare them with populations of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open clusters α Persei and the Pleiades we also reject the IMF random-pairing hypothesis. Concerning young star-forming regions, currently we can rule out a connection between the CMRD and the field IMF in Taurus but not in Chamaeleon I. Larger and different samples are needed to better constrain the result as a function of the environment. We also consider other companion mass functions and we compare them with observations. Moreover the CMRD both in the field and clusters or associations appears to be independent of separation in the range covered by the observations. Combining therefore the CMRDs of M (1-2400 AU) and G (28-1590 AU) primaries in the field and intermediate-mass primary binaries in Sco OB2 (29-1612 AU) for mass ratios, q = M 2 /M 1 , from 0.2 to 1, we find that the best chi-square fit follows a power law dN/dq∝q β , with β = -0.50 ± 0.29, consistent with previous results. Finally, we note that the Kolmogorov-Smirnov test gives a ∼1

  4. GALAXY MERGERS AND DARK MATTER HALO MERGERS IN ΛCDM: MASS, REDSHIFT, AND MASS-RATIO DEPENDENCE

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; Wechsler, Risa H.

    2009-01-01

    We employ a high-resolution ΛCDM N-body simulation to present merger rate predictions for dark matter (DM) halos and investigate how common merger-related observables for galaxies-such as close pair counts, starburst counts, and the morphologically disturbed fraction-likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We investigate both rate at which subhalos first enter the virial radius of a larger halo (the 'infall rate'), and the rate at which subhalos become destroyed, losing 90% of the mass they had at infall (the d estruction rate ) . For both merger rate definitions, we provide a simple 'universal' fitting formula that describes our derived merger rates for DM halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density matching to associate halos with galaxies. For example, we find that the instantaneous (destruction) merger rate of m/M > 0.3 mass-ratio events into typical L ∼> f L * galaxies follows the simple relation dN/dt ≅ 0.03(1 + f) Gyr -1 (1 + z) 2.1 . Despite the rapid increase in merger rate with redshift, only a small fraction of >0.4 L * high-redshift galaxies (∼3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t 0.3) in the previous 700 Myr and conclude that mergers almost certainly play an important role in delivering baryons and influencing the kinematic properties of Lyman break galaxies (LBGs).

  5. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes

    Science.gov (United States)

    Cericola, D.; Kötz, R.; Wokaun, A.

    2011-03-01

    The accelerated degradation of carbon based supercapacitors utilizing 1 M Et4NBF4 in acetonitrile and in propylene carbonate as electrolyte is investigated for a constant cell voltage of 3.5 V as a function of the positive over total electrode mass ratio. The degradation rate of the supercapacitor using acetonitrile as a solvent can be decreased by increasing the mass of the positive electrode. With a mass ratio (positive electrode mass/total electrode mass) of 0.65 the degradation rate is minimum. For the capacitor utilizing propylene carbonate as a solvent a similar effect was observed. The degradation rate was smallest for a mass ratio above 0.5.

  6. Observing extreme-mass-ratio inspirals with eLISA/NGO

    OpenAIRE

    Gair, Jonathan R; Porter, Edward K

    2012-01-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar mass compact objects into massive black holes in the centres of galaxies are an important source of low-frequency gravitational waves for space-based detectors. We discuss the prospects for detecting these sources with the evolved Laser Interferometer Space Antenna (eLISA), recently proposed as an ESA mission candidate under the name NGO. We show that NGO could observe a few tens of EMRIs over its two year mission lifetime at redshifts z < 0...

  7. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of δ 13 C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH 2 PO 4 at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR TM column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH 2 PO 4 aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical

  8. Creation of a predictive equation to estimate fat-free mass and the ratio of fat-free mass to skeletal size using morphometry in lean working farm dogs.

    Science.gov (United States)

    Leung, Y M; Cave, N J; Hodgson, B A S

    2018-06-27

    To develop an equation that accurately estimates fat-free mass (FFM) and the ratio of FFM to skeletal size or mass, using morphometric measurements in lean working farm dogs, and to examine the association between FFM derived from body condition score (BCS) and FFM measured using isotope dilution. Thirteen Huntaway and seven Heading working dogs from sheep and beef farms in the Waikato region of New Zealand were recruited based on BCS (BCS 4) using a nine-point scale. Bodyweight, BCS, and morphometric measurements (head length and circumference, body length, thoracic girth, and fore and hind limb length) were recorded for each dog, and body composition was measured using an isotopic dilution technique. A new variable using morphometric measurements, termed skeletal size, was created using principal component analysis. Models for predicting FFM, leanST (FFM minus skeletal mass) and ratios of FFM and leanST to skeletal size or mass were generated using multiple linear regression analysis. Mean FFM of the 20 dogs, measured by isotope dilution, was 22.1 (SD 4.4) kg and the percentage FFM of bodyweight was 87.0 (SD 5.0)%. Median BCS was 3.0 (min 1, max 6). Bodyweight, breed, age and skeletal size or mass were associated with measured FFM (pFFM and measured FFM (R 2 =0.96), and for the ratio of predicted FFM to skeletal size and measured values (R 2 =0.99). Correlation coefficients were higher for the ratio FFM and leanST to skeletal size than for ratios using skeletal mass. There was a positive correlation between BCS-derived fat mass as a percentage of bodyweight and fat mass percentage determined using isotope dilution (R 2 =0.65). As expected, the predictive equation was accurate in estimating FFM when tested on the same group of dogs used to develop the equation. The significance of breed, independent of skeletal size, in predicting FFM indicates that individual breed formulae may be required. Future studies that apply these equations on a greater population of

  9. Application of Mass Lumped Higher Order Finite Elements

    International Nuclear Information System (INIS)

    J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau

    2005-01-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied

  10. A Universal Break in the Planet-to-star Mass-ratio Function of Kepler MKG Stars

    Science.gov (United States)

    Pascucci, Ilaria; Mulders, Gijs D.; Gould, Andrew; Fernandes, Rachel

    2018-04-01

    We follow the microlensing approach and quantify the occurrence of Kepler exoplanets as a function of planet-to-star mass ratio, q, rather than planet radius or mass. For planets with radii ∼1–6 R ⊕ and periods law with a break at ∼3 × 10‑5 independent of host type for hosts below 1 M ⊙. These findings indicate that the planet-to-star mass ratio is a more fundamental quantity in planet formation than planet mass. We then compare our results to those from microlensing for which the overwhelming majority satisfies the M host common planet inside the snowline is ∼3–10 times less massive than the one outside. With rocky planets interior to gaseous planets, the solar system broadly follows the combined mass-ratio function inferred from Kepler and microlensing. However, the exoplanet population has a less extreme radial distribution of planetary masses than the solar system. Establishing whether the mass-ratio function beyond the snowline is also host type independent will be crucial to build a comprehensive theory of planet formation.

  11. Mass spectrometric determination of magnesium isotopic ratios and its corrections for electron multiplier discrimination and mass fractionation

    International Nuclear Information System (INIS)

    Deng Zhongguo

    1989-01-01

    The mass spectrometric determination of magnesium isotopic ratios by the use of uranyl nitrate added to magnesium samples to act as a binding agent is reported. Prebaking empty filaments and preheating filaments with deposited magnesium samples on its surface in a vacuum are employed to reduce the Na signal from the thenium-ribbon. Methods for correcting magnesium isotopic ratios for electron multiplier discrimination and mass fractionation are described in detail. The results of the determination of natural magnesium isotopic ratios are 25 Mg/ 24 Mg = 0.12660 (1±0.01%) and 26 Mg/ 24 Mg = 0.13938 (1±0.10%). The magnesium isotopic ratios of rich - 26 Mg-2 sample and rich- 25 Mg-1 sample are 24 Mg/ 26 Mg = 0.003463 (1±0.2%), 25 Mg/ 26 Mg = 0.001656 (±0.2%) and 24 Mg/ 25 Mg = 0.006716 (1±0.2%), 26 Mg/ 25 Mg = 0.007264 (1±0.2%) respectively

  12. Determining mass-to-light ratios in elliptical galaxies

    International Nuclear Information System (INIS)

    Mathews, W.G.

    1988-01-01

    If the endstate of cooling hot gas in elliptical galaxies is a population of optically dark, low-mass stars near the galactic cores, the mass-to-light ratio could be expected to vary significantly with projected radius. No strong variation in M/L is observed. To investigate the sensitivity and reliability of observational mass-to-light determinations for a variety of galactic parameters, model galaxies having de Vaucouleurs profiles (but with central cores and outer cutoffs), variable velocity ellipsoid structure, and extended dark halos are constructed. Spurious radial variations in M/L can occur when none are present if the properties of the galactic models are processed similar to observational data. Conversely, when a population of diffuse dark stellar matter is added near the galactic cores, large gradients in M/L can escape detection. However, the magnitude of the central velocity dispersion and its variation with projected radius within the effective radius both suggest that a component of dark stars is unlikely to be more massive than about 30 times the core mass of luminous stars. This restriction is important in establishing the initial mass function of stars in elliptical galaxies and the history of winds and cooling inflows in the interstellar medium. 35 references

  13. ORBITAL AND MASS RATIO EVOLUTION OF PROTOBINARIES DRIVEN BY MAGNETIC BRAKING

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bo; Li, Zhi-Yun [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States)

    2013-01-20

    The majority of stars reside in multiple systems, especially binaries. The formation and early evolution of binaries is a longstanding problem in star formation that is not yet fully understood. In particular, how the magnetic field observed in star-forming cores shapes the binary characteristics remains relatively unexplored. We demonstrate numerically, using an MHD version of the ENZO AMR hydro code, that a magnetic field of the observed strength can drastically change two of the basic quantities that characterize a binary system: the orbital separation and mass ratio of the two components. Our calculations focus on the protostellar mass accretion phase, after a pair of stellar 'seeds' have already formed. We find that in dense cores magnetized to a realistic level, the angular momentum of the material accreted by the protobinary is greatly reduced by magnetic braking. Accretion of strongly braked material shrinks the protobinary separation by a large factor compared to the non-magnetic case. The magnetic braking also changes the evolution of the mass ratio of unequal-mass protobinaries by producing material of low specific angular momentum that accretes preferentially onto the more massive primary star rather than the secondary. This is in contrast with the preferential mass accretion onto the secondary previously found numerically for protobinaries accreting from an unmagnetized envelope, which tends to drive the mass ratio toward unity. In addition, the magnetic field greatly modifies the morphology and dynamics of the protobinary accretion flow. It suppresses the traditional circumstellar and circumbinary disks that feed the protobinary in the non-magnetic case; the binary is fed instead by a fast collapsing pseudodisk whose rotation is strongly braked. The magnetic braking-driven inward migration of binaries from their birth locations may be constrained by high-resolution observations of the orbital distribution of deeply embedded protobinaries

  14. The measurement of mass spectrometric peak height ratio of helium isotope in trace samples

    International Nuclear Information System (INIS)

    Sun Mingliang

    1989-01-01

    An experiment study on the measurement of mass spectrometric peak height ratio of helium isotope in the trace gaseous sample is discussed by using the gas purification line designed by the authors and model VG-5400 static-vacuum noble gas mass spectrometer imported and air helium as a standard. The results show that the amount of He and Ne in natural gas sample is 99% after purification. When the amount of He in Mass Spectrometer is more than 4 x 10 -7 cm 3 STP, it's sensitivity remains stable, about 10 -4 A/cm 3 STP He and the precision of 3 He/ 4 He ratio within the following 17 days is 1.32%. The 'ABA' pattern and experiment condition in the measurement of mass spectrometric peak height ratio of He isotope are presented

  15. Cross contamination in dual inlet isotope ratio mass spectrometers

    NARCIS (Netherlands)

    Meijer, H.A.J.; Neubert, R.E.M.; Visser, G.H.

    2000-01-01

    Since the early days of geochemical isotope ratio mass spectrometry there has always been the problem of cross contamination, i.e. the contamination of the sample gas with traces of reference gas land vice versa) in a dual inlet system and the analyzer itself. This was attributable to valve leakages

  16. Continuous flow isotope ratio mass spectrometer (CF-IRMS) and its applications in hydrocarbon research and exploration

    International Nuclear Information System (INIS)

    Kalpana, G.; Patil, D.J.; Kumar, B.

    2004-01-01

    Stable isotope ratio mass spectrometers have been widely used to determine the isotopic ratios of light elements such as hydrogen, carbon, nitrogen, oxygen and sulphur. Continuous Flow Isotope Ratio Mass Spectrometry (CFIRMS) provides reliable data on nanomole amount of sample gas without the need for cryogenic trapping using cold fingers as in dual inlet isotope ratio mass spectrometer. High sample throughput is achieved as the system is configured with automated sample preparation devices and auto samplers. This paper presents a brief description of CFIRMS exploration

  17. A Comparison of Vibroacoustic Response of Isotropic Plate with Attached Discrete Patches and Point Masses Having Different Thickness Variation with Different Taper Ratios

    Directory of Open Access Journals (Sweden)

    Bipin Kumar

    2016-01-01

    Full Text Available A comparison of sound radiation behavior of plate in air medium with attached discrete patches/point masses having different thickness variations with different taper ratio of 0.3, 0.6, and 0.9 is analysed. Finite element method is used to find the vibration characteristics while Rayleigh integral is used to predict the sound radiation characteristics. Minimum peak sound power level obtained is at a taper ratio of 0.6 with parabolic increasing-decreasing thickness variation for plate with four discrete patches. At higher taper ratio, linearly increasing-decreasing thickness variation is another alternative for minimum peak sound power level suppression with discrete patches. It is found that, in low frequency range, average radiation efficiency remains almost the same, but near first peak, four patches or four point masses cause increase in average radiation efficiency; that is, redistribution of point masses/patches does have effect on average radiation efficiency at a given taper ratio.

  18. Evaluation of precision in measurements of uranium isotope ratio by thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de; Rodrigues, C.

    1977-01-01

    The parameters which affect the precision and accuracy of uranium isotopic ratios measurements by thermionic mass spectrometry are discussed. A statistical designed program for the analysis of the internal and external variances are presented. It was done an application of this statistical methods, in order to get mass discrimination factor, and its standard mean deviation, by using some results already published for 235 U/ 238 U ratio in NBS uranium samples, and natural uranium [pt

  19. Experimental limit on the ratio of the gravitational mass to the inertial mass of antihydrogen

    Science.gov (United States)

    Fajans, Joel; Wurtele, Jonathan; Charman, Andrew; Zhmoginov, Andrey

    2012-10-01

    Physicists have long wondered if the gravitational interactions between matter and antimatter might be different from those between matter and itself. While there are many indirect indications that no such differences exist, i.e., that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. By searching for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap, we have determined that we can reject ratios of the gravitational mass to the inertial mass of antihydrogen greater than about 100 at a statistical significance level of 5%. A similar search places somewhat lower limits on a negative gravitational mass, i.e., on antigravity.

  20. Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio

    Science.gov (United States)

    Hoffman, Aaron; Wright, J. Douglas

    2017-11-01

    Consider an infinite chain of masses, each connected to its nearest neighbors by a (nonlinear) spring. This is a Fermi-Pasta-Ulam-Tsingou lattice. We prove the existence of traveling waves in the setting where the masses alternate in size. In particular we address the limit where the mass ratio tends to zero. The problem is inherently singular and we find that the traveling waves are not true solitary waves but rather ;nanopterons;, which is to say, waves which are asymptotic at spatial infinity to very small amplitude periodic waves. Moreover, we can only find solutions when the mass ratio lies in a certain open set. The difficulties in the problem all revolve around understanding Jost solutions of a nonlocal Schrödinger operator in its semi-classical limit.

  1. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Te-Chih Wong

    Full Text Available n-3 polyunsaturated fatty acids (PUFAs might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM, appendicular skeletal muscle mass (ASM, and its determinants in patients receiving standard hemodialysis (HD treatment for the management of end stage renal disease.In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI for both n-3 PUFAs and alpha-linolenic acid (ALA was 1.6 g/day and 1.1 g/day for men and women, respectively.The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047. No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients.Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  2. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    Science.gov (United States)

    Wong, Te-Chih; Chen, Yu-Tong; Wu, Pei-Yu; Chen, Tzen-Wen; Chen, Hsi-Hsien; Chen, Tso-Hsiao; Yang, Shwu-Huey

    2015-01-01

    n-3 polyunsaturated fatty acids (PUFAs) might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM), appendicular skeletal muscle mass (ASM), and its determinants in patients receiving standard hemodialysis (HD) treatment for the management of end stage renal disease. In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI) for both n-3 PUFAs and alpha-linolenic acid (ALA) was 1.6 g/day and 1.1 g/day for men and women, respectively. The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047). No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients. Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  3. Mass generation and related issues from exotic higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Colatto, Luiz Paulo [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET), Petropolis, RJ (Brazil); Andrade, Marco Antonio de [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil); Assis, Leonardo Paulo Guimaraes de; Helayel-Neto, Jose Abdalla [Centro Brasileiro de Pesquisas Fisicas(LAFEX/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Experimental de Altas Energias; Matheus-Valle, Jose Luiz [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil); Rojas, Moises [Universidade Federal de Lavras, MG (Brazil)

    2011-07-01

    Full text: he main purpose of this work is to show that massless Dirac equation formulated for non-interacting Majorana-Weyl spinors in higher dimensions, particularly in D = 1 + 9 and D = 5 + 5, may yield to an interpretation of massive Majorana and Dirac spinors in D = 1 + 3 dimensions. The particular case of a dimensional reduction from D = 4 + 4 to D = 1 + 3 has already been fairly-well discussed in the literature. By adopting suitable representations of the Dirac matrices in higher dimensions, we pursue the investigation of which higher dimensional space-times and which metric signatures concerning massless Dirac equations in highermay induce massive spinors in D = 1+3 dimensions. The mixing of the chiral fermions in higher dimensions may induce a mechanism such that four massive Majorana fermions may show up and, at an appropriate limit an almost zero and a huge mass show up with corresponding left-handed and right-handed eigenstates. This mechanism could reassess a peculiar connection with the See-Saw scheme associated to neutrino with Majorana-type masses. The masses of the particle are fixed by the dimensional reduction scheme, which the decoupled dimensions contribute coordinates and depend on the mass invariants in lower dimensions. This proposal should allow us to understand the generation of hierarchies for the fermionic masses in D = 1 + 3, or in lower dimensions in general, starting from the constraints between the energy and the momentum in (n; n) dimensions. For the initial D = 5 + 5 Majorana-Weyl spinors framework using the Weyl representation to the Dirac matrices we observe an intriguing decomposition of space-time that result in two equivalent D = 1 + 4 massive spinors which mass term, in D = 1 + 3 included, is originated from the remained component and that could induce a Brane-World mechanism. (author)

  4. Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Cha, Hyung Ki; Kim, Duk Hyeon; Min, Ki Hyun

    2004-01-01

    The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ∼1,500 for the ytterbium

  5. Optimal sample to tracer ratio for isotope dilution mass spectrometry: the polyisotopic case

    International Nuclear Information System (INIS)

    Laszlo, G.; Ridder, P. de; Goldman, A.; Cappis, J.; Bievre, P. de

    1991-01-01

    The Isotope Dilution Mass Spectrometry (IDMS) measurement technique provides a means for determining the unknown amount of various isotopes of an element in a sample solution of known mass. The sample solution is mixed with an auxiliary solution, or tracer, containing a known amount of the same element having the same isotopes but of different relative abundances or isotopic composition and the induced change in the isotopic composition measured by isotope mass spectrometry. The technique involves the measurement of the abundance ratio of each isotope to a (same) reference isotope in the sample solution, in the tracer solution and in the blend of the sample and tracer solution. These isotope ratio measurements, the known element amount in the tracer and the known mass of sample solution are used to calculate the unknown amount of one isotope in the sample solution. Subsequently the unknown amount of element is determined. The purpose of this paper is to examine the optimization of the ratio of the estimated unknown amount of element in the sample solution to the known amount of element in the tracer solution in order to minimize the relative uncertainty in the determination of the unknown amount of element

  6. A review on the determination of isotope ratios of boron with mass spectrometry.

    Science.gov (United States)

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  7. Stable isotope ratio mass spectrometry in forensic science and food adulteration research

    International Nuclear Information System (INIS)

    Kumar, B.

    2009-01-01

    Stable Isotope Ratio Mass Spectrometry (SIRMS) is an established technique for the determination of origin of geological, biological, chemical and physio-chemical samples/materials. With the development of highly precise mass spectrometers, the stable isotope ratio determination of hydrogen, carbon, nitrogen and oxygen have gained considerable interest in the fields of forensic science and food authentication. Natural variations in the isotopic composition of lighter elements occur due to fractionation effects, resulting in the finger printing of specific isotope ratio values that are characteristic of the origin, purity, and manufacturing processes of the products and their constituents. Forensic science uses scientific and technical methods to investigate traceable evidence of criminal acts. Stable isotope ratio mass spectrometry has been applied to numerous aspects of the forensic science. The analysis of explosives such as ammonium nitrate, gun powder and tri-nitro-toluene (TNT), cases of murder, armed robbery, drug smuggling, terrorism, arson and hit and run traffic accidents are a few of them. The main types of geological evidences in such cases are mud, soil, rocks, sand, gravel, dust particles, biological materials, organic particles and anthropogenic components. Stable isotopes are used as tools to corroborate and confirm the evidential leads in the investigation of such crimes. The variation in natural abundances of carbon and nitrogen and their isotopic ratios δ 13 C and δ 15 N can identify links between items found at crime scene with those of suspect. The paper discusses the applications of SIRMS in the field of forensic science and food adulteration research

  8. Higher-speed coronal mass ejections and their geoeffectiveness

    Science.gov (United States)

    Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha

    2018-06-01

    We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.

  9. Frozen up dilaton and the GUT/Planck mass ratio

    Science.gov (United States)

    Davidson, Aharon; Ygael, Tomer

    2017-09-01

    By treating modulus and phase on equal footing, as prescribed by Dirac, local scale invariance can consistently accompany any Brans-Dicke ω-theory. We show that in the presence of a soft scale symmetry breaking term, the classical solution, if it exists, cannot be anything else but general relativistic. The dilaton modulus gets frozen up by the Weyl-Proca vector field, thereby constituting a gravitational quasi-Higgs mechanism. Assigning all grand unified scalars as dilatons, they enjoy Weyl universality, and upon symmetry breaking, the Planck (mass)2 becomes the sum of all their individual (VEV)2s. The emerging GUT/Planck (mass)2 ratio is thus ∼ ωgGUT2 / 4 π.

  10. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane

    Directory of Open Access Journals (Sweden)

    M. Brass

    2010-12-01

    Full Text Available We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve switching. Chemical agents are avoided. Trace amounts of interfering compounds can be separated by gas chromatography after pre-concentration of the CH4 sample. The purified sample is then either combusted to CO2 or pyrolyzed to H2 for stable isotope measurement. Apart from connecting samples and refilling liquid nitrogen as coolant the system is fully automated and allows an unobserved, continuous analysis of samples. The analytical system has been used for analysis of air samples with CH4 mixing ratios between ~100 and ~10 000 ppb, for higher mixing ratios samples usually have to be diluted.

  11. The relationship between vertical cup‑disc ratio and body mass ...

    African Journals Online (AJOL)

    Aim: To determine the relationship between vertical cup disc ratio (VCDR) and body mass index (BMI) in a population screened for glaucoma in Port Harcourt, Nigeria Materials and Method: This study was part of a one-day screening exercise for glaucoma at the University of Port Harcourt. Demographic data included age, ...

  12. THE STAR FORMATION HISTORIES OF RED-SEQUENCE GALAXIES, MASS-TO-LIGHT RATIOS AND THE FUNDAMENTAL PLANE

    International Nuclear Information System (INIS)

    Allanson, Steven P.; Hudson, Michael J.; Smith, Russell J.; Lucey, John R.

    2009-01-01

    This paper addresses the challenge of understanding the typical star formation histories of red-sequence galaxies, using linestrength indices and mass-to-light ratios as complementary constraints on their stellar age distribution. We first construct simple parametric models of the star formation history that bracket a range of scenarios, and fit these models to the linestrength indices of low-redshift cluster red-sequence galaxies. For giant galaxies, we confirm the downsizing trend, i.e., the stellar populations are younger, on average, for lower σ galaxies. We find, however, that this trend flattens or reverses at σ ∼ -1 . We then compare predicted stellar mass-to-light ratios with dynamical mass-to-light ratios derived from the fundamental plane (FP), or by the SAURON group. For galaxies with σ ∼ 70 km s -1 , models with a late 'frosting' of young stars and models with exponential star formation histories have stellar mass-to-light ratios that are larger than observed dynamical mass-to-light ratios by factors of 1.7 and 1.4, respectively, and so are rejected. The single stellar population (SSP) model is consistent with the FP, and requires a modest amount of dark matter (between 20% and 30%) to account for the difference between stellar and dynamical mass-to-light ratios. A model in which star formation was 'quenched' at intermediate ages is also consistent with the observations, although in this case less dark matter is required for low mass galaxies. We also find that the contribution of stellar populations to the 'tilt' of the fundamental plane is highly dependent on the assumed star formation history: for the SSP model, the tilt of the FP is driven primarily by stellar-population effects. For a quenched model, two-thirds of the tilt is due to stellar populations and only one-third is due to dark matter or non-homology.

  13. The radial velocity, velocity dispersion, and mass-to-light ratio of the Sculptor dwarf galaxy

    Science.gov (United States)

    Armandroff, T. E.; Da Costa, G. S.

    1986-01-01

    The radial velocity, velocity dispersion, and mass-to-light ratio for 16 K giants in the Sculptor dwarf galaxy are calculated. Spectra at the Ca II triplet are analyzed using cross-correlation techniques in order to obtain the mean velocity of + 107.4 + or - 2.0 km/s. The dimensional velocity dispersion estimated as 6.3 (+1.1, -1.3) km/s is combined with the calculated core radius and observed central surface brightness to produce a mass-to-light ratio of 6.0 in solar units. It is noted that the data indicate that the Sculptor contains a large amount of mass not found in globular clusters, and the mass is either in the form of remnant stars or low-mass dwarfs.

  14. Determination of 240Pu/239Pu isotope ratios in Kara Sea and Novaya Zemlya sediments using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Oughton, D.H.; Skipperud, L.; Salbu, B.; Fifield, L.K.; Cresswell, R.C.; Day, J.P.

    1999-01-01

    Accelerator mass spectrometry (AMS) has been used to determine Pu activity concentrations and 240 Pu/ 239 Pu isotope ratios in sediments from the Kara Sea and radioactive waste dumping sites at Novaya Zemlya. Measured 239,240 Pu activities ranged from 0.06 - 9.8 Bq/kg dry weight, 240 Pu/ 239 Pu atom ratios ranged from 0.13 to 0.28, and 238 Pu/ 239,240 Pu activity ratios from 0.02 to 0.6. Perturbations from global fallout isotope ratios were evident at three sites: the Yenisey Estuary and Abrosimov Fjords where 240 Pu/ 239 Pu ratios were lower (0.13-0.14); and Stepovogo Fjord sediments where ratios were higher (up to 0.28) than fallout ratios. Based on procedural blanks, detection limits for AMS were below 1 fg Pu and the method showed good precision for isotope ratio measurements, minimal matrix, interference and memory effects. For high level samples, comparison between alpha spectrometry and AMS gave good agreement for measurement of 239,240 Pu activity concentrations. (author)

  15. Diagnostic performance of sonoelastographic Tsukuba score and strain ratio in evaluation of breast masses

    Directory of Open Access Journals (Sweden)

    Mahmoud Abd Elaziz Dawood

    2018-03-01

    Full Text Available The aim of this prospective study was to evaluate the diagnostic performance of the use of strain index ratio by sonoelastography to differentiate between benign and malignant breast lesions. Patients & Methods: This prospective study including 40 females, complaining of breast masses which were suspicious to be malignant on clinical examination. All patients were submitted to B-mode Ultrasound and sonoelastography. Biopsy as a gold standard and pathological study were done for all breast lesions. Results: US examination of every mass was done and categorized according to BI-RADS categories according to ACR2013, according to US lexicon. Sonoelastography examination with Lesions classification was performed on the basis of a 5-point scoring method proposed by Tsukuba elasticity score. Then measurements of strain ratio were done. Statistical analysis of combination of the three methods was sensitivity of 96.7%, specificity of 100% when we use cut off value of 3–4 in elastography score and ≤3 cut off value of strain ratio. Conclusion: The combined use of strain ratio with Tsukuba score and BI-RADS categorization increased the diagnostic performance in differentiation between benign and malignant breast lesions. Keywords: Elastography, Breast masses, Strain ratio, Ultrasound, BI-RADS classification, Tsukuba score

  16. Relationship of body mass index and waist to hip ratio measurement with hypertension in young adult medical students

    International Nuclear Information System (INIS)

    Zafar, S.; Haque, I.U.; Rehman, A.U.

    2007-01-01

    To examine the BMI profile and waist to hip ratio measurements of young adult medical students of Lahore medical and dental college and its relationship with hypertension. All the students of Lahore medical and dental college were asked to undergo physical examination. Height, weight, waist circumference, hip circumference, systolic and diastolic blood pressure were recorded. The partial correlation coefficient was used to quantify the association between BMI and waist-to-hip circumference ratio with systolic and diastolic blood pressure. Linear regression analysis was used to assess the influence of body mass index and waist-to-hip circumference ratio on the variance of systolic and diastolic BP. Mean BMI was 23.24 (SD+-4.31). Descriptive analysis revealed that 103 (21.3%) of the study population were classified as underweight, 251 (52 %) as normal weight, 99 (20.5%) as overweight, and 30 (6.2 %) as obese. Abdominal adiposity, as measured by increased WHR, was present in 56 subjects (11.59 %). Partial correlation controlled for age revealed strong positive correlation between BMI and WHR for males. 7.24% had high systolic blood pressure, minimum systolic BP was 90 while maximum being 160 mmHg. Same was the value for high diastolic blood pressure i.e. 35 (7.24%), range was from 60 to 100mm Hg. Results of the partial correlation coefficient controlled for age, indicated a significant positive correlation between SBP and DBP. Stepwise linear regression analysis controlled for age revealed that both body mass index and waist-to-hip circumference ratio were independently correlated with both systolic and diastolic blood pressures. The present results suggest that prevalence of overweight and obesity among the medical students is higher than in general population. Those with either higher BMI or central adiposity distribution are potential candidates of increased risk of hypertension and cardiovascular disease. (author)

  17. Determination of Mg/Ca ratio of stalagmite by laser multicollector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    He Xuexian; Zhu Xiangkun; Tang Suohan; Yang Chun; Cai Junjun; Li Shizhen; Li Zhihong

    2005-01-01

    A method for determining Mg/Ca of stalagmite by LA-MC-ICPMS is studied. 24 Mg/ 44 Ca (Mass 22, intensity of 44C a 2+ , collected by ion counting and mass 24, intensity of 24 Mg + , collected by Faraday cup) ratios were measured in replace of Mg/Ca ratios. Both diameter of laser sampling spot and laser moving increment were 2- μm. The curve of Mg/Ca vs. distance directly was obtained. The result indicates that relative Mg/Ca ratios changed from 0.5 to 2.0 this stalagmite and it is enough to reflect environmental factors act. (authors)

  18. Determination of SB2 masses and age: introduction of the mass ratio in the Bayesian analysis

    Science.gov (United States)

    Giarrusso, M.; Leone, F.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.

    2018-04-01

    Stellar age assignment still represents a difficult task in Astrophysics. This unobservable fundamental parameter can be estimated only through indirect methods, as well as generally the mass. Bayesian analysis is a statistical approach largely used to derive stellar properties by taking into account the available information about the quantities we are looking for. In this paper we propose to apply the method to the double-lined spectroscopic binaries (SB2), for which the only available information about masses is the observed mass ratio of the two components. We validated the method on a synthetic sample of Pre-Main Sequence (PMS) SB2 systems showing the capability of the technique to recover the simulated age and masses. Then, we applied our procedure to the PMS eclipsing binaries Parenago 1802 and RX J0529.4+0041 A, whose masses of both components are known, by treating them as SB2 systems. The estimated masses are in agreement with those dynamically measured. We conclude that the method, if based on high resolution and high signal-to-noise spectroscopy, represents a robust way to infer the masses of the very numerous SB2 systems together with their age, allowing to date the hosting astrophysical environments.

  19. Determination of SB2 masses and age: introduction of the mass ratio in the Bayesian analysis

    Science.gov (United States)

    Giarrusso, M.; Leone, F.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.

    2018-07-01

    Stellar age assignment still represents a difficult task in Astrophysics. This unobservable fundamental parameter can be estimated only through indirect methods, as well as generally the mass. Bayesian analysis is a statistical approach largely used to derive stellar properties by taking into account the available information about the quantities we are looking for. In this paper, we propose to apply the method to the double-lined spectroscopic binaries (SB2), for which the only available information about masses is the observed mass ratio of the two components. We validated the method on a synthetic sample of pre-main-sequence (PMS) SB2 systems showing the capability of the technique to recover the simulated age and masses. Then, we applied our procedure to the PMS eclipsing binaries Parenago 1802 and RX J0529.4+0041 A, whose masses of both components are known, by treating them as SB2 systems. The estimated masses are in agreement with those dynamically measured. We conclude that the method, if based on high resolution and high signal-to-noise spectroscopy, represents a robust way to infer the masses of the very numerous SB2 systems together with their age, allowing to date the hosting astrophysical environments.

  20. Obesity is underestimated using body mass index and waist-hip ratio in long-term adult survivors of childhood cancer.

    Directory of Open Access Journals (Sweden)

    Karin Blijdorp

    Full Text Available OBJECTIVE: Obesity, represented by high body mass index (BMI, is a major complication after treatment for childhood cancer. However, it has been shown that high total fat percentage and low lean body mass are more reliable predictors of cardiovascular morbidity. In this study longitudinal changes of BMI and body composition, as well as the value of BMI and waist-hip ratio representing obesity, were evaluated in adult childhood cancer survivors. METHODS: Data from 410 survivors who had visited the late effects clinic twice were analyzed. Median follow-up time was 16 years (interquartile range 11-21 and time between visits was 3.2 years (2.9-3.6. BMI was measured and body composition was assessed by dual X-ray absorptiometry (DXA, Lunar Prodigy; available twice in 182 survivors. Data were compared with healthy Dutch references and calculated as standard deviation scores (SDS. BMI, waist-hip ratio and total fat percentage were evaluated cross-sectionally in 422 survivors, in who at least one DXA scan was assessed. RESULTS: BMI was significantly higher in women, without significant change over time. In men BMI changed significantly with time (ΔSDS = 0.19, P<0.001. Percentage fat was significantly higher than references in all survivors, with the highest SDS after cranial radiotherapy (CRT (mean SDS 1.73 in men, 1.48 in women, P<0.001. Only in men, increase in total fat percentage was significantly higher than references (ΔSDS = 0.22, P<0.001. Using total fat percentage as the gold standard, 65% of female and 42% of male survivors were misclassified as non-obese using BMI. Misclassification of obesity using waist-hip ratio was 40% in women and 24% in men. CONCLUSIONS: Sixteen years after treatment for childhood cancer, the increase in BMI and total fat percentage was significantly greater than expected, especially after CRT. This is important as we could show that obesity was grossly underestimated using BMI and waist-hip ratio.

  1. UBVRc Ic ANALYSIS OF THE RECENTLY DISCOVERED TOTALLY ECLIPSING EXTREME MASS RATIO BINARY V1853 ORIONIS, AND A STATISTICAL LOOK AT 25 OTHER EXTREME MASS RATIO SOLAR-TYPE CONTACT BINARIES

    International Nuclear Information System (INIS)

    Samec, R. G.; Labadorf, C. M.; Hawkins, N. C.; Faulkner, D. R.; Van Hamme, W.

    2011-01-01

    We present precision CCD light curves, a period study, photometrically derived standard magnitudes, and a five-color simultaneous Wilson code solution of the totally eclipsing, yet shallow amplitude (A v ∼ 0.4 mag) eclipsing, binary V1853 Orionis. It is determined to be an extreme mass ratio, q = 0.20, W-type W UMa overcontact binary. From our standard star observations, we find that the variable is a late-type F spectral-type dwarf, with a secondary component of about 0.24 solar masses (stellar type M5V). Its long eclipse duration (41 minutes) as compared to its period, 0.383 days, attests to the small relative size of the secondary. Furthermore, it has reached a Roche lobe fill-out of ∼50% of its outer critical lobe as it approaches its final stages of binary star evolution, that of a fast spinning single star. Finally, a summary of about 25 extreme mass ratio solar-type binaries is given.

  2. Dark matter contraction and stellar-mass-to-light ratio gradients in massive early-type galaxies

    Science.gov (United States)

    Oldham, Lindsay J.; Auger, Matthew W.

    2018-05-01

    We present models for the dark and luminous mass structure of 12 strong lensing early-type galaxies. We combine pixel-based modelling of multiband Hubble Space Telescope imaging with Jeans modelling of kinematics obtained from Keck/ESI spectra to disentangle the dark and luminous contributions to the mass. Assuming a generalised NFW (gNFW) profile for the dark matter halo and a spatially constant stellar-mass-to-light ratio ϒ⋆ for the baryonic mass, we infer distributions for ϒ⋆ consistent with initial mass functions (IMFs) that are heavier than the Milky Way's (with a global mean mismatch parameter relative to a Chabrier IMF μαc = 1.80 ± 0.14) and halo inner density slopes that span a large range but are generally cuspier than the dark-matter-only prediction (μ _{γ ^' }} = 2.01_{-0.22}^{+0.19}). We investigate possible reasons for overestimating the halo slope, including the neglect of spatially varying stellar-mass-to-light ratios and/or stellar orbital anisotropy, and find that a quarter of the systems prefer radially declining stellar-mass-to-light ratio gradients, but that the overall effect on our inference on the halo slope is small. We suggest a coherent explanation of these results in the context of inside-out galaxy growth, and that the relative importance of different baryonic processes in shaping the dark halo may depend on halo environment.

  3. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M ☉ BINARIES

    International Nuclear Information System (INIS)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2013-01-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M ☉ —are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ☉ . Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ☉ binaries have systematically shorter periods than do 1 M ☉ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple

  4. Rocket nozzle expansion ratio analysis for dual-fuel earth-to-orbit vehicles

    Science.gov (United States)

    Martin, James A.

    1989-01-01

    Results are reported from a recent study of the effects of Space Shuttle Main Engine expansion ratio modifications, in the cases of both single-stage and two-stage systems. Two-position nozzles were employed; after varying the lower expansion ratio while the higher was held constant at 120, the lower expansion ratio was held constant at 40 or 60 while the higher expansion ratio was varied. The expansion ratios for minimum vehicle dry mass are different for single-stage and two-stage systems. For two-stage systems, a single expansion ratio of 77.5 provides a lower dry mass than any two-position nozzle.

  5. Systematic study of the π-/π+ ratio in heavy-ion collisions with the same neutron/proton ratio but different masses

    International Nuclear Information System (INIS)

    Zhang Ming; Xiao Zhigang; Zhu Shengjiang; Li Baoan; Chen Liewen; Yong Gaochan

    2009-01-01

    A systematic study of the π - /π + ratio in heavy-ion collisions with the same neutron/proton ratio but different masses can help single out effects of the nuclear mean field on pion production. Based on simulations using the IBUU04 transport model, it is found that the π - /π + ratio in head-on collisions of 48 Ca+ 48 Ca, 124 Sn+ 124 Sn, and 197 Au+ 197 Au at beam energies from 0.25 to 0.6 GeV/nucleon increases with increasing the system size or decreasing the beam energies. A comprehensive analysis of the dynamical isospin fractionation and the π - /π + ratio as well as their time evolution and spatial distributions demonstrates clearly that the π - /π + ratio is an effective probe of the high-density behavior of the nuclear symmetry energy.

  6. Sr/Ca mass ratio determination in bones using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Hult, Mikael; Fessler, Andreas

    1998-01-01

    The Sr/Ca mass ratio in human bones reveals information regarding the diet which is of interest in archaeology. By using fast neutron activation analysis this ratio can be measured in a non-destructive manner, which is important when bones are considered too precious to allow for destructive analysis. Simulations and measurements showed that the nuclear reactions 88 Sr(n, 2n) 87m Sr and 44 Ca(n, p) 44 K are highly useful for the purpose

  7. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples

    NARCIS (Netherlands)

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-01-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid

  8. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn [CAS Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-11-01

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio and the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.

  9. On the electron to proton mass ratio and the proton structure

    DEFF Research Database (Denmark)

    Trinhammer, Ole L.

    2013-01-01

    We derive an expression for the electron to nucleon mass ratio from a reinterpreted lattice gauge theory Hamiltonian to describe interior baryon dynamics. We use the classical electron radius as our fundamental length scale. Based on expansions on trigonometric Slater determinants for a neutral s...... and d valence quarks of the proton....

  10. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    Science.gov (United States)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  11. Determination of the isotopic ratio 235U/238U in UF6 using quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Kusahara, Helena Sueco

    1979-01-01

    In this work measurements of isotope ratios 235 U / 23 '8U in uranium hexafluoride are carried out using a quadrupole mass spectrometer. The operational parameters, which affect the final precision of the results, are standardized. Optimized procedures for the preparation of uranium hexafluoride samples by fluorination of uranium oxides using cobalt trifluoride method are established. Careful attention is given to the process of purification of uranium hexafluoride samples by fractional distillation. Adequate statistical methods for analysing the results obtained for single ratio measurements as well as the ratio ' of isotopic ratios of sample and standard ar.e developed. A precision of about 10 -4 for single ratio measurements and accuracy of about 0,3% for the ratio of sample and standard ratios are obtained. These results agree with the values which have been obtained using magnetic mass spectrometers. The procedures and methods established in this work can be employed in the systematic uranium isotope analysis in UF 6 form. (author)

  12. Detection of counterfeit antiviral drug Heptodin and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS).

    Science.gov (United States)

    Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude

    2009-06-01

    Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.

  13. Effects of local thermodynamics and of stellar mass ratio on accretion disc stability in close binaries

    Science.gov (United States)

    Lanzafame, G.

    2009-08-01

    Inflow kinematics at the inner Lagrangian point L1, gas compressibility, and physical turbulent viscosity play a fundamental role on accretion disc dynamics and structure in a close binary (CB). Physical viscosity supports the accretion disc development inside the primary gravitational potential well, developing the gas radial transport, converting mechanical energy into heat. The Stellar-Mass-Ratio (SMR) between the compact primary and the secondary star (M1/M2) is also effective, not only in the location of the inner Lagrangian point, but also in the angular kinematics of the mass transfer and in the geometry of the gravitational potential wells. In this work we pay attention in particular to the role of the SMR, evaluating boundaries, separating theoretical domains in compressibility-viscosity graphs where physical conditions allow a well-bound disc development, as a function of mass transfer kinematic conditions. In such domains, the lower is the gas compressibility (the higher the polytropic index γ), the higher is the physical viscosity (α) requested. In this work, we show how the boundaries of such domains vary as a function of M1/M2. Conclusions as far as dwarf novae outbursts are concerned, induced by mass transfer rate variations, are also reported. The smaller M1/M2, the shorter the duration of the active-to-quiet and vice-versa transitional phases. Time-scales are of the order of outburst duration of SU Uma, OY Car, Z Cha and SS Cyg-like objects. Moreover, conclusions as far as active-quiet-active phenomena in a CB, according to viscous-thermal instabilities, in accordance to such domains, are also reported.

  14. Black hole fusion in the extreme mass ratio limit

    Science.gov (United States)

    Emparan, Roberto; Martínez, Marina; Zilhão, Miguel

    2018-02-01

    We present a simple, general, and accurate construction of the event horizons for the fusion of two neutral, rotating black holes with arbitrary orientation and values of their spins, in the extreme mass ratio limit where one black hole is much larger than the other. We compute several parameters that characterize the fusion and investigate their dependence on the black hole spin and orientation axis. We also exhibit and study the appearance of transient toroidal topology of the horizon. An earlier conjecture about universal critical exponents before and after an axisymmetric pinch is proven.

  15. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    Science.gov (United States)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible

  16. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function

    International Nuclear Information System (INIS)

    Gair, Jonathan R.; Tang, Christopher; Volonteri, Marta

    2010-01-01

    One of the sources of gravitational waves for the proposed space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA), are the inspirals of compact objects into supermassive black holes in the centers of galaxies--extreme-mass-ratio inspirals (EMRIs). Using LISA observations, we will be able to measure the parameters of each EMRI system detected to very high precision. However, the statistics of the set of EMRI events observed by LISA will be more important in constraining astrophysical models than extremely precise measurements for individual systems. The black holes to which LISA is most sensitive are in a mass range that is difficult to probe using other techniques, so LISA provides an almost unique window onto these objects. In this paper we explore, using Bayesian techniques, the constraints that LISA EMRI observations can place on the mass function of black holes at low redshift. We describe a general framework for approaching inference of this type--using multiple observations in combination to constrain a parametrized source population. Assuming that the scaling of the EMRI rate with the black-hole mass is known and taking a black-hole distribution given by a simple power law, dn/dlnM=A 0 (M/M * ) α 0 , we find that LISA could measure the parameters to a precision of Δ(lnA 0 )∼0.08, and Δ(α 0 )∼0.03 for a reference model that predicts ∼1000 events. Even with as few as 10 events, LISA should constrain the slope to a precision ∼0.3, which is the current level of observational uncertainty in the low-mass slope of the black-hole mass function. We also consider a model in which A 0 and α 0 evolve with redshift, but find that EMRI observations alone do not have much power to probe such an evolution.

  17. A comparison of men's and women's strength to body mass ratio and varus/valgus knee angle during jump landings.

    Science.gov (United States)

    Haines, Tracie L; McBride, Jeffrey M; Triplett, N Travis; Skinner, Jared W; Fairbrother, Kimberly R; Kirby, Tyler J

    2011-10-01

    The purpose of this investigation was to compare valgus/varus knee angles during various jumps and lower body strength between males and females relative to body mass. Seventeen recreationally active females (age: 21.94 ± 2.59 years; height: 1.67 ± 0.05 m; mass: 64.42 ± 8.39 kg; percent body fat: 26.89 ± 6.26%; squat one-repetition maximum: 66.18 ± 19.47 kg; squat to body mass ratio: 1.03 ± 0.28) and 13 recreationally active males (age: 21.69 ± 1.65 years; height: 1.77 ± 0.07 m; mass: 72.39 ± 9.23 kg; percent body fat: 13.15 ± 5.18%; squat one-repetition maximum: 115.77 ± 30.40 kg; squat to body mass ratio: 1.59 ± 0.31) performed a one-repetition maximum in the squat and three of each of the following jumps: countermovement jump, 30 cm drop jump, 45 cm drop jump, and 60 cm drop jump. Knee angles were analysed using videography and body composition was analysed by dual-energy X-ray absorptiometry to allow for squat to body mass ratio and squat to fat free mass ratio to be calculated. Significant differences (P ≤ 0.05) were found between male and female one-repetition maximum, male and female squat to body mass ratio, and male and female squat to fat free mass ratio. Significant differences were found between male and female varus/valgus knee positions during maximum flexion of the right and left leg in the countermovement jump, drop jump from 30 cm, drop jump from 45 cm, and drop jump from 60 cm. Correlations between varus/valgus knee angles and squat to body mass ratio for all jumps displayed moderate, non-significant relationships (countermovement jump: r = 0.445; drop jump from 30 cm: r = 0.448; drop jump from 45 cm: r = 0.449; drop jump from 60 cm: r = 0.439). In conclusion, males and females have significantly different lower body strength and varus/valgus knee position when landing from jumps.

  18. Estimation of bone Calcium-to-Phosphorous mass ratio using dual-energy nonlinear polynomial functions

    International Nuclear Information System (INIS)

    Sotiropoulou, P; Koukou, V; Martini, N; Nikiforidis, G; Michail, C; Kandarakis, I; Fountos, G; Kounadi, E

    2015-01-01

    In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO 4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors. (paper)

  19. The Interplay of In Situ Stress Ratio and Transverse Isotropy in the Rock Mass on Prestressed Concrete-Lined Pressure Tunnels

    Science.gov (United States)

    Simanjuntak, T. D. Y. F.; Marence, M.; Schleiss, A. J.; Mynett, A. E.

    2016-11-01

    This paper presents the mechanical and hydraulic behaviour of passively prestressed concrete-lined pressure tunnels embedded in elastic transversely isotropic rocks subjected to non-uniform in situ stresses. Two cases are distinguished based on whether the in situ vertical stress in the rock mass is higher, or lower than the in situ horizontal stress. A two-dimensional finite element model was used to study the influence of dip angle, α, and horizontal-to-vertical stress ratio, k, on the bearing capacity of prestressed concrete-lined pressure tunnels. The study reveals that the in situ stress ratio and the orientation of stratifications in the rock mass significantly affect the load sharing between the rock mass and the lining. The distribution of stresses and deformations as a result of tunnel construction processes exhibits a symmetrical pattern for tunnels embedded in a rock mass with either horizontal or vertical stratification planes, whereas it demonstrates an unsymmetrical pattern for tunnels embedded in a rock mass with inclined stratification planes. The results obtained for a specific value α with coefficient k are identical to that for α + 90° with coefficient 1/ k by rotating the tunnel axis by 90°. The maximum internal water pressure was determined by offsetting the prestress-induced hoop strains at the final lining intrados against the seepage-induced hoop strains. As well as assessing the internal water pressure, this approach is capable of identifying potential locations where longitudinal cracks may occur in the final lining.

  20. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  1. Newer methods for the characterization of higher molecular mass coal derivatives

    International Nuclear Information System (INIS)

    Bartle, K.D.

    1983-01-01

    Recent developments in a number of areas in the analytical chemistry of higher molecular mass coal derivatives are critically reviewed, viz. supercritical fluid chromatography, size-exclusion chromatography, charge-transfer fractionation, nmr spectroscopy, mass spectrometry and electrochemical analysis. (orig.) [de

  2. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens.

    Science.gov (United States)

    Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr

    2016-07-07

    Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  3. A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2015-03-10

    Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-mass pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.

  4. Price-Cost Ratios in Higher Education: Subsidy Structure and Policy Implications

    Science.gov (United States)

    Xie, Yan

    2010-01-01

    The diversity of US institutions of higher education is manifested in many ways. This study looks at that diversity from the economic perspective by studying the subsidy structure through the distribution of institutional price-cost ratio (PCR), defined as the sum of net tuition price divided by total supplier cost and equals to one minus…

  5. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  6. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    Science.gov (United States)

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  7. Development and application of liquid chromatography coupled to isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijun

    2014-02-19

    Stable isotope analysis has found widespread applications in various disciplines such as archaeology, geochemistry, biology, food authenticity, and forensic science. Coupling chromatography to isotope ratio mass spectrometry for compound-specific isotope analysis (CSIA) is a trend, as it provides several advantages over bulk isotope analysis, e.g., relatively simple sample preparation, the ability to measure individual compounds in a complex mixture in one run, and the reduced sample size required for precise isotope analysis. Gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS) has been well-established for compound-specific isotope analysis of volatile organic compounds within the last two decades. However, an interface combining liquid chromatography with isotope ratio mass spectrometry (LC/IRMS) was not commercially available until 2004. The current design of the interface requires using a carbon-free eluent in chromatographic separation. This requirement limits the application of the most frequently used reversed-phase liquid chromatography in CSIA, because the elution strength of water at room temperature is too low to serve as mobile phase in reversed-phase separations. In order to increase the elution strength of water, we propose using high temperature water for chromatographic elution. The polarity of water decreases with an increase of temperature, yielding increased elution strength in reversed-phase columns. Therefore, high temperature water can be used as eluent instead of organic solvent for combining reversed-phase liquid chromatography with isotope ratio mass spectrometry (RPLC/IRMS). Additionally, temperature gradients can replace organic solvent gradients to increase chromatographic resolution. This is very important for LC/IRMS analysis, as precise isotope analysis requires baseline separation of analytes. In this thesis, high-temperature reversed-phase liquid chromatography was coupled to, and for the first time carefully

  8. Development and application of liquid chromatography coupled to isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Zhang, Lijun

    2014-01-01

    Stable isotope analysis has found widespread applications in various disciplines such as archaeology, geochemistry, biology, food authenticity, and forensic science. Coupling chromatography to isotope ratio mass spectrometry for compound-specific isotope analysis (CSIA) is a trend, as it provides several advantages over bulk isotope analysis, e.g., relatively simple sample preparation, the ability to measure individual compounds in a complex mixture in one run, and the reduced sample size required for precise isotope analysis. Gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS) has been well-established for compound-specific isotope analysis of volatile organic compounds within the last two decades. However, an interface combining liquid chromatography with isotope ratio mass spectrometry (LC/IRMS) was not commercially available until 2004. The current design of the interface requires using a carbon-free eluent in chromatographic separation. This requirement limits the application of the most frequently used reversed-phase liquid chromatography in CSIA, because the elution strength of water at room temperature is too low to serve as mobile phase in reversed-phase separations. In order to increase the elution strength of water, we propose using high temperature water for chromatographic elution. The polarity of water decreases with an increase of temperature, yielding increased elution strength in reversed-phase columns. Therefore, high temperature water can be used as eluent instead of organic solvent for combining reversed-phase liquid chromatography with isotope ratio mass spectrometry (RPLC/IRMS). Additionally, temperature gradients can replace organic solvent gradients to increase chromatographic resolution. This is very important for LC/IRMS analysis, as precise isotope analysis requires baseline separation of analytes. In this thesis, high-temperature reversed-phase liquid chromatography was coupled to, and for the first time carefully

  9. Field Sample Preparation Method Development for Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    Leibman, C.; Weisbrod, K.; Yoshida, T.

    2015-01-01

    Non-proliferation and International Security (NA-241) established a working group of researchers from Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to evaluate the utilization of in-field mass spectrometry for safeguards applications. The survey of commercial off-the-shelf (COTS) mass spectrometers (MS) revealed no instrumentation existed capable of meeting all the potential safeguards requirements for performance, portability, and ease of use. Additionally, fieldable instruments are unlikely to meet the International Target Values (ITVs) for accuracy and precision for isotope ratio measurements achieved with laboratory methods. The major gaps identified for in-field actinide isotope ratio analysis were in the areas of: 1. sample preparation and/or sample introduction, 2. size reduction of mass analyzers and ionization sources, 3. system automation, and 4. decreased system cost. Development work in 2 through 4, numerated above continues, in the private and public sector. LANL is focusing on developing sample preparation/sample introduction methods for use with the different sample types anticipated for safeguard applications. Addressing sample handling and sample preparation methods for MS analysis will enable use of new MS instrumentation as it becomes commercially available. As one example, we have developed a rapid, sample preparation method for dissolution of uranium and plutonium oxides using ammonium bifluoride (ABF). ABF is a significantly safer and faster alternative to digestion with boiling combinations of highly concentrated mineral acids. Actinides digested with ABF yield fluorides, which can then be analyzed directly or chemically converted and separated using established column chromatography techniques as needed prior to isotope analysis. The reagent volumes and the sample processing steps associated with ABF sample digestion lend themselves to automation and field

  10. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens

    Directory of Open Access Journals (Sweden)

    Katarzyna Taran

    2016-07-01

    Full Text Available Introduction: Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples.Material/Methods: Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS analysis.Results: A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes.Conclusions: The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  11. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization.

    Science.gov (United States)

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2008-10-01

    Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.

  12. Reinterpreting Higher Education Quality in Response to Policies of Mass Education: The Australian Experience

    Science.gov (United States)

    Pitman, Tim

    2014-01-01

    This article explores the relationship between mass education, higher education quality and policy development in Australia in the period 2008-2014, during which access to higher education was significantly increased. Over this time, which included a change of national government, the discursive relationship between mass higher education and…

  13. Galaxy and mass assembly (GAMA): the consistency of GAMA and WISE derived mass-to-light ratios

    Science.gov (United States)

    Kettlety, T.; Hesling, J.; Phillipps, S.; Bremer, M. N.; Cluver, M. E.; Taylor, E. N.; Bland-Hawthorn, J.; Brough, S.; De Propris, R.; Driver, S. P.; Holwerda, B. W.; Kelvin, L. S.; Sutherland, W.; Wright, A. H.

    2018-01-01

    Recent work has suggested that mid-IR wavelengths are optimal for estimating the mass-to-light ratios of stellar populations and hence the stellar masses of galaxies. We compare stellar masses deduced from spectral energy distribution (SED) models, fitted to multiwavelength optical-NIR photometry, to luminosities derived from WISE photometry in the W1 and W2 bands at 3.6 and 4.5 μm for non-star forming galaxies. The SED-derived masses for a carefully selected sample of low-redshift (z ≤ 0.15) passive galaxies agree with the prediction from stellar population synthesis models such that M*/LW1 ≃ 0.6 for all such galaxies, independent of other stellar population parameters. The small scatter between masses predicted from the optical SED and from the WISE measurements implies that random errors (as opposed to systematic ones such as the use of different initial mass functions) are smaller than previous, deliberately conservative, estimates for the SED fits. This test is subtly different from simultaneously fitting at a wide range of optical and mid-IR wavelengths, which may just generate a compromised fit: we are directly checking that the best-fitting model to the optical data generates an SED whose M*/LW1 is also consistent with separate mid-IR data. We confirm that for passive low-redshift galaxies a fixed M*/LW1 = 0.65 can generate masses at least as accurate as those obtained from more complex methods. Going beyond the mean value, in agreement with expectations from the models, we see a modest change in M*/LW1 with SED fitted stellar population age but an insignificant one with metallicity.

  14. The ATLAS(3D) project - XX. Mass-size and mass-Sigma distributions of early-type galaxies : bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    NARCIS (Netherlands)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-01-01

    In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)(JAM) approximate to (M/L)(r = R-e) within a sphere of radius r = R-e centred on the galaxy, as well as stellar (M/L)(stars) (with the dark matter removed) for the volume-limited and nearly mass-selected

  15. Radial distributions of surface mass density and mass-to-luminosity ratio in spiral galaxies

    Science.gov (United States)

    Sofue, Yoshiaki

    2018-03-01

    We present radial profiles of the surface mass density (SMD) in spiral galaxies directly calculated using rotation curves of two approximations of flat-disk (SMD-F) and spherical mass distribution (SMD-S). The SMDs are combined with surface brightness using photometric data to derive radial variations of the mass-to-luminosity ratio (ML). It is found that the ML generally has a central peak or a plateau, and decreases to a local minimum at R ˜ 0.1-0.2 h, where R is the radius and h is the scale radius of optical disk. The ML, then, increases rapidly until ˜0.5 h, and is followed by gradual rise till ˜2 h, remaining at around ˜2 [M_{⊙} L^{-1}_{⊙}] in the w1 band (infrared λ3.4 μm) and ˜ 10 [M_⊙ L_⊙ ^{-1}] in the r band (λ6200-7500 Å). Beyond this radius, the ML increases steeply with approaching the observed edges at R ˜ 5 h, attaining to as high values as ˜20 in w1 and ˜ 10^2 [M_⊙ L_⊙ ^{-1}] in the r band, which are indicative of dominant dark matter. The general properties of the ML distributions will be useful for constraining cosmological formation models of spiral galaxies.

  16. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    Science.gov (United States)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  17. Effect of B/Ti mass ratio on grain refining of low-titanium aluminum produced by electrolysis

    International Nuclear Information System (INIS)

    Wang Mingxing; Wang Sanjun; Liu Zhiyong; Liu Zhongxia; Song Tianfu; Zuo Xiurong

    2006-01-01

    The effect of B/Ti mass ratio on grain refining of the low-titanium aluminum produced by electrolysis was investigated by adding AlB master alloy to the melt of the low-titanium aluminum. The results show that the addition of titanium by electrolysis is an effective way of grain refining of aluminum, and addition of boron to the melt of the low-titanium aluminum can further increase the grain refining efficiency. And the best grain refining efficiency is obtained when the B/Ti mass ratio is 1:10. However, when the B/Ti mass ratio is 1:2.22 (the stoichiometric value for TiB 2 ), the grain refining efficiency vanishes almost completely. It means that all of the solute titanium atoms in the melt of the low-titanium aluminum react with boron atoms that come from AlB master alloy to form TiB 2 particles, and TiB 2 particles have not grain refining ability. The grain refining efficiency seems to increase with addition of more boron to the melt after the B/Ti mass ratio exceeds 1:2.22. But the grain refining efficiency is very poor, and similar to that of pure Al refined by AlB master alloy. It further shows that TiB 2 particles do not participate in grain refining, and that the excess boron atoms in the melt also cannot turn TiB 2 particles into the effective nuclei for aluminum as the solute titanium atoms do

  18. The Transport of Close-In Fallout Plutonium in the Northwest Pacific Ocean: Tracing the Water Mass Movement Using {sup 240}Pu/{sup 239}Pu Atom Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Han [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Hong, Gi-Hoon; Suk, Moon-Sik [Korea Ocean Research and Development Institute, Seoul (Korea, Republic of); Gastaud, J. [International Atomic Energy Agency, Marine Environment Laboratory (Monaco); La Rosa, J. [National Institute of Standards and Technology, Ionizing Radiation Division, Gaithersburg, Maryland (United States); Kim, Chul-Soo [Environmental Laboratories, International Atomic Energy Agency, Seibersdorf (Austria); Wyse, E. [New Brunswick Laboratory Argonne, IL (United States); Povinec, P. P. [Comenius University, Faculty of Mathematics and Physics, Bratislava (Slovakia)

    2013-07-15

    {sup 240}Pu/{sup 239}Pu atom ratios in seawater and surface sediment collected from the northwest (NW) Pacific Ocean from 1992 to 1997 were determined using ICP-sector field mass spectrometry (ICP-MS). In whole water columns, the atom ratios of {sup 240}Pu/{sup 239}Pu were higher than the global fallout ratio (0.18). It is noted that the atom ratios of {sup 240}Pu/2{sup 39}Pu in the seawater increase with depth. Such elevated {sup 240}Pu/{sup 239}Pu atom ratios indicate that the close-in fallout plutonium isotopes originating from the Pacific Proving Grounds (PPGs) due to the U.S. tests are prevailing in the seawater in the NW Pacific Ocean. However, the {sup 240}Pu/{sup 239}Pu atom ratios in the surface sediment from the NW Pacific Ocean varied with the sampling locations. As a consequence, this study will provide the information that the water mass along with the current plays a key role in driving the distribution of Pu and in transporting Pu from the PPGs to the far eastern marginal sea in the NW Pacific Ocean. (author)

  19. Approximate Waveforms for Extreme-Mass-Ratio Inspirals: The Chimera Scheme

    International Nuclear Information System (INIS)

    Sopuerta, Carlos F; Yunes, Nicolás

    2012-01-01

    We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid method that combines tools from different approximation techniques in General Relativity: (i) A multipolar, post-Minkowskian expansion for the far-zone metric perturbation (the gravitational waveforms) and for the local prescription of the self-force; (ii) a post-Newtonian expansion for the computation of the multipole moments in terms of the trajectories; and (iii) a BH perturbation theory expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesies. The EMRI trajectory is made out of Kerr geodesic fragments joined via the method of osculating elements as dictated by the multipolar post-Minkowskian radiation-reaction prescription. We implemented the proper coordinate mapping between Boyer-Lindquist coordinates, associated with the Kerr geodesies, and harmonic coordinates, associated with the multipolar post-Minkowskian decomposition. The Chimera scheme is thus a combination of approximations that can be used to model generic inspirals of systems with extreme to intermediate mass ratios, and hence, it can provide valuable information for future space-based gravitational-wave observatories, like LISA, and even for advanced ground detectors. The local character in time of our multipolar post-Minkowskian self-force makes this scheme amenable to study the possible appearance of transient resonances in generic inspirals.

  20. Constructing binary black hole initial data with high mass ratios and spins

    Science.gov (United States)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration

    2015-04-01

    Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.

  1. Dietary patterns among girls aged 16–18 years old according to their body mass index and waist-to-hip ratio

    Directory of Open Access Journals (Sweden)

    Agnieszka Dmitruk

    2018-03-01

    Full Text Available Aim: The study has been aimed at evaluating dietary patterns of girls aged 16–18 years old in groups identified according to measures such as their body mass index and waist-to-hip ratio. Material and methods: The study covered a total of 151 girls aged 16–18 years old from selected higher secondary schools in Biała Podlaska, Poland. Based on height, weight, waist and hip circumference measurements, body mass index was calculated for each of the participants of the study, allowing to identify two groups: group 1 with normal index and group 2 with overweight or obesity. Also, to determine the type of obesity in the overweight and obese respondents, their waist-to-hip ratio was calculated, identifying the subgroup of girls with abdominal obesity. The respondents’ dietary patterns were identified with the use of a diagnostic survey. The statistical significance of the differences between the participants with normal body mass index and the overweight and obese respondents (including those with abdominal obesity was tested with the chi-square test. Results: Numerous nutritional mistakes/unhealthy dietary patterns were identified in the studied group, largely involving the overweight and obese girls, including those with abdominal obesity. The respondents whose body mass index and waist-to-hip ratio were too high ate fewer meals per day, skipped breakfast more frequently, had their last meal of the day later than 8 p.m., reported less frequent fish and wholemeal bread intake, as opposed to more frequent fast food, sweets and sweetened beverages intake. Conclusion: The unhealthy dietary patterns found in the population of girls with high body mass index and abdominal obesity highlight the need for education in the scope of healthy nutrition aimed both at overweight/obese individuals and their families.

  2. Analysis of [U-13C6]glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry compared with two other mass spectrometry techniques

    NARCIS (Netherlands)

    Schierbeek, H.; Moerdijk-Poortvliet, T.C.W.; van den Akker, C.H.P.; te Braake, F.W.J.; Boschker, H.T.S.; van Goudoever, J.B.

    2009-01-01

    The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C-isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques

  3. The measurement of the isotope ratios and concentrations of zinc by thermal ionization mass spectrometry using double isotope dilution

    International Nuclear Information System (INIS)

    Deng Zhongguo

    1994-01-01

    The isotope ratios and concentrations of zinc are measured by silicagel-thermal ionization mass spectrometry using the double isotope spikers. The double isotope spikers ( 70 Zn and 67 Zn-enriched isotopes) are used to correct the isotope mass fractionation for the zinc isotope ratios, and to certify the zinc concentrations in the unknown samples. The zinc concentrations of these double isotope spikers are surveyed by a spiker made of pure (99.99%) natural zinc metal powder. The correcting factors (f a , f t and f n ) of the zinc isotope ratios in the spiked mixture, spike and unspiked samples for the isotope mass fractionation, and the spike-to-unspiked ratios (X r ) of the zinc isotope r in the spiked mixture samples can be obtained to solve the matrix equations by numerical approximation. The natural zinc isotope ratios are: 64 Zn/ 67 Zn = 11.8498, 66 Zn/ 67 Zn = 6.7977, 68 Zn/ 67 Zn = 4.5730 and 70 Zn/ 67 Zn = 0.1520. The uncertainties determined of the isotope ratios and concentrations of zinc are +- 0.16% and +-0.31%, respectively

  4. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    Science.gov (United States)

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

    Science.gov (United States)

    Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.

    2017-08-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.

  6. Evaluation of magnetization transfer ratio in ascites and pelvic cystic masses

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Susumu [Nippon Medical School, Inba, Chiba (Japan). Chiba-Hokuso Hospital; Kato, Tomoyasu; Yamashita, Takashi [and others

    1997-12-01

    To investigate the feasibility of magnetization transfer contrast (MTC) in characterization of pelvic cystic masses and ascites, in vitro studies were performed. Cystic fluids were taken from operative specimens of ten ovarian cystic masses (five mucinous cystadenomas, one cystadenocarcinoma, two serous cystadenocarcinomas, two clear cell carcinomas) and three non-ovarian pelvic cysts (one paraovarian cyst, one pseudomyxoma peritonei, one pelvic abscess). Samples of ascitic flied were drawn by peritoneal puncture in twenty patients (thirteen with peritonitis carcinomatosa, five with liver dysfunction, two with renal dysfunction). Total protein content in ascitic fluids was measured. Magnetization transfer ratio (MTR) was calculated by the signal intensities under the gradient echo sequence with and without the application of off-resonance pulses. The relative signal intensities (RSI) relative to water in T{sub 1} and T{sub 2} weighted images were obtained using spin echo sequence. There was no correlation between histological type of pelvic mass and MTR and RSI. Good correlation (R{sup 2}=0.761) was obtained between MTR and protein content in ascitic fluids, whereas no correlation was noted between RSI and protein content in ascitic fluids. These results suggest that MTC is not useful in the characterization of pelvic masses but is applicable in the differentiation between exudative ascites and transudative ascites. (author)

  7. Influence of the tip mass on the tip-sample interactions in TM-AFM

    Energy Technology Data Exchange (ETDEWEB)

    Pishkenari, Hossein Nejat, E-mail: nejat@mech.sharif.edu [Nano-Robotics Laboratory, Center of Excellence in Design, Robotics and Automation, School of Mechanical Engineering, Sharif University of Technology, Tehran, P.O. Box 11365-9465 (Iran, Islamic Republic of); Meghdari, Ali [Nano-Robotics Laboratory, Center of Excellence in Design, Robotics and Automation, School of Mechanical Engineering, Sharif University of Technology, Tehran, P.O. Box 11365-9465 (Iran, Islamic Republic of)

    2011-07-15

    This paper focuses on the influences of the tip mass ratio (the ratio of the tip mass to the cantilever mass), on the excitation of higher oscillation eigenmodes and also on the tip-sample interaction forces in tapping mode atomic force microscopy (TM-AFM). A precise model for the cantilever dynamics capable of accurate simulations is essential for the investigation of the tip mass effects on the interaction forces. In the present work, the finite element method (FEM) is used for modeling the AFM cantilever to consider the oscillations of higher eigenmodes oscillations. In addition, molecular dynamics (MD) is used to calculate precise data for the tip-sample force as a function of tip vertical position with respect to the sample. The results demonstrate that in the presence of nonlinear tip-sample interaction forces, the tip mass ratio plays a significant role in the excitations of higher eigenmodes and also in the normal force applied on the surface. Furthermore, it has been shown that the difference between responses of the FEM and point-mass models in different system operational conditions is highly affected by the tip mass ratio. -- Highlights: {yields} A strong correlation exists between the tip mass ratio and the 18th harmonic amplitude. {yields} Near the critical tip mass ratio a small change in the tip mass may lead to a significant force change. {yields} Inaccuracy of the lumped model depends significantly on the tip mass ratio.

  8. Angle resolved mass spectrometry of positive ions transmitted through high aspect ratio channels in a radio frequency discharge

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Tachibana, K.; Imai, S.

    1997-01-01

    The behavior of positive ions in high aspect ratio structures, relevant to the reactive ion etching of deep trenches, has been studied by means of energy resolved mass spectrometry. High aspect ratio trenches are simulated by capillary plates with various aspect ratios. Angle resolved measurements

  9. The origin of the mass, disk-to-halo mass ratio, and L-V relation of spiral galaxies

    International Nuclear Information System (INIS)

    Ashman, K.M.

    1990-01-01

    A model is presented in which spiral galaxies only form when t(c) is roughly equal to t(f) in a hot component of the protogalactic gas. This assumption, along with a disk stability criterion, predicts a range of spiral galaxy masses roughly consistent with observation. The nature of the cooling function for a primordial plasma implies that in less massive galaxies, more gas must fragment in the halo to preserve t(c) roughly equal to t(f). Consequently, less gas survives to form the disk, so that the disk-to-halo mass ratio increases with disk mass and hence galaxy luminosity. The canonical L proportional to V exp 4 relation can be reproduced by the model, and the apparent change in the slope of this relation also arises naturally. In the hierarchical clustering scenario, the model requires that all spirals formed at about the same epoch. These results support earlier claims that much of the dark matter observed in the universe is baryonic and probably formed during protogalactic collapse. 38 refs

  10. A five-collector system for the simultaneous measurement of argon isotope ratios in a static mass spectrometer

    Science.gov (United States)

    Stacey, J.S.; Sherrill, N.D.; Dalrymple, G.B.; Lanphere, M.A.; Carpenter, N.V.

    1981-01-01

    A system is described that utilizes five separate Faraday-cup collector assemblies, aligned along the focal plane of a mass spectrometer, to collect simultaneous argon ion beams at masses 36-40. Each collector has its own electrometer amplifier and analog-to-digital measuring channel, the outputs of which are processed by a minicomputer that also controls the mass spectrometer. The mass spectrometer utilizes a 90?? sector magnetic analyzer with a radius of 23 cm, in which some degree of z-direction focussing is provided for all the ion beams by the fringe field of the magnet. Simultaneous measurement of the ion beams helps to eliminate mass-spectrometer memory as a significant source of measurement error during an analysis. Isotope ratios stabilize between 7 and 9 s after sample admission into the spectrometer, and thereafter changes in the measured ratios are linear, typically to within ??0.02%. Thus the multi-collector arrangement permits very short extrapolation times for computation of initial ratios, and also provides the advantages of simultaneous measurement of the ion currents in that errors due to variations in ion beam intensity are minimized. A complete analysis takes less than 10 min, so that sample throughput can be greatly enhanced. In this instrument, the factor limiting analytical precision now lies in short-term apparent variations in the interchannel calibration factors. ?? 1981.

  11. OGLE-2017-BLG-0173Lb: Low-mass-ratio Planet in a “Hollywood” Microlensing Event

    Science.gov (United States)

    Hwang, K.-H.; Udalski, A.; Shvartzvald, Y.; Ryu, Y.-H.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Jung, Y. K.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Skowron, J.; Mróz, P.; Poleski, R.; Kozłowski, S.; Soszyński, I.; Pietrukowicz, P.; Szymański, M. K.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Bryden, G.; Beichman, C.; Calchi Novati, S.; Gaudi, B. S.; Henderson, C. B.; Jacklin, S.; Penny, M. T.; UKIRT Microlensing Team

    2018-01-01

    We present microlensing planet OGLE-2017-BLG-0173Lb, with planet–host mass ratio of either q≃ 2.5× {10}-5 or q≃ 6.5× {10}-5, the lowest or among the lowest ever detected. The planetary perturbation is strongly detected, Δχ 2 ∼ 10000, because it arises from a bright (therefore, large) source passing over and enveloping the planetary caustic: a so-called “Hollywood” event. The factor ∼2.5 offset in q arises because of a previously unrecognized discrete degeneracy between Hollywood events in which the caustic is fully enveloped and those in which only one flank is enveloped, which we dub “Cannae” and “von Schlieffen,” respectively. This degeneracy is “accidental” in that it arises from gaps in the data. Nevertheless, the fact that it appears in a Δχ 2 = 10000 planetary anomaly is striking. We present a simple formalism to estimate the sensitivity of other Hollywood events to planets and show that they can lead to detections close to, but perhaps not quite reaching, the Earth/Sun mass ratio of 3× {10}-6. This formalism also enables an analytic understanding of the factor ∼2.5 offset in q between the Cannae and von Schlieffen solutions. The Bayesian estimates for the host mass, system distance, and planet–host projected separation are M={0.39}-0.24+0.40 {M}ȯ , {D}L={4.8}-1.8+1.5 {kpc}, and {a}\\perp =3.8+/- 1.6 {au}, respectively. The two estimates of the planet mass are {m}p={3.3}-2.1+3.8 {M}\\oplus and {m}p={8}-6+11 {M}\\oplus . The measured lens-source relative proper motion μ =6 {mas} {{yr}}-1 will permit imaging of the lens in about 15 years or at first light on adaptive-optics imagers on next-generation telescopes. These will allow one to measure the host mass but probably will not be able to resolve the planet–host mass-ratio degeneracy.

  12. Studies in the determination of lead isotope ratios by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Date, A.R.; Yuk Ying Cheung

    1987-01-01

    The application of ICP-MS to the determination of lead isotope ratios in geological materials is described. Data presented for a series of lead mineral concentrates are compared with reference values obtained by conventional solid source thermal ionisation mass spectrometry. The simultaneous determination of lead isotope ratios and trace elements is carried out in a rapid analysis mode. The application of an electrothermal vaporisation technique for small solution aliquots is described. Lead isotope ratio data for the United States Geological Survey standard reference silicate rock BCR-1, obtained without separation of lead from the matrix, are compared with previously published values obtained after separation. (author)

  13. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    Science.gov (United States)

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed.

  14. Binary star statistics: the mass ratio distribution for very wide systems

    International Nuclear Information System (INIS)

    Trimble, V.

    1987-01-01

    The distribution of mass ratios for a sample of common proper motion (CPM) binaries is determined and compared with that of 798 visual binaries (VB's) studied earlier, in hopes of answering the question: Can the member stars of these systems have been drawn at random from the normal initial mass function for single stars? The observed distributions peak strongly toward q = 1.0 for both kinds of systems, but less strongly for the CPM's than for the VB's. Due allowance having been made for assorted observational selection effects, it seems quite probable that the CPM's represent the observed part of a population drawn at random from the normal IMF, while the VB's are much more difficult to interpret that way and could, perhaps, result from a formation mechanism that somewhat favors sytems with roughly equal components. (author)

  15. Detection strategies for extreme mass ratio inspirals

    International Nuclear Information System (INIS)

    Cornish, Neil J

    2011-01-01

    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near-horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these extreme mass ratio inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for tens of thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between genetic algorithms and Markov chain Monte Carlo techniques, along with several time-saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.

  16. Ratio of muscle mass to fat mass assessed by bioelectrical impedance analysis is significantly correlated with liver fat accumulation in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Kurinami, Noboru; Sugiyama, Seigo; Morita, Ayami; Yoshida, Akira; Hieshima, Kunio; Miyamoto, Fumio; Kajiwara, Keizo; Jinnouch, Katsunori; Jinnouchi, Tomio; Jinnouchi, Hideaki

    2018-05-01

    Obesity and ectopic fat accumulation are important conditions of type 2 diabetes mellitus (T2DM). Our aim was to determine whether bioelectrical impedance body composition analysis combined with blood test results could estimate liver ectopic fat accumulation in patients with treatment-naïve T2DM. Subjects were 119 untreated T2DM patients. Computed tomography scans were performed to calculate the liver to spleen attenuation ratio (L/S ratio) as a measure of liver fat accumulation, with excess liver fat accumulation defined as an L/S ratio analysis using InBody770. The Nagelkerke R 2 test showed that the muscle mass/fat mass ratio (muscle/fat ratio) was the most suitable variable among anthropometric factors and body component indexes for estimating liver fat accumulation. The muscle/fat ratio was significantly correlated with the L/S ratio (ρ = 0.4386, P analysis showed that the muscle/fat ratio (odds ratio 0.40, 95% confidence interval 0.22-0.73, P ratio 1.06, 95% confidence interval 1.02-1.10, P analysis, the cutoff value of the muscle/fat ratio for excess liver fat accumulation was 2.34. In patients with treatment-naïve T2DM, the muscle/fat ratio and ALT are useful for estimating the presence of excess liver fat accumulation in daily clinical practice. Copyright © 2018. Published by Elsevier B.V.

  17. Synthesis and characterization of Fe_3O_4 nanoparticles stabilized by polyvinylpyrrolidone / polyethylene glycol with variable mass ratios

    International Nuclear Information System (INIS)

    Silva, F.A.S. da; Campos, M.F. de; Rojas, E. E.G.

    2014-01-01

    Magnetic nanoparticles are devices able to optimize cancer treatments. In particular, magnetite nanoparticles are very effective in producing heat to cause lysis of tumor cells. However, in order that nanoparticles are internalized without causing damage to body they must be coated by biocompatible material. In this work, Fe_3O_4 nanoparticles were coated by a polymer blend: polyethylene glycol / polyvinylpyrrolidone. Some variations in mass ratio of polymer mixture were made. The effect of varying mass ratio in polymers was investigated. Samples were characterized by X-ray diffraction and Rietveld analysis. Moreover, hysteresis curves were analyzed. The results indicate good agreement between mass proportions used and physical and magnetic properties of nanocomposite. (author)

  18. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source

    International Nuclear Information System (INIS)

    Walder, A.J.; Freedman, P.A.

    1992-01-01

    An inductively coupled plasma source was coupled to a magnetic sector mass analyser equipped with seven Faraday detectors. An electrostatic filter located between the plasma source and the magnetic sector was used to create a double focusing system. Isotopic ratio measurements of uranium and lead standards revealed levels of internal and external precision comparable to those obtained using thermal inonization mass spectrometry. An external precision of 0.014% was obtained from the 235 U: 238 U measurement of six samples of a National Bureau of Standards (NBS) Standard Reference Material (SRM) U-500, while an RSD of 0.022% was obtained from the 206 Pb: 204 Pb measurement of six samples of NBS SRM Pb-981. Measured isotopic ratios deviated from the NBS value by approximately 0.9% per atomic mass unit. This deviation approximates to a linear function of mass bias and can therefore be corrected for by the analysis of standards. The analysis of NBS SRM Sr-987 revealed superior levels of internal and external precision. The normalization of the 87 Sr: 86 Sr ratio to the 86 Sr: 88 Sr ratio reduced the RSD to approximately 0.008%. The measured ratio was within 0.01% of the NBS value and the day-to-day reproducibility was consistent within one standard deviation. (author)

  19. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    International Nuclear Information System (INIS)

    Freeman, K.H.; Ricci, S.A.; Studley, A.; Hayes, J.M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values

  20. η→3π: Study of the Dalitz Plot and Extraction of the Quark Mass Ratio Q.

    Science.gov (United States)

    Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich; Passemar, Emilie

    2017-01-13

    The η→3π amplitude is sensitive to the quark mass difference m_{u}-m_{d} and offers a unique way to determine the quark mass ratio Q^{2}≡(m_{s}^{2}-m_{ud}^{2})/(m_{d}^{2}-m_{u}^{2}) from experiment. We calculate the amplitude dispersively and fit the KLOE Collaboration data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. The parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Our representation of the transition amplitude implies Q=22.0±0.7.

  1. Influence of air mass source sector on variations in CO2 mixing ratio at a boreal site in northern Finland

    International Nuclear Information System (INIS)

    Aalto, T.; Hatakka, J.; Viisanen, Y.

    2003-01-01

    CO 2 mixing ratio in air masses coming from different source sectors was studied at Pallas measurement station in Lapland. Source sectors were defined using back trajectories and wind direction measurements. Air masses from the North and West sectors showed an annual variation of 17 ppm, possibly affected by a long range transported marine air. A larger variation of 20 ppm was observed in air masses from the more continental South and East sectors. During late autumn mixing ratios in air masses from the South sector were high in comparison with the other sectors. Different methods for a source sector definition were considered for the site, located in a contoured terrain. 52%-73% of wind direction-based source sector definitions agreed with trajectory- based definitions. However, the number of cases with reliable sector definitions may remain low when considering all observations. Different definition methods can cause differences of the order of 1 ppm in sectorially selected monthly mean CO 2 mixing ratios. (orig.)

  2. Mixed-mode chromatography/isotope ratio mass spectrometry.

    Science.gov (United States)

    McCullagh, James S O

    2010-03-15

    Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high-precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment delta(13)C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline-resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed-mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed-mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed-mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a

  3. Mass Notification for Higher Education

    Science.gov (United States)

    Schneider, Tod

    2010-01-01

    Mass notification is a high priority in educational institutions. As the number of electronic communication devices has diversified, so has the complexity of designing an effective mass notification system. Picking the right system, with the right features, support services and price, can be daunting. This publication, updated quarterly due to…

  4. Mass spectrometric measurement of urinary kynurenine-to-tryptophan ratio in children with and without urinary tract infection.

    Science.gov (United States)

    Yarbrough, Melanie L; Briden, Kelleigh E; Mitsios, John V; Weindel, Annette L; Terrill, Cindy M; Hunstad, David A; Dietzen, Dennis J

    2018-04-19

    Indoleamine-2,3-dioxygenase (IDO) catalyzes the first step of tryptophan (Trp) catabolism, yielding kynurenine (Kyn) metabolites. The kynurenine-to-tryptophan (K/T) ratio is used as a surrogate for biological IDO enzyme activity. IDO expression is increased during Escherichia coli urinary tract infection (UTI). Thus, our objective was to develop a method for measurement of Kyn/Trp ratio in human blood and urine and evaluate its use as a biomarker of UTI. A mass spectrometric method was developed to measure Trp and Kyn in serum and urine specimens. The method was applied to clinical urine specimens from symptomatic pediatric patients with laboratory-confirmed UTI or other acute conditions and from healthy controls. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was linear to 500 μmol/L for both Trp and Kyn. Imprecision ranged from 5 to 15% for Trp and 6-20% for Kyn. Analytical recoveries of Trp and Kyn ranged from 96 to 119% in serum and 90-97% in urine. No correlation was found between the K/T ratio and circulating IDO mass (r = 0.110) in serum. Urinary Kyn and Trp in the pediatric test cohort demonstrated elevations in the K/T ratio in symptomatic patients with UTI (median 13.08) and without UTI (median 14.38) compared to healthy controls (median 4.93; p < 0.001 for both comparisons). No significant difference in K/T ratio was noted between symptomatic patients with and without UTI (p = 0.84). Measurement of Trp and Kyn by LC-MS/MS is accurate and precise in serum and urine specimens. While urinary K/T ratio is not a specific biomarker for UTI, it may represent a general indicator of a systemic inflammatory process. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  5. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    ratio mass spectrometer (IRMS). A continuous flow of He carrier gas completely degasses the sample, and passes through the preparation and purification system before entering the IRMS for analysis. The use of this continuous He carrier permits short analysis times (less than 8 min per sample......) as compared with current high-precision methods. In addition to reference gases, calibration is achieved using air-equilibrated water standards of known temperature and salinity. Assessment of reference gas injections, air equilibrated standards, as well as samples collected in the field shows the accuracy...

  6. Dynamics and control of high area-to-mass ratio spacecraft and its application to geomagnetic exploration

    Science.gov (United States)

    Luo, Tong; Xu, Ming; Colombo, Camilla

    2018-04-01

    This paper studies the dynamics and control of a spacecraft, whose area-to-mass ratio is increased by deploying a reflective orientable surface such as a solar sail or a solar panel. The dynamical system describing the motion of a non-zero attitude angle high area-to-mass ratio spacecraft under the effects of the Earth's oblateness and solar radiation pressure admits the existence of equilibrium points, whose number and the eccentricity values depend on the semi-major axis, the area-to-mass ratio and the attitude angle of the spacecraft together. When two out of three parameters are fixed, five different dynamical topologies successively occur through varying the third parameter. Two of these five topologies are critical cases characterized by the appearance of the bifurcation phenomena. A conventional Hamiltonian structure-preserving (HSP) controller and an improved HSP controller are both constructed to stabilize the hyperbolic equilibrium point. Through the use of a conventional HSP controller, a bounded trajectory around the hyperbolic equilibrium point is obtained, while an improved HSP controller allows the spacecraft to easily transfer to the hyperbolic equilibrium point and to follow varying equilibrium points. A bifurcation control using topologies and changes of behavior areas can also stabilize a spacecraft near a hyperbolic equilibrium point. Natural trajectories around stable equilibrium point and these stabilized trajectories around hyperbolic equilibrium point can all be applied to geomagnetic exploration.

  7. Inductively coupled plasma-mass spectrometry for elemental analysis and isotope ratio determinations in individual organic compounds separated by gas chromatography

    International Nuclear Information System (INIS)

    Chong, N.S.; Houk, R.S.

    1987-01-01

    A gas chromatograph (GC) with a packed column was interfaced to an inductively coupled plasma-mass spectrometer (ICP-MS) to yield atomic mass spectra from volatile organic compounds. Atomization of injected compounds was nearly complete and independent of molecular structure, so that elemental ratios could be determined. Detection limits were in the range 0.001 to 400 ng s -1 , depending on the ionization energy of the element and its abundance in the background spectrum. The relative standard deviation of measured isotope ratios varied from 0.4% for Br (i.e., a ratio close to unity) to 18% for N (a very large ratio). Thus, GC-ICP-MS provides elemental and isotope ratio information that is complementary to the molecular information derived from GC-MS with conventional ionization methods

  8. Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals

    International Nuclear Information System (INIS)

    Huerta, E. A.; Gair, Jonathan R.

    2009-01-01

    We present an improved numerical kludge waveform model for circular, equatorial extreme-mass-ratio inspirals (EMRIs). The model is based on true Kerr geodesics, augmented by radiative self-force corrections derived from perturbative calculations, and in this paper for the first time we include conservative self-force corrections that we derive by comparison to post-Newtonian results. We present results of a Monte Carlo simulation of parameter estimation errors computed using the Fisher matrix and also assess the theoretical errors that would arise from omitting the conservative correction terms we include here. We present results for three different types of system, namely, the inspirals of black holes, neutron stars, or white dwarfs into a supermassive black hole (SMBH). The analysis shows that for a typical source (a 10M · compact object captured by a 10 6 M · SMBH at a signal to noise ratio of 30) we expect to determine the two masses to within a fractional error of ∼10 -4 , measure the spin parameter q to ∼10 -4.5 , and determine the location of the source on the sky and the spin orientation to within 10 -3 steradians. We show that, for this kludge model, omitting the conservative corrections leads to a small error over much of the parameter space, i.e., the ratio R of the theoretical model error to the Fisher matrix error is R<1 for all ten parameters in the model. For the few systems with larger errors typically R<3 and hence the conservative corrections can be marginally ignored. In addition, we use our model and first-order self-force results for Schwarzschild black holes to estimate the error that arises from omitting the second-order radiative piece of the self-force. This indicates that it may not be necessary to go beyond first order to recover accurate parameter estimates.

  9. Redfield Ratios in Inland Waters: Higher Biological Control of C:N:P Ratios in Tropical Semi-arid High Water Residence Time Lakes

    Directory of Open Access Journals (Sweden)

    Ng H. They

    2017-08-01

    Full Text Available The canonical Redfield C:N:P ratio for algal biomass is often not achieved in inland waters due to higher C and N content and more variability when compared to the oceans. This has been attributed to much lower residence times and higher contributions of the watershed to the total organic matter pool of continental ecosystems. In this study we examined the effect of water residence times in low latitude lakes (in a gradient from humid to a semi-arid region on seston elemental ratios in different size fractions. We used lake water specific conductivity as a proxy for residence time in a region of Eastern Brazil where there is a strong precipitation gradient. The C:P ratios decreased in the seston and bacterial size-fractions and increased in the dissolved fraction with increasing water retention time, suggesting uptake of N and P from the dissolved pool. Bacterial abundance, production and respiration increased in response to increased residence time and intracellular nutrient availability in agreement with the growth rate hypothesis. Our results reinforce the role of microorganisms in shaping the chemical environment in aquatic systems particularly at long water residence times and highlights the importance of this factor in influencing ecological stoichiometry in all aquatic ecosystems.

  10. High-precision lead isotope ratio measurement by inductively coupled plasma multiple collector mass spectrometry

    International Nuclear Information System (INIS)

    Walder, A.J.; Furuta, Naoki.

    1993-01-01

    An inductively coupled plasma (ICP) ion source coupled to a magnetic sector mass analyser equipped with seven Faraday detectors has been used to measure the lead isotope ratios in solutions of Sanshiro Pond sediment collected at the University of Tokyo, airborne particulates collected at Shinjuku in Tokyo and Merck multielement standard product number 97279494. A thallium correction technique was utilized to allow a simultaneous correction for mass bias. This work followed an earlier interlaboratory comparison study of the above-mentioned solutions using ICP quadrupole mass spectrometry, and has demonstrated a considerable improvement in analytical precision. The following isotope ratio measurements were recorded. Pond sediment solution containing 82 ng ml -1 lead: 206 Pb/ 204 Pb=17.762±0.014; 206 Pb/ 207 Pb=1.1424±0.0009; 208 Pb/ 204 Pb=37.678±0.034. Airborne particulate solution containing 45 ng ml -1 lead: 206 Pb/ 204 Pb=17.969±0.006; 206 Pb/ 207 Pb=1.1528±0.0003; 208 Pb/ 204 Pb=37.915±0.021. Merck multielement standard solution containing 100 ng ml -1 lead: 206 Pb/ 204 Pb=19.255±0.015; 206 Pb/ 207 Pb=1.2238±0.0004; 208 Pb/ 204 Pb=38.476±0.021 (All errors are given as ±2 standard deviations). (author)

  11. Reforming Iraqi Journalism and Mass Communication Higher Education: Adapting the UNESCO Model Curricula for Journalism Education to Iraqi Higher Education

    Science.gov (United States)

    Pavlik, John V.; Laufer, Peter D.; Burns, David P.; Ataya, Ramzi T.

    2012-01-01

    Journalism and mass communication higher education in Iraq is well established but largely isolated from global developments since the 1970s. In the post-Iraq war period, the United Nations Educational, Scientific and Cultural Organization (UNESCO) implemented a multiyear project to work with the leadership of Iraqi higher education to help update…

  12. THE IMPACT OF MASS SEGREGATION AND STAR FORMATION ON THE RATES OF GRAVITATIONAL-WAVE SOURCES FROM EXTREME MASS RATIO INSPIRALS

    Energy Technology Data Exchange (ETDEWEB)

    Aharon, Danor; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa 3200003 (Israel)

    2016-10-10

    Compact stellar objects inspiraling into massive black holes (MBHs) in galactic nuclei are some of the most promising gravitational-wave (GWs) sources for next-generation GW detectors. The rates of such extreme mass ratio inspirals (EMRIs) depend on the dynamics and distribution of compact objects (COs) around the MBH. Here, we study the impact of mass-segregation processes on EMRI rates. In particular, we provide the expected mass function (MF) of EMRIs, given an initial MF of stellar black holes (SBHs), and relate it to the mass-dependent detection rate of EMRIs. We then consider the role of star formation (SF) on the distribution of COs and its implication on EMRI rates. We find that the existence of a wide spectrum of SBH masses leads to the overall increase of EMRI rates and to high rates of the EMRIs from the most massive SBHs. However, it also leads to a relative quenching of EMRI rates from lower-mass SBHs, and together produces a steep dependence of the EMRI MF on the highest-mass SBHs. SF history plays a relatively small role in determining the EMRI rates of SBHs, since most of them migrate close to the MBH through mass segregation rather than forming in situ. However, the EMRI rate of neutron stars (NSs) can be significantly increased when they form in situ close to the MBH, as they can inspiral before relaxation processes significantly segregate them outward. A reverse but weaker effect of decreasing the EMRI rates from NSs and white dwarfs occurs when SF proceeds far from the MBH.

  13. Application of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to detect the abuse of 17β-estradiol in cattle.

    Science.gov (United States)

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; Prévost, Stéphanie; De Poorter, Geert; De Kimpe, Norbert; Le Bizec, Bruno

    2013-07-31

    Although the ability to differentiate between endogenous steroids and synthetic homologues on the basis of their (13)C/(12)C isotopic ratio has been known for over a decade, this technique has been scarcely implemented for food safety purposes. In this study, a method was developed using gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to demonstrate the abuse of 17β-estradiol in cattle, by comparison of the (13)C/(12)C ratios of the main metabolite 17α-estradiol and an endogenous reference compound (ERC), 5-androstene-3β,17α-diol, in bovine urine. The intermediate precisions were determined as 0.46 and 0.26‰ for 5-androstene-3β,17α-diol and 17α-estradiol, respectively. This is, to the authors' knowledge, the first reported use of GC-MS/C/IRMS for the analysis of steroid compounds for food safety issues.

  14. Improved environmental and forensics measurements using multiple ion counters in isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Goldberg, S.A.; Richter, S.; Schwieters, H.

    2002-01-01

    Full text: A new detector system designed for isotope ratio mass spectrometers provides improved precision on measurements of samples with very low amounts ( -11 grams) of analyte. An array of continuous dynode electron multipliers has been installed on a new ThermoFinnigan MAT Triton thermal ionization mass spectrometer acquired by the New Brunswick Laboratory. These ion counters are modifications of miniaturized, commercially-available continuous dynode electron multipliers. They can be readily installed to replace individual Faraday cups in a multi-detector mass spectrometer or bundled together and located along the detector plane with a set of Faraday cups. On the New Brunswick Laboratory mass spectrometer, nine Faraday cups, one conventional discrete dynode electron multiplier, and seven miniaturized ion counters were installed. Six of the small ion counters were bundled together and positioned on the high mass side of the Low 4 Faraday cup. One additional ion counter was positioned on the low mass side of the Low 4 Faraday cup. This arrangement allows for the simultaneous measurement of all uranium (including 233 U) or plutonium (including 244 Pu) isotopes, and allows for the measurement of larger 238 U intensities on the Faraday cup if needed. Unit mass spacing of U, Pu, or other actinides is readily achieved by the use of a mass dispersion zoom lens. The advantage of multiple ion counting is the simultaneous collection of isotopes. It overcomes many of the problems such as transient signal variation in sample emission and ionization. For a given sample, multiple ion counting generates a greater number of counts for each isotope relative to single detector ion counting and provides improved counting statistics by a factor of two or more. Initial tests indicate that the multiple ion counters exhibit high counting efficiency, a dark noise of less than 10 counts per minute and typically less than 1 count per minute, and show linear response characteristics over

  15. Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2.

    Science.gov (United States)

    Kaiser, Jan; Röckmann, Thomas

    2008-12-01

    Gas isotope ratio mass spectrometers usually measure ion current ratios of molecules, not atoms. Often several isotopologues contribute to an ion current at a particular mass-to-charge ratio (m/z). Therefore, corrections have to be applied to derive the desired isotope ratios. These corrections are usually formulated in terms of isotope ratios (R), but this does not reflect the practice of measuring the ion current ratios of the sample relative to those of a reference material. Correspondingly, the relative ion current ratio differences (expressed as delta values) are first converted into isotopologue ratios, then into isotope ratios and finally back into elemental delta values. Here, we present a reformulation of this data reduction procedure entirely in terms of delta values and the 'absolute' isotope ratios of the reference material. This also shows that not the absolute isotope ratios of the reference material themselves, but only product and ratio combinations of them, are required for the data reduction. These combinations can be and, for carbon and oxygen have been, measured by conventional isotope ratio mass spectrometers. The frequently implied use of absolute isotope ratios measured by specially calibrated instruments is actually unnecessary. Following related work on CO2, we here derive data reduction equations for the species O2, CO, N2O and SO2. We also suggest experiments to measure the required absolute ratio combinations for N2O, SO2 and O2. As a prelude, we summarise historic and recent measurements of absolute isotope ratios in international isotope reference materials. Copyright 2008 John Wiley & Sons, Ltd.

  16. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS).

    Science.gov (United States)

    Godin, Jean-Philippe; McCullagh, James S O

    2011-10-30

    High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Isotopic distributions, element ratios, and element mass fractions from enrichment-meter-type gamma-ray measurements of MOX

    International Nuclear Information System (INIS)

    Close, D.A.; Parker, J.L.; Haycock, D.L.; Dragnev, T.

    1991-01-01

    The gamma-ray spectra from ''infinitely'' thick mixed oxide samples have been measured. The plutonium isotopics, the U/Pu ratio, the high-Z mass fractions (assuming only plutonium, uranium, and americium), and the low-Z mass fraction (assuming the matrix is only oxygen) can be determined by carefully analyzing the data. The results agree well with the chemical determination of these parameters. 8 refs., 3 figs., 3 tabs

  18. Ratio of a strange quark mass ms to up or down quark mass mu,d predicted by a quark propagator in the framework of the chiral perturbation theory

    International Nuclear Information System (INIS)

    Peng Jinsong; Meng Chengju; Pan Jihuan; Yuan Tongquan; Zhou Lijuan; Ma Weixing

    2013-01-01

    Based on the fully dressed quark propagator and chiral perturbation theory, we study the ratio of the strange quark mass m s to up or down quark mass m u,d . The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron. An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications. We begin with a brief introduction to the non-perturbation QCD theory, and then study the mass ratio in the framework of the chiral perturbation theory (χPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p 2 -plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data. Our prediction for the ratio m s /m u,d is consistent with other model predictions such as Lattice QCD, instanton model, QCD sum rules and the empirical values used widely in the literature. As a by-product of this study, our theoretical results, together with other predictions of physical quantities that used this quark propagator in our previous publications, clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD. (authors)

  19. Determination of isotope ratio of elements by mass distribution in molecules of varied chemical compounds

    International Nuclear Information System (INIS)

    Gladkikh, I.S.; Babichev, A.P.

    1999-01-01

    The procedure and program for calculation of isotope ratio of elements involving in the compound being studied using data of mass spectrometry were elaborated. The methods developed for the O 2 , SiH 4 , Cd(CH 3 ) 2 molecules were demonstrated for the illustration. The results of calculation provide support for the efficiency of the program and satisfactory reliability of the results during calculation of the isotope and complex compound concentrations. The program may be used for the estimation of the degree of nonequilibrium isotope distributions, it may indicate on the errors of the mass spectroscopy results [ru

  20. EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES

    International Nuclear Information System (INIS)

    Bogdán, Ákos; Forman, William R.; Kraft, Ralph P.; Li, Zhiyuan; Vikhlinin, Alexey; Nulsen, Paul E. J.; Jones, Christine; Zhuravleva, Irina; Churazov, Eugene; Mihos, J. Christopher; Harding, Paul; Guo, Qi; Schindler, Sabine

    2012-01-01

    We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9 +3.8 –2.3 % and 1.9% ± 0.6%, respectively, which significantly exceed the typical observed ratio of ∼0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are ≈5.1σ and ≈3.4σ outliers from the M . -M bulge scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-ray observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which ∼> 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.

  1. The influence of pressure ratio on the regenerator performance

    Science.gov (United States)

    Lin, Y.; Zhu, S.

    2017-12-01

    For a multi-stage pulse tube refrigerator with displacer, improving the regenerator efficiency is important. A displacer can get higher operating pressure ratio compared with inertance tube. The pressure ratio and porosity influence on the regenerator performance with is discussed, and CFD simulation is done on a two-stage pulse tube refrigerator with displacer to show that mass flow rate and pressure wave relation in the regenerator can be realized by a step-displacer.

  2. Major Mergers in CANDELS up to z=3: Calibrating the Close-Pair Method Using Semi-Analytic Models and Baryonic Mass Ratio Estimates

    Science.gov (United States)

    Mantha, Kameswara; McIntosh, Daniel H.; Conselice, Christopher; Cook, Joshua S.; Croton, Darren J.; Dekel, Avishai; Ferguson, Henry C.; Hathi, Nimish; Kodra, Dritan; Koo, David C.; Lotz, Jennifer M.; Newman, Jeffrey A.; Popping, Gergo; Rafelski, Marc; Rodriguez-Gomez, Vicente; Simmons, Brooke D.; Somerville, Rachel; Straughn, Amber N.; Snyder, Gregory; Wuyts, Stijn; Yu, Lu; Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Team

    2018-01-01

    Cosmological simulations predict that the rate of merging between similar-mass massive galaxies should increase towards early cosmic-time. We study the incidence of major (stellar mass ratio SMR 10.3 galaxies spanning 01.5 in strong disagreement with theoretical merger rate predictions. On the other hand, if we compare to a simulation-tuned, evolving timescale prescription from Snyder et al., 2017, we find that the merger rate evolution agrees with theory out to z=3. These results highlight the need for robust calibrations on the complex and presumably redshift-dependent pair-to-merger-rate conversion factors to improve constraints of the empirical merger history. To address this, we use a unique compilation of mock datasets produced by three independent state-of-the-art Semi-Analytic Models (SAMs). We present preliminary calibrations of the close-pair observability timescale and outlier fraction as a function of redshift, stellar-mass, mass-ratio, and local over-density. Furthermore, to verify the hypothesis by previous empirical studies that SMR-selection of major pairs may be biased, we present a new analysis of the baryonic (gas+stars) mass ratios of a subset of close pairs in our sample. For the first time, our preliminary analysis highlights that a noticeable fraction of SMR-selected minor pairs (SMR>4) have major baryonic-mass ratios (BMR<4), which indicate that merger rates based on SMR selection may be under-estimated.

  3. E2,M1 Multipole mixing ratios in odd-mass nuclei, 59< or =A< or =149

    International Nuclear Information System (INIS)

    Krane, K.S.

    1977-01-01

    A survey is presented of the E2,M1 mxing ratios of gamma-ray transitions in odd-mass nuclei with 59< or =A< or =149. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. A set of recommended values of the mixing ratios is included, based on averages of results from various studies. The survey includes data available in the literature up to September 1976

  4. Improving the signal-to-noise ratio in mass and ion kinetic energy spectrometers

    International Nuclear Information System (INIS)

    Brenton, A.G.; Beynon, J.H.; Morgan, R.P.

    1979-01-01

    The signal-to-noise ratio in mass and ion kinetic energy spectrometers is limited by noise generated from the presence of scattered ions and neutrals. Methods of eliminating this are illustrated with reference to the ZAB-2F instrument manufactured by VG-Micromass Ltd. It is estimated that after the modifications the instrument is capable, on a routine basis, of measuring peaks corresponding to the arrival of ions at a rate of the order of 1 ion s -1 . (Auth.)

  5. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  6. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  7. Obesity as defined by waist circumference but not body mass index is associated with higher renal mass complexity.

    Science.gov (United States)

    Bertrand, Laura A; Thomas, Lewis J; Li, Peng; Buchta, Claire M; Boi, Shannon K; Orlandella, Rachael M; Brown, James A; Nepple, Kenneth G; Norian, Lyse A

    2017-11-01

    Obesity, typically defined as a body mass index (BMI)≥30kg/m 2 , is an established risk factor for renal cell carcinoma (RCC) but is paradoxically linked to less advanced disease at diagnosis and improved outcomes. However, BMI has inherent flaws, and alternate obesity-defining metrics that emphasize abdominal fat are available. We investigated 3 obesity-defining metrics, to better examine the associations of abdominal fat vs. generalized obesity with renal tumor stage, grade, or R.E.N.A.L. nephrometry score. In a prospective cohort of 99 subjects with renal masses undergoing resection and no evidence of metastatic disease, obesity was assessed using 3 metrics: body mass index (BMI), radiographic waist circumference (WC), and retrorenal fat (RRF) pad distance. R.E.N.A.L. nephrometry scores were calculated based on preoperative CT or MRI. Univariate and multivariate analyses were performed to identify associations between obesity metrics and nephrometry score, tumor grade, and tumor stage. In the 99 subjects, surgery was partial nephrectomy in 51 and radical nephrectomy in 48. Pathology showed benign masses in 11 and RCC in 88 (of which 20 had stage T3 disease). WC was positively correlated with nephrometry score, even after controlling for age, sex, race, and diabetes status (P = 0.02), whereas BMI and RRF were not (P = 0.13, and P = 0.57, respectively). WC in stage T2/T3 subjects was higher than in subjects with benign masses (P = 0.03). In contrast, subjects with Fuhrman grade 1 and 2 tumors had higher BMI (Pobesity measured by WC, but not BMI or RRF, is associated with increased renal mass complexity. Tumor Fuhrman grade exhibited a different trend, with both high WC and BMI associated with lower-grade tumors. Our findings indicate that WC and BMI are not interchangeable obesity metrics. Further evaluation of RCC-specific outcomes using WC vs. BMI is warranted to better understand the complex relationship between general vs. abdominal obesity and RCC

  8. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gourgiotis, Alkiviadis, E-mail: alkiviadis.gourgiotis@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France); Ducasse, Thomas [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Cèze (France); Barker, Evelyne [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France); Jollivet, Patrick; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Cèze (France); Bassot, Sylvain; Cazala, Charlotte [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France)

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of {sup 29}Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O{sub 2} as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO{sup +} and SiO{sub 2}{sup +} ion species was performed, and we found that SiO{sup +} ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO{sub 3}). For SiO{sub 2}{sup +}, no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. {sup 28}Si{sup 16}O{sup 18}O{sup +}, {sup 30}Si{sup 16}O{sup 16}O{sup +}). The developed method was validated by measuring a series of reference solutions with different {sup 29}Si

  9. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Directory of Open Access Journals (Sweden)

    L. Xing

    2013-04-01

    Full Text Available We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13 and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18 was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07 than in southern cities (1.65 ± 0.15. This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011. We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  10. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Science.gov (United States)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-04-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA) production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  11. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    Science.gov (United States)

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of 29 Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O 2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO + and SiO 2 + ion species was performed, and we found that SiO + ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO 3 ). For SiO 2 + , no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. 28 Si 16 O 18 O + , 30 Si 16 O 16 O + ). The developed method was validated by measuring a series of reference solutions with different 29 Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be

  12. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Tinker, Jeremy L.; Blanton, Michael R.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Busha, Michael T.; Koester, Benjamin P.

    2012-01-01

    We place constraints on the average density (Ω m ) and clustering amplitude (σ 8 ) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w p (r p ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w p (r p ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w p (r p ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ 8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using w p (r p ) and M/N alone, we find Ω 0.5 m σ 8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ 8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ 8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.

  13. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Tinker, Jeremy L.; Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10013 (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Becker, Matthew R.; Rozo, Eduardo [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Zu, Ying; Weinberg, David H. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Zehavi, Idit [Department of Astronomy and CERCA, Case Western Reserve University, Cleveland, OH 44106 (United States); Busha, Michael T. [Institute for Theoretical Physics, Department of Physics, University of Zurich, CH-8057 Zurich (Switzerland); Koester, Benjamin P. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 6037 (United States)

    2012-01-20

    We place constraints on the average density ({Omega}{sub m}) and clustering amplitude ({sigma}{sub 8}) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w{sub p} (r{sub p} ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w{sub p} (r{sub p} ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w{sub p} (r{sub p} ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when {Omega}{sub m} or {sigma}{sub 8} is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using w{sub p} (r{sub p} ) and M/N alone, we find {Omega}{sup 0.5}{sub m}{sigma}{sub 8} = 0.465 {+-} 0.026, with individual constraints of {Omega}{sub m} = 0.29 {+-} 0.03 and {sigma}{sub 8} = 0.85 {+-} 0.06. Combined with current cosmic microwave background data, these constraints are {Omega}{sub m} = 0.290 {+-} 0.016 and {sigma}{sub 8} = 0.826 {+-} 0.020. All errors are 1{sigma}. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy

  14. Isotope ratio analysis by a combination of element analyzer and mass spectrometer

    International Nuclear Information System (INIS)

    Pichlmayer, F.

    1987-06-01

    The use of stable isotope ratios of carbon, nitrogen and sulfur as analytical tool in many fields of research is of growing interest. A method has therefore been developed, consisting in essential of coupling an Elemental Analyzer with an Isotope Mass Spectrometer, which enables the gas preparation of carbon dioxide, nitrogen and sulfur dioxide from any solid or liquid sample in a fast and easy way. Results of carbon isotope measurements in food analysis are presented, whereat it is possible to check origin and treatment of sugar, oils, fats, mineral waters, spirituous liquors etc. and to detect adulterations as well. Also applications in the field of environmental research are given. (Author)

  15. Solar Radiation Pressure Estimation and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects

    Science.gov (United States)

    Kelecy, Tom; Payne, Tim; Thurston, Robin; Stansbery, Gene

    2007-01-01

    A population of deep space objects is thought to be high area-to-mass ratio (AMR) debris having origins from sources in the geosynchronous orbit (GEO) belt. The typical AMR values have been observed to range anywhere from 1's to 10's of m(sup 2)/kg, and hence, higher than average solar radiation pressure effects result in long-term migration of eccentricity (0.1-0.6) and inclination over time. However, the nature of the debris orientation-dependent dynamics also results time-varying solar radiation forces about the average which complicate the short-term orbit determination processing. The orbit determination results are presented for several of these debris objects, and highlight their unique and varied dynamic attributes. Estimation or the solar pressure dynamics over time scales suitable for resolving the shorter term dynamics improves the orbit estimation, and hence, the orbit predictions needed to conduct follow-up observations.

  16. Two Balls' Collision of Mass Ratio 3:1

    Science.gov (United States)

    Ogawara, Yasuo; Hull, Michael M.

    2018-04-01

    Students will sometimes ask why momentum and kinetic energy concepts are both necessary. When physics teachers demonstrate situations that require both an understanding of kinetic energy and momentum, a favorite is Newton's cradle, or a comparable demonstration of two balls of equal mass hitting each other. However, in addition to the case of two balls of equal mass, if a ball hits another ball of three times the mass with equal speed, the results are also interesting, and, like the equal-mass demonstration, both kinetic energy and momentum are critical for understanding the motion.

  17. Fat mass to fat-free mass ratio reference values from NHANES III using bioelectrical impedance analysis.

    Science.gov (United States)

    Xiao, J; Purcell, S A; Prado, C M; Gonzalez, M C

    2017-10-06

    Low fat-free mass (FFM) or high fat mass (FM) are abnormal body composition phenotypes associated with morbidity. These conditions in combination lead to worse health outcomes, and can be identified by a high FM/FFM ratio. Here, we developed sex, age, and body mass index (BMI) stratified, population-based FM/FFM reference values using bioelectrical impedance analysis (BIA) measurements. White, non-Hispanic individuals aged 18-90 years old with data for weight, stature and BIA resistance measures from the third National Health and Nutrition Examination Survey (NHANES) III were included. Previously validated and sex-specific BIA prediction equations were used to calculate FM and FFM. FM/FFM values were generated at 5th, 50th and 95th percentiles for each sex, age (18-39.9, 40-59.9, 60-69.9 and 70-90 years), and BMI category (underweight, normal weight, overweight, class I/II and class III obesity). A total of 6372 individuals who had estimated FM and FFM values were identified (3366 females, 3006 males). Median values of FM/FFM were 0.24 and 0.40 for young (≤39.9 years) males and females with normal BMI, and 0.34 for males and 0.59 for females who were overweight. For elderly individuals aged >70 years, median FM/FFM for males and females were respectively 0.28 and 0.45 for those with normal BMI, and 0.37 and 0.61 for those in the overweight category. These FM/FFM reference values provide information on body composition characteristics that account for age, sex and BMI, which can be useful to identify individuals at risk for body composition abnormalities. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Ratios of regioisomers of minor acylglycerols less polar than triricinolein in castor oil estimated by mass spectrometry

    Science.gov (United States)

    We have recently reported the identification of forty new minor molecular species of acylglycerols containing hydroxy fatty acids less polar than triricinolein by electrospray ionization mass spectrometry of the lithium adducts. The ratios of regioisomers of triacylglycerols (ABC and AAB types) and ...

  19. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio

    CERN Document Server

    Hori, Masaki; Barna, Daniel; Andreas Dax,; Hayano, Ryugo; Friedreich, Susanne; Juhász, Bertalan; Pask, Thomas; Widmann, Eberhard; Horváth, Dezső; Venturelli, Luca; Zurlo, Nicola; 10.1038/nature10260

    2013-01-01

    Physical laws are believed to be invariant under the combined transformations of charge, parity and time reversal (CPT symmetry). This implies that an antimatter particle has exactly the same mass and absolute value of charge as its particle counterpart. Metastable antiprotonic helium ($\\bar{p}He^+$) is a three-body atom2 consisting of a normal helium nucleus, an electron in its ground state and an antiproton ($\\bar{p}$) occupying a Rydberg state with high principal and angular momentum quantum numbers, respectively n and l, such that n ≈ l + 1 ≈ 38. These atoms are amenable to precision laser spectroscopy, the results of which can in principle be used to determine the antiproton-to-electron mass ratio and to constrain the equality between the antiproton and proton charges and masses. Here we report two-photon spectroscopy of antiprotonic helium, in which $\\bar{p}^{3}He^{+}$ and $\\bar{p}^{4}He^{+}$ isotopes are irradiated by two counter-propagating laser beams. This excites nonlinear, two-phot...

  20. Using GC-combustion isotope ratio mass spectrometry for confirming steroid administration from urinary metabolites in humans and animals

    International Nuclear Information System (INIS)

    Phillips, A.; Churchman, D.; Davis, S.

    2000-01-01

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was used to study the incorporation of exogenous testosterone enanthate into excreted urinary 5α- and 5β-androstane-3α, 17β-diols

  1. Geostationary secular dynamics revisited: application to high area-to-mass ratio objects

    Science.gov (United States)

    Gachet, Fabien; Celletti, Alessandra; Pucacco, Giuseppe; Efthymiopoulos, Christos

    2017-06-01

    The long-term dynamics of the geostationary Earth orbits (GEO) is revisited through the application of canonical perturbation theory. We consider a Hamiltonian model accounting for all major perturbations: geopotential at order and degree two, lunisolar perturbations with a realistic model for the Sun and Moon orbits, and solar radiation pressure. The long-term dynamics of the GEO region has been studied both numerically and analytically, in view of the relevance of such studies to the issue of space debris or to the disposal of GEO satellites. Past studies focused on the orbital evolution of objects around a nominal solution, hereafter called the forced equilibrium solution, which shows a particularly strong dependence on the area-to-mass ratio. Here, we (i) give theoretical estimates for the long-term behavior of such orbits, and (ii) we examine the nature of the forced equilibrium itself. In the lowest approximation, the forced equilibrium implies motion with a constant non-zero average `forced eccentricity', as well as a constant non-zero average inclination, otherwise known in satellite dynamics as the inclination of the invariant `Laplace plane'. Using a higher order normal form, we demonstrate that this equilibrium actually represents not a point in phase space, but a trajectory taking place on a lower-dimensional torus. We give analytical expressions for this special trajectory, and we compare our results to those found by numerical orbit propagation. We finally discuss the use of proper elements, i.e., approximate integrals of motion for the GEO orbits.

  2. Charge–mass ratio bound and optimization in the Parikh–Wilczek tunneling model of Hawking radiation

    International Nuclear Information System (INIS)

    Kim, Kyung Kiu; Wen, Wen-Yu

    2014-01-01

    In this Letter, we study the mutual information hidden in the Parikh–Wilczek tunneling model of Hawking radiation for Reissner–Nordström black holes. We argue that the condition of nonnegativity of mutual information suggests bound(s) for charge–mass ratio of emitted particles. We further view the radiation as an optimization process and discuss its effect on time evolution of a charged black hole.

  3. The interaction effect of body mass index and age on fat-free mass, waist-to-hip ratio, and soft lean mass

    Directory of Open Access Journals (Sweden)

    Alireza Shahab Jahanlou

    2017-01-01

    Full Text Available Background: Research has shown that body mass index (BMI does not take into consideration the gender and ethnicity. The primary purpose of this study was to examine the interaction effect of the BMI and age on fat-free mass (FFM, waist-to-hip ratio (WHR, and soft lean mass (SLM. The secondary purpose was to evaluate the practical significance of the findings by examining effect sizes. Materials and Methods: The study was comparative in nature and employed a factorial design. Due to nonexperimental nature of the investigation, no causal inferences were drawn. The nonprobability sample consisted of 19,356 adults. Analysis of the data included factorial analysis of variance, analysis of simple effects, calculation of mean difference effect sizes, and data transformation. The Statistical Package for the Social Sciences version 22 was employed for the purpose of data manipulation and analysis. Results: The BMI by age interaction effects on FFM, F (10, 19,338 = 28.26, P < 0.01, on WHR, F (10, 19,338 = 18.46, P < 0.01, and on SLM, F (10, 19,338 = 14.65, P < 0.01, was statistically significant and ordinal in nature. Analysis of the effect sizes, ranging from 0.30 to 1.20, showed that the BMI and age influenced the WHR but their interaction effects on FFM and SLM, ranging from 0.04 to 0.36 and 0.03 to 0.33, respectively, were mainly negligible. Conclusion: Based on the examination of the statistical and practical significance of the results, it is concluded that the BMI and age together can influence the WHR but their interaction effect on the FFM and SLM is questionable.

  4. Constraint on a Varying Proton-Electron Mass Ratio 1.5 Billion Years after the Big Bang

    NARCIS (Netherlands)

    Bagdonaite, J.; Ubachs, W.M.G.; Murphy, M.T.; Withmore, J.B.

    2015-01-01

    A molecular hydrogen absorber at a lookback time of 12.4 billion years, corresponding to 10% of the age of the Universe today, is analyzed to put a constraint on a varying proton-electron mass ratio, μ. A high resolution spectrum of the J1443+2724 quasar, which was observed with the Very Large

  5. Isotope ratio mass spectrometry as a tool for source inference in forensic science: A critical review.

    Science.gov (United States)

    Gentile, Natacha; Siegwolf, Rolf T W; Esseiva, Pierre; Doyle, Sean; Zollinger, Kurt; Delémont, Olivier

    2015-06-01

    Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. A versatile method for simultaneous stable carbon isotope analysis of DNA and RNA nucleotides by liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Brasser, J.; de Ruiter, G.; Houtekamer, M.; Bolhuis, H.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    RATIONALELiquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios (C-13/C-12) in biological metabolites, at their natural abundance. However, until now this technique

  7. Packaging and Unpackaging Knowledge in Mass Higher Education--A Knowledge Management Perspective

    Science.gov (United States)

    Guzman, Gustavo; Trivelato, Luiz F.

    2011-01-01

    The progressive deployment of market-oriented regulatory frameworks in mass Higher Education Institutions (MHEI hereafter) triggered, in a wide variety of forms and degrees, the application of Knowledge Management principles in MHEI. This means the application of the knowledge "codification strategy", where the focus is on the economies of the…

  8. Performance evaluation of indigenous thermal ionization mass spectrometer for determination of 235U/238U atom ratios

    International Nuclear Information System (INIS)

    Alamelu, D.; Parab, A.R.; Sasi Bhushan, K.; Shah, Raju V.; Jagdish Kumar, S.; Rao, Radhika M.; Aggarwal, S.K.; Bhatia, R.K.; Yadav, V.K.; Sharma, Madhavi P.; Tulsyan, Puneet; Chavda, Pradip; Sriniwasan, P.

    2014-07-01

    A magnetic sector based Thermal Ionization Mass Spectrometer (TIMS) designed and developed at Technical Physics Division, B.A.R.C., was evaluated for its performance for the determination of 235 U/ 238 U atom ratios in uranium samples. This consisted of evaluating the precision and accuracy on the 235 U/ 238 U atom ratios in various isotopic reference materials as well as indigenously generated uranium samples. The results obtained by the indigenous TIMS were also compared with those obtained using a commercially available TIMS system. The internal and external precision were found to be around 0.1% for determining 235 U/ 238 U atom ratios close to those of natural uranium ( i.e. 0.00730). (author)

  9. Massive graviton dark matter with environment dependent mass: A natural explanation of the dark matter-baryon ratio

    Science.gov (United States)

    Aoki, Katsuki; Mukohyama, Shinji

    2017-11-01

    We propose a scenario that can naturally explain the observed dark matter-baryon ratio in the context of bimetric theory with a chameleon field. We introduce two additional gravitational degrees of freedom, the massive graviton and the chameleon field, corresponding to dark matter and dark energy, respectively. The chameleon field is assumed to be nonminimally coupled to dark matter, i.e., the massive graviton, through the graviton mass terms. We find that the dark matter-baryon ratio is dynamically adjusted to the observed value due to the energy transfer by the chameleon field. As a result, the model can explain the observed dark matter-baryon ratio independently from the initial abundance of them.

  10. Mass discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Broeckman, A. [Rijksuniversiteit Utrecht (Netherlands)

    1978-12-15

    In thermal ionization mass spectrometry the phenomenon of mass discrimination has led to the use of a correction factor for isotope ratio-measurements. The correction factor is defined as the measured ratio divided by the true or accepted value of this ratio. In fact this factor corrects for systematic errors of the whole procedure; however mass discrimination is often associated just with the mass spectrometer.

  11. R7T7 nuclear waste glass behavior in moist clay: role of the clay mass/glass surface area ratio

    International Nuclear Information System (INIS)

    Godon, N.; Vernaz, E.

    1989-01-01

    R7T7 glass alteration was investigated in the presence of various moist clays. In contact with smectite 4a, selected in France as a potential engineered barrier material, the glass was significantly corroded: after 6 months the glass corrosion rate was practically the same as the initial alteration rate in double-distilled water. Substantially lower alteration was observed in contact with bentonite 6 activated by sodium carbonate. Smectite 4a consumes silicon released by glass corrosion, and thus retards the rise to high silicon concentrations in solution at which the glass corrosion rate diminishes. Glass can therefore in some cases be altered as much in moist clay as in water with high renewal rates. Other experiments with smaller quantities of smectite 4a showed that the phenomenon becomes less important in time: its duration is proportional to the ratio between the clay mass (C) and the glass surface area (SA). Comparing the results of studies at different C/SA ratios indicates that low glass corrosion rates are obtained more slowly at higher C/SA ratios. Tests with 239 Pu-doped R7T7 glass also showed that the radionuclide retention factor in the alteration film at the glass surface is only 6, compared with a factor of nearly 50 in double-distilled water

  12. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    Science.gov (United States)

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7).

  13. Isotopic ratios D/H and 15N/14N in giant planets

    Science.gov (United States)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy

    2018-04-01

    The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.

  14. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Science.gov (United States)

    Conti, C. C.; Anjos, M. J.; Salgado, C. M.

    2014-09-01

    X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at www.macx.net.br.

  15. Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2016-04-15

    It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.

  16. Accurate prediction of the ammonia probes of a variable proton-to-electron mass ratio

    Science.gov (United States)

    Owens, A.; Yurchenko, S. N.; Thiel, W.; Špirko, V.

    2015-07-01

    A comprehensive study of the mass sensitivity of the vibration-rotation-inversion transitions of 14NH3, 15NH3, 14ND3 and 15ND3 is carried out variationally using the TROVE approach. Variational calculations are robust and accurate, offering a new way to compute sensitivity coefficients. Particular attention is paid to the Δk = ±3 transitions between the accidentally coinciding rotation-inversion energy levels of the ν2 = 0+, 0-, 1+ and 1- states, and the inversion transitions in the ν4 = 1 state affected by the `giant' l-type doubling effect. These transitions exhibit highly anomalous sensitivities, thus appearing as promising probes of a possible cosmological variation of the proton-to-electron mass ratio μ. Moreover, a simultaneous comparison of the calculated sensitivities reveals a sizeable isotopic dependence which could aid an exclusive ammonia detection.

  17. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Coetzee, Paul P. [University of Johannesburg, Department of Chemistry, Johannesburg (South Africa); Vanhaecke, Frank [Institute for Nuclear Sciences, Laboratory of Analytical Chemistry Ghent University, Ghent (Belgium)

    2005-11-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO{sub 3} was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the {sup 11}B/{sup 10}B ratios can be used to characterize wines from different geographical origins. Average {sup 11}B/{sup 10}B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%. (orig.)

  18. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

    International Nuclear Information System (INIS)

    Coetzee, Paul P.; Vanhaecke, Frank

    2005-01-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO 3 was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the 11 B/ 10 B ratios can be used to characterize wines from different geographical origins. Average 11 B/ 10 B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%. (orig.)

  19. Can lifestyle factors explain why body mass index and waist-to-hip ratio increase with increasing tobacco consumption? The Inter99 study

    DEFF Research Database (Denmark)

    Pisinger, C; Toft, U; Jørgensen, Torben

    2009-01-01

    BACKGROUND: The relationship between smoking, lifestyle, and weight, body mass index (BMI) and waist-to-hip ratio (WH ratio) is complex, and not fully understood. METHODS: In total, 6784 subjects (2408 daily smokers) were included in a population-based study (the Inter99 study) in Denmark. Weight...... consumption, but these factors did largely explain the increasing WH ratio. The relationship between BMI and tobacco consumption is complex, and the public needs to be informed that smoking is not a 'diet'.......BACKGROUND: The relationship between smoking, lifestyle, and weight, body mass index (BMI) and waist-to-hip ratio (WH ratio) is complex, and not fully understood. METHODS: In total, 6784 subjects (2408 daily smokers) were included in a population-based study (the Inter99 study) in Denmark. Weight...... by sociodemographic factors, rather than lifestyle factors. However, neither sociodemographic nor lifestyle factors could fully explain the increased BMI associated with heavier smoking. CONCLUSIONS: Sociodemographic and lifestyle factors could not fully explain why BMI increased with increasing daily tobacco...

  20. Higher body mass index is associated with greater severity of alopecia in men with male-pattern androgenetic alopecia in Taiwan: a cross-sectional study.

    Science.gov (United States)

    Yang, Chao-Chun; Hsieh, Fu-Nien; Lin, Li-Yu; Hsu, Chao-Kai; Sheu, Hamm-Ming; Chen, WenChieh

    2014-02-01

    Obesity is a risk factor for multiple health problems, but its association with androgenetic alopecia (AGA) remains controversial. We sought to determine the association between body mass index (BMI) and alopecia severity in men with AGA and early-onset AGA. A cross-sectional study was conducted. The medical charts and photographs of men with a clinical diagnosis of AGA were reviewed. In all, 189 men were enrolled with a mean age of 30.8 years. In male-pattern AGA (n = 142), men with severe alopecia (grade V-VII) had higher BMI than those with mild to moderate alopecia (grade I-IV) (25.1 vs 22.8 kg/m(2), P = .01). After multivariate adjustments, the risk for severe alopecia was higher in the overweight or obese (BMI ≥24 kg/m(2)) subjects with male-pattern AGA (odds ratio 3.52, P < .01). In early-onset male-pattern AGA (n = 46), the risk for having severe alopecia was also higher in the overweight or obese subjects (odds ratio 4.97, P = .03). Parameters used to evaluate obesity were limited because of the retrospective nature of the study. Higher BMI was significantly associated with greater severity of hair loss in men with male-pattern AGA, especially in those with early-onset AGA. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  1. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Schmitt

    2013-05-01

    Full Text Available Stable carbon isotope analysis of methane (δ13C of CH4 on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC isotope ratio mass spectrometry (IRMS coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton (Kr can severely interfere during the mass spectrometric measurement, leading to significant biases in δ13C of CH4, if krypton is not sufficiently separated during the analysis. According to our experiments, the krypton interference is likely composed of two individual effects, with the lateral tailing of the doubly charged 86Kr peak affecting the neighbouring m/z 44 and partially the m/z 45 Faraday cups. Additionally, a broad signal affecting m/z 45 and especially m/z 46 is assumed to result from scattered ions of singly charged krypton. The introduced bias in the measured isotope ratios is dependent on the chromatographic separation, the krypton-to-CH4 mixing ratio in the sample, the focusing of the mass spectrometer as well as the detector configuration and can amount to up to several per mil in δ13C. Apart from technical solutions to avoid this interference, we present correction routines to a posteriori remove the bias.

  2. Determination of the antiproton-to-electron mass ratio by precision laser spectroscopy of $\\overline{p}He^{+}$

    CERN Document Server

    Hori, M; Eades, John; Gomikawa, K; Hayano, R S; Ono, N; Pirkl, Werner; Widmann, E; Torii, H A; Juhász, B; Barna, D; Horváth, D

    2006-01-01

    A femtosecond optical frequency comb and continuous-wave pulse- amplified laser were used to measure 12 transition frequencies of antiprotonic helium to fractional precisions of (9-16) 10/sup -9lifetimes hitherto unaccessible to our precision laser spectroscopy method. Comparisons with three-body QED calculations yielded an antiproton-to-electron mass ratio of M/sub pmacron//m/sub e/=1836.152 674(5).

  3. Total homocysteine is positively correlated with body mass index, waist-to-hip ratio, and fat mass among overweight reproductive women: A cross-sectional study.

    Science.gov (United States)

    Al-Bayyari, Nahla; Hamadneh, Jehan; Hailat, Rae'd; Hamadneh, Shereen

    2017-12-01

    Conflicting associations between total homocysteine (tHcy), body mass index (BMI) lean body mass, and fat mass in the general population have been reported. We investigated the hypothesis that elevated tHcy levels are associated with increased BMI, waist-to-hip ratio (WHR), and body fat mass percent. In Jordan, obesity and overweight are prevalent among reproductive women and hyperhomocysteinemia, along with obesity and overweight, are independent risk factors for cardiovascular diseases. The participants used in this cross-sectional study were 325 overweight Jordanian women aged between 18 and 49 years old. The main outcome measures were tHcy, BMI, WHR, fat mass, fat-free mass, and total body water. Serum tHcy was analyzed using a liquid chromatography tandem mass spectrophotometry (LC-MS/MS) complete kit. The body compositions were measured using a bioelectrical impedance analyzer. Study participants were stratified according to their tHcy level into two groups, ≤10 μmol/L and >10 μmol/L, and the difference between mean values of body compositions was evaluated. The tHcy was significantly and negatively correlated with age, fat-free mass, and total body water, and significantly and positively correlated with BMI, hip circumference, WHR, fat mass, and dry lean weight. The chi-square and the independent sample t-tests showed statistically significant (P ≤ .05) differences between tHcy and BMI, WHR, fat and fat-free mass, and total body water percentages. In conclusion, BMI, WHR and body fat mass were found to be associated with elevated tHcy levels among overweight reproductive women, and they might be used as independent predictors of the tHcy level. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Higher surface mass balance of the Greenland ice sheet revealed by high - resolution climate modeling

    NARCIS (Netherlands)

    Ettema, Janneke; van den Broeke, Michiel R.; van Meijgaard, Erik; van de Berg, Willem Jan; Bamber, Jonathan L.; Box, Jason E.; Bales, Roger C.

    2009-01-01

    High‐resolution (∼11 km) regional climate modeling shows total annual precipitation on the Greenland ice sheet for 1958–2007 to be up to 24% and surface mass balance up to 63% higher than previously thought. The largest differences occur in coastal southeast Greenland, where the much higher

  5. Some major deviations for biomass determination by indirect method and estimation based on alkali consumption. [Ratio of cell mass produced and alkali consumed; diesel fuel culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Concone, B R.V.; Doin, P A; Pinto, A G

    1978-01-01

    Some factors like the variation of the liquid volume, the variation of cellular nitrogen content and the mass of cells taken with the samples during batch cultivation of microorganisms on diesel oil, were considered for the computation of the ratio between cell mass produced and the mass of alkali consumed to maintain constant the pH of the fermentation medium. The results obtained showed that if such ratios are computed with cell concentration instead of cell mass the deviations can be of the order of 27% caused by the variation of the liquid medium volume. Otherwise, the results showed also that those ratios are variable during batch cultivation on diesel oil probably because of the variations on the nitrogen content of microorganisms. The relative difference between the mass of cells measured and the mass of cells calculated from the alkali consumption curve can be of the order of 63%.

  6. Determination of δ13C, δ15N, or δ34S by isotope-ratio-monitoring mass spectrometry using an elemental analyzer

    Science.gov (United States)

    Johnson, Craig A.; Stricker, Craig A.; Gulbransen, Cayce A.; Emmons, Matthew P.

    2018-02-14

    This report describes procedures used in the Geology, Geophysics, and Geochemistry Science Center of the U.S. Geological Survey in Denver, Colorado, to determine the stable-isotope ratios 13C/12C, 15N/14N, and 34S/32S in solid materials. The procedures use elemental analyzers connected directly to gas-source isotope-ratio mass spectrometers. A different elemental–analyzer–mass-spectrometer system is used for 13C/12C and 15N/14N than is used for 34S/32S to accommodate differences in reagents, catalysts, and instrument settings.

  7. Is waist circumference a better predictor of diabetes than body mass index or waist-to-height ratio in Iranian adults?

    Science.gov (United States)

    Hajian-Tilaki, Karimollah; Heidari, Bezad

    2015-01-01

    Several measures of adiposity have been used for predicting diabetes. The results of studies regarding superiority of waist circumference (WC) to body mass index (BMI) are inconsistent. This study designed to compare the ability of different anthropometric measures in predicting diabetes and to determine their optimal cut-off values. A population-based cross-sectional study was conducted with 1,000 representative sample among adults aged 20-80 years in Babol, the Northern Iran. The demographic data were collected in a household survey, and the anthropometric measures of weight, height, waist, and hip circumference were measured with a standard method. Fasting blood sugar (FBS) ≥126 mg/dl was considered as diabetes. receiver operating characteristic analysis was used to estimate the predictive ability of different anthropometric indexes and their optimal cut-off values for high FBS. The overall prevalence rate of diabetes was 14.0% (14.4% in men vs. 13.5% in women, P = 0.65). The prevalence rate was significantly higher in older age (>60 years), low educated and obese (P = 0.001). The mean of BMI, WC, waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) were significantly higher among diabetic in both sexes (P = 0.001). Among men, WC (area under the ROC curve [AUC] =0.64) and WHtR (AUC = 0.63) have slightly higher accuracy index compared with BMI (AUC = 0.62) or WHR (AUC = 0.60). In contrast, among women, WHtR (AUC = 0.69) and WC (AUC = 0.68) yielded slightly better predictive than BMI (AUC = 0.67). The optimal cut-off values obtained for BMI and WHtR were similar between two sexes (BMI = 24.95 kg/m(2) for men and BMI = 25.2 kg/m(2) for women, WHtR = 0.51 for both sexes) whereas the optimal cut-off value for WC was higher in men than women (98.5 cm men vs. 89.5 cm women). Overall WC and WHtR exhibited a slightly better discriminate performance than BMI for diabetes in both sexes, particularly in women.

  8. Limb/trunk lean mass ratio as a risk factor for mortality in peritoneal dialysis patients

    Directory of Open Access Journals (Sweden)

    Seok Hui Kang

    2012-06-01

    Full Text Available Protein energy wasting (PEW is a common problem in dialysis patients. There have been few reports on the effects of regional lean mass distribution for peritoneal dialysis (PD patients. We reviewed the medical records and identified all adults who received PD between May 2001 and May 2011. Five hundred thirty four patients were enrolled. The clinical and laboratory data were collected at 1 and 12 months. Regional lean masses were measured by dual-energy X-ray absorptiometry. The limb/trunk lean mass ratio (LTLM was defined as a value on dividing the sum of four limbs by the trunk lean mass. The mean age at the start of PD was 53.2±14.1 years. Diabetes mellitus (DM was most common underlying disease of end-stage renal disease (49.6%. In males, the low LTLM tertile was associated with low body mass index, creatinine, arm muscle circumference, and high C-reactive protein. In females, the low LTLM tertile was associated with low creatinine and normalized protein equivalent of nitrogen appearance. On both univariate and multivariate analysis adjusted for age, Davies risk index, and residual renal function, initial low LTLM tertile and maintenance of low LTLM were associated with mortality in PD patients. Distribution or change of regional lean mass may be more useful for predicting nutritional status. Initial low LTLM and maintenance of low LTLM were associated with mortality in PD patients. LTLM as a new marker would be useful for predicting the nutritional status and the mortality in patients on PD.

  9. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Conti, C.C., E-mail: ccconti@ird.gov.br [Institute for Radioprotection and Dosimetry – IRD/CNEN, Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Anjos, M.J. [Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Salgado, C.M. [Nuclear Engineering Institute – IEN/CNEN, Rio de Janeiro (Brazil)

    2014-09-15

    Highlights: •This work describes a procedure for sample self-absorption correction. •The use of Monte Carlo simulation to calculate the mass attenuation coefficients curve was effective. •No need for transmission measurement, saving time, financial resources and effort. •This article provides de curves for the 90° scattering angle. •Calculation on-line at (www.macx.net.br). -- Abstract: X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at (www.macx.net.br)

  10. Two types of the effective mass divergence and the Grueneisen ratio in heavy-fermion metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Msezane, A.Z.; Shaginyan, V.R.

    2004-01-01

    The behavior of the specific heat c p , effective mass M*, and the thermal expansion coefficient α of a Fermi system located near the fermion condensation quantum phase transition (FCQPT) is considered. We observe the first type behavior if the system is close to FCQPT: the specific heat c p ∝√T, M*∝1/√T, while the thermal expansion coefficient α∝√T. Thus, the Grueneisen ratio Γ(T)=α/c p does not diverges. At the transition region, where the system passes over from the non-Fermi liquid to the Landau Fermi liquid, the ratio diverges as Γ(T)∝1/√T. In the system becomes the Landau Fermi liquid, Γ(T,r)∝1/r, with r being a distance from the quantum critical point. Provided the system has undergone FCQPT, the second type takes place: the specific heat behaves as c p ∝√T, M * ∝1/T, and α=a+bT with a,b being constants. Again, the Grueneisen ratio diverges as Γ(T)∝1/√T

  11. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio

    International Nuclear Information System (INIS)

    Keck, B.D.; Ognibene, T.; Vogel, J.S.

    2010-01-01

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of 14 C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of 14 C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the 14 C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with 14 C corresponds to 30 fg equivalents. AMS

  12. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    Energy Technology Data Exchange (ETDEWEB)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  13. Emissions characteristics of higher alcohol/gasoline blends

    International Nuclear Information System (INIS)

    Gautam, M.; Martin, D.W.; Carder, D.

    2000-01-01

    An experimental investigation was conducted to determine the emissions characteristics of higher alcohols and gasoline (UTG96) blends. While lower alcohols (methanol and ethanol) have been used in blends with gasoline, very little work has been done or reported on higher alcohols (propanol, butanol and pentanol). Comparisons of emissions and fuel characteristics between higher alcohol/gasoline blends and neat gasoline were made to determine the advantages and disadvantages of blending higher alcohols with gasoline. All tests were conducted on a single-cylinder Waukesha Cooperative Fuel Research engine operating at steady state conditions and stoichiometric air-fuel (A/F) ratio. Emissions test were conducted at the optimum spark timing-knock limiting compression ratio combination for the particular blend being tested. The cycle emission [mass per unit time (g/h)] of CO, CO 2 and organic matter hydrocarbon equivalent (OMHCE) from the higher alcohol/gasoline blends were very similar to those from neat gasoline. Cycle emissions of NO x from the blends were higher than those from neat gasoline. However, for all the emissions species considered, the brake specific emissions (g/kW h) were significantly lower for the higher alcohol/gasoline blends than for neat gasoline. This was because the blends had greater resistance to knock and allowed higher compression ratios, which increased engine power output. The contribution of alcohols and aldehydes to the overall OMHCE emissions was found to be minimal. Cycle fuel consumption (g/h) of higher alcohol/gasoline blends was slightly higher than with neat gasoline due to the lower stoichiometric A/F ratios required by the blends. However, the brake specific fuel consumption (g/kW h) for the blends was significantly lower than that for neat gasoline. (Author)

  14. Absorption Mode FT-ICR Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O' Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  15. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    Science.gov (United States)

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  16. Vibration of nonuniform carbon nanotube with attached mass via nonlocal Timoshenko beam theory

    International Nuclear Information System (INIS)

    Tang, Hai Li; Shen, Zhi Bin; Li, Dao Kui

    2014-01-01

    This paper studies the vibrational behavior of nonuniform single-walled carbon nanotube (SWCNT) carrying a nanoparticle. A nonuniform cantilever beam with a concentrated mass at the free end is analyzed according to the nonlocal Timoshenko beam theory. A governing equation of a nonuniform SWCNT with attached mass is established. The transfer function method incorporating with the perturbation method is utilized to obtain the resonant frequencies of a vibrating nonlocal cantilever-mass system. The effects of the nonlocal parameter, taper ratio and attached mass on the natural frequencies and frequency shifts are discussed. Obtained results indicate that the sensitivity of the frequency shifts on the attached mass increases when the length-to-diameter ratio decreases. Tapered SWCNT possesses higher fundamental frequencies if the taper ratio becomes larger.

  17. Novel method for measurement of glutathione kinetics in neonates using liquid chromatography coupled to isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schierbeek, Henk; te Braake, Frans; Godin, Jean-Philippe; Fay, Laurent-Bernard; van Goudoever, Johannes B.

    2007-01-01

    A novel analytical method using liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) was developed for measuring the fractional synthesis rate (FSR) of glutathione (GSH) in neonates after infusion of [1-(13)C]-glycine as a tracer. After transformation of GSH into GSSG, its

  18. Associations of Infant Subcutaneous Fat Mass with Total and Abdominal Fat Mass at School-Age: The Generation R Study.

    Science.gov (United States)

    Santos, Susana; Gaillard, Romy; Oliveira, Andreia; Barros, Henrique; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Hofman, Albert; Jaddoe, Vincent W V

    2016-09-01

    Skinfold thickness enables the measurement of overall and regional subcutaneous fatness in infancy and may be associated with total and abdominal body fat in later childhood. We examined the associations of subcutaneous fat in infancy with total and abdominal fat at school-age. In a population-based prospective cohort study among 821 children, we calculated total subcutaneous fat (sum of biceps, triceps, suprailiacal, and subscapular skinfold thicknesses) and central-to-total subcutaneous fat ratio (sum of suprailiacal and subscapular skinfold thicknesses/total subcutaneous fat) at 1.5 and 24 months. At 6 years, we measured fat mass index (total fat/height(3) ), central-to-total fat ratio (trunk fat/total fat), and android-to-gynoid fat ratio (android fat/gynoid fat) by dual-energy X-ray absorptiometry and preperitoneal fat mass area by abdominal ultrasound. Central-to-total subcutaneous fat ratio at 1.5 months was positively associated with fat mass index and central-to-total fat ratio at 6 years, whereas both total and central-to-total subcutaneous fat ratio at 24 months were positively associated with all childhood adiposity measures. A 1-standard-deviation scores higher total subcutaneous fat at 24 months was associated with an increased risk of childhood overweight (odds ratio 1.70, 95% confidence interval 1.36, 2.12). These associations were weaker than those for body mass index and stronger among girls than boys. Subcutaneous fat in infancy is positively associated with total and abdominal fat at school-age. Our results also suggest that skinfold thicknesses add little value to estimate later body fat, as compared with body mass index. © 2016 John Wiley & Sons Ltd.

  19. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    Science.gov (United States)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  20. Acculturation and changes in body mass index, waist circumference, and waist-hip ratio among Filipino Americans with hypertension.

    Science.gov (United States)

    Serafica, Reimund; Angosta, Alona D

    2016-09-01

    The purpose of this research study was to examine whether level of acculturation is a predictor of body mass index, waist circumference, and waist-hip ratio in Filipino Americans with hypertension in the United States. The Filipino Americans (N = 108) were recruited from a primary care clinic in the United States. Two instruments were used to collect and operationalize the variables, specifically: (1) Socioeconomic/Demographic Questionnaire and (2) A Short Acculturation Scale for Filipino Americans. Descriptive statistics and partial least squares were used to calculate the results. The partial least square path model identified acculturation as a predictor of body mass index, wait circumference, and waist-hip ratio among Filipino Americans. The positive path coefficient (β = 0.384) was statistically significant (t = 5.92, P stress the importance of the degree of acculturation when developing culturally appropriate lifestyle and health promotion interventions among immigrant patients with hypertension. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  1. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    Science.gov (United States)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  2. Ratios of regioisomers of minor acylglycerols less polar than triricinolein in castor oil estimated by mass spectrometry (Abstract)

    Science.gov (United States)

    The ratios of regioisomers of triacylglycerols (TAG) have been estimated by mass spectrometry using the fact that the neutral loss of fatty acid (FA) from the sn-2 position is energetically less favored in comparison with that from sn-1,3 positions. However regioisomeric TAG standards were needed fo...

  3. CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. III. MASS-TO-LIGHT RATIOS

    International Nuclear Information System (INIS)

    Sheldon, Erin S.; Johnston, David E.; Masjedi, Morad; Blanton, Michael R.; McKay, Timothy A.; Scranton, Ryan; Wechsler, Risa H.; Koester, Benjamin P.; Hansen, Sarah M.; Frieman, Joshua A.; Annis, James

    2009-01-01

    We present measurements of the excess mass-to-light ratio (M/L) measured around MaxBCG galaxy clusters observed in the Sloan Digital Sky Survey. This red-sequence cluster sample includes objects from small groups with M 200 ∼ 5 x 10 12 h -1 M sun to clusters with M 200 ∼ 10 15 h -1 M sun . Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean Δρ(r)=ρ(r)-ρ-bar for clusters in bins of richness and optical luminosity. We also measure the excess luminosity density Δl(r)=l(r)-l-bar measured in the z = 0.25 i band. For both mass and light, we de-project the profiles to produce three-dimensional mass and light profiles over scales from 25 h -1 kpc to 22 h -1 Mpc. From these profiles we calculate the cumulative excess mass ΔM(r) and excess light ΔL(r) as a function of separation from the BCG. On small scales, where ρ(r)>>ρ-bar, the integrated mass-to-light profile (ΔM/ΔL)(r) may be interpreted as the cluster M/L. We find the (ΔM/ΔL) 200 , the M/L within r 200 , scales with cluster mass as a power law with index 0.33 ± 0.02. On large scales, where ρ(r)∼ρ-bar, the ΔM/ΔL approaches an asymptotic value independent of cluster richness. For small groups, the mean (ΔM/ΔL) 200 is much smaller than the asymptotic value, while for large clusters (ΔM/ΔL) 200 is consistent with the asymptotic value. This asymptotic value should be proportional to the mean M/L of the universe (M/L). We find (M/L)b -2 M/L = 362 ± 54h (statistical). There is additional uncertainty in the overall calibration at the ∼10% level. The parameter b 2 M/L is primarily a function of the bias of the L ∼ * galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in the same bandpass we find Ω m b -2 M/L = 0.20 ± 0.03, independent of the Hubble parameter.

  4. Association between ghrelin gene variations, body mass index, and waist-to-hip ratio in patients with polycystic ovary syndrome.

    Science.gov (United States)

    Xu, L; Shi, Y; Gu, J; Wang, Y; Wang, L; You, L; Qi, X; Ye, Y; Chen, Z

    2014-03-01

    To investigate the association between 2 single nucleotide polymorphisms (SNP501A/C and 604 G/A) in the promoter of the ghrelin gene and the hormonal and metabolic phenotypes of polycystic ovary syndrome (PCOS) in a Chinese population. 285 patients with PCOS and 260 healthy controls were selected for a prospective, case-control study at Shandong Provincial Hospital, Jinan, China. All subjects underwent genotype analysis of the 2 single nucleotide polymorphisms of the ghrelin gene. Measurements were also taken of blood lipids, glucose, and hormone levels, and calculations of body mass index (BMI) and waist-to-hip ratio (WHR) were performed to detect hormonal and metabolic phenotypes. No significant diff erences in polymorphism genotypes were found between PCOS patients and healthy controls. However, the frequency of the -501 A/C A allele was significantly higher in the PCOS group than in the control group. PCOS -501 A/C A carriers had significantly higher BMI and WHR than PCOS women with the CC genotype. -604 G/A polymorphisms were not associated with clinical or biochemical characteristics of PCOS. The -501 A/C polymorphism of the ghrelin gene is associated with metabolic features of PCOS in a Chinese population. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  5. Long-term orbital period behaviour of low mass ratio contact binaries GR Vir and FP Boo

    Science.gov (United States)

    Ćetinkaya, Halil; Soydugan, Faruk

    2017-02-01

    In this study, we investigated orbital period variations of two low mass ratio contact binaries GR Vir and FP Boo based on published minima times. From the O-C analysis, it was found that FP Boo indicates orbital period decrease while the period of GR Vir is increasing. Mass transfer process was used to explain increase and decrease in the orbital periods. In the O-C diagrams of both systems periodic variations also exist. Cyclic changes can be explained as being the result of a light-travel time effect via a third component around the eclipsing binaries. In order to interpret of cyclic orbital period changes for GR Vir, which has late-type components, possible magnetic activity cycles of the components have been also considered.

  6. Experimental study on the natural gas dual fuel engine test and the higher the mixture ratio of hydrogen to natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Lee, Y.S.; Park, C.K. [Cheonnam University, Kwangju (Korea); Masahiro, S. [Kyoto University, Kyoto (Japan)

    1999-05-28

    One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of Total Hydrogen Carbon(THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. And when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the nocking limit decreases and the produce of NOx increases. 5 refs., 9 figs., 1 tab.

  7. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    Science.gov (United States)

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  8. Obesity Index That Better Predict Metabolic Syndrome: Body Mass Index, Waist Circumference, Waist Hip Ratio, or Waist Height Ratio

    Directory of Open Access Journals (Sweden)

    Abdulbari Bener

    2013-01-01

    Full Text Available Aim. The aim was to compare body mass index (BMI, waist circumference (WC, waist hip ratio (WHR, and waist height ratio (WHtR to identify the best predictor of metabolic syndrome (MetS among Qatari adult population. Methods. A cross-sectional survey from April 2011 to December 2012. Data was collected from 1552 participants followed by blood sampling. MetS was defined according to Third Adult Treatment Panel (ATPIII and International Diabetes Federation (IDF. Receiver operating characteristics (ROC curve analysis was performed. Results. Among men, WC followed by WHR and WHtR yielded the highest area under the curve (AUC (0.78; 95% CI 0.74–0.82 and 0.75; 95% CI 0.71–0.79, resp.. Among women, WC followed by WHtR yielded the highest AUC (0.81; 95% CI 0.78–0.85 & 0.79; 95% CI 0.76–0.83, resp.. Among men, WC at a cut-off 99.5 cm resulted in the highest Youden index with sensitivity 81.6% and 63.9% specificity. Among women, WC at a cut-off 91 cm resulted in the highest Youden index with the corresponding sensitivity and specificity of 86.5% and 64.7%, respectively. BMI had the lowest sensitivity and specificity in both genders. Conclusion. WC at cut-off 99.5 cm in men and 91 cm in women was the best predictor of MetS in Qatar.

  9. Two types of the effective mass divergence and the Grueneisen ratio in heavy-fermion metals

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Msezane, A.Z.; Shaginyan, V.R

    2004-01-12

    The behavior of the specific heat c{sub p}, effective mass M*, and the thermal expansion coefficient {alpha} of a Fermi system located near the fermion condensation quantum phase transition (FCQPT) is considered. We observe the first type behavior if the system is close to FCQPT: the specific heat c{sub p}{proportional_to}{radical}T, M*{proportional_to}1/{radical}T, while the thermal expansion coefficient {alpha}{proportional_to}{radical}T. Thus, the Grueneisen ratio {gamma}(T)={alpha}/c{sub p} does not diverges. At the transition region, where the system passes over from the non-Fermi liquid to the Landau Fermi liquid, the ratio diverges as {gamma}(T){proportional_to}1/{radical}T. In the system becomes the Landau Fermi liquid, {gamma}(T,r){proportional_to}1/r, with r being a distance from the quantum critical point. Provided the system has undergone FCQPT, the second type takes place: the specific heat behaves as c{sub p}{proportional_to}{radical}T, M{sup *}{proportional_to}1/T, and {alpha}=a+bT with a,b being constants. Again, the Grueneisen ratio diverges as {gamma}(T){proportional_to}1/{radical}T.

  10. Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries

    International Nuclear Information System (INIS)

    Field, Scott E; Hesthaven, Jan S; Lau, Stephen R

    2009-01-01

    Gravitational wave emission from extreme mass ratio binaries (EMRBs) should be detectable by the joint NASA-ESA LISA project, spurring interest in analytical and numerical methods for investigating EMRBs. We describe a discontinuous Galerkin (dG) method for solving the distributionally forced 1+1 wave equations which arise when modeling EMRBs via the perturbation theory of Schwarzschild black holes. Despite the presence of jump discontinuities in the relevant polar and axial gravitational 'master functions', our dG method achieves global spectral accuracy, provided that we know the instantaneous position, velocity and acceleration of the small particle. Here these variables are known, since we assume that the particle follows a timelike geodesic of the Schwarzschild geometry. We document the results of several numerical experiments testing our method, and in our concluding section discuss the possible inclusion of gravitational self-force effects.

  11. From elite to mass to universal higher education: from distance to open education

    Directory of Open Access Journals (Sweden)

    Larry Cooperman

    2014-01-01

    Full Text Available In 1970, Martin Trow, a professor at the University of California, Berkeley, identified a transition “underway in every advanced society, from elite to mass higher education and subsequently to universal access.” This article adapts this framework of the historical and structural development of higher education as a phased process in which absolute and relative growth of university enrollment transforms the institutions of higher education and alters its functions. The transition to universal access may support economic development, social mobility and greater income equality, in turn buttressing even the institution of democracy. Arriving at those optimal social outcomes is not automatic, however, because of a variety of remaining issues: how universality of higher education translates to economic growth and social equality. The problem of the ‘next 1%,’ shorthand for the continued entrance of new social layers into higher education presents novel challenges that ‘access’ alone may not solve.

  12. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schmitt, J.; Seth, B.; Bock, M; van der Veen, C.; Möller, L.; Sapart, C.J.; Prokopiou, M.; Sowers, T.; Röckmann, T.; Fischer, H

    2013-01-01

    Stable carbon isotope analysis of methane ( 13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a

  13. Determination of uranium in urine - Measurement of isotope ratios and quantification by use of inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Krystek, Petra; Ritsema, R.

    2002-01-01

    For analysis of uranium in urine determination of the isotope ratio and quantification were investigated by high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS). The instrument used (ThermoFinniganMAT ELEMENT2) is a single-collector MS and, therefore, a stable sample-introduction

  14. Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as predictors of wound healing failure in head and neck reconstruction.

    Science.gov (United States)

    Maruyama, Yoko; Inoue, Keita; Mori, Keita; Gorai, Katsuya; Shimamoto, Ryo; Onitsuka, Tetsuro; Iguchi, Hiroyoshi; Okazaki, Mutsumi; Nakagawa, Masahiro

    2017-01-01

    In microsurgical head and neck reconstruction, a higher rate of post-operative wound complication could be predicted by a lower pre-operative neutrophil ratio (wound complications in microsurgical head and neck reconstruction. Patients who were undergoing tumor ablation and microsurgical reconstruction from April 2011 to March 2014 were analyzed retrospectively. The pre-operative hematological data, age, sex, co-morbidities, body mass index (BMI), adjuvant therapies, smoking, operation time, blood loss, total protein, T-stage, and Anesthesiologists Performance Status (ASA-PS) score were collected. Cases of post-operative wound healing failure were reviewed. One hundred and three consecutive patients were enrolled. Among these, the results of 77 patients who were younger than 70 years of age were analyzed. The distributions of the neutrophil ratio (p = .0005), lymphocyte ratio (p = .0166), monocyte ratio (p = .0341), NLR (p = .005), and PLR (p = .008) differed significantly between the patients with and without post-operative wound healing failure. Neutrophil ratio, NLR, and PLR cut-off values of 64.9, 3.5, and 160 were significantly associated with the rate of wound healing failure rate (p = .0002, .00021, .0042, respectively).

  15. An improved determination of the ratio of W and Z masses at the CERN anti pp collider

    International Nuclear Information System (INIS)

    Alitti, J.; Ambrosini, G.; Ansari, R.; Autiero, D.; Bareyre, P.; Bertram, I.A.; Blaylock, G.; Bonamy, P.; Borer, K.; Bourliaud, M.; Buskulic, D.; Carboni, G.; Cavalli, D.; Cavasinni, V.; Cenci, P.; Chollet, J.C.; Conta, C.; Costa, G.; Costantini, F.; Cozzi, L.; Cravero, A.; Curatolo, M.; Dell'Acqua, A.; DelPrete, T.; DeWolf, R.S.; DiLella, L.; Ducros, Y.; Egan, G.F.; Einsweiler, K.F.; Esposito, B.; Fayard, L.; Federspiel, A.; Ferrari, R.; Fraternali, M.; Froidevaux, D.; Fumagalli, G.; Gaillard, J.M.; Gianotti, F.; Gildemeister, O.; Goessling, C.; Goggi, V.G.; Gruenendahl, S.; Hara, K.; Hellman, S.; Hrivnac, J.; Hufnagel, H.; Hugentobler, E.; Hultqvist, K.; Iacopini, E.; Incandela, J.; Jakobs, K.; Jenni, P.; Kluge, E.E.; Kurz, N.; Lami, S.; Lariccia, P.; Lefebvre, M.; Linssen, L.; Livan, M.; Lubrano, P.; Magneville, C.; Mandelli, L.; Mapelli, L.; Mazzanti, M.; Meier, K.; Merkel, B.; Meyer, J.P.; Moniez, M.; Moning, R.; Morganti, M.; Mueller, L.; Munday, D.J.; Nessi, M.; Nessi-Tedaldi, F.; Onions, C.; Pal, T.; Parker, M.A.; Parrour, G.; Pastore, F.; Pennacchio, E.; Pentney, J.M.; Pepe, M.; Perini, L.; Petridou, C.; Petroff, P.; Plothow-Besch, H.; Polesello, G.; Poppleton, A.; Pretzl, K.; Primavera, M.; Punturo, M.; Repellin, J.P.; Rimoldi, A.; Sacchi, M.; Scampoli, P.; Schacher, J.; Schmidt, B.; Simak, V.; Singh, S.L.; Sondermann, V.; Spiwoks, R.; Stapnes, S.; Talamonti, C.; Tondini, F.; Tovey, S.N.; Tsesmelis, E.; Unal, G.; Valdata-Nappi, M.; Vercesi, V.; Weidberg, A.R.; Wells, P.S.; White, T.O.; Wood, D.R.; Wotton, S.A.; Zaccone, H.; Zylberstejn, A.

    1992-01-01

    The W and Z bosons masses, m W and m Z , are measured using samples of W→eν and Z→e + e - decays observed in anti pp collisions at √s=630 GeV. The ratio is found to be m W /m Z =0.8813±0.0036±0.0019. This gives a value sin 2 θ W =0.2234±0.0064±0.0033, and in combination with precise m Z measurements from LEP yields m W -80.35±0.33±0.17 GeV. This result is in good agreement with other experiments, and with the standard model for a top quark mass lighter than 250 GeV. (orig.)

  16. Benefit-risk evaluation of mammographic mass screening

    International Nuclear Information System (INIS)

    Sato, Nobuo; Ogura, Toshihiro

    1990-01-01

    This study evaluated the benefit-risk balance of mammography in mass screening by using survival rates from 3000 breast cancer patients at the Japanese Foundation for Cancer Research Institute Hospital. Because the number of participants in mammographic mass screening was small, asymptomatic patients with pathologically proven early breast cancer were categorized as the screenee group. Symptomatic patients were categorized as the patient group. Survival rates were compared in both the screenee and the patient groups. Based on the difference in areas of survival curves between screenees and patients, the ratio of person-year gain (PYG) to person-year lost (PYL) was obtained. The ratio of PYG to PYL was multiplied by the detection rate resulting from a particular screening program to obtain the benefit/risk ratio. The detection rate of nonpalpable breast cancer was 15 times higher in the screenee group than the patient group. Breast cancer was detected in 7 (0.85%) of 824 patients in the screenee group. Even when mammographic mass screening was started at the age of 30, the benefit of mammography was far superior to the risk. The number of participants in mass screening stratified by age may be required for the conclusion of the benefit-risk balance of mammography in mass screening. (N.K.)

  17. CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION

    International Nuclear Information System (INIS)

    Kelly, Brandon C.; Hernquist, Lars; Siemiginowska, Aneta; Vestergaard, Marianne; Fan Xiaohui; Hopkins, Philip

    2010-01-01

    We present an estimate of the black hole mass function of broad-line quasars (BLQSOs) that self-consistently corrects for incompleteness and the statistical uncertainty in the mass estimates, based on a sample of 9886 quasars at 1 1 it is highly incomplete at M BH ∼ 9 M sun and L/L Edd ∼ BL > 150 ± 15 Myr for black holes at z = 1 with a mass of M BH = 10 9 M sun , and we constrain the maximum mass of a black hole in a BLQSO to be ∼3 x 10 10 M sun . Our estimated distribution of BLQSO Eddington ratios peaks at L/L Edd ∼ 0.05 and has a dispersion of ∼0.4 dex, implying that most BLQSOs are not radiating at or near the Eddington limit; however, the location of the peak is subject to considerable uncertainty. The steep increase in number density of BLQSOs toward lower Eddington ratios is expected if the BLQSO accretion rate monotonically decays with time. Furthermore, our estimated lifetime and Eddington ratio distributions imply that the majority of the most massive black holes spend a significant amount of time growing in an earlier obscured phase, a conclusion which is independent of the unknown obscured fraction. These results are consistent with models for self-regulated black hole growth, at least for massive systems at z > 1, where the BLQSO phase occurs at the end of a fueling event when black hole feedback unbinds the accreting gas, halting the accretion flow.

  18. Can body mass index, waist circumference, waist-hip ratio and waist-height ratio predict the presence of multiple metabolic risk factors in Chinese subjects?

    Directory of Open Access Journals (Sweden)

    Lu Liping

    2011-01-01

    Full Text Available Abstract Background Obesity is associated with metabolic risk factors. Body mass index (BMI, waist circumference, waist-hip ratio (WHR and waist-height ratio (WHtR are used to predict the risk of obesity related diseases. However, it has not been examined whether these four indicators can detect the clustering of metabolic risk factors in Chinese subjects. Methods There are 772 Chinese subjects in the present study. Metabolic risk factors including high blood pressure, dyslipidemia, and glucose intolerance were identified according to the criteria from WHO. All statistical analyses were performed separately according to sex by using the SPSS 12.0. Results BMI, waist circumference and WHtR values were all significantly associated with blood pressure, glucose, triglyceride and also with the number of metabolic risk factors in both male and female subjects (all of P Conclusion The BMI, waist circumference and WHtR values can similarly predict the presence of multiple metabolic risk factors in Chinese subjects.

  19. The Ca, Cl, Mg, Na, and P mass fractions in benign and malignant giant cell tumors of bone investigated by neutron activation analysis

    International Nuclear Information System (INIS)

    Vladimir Zaichick; German Davydov; Tatyana Epatova; Sofia Zaichick

    2015-01-01

    The Ca, Cl, Mg, Na, and P content and Ca/P, Ca/Mg, Ca/Na, Cl/Ca, and Cl/Na ratios in samples of intact bone, benign and malignant giant cell tumor (GCT) of bone were investigated by neutron activation analysis with high resolution spectrometry of short-lived radionuclides. It was found that in GCT tissue the mass fractions of Cl and Na are higher and the mass fraction of Ca and P are lower than in normal bone tissues. Moreover, it was shown that higher Cl/Na mass fraction ratios as well as lower Ca/Cl, Ca/Mg, and Ca/Na mass fraction ratios are typical of the GCT tissue compared to intact bone. Finally, we propose to use the estimation of such parameters as the Cl mass fraction and the Ca/Cl mass fraction ratio as an additional test for differential diagnosis between benign and malignant GCT. (author)

  20. The calibration of the intramolecular nitrogen isotope distribution in nitrous oxide measured by isotope ratio mass spectrometry.

    Science.gov (United States)

    Westley, Marian B; Popp, Brian N; Rust, Terri M

    2007-01-01

    Two alternative approaches for the calibration of the intramolecular nitrogen isotope distribution in nitrous oxide using isotope ratio mass spectrometry have yielded a difference in the 15N site preference (defined as the difference between the delta15N of the central and end position nitrogen in NNO) of tropospheric N2O of almost 30 per thousand. One approach is based on adding small amounts of labeled 15N2O to the N2O reference gas and tracking the subsequent changes in m/z 30, 31, 44, 45 and 46, and this yields a 15N site preference of 46.3 +/- 1.4 per thousand for tropospheric N2O. The other involves the synthesis of N2O by thermal decomposition of isotopically characterized ammonium nitrate and yields a 15N site preference of 18.7 +/- 2.2 per thousand for tropospheric N2O. Both approaches neglect to fully account for isotope effects associated with the formation of NO+ fragment ions from the different isotopic species of N2O in the ion source of a mass spectrometer. These effects vary with conditions in the ion source and make it impossible to reproduce a calibration based on the addition of isotopically enriched N2O on mass spectrometers with different ion source configurations. These effects have a much smaller impact on the comparison of a laboratory reference gas with N2O synthesized from isotopically characterized ammonium nitrate. This second approach was successfully replicated and leads us to advocate the acceptance of the site preference value 18.7 +/- 2.2 per thousand for tropospheric N2O as the provisional community standard until further independent calibrations are developed and validated. We present a technique for evaluating the isotope effects associated with fragment ion formation and revised equations for converting ion signal ratios into isotopomer ratios. Copyright 2007 John Wiley & Sons, Ltd.

  1. An Essay on Numerology of the Proton to Electron Mass Ratio (Letters to Progress in Physics

    Directory of Open Access Journals (Sweden)

    Kritov A.

    2015-01-01

    Full Text Available There are few mathematical expressions for calculation pro ton to electron mass ratio presented. Some of them are new and some are not. They have been analysed in terms of their simplicity, numerical significance and precision. Expressions are listed in the structured manner with comments. The close attention should be paid to a comparison of the formula similarity via their precision. A brief review of the different attempts in similar search is given.

  2. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    OpenAIRE

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    1992-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuo...

  3. Online Stable Isotope Analysis of Dissolved Organic Carbon Size Classes Using Size Exclusion Chromatography Coupled to an Isotope Ratio Mass Spectrometer

    Digital Repository Service at National Institute of Oceanography (India)

    Malik, A.; Scheibe, A.; LokaBharathi, P.A.; Gleixner, G.

    size classes by coupling high-performance liquid chromatography (HPLC) - size exclusion chromatography (SEC) to online isotope ratio mass spectrometry (IRMS). This represents a significant methodological contribution to DOC research. The interface...

  4. Evaluation of gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for the quality assessment of citrus liqueurs.

    Science.gov (United States)

    Schipilliti, Luisa; Bonaccorsi, Ivana; Cotroneo, Antonella; Dugo, Paola; Mondello, Luigi

    2013-02-27

    Citrus liqueurs are alcoholic beverages obtained by maceration. The European Parliament protects these alcoholic beverages, forbidding the addition of nature-identical flavoring substances. However, for economical and technological reasons, producers often add natural and/or synthetic flavors to the alcoholic syrup, obtaining artificial spirit drinks. The aim of this study is to investigate the authenticity of Italian liqueurs, of lemon, bergamot, and mandarin (locally known as "limoncello", "bargamino", and "mandarinetto"), comparing the carbon isotope ratios with values determined in genuine cold-pressed peel oils. Authenticity assessment was performed using headspace-solid phase microextraction coupled to gas chromatography-combustion-isotope ratio mass spectrometry. Additional analyses were performed by direct enantioselective gas chromatography to determine the enantiomeric distribution of selected chiral volatiles and by gas chromatography-mass spectrometry for the qualitative analyses of the samples. The method allowed confirmation of genuineness. Enantioselective gas chromatography analyses confirmed the results, demonstrating the reliability of the method.

  5. Simultaneous Detection of Androgen and Estrogen Abuse in Breeding Animals by Gas Chromatography-Mass Spectrometry/Combustion/Isotope Ratio Mass Spectrometry (GC-MS/C/IRMS) Evaluated against Alternative Methods.

    Science.gov (United States)

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; De Kimpe, Norbert; Matthijs, Bert; Le Bizec, Bruno

    2015-09-02

    The administration of synthetic homologues of naturally occurring steroids can be demonstrated by measuring (13)C/(12)C isotopic ratios of their urinary metabolites. Gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) was used in this study to appraise in a global approach isotopic deviations of two 17β-testosterone metabolites (17α-testosterone and etiocholanolone) and one 17β-estradiol metabolite (17α-estradiol) together with those of 5-androstene-3β,17α-diol as endogenous reference compound (ERC). Intermediate precisions of 0.35‰, 1.05‰, 0.35‰, and 0.21‰, respectively, were observed (n = 8). To assess the performance of the analytical method, a bull and a heifer were treated with 17β-testosterone propionate and 17β-estradiol-3-benzoate. The sensitivity of the method permitted the demonstration of 17β-estradiol treatment up to 24 days. For 17β-testosterone treatment, the detection windows were 3 days and 24 days for the bull and the heifer, respectively. The capability of GC-MS/C/IRMS to demonstrate natural steroid abuse for urinary steroids was eventually compared to those of mass spectrometry (LC-MS/MS) when measuring intact steroid esters in blood and hair.

  6. Is waist circumference a better predictor of diabetes than body mass index or waist-to-height ratio in Iranian adults?

    Directory of Open Access Journals (Sweden)

    Karimollah Hajian-Tilaki

    2015-01-01

    Full Text Available Background: Several measures of adiposity have been used for predicting diabetes. The results of studies regarding superiority of waist circumference (WC to body mass index (BMI are inconsistent. This study designed to compare the ability of different anthropometric measures in predicting diabetes and to determine their optimal cut-off values. Methods: A population-based cross-sectional study was conducted with 1,000 representative sample among adults aged 20-80 years in Babol, the Northern Iran. The demographic data were collected in a household survey, and the anthropometric measures of weight, height, waist, and hip circumference were measured with a standard method. Fasting blood sugar (FBS ≥126 mg/dl was considered as diabetes. receiver operating characteristic analysis was used to estimate the predictive ability of different anthropometric indexes and their optimal cut-off values for high FBS. Results: The overall prevalence rate of diabetes was 14.0% (14.4% in men vs. 13.5% in women, P = 0.65. The prevalence rate was significantly higher in older age (>60 years, low educated and obese (P = 0.001. The mean of BMI, WC, waist-to-hip ratio (WHR, and waist-to-height ratio (WHtR were significantly higher among diabetic in both sexes (P = 0.001. Among men, WC (area under the ROC curve [AUC] =0.64 and WHtR (AUC = 0.63 have slightly higher accuracy index compared with BMI (AUC = 0.62 or WHR (AUC = 0.60. In contrast, among women, WHtR (AUC = 0.69 and WC (AUC = 0.68 yielded slightly better predictive than BMI (AUC = 0.67. The optimal cut-off values obtained for BMI and WHtR were similar between two sexes (BMI = 24.95 kg/m 2 for men and BMI = 25.2 kg/m 2 for women, WHtR = 0.51 for both sexes whereas the optimal cut-off value for WC was higher in men than women (98.5 cm men vs. 89.5 cm women. Conclusions: Overall WC and WHtR exhibited a slightly better discriminate performance than BMI for diabetes in both sexes, particularly in women.

  7. Limb/trunk lean mass ratio as a risk factor for mortality in peritoneal dialysis patients.

    Science.gov (United States)

    Kang, Seok Hui; Park, Jong Won; Yoon, Kyung Woo; Do, Jun Young

    2013-07-01

    This study was performed to determine the clinical relevance of limb/trunk lean mass ratio (LTLM) in continuous ambulatory peritoneal dialysis (CAPD) patients. This retrospective cohort study included 534 CAPD patients. Body compositions were measured using a dual-energy X-ray absorptiometry apparatus. In males, the sensitivity and specificity for the diagnosis of sarcopenia were 70.3% and 85.9%, respectively. Respective values in females were 62.3% and 83.8%. The initial low LTLM tertile was associated with mortality in male CAPD patients and in female CAPD patients. Among patients who maintained CAPD for a year, the maintenance of low LTLM tertile was associated with mortality. LTLM is associated with other lean mass indices, nutritional status, and mortality in CAPD patients. Therefore, LTLM is a novel marker that is useful for the prediction of the nutritional status and mortality in patients with CAPD. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry

    Science.gov (United States)

    Andreo, Pedro; Burns, David T.; Salvat, Francesc

    2012-04-01

    A systematic analysis of the available data has been carried out for mass energy-absorption coefficients and their ratios for air, graphite and water for photon energies between 1 keV and 2 MeV, using representative kilovoltage x-ray spectra for mammography and diagnostic radiology below 100 kV, and for 192Ir and 60Co gamma-ray spectra. The aim of this work was to establish ‘an envelope of uncertainty’ based on the spread of the available data. Type A uncertainties were determined from the results of Monte Carlo (MC) calculations with the PENELOPE and EGSnrc systems, yielding mean values for µen/ρ with a given statistical standard uncertainty. Type B estimates were based on two groupings. The first grouping consisted of MC calculations based on a similar implementation but using different data and/or approximations. The second grouping was formed by various datasets, obtained by different authors or methods using the same or different basic data, and with different implementations (analytical, MC-based, or a combination of the two); these datasets were the compilations of NIST, Hubbell, Johns-Cunningham, Attix and Higgins, plus MC calculations with PENELOPE and EGSnrc. The combined standard uncertainty, uc, for the µen/ρ values for the mammography x-ray spectra is 2.5%, decreasing gradually to 1.6% for kilovoltage x-ray spectra up to 100 kV. For 60Co and 192Ir, uc is approximately 0.1%. The Type B uncertainty analysis for the ratios of µen/ρ values includes four methods of analysis and concludes that for the present data the assumption that the data interval represents 95% confidence limits is a good compromise. For the mammography x-ray spectra, the combined standard uncertainties of (µen/ρ)graphite,air and (µen/ρ)graphite,water are 1.5%, and 0.5% for (µen/ρ)water,air, decreasing gradually down to uc = 0.1% for the three µen/ρ ratios for the gamma-ray spectra. The present estimates are shown to coincide well with those of Hubbell (1977 Rad. Res

  9. The potential of Isotope Ratio Mass Spectrometry (IRMS) and gas chromatography-IRMS analysis of triacetone triperoxide in forensic explosives investigations

    NARCIS (Netherlands)

    Bezemer, K.D.B.; Koeberg, M.; Heijden, A.E.D.M. van der; Driel, C.A. va; Blaga, C.; Bruinsma, J.; Asten, A.C. van

    2016-01-01

    Studying links between triacetone triperoxide (TATP) samples from crime scenes and suspects can assist in criminal investigations. Isotope ratio mass spectrometry (IRMS) and gas chromatography (GC)-IRMS were used to measure the isotopic compositions of TATP and its precursors acetone and hydrogen

  10. Active renin mass concentration to determine aldosterone-to-renin ratio in screening for primary aldosteronism

    Directory of Open Access Journals (Sweden)

    Corbin F

    2011-07-01

    Full Text Available François Corbin1, Pierre Douville2, Marcel Lebel3 1Division of Biochemistry, l'Université de Sherbrooke, Sherbrooke, Quebec, Canada; 2Division of Biochemistry; 3Division of Nephrology, L'Hôtel-Dieu de Québec Hospital and l'Université Laval, Quebec, CanadaBackground: Active renin mass concentration (ARC is independent of the endogenous level of angiotensinogen, and less variable and more reproducible than plasma renin activity. Reference values for the aldosterone-to-renin ratio (ARR using ARC are still undefined. The objective of the present study was to determine the threshold of ARR using ARC measurement to screen for primary aldosteronism.Methods: A total of 211 subjects were included in the study, comprising 78 healthy normotensive controls, 95 patients with essential hypertension, and 38 patients with confirmed primary aldosteronism (20 with surgery-confirmed aldosterone-producing adenoma and 18 with idiopathic adrenal hyperplasia. Blood samples were drawn from ambulatory patients and volunteers in the mid-morning without specific dietary restriction for measuring plasma aldosterone concentration, ARC, and serum potassium.Results: Most normotensive controls and essential hypertension patients had ARR results below 100 pmol/ng, a value which corresponded to 3.3 times the median of these two groups.Conclusion: Patients with ARR values above this level should be considered for further investigation (confirmatory tests or for repeat testing should ARR values be borderline. This study indicates that ARC can be used reliably in determining ARR for primary aldosteronism screening.Keywords: primary aldosteronism, active renin mass concentration, aldosterone-to-renin ratio

  11. Relations between stellar mass and electron temperature-based metallicity for star-forming galaxies in a wide mass range

    International Nuclear Information System (INIS)

    Shi Wei-Bin; Zhao Gang; Ruan Gui-Ping; Zhou Li; Liang Yan-Chun; Shao Xu; Liu Xiao-Wei; Hammer Francois; Flores Hector; Zhang Yong

    2014-01-01

    We select 947 star-forming galaxies from SDSS-DR7 with [O III]λ4363 emission lines detected at a signal-to-noise ratio larger than 5σ. Their electron temperatures and direct oxygen abundances are then determined. We compare the results from different methods. t 2 , the electron temperature in the low ionization region, estimated from t 3 , that in the high ionization region, is compared using three analysis relations between t 2 – t 3 . These show obvious differences, which result in some different ionic oxygen abundances. The results of t 3 , t 2 , O ++ /H + and O + /H + derived by using methods from IRAF and literature are also compared. The ionic abundances O ++ /H + are higher than O + /H + for most cases. The different oxygen abundances derived from T e and the strong-line ratios show a clear discrepancy, which is more obvious following increasing stellar mass and strong-line ratio R 23 . The sample of galaxies from SDSS with detected [O III]λ4363 have lower metallicites and higher star formation rates, so they may not be typical representatives of the whole population of galaxies. Adopting data objects from Andrews and Martini, Liang et al. and Lee et al. data, we derive new relations of stellar mass and metallicity for star-forming galaxies in a much wider stellar mass range: from 10 6 M ⊙ to 10 11 M ⊙ . (research papers)

  12. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  13. On the continuum theory of the two-fluid solar wind for small mass ratio

    International Nuclear Information System (INIS)

    Johnson, R.S.

    1976-01-01

    The continuum theory for the two-fluid solar wind is considered. The fluid is assumed to be a fully ionized neutral plasma of electrons and protons which is compressible, viscous and heat conducting with a constant Prandtl number and a viscosity proportional to (temperature) sup(ω), ω > 1. The gas is under the influence of a gravitational field centred on the Sun. It is assumed that the bulk velocity (at any point) is the same for both electrons and protons, but that an energy transfer can occur between the two species due to binary (Coulomb) collisions. The equations are non-dimensionalized and it is shown that the natural parameter to use in the construction of an asymptotic solution is the mass ratio. The limit mass ratio → zero corresponds to the small Prandtl number limit for the one-fluid theory developed by Johnson (Proc. R. Soc. (Lond) A; 347:537 (1976)). By using the method of matched asymptotic expansions, a solution is constructed that starts from the base of the corona and extends out to a diffuse shock layer. The results obtained exactly parallel the one-fluid theory and many details are identified and absorbed into this analysis. It is shown how the temperatures in the corona eventually become the well-known behaviours: rsup(-2/7) (electrons), rsup(-6/7) (protons) when ω = 5/2 and r is the radial coordinate. However, the continuum theory will probably have failed in the shock layer region - the more so since this occurs at about 100 light years distance - and further mathematical details are omitted. The numerical estimates given here compare tolerably well with the observed data and very favourably with other work on the same equations. (author)

  14. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar.

    Science.gov (United States)

    Hsu, Paul S; Gragston, Mark; Wu, Yue; Zhang, Zhili; Patnaik, Anil K; Kiefer, Johannes; Roy, Sukesh; Gord, James R

    2016-10-01

    Nanosecond laser-induced breakdown spectroscopy (ns-LIBS) is employed for quantitative local fuel-air (F/A) ratio (i.e., ratio of actual fuel-to-oxidizer mass over ratio of fuel-to-oxidizer mass at stoichiometry, measurements in well-characterized methane-air flames at pressures of 1-11 bar). We selected nitrogen and hydrogen atomic-emission lines at 568 nm and 656 nm, respectively, to establish a correlation between the line intensities and the F/A ratio. We have investigated the effects of laser-pulse energy, camera gate delay, and pressure on the sensitivity, stability, and precision of the quantitative ns-LIBS F/A ratio measurements. We determined the optimal laser energy and camera gate delay for each pressure condition and found that measurement stability and precision are degraded with an increase in pressure. We have identified primary limitations of the F/A ratio measurement employing ns-LIBS at elevated pressures as instabilities caused by the higher density laser-induced plasma and the presence of the higher level of soot. Potential improvements are suggested.

  16. Direct determination of the samarium:neodymium ratio in geological materials by inductively coupled plasma quadrupole mass spectrometry with cryogenic desolvation. Comparison with isotope dilution thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Pin, Christian; Telouk, Philippe; Imbert, J.-L.

    1995-01-01

    A cryogenic desolvation unit in the sample introduction system reduces differences in oxide formation between Sm and Nd to very low levels, enabling the direct, standardless determination of their ratio in bulk solutions by inductively coupled plasma mass spectrometry. The measured values are in reasonably good agreement with those determined by the isotope dilution thermal ionization mass spectrometry (ID-TIMS) reference technique. Although this method cannot, at present, compete with ID-TIMS in terms of precision and accuracy, it is much more straightforward and can be used in geochemistry for studies involving the screening of a large number of samples. (author)

  17. Evaluating the accuracy of uranium isotope amount ratio measurements performed by a quadrupole and a multi-collector magnetic sector inductively coupled plasma mass spectrometers for nuclear safeguards

    International Nuclear Information System (INIS)

    Pereira de Oliveira, O. Jr.; Sarkis, J.E.S.; Ponzevera, E.; Alonso, A.; De Bolle, W.; Quetel, C.

    2008-01-01

    The n(U 235 )/n(U 238 ) isotope amount ratio in a set of samples was measured using two modern analytical techniques: quadrupole inductively coupled plasma mass spectrometry (ICP-QMS) and multi-collector magnetic sector inductively coupled plasma mass spectrometry (MC-ICPMS). The measured ratios were compared to the certified ratios provided by the high accuracy gas source mass spectrometry (GSMS). The components of the uncertainty were identified and their contribution to the combined standard uncertainty was estimated using the recommendations of the ISO-GUM guide. The values of the measurement uncertainty and bias were determined and then compared to the International Target Values for Measurement Uncertainties in Safeguarding Nuclear Materials. It appears that only the measurements performed by MC-ICPMS can meet the stringent requirements of international nuclear safeguards. (authors)

  18. How elevated is the dynamical-to-stellar mass ratio of the ultra-compact dwarf S999?

    OpenAIRE

    Janz, Joachim; Forbes, Duncan A.; Norris, Mark A.; Strader, Jay; Penny, Samantha J.; Fagioli, Martina; Romanowsky, Aaron J.

    2015-01-01

    Here we present new Keck ESI high-resolution spectroscopy and deep archival HST/ACS imaging for S999, an ultra-compact dwarf in the vicinity of M87, which was claimed to have an extremely high dynamical-to-stellar mass ratio. Our data increase the total integration times by a factor of 5 and 60 for spectroscopy and imaging, respectively. This allows us to constrain the stellar population parameters for the first time (simple stellar population equivalent age $=7.6^{+2.0}_{-1.6}$ Gyr; $[Z/\\tex...

  19. OGLE-2017-BLG-0373Lb: A Jovian Mass-Ratio Planet Exposes A New Accidental Microlensing Degeneracy

    Science.gov (United States)

    Skowron, J.; Ryu, Y.-H.; Hwang, K.-H.; Udalski, A.; Mrǎłz, P.; Kozłowski, S.; Soszyński, I.; Pietrukowicz, P.; Szymański, P. K.; Poleski, R.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Jung, Y. K.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zang, W.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.

    2018-03-01

    We report the discovery of microlensing planet OGLE-2017-BLG-0373Lb. We show that while the planet-host system has an unambiguous microlens topology, there are two geometries within this topology that fit the data equally well, which leads to a factor 2.5 difference in planet-host mass ratio, i.e., q=1.5×10-3 vs. q=0.6×10-3. We show that this is an "accidental degeneracy" in the sense that it is due to a gap in the data. We dub it "the caustic-chirality degeneracy". We trace the mathematical origins of this degeneracy, which should enable similar degenerate solutions to be easily located in the future. A Bayesian estimate, based on a Galactic model, yields a host mass M=0.25+0.30-0.15 M⊙ at a distance DL=5.9+1.3-1.95 kpc. The lens-source relative proper motion is relatively fast, μ=9 mas/yr, which implies that the host mass and distance can be determined by high-resolution imaging after about 10 years. The same observations could in principle resolve the discrete degeneracy in q, but this will be more challenging.

  20. Determination of uranium in urine - measurement of isotope ratios and quantification by use of inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Krystek, P.; Ritsema, R.

    2002-01-01

    For analysis of uranium in urine determination of the isotope ratio and quantification were investigated by high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS). The instrument used (ThermoFinniganMAT ELEMENT2) is a single-collector MS and, therefore, a stable sample-introduction system was chosen. The methodical set-up was optimized to achieve the best precision for both the isotope ratio and the total uranium concentration in the urine matrix.Three spiked urine samples from an European interlaboratory comparison were analyzed to determine the 235 U/ 238 U isotope ratio. The ratio was found to be in the range 0.002116 to 0.007222, the latter being the natural uranium isotope ratio. The first ratio indicates the abundance of depleted uranium.The effect of storage conditions and the stability for the matrix urine were investigated by using ''real-life'' urine samples from unexposed persons in the Netherlands. For samples stored under refrigeration and acidified the results (range 0.8 to 5.3 ng L -1 U) were in the normal fluctuation range whereas a decrease in uranium concentration was observed for samples stored at room temperature without acidification. (orig.)

  1. Calibration and Data Processing in Gas Chromatography Combustion Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Zhang, Ying; Tobias, Herbert J.; Sacks, Gavin L.; Brenna, J. Thomas

    2013-01-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis (13C/12C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ13C = δ13CM – δ13CE difference measurements required for establishing adverse analytical findings for metabolites relative to endogenous reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  2. Anomalous phosphine sensitivity coefficients as probes for a possible variation of the proton-to-electron mass ratio

    Science.gov (United States)

    Owens, A.; Yurchenko, S. N.; Špirko, V.

    2018-02-01

    A robust variational approach is used to investigate the sensitivity of the rotation-vibration spectrum of phosphine (PH3) to a possible cosmological variation of the proton-to-electron mass ratio, μ. Whilst the majority of computed sensitivity coefficients, T, involving the low-lying vibrational states acquire the expected values of T ≈ -1 and T ≈ -1/2 for rotational and ro-vibrational transitions, respectively, anomalous sensitivities are uncovered for the A1 - A2 splittings in the ν2/ν4, ν1/ν3 and 2ν _4^{ℓ=0}/2ν _4^{ℓ=2} manifolds of PH3. A pronounced Coriolis interaction between these states in conjunction with accidentally degenerate A1 and A2 energy levels produces a series of enhanced sensitivity coefficients. Phosphine is expected to occur in a number of different astrophysical environments and has potential for investigating a drifting constant. Furthermore, the displayed behaviour hints at a wider trend in molecules of C_{3v}(M) symmetry, thus demonstrating that the splittings induced by higher-order ro-vibrational interactions are well suited for probing μ in other symmetric top molecules in space, since these low-frequency transitions can be straightforwardly detected by radio telescopes.

  3. SM Higgs decay branching ratios and total Higgs width

    CERN Multimedia

    Daniel Denegri

    2001-01-01

    Upper: Higgs decay ratios as a function of Higgs mass. The largest branching ratio is not necessarily the most usefull one. The most usefull ones are gamma gamma bbar ZZ and WW as in those modes latter signal to background ratios can be achieved. Lower: Total Higgs decay width versus Higgs mass. At low masses the natural width is extremely small, thus observability depends on instrumental resolution primarily.

  4. Measurements of total lead concentrations and of lead isotope ratios in whole blood by use of inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Delves, H.T.; Campbell, M.J.

    1988-01-01

    Methods are described for the accurate and precise determination of total lead and its isotopic composition in whole blood using inductively coupled plasma source mass spectrometry (ICP-MS). Sensitivities of up to 3 x 10 6 counts s -1 for 208 Pb at a total lead concentration of 5 μmol l -1 (1 μg ml -1 ) enabled total blood lead levels to be measured in 4 min per sample, with a detection limit of 0.072 μmol l -1 (15 μg l -1 ). The agreement between ICP-MS and atomic absorption spectrometry (AAS) for this analysis was excellent: ICP-MS 0.996 x AAS -0.0165 μmol l -1 ; r 0.994. Isotope ratio measurements required 15 min to achieve the required accuracy and precision both of which were generally better than 0.5% for 206 Pb: 207 Pb and 208 Pb: 206 Pb isotopic lead ratios. The ICP-MS data for these ratios in ten quality control blood specimens has a mean bias relative to isotope dilution mass spectrometry of -0.412% for 206 Pb: 207 Pb ratios and of +0.055% for the 208 Pb: 206 Pb ratios. This level of accuracy and that of the total blood lead measurements is sufficient to permit application of these ICP-MS methods to environmental studies. (author)

  5. Seasonal and spatial variability of the organic matter-to-organic carbon mass ratios in Chinese urban organic aerosols and a first report of high correlations between aerosol oxalic acid and zinc

    Science.gov (United States)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-01-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 yr-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant, due to vigorous photochemistry and secondary OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matters constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We reported, for the first time, high correlations between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic property of aerosol dicarboxylic acids.

  6. Faithful effective-one-body waveforms of small-mass-ratio coalescing black hole binaries

    International Nuclear Information System (INIS)

    Damour, Thibault; Nagar, Alessandro

    2007-01-01

    We address the problem of constructing high-accuracy, faithful analytic waveforms describing the gravitational wave signal emitted by inspiralling and coalescing binary black holes. We work within the effective-one-body (EOB) framework and propose a methodology for improving the current (waveform) implementations of this framework based on understanding, element by element, the physics behind each feature of the waveform and on systematically comparing various EOB-based waveforms with exact waveforms obtained by numerical relativity approaches. The present paper focuses on small-mass-ratio nonspinning binary systems, which can be conveniently studied by Regge-Wheeler-Zerilli-type methods. Our results include (i) a resummed, 3 PN-accurate description of the inspiral waveform, (ii) a better description of radiation reaction during the plunge, (iii) a refined analytic expression for the plunge waveform, (iv) an improved treatment of the matching between the plunge and ring-down waveforms. This improved implementation of the EOB approach allows us to construct complete analytic waveforms which exhibit a remarkable agreement with the exact ones in modulus, frequency, and phase. In particular, the analytic and numerical waveforms stay in phase, during the whole process, within ±1.1% of a cycle. We expect that the extension of our methodology to the comparable-mass case will be able to generate comparably accurate analytic waveforms of direct use for the ground-based network of interferometric detectors of gravitational waves

  7. The distinction between chondroma and chondrosarcoma using chemical element mass fractions in tumors determined by neutron activation analysis as diagnostic markers

    International Nuclear Information System (INIS)

    Zaichick, Vladimir; Zaichick, Sofia

    2016-01-01

    The Ca, Cl, Mg, Na, and P content and Ca/P, Ca/Mg, Ca/Na, Cl/Ca, and Cl/Na ratios in tissue of intact bone, chondroma and chondrosarcoma were investigated by neutron activation analysis. It was shown that higher mass fraction of Cl and Na and also Cl/Na mass fraction ratio as well as lower Ca/Cl and Ca/Na mass fraction ratios are typical of the chondrosarcoma tissue compared to chondroma. Finally, it was proposed to use the estimation of such parameters as the Cl mass fraction and the Ca/Cl and Ca/Na mass fraction ratios as an additional test for differential diagnosis between chondroma and chondrosarcoma. (author)

  8. Modeling Nearly Spherical Pure-bulge Galaxies with a Stellar Mass-to-light Ratio Gradient under the ΛCDM and MOND Paradigms. I. Methodology, Dynamical Stellar Mass, and Fundamental Mass Plane

    Science.gov (United States)

    Chae, Kyu-Hyun; Bernardi, Mariangela; Sheth, Ravi K.

    2018-06-01

    We carry out spherical Jeans modeling of nearly round pure-bulge galaxies selected from the ATLAS3D sample. Our modeling allows for gradients in the stellar mass-to-light ratio (M ⋆/L) through analytic prescriptions parameterized with a “gradient strength” K introduced to accommodate any viable gradient. We use a generalized Osipkov–Merritt model for the velocity dispersion (VD) anisotropy. We produce Monte Carlo sets of models based on the stellar VD profiles under both the ΛCDM and MOND paradigms. Here, we describe the galaxy data, the empirical inputs, and the modeling procedures of obtaining the Monte Carlo sets. We then present the projected dynamical stellar mass, {M}\\star {{e}}, within the effective radius R e, and the fundamental mass plane (FMP) as a function of K. We find the scaling of the K-dependent mass with respect to the ATLAS3D reported mass as: {log}}10[{M}\\star {{e}}(K)/{M}\\star {{e}}{{A}3{{D}}}]=a\\prime +b\\prime K with a‧ = ‑0.019 ± 0.012 and b‧ = ‑0.18 ± 0.02 (ΛCDM), or a‧ = ‑0.023 ± 0.014 and b‧ = ‑0.23 ± 0.03 (MOND), for 0 ≤ K expectation and only the zero-point scales with K. The median value of K for the ATLAS3D galaxies is ={0.53}-0.04+0.05. We perform a similar analysis of the much larger SDSS DR7 spectroscopic sample. In this case, only the VD within a single aperture is available, so we impose the additional requirement that the VD slope be similar to that in the ATLAS3D galaxies. Our analysis of the SDSS galaxies suggests a positive correlation of K with stellar mass.

  9. Steroid isotopic standards for gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS).

    Science.gov (United States)

    Zhang, Ying; Tobias, Herbert J; Brenna, J Thomas

    2009-03-01

    Carbon isotope ratio (CIR) analysis of urinary steroids using gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) is a recognized test to detect illicit doping with synthetic testosterone. There are currently no universally used steroid isotopic standards (SIS). We adapted a protocol to prepare isotopically uniform steroids for use as a calibrant in GCC-IRMS that can be analyzed under the same conditions as used for steroids extracted from urine. Two separate SIS containing a mixture of steroids were created and coded CU/USADA 33-1 and CU/USADA 34-1, containing acetates and native steroids, respectively. CU/USADA 33-1 contains 5alpha-androstan-3beta-ol acetate (5alpha-A-AC), 5alpha-androstan-3alpha-ol-17-one acetate (androsterone acetate, A-AC), 5beta-androstan-3alpha-ol-11, 17-dione acetate (11-ketoetiocholanolone acetate, 11k-AC) and 5alpha-cholestane (Cne). CU/USADA 34-1 contains 5beta-androstan-3alpha-ol-17-one (etiocholanolone, E), 5alpha-androstan-3alpha-ol-17-one (androsterone, A), and 5beta-pregnane-3alpha, 20alpha-diol (5betaP). Each mixture was prepared and dispensed into a set of about 100 ampoules using a protocol carefully designed to minimize isotopic fractionation and contamination. A natural gas reference material, NIST RM 8559, traceable to the international standard Vienna PeeDee Belemnite (VPDB) was used to calibrate the SIS. Absolute delta(13)C(VPDB) and Deltadelta(13)C(VPDB) values from randomly selected ampoules from both SIS indicate uniformity of steroid isotopic composition within measurement reproducibility, SD(delta(13)C)<0.2 per thousand. This procedure for creation of isotopic steroid mixtures results in consistent standards with isotope ratios traceable to the relevant international reference material.

  10. Binary neutron star mergers and short gamma-ray bursts: Effects of magnetic field orientation, equation of state, and mass ratio

    Science.gov (United States)

    Kawamura, Takumu; Giacomazzo, Bruno; Kastaun, Wolfgang; Ciolfi, Riccardo; Endrizzi, Andrea; Baiotti, Luca; Perna, Rosalba

    2016-09-01

    We present fully general-relativistic magnetohydrodynamic simulations of the merger of binary neutron star (BNS) systems. We consider BNSs producing a hypermassive neutron star (HMNS) that collapses to a spinning black hole (BH) surrounded by a magnetized accretion disk in a few tens of ms. We investigate whether such systems may launch relativistic jets and hence power short gamma-ray bursts. We study the effects of different equations of state (EOSs), different mass ratios, and different magnetic field orientations. For all cases, we present a detailed investigation of the matter dynamics and of the magnetic field evolution, with particular attention to its global structure and possible emission of relativistic jets. The main result of this work is that we observe the formation of an organized magnetic field structure. This happens independently of EOS, mass ratio, and initial magnetic field orientation. We also show that those models that produce a longer-lived HMNS lead to a stronger magnetic field before collapse to a BH. Such larger fields make it possible, for at least one of our models, to resolve the magnetorotational instability and hence further amplify the magnetic field in the disk. However, by the end of our simulations, we do not (yet) observe a magnetically dominated funnel nor a relativistic outflow. With respect to the recent simulations of Ruiz et al. [Astrophys. J. 824, L6 (2016)], we evolve models with lower and more plausible initial magnetic field strengths and (for computational reasons) we do not evolve the accretion disk for the long time scales that seem to be required in order to see a relativistic outflow. Since all our models produce a similar ordered magnetic field structure aligned with the BH spin axis, we expect that the results found by Ruiz et al. (who only considered an equal-mass system with an ideal fluid EOS) should be general and—at least from a qualitative point of view—independent of the mass ratio, magnetic field

  11. Utility of Higher Harmonics in Electrospray Ionization Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometry.

    Science.gov (United States)

    Dziekonski, Eric T; Johnson, Joshua T; McLuckey, Scott A

    2017-04-18

    Mass resolution (M/ΔM fwhm) is observed to linearly increase with harmonic order in a Fourier transform electrostatic linear ion trap (ELIT) mass spectrometer. This behavior was predicted by Grosshans and Marshall for frequency-multiple detection in a Fourier transform ion cyclotron resonance mass spectrometer only for situations when the prominent mechanism for signal decay is ion ejection from the trap. As the analyzer pressure in our ELIT chamber is relatively high, such that collisional scattering and collision-induced dissociation are expected to underlie much of the ion loss, we sought to explore the relationship between harmonic order and mass resolution. Mass resolutions of 36 900 (fundamental), 75 850 (2nd harmonic), and 108 200 (3rd harmonic) were obtained for GdO + (avg. m/z 173.919) with a transient length of 300 ms. To demonstrate that the mass resolution was truly increasing with harmonic order, the unresolved isotopes at the fundamental distribution of cytochrome c +8 (m/z ∼ 1549) were nearly baseline, resolved at the third harmonic (mass resolution ≈ 23 000) with a transient length of only 200 ms. This experiment demonstrates that, when the ion density is sufficiently low, ions with frequency differences of less than 4 Hz remain uncoalesced. Higher harmonics can be used to increase the effective mass resolution for a fixed transient length and thereby may enable the resolution of closely spaced masses, determination of a protein ion's charge state, and study of the onset of peak coalescence when the resolution at the fundamental frequency is insufficient.

  12. Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios.

    Science.gov (United States)

    Veysseyre, A M; Bollhöfer, A F; Rosman, K J; Ferrari, C P; Boutron, C F

    2001-11-15

    Fresh snow samples collected at 15 remote locations and aerosols collected at one location in the French Alps between November 1998 and April 1999 have been analyzed for Pb concentration and isotopic composition by thermal ionization mass spectrometry. The snow samples contained 19-1300 pg/g of Pb with isotopic ratios 206Pb/207Pb (208Pb/207Pb) of 1.1279-1.1607 (2.3983-2.4302). Airborne Pb concentrations at one sampling site ranged from 0.42 to 6.0 ng/m3 with isotopic ratios of 1.1321-1.1427 (2.4029-2.4160). Air mass trajectory analysis combined with isotopic compositions of potential source regions did not show discernible evidence of the long-range atmospheric transport of pollutants. Isotopic ratios in the Alpine snow samples and thus the free troposphere were generally higher than airborne Pb isotopic ratios in urban France, which coupled with the relatively high Pb concentrations suggested a regional anthropogenic Pb source, probably Italy but possibly Eastern Europe.

  13. Recent Developments in Trace, Ultratrace and Isotope Ratio Measurements in Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Zahran, N. F.

    2004-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and Laser Ablation (LA-ICP-MS) are recent techniques for trace, ultratrace and isotope ratio measurements. Main features of these techniques and their figure of merit and capabilities are discussed. An overview of ICP-MS instrument is presented in addition to its precision, accuracy and detection limits. Uses of ICP-MS in environmental monitoring in some cases for detection of some radio nuclides are presented. Two geological applications namely, zircon grains analysis and age dating of Rb-Sr method are presented. Zn elemental and isotopic analyses in blood and serum as a biological application is shown. (Author)

  14. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. I. A LOW-MASS RATIO STELLAR COMPANION TO TYC 4110-01037-1 IN A 79 DAY ORBIT

    International Nuclear Information System (INIS)

    Wisniewski, John P.; Agol, Eric; Barnes, Rory; Ge, Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Chang, Liang; Crepp, Justin R.; Eastman, Jason; Gaudi, B. Scott; Esposito, Massimiliano; Gonzalez Hernandez, Jonay I.; Prieto, Carlos Allende; Ghezzi, Luan; Da Costa, Luiz N.; Porto De Mello, G. F.; Stassun, Keivan G.; Cargile, Phillip; Bizyaev, Dmitry

    2012-01-01

    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical among binary systems with solar-like (T eff ∼ ☉ and radius of 0.99 ± 0.18 R ☉ . We analyze 32 radial velocity (RV) measurements from the SDSS-III MARVELS survey as well as 6 supporting RV measurements from the SARG spectrograph on the 3.6 m Telescopio Nazionale Galileo telescope obtained over a period of ∼2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 ± 0.012 days, an eccentricity of 0.1095 ± 0.0023, and a semi-amplitude of 4199 ± 11 m s –1 . We determine the minimum companion mass (if sin i = 1) to be 97.7 ± 5.8 M Jup . The system's companion to host star mass ratio, ≥0.087 ± 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (T eff ∼< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be comoving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low-mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.

  15. Intensity ratio curve analysis of small renal masses on T2-weighted magnetic resonance imaging: Differentiation of fat-poor angiomyolipoma from renal cell carcinoma.

    Science.gov (United States)

    Moriyama, Shingo; Yoshida, Soichiro; Tanaka, Hajime; Tanaka, Hiroshi; Yokoyama, Minato; Ishioka, Junichiro; Matsuoka, Yoh; Saito, Kazutaka; Kihara, Kazunori; Fujii, Yasuhisa

    2018-03-25

    To assess the diagnostic ability of a pixel intensity-based analysis in evaluating the magnetic resonance imaging characteristics of small renal masses, especially in differentiating fat-poor angiomyolipoma from renal cell carcinoma. T2-weighted images from 121 solid small renal masses (ratio curve was plotted using intensity ratios, which were ratios of signal intensities of tumor pixels (each pixel along a linear region of interest drawn across the renal tumor on T2-weighted image) to the signal intensity of a normal renal cortex. The diagnostic ability of the intensity ratio curve analysis was evaluated. The tumors were classified into three types: intensity ratio fat-poor angiomyolipoma (n = 19) with no pseudocapsule, iso-low intensity and no heterogeneity; intensity ratio clear cell renal cell carcinoma (n = 76) with a pseudocapsule, iso-high intensity and heterogeneity; and other type of intensity ratio (n = 26), including tumors that did not fall into the above two categories. The sensitivity/specificity/accuracy of the intensity ratio curve analysis in diagnosing fat-poor angiomyolipoma was 93%/94%/94%, respectively. When the intensity ratio curve analysis was applied only to the tumor with undetermined radiological diagnosis, the sensitivity for diagnosing fat-poor angiomyolipoma compared with subjective reading alone significantly improved (93% vs 50%; P = 0.014). Our novel semiquantitative model for combined assessment of key features of fat-poor angiomyolipoma, including low intensity, homogeneity and absence of a pseudocapsule on T2-weighted image, might make diagnosis of fat-poor angiomyolipoma more accurate. © 2018 The Japanese Urological Association.

  16. Determination of strontium and lead isotope ratios of grains using high resolution inductively coupled plasma mass spectrometer with single collector

    International Nuclear Information System (INIS)

    Shinozaki, Miyuki; Ariyama, Kaoru; Kawasaki, Akira; Hirata, Takafumi

    2010-01-01

    A method for determining strontium and lead isotope ratios of grains was developed. The samples investigated in this study were rice, barley and wheat. The samples were digested with nitric acid and hydrogen peroxide, and heated in a heating block. Strontium and lead were separated from the matrix by adding an acid digested solution into a column packed with Sr resin, which has selectivity for the absorption of strontium and lead. Strontium and lead isotope ratios were determined using a high-resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) with a single collector. The intraday relative standard deviations of 87 Sr/ 86 Sr and lead isotope ratios ( 204 Pb/ 206 Pb, 207 Pb/ 206 Pb, 208 Pb/ 206 Pb) by HR-ICP-MS measurements were < 0.06% and around 0.1%, respectively. This method enabled us to determine strontium and lead isotope ratios in two days. (author)

  17. Profiling of new psychoactive substances (NPS) by using stable isotope ratio mass spectrometry (IRMS): study on the synthetic cannabinoid 5F-PB-22.

    Science.gov (United States)

    Münster-Müller, S; Scheid, N; Holdermann, T; Schneiders, S; Pütz, M

    2018-05-21

    In this paper results of a pilot study on the profiling of the synthetic cannabinoid receptor agonist 5F-PB-22 (5F-QUPIC, pentylfluoro-1H-indole-3-carboxylic acid-8-quinolinyl ester) via isotope ratio mass spectrometry are presented. It is focused on δ 13 C, δ 15 N and δ 2 H isotope ratios, which are determined using elemental analyser (EA) and high temperature elemental analyser (TC/EA) coupled to an isotope ratio mass spectrometer (IRMS). By means of a sample of pure material of 5F-PB-22 it is shown that the extraction of 5F-PB-22 from herbal material, a rapid clean-up procedure, or preparative column chromatography had no influences on the isotope ratios. Furthermore, 5F-PB-22 was extracted from fourteen different herbal blend samples ("Spice products" from police seizures) and analysed via IRMS, yielding three clusters containing seven, five and two samples, distinguishable through their isotopic composition, respectively. It is assumed that herbal blends in each cluster have been manufactured from individual batches of 5F-PB-22. This article is protected by copyright. All rights reserved.

  18. Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics.

    Science.gov (United States)

    Longobardi, F; Casiello, G; Cortese, M; Perini, M; Camin, F; Catucci, L; Agostiano, A

    2015-12-01

    The aim of this study was to predict the geographic origin of lentils by using isotope ratio mass spectrometry (IRMS) in combination with chemometrics. Lentil samples from two origins, i.e. Italy and Canada, were analysed obtaining the stable isotope ratios of δ(13)C, δ(15)N, δ(2)H, δ(18)O, and δ(34)S. A comparison between median values (U-test) highlighted statistically significant differences (porigin but with overlapping zones; consequently, two supervised discriminant techniques, i.e. partial least squares discriminant analysis and k-nearest neighbours algorithm were used. Both models showed good performances with external prediction abilities of about 93% demonstrating the suitability of the methods developed. Subsequently, isotopic determinations were also performed on the protein and starch fractions and the relevant results are reported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    International Nuclear Information System (INIS)

    Amaro-Seoane, Pau; Preto, Miguel

    2011-01-01

    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an 'extreme-mass ratio inspiral' (EMRI). The small object, typically a stellar black hole, emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map spacetime around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic centre revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp, or core) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation N-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M . ∼ 6 M o-dot (i.e. nuclei in the range of LISA). We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. Given the most recent stellar mass normalization for the inner parsec of the Galactic centre, SMS has the significant impact of boosting the EMRI rates by a factor of ∼10 in comparison to what would result from a 7/4-Bahcall and Wolf cusp resulting in ∼250 events per Gyr per Milky Way type galaxy. Such an intrinsic rate should translate roughly into ∼10 2 -7 x 10 2 sbh's (EMRIs detected by LISA over a mission lifetime of 2 or 5

  20. Precise and accurate isotope ratio measurements by ICP-MS.

    Science.gov (United States)

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  1. Impact of kinetic mass transfer on free convection in a porous medium

    Science.gov (United States)

    Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.

    2016-05-01

    We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.

  2. Shear viscosity of liquid mixtures: Mass dependence

    International Nuclear Information System (INIS)

    Kaushal, Rohan; Tankeshwar, K.

    2002-06-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)

  3. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R

    2002-01-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  4. Standard model false vacuum inflation: correlating the tensor-to-scalar ratio to the top quark and Higgs boson masses.

    Science.gov (United States)

    Masina, Isabella; Notari, Alessio

    2012-05-11

    For a narrow band of values of the top quark and Higgs boson masses, the standard model Higgs potential develops a false minimum at energies of about 10(16)  GeV, where primordial inflation could have started in a cold metastable state. A graceful exit to a radiation-dominated era is provided, e.g., by scalar-tensor gravity models. We pointed out that if inflation happened in this false minimum, the Higgs boson mass has to be in the range 126.0±3.5  GeV, where ATLAS and CMS subsequently reported excesses of events. Here we show that for these values of the Higgs boson mass, the inflationary gravitational wave background has be discovered with a tensor-to-scalar ratio at hand of future experiments. We suggest that combining cosmological observations with measurements of the top quark and Higgs boson masses represent a further test of the hypothesis that the standard model false minimum was the source of inflation in the universe.

  5. Broadband non-selective excitation of plutonium isotopes for isotope ratio measurements in resonance ionization mass spectrometry: a theoretical study.

    Science.gov (United States)

    Sankari, M

    2012-10-15

    Making isotope ratio measurements with minimum isotope bias has always been a challenging task to mass spectrometrists, especially for the specific case of plutonium, owing to the strategic importance of the element. In order to use resonance ionization mass spectrometry (RIMS) as a tool for isotope ratio measurements, optimization of the various laser parameters and other atomic and system parameters is critical to minimize isotopic biases. Broadband simultaneous non-selective excitation of the isotopes of plutonium in the triple resonance excitation scheme with λ(1) = 420.77 nm, λ(2) = 847.28 nm, and λ(3) = 767.53 nm based on density matrix formalism has been theoretically computed for the determination of isotope ratios. The effects of the various laser parameters and other factors such as the atomization temperature and the dimensions of the atomic beam on the estimation of isotope ratios were studied. The effects of Doppler broadening, and time-dependent excitation parameters such as Rabi frequencies, ionization rate and the effect of non-Lorenztian lineshape have all been incorporated. The average laser powers and bandwidths for the three-excitation steps were evaluated for non-selective excitation. The laser intensity required to saturate the three-excitation steps were studied. The two-dimensional lineshape contour and its features were investigated, while the reversal of peak asymmetry of two-step and two-photon excitation peaks under these conditions is discussed. Optimized powers for the non-selective ionization of the three transitions were calculated as 545 mW, 150 mW and 545 mW and the laser bandwidth for all the three steps was ~20 GHz. The isotopic bias between the resonant and off-resonant isotope under the optimized conditions was no more than 9%, which is better than an earlier reported value. These optimized laser power and bandwidth conditions are better than in the earlier experimental work since these comprehensive calculations yield

  6. Persistent junk solutions in time-domain modeling of extreme mass ratio binaries

    International Nuclear Information System (INIS)

    Field, Scott E.; Hesthaven, Jan S.; Lau, Stephen R.

    2010-01-01

    In the context of metric perturbation theory for nonspinning black holes, extreme mass ratio binary systems are described by distributionally forced master wave equations. Numerical solution of a master wave equation as an initial boundary value problem requires initial data. However, because the correct initial data for generic-orbit systems is unknown, specification of trivial initial data is a common choice, despite being inconsistent and resulting in a solution which is initially discontinuous in time. As is well known, this choice leads to a burst of junk radiation which eventually propagates off the computational domain. We observe another potential consequence of trivial initial data: development of a persistent spurious solution, here referred to as the Jost junk solution, which contaminates the physical solution for long times. This work studies the influence of both types of junk on metric perturbations, waveforms, and self-force measurements, and it demonstrates that smooth modified source terms mollify the Jost solution and reduce junk radiation. Our concluding section discusses the applicability of these observations to other numerical schemes and techniques used to solve distributionally forced master wave equations.

  7. Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population.

    Science.gov (United States)

    Kim, Hyo Jin; Kim, Sun Mi; Kim, Bohyoung; La Yun, Bo; Jang, Mijung; Ko, Yousun; Lee, Soo Hyun; Jeong, Heeyeong; Chang, Jung Min; Cho, Nariya

    2018-04-18

    We investigated addition of strain and shear wave elastography to conventional ultrasonography for the qualitative and quantitative assessment of breast masses; cut-off points were determined for strain ratio, elasticity ratio, and visual score for differentiating between benign and malignant masses. In all, 108 masses from 94 patients were evaluated with strain and shear wave elastography and scored for suspicion of malignancy, visual score, strain ratio, and elasticity ratio. The diagnostic performance between ultrasonography alone and ultrasonography combined with either type of elastography was compared; cut-off points were determined for strain ratio, elasticity ratio, and visual score. Of the 108 masses, 44 were malignant and 64 were benign. The areas under the curves were significantly higher for strain and shear wave elastography-supplemented ultrasonography (0.839 and 0.826, respectively; P = 0.656) than for ultrasonography alone (0.764; P = 0.018 and 0.035, respectively). The diagnostic performances of strain and elasticity ratios were similar when differentiating benign from malignant masses. Cut-off values for strain ratio, elasticity ratio, and visual scores for strain and shear wave elastography were 2.93, 4, 3, and 2, respectively. Both forms of elastography similarly improved the diagnostic performance of conventional ultrasonography in the qualitative and quantitative assessment of breast masses.

  8. Development of precise analytical methods for strontium and lanthanide isotopic ratios using multiple collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Ohno, Takeshi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2007-01-01

    We have developed precise analytical methods for strontium and lanthanide isotopic ratios using multiple collector-ICP-mass spectrometry (MC-ICP-MS) for experimental and environmental studies of their behavior. In order to obtain precise isotopic data using MC-ICP-MS, the mass discrimination effect was corrected by an exponential law correction method. The resulting isotopic data demonstrated that highly precise isotopic analyses (better than 0.1 per mille as 2SD) could be achieved. We also adopted a de-solvating nebulizer system to improve the sensitivity. This system could minimize the water load into the plasma and provided about five times larger intensity of analyte than a conventional nebulizer system did. (author)

  9. Value of 18F-FDG PET imaging for differentiation of benign and malignant pancreatic mass

    International Nuclear Information System (INIS)

    Zhang Liying; Guo Wanhua; Guan Liang; Li Peiyong

    2002-01-01

    To evaluate the value of positron emission tomography (PET) imaging with 18 F-FDG in differentiation of benign and malignant pancreatic mass. 12 patients with pancreatic occupying lesion diagnosed by ultrasound or CT/MR including 7 pancreatic cancer and 5 pancreatitis underwent 18 F-FDG PET imaging. Visual interpretation and semiquantitative analysis by calculating the tumor/liver (T/L) ratio based on ROI were performed on attenuation corrected images. 9 positive findings were detected. Among them, 7 were confirmed to be cancer, but the other 2 were mass-forming pancreatitis. Final diagnoses of the 3 patients with negative findings were confirmed to be pancreatitis. The mean T/L ratio was 2.58 +- 0.95 in pancreatic cancer, significantly higher than that in pancreatitis (1.29 +- 0.87) (p = 0.037). With a T/L ratio cutoff value of 1.5, all 7 cancer patients were correctly categorized. However, one pancreatitis had T/L ratio higher than 1.5. 18 F-FEG PET imaging was a potential reliable method in differentiating benign or malignant pancreatic mass with high negative predictive value, but the specificity was limited. Semiquantitative analysis may improve the accuracy of the diagnosis

  10. Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity

    International Nuclear Information System (INIS)

    Bernuzzi, Sebastiano; Nagar, Alessandro; Zenginoglu, Anil

    2011-01-01

    We compute and analyze the gravitational waveform emitted to future null infinity by a system of two black holes in the large-mass-ratio limit. We consider the transition from the quasiadiabatic inspiral to plunge, merger, and ringdown. The relative dynamics is driven by a leading order in the mass ratio, 5PN-resummed, effective-one-body (EOB), analytic-radiation reaction. To compute the waveforms, we solve the Regge-Wheeler-Zerilli equations in the time-domain on a spacelike foliation, which coincides with the standard Schwarzschild foliation in the region including the motion of the small black hole, and is globally hyperboloidal, allowing us to include future null infinity in the computational domain by compactification. This method is called the hyperboloidal layer method, and is discussed here for the first time in a study of the gravitational radiation emitted by black hole binaries. We consider binaries characterized by five mass ratios, ν=10 -2,-3,-4,-5,-6 , that are primary targets of space-based or third-generation gravitational wave detectors. We show significative phase differences between finite-radius and null-infinity waveforms. We test, in our context, the reliability of the extrapolation procedure routinely applied to numerical relativity waveforms. We present an updated calculation of the final and maximum gravitational recoil imparted to the merger remnant by the gravitational wave emission, v kick end /(cν 2 )=0.04474±0.00007 and v kick max /(cν 2 )=0.05248±0.00008. As a self-consistency test of the method, we show an excellent fractional agreement (even during the plunge) between the 5PN EOB-resummed mechanical angular momentum loss and the gravitational wave angular momentum flux computed at null infinity. New results concerning the radiation emitted from unstable circular orbits are also presented. The high accuracy waveforms computed here could be considered for the construction of template banks or for calibrating analytic models such

  11. Application of laser ablation inductively coupled plasma multicollector mass spectometry in determination of lead isotope ratios in common glass for forensic purposes

    International Nuclear Information System (INIS)

    Sjåstad, Knut-Endre; Andersen, Tom; Simonsen, Siri Lene

    2013-01-01

    Samples of glass used as trace evidence in criminal cases are commonly small, with particle sizes below a millimeter. To perform chemical analysis suitable for forensic purposes, methods capable of analyzing such small samples are required. In this paper, analyses of lead isotope ratios by means of laser ablation inductively coupled multicollector mass spectrometry (LA-MC-ICP-MS) are presented. Sampling by use of laser ablation allows fragments down to 0.1 mg to be analyzed with sufficient precision to discriminate between glasses of different origin. In fact, the use of lead isotopes determined by LA-MC-ICP-MS approaches the discrimination attainable by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) analysis of dissolved samples of 5 mg or more. Further, we have obtained a probability distribution by two dimensional kernel density estimates for the collected data set as an alternative presentation method to the well-established bivariate plot. The underlying information available from kernel density estimates is of importance for forensic scientists involved in probabilistic interpretation of physical evidence. - Highlights: • Lead isotope ratios prove suitable to discriminate glass for forensic purposes. • 96% of glass samples from different sources were separated by lead isotopic ratios. • Laser ablation allows fragments of glass with extension of 0.5 mm to be analyzed. • Isotopic ratios of lead are well suited for statistical analysis of evidence

  12. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    Energy Technology Data Exchange (ETDEWEB)

    Isselhardt, Brett H. [Univ. of California, Berkeley, CA (United States)

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  13. Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry.

    Science.gov (United States)

    Scampicchio, Matteo; Mimmo, Tanja; Capici, Calogero; Huck, Christian; Innocente, Nadia; Drusch, Stephan; Cesco, Stefano

    2012-11-14

    Stable isotope values were used to develop a new analytical approach enabling the simultaneous identification of milk samples either processed with different heating regimens or from different geographical origins. The samples consisted of raw, pasteurized (HTST), and ultrapasteurized (UHT) milk from different Italian origins. The approach consisted of the analysis of the isotope ratio of δ¹³C and δ¹⁵N for the milk samples and their fractions (fat, casein, and whey). The main finding of this work is that as the heat processing affects the composition of the milk fractions, changes in δ¹³C and δ¹⁵N were also observed. These changes were used as markers to develop pattern recognition maps based on principal component analysis and supervised classification models, such as linear discriminant analysis (LDA), multivariate regression (MLR), principal component regression (PCR), and partial least-squares (PLS). The results give proof of the concept that isotope ratio mass spectroscopy can discriminate simultaneously between milk samples according to their geographical origin and type of processing.

  14. High precision measurements of carbon isotopic ratio of atmospheric methane using a continuous flow mass spectrometer

    Directory of Open Access Journals (Sweden)

    Shinji Morimoto

    2009-03-01

    Full Text Available A high-precision measurement system for the carbon isotope ratio of atmospheric CH4 (δ^(13CH_4 was developed using a pre-concentration device for CH4 and a gas chromatograph-combustion-isotope ratio mass spectrometer (GC-C-IRMS. The measurement system required 100 mlSTP of an atmospheric air sample, corresponding to approximately 0.18μlSTP of CH_4, to determine the δ^(13CH_4 value with a reproducibility of 0.07‰. Replicated analyses of a CH_4-in-air standard gas during the period from 2002 to 2008 indicated that the value of δ^(13CH_4 measured by this system was consistent within the measurement reproducibility. To evaluate the δ^(13CH_4 measurement system, thus developed, diurnal variations of the atmospheric CH_4 concentration and δ^(13CH_4 were observed in the northern part of the Tokyo metropolitan area. From the relationship between the CH_4 concentration and δ^(13CH_4, dominant sources of the observed CH4 fluctuations were identified.

  15. FieldSpec: A field portable mass spectrometer prototype for high frequency measurements of δ (2) H and δ (18) O ratios in water

    Science.gov (United States)

    López Días, Veneranda; Quang Hoang, Hung; Martínez-Carreras, Núria; Barnich, François; Wirtz, Tom; Pfister, Laurent; McDonnell, Jeffrey

    2016-04-01

    Hydrological studies relying on stable water isotopes to better understand water sources, flowpaths and transit times are currently limited by the coarse temporal resolution of sampling and analysis protocols. At present, two kinds of lab-based instruments are used : (i) the standard isotope ratio mass spectrometers (IRMS) [1] and (ii) the laser-based instruments [2, 3]. In both cases, samples need to be collected in the field and then transferred to the laboratory for the water isotopic ratio measurements (even further complex sample preparation is required for the IRMS). Hence, past and ongoing research targets the development of field deployable instruments for measuring stable water isotopes at high temporal frequencies. While recent studies have demonstrated that laser-based instruments may be taken to the field [4, 5], their size and power consumption still restrict their use to sites equipped with mains power or generators. Here, we present progress on the development of a field portable mass spectrometer (FieldSpec) for direct high frequency measurements of δ2H and δ18O ratios in water. The FieldSpec instrument is based upon the use of a double focusing magnetic sector mass spectrometer in combination with an electron impact ion source and a membrane dual inlet system. The instrument directly collects liquid water samples in the field, which are then converted into water vapour before being injected into the mass spectrometer for the stable isotope analysis. δ2H and δ18O are derived from the measured mass spectra. All the components are arranged in a vacuum case having a suit case type dimension with portable electronics and battery. Proof-of-concept experiments have been carried out to characterize the instrument. The results show that the FieldSpec instrument has good linearity (R2 = 0.99). The reproducibility of the instrument ranges between 1 and 4 ‰ for δ2H and between 0.1 and 0.4 ‰ for δ18O isotopic ratio measurements. A measurement

  16. The density compression ratio of shock fronts associated with coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Kwon Ryun-Young

    2018-01-01

    Full Text Available We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (∼2000 km s−1 observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.

  17. Higher body mass index associated with severe early childhood caries.

    Science.gov (United States)

    Davidson, Katherine; Schroth, Robert J; Levi, Jeremy A; Yaffe, Aaron B; Mittermuller, Betty-Anne; Sellers, Elizabeth A C

    2016-08-20

    Severe Early Childhood Caries (S-ECC) is an aggressive form of tooth decay in preschool children affecting quality of life and nutritional status. The purpose was to determine whether there is an association between Body Mass Index (BMI) and S-ECC. Children with S-ECC were recruited on the day of their slated dental surgery under general anesthesia. Age-matched, caries-free controls were recruited from the community. All children were participating in a larger study on nutrition and S-ECC. Analysis was restricted to children ≥ 24 months of age. Parents completed a questionnaire and heights and weights were recorded. BMI scores and age and gender adjusted BMI z-scores and percentiles were calculated. A p-value ≤ 0.05 was significant. Two hundred thirty-five children were included (141 with S-ECC and 94 caries-free). The mean age was 43.3 ± 12.8 months and 50.2 % were male. Overall, 34.4 % of participants were overweight or obese. Significantly more children with S-ECC were classified as overweight or obese when compared to caries-free children (p = 0.038) and had significantly higher mean BMI z-scores than caries-free children (0.78 ± 1.26 vs. 0.22 ± 1.36, p = 0.002). Those with S-ECC also had significantly higher BMI percentiles (69.0 % ± 29.2 vs. 56.8 % ± 31.7, p = 0.003). Multiple linear regression analyses revealed that BMI z-scores were significantly and independently associated with S-ECC and annual household income as were BMI percentiles. Children with S-ECC in our sample had significantly higher BMI z-scores than caries-free peers.

  18. Constraint on a varying proton-electron mass ratio 1.5 billion years after the big bang.

    Science.gov (United States)

    Bagdonaite, J; Ubachs, W; Murphy, M T; Whitmore, J B

    2015-02-20

    A molecular hydrogen absorber at a lookback time of 12.4 billion years, corresponding to 10% of the age of the Universe today, is analyzed to put a constraint on a varying proton-electron mass ratio, μ. A high resolution spectrum of the J1443+2724 quasar, which was observed with the Very Large Telescope, is used to create an accurate model of 89 Lyman and Werner band transitions whose relative frequencies are sensitive to μ, yielding a limit on the relative deviation from the current laboratory value of Δμ/μ=(-9.5 ± 5.4(stat)± 5.3(syst))×10(-6).

  19. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping

    Science.gov (United States)

    Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph

    2017-06-01

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.

  20. Kaon production and kaon to pion ratio in Au+Au collisions at $\\sqrt {s_{NN}} = 130 GeV

    CERN Document Server

    Adler, C; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevshchikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Filimonov, K; Finch, E; Fisyak, Yu; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Krämer, M; Kravtsov, P; Krüger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Le Vine, M J; Lebedev, A; Lednicky, R; Leontiev, V M; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Lo Curto, G; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevozchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E V; Prindle, D; Pruneau, C A; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schröder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D M; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimansky, S S; Shvetcov, V S; Skoro, G P; Smirnov, N; Snellings, R; Sørensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Struck, C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; Van der Molen, A M; Vasilevski, I M; Vasilev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevsky, Yu V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N; De Moura, M M; Szanto de Toledo, A; De la Barca-Sanchez, M C; 10.1016/j.physletb.2004.06.044

    2004-01-01

    Midrapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at square root s/sub NN/=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudorapidity density. The charged kaon to pion ratios are K/sup +// pi /sup -/=0.161+or-0.002(stat)+or-0.024(syst) and K/sup -// pi /sup -/=0.146+or-0.002(stat)+or-0.022(syst) for the most central collisions. The K/sup +// pi /sup -/ ratio is lower than the same ratio observed at the SPS while the K/sup -// pi /sup -/ is higher than the SPS result. The ratios are enhanced by about 50% relative to p+p and p+p collision data at similar energies.

  1. GAE detection for mass measurement for D-T ratio control

    International Nuclear Information System (INIS)

    Lister, J.B.; Villard, L.; Ridder, G. de

    1997-09-01

    This report includes two papers by the authors Lister, Villard and de Ridder: 1) Measurement of the effective plasma ion mass in large tokamaks using Global Alfven Eigenmodes, 2) GAE detection for mass measurement for plasma density control. The second paper represents the final report of JET article 14 contract 950104. figs., tabs., refs

  2. Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.

    Science.gov (United States)

    Guzik, Joyce Ann

    1988-06-01

    L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main

  3. High aspect ratio silver grid transparent electrodes using UV embossing process

    Directory of Open Access Journals (Sweden)

    Dong Jin Kim

    2017-10-01

    Full Text Available This study presents a UV embossing process to fabricate high aspect ratio silver grid transparent electrodes on a polymer film. Transparent electrodes with a high optical transmittance (93 % and low sheet resistance (4.6 Ω/sq were fabricated without any high temperature or vacuum processes. The strong adhesion force between the UV resin and the silver ink enables the fabrication of silver microstructures with an aspect ratio higher than 3. The high aspect ratio results in a low sheet resistance while maintaining a high optical transmittance. Multi-layer transparent electrodes were fabricated by repeating the proposed UV process. Additionally, a large-area of 8-inch touch panel was fabricated with the proposed UV process. The proposed UV process is a relatively simple and low cost process making it suitable for large-area production as well as mass production.

  4. From light to baryonic mass: the effect of the stellar mass-to-light ratio on the Baryonic Tully-Fisher relation

    Science.gov (United States)

    Ponomareva, Anastasia A.; Verheijen, Marc A. W.; Papastergis, Emmanouil; Bosma, Albert; Peletier, Reynier F.

    2018-03-01

    In this paper, we investigate the statistical properties of the Baryonic Tully-Fisher relation (BTFr) for a sample of 32 galaxies with accurate distances based on Cepheïds and/or TRGB stars. We make use of homogeneously analysed photometry in 18 bands ranging from the far-ultraviolet to 160 μm, allowing us to investigate the effect of the inferred stellar mass-to-light ratio (ϒ⋆) on the statistical properties of the BTFr. Stellar masses of our sample galaxies are derived with four different methods based on full SED fitting, studies of stellar dynamics, near-infrared colours, and the assumption of the same Υ_{\\star }^{[3.6]} for all galaxies. In addition, we use high-quality, resolved H I kinematics to study the BTFr based on three kinematic measures: Wi_{50} from the global H I profile, and Vmax and Vflat from the rotation curve. We find the intrinsic perpendicular scatter, or tightness, of our BTFr to be σ⊥ = 0.026 ± 0.013 dex, consistent with the intrinsic tightness of the 3.6 μm luminosity-based Tully-Fisher relation (TFr). However, we find the slope of the BTFr to be 2.99 ± 0.2 instead of 3.7 ± 0.1 for the luminosity-based TFr at 3.6 μm. We use our BTFr to place important observational constraints on theoretical models of galaxy formation and evolution by making comparisons with theoretical predictions based on either the Λ cold dark matter framework or modified Newtonian dynamics.

  5. Impact of higher-order flows in the moment equations on Pfirsch-Schlüter friction coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M., E-mail: honda.mitsuru@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)

    2014-09-15

    The impact of the higher-order flows in the moment approach on an estimate of the friction coefficients is numerically examined. The higher-order flows are described by the lower-order hydrodynamic flows using the collisional plasma assumption. Their effects have not been consistently taken into account thus far in the widely used neoclassical transport codes based on the moment equations in terms of the Pfirsch-Schlüter flux. Due to numerically solving the friction-flow matrix without using the small-mass ratio expansion, it is clearly revealed that incorporating the higher-order flow effects is of importance especially for plasmas including multiple hydrogenic ions and other lighter species with similar masses.

  6. Specific leaf mass, fresh: dry weight ratio, sugar and protein contents in species of Lamiaceae from different light environments

    Directory of Open Access Journals (Sweden)

    M Castrillo

    2005-06-01

    Full Text Available Samples from eleven species of Lamiaceae were collected from different light environments in Venezuela for laboratory analysis.The studied species were: Plectranthus scutellarioides (Ps, Scutellaria purpurascens (Sp, Hyptis pectinata (Hp, H. sinuata (Hs, Leonorus japonicus (Lj, Plecthranthus amboinicus (Pa Ocimum basilicum (Ocb, O.campechianum (Occ Origanum majorana (Orm, Rosmarinus officinali ,(Ro and Salvia officinalis (So. Protein and soluble sugar contents per unit of area were measured, Specific Leaf Mass (SLMand fresh: dry weight (FW/DW ratios were calculated. The higher values for soluble sugars contents were present in sun species: Lj, Pa, Ocb, Occ, Or. m, Ro and So; the lower values were obtained in low light species: Ps, Sp, Hp, Hs. The values of protein content do not show any clear trend or difference between sun and shade environments. The lowest values for the fresh weight: dry weight ratio are observed in sun species with the exception of Lj and Pa, while the highest value is observed in Pa, a succulent plant. The higher values of specific leaf mass (SLM(Kg DMm-2 are observed in sun plants. The two way ANOVA revealed that there were significant differences among species and between sun and low light environments for sugar content and FW: DW ratio, while SLM was significant for environments but no significant for species, and not significant for protein for both species and environments. The soluble sugar content, FW: DW ratio and SLM values obtained in this work, show a clear separation between sun and shade plants. The sugar content and FW:DW ratio are distinctive within the species,and the light environment affected sugar content, FW:DW ratio and SLM. These species may be shade-tolerant and able to survive in sunny environments. Perhaps these species originated in shaded environments and have been adapting to sunny habitats.Rev.Biol.Trop.53(1-2:23-28.Epub 2005 Jun 24En once especies de la familia Lamiaceae: Plecthranthus

  7. Surface area-volume ratios in insects.

    Science.gov (United States)

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  8. Testes mass, but not sperm length, increases with higher levels of polyandry in an ancient sex model.

    Directory of Open Access Journals (Sweden)

    David E Vrech

    Full Text Available There is strong evidence that polyandrous taxa have evolved relatively larger testes than monogamous relatives. Sperm size may either increase or decrease across species with the risk or intensity of sperm competition. Scorpions represent an ancient direct mode with spermatophore-mediated sperm transfer and are particularly well suited for studies in sperm competition. This work aims to analyze for the first time the variables affecting testes mass, ejaculate volume and sperm length, according with their levels of polyandry, in species belonging to the Neotropical family Bothriuridae. Variables influencing testes mass and sperm length were obtained by model selection analysis using corrected Akaike Information Criterion. Testes mass varied greatly among the seven species analyzed, ranging from 1.6 ± 1.1 mg in Timogenes dorbignyi to 16.3 ± 4.5 mg in Brachistosternus pentheri with an average of 8.4 ± 5.0 mg in all the species. The relationship between testes mass and body mass was not significant. Body allocation in testes mass, taken as Gonadosomatic Index, was high in Bothriurus cordubensis and Brachistosternus ferrugineus and low in Timogenes species. The best-fitting model for testes mass considered only polyandry as predictor with a positive influence. Model selection showed that body mass influenced sperm length negatively but after correcting for body mass, none of the variables analyzed explained sperm length. Both body mass and testes mass influenced spermatophore volume positively. There was a strong phylogenetic effect on the model containing testes mass. As predicted by the sperm competition theory and according to what happens in other arthropods, testes mass increased in species with higher levels of sperm competition, and influenced positively spermatophore volume, but data was not conclusive for sperm length.

  9. Influence of atmospheric 14CO2 on determination of the ratio of biogenic carbon to fossil one in exhaust gases using accelerator mass spectrometry. Experimental evaluation for industrial flue gases

    International Nuclear Information System (INIS)

    Yunoki, Shunji; Saito, Masaaki; Nagakawa, Yoshiyasu

    2012-01-01

    The influence of atmospheric 14 CO 2 was evaluated on the determination of biogenic carbon ratios in industrial flue gases using accelerated mass spectrometry(AMS). Bioethanol, n-hexane, and their mixtures were combusted with a four-stroke engine, and 14 CO 2 in exhaust gases was analyzed by AMS. The experimental biogenic carbon ratio determined by ASTM D6866 method was 1.2 times higher than the theoretical value of mixed fuel containing 3.18% biogenic carbons. In general, the influence of atmospheric 14 CO 2 taken in combustion gases is neglected. It seems that the error cannot be neglected under international trading of emission allowances, where a large amount of carbons in the fuel were evaluated. The experimental value became to be the theoretical value by subtracting the amount of atmospheric 14 C from that of the samples. As the contents of biofuel increased, the experimental biogenic carbon ratios reached the theoretical values and the influence of atmospheric 14 CO 2 decreased. We recommend that the influence of atmospheric 14 CO 2 should be corrected when fuel samples contain low amounts of 14 C. (author)

  10. Female waist-to-hip ratio, body mass index and sexual attractiveness in China

    Directory of Open Access Journals (Sweden)

    B.J. DIXSON, Baoguo LI, A.F. DIXSON

    2010-04-01

    Full Text Available Men and women at Northwest University (n = 751, Xi’an, China were asked to judge the attractiveness of photographs of female patients who had undergone micrograft surgery to reduce their waist-to-hip ratios (WHR. Micrograft surgery involves harvesting adipose tissue from the waist and reshaping the buttocks to produce a low WHR and an ‘hourglass’ female figure. This gynoid distribution of female body fat has been shown to correlate with measures of fertility and health. Significantly larger numbers of subjects, of both sexes, chose post-operative photographs, with lower WHRs, as more attractive than pre-operative photographs of the same women. Some patients had gained, and some had lost weight, post-operatively, with resultant changes in body mass index (BMI. However, these changes in BMI were not related to judgments of attractiveness. These results show that the hourglass female figure is rated as attractive in China, and that WHR, rather than BMI, plays a crucial role in such attractiveness judgments [Current Zoology 56 (2: 175–181, 2010].

  11. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data.

    Science.gov (United States)

    Mimmo, Tanja; Camin, Federica; Bontempo, Luana; Capici, Calogero; Tagliavini, Massimo; Cesco, Stefano; Scampicchio, Matteo

    2015-11-15

    The awareness of customers of the origin of foods has become an important issue. The growing demand for foods that are healthy, safe and of high quality has increased the need for traceability and clear labelling. Thus, this study investigates the capability of C and N stable isotope ratios to determine the geographical origin of several apple varieties grown in northern Italy. Four apple varieties (Cripps Pink, Gala, Golden Delicious, Granny Smith) have been sampled in orchards located in the Districts of Bolzano, Ferrara, Verona and Udine (northern Italy). Carbon (δ(13) C) and nitrogen (δ(15) N) isotope values of the whole apple fruits and three sub-fractions (peel, pulp and seed) have been determined simultaneously by isotope ratio mass spectrometry. The δ(13) C and δ(15) N values of apples and apple sub-fractions, such as peel, seed and pulp, were significantly affected by the geographical origin and the fruit variety. The four varieties could be distinguished to a certain extent only within each district. A 99% correct identification of the samples according to their origin was, however, achieved by cross validation with the 'leave-one-out' method. This study proves the potential of stable isotopes to discriminate the geographical origin of apples grown in orchards located only a few hundreds of kilometres apart. Stable isotopes were also able to discriminate different apple varieties, although only within small geographical areas. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    Science.gov (United States)

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  13. Correlation between phosphorylation ratios by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis and radioactivities by radioactive assay.

    Science.gov (United States)

    Tsuchiya, Akira; Asai, Daisuke; Kang, Jeong-Hun; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2012-02-15

    To investigate the correlation between the counts per minute (CPM) by radioactivity assay and the phosphorylation ratio by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, we prepared 136 peptide substrates. The correlation coefficient of phosphorylation ratios to CPM was 0.77 for all samples. However, the more the numbers of positively charged amino acids increased, the more the correlation coefficient increased. Although positively charged amino acids can have an effect on the correlation results, MALDI-TOF MS analysis is a useful means for monitoring phosphorylated peptide and protein kinase activity instead of radioactivity assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Reconsideration of mass-distribution models

    Directory of Open Access Journals (Sweden)

    Ninković S.

    2014-01-01

    Full Text Available The mass-distribution model proposed by Kuzmin and Veltmann (1973 is revisited. It is subdivided into two models which have a common case. Only one of them is subject of the present study. The study is focused on the relation between the density ratio (the central one to that corresponding to the core radius and the total-mass fraction within the core radius. The latter one is an increasing function of the former one, but it cannot exceed one quarter, which takes place when the density ratio tends to infinity. Therefore, the model is extended by representing the density as a sum of two components. The extension results into possibility of having a correspondence between the infinite density ratio and 100% total-mass fraction. The number of parameters in the extended model exceeds that of the original model. Due to this, in the extended model, the correspondence between the density ratio and total-mass fraction is no longer one-to-one; several values of the total-mass fraction can correspond to the same value for the density ratio. In this way, the extended model could explain the contingency of having two, or more, groups of real stellar systems (subsystems in the diagram total-mass fraction versus density ratio. [Projekat Ministarstva nauke Republike Srbije, br. 176011: Dynamics and Kinematics of Celestial Bodies and Systems

  15. Human immunodeficiency virus-associated lipodystrophy: an objective definition based on dual-energy x-ray absorptiometry-derived regional fat ratios in a South Asian population.

    Science.gov (United States)

    Asha, Hesarghatta Shyamasunder; Seshadri, Mandalam Subramaniam; Paul, Thomas Vizhalil; Abraham, Ooriapadickal Cherian; Rupali, Priscilla; Thomas, Nihal

    2012-01-01

    To develop an objective definition of human immunodeficiency virus (HIV)-associated lipodystrophy by using regional fat mass ratios and to assess the utility of anthropometric and skinfold measurements in the initial screening for lipodystrophy. Male patients between 25 and 50 years old with proven HIV infection (highly active antiretroviral therapy [HAART]-naïve subjects and those receiving successful HAART) were studied and compared with body mass index (BMI)-matched HIV-negative control subjects. Anthropometric variables, body composition, dual-energy x-ray absorptiometry findings, and metabolic variables were compared among the 3 study groups and between those patients with and those without lipodystrophy. Trunk fat/lower limb fat mass ratio >2.28 identified 54.3% of patients with HIV receiving HAART as having lipodystrophy and had the highest odds ratio for predicting metabolic syndrome. The "clinical diagnosis of lipodystrophy" and the "clinical scoring system" had too many false-positive and false-negative results. Triceps skinfold thickness (SFT)/BMI ratio ≤0.49 and abdominal SFT/triceps SFT ratio >1.385 have good sensitivity but poor specificity in identifying lipodystrophy. In comparison with HAART-naïve patients with HIV, those receiving HAART had significantly higher insulin resistance, and a significantly greater proportion had impaired glucose tolerance and dyslipidemia. Among patients receiving HAART, those with lipodystrophy had a greater degree of insulin resistance, higher triglyceride levels, and lower levels of high-density lipoprotein cholesterol. The trunk fat/lower limb fat mass ratio in BMI-matched normal subjects can be used to derive cutoff values to define lipodystrophy objectively in HIV-infected patients. Defining lipodystrophy in this way is better than other methods of identifying those patients with increased cardiovascular risk. Triceps SFT/BMI and abdominal SFT/triceps SFT ratios may be useful as screening tools in resource

  16. Metabolic Risk Susceptibility in Men Is Partially Related to Adiponectin/Leptin Ratio

    Directory of Open Access Journals (Sweden)

    Gloria Lena Vega

    2013-01-01

    Full Text Available Background. High adiponectin/leptin ratio may be protective from metabolic risks imparted by high triglyceride, low HDL, and insulin resistance. Methods. This cross-sectional study examines plasma adipokine levels in 428 adult men who were subgrouped according to low (<6.5 μg/mLand high (≥6.5 μg/mLadiponectin levels or a low or high ratio of adiponectin/leptin. Results. Men with high adiponectin/leptin ratio had lower plasma triglyceride and higher HDL cholesterol than those with low ratio. Similarly, those with high adiponectin/leptin ratio had lower TG/HDL cholesterol ratio and HOMA2-IR than those with low ratio. In contrast, levels of adiponectin or the ratio of adiponectin/leptin did not associate with systolic blood pressure. But the ratio of adiponectin/leptin decreased progressively with the increase in the number of risk factors for metabolic syndrome. Conclusion. Adipokine levels may reflect adipose tissue triglyceride storage capacity and insulin sensitivity. Leptin is an index of fat mass, and adiponectin is a biomarker of triglyceride metabolism and insulin sensitivity. Men with high adiponectin/leptin ratios have better triglyceride profile and insulin sensitivity than men with a low ratio regardless of waist girth.

  17. The ATLAS3D project - XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    Science.gov (United States)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)_JAM≈ (M/L)({r}= {R_e}) within a sphere of radius r= {R_e} centred on the galaxy, as well as stellar (M/L)stars (with the dark matter removed) for the volume-limited and nearly mass-selected (stellar mass M_star ≳ 6× 10^9 { M_{⊙}}) ATLAS3D sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). Here, we use those parameters to study the two orthogonal projections ({M_JAM}, {σ _e}) and ({M_JAM}, {R_e^maj}) of the thin Mass Plane (MP) ({M_JAM}, {σ _e}, {R_e^maj}) which describes the distribution of the galaxy population, where {M_JAM}≡ L× (M/L)_JAM≈ M_star. The distribution of galaxy properties on both projections of the MP is characterized by: (i) the same zone of exclusion (ZOE), which can be transformed from one projection to the other using the scalar virial equation. The ZOE is roughly described by two power laws, joined by a break at a characteristic mass {M_JAM}≈ 3× 10^{10} { M_{⊙}}, which corresponds to the minimum Re and maximum stellar density. This results in a break in the mean {M_JAM}-{σ _e} relation with trends {M_JAM}∝ σ _e^{2.3} and {M_JAM}∝ σ _e^{4.7} at small and large σe, respectively; (ii) a characteristic mass {M_JAM}≈ 2× 10^{11} { M_{⊙}} which separates a population dominated by flat fast rotator with discs and spiral galaxies at lower masses, from one dominated by quite round slow rotators at larger masses; (iii) below that mass the distribution of ETGs' properties on the two projections of the MP tends to be constant along lines of roughly constant σe, or equivalently along lines with {R_e^maj}∝ {M_JAM}, respectively (or even better parallel to the ZOE: {R_e^maj}∝ M_JAM^{0.75}); (iv) it forms a continuous and parallel sequence with the distribution of spiral galaxies; (v) at even lower masses, the distribution of fast-rotator ETGs and late spirals naturally extends to that of dwarf ETGs (Sph

  18. Impact of Skeletal Muscle Mass Index, Intramuscular Adipose Tissue Content, and Visceral to Subcutaneous Adipose Tissue Area Ratio on Early Mortality of Living Donor Liver Transplantation.

    Science.gov (United States)

    Hamaguchi, Yuhei; Kaido, Toshimi; Okumura, Shinya; Kobayashi, Atsushi; Shirai, Hisaya; Yagi, Shintaro; Kamo, Naoko; Okajima, Hideaki; Uemoto, Shinji

    2017-03-01

    Skeletal muscle depletion has been shown to be an independent risk factor for poor survival in various diseases. However, in surgery, the significance of other body components including visceral and subcutaneous adipose tissue remains unclear. This retrospective study included 250 adult patients undergoing living donor liver transplantation (LDLT) between January 2008 and April 2015. Using preoperative plain computed tomography imaging at the third lumbar vertebra level, skeletal muscle mass, muscle quality, and visceral adiposity were evaluated by the skeletal muscle mass index (SMI), intramuscular adipose tissue content (IMAC), and visceral to subcutaneous adipose tissue area ratio (VSR), respectively. The cutoff values of these parameters were determined for men and women separately using the data of 657 healthy donors for LDLT between 2005 and 2016. Impact of these parameters on outcomes after LDLT was analyzed. VSR was significantly correlated with patient age (P = 0.041), neutrophil-lymphocyte ratio (P mass index (P normal group. On multivariate analysis, low SMI (hazard ratio [HR], 2.367, P = 0.002), high IMAC (HR, 2.096, P = 0.004), and high VSR (HR, 2.213, P = 0.003) were identified as independent risk factors for death after LDLT. Preoperative visceral adiposity, as well as low muscularity, was closely involved with posttransplant mortality.

  19. Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits

    International Nuclear Information System (INIS)

    Han, Wen-Biao

    2016-01-01

    In this paper we discuss the development of a fast and accurate waveform model for the quasi-circular orbital evolution of extreme-mass-ratio inspirals (EMRIs). This model simply employs the data of a few numerical Teukoulsky-based energy fluxes and waveforms to fit out a set of polynomials for the entire fluxes and waveforms. These obtained polynomials are accurate enough in the entire evolution domain, and much more accurate than the resummation post-Newtonian (PN) energy fluxes and waveforms, especially when the spin of a black hole becomes large. The dynamical equation we adopted for orbital revolution is the effective-one-body (EOB) formalism. Because of the simplified expressions, the efficiency of calculating the orbital evolution with our polynomials is also better than the traditional method which uses the resummed PN analytical fluxes. Our model should be useful in calculations of waveform templates of EMRIs for gravitational wave (GW) detectors such as the evolved Laser Interferometer Space Antenna (eLISA). (paper)

  20. Optimization of an online heart-cutting multidimensional gas chromatography clean-up step for isotopic ratio mass spectrometry and simultaneous quadrupole mass spectrometry measurements of endogenous anabolic steroid in urine.

    Science.gov (United States)

    Casilli, Alessandro; Piper, Thomas; de Oliveira, Fábio Azamor; Padilha, Monica Costa; Pereira, Henrique Marcelo; Thevis, Mario; de Aquino Neto, Francisco Radler

    2016-11-01

    Measuring carbon isotope ratios (CIRs) of urinary analytes represents a cornerstone of doping control analysis and has been particularly optimized for the detection of the misuse of endogenous steroids. Isotope ratio mass spectrometry (IRMS) of appropriate quality, however, necessitates adequate purities of the investigated steroids, which requires extensive pre-analytical sample clean-up steps due to both the natural presence of the target analytes and the high complexity of the matrix. In order to accelerate the sample preparation and increase the automation of the process, the use of multidimensional gas chromatography (MDGC) prior to IRMS experiments, was investigated. A well-established instrumental configuration based on two independent GC ovens and one heart-cutting device was optimized. The first dimension (1D) separation was obtained by a non-polar column which assured high efficiency and good loading capacity, while the second dimension (2D), based on a mid-polar stationary phase, provided good selectivity. A flame ionization detector monitored the 1D, and the 2D was simultaneously recorded by isotope ratio and quadrupole mass spectrometry. The assembled MDGC set-up was applied for measuring testosterone, 5α- and 5β-androstanediol, androsterone, and etiocholanolone as target compounds and pregnanediol as endogenous reference compound. The urine sample were pretreated by conventional sample preparation steps comprising solid-phase extraction, hydrolysis, and liquid-liquid extraction. The extract obtained was acetylated and different aliquots were injected into the MDGC system. Two high performance liquid chromatography steps, conventionally adopted prior to CIR measurements, were replaced by the MDGC approach. The obtained values were consistent with the conventional ones. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Clusters of galaxies compared with N-body simulations: masses and mass segregation

    International Nuclear Information System (INIS)

    Struble, M.F.; Bludman, S.A.

    1979-01-01

    With three virially stable N-body simulations of Wielen, it is shown that use of the expression for the total mass derived from averaged quantities (velocity dispersion and mean harmonic radius) yields an overestimate of the mass by as much as a factor of 2-3, and use of the heaviest mass sample gives an underestimate by a factor of 2-3. The estimate of the mass using mass weighted quantities (i.e., derived from the customary definition of kinetic and potential energies) yields a better value irrespectively of mass sample as applied to late time intervals of the models (>= three two-body relaxation times). The uncertainty is at most approximately 50%. This suggests that it is better to employ the mass weighted expression for the mass when determining cluster masses. The virial ratio, which is a ratio of the mass weighted/averaged expression for the potential energy, is found to vary between 1 and 2. It is concluded that ratios for observed clusters approximately 4-10 cannot be explained even by the imprecision of the expression for the mass using averaged quantities, and certainly implies the presence of unseen matter. Total masses via customary application of the virial theorem are calculated for 39 clusters, and total masses for 12 clusters are calculated by a variant of the usual application. The distribution of cluster masses is also presented and briefly discussed. Mass segregation in Wielen's models is studied in terms of the binding energy per unit mass of the 'heavy' sample compared with the 'light' sample. The general absence of mass segregation in relaxaed clusters and the large virial discrepancies are attributed to a population of many low-mass objects that may constitute the bulk mass of clusters of galaxies. (Auth.)

  2. Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, B.J.; Philp, R.P.; Allen, J.D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    2002-07-01

    A large number of underground gasoline storage facilities in the United States continuously leak gasoline into the subsurface, which makes gasoline a major groundwater contaminant. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are used currently to characterize contaminated groundwater and soils. Correlations of contaminants with suspected source(s) are extremely difficult by these techniques because many gasolines have similar hydrocarbon distributions. The present study applied the technique of isotope ratio monitoring gas chromatography-mass spectrometry (irmGC-MS) to 19 gasoline samples from different areas of the USA. This allows a much better correlation of gasoline contaminants to source. Data obtained indicate a wide range of {sup {delta}}{sup 13}C values for 16 ubiquitous compounds in the gasolines. The majority of samples could be distinguished from each other on the basis of {sup {delta}}{sup 13}C hydrocarbon composition. The oxygenated additive methyl tertiary butyl ether (MTBE) was present in ten of the gasolines analyzed, and had a relatively narrow range of {sup {delta}}{sup 13}C values (-30.4 to -28.3 per mille). Preliminary investigations were also made to determine the extent of carbon isotopic fractionation after simple water washing and evaporation experiments. Results indicate that the majority of compounds did not undergo significant carbon isotopic fractionation as a result of these processes. (author)

  3. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--part 1: instrument validation of the DELTAplusXP IRMS for bulk nitrogen isotope ratio measurements.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Hill, David M; Maynard, Philip; Roux, Claude

    2010-01-01

    A significant amount of research has been conducted into the use of stable isotopes to assist in determining the origin of various materials. The research conducted in the forensic field shows the potential of isotope ratio mass spectrometry (IRMS) to provide a level of discrimination not achievable utilizing traditional forensic techniques. Despite the research there have been few, if any, publications addressing the validation and measurement uncertainty of the technique for forensic applications. This study, the first in a planned series, presents validation data for the measurement of bulk nitrogen isotope ratios in ammonium nitrate (AN) using the DELTA(plus)XP (Thermo Finnigan) IRMS instrument equipped with a ConFlo III interface and FlashEA 1112 elemental analyzer (EA). Appropriate laboratory standards, analytical methods and correction calculations were developed and evaluated. A validation protocol was developed in line with the guidelines provided by the National Association of Testing Authorities, Australia (NATA). Performance characteristics including: accuracy, precision/repeatability, reproducibility/ruggedness, robustness, linear range, and measurement uncertainty were evaluated for the measurement of nitrogen isotope ratios in AN. AN (99.5%) and ammonium thiocyanate (99.99+%) were determined to be the most suitable laboratory standards and were calibrated against international standards (certified reference materials). All performance characteristics were within an acceptable range when potential uncertainties, including the manufacturer's uncertainty of the technique and standards, were taken into account. The experiments described in this article could be used as a model for validation of other instruments for similar purposes. Later studies in this series will address the more general issue of demonstrating that the IRMS technique is scientifically sound and fit-for-purpose in the forensic explosives analysis field.

  4. Influence of Urine Creatinine on the Relationship between the Albumin-to-Creatinine Ratio and Cardiovascular Events

    Science.gov (United States)

    Carter, Caitlin E.; Gansevoort, Ronald T.; Scheven, Lieneke; Heerspink, Hiddo J. Lambers; Shlipak, Michael G.; de Jong, Paul E.

    2012-01-01

    Summary Background and objectives In the albumin-to-creatinine ratio (spot-ACR), urine creatinine corrects for tonicity but also reflects muscle mass. Low muscle mass is associated with cardiovascular disease (CVD). We hypothesized that the spot-ACR would be higher in women, lower-weight persons, and older individuals, independent of timed urine albumin excretion (24hr-UAE), and accordingly, that spot-ACR would be more strongly associated with CVD events than 24hr-UAE in these subgroups. Design, setting, participants, & methods 2627 PREVEND (Prevention of Renal and Vascular End-stage Disease) participants with 24hr-UAE creatinine concentration (HR, 1.16 per ln-SD higher) were associated with CVD events. Spot-ACR was more strongly associated with CVD events than either component of the ratio (HR, 1.41 per ln-SD higher). Associations of spot-ACR ≥10 mg/g versus less (HR, 2.33) and 24hr-UAE ≥10 mg/d versus less (HR, 2.09) with CVD events were similar, and there were no significant differences across subgroups (P for interactions >0.06). Conclusions In community-living individuals with 24hr-UAE creatinine is associated with CVD risk, but high urine albumin is a stronger determinant of the association of spot-ACR with CVD than is low urine creatinine. PMID:22383750

  5. Determination of 36Cl/Cl ratio in ground water using the accelerator mass spectrometry technique

    International Nuclear Information System (INIS)

    Sharma, Suman; Deodhar, A.S.; Saravana Kumar, U.; Surendran, P.; Shrivastava, A.; Gupta, A.K.; Nair, J.P.; Yadav, M.L.; Hemalatha, M.; Sparrow, H.; Mahata, K.; Thomas, R.G.; Bhagwat, P.V.; Kailas, S.; Kale, R.M.

    2009-01-01

    The Accelerator Mass Spectrometry (AMS) programme using the 14 MV Pelletron Accelerator at Mumbai has been initiated with major emphasis on the determination of 36 Cl in water samples, of interest to hydrology and environment. In order to carry out the AMS measurement, a beam chopper to cut down beam intensity by a factor of 20 has been developed and commissioned. A multi-anode gas -si detector has been built to separate 36 Cl from the interfering 36 S. A new TPS system has been procured to operate the machine in the GVM mode. Standard and blank samples from Prime lab, Purdue have been employed in these measurements to standardise the technique for 36 Cl/Cl ratio determination. The detector was calibrated using the stable 35,37 Cl ions. The background 36 Cl in the system has been measured using the blank sample from Purdue and it was estimated that the ratio of 36 Cl/Cl was of the order of 10 -13 in the present setup. Ground water samples collected from South India were converted to AgCl and put in the SNICS ion source for the AMS measurements. These ground water samples, with 14 C content estimated to be in the range of 1 to 4 pMC indicate that the samples may be more than 35,000 years old. Using the AMS technique we have determined the 36 Cl/Cl ratio values for these ground water samples. They are found to range between 2 to 5 x 10 -12 . Additional measurements are planned to determine the age of the water samples and to understand the reasons for the observed high values of 36 Cl in these samples. (author)

  6. THE STELLAR MASS–HALO MASS RELATION FOR LOW-MASS X-RAY GROUPS AT 0.5< z< 1 IN THE CDFS WITH CSI

    International Nuclear Information System (INIS)

    Patel, Shannon G.; Kelson, Daniel D.; Williams, Rik J.; Mulchaey, John S.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.

    2015-01-01

    Since z∼1, the stellar mass density locked in low-mass groups and clusters has grown by a factor of ∼8. Here, we make the first statistical measurements of the stellar mass content of low-mass X-ray groups at 0.5mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South. These ultra-deep observations allow us to identify bona fide low-mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ∼3%–4% of the total mass of group halos with masses 10 12.8 mass of Fornax and one-fiftieth the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar–halo mass relation is σ∼0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar–halo mass relation since z≲1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies

  7. Forensic Mass Spectrometry

    Science.gov (United States)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  8. Romanian wines characterization with CF-IRMS (Continuous Flow Isotope Ratio Mass Spectrometry) isotopic analysis

    International Nuclear Information System (INIS)

    Costinel, Diana; Ionete, Roxana Elena; Vremera, Raluca; Stanciu, Vasile

    2007-01-01

    Wine growing has been known for centuries long in Romania. The country has been favored by its geographical position in south-eastern Europe, by its proximity to the Black Sea, as well as by the specificity of the local soil and climate. Alongside France, Italy, Spain, Germany, countries in this area like Romania could also be called 'a vine homeland' in Europe. High quality wines produced in this region were object of trade ever since ancient times. Under current EU research projects, it is necessary to develop new methods of evidencing wine adulteration and safety. The use of mass spectrometry (MS) to determine the ratios of stable isotopes in bio-molecules now provides the means to prove the botanical and geographical origin of a wide variety of foodstuffs - and therefore, to authenticate and eliminate fraud. Isotope analysis has been officially adopted by the EU as a means of controlling adulteration of wine. Adulteration of wine can happen in many ways, e.g. addition of non-grape ethanol, addition of non-grape sugar, water or other unauthorized substances, undeclared mixing of wines from different wards, geographical areas or countries, mislabelling of variety and age. The present paper emphasize the isotopic analysis for D/H, 18 O/ 16 O, 13 C/ 12 C from wines, using a new generation Isotope Ratio MS, Finnigan Delta V Plus, coupling with a three flexible continuous flow preparation device (GasBench II, TC Elemental Analyser and GC-C/TC). Therefore authentication of wines is an important problem to which isotopic analysis has made a significant contribution. (authors)

  9. Ratios of regioisomers of minor acylglycerols less polar than triricinolein in castor oil estimated by mass spectrometry and the biosynthesis of tetraacylglycerols in castor

    Science.gov (United States)

    We have recently reported the identification of forty new minor molecular species of acylglycerols containing hydroxy fatty acids less polar than triricinolein by electrospray ionization mass spectrometry of the lithium adducts. The ratios of regioisomers of triacylglycerols (ABC and AAB types) and ...

  10. The universal relation of galactic chemical evolution: the origin of the mass-metallicity relation

    International Nuclear Information System (INIS)

    Zahid, H. Jabran; Dima, Gabriel I.; Kudritzki, Rolf-Peter; Kewley, Lisa J.; Geller, Margaret J.; Hwang, Ho Seong; Silverman, John D.; Kashino, Daichi

    2014-01-01

    We examine the mass-metallicity relation for z ≲ 1.6. The mass-metallicity relation follows a steep slope with a turnover, or 'knee', at stellar masses around 10 10 M ☉ . At stellar masses higher than the characteristic turnover mass, the mass-metallicity relation flattens as metallicities begin to saturate. We show that the redshift evolution of the mass-metallicity relation depends only on the evolution of the characteristic turnover mass. The relationship between metallicity and the stellar mass normalized to the characteristic turnover mass is independent of redshift. We find that the redshift-independent slope of the mass-metallicity relation is set by the slope of the relationship between gas mass and stellar mass. The turnover in the mass-metallicity relation occurs when the gas-phase oxygen abundance is high enough that the amount of oxygen locked up in low-mass stars is an appreciable fraction of the amount of oxygen produced by massive stars. The characteristic turnover mass is the stellar mass, where the stellar-to-gas mass ratio is unity. Numerical modeling suggests that the relationship between metallicity and the stellar-to-gas mass ratio is a redshift-independent, universal relationship followed by all galaxies as they evolve. The mass-metallicity relation originates from this more fundamental universal relationship between metallicity and the stellar-to-gas mass ratio. We test the validity of this universal metallicity relation in local galaxies where stellar mass, metallicity, and gas mass measurements are available. The data are consistent with a universal metallicity relation. We derive an equation for estimating the hydrogen gas mass from measurements of stellar mass and metallicity valid for z ≲ 1.6 and predict the cosmological evolution of galactic gas masses.

  11. Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation

    Science.gov (United States)

    Ensberg, J. J.; Hayes, P. L.; Jimenez, J. L.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Holloway, J. S.; Gordon, T. D.; Jathar, S.; Robinson, A. L.; Seinfeld, J. H.

    2014-03-01

    The underprediction of ambient secondary organic aerosol (SOA) levels by current atmospheric models in urban areas is well established, yet the cause of this underprediction remains elusive. Likewise, the relative contribution of emissions from gasoline- and diesel-fueled vehicles to the formation of SOA is generally unresolved. We investigate the source of these two discrepancies using data from the 2010 CalNex experiment carried out in the Los Angeles Basin (Ryerson et al., 2013). Specifically, we use gas-phase organic mass (GPOM) and CO emission factors in conjunction with measured enhancements in oxygenated organic aerosol (OOA) relative to CO to quantify the significant lack of closure between expected and observed organic aerosol concentrations attributable to fossil-fuel emissions. Two possible conclusions emerge from the analysis to yield consistency with the ambient data: (1) vehicular emissions are not a dominant source of anthropogenic fossil SOA in the Los Angeles Basin, or (2) the ambient SOA mass yields used to determine the SOA formation potential of vehicular emissions are substantially higher than those derived from laboratory chamber studies.

  12. Complex-mass shell renormalization of the higher-derivative electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Turcati, Rodrigo [SISSA, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro (Brazil); Neves, Mario Junior [Universidade Federal Rural do Rio de Janeiro, Departamento de Fisica, Rio de Janeiro (Brazil)

    2016-08-15

    We consider a higher-derivative extension of QED modified by the addition of a gauge-invariant dimension-6 kinetic operator in the U(1) gauge sector. The Feynman diagrams at one-loop level are then computed. The modification in the spin-1 sector leads the electron self-energy and vertex corrections diagrams finite in the ultraviolet regime. Indeed, no regularization prescription is used to calculate these diagrams because the modified propagator always occurs coupled to conserved currents. Moreover, besides the usual massless pole in the spin-1 sector, there is the emergence of a massive one, which becomes complex when computing the radiative corrections at one-loop order. This imaginary part defines the finite decay width of the massive mode. To check consistency, we also derive the decay length using the electron-positron elastic scattering and show that both results are equivalent. Because the presence of this unstable mode, the standard renormalization procedures cannot be used and is necessary adopt an appropriate framework to perform the perturbative renormalization. For this purpose, we apply the complex-mass shell scheme (CMS) to renormalize the aforementioned model. As an application of the formalism developed, we estimate a quantum bound on the massive parameter using the measurement of the electron anomalous magnetic moment and compute the Uehling potential. At the end, the renormalization group is analyzed. (orig.)

  13. Simultaneous analysis of (13)C-glutathione as its dimeric form GSSG and its precursor [1-(13)C]glycine using liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schierbeek, Henk; Rook, Denise; te Braake, Frans W. J.; Dorst, Kristien Y.; Voortman, Gardi; Godin, Jean-Philippe; Fay, Laurent-Bernard; van Goudoever, Johannes B.

    2009-01-01

    Determination of glutathione kinetics using stable isotopes requires accurate measurement of the tracers and tracees. Previously, the precursor and synthesized product were measured with two separate techniques, liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) and gas

  14. Mass spectrometry of long-lived radionuclides

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine.

    2003-01-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated--therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129 Xe + for the determination of 129 I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  15. Circulating glucagon to ghrelin ratio as a determinant of insulin resistance in hyperthyroidism.

    Science.gov (United States)

    Ağbaht, Kemal; Erdogan, Murat Faik; Emral, Rifat; Baskal, Nilgun; Güllü, Sevim

    2014-02-01

    Due to stimulated overall metabolism, a state of nutritional inadequacy often ensues, during thyrotoxicosis. We aimed to investigate circulating levels of some major components of the system that regulates energy stores, glucose, and fat metabolism, during thyrotoxicosis compared to euthyroidism. Fasting serum ghrelin, leptin, adiponectin, insulin, glucagon, glucose, as well as body fat composition were analyzed during thyrotoxicosis in 40 hyperthyroid patients (50.5 ± 15.2 years old, 22 females, 31 with Graves disease, and 9 with toxic nodular goiter). The same measurements were repeated an average 3 months later, when all patients achieved euthyroidism. Compared to euthyroidism, in thyrotoxicosis, patients had lower ghrelin and fat mass; had comparable insulin, HOMA-IR, glucagon, and leptin levels; higher levels of circulating adiponectin. Fasting serum glucose tended to be higher during thyrotoxicosis. The unique correlation of HOMA-IR was with the-glucagon to ghrelin ratio-(r = 0.801, p hyperthyroidism. The fasting HOMA-IR tends to be higher, despite the decreased adiposity in hyperthyroidism. The-glucagon to ghrelin ratio-strongly correlates with fasting HOMA-IR in hyperthyroidism.

  16. Measurement of the 13C/12C ratio of soil-plant individual sugars by gas chromatography/combustion/isotope-ratio mass spectrometry of silylated derivatives.

    Science.gov (United States)

    Derrien, Delphine; Balesdent, Jérôme; Marol, Christine; Santaella, Catherine

    2003-01-01

    Carbohydrate is an important pool in the terrestrial carbon cycle. The potential offered by natural and artificial 13C-labelling techniques should therefore be applied to the investigation of the dynamics of individual sugars in soils. For this reason, we evaluated the method of 13C sugar analysis by gas chromatography/combustion/isotope-ratio mass spectrometry (GC/C/IRMS) after hydrolysis and direct trimethylsilylation. Trimethylsilylation involved the addition of several carbon atoms per sugar. These atoms have to be taken into account in the estimation of the carbon isotope ratio. The analysis of standard and natural pentoses and hexoses of known 13C enrichments revealed that the number of analysed added carbon atoms was less than expected from stoichiometry. This was attributed to incomplete derivatization and/or incomplete oxidation of methylsilyl carbon before IRMS. Using a calibration of the number of analysed added carbon atoms, the isotope excess of enriched samples could be determined with a relative error close to 5%. Concerning the determination of natural abundances by GC/C/IRMS, we could measure the delta 13C of standard C3- and C4-derived sugars with an accuracy of +/-1.5 per thousand using the previous calibration. We were able to apply this technique to plant-soil systems labelled by pulse-chase of 13CO2, revealing the nature and dynamics of sugars in the plant rhizosphere. Copyright 2003 John Wiley & Sons, Ltd.

  17. Efficient isotope ratio analysis of uranium particles in swipe samples by total-reflection x-ray fluorescence spectrometry and secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Watanabe, Kazuo; Fukuyama, Hiroyasu; Onodera, Takashi; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu

    2004-01-01

    A new particle recovery method and a sensitive screening method were developed for subsequent isotope ratio analysis of uranium particles in safeguards swipe samples. The particles in the swipe sample were recovered onto a carrier by means of vacuum suction-impact collection method. When grease coating was applied to the carrier, the recovery efficiency was improved to 48±9%, which is superior to that of conventionally-used ultrasoneration method. Prior to isotope ratio analysis with secondary ion mass spectrometry (SIMS), total reflection X-ray fluorescence spectrometry (TXRF) was applied to screen the sample for the presence of uranium particles. By the use of Si carriers in TXRF analysis, the detection limit of 22 pg was achieved for uranium. By combining these methods with SIMS, the isotope ratios of 235 U/ 238 U for individual uranium particles were efficiently determined. (author)

  18. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S. O.; Lynnerup, Niels

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context...... by the delta(13)C analysis of hair proteins and bone collagen recovered from six individuals from Uummannaq in Greenland. The analysis of hair and bone amino acids from the same individual, compared for the first time in this study, is of importance in palaeodietary reconstruction. If hair proteins can be used...

  19. Accurate prediction of H3O+ and D3O+ sensitivity coefficients to probe a variable proton-to-electron mass ratio

    Science.gov (United States)

    Owens, A.; Yurchenko, S. N.; Polyansky, O. L.; Ovsyannikov, R. I.; Thiel, W.; Špirko, V.

    2015-12-01

    The mass sensitivity of the vibration-rotation-inversion transitions of H316O+, H318O+, and D316O+ is investigated variationally using the nuclear motion program TROVE (Yurchenko, Thiel & Jensen). The calculations utilize new high-level ab initio potential energy and dipole moment surfaces. Along with the mass dependence, frequency data and Einstein A coefficients are computed for all transitions probed. Particular attention is paid to the Δ|k| = 3 and Δ|k - l| = 3 transitions comprising the accidentally coinciding |J, K = 0, v2 = 0+> and |J, K = 3, v2 = 0-> rotation-inversion energy levels. The newly computed probes exhibit sensitivities comparable to their ammonia and methanol counterparts, thus demonstrating their potential for testing the cosmological stability of the proton-to-electron mass ratio. The theoretical TROVE results are in close agreement with sensitivities obtained using the non-rigid and rigid inverter approximate models, confirming that the ab initio theory used in the present study is adequate.

  20. Prediction of fetal lung maturity using the lecithin/sphingomyelin (L/S) ratio analysis with a simplified sample preparation, using a commercial microtip-column combined with mass spectrometric analysis.

    Science.gov (United States)

    Kwak, Ho-Seok; Chung, Hee-Jung; Choi, Young Sik; Min, Won-Ki; Jung, So Young

    2015-07-01

    Fetal lung maturity is estimated using the lecithin/sphingomyelin ratio (L/S ratio) in amniotic fluid and it is commonly measured with thin-layer chromatography (TLC). The TLC method is time consuming and technically difficult; however, it is widely used because there is no alternative. We evaluated a novel method for measuring the L/S ratio, which involves a tip-column with a cation-exchange resin and mass spectrometry. Phospholipids in the amniotic fluid were extracted using methanol and chloroform. Choline-containing phospholipids such as lecithin and sphingomyelin were purified by passing them through the tip-column. LC-MS/MS and MALDI-TOF were used to directly analyze the purified samples. The L/S ratio by mass spectrometry was calculated from the sum peak intensity of the six lecithin, and that of sphingomyelin 34:1. In 20 samples, the L/S ratio determined with TLC was significantly correlated with that obtained by LC-MS/MS and MALDI-TOF. There was a 100% concordance between the L/S ratio by TLC and that by LC-MS/MS (kappa value=1.0). The concordance between the L/S ratio by TLC and that by MALDI-TOF was also 100% (kappa value=1.0). Our method provides a faster, simpler, and more reliable assessment of fetal lung maturity. The L/S ratio measured by LC-MS/MS and MALDI-TOF offers a compelling alternative method to traditional TLC. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Higher order terms in the inflaton potential and the lower bound on the tensor to scalar ratio r

    Science.gov (United States)

    Destri, C.; de Vega, H. J.; Sanchez, N. G.

    2011-03-01

    The MCMC analysis of the CMB + LSS data in the context of the Ginsburg-Landau approach to inflation indicated that the fourth degree double-well inflaton potential in new inflation gives an excellent fit of the present CMB and LSS data. This provided a lower bound for the ratio r of the tensor to scalar fluctuations and as most probable value r ≃ 0.05, within reach of the forthcoming CMB observations. In this paper we systematically analyze the effects of arbitrarily higher order terms in the inflaton potential on the CMB observables: spectral index ns and ratio r. Furthermore, we compute in close form the inflaton potential dynamically generated when the inflaton field is a fermion condensate in the inflationary universe. This inflaton potential turns out to belong to the Ginsburg-Landau class too. The theoretical values in the (ns, r) plane for all double well inflaton potentials in the Ginsburg-Landau approach (including the potential generated by fermions) fall inside a universal banana-shaped region B. The upper border of the banana-shaped region B is given by the fourth order double-well potential and provides an upper bound for the ratio r. The lower border of B is defined by the quadratic plus an infinite barrier inflaton potential and provides a lower bound for the ratio r. For example, the current best value of the spectral index ns = 0.964, implies r is in the interval: 0.021 < r < 0.053. Interestingly enough, this range is within reach of forthcoming CMB observations.

  2. A REVIEW ON MASS SPECTROMETRY DETECTORS

    OpenAIRE

    Khatri Neetu; Gupta Ankit; Taneja Ruchi; Bilandi Ajay; Beniwal Prashant

    2012-01-01

    Mass spectrometry is an analytical technique for "weighing" molecules. Obviously, this is not done with a conventional scale or balance. Instead, mass spectrometry is based upon the principle of the motion of a charged particle that is called an ion, in an electric or magnetic field. The mass to charge ratio (m/z) of the ion affects particles motion. Since the charge of an electron is known, the mass to charge ratio (m/z) is a measurement of mass of an ion. Mass spectrometry research focuses ...

  3. The impact of tissue Doppler index E/e' ratio on instantaneous wave-free ratio.

    Science.gov (United States)

    Arashi, Hiroyuki; Yamaguchi, Junichi; Ri, Tonre; Otsuki, Hisao; Nakao, Masashi; Kamishima, Kazuho; Jujo, Kentaro; Minami, Yuichiro; Ogawa, Hiroshi; Hagiwara, Nobuhisa

    2018-03-01

    The instantaneous wave-free ratio (iFR) is a vasodilator-free, invasive pressure wire index of the functional severity of coronary stenosis and is calculated under resting conditions. In a recent study, iFR was found to be more closely linked to coronary flow reserve (CFR) than fractional flow reserve (FFR). E/e' is a surrogate marker of left ventricular (LV) filling pressure and LV diastolic dysfunction. Coronary resting flow was found to be increased in patients with elevated E/e', and higher coronary resting flow was associated with lower CFR. Higher baseline coronary flow induces a greater loss of translesional pressure and may affect iFR. However, no reports have examined the impact of E/e' on iFR. The purpose of this study was to assess the relationship between iFR and E/e' compared with FFR. We retrospectively examined 103 consecutive patients (142 with stenosis) whose iFR, FFR, and E/e' were measured simultaneously. The mean age, LV mass index, and systolic blood pressure of patients with elevated E/e' were higher than those of patients with normal E/e'. Although no significant differences were observed in mean FFR values and % diameter stenosis, the mean iFR value in patients with elevated E/e' was significantly lower than that in patients with normal E/e'. The iFR was negatively correlated with E/e', while there was no correlation between FFR and E/e'. Multivariate analysis showed that E/e' and % diameter stenosis were independent determinants of iFR. E/e' ratio affects iFR values. Our results suggest that FFR mainly reflects the functional severity of the epicardial stenosis whereas iFR could potentially be influenced by not only epicardial stenosis but also other factors related to LV filling pressure or LV diastolic dysfunction. Further research is needed to understand the underlying mechanisms that influence the evaluation of iFR in patients with elevated E/e'. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights

  4. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction.

    Science.gov (United States)

    Dunn, Philip J H; Honch, Noah V; Evershed, Richard P

    2011-10-30

    Results are presented of a comparison of the amino acid (AA) δ(13)C values obtained by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) and liquid chromatography-isotope ratio mass spectrometry (LC/IRMS). Although the primary focus was the compound-specific stable carbon isotope analysis of bone collagen AAs, because of its growing application for palaeodietary and palaeoecological reconstruction, the results are relevant to any field where AA δ(13)C values are required. We compare LC/IRMS with the most up-to-date GC/C/IRMS method using N-acetyl methyl ester (NACME) AA derivatives. This comparison involves the analysis of standard AAs and hydrolysates of archaeological human bone collagen, which have been previously investigated as N-trifluoroacetyl isopropyl esters (TFA/IP). It was observed that, although GC/C/IRMS analyses required less sample, LC/IRMS permitted the analysis of a wider range of AAs, particularly those not amenable to GC analysis (e.g. arginine). Accordingly, reconstructed bulk δ(13)C values based on LC/IRMS-derived δ(13)C values were closer to the EA/IRMS-derived δ(13)C values than those based on GC/C/IRMS values. The analytical errors for LC/IRMS AA δ(13)C values were lower than GC/C/IRMS determinations. Inconsistencies in the δ(13)C values of the TFA/IP derivatives compared with the NACME- and LC/IRMS-derived δ(13)C values suggest inherent problems with the use of TFA/IP derivatives, resulting from: (i) inefficient sample combustion, and/or (ii) differences in the intra-molecular distribution of δ(13)C values between AAs, which are manifested by incomplete combustion. Close similarities between the NACME AA δ(13)C values and the LC/IRMS-derived δ(13)C values suggest that the TFA/IP derivatives should be abandoned for the natural abundance determinations of AA δ(13)C values. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Seismic probing of the first dredge-up event through the eccentric red-giant and red-giant spectroscopic binary KIC 9163796. How different are red-giant stars with a mass ratio of 1.015?

    Science.gov (United States)

    Beck, P. G.; Kallinger, T.; Pavlovski, K.; Palacios, A.; Tkachenko, A.; Mathis, S.; García, R. A.; Corsaro, E.; Johnston, C.; Mosser, B.; Ceillier, T.; do Nascimento, J.-D.; Raskin, G.

    2018-04-01

    Context. Binaries in double-lined spectroscopic systems (SB2) provide a homogeneous set of stars. Differences of parameters, such as age or initial conditions, which otherwise would have strong impact on the stellar evolution, can be neglected. The observed differences are determined by the difference in stellar mass between the two components. The mass ratio can be determined with much higher accuracy than the actual stellar mass. Aim. In this work, we aim to study the eccentric binary system KIC 9163796, whose two components are very close in mass and both are low-luminosity red-giant stars. Methods: We analysed four years of Kepler space photometry and we obtained high-resolution spectroscopy with the Hermes instrument. The orbital elements and the spectra of both components were determined using spectral disentangling methods. The effective temperatures, and metallicities were extracted from disentangled spectra of the two stars. Mass and radius of the primary were determined through asteroseismology. The surface rotation period of the primary is determined from the Kepler light curve. From representative theoretical models of the star, we derived the internal rotational gradient, while for a grid of models, the measured lithium abundance is compared with theoretical predictions. Results: From seismology the primary of KIC 9163796 is a star of 1.39 ± 0.06 M⊙, while the spectroscopic mass ratio between both components can be determined with much higher precision by spectral disentangling to be 1.015 ± 0.005. With such mass and a difference in effective temperature of 600 K from spectroscopy, the secondary and primary are, respectively, in the early and advanced stage of the first dredge-up event on the red-giant branch. The period of the primary's surface rotation resembles the orbital period within ten days. The radial rotational gradient between the surface and core in KIC 9163796 is found to be 6.9-1.0+2.0. This is a low value but not exceptional if

  6. General relativistic dynamics of an extreme mass-ratio binary interacting with an external body

    Science.gov (United States)

    Yang, Huan; Casals, Marc

    2017-10-01

    We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.

  7. The ratio of nurse consultation and physician efficiency index of senior rheumatologists is significantly higher than junior physicians in rheumatology residency training

    DEFF Research Database (Denmark)

    Emamifar, Amir; van Bui Hansen, Morten Hai; Jensen Hansen, Inger Marie

    2017-01-01

    To elucidate the difference between ratios of nurse consultation sought by senior rheumatologists and junior physicians in rheumatology residency training, and also to evaluate physician efficiency index respecting patients with rheumatoid arthritis (RA). Data regarding outpatient visits for RA...... patients between November 2013 and 2015 were extracted. The mean interval (day) between consultations, the nurse/physician visits ratio, and physician efficiency index (nurse/physician visits ratio × mean interval) for each senior and junior physicians were calculated. Disease Activity Score in 28 joints....../physician visits ratio (P = .01) and mean efficiency index (P = .04) of senior rheumatologists were significantly higher than that of junior physicians. Regression analysis showed a positive correlation between physician postgraduate experience and physician efficiency index adjusted for DAS28 at baseline...

  8. Higher body mass, older age and higher monounsaturated fatty acids intake reflect better quantitative ultrasound parameters in Inuit preschoolers

    Directory of Open Access Journals (Sweden)

    Jessy El Hayek

    2012-07-01

    Full Text Available Objectives. Investigate the effects of selected factors associated with quantitative ultrasound parameters among Inuit preschoolers living in Arctic communities (56° 32′–72° 40′N. Materials and methods. Children were selected randomly in summer and early fall (n=296. Dietary intake was assessed through the administration of a 24-h dietary recall (24-h recall and a food frequency questionnaire (FFQ. Anthropometry was measured using standardized procedures. Plasma 25-hydroxy vitamin D (25(OHD and parathyroid hormone (PTH were measured using a chemiluminescent assay (Liaison, Diasorin. Quantitative ultrasound parameters were measured using Sahara Sonometer, (Hologic Inc.. Results. Children divided by speed of sound (SoS and broadband ultrasound attenuation (BUA quartiles were not different for age (years, sex (M/F, calcium (mg/d and vitamin D intake (µg/d and plasma 25(OHD concentration (nmol/L. However, children in the highest BUA and SoS quartile had higher body mass index (BMI compared to those in quartile 1. Using multivariate linear regression, higher BMI, older age and monounsaturated fatty acids (MUFA intake were predictors of BUA while only BMI was a predictor of SoS. Conclusions. Further investigation assessing intakes of traditional foods (TF and nutrients affecting bone parameters along with assessment of vitamin D status of Inuit children across seasons is required.

  9. Using Gas Chromatography/Isotope Ratio Mass Spectrometry to Determine the Fractionation Factor for H2 Production by Hydrogenases

    International Nuclear Information System (INIS)

    Yang, Hui; Ghandi, H.; Shi, Liang; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2012-01-01

    Hydrogenases catalyze the reversible formation of H2, and they are key enzymes in the biological cycling of H2. H isotopes should be a very useful tool in quantifying proton trafficking in biological H2 production processes, but there are several obstacles that have thus far limited the use of this tool. In this manuscript, we describe a new method that overcomes some of these barriers and is specifically designed to measure isotopic fractionation during enzyme-catalyzed H2 evolution. A key feature of this technique is that purified hydrogenases are employed, allowing precise control over the reaction conditions and therefore a high level of precision. A custom-designed high-throughput gas chromatography-isotope ratio mass spectrometer is employed to measure the isotope ratio of the H2. Using this method, we determined that the fractionation factor of H2 production by the (NiFe)-hydrogenase from Desulfivibrio fructosovran is 0.27. This result indicates that, as expected, protons are highly favored over deuterons during H2 evolution. Potential applications of this new method are discussed.

  10. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio

    CERN Document Server

    Hori, Masaki; Sótér, Anna; Barna, Daniel; Dax, Andreas; Hayano, Ryugo; Kobayashi, Takumi; Murakami, Yohei; Todoroki, Koichi; Yamada, Hiroyuki; Horváth, Dezső; Venturelli, Luca

    2016-01-01

    Charge, parity, and time reversal (CPT) symmetry implies that a particle and its antiparticle have the same mass. The antiproton-to-electron mass ratio Embedded Image can be precisely determined from the single-photon transition frequencies of antiprotonic helium. We measured 13 such frequencies with laser spectroscopy to a fractional precision of 2.5 × 10−9 to 16 × 10−9. About 2 × 109 antiprotonic helium atoms were cooled to temperatures between 1.5 and 1.7 kelvin by using buffer-gas cooling in cryogenic low-pressure helium gas; the narrow thermal distribution led to the observation of sharp spectral lines of small thermal Doppler width. The deviation between the experimental frequencies and the results of three-body quantum electrodynamics calculations was reduced by a factor of 1.4 to 10 compared with previous single-photon experiments. From this, Embedded Image was determined as 1836.1526734(15), which agrees with a recent proton-to-electron experimental value within 8 × 10−10.

  11. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies

    Science.gov (United States)

    Li, Hongyu; Ge, Junqiang; Mao, Shude; Cappellari, Michele; Long, R. J.; Li, Ran; Emsellem, Eric; Dutton, Aaron A.; Li, Cheng; Bundy, Kevin; Thomas, Daniel; Drory, Niv; Lopes, Alexandre Roman

    2017-04-01

    We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier {{ATLAS}}3{{D}} results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.

  12. High ratio recirculating gas compressor

    Science.gov (United States)

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  13. Higher levels of albuminuria within the normal range predict incident hypertension.

    Science.gov (United States)

    Forman, John P; Fisher, Naomi D L; Schopick, Emily L; Curhan, Gary C

    2008-10-01

    Higher levels of albumin excretion within the normal range are associated with cardiovascular disease in high-risk individuals. Whether incremental increases in urinary albumin excretion, even within the normal range, are associated with the development of hypertension in low-risk individuals is unknown. This study included 1065 postmenopausal women from the first Nurses' Health Study and 1114 premenopausal women from the second Nurses' Health Study who had an albumin/creatinine ratio who did not have diabetes or hypertension. Among the older women, 271 incident cases of hypertension occurred during 4 yr of follow-up, and among the younger women, 296 incident cases of hypertension occurred during 8 yr of follow-up. Cox proportional hazards regression was used to examine prospectively the association between the albumin/creatinine ratio and incident hypertension after adjustment for age, body mass index, estimated GFR, baseline BP, physical activity, smoking, and family history of hypertension. Participants who had an albumin/creatinine ratio in the highest quartile (4.34 to 24.17 mg/g for older women and 3.68 to 23.84 mg/g for younger women) were more likely to develop hypertension than those who had an albumin/creatinine ratio in the lowest quartile (hazard ratio 1.76 [95% confidence interval 1.21 to 2.56] and hazard ratio 1.35 [95% confidence interval 0.97 to 1.91] for older and younger women, respectively). Higher albumin/creatinine ratios, even within the normal range, are independently associated with increased risk for development of hypertension among women without diabetes. The definition of normal albumin excretion should be reevaluated.

  14. Dereplication of Natural Products Using GC-TOF Mass Spectrometry: Improved Metabolite Identification By Spectral Deconvolution Ratio Analysis

    Directory of Open Access Journals (Sweden)

    Fausto Carnevale Neto

    2016-09-01

    Full Text Available Dereplication based on hyphenated techniques has been extensively applied in plant metabolomics, avoiding re-isolation of known natural products. However, due to the complex nature of biological samples and their large concentration range, dereplication requires the use of chemometric tools to comprehensively extract information from the acquired data. In this work we developed a reliable GC-MS-based method for the identification of non-targeted plant metabolites by combining the Ratio Analysis of Mass Spectrometry deconvolution tool (RAMSY with Automated Mass Spectral Deconvolution and Identification System software (AMDIS. Plants species from Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems due to their molecular diversity, ethnopharmacological potential and economical value. The samples were analyzed by GC-MS after methoximation and silylation reactions. Dereplication initiated with the use of a factorial design of experiments to determine the best AMDIS configuration for each sample, considering linear retention indices and mass spectral data. A heuristic factor (CDF, compound detection factor was developed and applied to the AMDIS results in order to decrease the false-positive rates. Despite the enhancement in deconvolution and peak identification, the empirical AMDIS method was not able to fully deconvolute all GC-peaks, leading to low MF values and/or missing metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted ions. The results from this combination of optimized AMDIS with RAMSY attested to the ability of this approach as an improved dereplication method for complex biological samples such as plant extracts.

  15. The association between higher body mass index and poor school performance in high school students.

    Science.gov (United States)

    Tonetti, L; Fabbri, M; Filardi, M; Martoni, M; Natale, V

    2016-12-01

    This study aimed to examine the association between body mass index (BMI) and school performance in high school students by controlling for relevant mediators such as sleep quality, sleep duration and socioeconomic status. Thirty-seven high school students (mean age: 18.16 ± 0.44 years) attending the same school type, i.e. 'liceo scientifico' (science-based high school), were enrolled. Students' self-reported weight and height were used to calculate BMI. Participants wore an actigraph to objectively assess the quality and duration of sleep. School performance was assessed through the actual grade obtained at the final school-leaving exam, in which higher grades indicate higher performance. BMI, get-up time, mean motor activity, wake after sleep onset and number of awakenings were negatively correlated with the grade, while sleep efficiency was positively correlated. When performing a multiple regression analysis, BMI proved the only significant (negative) predictor of grade. When controlling for sleep quality, sleep duration and socioeconomic status, a higher BMI is associated with a poorer school performance in high school students. © 2015 World Obesity Federation.

  16. Two Balls' Collision of Mass Ratio 3:1

    Science.gov (United States)

    Ogawara, Yasuo; Hull, Michael M.

    2018-01-01

    Students will sometimes ask why momentum and kinetic energy concepts are both necessary. When physics teachers demonstrate situations that require both an understanding of kinetic energy and momentum, a favorite is Newton's cradle, or a comparable demonstration of two balls of equal mass hitting each other. However, in addition to the case of two…

  17. The Impact of Mass and Universal Higher Education on Curriculum and Instruction: Case Studies of China and Japan

    Science.gov (United States)

    Huang, Futao

    2017-01-01

    Based on case studies of China and Japan, this study undertakes comparative research on major aspects of university curriculum and instruction-teaching activities of academics, their role in curriculum development, and their perceptions of these activities--between a mass and a universal higher education system. Major findings from the APA…

  18. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    Science.gov (United States)

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  19. Determination of carbon isotope ratios for honey samples by means of a liquid chromatography/isotope ratio mass spectrometry system coupled with a post-column pump.

    Science.gov (United States)

    Kawashima, Hiroto; Suto, Momoka; Suto, Nana

    2018-05-20

    Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been used to authenticate and trace products such as honey, wine, and lemon juice, and compounds such as caffeine and pesticides. However, LC/IRMS has several disadvantages, including the high cost of the CO 2 membrane and blocking by solidified sodium persulfate. Here, we developed an improved system for determining carbon isotope ratios by LC/IRMS. The main improvement was the use of a post-column pump. Using the improved system, we determined δ 13 C values for glucose with high accuracy and precision (0.1‰ and 0.1‰, respectively; n = 3). The glucose, fructose, disaccharide, trisaccharide, and organic acid constituents of the honey samples were analyzed by LC/IRMS. The δ 13 C values for glucose, fructose, disaccharides, trisaccharides, and organic acids ranged from -27.0 to -24.2‰, -26.8 to -24.0‰, -28.8 to -24.0‰, -27.8 to -22.8‰, and -30.6 to -27.4‰, respectively. The analysis time was 1/3-1/2 the times required for analysis by previously reported methods. The column flow rate could be arbitrarily adjusted with the post-column pump. We applied the improved method to 26 commercial honey samples. Our results can be expected to be useful for other researchers who use LC/IRMS. This article is protected by copyright. All rights reserved.

  20. Binary classification of dyslipidemia from the waist-to-hip ratio and body mass index: a comparison of linear, logistic, and CART models

    Directory of Open Access Journals (Sweden)

    Paccaud Fred

    2004-04-01

    Full Text Available Abstract Background We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. Methods Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i linear regression; (ii logistic classification; (iii regression trees; (iv classification trees (iii and iv are collectively known as "CART". Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. Results Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60–80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. Conclusions There were no striking differences between either the algebraic (i, ii vs. non-algebraic (iii, iv, or the regression (i, iii vs. classification (ii, iv modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables.

  1. Projectile Nose Mass Abrasion of High-Speed Penetration into Concrete

    Directory of Open Access Journals (Sweden)

    Haijun Wu

    2012-01-01

    Full Text Available Based on the dynamic spherical cavity expansion theory of concrete and the analysis of experimental data, a mass abrasion model of projectile considering the hardness of aggregates, the relative strength of target and projectile, and the initial impact velocity is constructed in this paper. Furthermore, the effect of mass abrasion on the penetration depth of projectile and the influence of hardness of aggregates and strength of projectile on penetration depth and mass loss are also analyzed. The results show that, for the ogive-nose projectile with the CRH of 3 and aspect ratio of 7 penetrating the concrete of 35 MPa, the “rigid-body penetration” model is available when the initial impact velocity is lower than 800 m/s. However, when the initial impact velocity is higher than 800 m/s, the “deforming/eroding body penetration” model should be adopted. Through theoretical analysis and numerical calculation, the results indicate that the initial impact velocity is the most important factor of mass abrasion. The hardness of aggregates and the strength of projectile are also significant factors. But relatively speaking, the sensitivity of strength of projectile to mass abrasion is higher, which indicates that the effect of projectile material on mass abrasion is more dramatic than the hardness of aggregates.

  2. Public Expenditure and Scheduled Community Enrolment in Higher Education: A Comparison across Indian States

    Science.gov (United States)

    Sumithra, S.; Vardhan, R. Vishnu; Aruna, C.

    2014-01-01

    In India, the gross enrolment ratio has increased from 13.1 per cent in 2007-2008 to 15 per cent in 2011-2012 which moves the country from elite to a mass higher education system. This article seeks to examine the enrolment of scheduled caste (SC) students across various states in the country and the expenditure by each state and its effect on SC…

  3. The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    Science.gov (United States)

    Amaro-Seoane, Pau; Preto, Miguel

    2011-05-01

    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an 'extreme-mass ratio inspiral' (EMRI). The small object, typically a stellar black hole, emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map spacetime around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic centre revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp, or core) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation N-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M• boosting the EMRI rates by a factor of ~10 in comparison to what would result from a 7/4-Bahcall and Wolf cusp resulting in ~250 events per Gyr per Milky Way type galaxy. Such an intrinsic rate should translate roughly into ~102-7 × 102 sbh's (EMRIs detected by LISA over a mission lifetime of 2 or 5 years, respectively), depending on the detailed assumptions regarding LISA detection capabilities.

  4. Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization Study

    Science.gov (United States)

    Granell, Raquel; Henderson, A. John; Evans, David M.; Smith, George Davey; Ness, Andrew R.; Lewis, Sarah; Palmer, Tom M.; Sterne, Jonathan A. C.

    2014-01-01

    Background Observational studies have reported associations between body mass index (BMI) and asthma, but confounding and reverse causality remain plausible explanations. We aim to investigate evidence for a causal effect of BMI on asthma using a Mendelian randomization approach. Methods and Findings We used Mendelian randomization to investigate causal effects of BMI, fat mass, and lean mass on current asthma at age 7½ y in the Avon Longitudinal Study of Parents and Children (ALSPAC). A weighted allele score based on 32 independent BMI-related single nucleotide polymorphisms (SNPs) was derived from external data, and associations with BMI, fat mass, lean mass, and asthma were estimated. We derived instrumental variable (IV) estimates of causal risk ratios (RRs). 4,835 children had available data on BMI-associated SNPs, asthma, and BMI. The weighted allele score was strongly associated with BMI, fat mass, and lean mass (all p-valuesBMI on asthma was 1.55 (95% CI 1.16–2.07) per kg/m2, p = 0.003. This effect appeared stronger for non-atopic (1.90, 95% CI 1.19–3.03) than for atopic asthma (1.37, 95% CI 0.89–2.11) though there was little evidence of heterogeneity (p = 0.31). The estimated causal RRs for the effects of fat mass and lean mass on asthma were 1.41 (95% CI 1.11–1.79) per 0.5 kg and 2.25 (95% CI 1.23–4.11) per kg, respectively. The possibility of genetic pleiotropy could not be discounted completely; however, additional IV analyses using FTO variant rs1558902 and the other BMI-related SNPs separately provided similar causal effects with wider confidence intervals. Loss of follow-up was unlikely to bias the estimated effects. Conclusions Higher BMI increases the risk of asthma in mid-childhood. Higher BMI may have contributed to the increase in asthma risk toward the end of the 20th century. Please see later in the article for the Editors' Summary PMID:24983943

  5. THE HCN/HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mihwa; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Kim, Kee-Tae, E-mail: mihwajin.sf@gmail.com, E-mail: jeongeun.lee@khu.ac.kr, E-mail: ktkim@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-20

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis show consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.

  6. The minimum mass of a charged spherically symmetric object in D dimensions, its implications for fundamental particles, and holography

    International Nuclear Information System (INIS)

    Burikham, Piyabut; Cheamsawat, Krai; Harko, Tiberiu; Lake, Matthew J.

    2016-01-01

    We obtain bounds for the minimum and maximum mass/radius ratio of a stable, charged, spherically symmetric compact object in a D-dimensional space-time in the framework of general relativity, and in the presence of dark energy. The total energy, including the gravitational component, and the stability of objects with minimum mass/radius ratio is also investigated. The minimum energy condition leads to a representation of the mass and radius of the charged objects with minimum mass/radius ratio in terms of the charge and vacuum energy only. As applied to the electron in the four-dimensional case, this procedure allows one to re-obtain the classical electron radius from purely general relativistic considerations. By combining the lower mass bound, in four space-time dimensions, with minimum length uncertainty relations (MLUR) motivated by quantum gravity, we obtain an alternative bound for the maximum charge/mass ratio of a stable, gravitating, charged quantum mechanical object, expressed in terms of fundamental constants. Evaluating this limit numerically, we obtain again the correct order of magnitude value for the charge/mass ratio of the electron, as required by the stability conditions. This suggests that, if the electron were either less massive (with the same charge) or if its charge were any higher (for fixed mass), a combination of electrostatic and dark energy repulsion would destabilize the Compton radius. In other words, the electron would blow itself apart. Our results suggest the existence of a deep connection between gravity, the presence of the cosmological constant, and the stability of fundamental particles. (orig.)

  7. Temperature and air-fuel ratio dependent specific heat ratio functions for lean burned and unburned mixture

    International Nuclear Information System (INIS)

    Ceviz, M.A.; Kaymaz, I.

    2005-01-01

    The most important thermodynamic property used in heat release calculations for engines is the specific heat ratio. The functions proposed in the literature for the specific heat ratio are temperature dependent and apply at or near stoichiometric air-fuel ratios. However, the specific heat ratio is also influenced by the gas composition in the engine cylinder and especially becomes important for lean combustion engines. In this study, temperature and air-fuel ratio dependent specific heat ratio functions were derived to minimize the error by using an equilibrium combustion model for burned and unburned mixtures separately. After the error analysis between the equilibrium combustion model and the derived functions is presented, the results of the global specific heat ratio function, as varying with mass fraction burned, were compared with the proposed functions in the literature. The results of the study showed that the derived functions are more feasible at lean operating conditions of a spark ignition engine

  8. Effect of capsid proteins to ICG mass ratio on fluorescent quantum yield of virus-resembling optical nano-materials

    Science.gov (United States)

    Gupta, Sharad; Ico, Gerardo; Matsumura, Paul; Rao, A. L. N.; Vullev, Valentine; Anvari, Bahman

    2012-03-01

    We recently reported construction of a new type of optical nano-construct composed of genome-depleted plant infecting brome mosaic virus (BMV) doped with Indocyanine green (ICG), an FDA-approved chromophore. We refer to these constructs as optical viral ghosts (OVGs) since only the capsid protein (CP) subunits of BMV remain to encapsulate ICG. To utilize OVGs as effective nano-probes in fluorescence imaging applications, their fluorescence quantum yield needs to be maximized. In this study, we investigate the effect of altering the CP to ICG mass ratio on the fluorescent quantum yield of OVGs. Results of this study provide the basis for construction of OVGs with optimal amounts of CP and ICG to yield maximal fluorescence quantum yield.

  9. A Comprehensive K2 and Ground-based Study of CRTS J035905.9+175034, an Eclipsing SU UMa System with a Large Mass Ratio

    Science.gov (United States)

    Littlefield, Colin; Garnavich, Peter; Kennedy, Mark; Szkody, Paula; Dai, Zhibin

    2018-06-01

    CRTS J035905.9+175034 is the first eclipsing SU UMa system for which a superoutburst has been observed by Kepler in the short-cadence mode. The light curve contains one superoutburst, eight normal outbursts (including a precursor to the superoutburst), and several minioutbursts that are present before—but not after—the superoutburst. The superoutburst began with a precursor normal outburst, and shortly after the peak of the precursor, the system developed large-amplitude superhumps that achieved their maximum amplitude after just three superhump cycles. The period excess of the initial superhump period relative to the orbital period implies a mass ratio of 0.281 ± 0.015, placing it marginally above most theoretical predictions of the highest-possible mass ratio for superhump formation. In addition, our analysis of the variations in eclipse width and depth, as well as the hot spot amplitudes, generally provides substantiation of the thermal-tidal instability model. The K2 data, in conjunction with our ground-based time-resolved spectroscopy and photometry from 2014 to 2016, allows us to determine many of the fundamental parameters of this system.

  10. Observational Constraints on Quasar Black Hole Mass Distributions, Eddington Ratio Distributions, and Lifetimes

    DEFF Research Database (Denmark)

    Kelly, Brandon C.; Vestergaard, Marianne; Fan, X.

    2010-01-01

    I will present the black hole mass function (BHMF) of broad line quasars in the SDSS DR3. We employ a powerful Bayesian statistical technique that corrects for incompleteness and the statistical uncertainty in the mass estimates. We find evidence that the most massive black hole appeared as quasars...... earlier in the universe, and that most quasars are not radiating at or near the Eddington limit. I will also present constraints on the quasar lifetime and maximum black hole mass, derived from the mass functions....

  11. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  12. CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Moster, Benjamin P.; Somerville, Rachel S.; Maulbetsch, Christian; Van den Bosch, Frank C.; Maccio, Andrea V.; Naab, Thorsten; Oser, Ludwig

    2010-01-01

    We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass function be reproduced. We find good agreement with constraints from galaxy-galaxy lensing and predictions of semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation, we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass are in excellent agreement with the observed clustering properties in the Sloan Digital Sky Survey at z = 0. We show that the clustering data do not provide additional strong constraints on the SHM function and conclude that our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function, which yields the average number of galaxies with stellar masses in the range m ± dm/2 that reside in a halo of mass M. We study the redshift dependence of the SHM relation and show that, for low-mass halos, the SHM ratio is lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias at high redshift. Our model predicts that not only are massive galaxies more biased than low-mass galaxies at all redshifts, but also the bias increases more rapidly with increasing redshift for massive galaxies than for low-mass ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass function, and the bias as a function of stellar mass and redshift.

  13. The role of total body fat mass and trunk fat mass, combined with other endocrine factors, in menstrual recovery and psychopathology of adolescents with Anorexia Nervosa.

    Science.gov (United States)

    Karountzos, Vasileios; Lambrinoudaki, Irene; Tsitsika, Artemis; Deligeoroglou, Efthimios

    2017-10-01

    To determine the threshold of total body and trunk fat mass required for menstrual recovery and to assess the impact of body composition in psychopathology of adolescents with Anorexia Nervosa (AN). Prospective study of 60 adolescents presented with secondary amenorrhea and diagnosed with AN. Anthropometrics, body composition by dual-energy X-ray absorptiometry, hormonal studies and responses to mental health screens (EAT-26), were obtained at the beginning and at complete weight restoration, in all adolescents, independently of menstrual recovery (Group A) or not (Group B). At weight restoration, Group A total body fat mass, trunk fat mass, and trunk/extremities fat ratio were significantly higher (p psychopathology of adolescents with AN.

  14. Stopping-power and mass energy-absorption coefficient ratios for Solid Water

    International Nuclear Information System (INIS)

    Ho, A.K.; Paliwal, B.R.

    1986-01-01

    The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration

  15. Determination of isotope ratios of metals (and metalloids) by means of inductively coupled plasma-mass spectrometry for provenancing purposes - A review

    International Nuclear Information System (INIS)

    Balcaen, L.; Moens, L.; Vanhaecke, F.

    2010-01-01

    Since considerable time, isotopic analysis of different elements present in a sample, material or object (such as the 'light' elements H, C, N, O and S and 'heavy' elements, such as Sr and Pb), has been used in provenancing studies, as several factors - defined by 'the environment' or origin of the sample - can lead to measurable differences in their isotopic composition. For the light elements, traditionally, (gas source) isotope ratio mass spectrometry (IR-MS) is used, while for a long period of time, thermal ionization mass spectrometry (TIMS) was considered as the only technique capable of detecting subtle variations in the isotopic composition of the 'heavier' elements. However, since the introduction of the first inductively coupled plasma mass spectrometers (ICP-MS), considerable attention has been devoted to the development of methodologies and strategies to perform isotopic analysis by means of ICP-MS. While the relatively modest isotope ratio precision offered by single-collector ICP-MS may already be fit-for-purpose under some circumstances, especially the introduction of multi-collector ICP-MS instruments, equipped with an array of Faraday detectors instead of a single electron multiplier, has lead to tremendous improvements in the field of isotopic analysis. As a result, MC-ICP-MS can be seen as a very strong competitor of TIMS nowadays, while it even provides information on the small isotopic variations shown by some elements, that are not or hardly accessible by means of TIMS (e.g., elements with a high ionization energy). Owing to these new instrumental developments, the application field of isotopic analysis by means of ICP-MS is continuously growing, also in the field of provenance determination. This paper is intended as a review of the developments in and the recent applications of isotopic analysis by means of ICP-MS in this specific research field.

  16. Use of isotope ratio mass spectrometry to differentiate between endogenous steroids and synthetic homologues in cattle: A review

    International Nuclear Information System (INIS)

    Janssens, Geert; Courtheyn, Dirk; Mangelinckx, Sven; Prévost, Stéphanie; Bichon, Emmanuelle; Monteau, Fabrice; De Poorter, Geert; De Kimpe, Norbert; Le Bizec, Bruno

    2013-01-01

    Graphical abstract: Scheme: Representation of the observed isotope ratios and the relation to exogenous and endogenous natural steroids. AS stands for “amount of steroid”. Highlights: ► The difference between endogenous and exogenous steroids is thoroughly laid out. ► Factors influencing the carbon ratio and the use of Δ 13 C-values are explained. ► Implementation of GC/C/IRMS to detect steroid abuse in cattle is reviewed. ► Alternative methods and upcoming techniques are discussed. ► The differences and similarities with sports doping control are highlighted. -- Abstract: Although substantial technical advances have been achieved during the past decades to extend and facilitate the analysis of growth promoters in cattle, the detection of abuse of synthetic analogs of naturally occurring hormones has remained a challenging issue. When it became clear that the exogenous origin of steroid hormones could be traced based on the 13 C/ 12 C isotope ratio of the substances, GC/C/IRMS has been successfully implemented to this aim since the end of the past century. However, due to the costly character of the instrumental setup, the susceptibility of the equipment to errors and the complex and time consuming sample preparation, this method is up until now only applied by a limited number of laboratories. In this review, the general principles as well as the practical application of GC/C/IRMS to differentiate between endogenous steroids and exogenously synthesized homologous compounds in cattle will be discussed in detail, and will be placed next to other existing and to be developed methods based on isotope ratio mass spectrometry. Finally, the link will be made with the field of sports doping, where GC/C/IRMS has been established within the World Anti-Doping Agency (WADA) approved methods as the official technique to differentiate between exogenous and endogenous steroids over the past few years

  17. Nuclear fuel, mass balances, conversion ratio, doubling time, and uncertainty

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1976-11-01

    Information on the performance aspects of nuclear power plants is presented concerning conversion ratio, criticality, primitive economic analysis, stable breeder-converter industry, doubling time, breeder industry economic benefit, defining nuclear fuel, recommendations, and uncertainty

  18. Biodegradation testing of chemicals with high Henry’s constants – separating mass and effective concentration reveals higher rate constants

    DEFF Research Database (Denmark)

    Birch, Heidi; Andersen, Henrik Rasmus; Comber, Mike

    Microextraction (HS-SPME) was applied directly on the test systems to measure substrate depletion by biodegradation relative to abiotic controls. HS-SPME was also applied to determine air to water partitioning ratios. Water phase biodegradation rate constants, kwater, were up to 72 times higher than test system...

  19. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    2010-01-01

    The IAEA has fostered the more widespread use of a stable isotope technique to assess body composition in different population groups to address priority areas in public health nutrition in Member States. It has done this by supporting national and regional nutrition projects through its technical cooperation programme and coordinated research projects over many years. This publication was developed by an international group of experts to provide practical hands-on guidance in the use of this technique in settings where analysis of stable isotope ratios in biological samples is to be made by isotope ratio mass spectrometry. The publication is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical applications of state of the art methodologies to monitor changes in body composition can be found in IAEA Human Health Series No. 3, Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques

  20. Tile-based Fisher ratio analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS) data using a null distribution approach.

    Science.gov (United States)

    Parsons, Brendon A; Marney, Luke C; Siegler, W Christopher; Hoggard, Jamin C; Wright, Bob W; Synovec, Robert E

    2015-04-07

    Comprehensive two-dimensional (2D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) is a versatile instrumental platform capable of collecting highly informative, yet highly complex, chemical data for a variety of samples. Fisher-ratio (F-ratio) analysis applied to the supervised comparison of sample classes algorithmically reduces complex GC × GC-TOFMS data sets to find class distinguishing chemical features. F-ratio analysis, using a tile-based algorithm, significantly reduces the adverse effects of chromatographic misalignment and spurious covariance of the detected signal, enhancing the discovery of true positives while simultaneously reducing the likelihood of detecting false positives. Herein, we report a study using tile-based F-ratio analysis whereby four non-native analytes were spiked into diesel fuel at several concentrations ranging from 0 to 100 ppm. Spike level comparisons were performed in two regimes: comparing the spiked samples to the nonspiked fuel matrix and to each other at relative concentration factors of two. Redundant hits were algorithmically removed by refocusing the tiled results onto the original high resolution pixel level data. To objectively limit the tile-based F-ratio results to only features which are statistically likely to be true positives, we developed a combinatorial technique using null class comparisons, called null distribution analysis, by which we determined a statistically defensible F-ratio cutoff for the analysis of the hit list. After applying null distribution analysis, spiked analytes were reliably discovered at ∼1 to ∼10 ppm (∼5 to ∼50 pg using a 200:1 split), depending upon the degree of mass spectral selectivity and 2D chromatographic resolution, with minimal occurrence of false positives. To place the relevance of this work among other methods in this field, results are compared to those for pixel and peak table-based approaches.

  1. Geographic origin as a determinant of left ventricular mass and diastolic function - the Cardiovascular Risk in Young Finns Study.

    Science.gov (United States)

    Vähämurto, L; Juonala, M; Ruohonen, S; Hutri-Kähönen, N; Kähönen, M; Laitinen, T; Tossavainen, P; Jokinen, E; Viikari, J; Raitakari, O T; Pahkala, K

    2018-03-01

    Eastern Finns have higher risk of coronary heart disease (CHD) and carotid intima-media thickness than western Finns although current differences in CHD risk factors are minimal. Left ventricular (LV) mass and diastolic function predict future cardiovascular events but their east-west differences are unknown. We examined the association of eastern/western baseline origin with LV mass and diastolic function. The study population included 2045 subjects of the Cardiovascular Risk in Young Finns Study with data from the baseline survey (1980) and the latest follow-up (2011) when echocardiography was performed at the age of 34-49 years. Subjects with eastern baseline origin had in 2011 higher LV mass (139±1.0 vs. 135±1.0 g, p=0.006) and E/e'-ratio indicating weaker LV diastolic function (4.86±0.03 vs. 4.74±0.03, p=0.02) than western subjects. Results were independent of age, sex, area of examination and CHD risk factors such as blood pressure and BMI (LV mass indexed with height: porigin (135±0.9 vs. 131±0.9 ml, p=0.0011) but left atrial end-systolic volume, also indicating LV diastolic function, was not different between eastern and western subjects (43.4±0.5 vs. 44.0±0.5 ml, p=0.45). Most of the subjects were well within the normal limits of these echocardiographic measurements. In our healthy middle-aged population, geographic origin in eastern Finland associated with higher LV mass compared to western Finland. Higher E/e'-ratio suggests that subjects with eastern baseline origin might have higher prevalence of diastolic dysfunction in the future than western subjects.

  2. Disk Masses around Solar-mass Stars are Underestimated by CO Observations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mo; Evans II, Neal J. [Astronomy Department, University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Dodson-Robinson, Sarah E. [University of Delaware, Department of Physics and Astronomy, 217 Sharp Lab, Newark, DE 19716 (United States); Willacy, Karen; Turner, Neal J. [Mail Stop 169-506, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-05-20

    Gas in protostellar disks provides the raw material for giant planet formation and controls the dynamics of the planetesimal-building dust grains. Accurate gas mass measurements help map the observed properties of planet-forming disks onto the formation environments of known exoplanets. Rare isotopologues of carbon monoxide (CO) have been used as gas mass tracers for disks in the Lupus star-forming region, with an assumed interstellar CO/H{sub 2} abundance ratio. Unfortunately, observations of T-Tauri disks show that CO abundance is not interstellar, a finding reproduced by models that show CO abundance decreasing both with distance from the star and as a function of time. Here, we present radiative transfer simulations that assess the accuracy of CO-based disk mass measurements. We find that the combination of CO chemical depletion in the outer disk and optically thick emission from the inner disk leads observers to underestimate gas mass by more than an order of magnitude if they use the standard assumptions of interstellar CO/H{sub 2} ratio and optically thin emission. Furthermore, CO abundance changes on million-year timescales, introducing an age/mass degeneracy into observations. To reach a factor of a few accuracy for CO-based disk mass measurements, we suggest that observers and modelers adopt the following strategies: (1) select low- J transitions; (2) observe multiple CO isotopologues and use either intensity ratios or normalized line profiles to diagnose CO chemical depletion; and (3) use spatially resolved observations to measure the CO-abundance distribution.

  3. Testing effective quantum gravity with gravitational waves from extreme mass ratio inspirals

    International Nuclear Information System (INIS)

    Yunes, N; Sopuerta, C F

    2010-01-01

    Testing deviation of GR is one of the main goals of the proposed Laser Interferometer Space Antenna. For the first time, we consistently compute the generation of gravitational waves from extreme-mass ratio inspirals (stellar compact objects into supermassive black holes) in a well-motivated alternative theory of gravity, that to date remains weakly constrained by double binary pulsar observations. The theory we concentrate on is Chern-Simons (CS) modified gravity, a 4-D, effective theory that is motivated both from string theory and loop-quantum gravity, and which enhances the Einstein-Hilbert action through the addition of a dynamical scalar field and the parity-violating Pontryagin density. We show that although point particles continue to follow geodesics in the modified theory, the background about which they inspiral is a modification to the Kerr metric, which imprints a CS correction on the gravitational waves emitted. CS modified gravitational waves are sufficiently different from the General Relativistic expectation that they lead to significant dephasing after 3 weeks of evolution, but such dephasing will probably not prevent detection of these signals, but instead lead to a systematic error in the determination of parameters. We end with a study of radiation-reaction in the modified theory and show that, to leading-order, energy-momentum emission is not CS modified, except possibly for the subdominant effect of scalar-field emission. The inclusion of radiation-reaction will allow for tests of CS modified gravity with space-borne detectors that might be two orders of magnitude larger than current binary pulsar bounds.

  4. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  5. 129I/127I ratios in surface waters of the English Lake District

    International Nuclear Information System (INIS)

    Atarashi-Andoh, M.; Schnabel, C.; Cook, G.; MacKenzie, A.B.; Dougans, A.; Ellam, R.M.; Freeman, S.; Maden, C.; Olive, V.; Synal, H.-A.; Xu, S.

    2007-01-01

    Accelerator Mass Spectrometry (AMS) was used to measure 129 I/ 127 I ratios in surface sea, lake, and river water samples collected in 2004 and 2005 from the English Lake District and from SW Scotland, areas which are in relatively close proximity to the Sellafield nuclear fuel reprocessing plant in NW England. The 129 I/ 127 I ratios in surface water collected from the shore of the Irish Sea were in the range 2.8 x 10 -6 to 8.2 x 10 -6 . These ratios are one order of magnitude higher than that of seawater collected from the Irish Sea in 1992, correlating with the increase in 129 I content of the Sellafield liquid effluent discharge over the last decade. The 129 I/ 127 I ratios in lakes in the Lake District were in the range 0.7 x 10 -6 to 6.4 x 10 -6 and decreased exponentially as a function of distance from Sellafield. Consideration of the relative variation of stable I concentrations and 129 I/ 127 I ratios suggests that Sellafield gaseous discharges may be the dominant source of 129 I to the lakes

  6. The alfalfa “almost darks” campaign: Pilot VLA HI observations of five high mass-to-light ratio systems

    International Nuclear Information System (INIS)

    Cannon, John M.; Martinkus, Charlotte P.; Leisman, Lukas; Haynes, Martha P.; Giovanelli, Riccardo; Hallenbeck, Gregory; Jones, Michael

    2015-01-01

    We present new Very Large Array (VLA) H i spectral line imaging of five sources discovered by the ALFALFA extragalactic survey. These targets are drawn from a larger sample of systems that were not uniquely identified with optical counterparts during ALFALFA processing, and as such have unusually high H i mass to light ratios. The candidate “Almost Dark” objects fall into four broad categories: (1) objects with nearby H i neighbors that are likely of tidal origin; (2) objects that appear to be part of a system of multiple H i sources, but which may not be tidal in origin; (3) objects isolated from nearby ALFALFA H i detections, but located near a gas-poor early type galaxy; (4) apparently isolated sources, with no object of coincident redshift within ∼400 kpc. Roughly 75% of the 200 objects without identified counterparts in the α.40 database (Haynes et al. 2011) fall into category 1 (likely tidal), and were not considered for synthesis follow-up observations. The pilot sample presented here (AGC193953, AGC208602, AGC208399, AGC226178, and AGC233638) contains the first five sources observed as part of a larger effort to characterize H i sources with no readily identifiable optical counterpart at single dish resolution (3.′5). These objects span a range of H i mass [7.41 < log(M Hi ) < 9.51] and H i mass to B-band luminosity ratios (3 < M Hi /L B < 9). We compare the H i total intensity and velocity fields to optical imaging drawn from the Sloan Digital Sky Survey and to ultraviolet imaging drawn from archival GALEX observations. Four of the sources with uncertain or no optical counterpart in the ALFALFA data are identified with low surface brightness optical counterparts in Sloan Digital Sky Survey imaging when compared with VLA H i intensity maps, and appear to be galaxies with clear signs of ordered rotation in the H i velocity fields. Three of these are detected in far-ultraviolet GALEX images, a likely indication of star formation within the last few

  7. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    Science.gov (United States)

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  8. Applications of Isotope Ratio Mass Spectrometry in Sports Drug Testing Accounting for Isotope Fractionation in Analysis of Biological Samples.

    Science.gov (United States)

    Piper, Thomas; Thevis, Mario

    2017-01-01

    The misuse of anabolic-androgenic steroids (AAS) in sports aiming at enhancing athletic performance has been a challenging matter for doping control laboratories for decades. While the presence of a xenobiotic AAS or its metabolite(s) in human urine immediately represents an antidoping rule violation, the detection of the misuse of endogenous steroids such as testosterone necessitates comparably complex procedures. Concentration thresholds and diagnostic analyte ratios computed from urinary steroid concentrations of, e.g., testosterone and epitestosterone have aided identifying suspicious doping control samples in the past. These ratios can however also be affected by confounding factors and are therefore not sufficient to prove illicit steroid administrations. Here, carbon and, in rare cases, hydrogen isotope ratio mass spectrometry (IRMS) has become an indispensable tool. Importantly, the isotopic signatures of pharmaceutical steroid preparations commonly differ slightly but significantly from those found with endogenously produced steroids. By comparing the isotope ratios of endogenous reference compounds like pregnanediol to that of testosterone and its metabolites, the unambiguous identification of the urinary steroids' origin is accomplished. Due to the complex urinary matrix, several steps in sample preparation are inevitable as pure analyte peaks are a prerequisite for valid IRMS determinations. The sample cleanup encompasses steps such as solid phase or liquid-liquid extraction that are presumably not accompanied by isotopic fractionation processes, as well as more critical steps like enzymatic hydrolysis, high-performance liquid chromatography fractionation, and derivatization of analytes. In order to exclude any bias of the analytical results, each step of the analytical procedure is optimized and validated to exclude, or at least result in constant, isotopic fractionation. These efforts are explained in detail. © 2017 Elsevier Inc. All rights reserved.

  9. Selection of mode for the measurement of lead isotope ratios by inductively coupled plasma mass spectrometry and its application to milk powder analysis

    International Nuclear Information System (INIS)

    Dean, J.R.; Ebdon, L.; Massey, R.

    1987-01-01

    An investigation into the selection of the optimum mode for the measurement of isotope ratios in inductively coupled plasma mass spectrometry (ICP-MS) is reported, with particular reference to lead isotope ratios. Variation in the accuracy and precision achievable using the measurement modes of scanning and peak jumping are discussed. It is concluded that if sufficient sample and time are available, scanning gives best accuracy and precision. Isotope dilution analysis (IDA) has been applied to the measurement of the lead content of two dried milk powders of Australian and European origin introduced as slurries into ICP-MS. Differences in the lead isotope ratios in the two milk powders were investigated and the total lead content determined by IDA. Isotope dilution analysis permitted accurate data to be obtained with an RSD of 4.2% or milk powder containing less than 30 ng g -1 of lead. The ICP-MS technique is confirmed as a useful tool for IDA. (author)

  10. Independent isomer yield ratio of 90Rb

    International Nuclear Information System (INIS)

    Reeder, P.L.; Warner, R.A.; Ford, G.P.; Willmes, H.

    1985-05-01

    The independent isomer yield ratio for 90 Rb from thermal neutron fission of 235 U has been measured by use of a new technique involving a pulsed reactor and an on-line mass spectrometer facility. The apparent isomer yield ratio was measured for different ion collection time intervals and extrapolated to zero collection time to eliminate interference from 90 Kr decay. The observed isomer yield ratio of 8.7 +- 1.0 is one of the largest ratios measured for a low energy fission process. However, a statistical model analysis shows that the average angular momentum ( = 4.5) deduced from this isomer yield ratio is consistent with average angular momentum for other products from low energy fission. 7 refs

  11. C-reactive Protein may Predict the Recurrence of Appendicitis in Children Formerly with Appendiceal Mass after Successful Non-operative Treatment.

    Science.gov (United States)

    Chang, Yi-Jung; Chao, Hsun-Chin; Chen, Chyi-Liang; Chen, Shin-Yann; Yan, Dah-Chin; Tsai, Ming-Han

    2017-08-01

    This study identified factors associated with the recurrence of appendicitis in children with appendiceal masses after successful nonsurgical treatment. In this retrospective study, children who were diagnosed as having appendiceal masses after undergoing conservative treatment between 2000 and 2014 were enrolled and the medical records of those who did not undergo an interval appendectomy were reviewed. The clinical features and outcomes of patients with and those without recurrent appendicitis were compared. Regression analysis was used to identify risk factors of appendicitis recurrence. Seventy patients were included and successfully discharged after receiving nonsurgical treatment for appendiceal masses. Of the patients, 35 (50.0%) developed recurrent appendicitis and 85.7% (30/35) recurrences developed within 3 months. Multivariate analyses showed that patients with a higher serum C-reactive protein (CRP) level and peritonitis more frequently developed recurrence. The appendicitis recurrence rate was significantly higher in the patients with CRP levels of ≥103 mg/L with an odds ratio of 16.9 or in those with peritonitis with an odds ratio of 4.9. Children with appendiceal masses who develop peritonitis or have CRP levels of ≥103 mg/L have a higher recurrence rate of appendicitis and should undergo an interval appendectomy. Copyright © 2017. Published by Elsevier B.V.

  12. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter.

    Science.gov (United States)

    Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel

    2014-09-01

    The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p shear wave elastography parameter was higher than that of ultrasound (p shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio

  13. Non-stochastic Ti-6Al-4V foam structures with negative Poisson's ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li, E-mail: lyang5@ncsu.edu [Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, 111 Lampe Drive, Raleigh, NC 27695 (United States); Cormier, Denis, E-mail: drceie@rit.edu [Department of Industrial Systems Engineering, Rochester Institute of Technology, 81 Lomb Memorial Drive, Rochester, NY 14623-5603 (United States); West, Harvey, E-mail: hawest@ncsu.edu [Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, 111 Lampe Drive, Raleigh, NC 27695 (United States); Harrysson, Ola, E-mail: harrysson@ncsu.edu [Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, 111 Lampe Drive, Raleigh, NC 27695 (United States); Knowlson, Kyle, E-mail: kyle.knowlson@gmail.com [Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, 111 Lampe Drive, Raleigh, NC 27695 (United States)

    2012-12-15

    This paper details the design, fabrication, and testing of non-stochastic auxetic lattice lattice structures. All Ti-6Al-4V samples were created via the Electron Beam Melting (EBM) additive manufacturing process. It was found that the Poisson's ratio values significantly influence the mechanical properties of the structures. The bending properties of the auxetic samples were significantly higher than those of currently commercialized metal foams. The compressive strength was moderately higher than available metal foams. These results suggest that metallic auxetic structures have considerable promise for use in a variety of applications in which tradeoffs between mass and mechanical properties are crucial.

  14. Coupled orbit-attitude motion of high area-to-mass ratio (HAMR) objects including efficient self-shadowing

    Science.gov (United States)

    Früh, Carolin; Jah, Moriba K.

    2014-02-01

    This paper shows the effect of self-shadowing on the coupled attitude-orbit dynamics of objects with high area-to-mass ratios (HAMR) in simulating standard multi layer insulation materials (MLI) as tilted single rigid sheets. Efficient and computationally fast self-shadowing methods have been developed. This includes an approximate self-shadowing method and a rapid exact self-shadowing method. Accuracy considerations are made and the effect of a chosen tessellation is shown. The coupled orbit-attitude perturbations of solar radiation pressure and Earth gravity field are taken into account. The results are compared to the attitude-orbit dynamics, when neglecting self-shadowing effects. An averaged physical shadow-map model is developed and compared to the full self-shadowing simulation. The combined effect of solar radiation pressure and self-shadowing leads to a rapid spin-up of the objects, even though they have uniform reflection properties. As a result, the observed brightness of these objects is subject to rapid changes.

  15. Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    Science.gov (United States)

    Andrianova, Anastasia A.; DiProspero, Thomas; Geib, Clayton; Smoliakova, Irina P.; Kozliak, Evguenii I.; Kubátová, Alena

    2018-05-01

    The capability to characterize lignin, lignocellulose, and their degradation products is essential for the development of new renewable feedstocks. Electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR TOF-MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di-, and triarene lignin model compounds as well as kraft alkali lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9000 Da or higher, depending on the mass analyzer. The obtained M n and M w values of 1500 and 2500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrix-assisted laser desorption/ionization (MALDI)-HR TOF-MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ion mobility ESI-HR Q-TOF-MS. [Figure not available: see fulltext.

  16. Is 99mTc-MDP mammoscintigraphy useful in patients with breast mass lesions?

    International Nuclear Information System (INIS)

    Park, S. K.; Lee, Y. H.; Rhyu, J. W.; Yoo, S. M.

    1998-01-01

    Piccolo et al. advocated the usefulness of 99m Tc-MDP breast scan in differential diagnosis of breast mass with high accuracy. But there are little or no follow-up studies about it as we know. We studied 99m Tc-MDP uptake pattern and lesion/background ratio in patients complaining palpable breast lesions to evaluate the clinical usefulness of 99m Tc-MDP scan. Total 34 patients were studied with physical examination, mammogram and 99m Tc-MDP scan prospectively. Anteroposterior and both lateral view of breast were obtained 5 minutes after iv injection of 740 MBq 99m Tc-MDP. Breast uptake pattern of 99m Tc-MDP was analyzed by a grade system: 0=no uptake, grade 1=bilateral diffuse uptake, grade 2=asymmetric faint uptake, grade 3=focal hot uptake. 20 cases were pathologically confirmed by excision biopsy or aspiration biopsy. 14 cases were normal in physical examination and mammogram. Pathologic results showed 7 carcinomas, 6 benign solid tumors, and 7 fibrocystic changes. Grade 3 pattern of 99m Tc-MDP uptake was noted in 4/7 carcinomas, 3/5 benign solid tumors, and 1/7 fibrocystic changes. Grade 2 pattern was 2/7, 0/7, 3/7 respectively. The average L/B ratio was 1.66 in carcinomas, 1.68 in benign solid masses, 1.20 in fibrocystic diseases, 1.05 in normal patients. L/B ratio was higher in carcinoma and benign mass groups than in fibrocystic change and normal control groups(p=0.005). But there was no statistical difference between L/B ratio of malignant mass group and benign mass group. 99m Tc-MDP scan is not suitable to routine clinical use for breast mass diagnosis. It might be used in limited conditions when whole body bone scan is planned

  17. A new technique for the assessment of the 3D spatial distribution of the calcium/phosphorus ratio in bone apatite.

    Science.gov (United States)

    Hadjipanteli, A; Kourkoumelis, N; Fromme, P; Olivo, A; Huang, J; Speller, R

    2013-11-01

    The value and distribution of calcium/phosphorus (Ca/P) ratio in bone vary between healthy and osteoporotic bone. The purpose of this study was the development of a technique for the assessment of the 3D spatial distribution of Ca/P ratio in bone apatite, which could eventually be implemented through a conventional computed tomography (CT) system. A three-material mass-fraction decomposition CT dual energy analysis was optimized. The technique was validated using ten bone phantoms of different, known Ca/P ratio. Their measured average Ca/P ratio showed a mean/maximum deviation from the expected Ca/P ratio of 0.24/0.35. Additionally, three healthy and three inflammation-mediated osteoporotic (IMO) collagen-free rabbit tibia bone samples were assessed, providing promising preliminary results on real bone tissue. The average Ca/P ratios in all IMO samples (1.64-1.65) were found to be lower than in healthy samples (1.67-1.68). Osteoporotic regions in IMO samples were located using Ca/P ratio colour maps and Ca/P ratio values as low as 1.40 ± 0.26 were found. The low Ca/P ratio volume proportion in IMO samples (12.8%-13.9%) was found to be higher than in healthy (5.8%-8.3%) samples. A region growing technique showed a higher homogeneity of Ca/P ratio in healthy than in IMO bone samples.

  18. Atomic masses of rare-earth isotopes

    International Nuclear Information System (INIS)

    Schmidt-Ott, W.D.; Kantus, R.; Runte, E.

    1981-01-01

    A survey is given of decay energies of rare-earth isotopes measured in electron-capture decay by relative Psub(K) ratios, ECsub(K)/β + , and EC/β + ratios. Atomic masses of A = 147 isotopes and of 146 Gd and 148 Dy were derived. The masses of these isotopes and of α-decaying precessors are compared with predictions of current mass formulae. The subshell closure at Z = 64 is shown for N = 82, and 84 isotones. (orig.)

  19. On-line gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (HRGC-C/P-IRMS) of pineapple (Ananas comosus L. Merr.) volatiles.

    Science.gov (United States)

    Preston, Christina; Richling, Elke; Elss, Sandra; Appel, Markus; Heckel, Frank; Hartlieb, Ariane; Schreier, Peter

    2003-12-31

    By use of extracts prepared by liquid-liquid separation of the volatiles from self-prepared juices of pineapple fruits (Ananas comosus) (n = 14) as well as commercial pineapple recovery aromas/water phases (n = 3), on-line capillary gas chromatography-isotope ratio mass spectrometry was employed in the combustion (C) and the pyrolysis (P) modes (HRGC-C/P-IRMS) to determine the delta(13)C(VPDB) and delta(2)H(VSMOW) values of selected pineapple flavor constituents. In addition to methyl 2-methylbutanoate 1, ethyl 2-methylbutanoate 2, methyl hexanoate 3, ethyl hexanoate 4, and 2,5-dimethyl-4-methoxy-3[2H]-furanone 5, each originating from the fruit, the delta(13)C(VPDB) and delta(2)H(VSMOW) data of commercial synthetic 1-5 and "natural" (biotechnologically derived) 1-4 were determined. With delta(13)C(VPDB) data of pineapple volatiles 1-4 varying from -12.8 to -24.4 per thousand, the range expected for CAM metabolism was observed. Compound 5 showed higher depletion from -20.9 to -28.6 per thousand. A similar situation was given for the delta(2)H(VSMOW) values of 3-5 from pineapple ranging from -118 to -191 per thousand, whereas 1 and 2 showed higher depleted values from -184 to -263 per thousand. In nearly all cases, analytical differentiation of 1-5 from pineapple and natural as well as synthetic origin was possible. In general, natural and synthetic 1-5 exhibited delta(13)C(VPDB) data ranging from -11.8 to -32.2 per thousand and -22.7 to -35.9 per thousand, respectively. Their delta(2)H(VSMOW) data were in the range from -242 to -323 per thousand and -49 to -163 per thousand, respectively.

  20. The influence of zirconia precursor/binding polymer mass ratio in the intermediate electrospun composite fibers on the phase transformation of final zirconia nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodaev, Vyacheslav V.; Zhigachev, Andrey O.; Korenkov, Viktor V.; Golovin, Yuri I. [Institute for Nanotechnology and Nanomaterials, Tambov State University, Internatsionalnaya Str. 33, 392000, Tambov (Russian Federation)

    2016-09-15

    Nanofibrous zirconia was fabricated by calcination of electrospun zirconium oxychloride/polyethylene oxide (PEO) composite fibers with different mass fraction of the components. ZrO{sub 2} nanofibers were characterized by scanning electron microscopy (SEM), nitrogen adsorption at 77 K, and X-ray diffractometry (XRD). It was revealed that increase in ZrOCl{sub 2}/PEO mass ratio above the threshold value significantly decreases tetragonal phase (t-ZrO{sub 2}) content and increases monoclinic phase (m-ZrO{sub 2}) content in final ceramic nanofibers. Distinct t-ZrO{sub 2} → m-ZrO{sub 2} transformation takes place when average ZrO{sub 2} grain size approaches to 30 nm. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Variations in the OM/OC ratio of urban organic aerosol next to a major roadway.

    Science.gov (United States)

    Brown, Steven G; Lee, Taehyoung; Roberts, Paul T; Collett, Jeffrey L

    2013-12-01

    Understanding the organic matter/organic carbon (OM/OC) ratio in ambient particulate matter (PM) is critical to achieve mass closure in routine PM measurements, to assess the sources of and the degree of chemical processing organic aerosol particles have undergone, and to relate ambient pollutant concentrations to health effects. Of particular interest is how the OM/OC ratio varies in the urban environment, where strong spatial and temporal gradients in source emissions are common. We provide results of near-roadway high-time-resolution PM1 OM concentration and OM/OC ratio observations during January 2008 at Fyfe Elementary School in Las Vegas, NV, 18 m from the U.S. 95 freeway soundwall, measured with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The average OM/OC ratio was 1.54 (+/- 0.20 standard deviation), typical of environments with a low amount of secondary aerosol formation. The 2-min average OM/OC ratios varied between 1.17 and 2.67, and daily average OM/OC ratios varied between 1.44 and 1.73. The ratios were highest during periods of low OM concentrations and generally low during periods of high OM concentrations. OM/OC ratios were low (1.52 +/- 0.14, on average) during the morning rush hour (average OM = 2.4 microg/m3), when vehicular emissions dominate this near-road measurement site. The ratios were slightly lower (1.46 +/- 0.10) in the evening (average OM = 6.3 microg/m3), when a combination of vehicular and fresh residential biomass burning emissions was typically present during times with temperature inversions. The hourly averaged OM/OC ratio peaked at 1.66 at midday. OM concentrations were similar regardless of whether the monitoring site was downwind or upwind of the adjacent freeway throughout the day, though they were higher during stagnant conditions (wind speed < 0.5 m/sec). The OM/OC ratio generally varied more with time of day than with wind direction and speed.

  2. Non-linear signal response functions and their effects on the statistical and noise cancellation properties of isotope ratio measurements by multi-collector plasma mass spectrometry

    International Nuclear Information System (INIS)

    Doherty, W.

    2013-01-01

    A nebulizer-centric response function model of the analytical inductively coupled argon plasma ion source was used to investigate the statistical frequency distributions and noise reduction factors of simultaneously measured flicker noise limited isotope ion signals and their ratios. The response function model was extended by assuming i) a single gaussian distributed random noise source (nebulizer gas pressure fluctuations) and ii) the isotope ion signal response is a parabolic function of the nebulizer gas pressure. Model calculations of ion signal and signal ratio histograms were obtained by applying the statistical method of translation to the non-linear response function model of the plasma. Histograms of Ni, Cu, Pr, Tl and Pb isotope ion signals measured using a multi-collector plasma mass spectrometer were, without exception, negative skew. Histograms of the corresponding isotope ratios of Ni, Cu, Tl and Pb were either positive or negative skew. There was a complete agreement between the measured and model calculated histogram skew properties. The nebulizer-centric response function model was also used to investigate the effect of non-linear response functions on the effectiveness of noise cancellation by signal division. An alternative noise correction procedure suitable for parabolic signal response functions was derived and applied to measurements of isotope ratios of Cu, Ni, Pb and Tl. The largest noise reduction factors were always obtained when the non-linearity of the response functions was taken into account by the isotope ratio calculation. Possible applications of the nebulizer-centric response function model to other types of analytical instrumentation, large amplitude signal noise sources (e.g., lasers, pumped nebulizers) and analytical error in isotope ratio measurements by multi-collector plasma mass spectrometry are discussed. - Highlights: ► Isotope ion signal noise is modelled as a parabolic transform of a gaussian variable. ► Flicker

  3. [Triglycerides/HDL-cholesterol ratio: in adolescents without cardiovascular risk factors].

    Science.gov (United States)

    Soutelo, Jimena; Graffigna, Mabel; Honfi, Margarita; Migliano, Marta; Aranguren, Marcela; Proietti, Adrian; Musso, Carla; Berg, Gabriela

    2012-06-01

    Triglycerides/HDL-cholesterol ratio (TG/HDL) is an easy resource determination and it has good correlation with the HOMA index in adults. Due to physiological insulin resistance (IR) in adolescence it is necessary to find markers of IR independent of age, sex and pubertal stage. The objective was to identify reference values of TG/HDL ratio in a population of adolescents without cardiovascular risk factors. We evaluated 943 adolescents, 429 females and 514 males between 11 and 14. Anthropometric measures were determined and body mass index was calculated (BMI). Blood was extracted after 12 hours of fasting to determine glucose, triglycerides, HDL. The metabolic syndrome (MS) was diagnosed according to criteria of NCEP/ATP III modified by Cook. We excluded adolescents with MS or any component of it. We evaluated 562 adolescents (289 women and 273 men) with a weight of 48.91 +/- 6.51kg, BMI: 18.95 +/- 1.78, systolic blood pressure of 108.12 +/- 13.60 mmHg, diastolic blood pressure: 63.82 +/- 9.43 and waist circumference: 65.09 +/- 4.54 cm. TG/HDL ratio was 1.25 +/- 0.43, with a 95 percentile of 2.05. In adults, TG/HDL ratio greater than 3 is a marker of insulin resistance. We believe that a higher value to 2.05 might be a good index of insulin resistance in adolescence. TG/HDL ratio has the advantage of being methodologically simpler, more economical and independent of pubertal stage.

  4. Boundaries of mass resolution in native mass spectrometry.

    Science.gov (United States)

    Lössl, Philip; Snijder, Joost; Heck, Albert J R

    2014-06-01

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.

  5. Identifying Malignant Pleural Effusion by A Cancer Ratio (Serum LDH: Pleural Fluid ADA Ratio).

    Science.gov (United States)

    Verma, Akash; Abisheganaden, John; Light, R W

    2016-02-01

    We studied the diagnostic potential of serum lactate dehydrogenase (LDH) in malignant pleural effusion. Retrospective analysis of patients hospitalized with exudative pleural effusion in 2013. Serum LDH and serum LDH: pleural fluid ADA ratio was significantly higher in cancer patients presenting with exudative pleural effusion. In multivariate logistic regression analysis, pleural fluid ADA was negatively correlated 0.62 (0.45-0.85, p = 0.003) with malignancy, whereas serum LDH 1.02 (1.0-1.03, p = 0.004) and serum LDH: pleural fluid ADA ratio 0.94 (0.99-1.0, p = 0.04) was correlated positively with malignant pleural effusion. For serum LDH: pleural fluid ADA ratio, a cut-off level of >20 showed sensitivity, specificity of 0.98 (95 % CI 0.92-0.99) and 0.94 (95 % CI 0.83-0.98), respectively. The positive likelihood ratio was 32.6 (95 % CI 10.7-99.6), while the negative likelihood ratio at this cut-off was 0.03 (95 % CI 0.01-0.15). Higher serum LDH and serum LDH: pleural fluid ADA ratio in patients presenting with exudative pleural effusion can distinguish between malignant and non-malignant effusion on the first day of hospitalization. The cut-off level for serum LDH: pleural fluid ADA ratio of >20 is highly predictive of malignancy in patients with exudative pleural effusion (whether lymphocytic or neutrophilic) with high sensitivity and specificity.

  6. Prediction of Mass Flow Rate in Supersonic Natural Gas Processing

    Directory of Open Access Journals (Sweden)

    Wen Chuang

    2015-11-01

    Full Text Available The mass flow rate of natural gas through the supersonic separator was numerically calculated by various cubic equations of state. The numerical results show that the compressibility factor and specific heat ratio for ideal gas law diverge remarkably from real gas models at a high inlet pressure. Simultaneously, the deviation of mass flow calculated by the ideal and real gas models reaches over 10 %. The difference increases with the lower of the inlet temperature regardless of the inlet pressure. A higher back pressure results in an earlier location of the shock wave. The pressure ratio of 0.72 is the first threshold to get the separator work normally. The second threshold is 0.95, in which case the whole flow is subsonic and cannot reach the choked state. The shock position moves upstream with the real gas model compared to the ideal gas law in the cyclonic separation section.

  7. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    Science.gov (United States)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  8. Performance evaluation of elemental analysis/isotope ratio mass spectrometry methods for the determination of the D/H ratio in tetramethylurea and other compounds--results of a laboratory inter-comparison.

    Science.gov (United States)

    Bréas, Olivier; Thomas, Freddy; Zeleny, Reinhard; Calderone, Giovanni; Jamin, Eric; Guillou, Claude

    2007-01-01

    Tetramethylurea (TMU) with a certified D/H ratio is the internal standard for Site-specific Natural Isotope Fractionation measured by Nuclear Magnetic Resonance (SNIF-NMR) analysis of wine ethanol for detection of possible adulterations (Commission Regulation 2676/90). A new batch of a TMU certified reference material (CRM) is currently being prepared. Whereas SNIF-NMR has been employed up to now, Elemental Analysis/Isotope Ratio Mass Spectrometry ((2)H-EA-IRMS) was envisaged as the method of choice for value assignment of the new CRM, as more precise (better repeatable) data might be obtained, resulting in lower uncertainty of the certified value. In order to evaluate the accuracy and intra- and inter-laboratory reproducibility of (2)H-EA-IRMS methods, a laboratory inter-comparison was carried out by analysing TMU and other organic compounds, as well as some waters. The results revealed that experienced laboratories are capable of generating robust and well comparable data, which highlights the emerging potential of IRMS in food authenticity testing. However, a systematic bias between IRMS and SNIF-NMR reference data was observed for TMU; this lack of data consistency rules out the (2)H-IRMS technique for the characterisation measurement of the new TMU CRM.

  9. Application of ICP-MS and AMS for determination of Pu- and U-isotope ratios for source identification

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, L. (Norwegian Univ. of Life Sciences, Isotope Lab.. Dept. of Plant and Environmental Sciences, AAs (Norway))

    2010-03-15

    Full text: Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which have resulted in a relatively uniform, underlying global distribution of plutonium. Plutonium isotope ratios are known to vary with reactor type, nuclear fuel-burn up time, neutron flux, and energy, and for fallout from nuclear detonations, weapon type and yield. Weapons-grade plutonium is characterized by a low content of the 240Pu isotope, with 240Pu/239Pu isotope ratio less than 0.05. In contrast, both global weapons fallout and spent nuclear fuel from civil reactors have higher 240Pu/239Pu isotope ratios (civil nuclear power reactors have 240Pu/239Pu atom ratios of between about 0.2-1). Thus, different sources often exhibit characteristic plutonium isotope ratios and these ratios can be used to identify the origin of contamination, calculate inventories, or follow the migration of contaminated sediments and waters. The measurement of the plutonium-isotope ratios in these studies offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers. The present paper presents results from determination of plutonium concentrations and isotope ratios in sediment samples collected during various expeditions to the Kara Sea, the Ob and Yenisey estuaries and their river systems and also Pu isotope ratios in the near area of Mayak PA. Weapons-grade plutonium is characterized by a low content of the Pu-240 isotope, with Pu-240/Pu-239 isotope ratio less than 0.05. In contrast, both global weapons fallout and spent nuclear fuel from civil reactors have higher Pu-240/Pu-239 isotope ratios, and

  10. Comparison of Body Mass Index (BMI, Body Adiposity Index (BAI, Waist Circumference (WC, Waist-To-Hip Ratio (WHR and Waist-To-Height Ratio (WHtR as predictors of cardiovascular disease risk factors in an adult population in Singapore.

    Directory of Open Access Journals (Sweden)

    Benjamin Chih Chiang Lam

    Full Text Available Excess adiposity is associated with cardiovascular disease (CVD risk factors such as hypertension, diabetes mellitus and dyslipidemia. Amongst the various measures of adiposity, the best one to help predict these risk factors remains contentious. A novel index of adiposity, the Body Adiposity Index (BAI was proposed in 2011, and has not been extensively studied in all populations. Therefore, the purpose of this study is to compare the relationship between Body Mass Index (BMI, Waist Circumference (WC, Waist-to-Hip Ratio (WHR, Waist-to-Height Ratio (WHtR, Body Adiposity Index (BAI and CVD risk factors in the local adult population.This is a cross sectional study involving 1,891 subjects (Chinese 59.1% Malay 22.2%, Indian 18.7%, aged 21-74 years, based on an employee health screening (2012 undertaken at a hospital in Singapore. Anthropometric indices and CVD risk factor variables were measured, and Spearman correlation, Receiver Operating Characteristic (ROC curves and multiple logistic regressions were used. BAI consistently had the lower correlation, area under ROC and odd ratio values when compared with BMI, WC and WHtR, although differences were often small with overlapping 95% confidence intervals. After adjusting for BMI, BAI did not further increase the odds of CVD risk factors, unlike WC and WHtR (for all except hypertension and low high density lipoprotein cholesterol. When subjects with the various CVD risk factors were grouped according to established cut-offs, a BMI of ≥23.0 kg/m2 and/or WHtR ≥0.5 identified the highest proportion for all the CVD risk factors in both genders, even higher than a combination of BMI and WC.BAI may function as a measure of overall adiposity but it is unlikely to be better than BMI. A combination of BMI and WHtR could have the best clinical utility in identifying patients with CVD risk factors in an adult population in Singapore.

  11. Higher body mass index may induce asthma among adolescents with pre-asthmatic symptoms: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Myers Leann

    2011-07-01

    Full Text Available Abstract Background Limited studies have prospectively examined the role of body mass index (BMI as a major risk factor for asthma during adolescence. This study investigates whether BMI is associated with increased risk of developing physician-diagnosed asthma during 12-month follow-up among adolescents with undiagnosed asthma-like symptoms at baseline. Methods A total of 4,052 adolescents with undiagnosed asthma-like symptoms at baseline were re-examined after a 12-month follow-up. Asthma cases were considered confirmed only after diagnosis by a physician based on the New England core and International Study of Asthma and Allergies in Childhood (ISAAC criteria video questionnaires, and accompanying pulmonary function tests. Logistic regression analyses were used to evaluate the relationship of BMI and the risk of acquiring asthma. Results The results indicated that girls with higher BMI were at an increased risk of developing asthma during the 12-month follow-up. The odds ratios for girls developing physician-diagnosed asthma were 1.75 (95% CI = 1.18-2.61 and 1.12 (95% CI = 0.76-1.67, respectively, for overweight and obesity as compared to the normal weight reference group after adjustment for other covariates. A similar relationship was not observed for overweight and obese boys who were also significantly more active than their female counterparts. Conclusions Increased BMI exaggerates the risk of acquiring asthma in symptomatic adolescent females but not in adolescent males. Thus, gender is an important modifier of BMI-related asthma risk. Additional research will be required to determine whether the increased asthma risk results from genetic, physiological or behavioural differences.

  12. Higher order and heavy quark mass effects in the determination of parton distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Valerio

    2013-07-01

    The present thesis was devoted to the study of the inclusion of higher-order corrections and heavy quark mass effects in a PDF determination. This has been carried out in the NNPDF framework resulting originally in the NNPDF2.1 sets, which were at a later stage supplemented by the first LHC data leading to the most recent NNPDF2.3 sets. In Chapter 1 the concept of Parton Distribution Function (PDF) was introduced. We have shown how the analytical computation of the Deep-Inelastic-Scattering (DIS) process at order α{sub s} in QCD leads to initial-stale collinear divergences which, using the factorization theorem, can be reabsorbed into the PDFs. The energy dependence of PDFs is fully determined and the task is then reduced to the determination of the x (Bjorken variable) dependence. In Chapter 2 a detailed discussion of the factorization schemes presently available to include heavy quark mass effects into DIS structure functions has been given. It emerged that there are two possible basic approaches to the calculation of the DIS structure functions. In the first approach, the so-called Fixed-Flavour-Number Scheme (FFNS), the calculation is performed retaining the quark mass of the heavy flavours which provide a ''natural'' regulator for the infrared divergences. In the second approach, called Zero-Mass Variable-Flavour-Number Scheme (ZM-VFNS), the heavy quark masses are instead set to zero and this gives rise to the usual final-state collinear divergences that are absorbed into the PDFs. In addition, in the ZM-VFNS, the number of active flavours is assumed to increase by one unity as the energy of the process crosses the energy threshold of a given heavy quark. In order to obtain a factorization scheme that is accurate both at large and low energies, several prescriptions that interpolate between FFNS at low energy and ZM-VFNS at large energy have been proposed and implemented in as many PDF fits. In Chapter 2 they have been described showing how they behave for

  13. Higher order and heavy quark mass effects in the determination of parton distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Valerio

    2013-07-01

    The present thesis was devoted to the study of the inclusion of higher-order corrections and heavy quark mass effects in a PDF determination. This has been carried out in the NNPDF framework resulting originally in the NNPDF2.1 sets, which were at a later stage supplemented by the first LHC data leading to the most recent NNPDF2.3 sets. In Chapter 1 the concept of Parton Distribution Function (PDF) was introduced. We have shown how the analytical computation of the Deep-Inelastic-Scattering (DIS) process at order α{sub s} in QCD leads to initial-stale collinear divergences which, using the factorization theorem, can be reabsorbed into the PDFs. The energy dependence of PDFs is fully determined and the task is then reduced to the determination of the x (Bjorken variable) dependence. In Chapter 2 a detailed discussion of the factorization schemes presently available to include heavy quark mass effects into DIS structure functions has been given. It emerged that there are two possible basic approaches to the calculation of the DIS structure functions. In the first approach, the so-called Fixed-Flavour-Number Scheme (FFNS), the calculation is performed retaining the quark mass of the heavy flavours which provide a ''natural'' regulator for the infrared divergences. In the second approach, called Zero-Mass Variable-Flavour-Number Scheme (ZM-VFNS), the heavy quark masses are instead set to zero and this gives rise to the usual final-state collinear divergences that are absorbed into the PDFs. In addition, in the ZM-VFNS, the number of active flavours is assumed to increase by one unity as the energy of the process crosses the energy threshold of a given heavy quark. In order to obtain a factorization scheme that is accurate both at large and low energies, several prescriptions that interpolate between FFNS at low energy and ZM-VFNS at large energy have been proposed and implemented in as many PDF fits. In Chapter 2 they have been described showing

  14. Higher order and heavy quark mass effects in the determination of parton distribution functions

    International Nuclear Information System (INIS)

    Bertone, Valerio

    2013-01-01

    The present thesis was devoted to the study of the inclusion of higher-order corrections and heavy quark mass effects in a PDF determination. This has been carried out in the NNPDF framework resulting originally in the NNPDF2.1 sets, which were at a later stage supplemented by the first LHC data leading to the most recent NNPDF2.3 sets. In Chapter 1 the concept of Parton Distribution Function (PDF) was introduced. We have shown how the analytical computation of the Deep-Inelastic-Scattering (DIS) process at order α s in QCD leads to initial-stale collinear divergences which, using the factorization theorem, can be reabsorbed into the PDFs. The energy dependence of PDFs is fully determined and the task is then reduced to the determination of the x (Bjorken variable) dependence. In Chapter 2 a detailed discussion of the factorization schemes presently available to include heavy quark mass effects into DIS structure functions has been given. It emerged that there are two possible basic approaches to the calculation of the DIS structure functions. In the first approach, the so-called Fixed-Flavour-Number Scheme (FFNS), the calculation is performed retaining the quark mass of the heavy flavours which provide a ''natural'' regulator for the infrared divergences. In the second approach, called Zero-Mass Variable-Flavour-Number Scheme (ZM-VFNS), the heavy quark masses are instead set to zero and this gives rise to the usual final-state collinear divergences that are absorbed into the PDFs. In addition, in the ZM-VFNS, the number of active flavours is assumed to increase by one unity as the energy of the process crosses the energy threshold of a given heavy quark. In order to obtain a factorization scheme that is accurate both at large and low energies, several prescriptions that interpolate between FFNS at low energy and ZM-VFNS at large energy have been proposed and implemented in as many PDF fits. In Chapter 2 they have been described showing how

  15. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, M.S. [Mechanical Engineering Technology Department, Higher Institute of Technology, Banha University, 4Zagalol Street, Benha, Galubia 1235 Z (Egypt)

    2010-12-15

    An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FFT) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the source of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio {gamma}(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating {gamma}(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (III) Temperature dependant specific heat ratio {gamma}(T), and (IV) Logarithmic scale of (P and V). The duration of combustion for kerosene is smaller than for gasoline and

  16. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine

    International Nuclear Information System (INIS)

    Shehata, M.S.

    2010-01-01

    An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FFT) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the sours of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio γ(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating γ(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (III) Temperature dependant specific heat ratio γ(T), and (IV) Logarithmic scale of (P and V). The duration of combustion for kerosene is smaller than for gasoline and LPG due to high

  17. "Is there an Association Between Self-Reported Sleep Duration, Body Mass Index and Waist-Hip Ratio in Young Adults? A Cross-Sectional Pilot Study".

    Science.gov (United States)

    Kamath, M Ganesh; Prakash, Jay; Dash, Sambit; Chowdhury, Sudipta; Ahmed, Zuhilmi Bin; Yusof, Muhammad Zaim Zharif Bin Mohd

    2014-09-01

    Sleep is vital for mental and physical health of an individual. Duration of sleep influences the metabolism and regulates body weight. To assess the cross-sectional association of sleep duration with body mass index (BMI) and waist-hip ratio in Malaysian students. Eighty-nine Malaysian students of both genders, and with a mean (standard deviation) age of 21.2 (0.9) years were included. Institutional Ethics Committee clearance was obtained prior to the start of study. The subjects were interviewed regarding the average hours of sleep/day, their self-reported sleep duration was categorized as 7hour/day. Their height (in meters), weight (in kilograms), waist and hip circumference (in centimetre) were measured. BMI and waist-hip ratio were calculated using appropriate formulas and expressed as mean (standard deviation). The duration of sleep was compared with BMI and waist-hip ratio using one way ANOVA. No statistical significance was observed when sleep duration was associated with BMI (p=0.65) and waist-hip ratio (p=0.95). Duration of sleep did not affect BMI and waist hip ratio in the Malaysian students in our study. The age and healthy lifestyle of the subjects in this study may have been a reason for no significant influence of short sleep duration on the BMI and waist-hip ratio. No association was found between sleep duration with BMI and waist hip ratio in the Malaysian students.

  18. NO3-/NH4+ ratios affect nutritional homeostasis and production of Tanzania guinea grass under Cu toxicity.

    Science.gov (United States)

    de Souza Junior, João Cardoso; Nogueirol, Roberta Corrêa; Monteiro, Francisco Antonio

    2018-05-01

    Nitrogen (N) can alleviate metal toxicity. However, as of yet, there have been no studies showing the efficacy of NO 3 - /NH 4 + in mitigating Cu toxicity. The objective of this study was to evaluate the Cu toxicity on the nutritional and productive attributes of Panicum maximum cv. Tanzania as well as the role of NO 3 - and NH 4 + ratios in nutritional homeostasis. The experiment was conducted using 3 × 4 factorial treatments arranged in a randomized complete block design with three replicates. The treatments were three NO 3 - /NH 4 + ratios (100/0, 70/30, and 50/50) and four Cu rates (0.3, 250, 500, and 1000 μmol L -1 ) in nutrient solution. Copper concentrations in the diagnostic leaves (DL) were highest in plants grown under 70/30 NO 3 - /NH 4 + ratios and a Cu rate of 1000 μmol L -1 . In this combination, it was observed that DL had higher concentrations of NH 4 + , greater glutamine synthetase activity, lower chlorophyll concentration (SPAD value), and lower shoot dry mass, suggesting high disorders of nutritional homeostasis. Plants receiving N in the form of NO 3 - and 1000 Cu μmol L -1 showed that DL had lower concentrations of Cu, higher concentration of chlorophyll, higher NO 3 - concentration, higher nitrate reductase activity, and higher NO 3 - accumulation in the roots, suggesting a reduction in disorders of nutritional homeostasis. The disorders on mineral uptake, N assimilation, and biomass production caused by Cu toxicity are shown to be affected by NO 3 - /NH 4 + ratios, and N supply via NO 3 - allowed for better homeostasis of the forage grass.

  19. Mass of the b quark and B -meson decay constants from Nf=2+1+1 twisted-mass lattice QCD

    DEFF Research Database (Denmark)

    Bussone, A.; Carrasco, N.; Dimopoulos, P

    2016-01-01

    We present precise lattice computations for the b-quark mass, the quark mass ratios mb/mc and mb/ms as well as the leptonic B-decay constants. We employ gauge configurations with four dynamical quark flavors, up-down, strange and charm, at three values of the lattice spacing (a∼0.06-0.09 fm......) and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark point is performed using ratios of physical quantities computed at nearby quark masses exploiting the fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated...... to the physical pion mass and to the continuum limit and read mb(MS,mb)=4.26(10) GeV, mb/mc=4.42(8), mb/ms=51.4(1.4), fBs=229(5) MeV, fB=193(6) MeV, fBs/fB=1.184(25) and (fBs/fB)/(fK/fπ)=0.997(17)....

  20. Emerging techniques in vegetable oil analysis using stable isotope ratio mass spectrometry

    Directory of Open Access Journals (Sweden)

    Rhodes, Christopher

    2002-03-01

    Full Text Available As the practice of vegetable oil adulteration becomes more sophisticated, the possibility to subvert detection using established techniques such as capillary gas chromatography is increasing. One of the most powerful techniques to be used in food authenticity studies is stable isotope ratio mass spectrometry (SIRMS which utilises differences in the natural abundance of the stable isotopes of the ‘light’ bio-elements hydrogen, nitrogen, carbon, oxygen and sulfur to detect food fraud. SIRMS has found application in the authentication of a wide range of foodstuffs, including fruit juices, wines, spirits, honey and to detect the adulteration of flavour compounds with synthetic analogues. This papers reviews the current state-of-the-art for the authentication of vegetable oils using SIRMS and highlights emergent techniques such as compound- and position specific-isotope mass spectrometry. These latter developments offer the potential to provide more rapid and improved detection of the economic adulteration of vegetable oils.A medida que la práctica de la adulteración de aceites vegetales se hace más sofisticada, las posibilidades de evitar la detección utilizando técnicas tradicionales como la cromatografía de gases en columna capilar aumentan. Una de las técnicas más poderosas que más se utilizan en los estudios de autentificación de alimentos es la espectrometría de masas de relaciones isotópicas, que utiliza diferencias en la abundancia natural de isótopos estables de elementos ligeros biológicos hidrógeno, nitrógeno, carbón, oxigeno y azufre para detectar fraude en los alimentos. La espectrometría de masas de relaciones isotópicas ha encontrado aplicación en la autentificación de una amplia gama de alimentos, incluyendo zumos de frutas, vinos, bebidas alcohólicas de alta graduación, miel, y en la detección de la adulteración de los compuestos aromáticos con sus análogos de origen sintético. Este trabajo

  1. Arcjet nozzle area ratio effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  2. Arcjet Nozzle Area Ratio Effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  3. Stable carbon isotope analyses of nanogram quantities of particulate organic carbon (pollen) with laser ablation nano combustion gas chromatography/isotope ratio mass spectrometry

    Science.gov (United States)

    Sluijs, Appy; Laks, Jelmer J.; Reichart, Gert‐Jan

    2016-01-01

    Rationale Analyses of stable carbon isotope ratios (δ 13C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to samples containing at least several μg of carbon. Methods Here we present a setup combining laser ablation, nano combustion gas chromatography and isotope ratio mass spectrometry (LA/nC/GC/IRMS). A deep UV (193 nm) laser is used for optimal fragmentation of organic matter with minimum fractionation effects and an exceptionally small ablation chamber and combustion oven are used to reduce the minimum sample mass requirement compared with previous studies. Results Analyses of the international IAEA CH‐7 polyethylene standard show optimal accuracy, and precision better than 0.5‰, when measuring at least 42 ng C. Application to untreated modern Eucalyptus globulus (C3 plant) and Zea mays (C4 plant) pollen grains shows a ~ 16‰ offset between these species. Within each single Z. mays pollen grain, replicate analyses show almost identical δ 13C values. Conclusions Isotopic offsets between individual pollen grains exceed analytical uncertainties, therefore probably reflecting interspecimen variability of ~0.5–0.9‰. These promising results set the stage for investigating both δ 13C values and natural carbon isotopic variability between single specimens of a single population of all kinds of organic particles yielding tens of nanograms of carbon. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:27766694

  4. Determination of extremely low 236U/238U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction

    International Nuclear Information System (INIS)

    Boulyga, Sergei F.; Heumann, Klaus G.

    2006-01-01

    A method by inductively coupled plasma mass spectrometry (Icp-Ms) was developed which allows the measurement of 236 U at concentration ranges down to 3 x 10 -14 g g -1 and extremely low 236 U/ 238 U isotope ratios in soil samples of 10 -7 . By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5000 counts fg -1 uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH + /U + down to a level of 10 -6 . An abundance sensitivity of 3 x 10 -7 was observed for 236 U/ 238 U isotope ratio measurements at mass resolution 4000. The detection limit for 236 U and the lowest detectable 236 U/ 238 U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the 236 U/ 238 U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the 235 U/ 238 U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of 236 U in the upper 0-10 cm soil layers varied from 2 x 10 -9 g g -1 within radioactive spots close to the Chernobyl NPP to 3 x 10 -13 g g -1 on a sampling site located by >200 km from Chernobyl

  5. Determination of extremely low (236)U/(238)U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction.

    Science.gov (United States)

    Boulyga, Sergei F; Heumann, Klaus G

    2006-01-01

    A method by inductively coupled plasma mass spectrometry (ICP-MS) was developed which allows the measurement of (236)U at concentration ranges down to 3 x 10(-14)g g(-1) and extremely low (236)U/(238)U isotope ratios in soil samples of 10(-7). By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5,000 counts fg(-1) uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH(+)/U(+) down to a level of 10(-6). An abundance sensitivity of 3 x 10(-7) was observed for (236)U/(238)U isotope ratio measurements at mass resolution 4000. The detection limit for (236)U and the lowest detectable (236)U/(238)U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the (236)U/(238)U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the (235)U/(238)U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of (236)U in the upper 0-10 cm soil layers varied from 2 x 10(-9)g g(-1) within radioactive spots close to the Chernobyl NPP to 3 x 10(-13)g g(-1) on a sampling site located by >200 km from Chernobyl.

  6. Dysbiosis of the Vaginal Microbiota and Higher Vaginal Kynurenine/Tryptophan Ratio Reveals an Association with Chlamydia trachomatis Genital Infections

    Directory of Open Access Journals (Sweden)

    Noa Ziklo

    2018-01-01

    Full Text Available The natural course of Chlamydia trachomatis urogenital tract infections varies between individuals. While protective immunity can occur, some women can become reinfected, contributing to the development of severe pathology. While the reasons for these differences are unknown, an individual's response to induced interferon-γ (IFN-γ is suggested to be critical. IFN-γ induction of the enzyme indoleamine 2,3-dioxygenase, which depletes tryptophan, may be the key. One hypothesis suggests that indole-producing bacteria in the vaginal microbiota can provide a substrate for the Chlamydia to synthesize tryptophan, rescuing the Chlamydia from host IFN-γ attack. We studied a cohort of 25 women who were either, Chlamydia negative, Chlamydia positive with a single infection, or Chlamydia positive with repeated infection, to test our hypothesis. We characterized their vaginal microbiota, cytokine response, as well as their tryptophan, kynurenine and indole concentrations directly in vaginal secretions. We found that C. trachomatis urogenital tract infections either initial or repeat infections, were associated with elevated vaginal kynurenine/tryptophan ratios, primarily as a result of elevated kynurenine levels. In addition, vaginal microbiota of community state type (CST IV showed significantly lower vaginal tryptophan levels compared to CST I and III, which might be related to a higher abundance of indole producers found within this group. Furthermore, we found a higher abundance of indole producers in women who cleared their Chlamydia infection post antibiotic treatment. This study demonstrates for the first time in vivo, the association between high vaginal kynurenine/tryptophan ratios and C. trachomatis infections. In addition, tryptophan depletion was associated with vaginal microbiota of CST IV.

  7. Plutonium isotope ratios in polychaete worms

    International Nuclear Information System (INIS)

    Beasley, T.M.; Fowler, S.W.

    1976-01-01

    Reference is made to recent reports that suggest that terrestrial and aquatic organisms may preferentially take up 238 Pu compared with sup(239+240)Pu. It is stated that although kinetic isotope effects are known to occur in biological systems for low mass number elements, such as H, C and N, such effects are generally discounted with higher mass numbers, and differences in the biological 'uptake' of isotopes of high mass number elements, such as those of Pu, are normally attributable to differences in the chemical or physical forms of the isotopes or to different quantities of isotopes available to organisms. This has been applied to explain differential Pu isotope behaviour in animals under controlled laboratory conditions, but it is not certain that it can be applied to explain anomalies of Pu isotope behaviour in organisms contaminated by nuclear test debris or by wastes from nuclear fuel reprocessing plants. Geochemical weathering may also have an effect. Described here are experiments in which it was found that deposit feeding marine worms living in sediments contaminated in different ways with Pu isotopes did not show preferential accumulation of 238 Pu. The worms had been exposed to different chemical and physical forms of the isotopes, including exposure to laboratory-labelled sediment, sediment collected from a former weapons test site, and sediment contaminated by wastes from a nuclear fuel reprocessing plant. The worms were allowed to accumulate Pu for times of 5 to 40 days. Isotope ratios were determined by α-spectrometric techniques. It is considered that the results are important for environmental samples where Pu activity levels are low. (U.K.)

  8. Use of isotope ratio mass spectrometry to differentiate between endogenous steroids and synthetic homologues in cattle: A review

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, Geert, E-mail: Geert.janssens@favv.be [Federal Agency for the Safety of the Food Chain, Directorate General Laboratories, Kruidtuinlaan 55, 1000 Brussels (Belgium); Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Courtheyn, Dirk [Federal Agency for the Safety of the Food Chain, Directorate General Laboratories, Kruidtuinlaan 55, 1000 Brussels (Belgium); Mangelinckx, Sven [Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Prévost, Stéphanie; Bichon, Emmanuelle; Monteau, Fabrice [LUNAM Université, Oniris, Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307 Nantes (France); De Poorter, Geert [Federal Agency for the Safety of the Food Chain, Directorate General Laboratories, Kruidtuinlaan 55, 1000 Brussels (Belgium); De Kimpe, Norbert [Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Le Bizec, Bruno [LUNAM Université, Oniris, Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307 Nantes (France)

    2013-04-15

    Graphical abstract: Scheme: Representation of the observed isotope ratios and the relation to exogenous and endogenous natural steroids. AS stands for “amount of steroid”. Highlights: ► The difference between endogenous and exogenous steroids is thoroughly laid out. ► Factors influencing the carbon ratio and the use of Δ{sup 13}C-values are explained. ► Implementation of GC/C/IRMS to detect steroid abuse in cattle is reviewed. ► Alternative methods and upcoming techniques are discussed. ► The differences and similarities with sports doping control are highlighted. -- Abstract: Although substantial technical advances have been achieved during the past decades to extend and facilitate the analysis of growth promoters in cattle, the detection of abuse of synthetic analogs of naturally occurring hormones has remained a challenging issue. When it became clear that the exogenous origin of steroid hormones could be traced based on the {sup 13}C/{sup 12}C isotope ratio of the substances, GC/C/IRMS has been successfully implemented to this aim since the end of the past century. However, due to the costly character of the instrumental setup, the susceptibility of the equipment to errors and the complex and time consuming sample preparation, this method is up until now only applied by a limited number of laboratories. In this review, the general principles as well as the practical application of GC/C/IRMS to differentiate between endogenous steroids and exogenously synthesized homologous compounds in cattle will be discussed in detail, and will be placed next to other existing and to be developed methods based on isotope ratio mass spectrometry. Finally, the link will be made with the field of sports doping, where GC/C/IRMS has been established within the World Anti-Doping Agency (WADA) approved methods as the official technique to differentiate between exogenous and endogenous steroids over the past few years.

  9. Fostering Citizenship in China's Move from Elite to Mass Higher Education: An Analysis of Students' Political Socialization and Civic Participation

    Science.gov (United States)

    Li, Jun

    2009-01-01

    This study examines the patterns and interplay of college students' political orientations and socialization toward citizenship and civil society in the Chinese sociopolitical context, alongside China's move to mass higher education. Data were collected from a nationwide survey conducted in 12 Chinese universities in 2007. The analytic framework…

  10. Lower leptin/adiponectin ratio and risk of rapid lung function decline in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Suzuki, Masaru; Makita, Hironi; Östling, Jörgen

    2014-01-01

    , and single ELISAs were used to confirm the results. MEASUREMENTS AND MAIN RESULTS: Higher plasma adiponectin levels and a lower leptin/adiponectin ratio at enrollment were significantly associated with an annual decline in FEV1 even after controlling for age, sex, height, and body mass index in the Hokkaido...... COPD cohort study (P = 0.003, P = 0.004, respectively). A lower plasma leptin/adiponectin ratio was also significantly associated with an annual decline in FEV1 in subjects with airflow limitation in the CBQ study (P = 0.014), the patients of which had largely different clinical characteristics...... compared with the Hokkaido COPD cohort study. There were no significant associations between lung function decline and adipokine levels in subjects without airflow limitation. CONCLUSIONS: A lower leptin/adiponectin ratio was associated with lung function decline in patients with COPD in two independent...

  11. Is {sup 99m}Tc-MDP mammoscintigraphy useful in patients with breast mass lesions?

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Lee, Y. H.; Rhyu, J. W.; Yoo, S. M. [College of Medicine, Dankook Univ., Cheonan (Korea, Republic of)

    1998-06-01

    Piccolo et al. advocated the usefulness of {sup 99m}Tc-MDP breast scan in differential diagnosis of breast mass with high accuracy. But there are little or no follow-up studies about it as we know. We studied {sup 99m}Tc-MDP uptake pattern and lesion/background ratio in patients complaining palpable breast lesions to evaluate the clinical usefulness of {sup 99m}Tc-MDP scan. Total 34 patients were studied with physical examination, mammogram and {sup 99m}Tc-MDP scan prospectively. Anteroposterior and both lateral view of breast were obtained 5 minutes after iv injection of 740 MBq {sup 99m}Tc-MDP. Breast uptake pattern of {sup 99m}Tc-MDP was analyzed by a grade system: 0=no uptake, grade 1=bilateral diffuse uptake, grade 2=asymmetric faint uptake, grade 3=focal hot uptake. 20 cases were pathologically confirmed by excision biopsy or aspiration biopsy. 14 cases were normal in physical examination and mammogram. Pathologic results showed 7 carcinomas, 6 benign solid tumors, and 7 fibrocystic changes. Grade 3 pattern of {sup 99m}Tc-MDP uptake was noted in 4/7 carcinomas, 3/5 benign solid tumors, and 1/7 fibrocystic changes. Grade 2 pattern was 2/7, 0/7, 3/7 respectively. The average L/B ratio was 1.66 in carcinomas, 1.68 in benign solid masses, 1.20 in fibrocystic diseases, 1.05 in normal patients. L/B ratio was higher in carcinoma and benign mass groups than in fibrocystic change and normal control groups(p=0.005). But there was no statistical difference between L/B ratio of malignant mass group and benign mass group. {sup 99m}Tc-MDP scan is not suitable to routine clinical use for breast mass diagnosis. It might be used in limited conditions when whole body bone scan is planned.

  12. ALLocator: an interactive web platform for the analysis of metabolomic LC-ESI-MS datasets, enabling semi-automated, user-revised compound annotation and mass isotopomer ratio analysis.

    Science.gov (United States)

    Kessler, Nikolas; Walter, Frederik; Persicke, Marcus; Albaum, Stefan P; Kalinowski, Jörn; Goesmann, Alexander; Niehaus, Karsten; Nattkemper, Tim W

    2014-01-01

    Adduct formation, fragmentation events and matrix effects impose special challenges to the identification and quantitation of metabolites in LC-ESI-MS datasets. An important step in compound identification is the deconvolution of mass signals. During this processing step, peaks representing adducts, fragments, and isotopologues of the same analyte are allocated to a distinct group, in order to separate peaks from coeluting compounds. From these peak groups, neutral masses and pseudo spectra are derived and used for metabolite identification via mass decomposition and database matching. Quantitation of metabolites is hampered by matrix effects and nonlinear responses in LC-ESI-MS measurements. A common approach to correct for these effects is the addition of a U-13C-labeled internal standard and the calculation of mass isotopomer ratios for each metabolite. Here we present a new web-platform for the analysis of LC-ESI-MS experiments. ALLocator covers the workflow from raw data processing to metabolite identification and mass isotopomer ratio analysis. The integrated processing pipeline for spectra deconvolution "ALLocatorSD" generates pseudo spectra and automatically identifies peaks emerging from the U-13C-labeled internal standard. Information from the latter improves mass decomposition and annotation of neutral losses. ALLocator provides an interactive and dynamic interface to explore and enhance the results in depth. Pseudo spectra of identified metabolites can be stored in user- and method-specific reference lists that can be applied on succeeding datasets. The potential of the software is exemplified in an experiment, in which abundance fold-changes of metabolites of the l-arginine biosynthesis in C. glutamicum type strain ATCC 13032 and l-arginine producing strain ATCC 21831 are compared. Furthermore, the capability for detection and annotation of uncommon large neutral losses is shown by the identification of (γ-)glutamyl dipeptides in the same strains

  13. ALLocator: an interactive web platform for the analysis of metabolomic LC-ESI-MS datasets, enabling semi-automated, user-revised compound annotation and mass isotopomer ratio analysis.

    Directory of Open Access Journals (Sweden)

    Nikolas Kessler

    Full Text Available Adduct formation, fragmentation events and matrix effects impose special challenges to the identification and quantitation of metabolites in LC-ESI-MS datasets. An important step in compound identification is the deconvolution of mass signals. During this processing step, peaks representing adducts, fragments, and isotopologues of the same analyte are allocated to a distinct group, in order to separate peaks from coeluting compounds. From these peak groups, neutral masses and pseudo spectra are derived and used for metabolite identification via mass decomposition and database matching. Quantitation of metabolites is hampered by matrix effects and nonlinear responses in LC-ESI-MS measurements. A common approach to correct for these effects is the addition of a U-13C-labeled internal standard and the calculation of mass isotopomer ratios for each metabolite. Here we present a new web-platform for the analysis of LC-ESI-MS experiments. ALLocator covers the workflow from raw data processing to metabolite identification and mass isotopomer ratio analysis. The integrated processing pipeline for spectra deconvolution "ALLocatorSD" generates pseudo spectra and automatically identifies peaks emerging from the U-13C-labeled internal standard. Information from the latter improves mass decomposition and annotation of neutral losses. ALLocator provides an interactive and dynamic interface to explore and enhance the results in depth. Pseudo spectra of identified metabolites can be stored in user- and method-specific reference lists that can be applied on succeeding datasets. The potential of the software is exemplified in an experiment, in which abundance fold-changes of metabolites of the l-arginine biosynthesis in C. glutamicum type strain ATCC 13032 and l-arginine producing strain ATCC 21831 are compared. Furthermore, the capability for detection and annotation of uncommon large neutral losses is shown by the identification of (γ-glutamyl dipeptides in

  14. Tile-based Fisher-ratio software for improved feature selection analysis of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry data.

    Science.gov (United States)

    Marney, Luke C; Siegler, W Christopher; Parsons, Brendon A; Hoggard, Jamin C; Wright, Bob W; Synovec, Robert E

    2013-10-15

    Comprehensive two-dimensional (2D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) is a highly capable instrumental platform that produces complex and information-rich multi-dimensional chemical data. The data can be initially overwhelming, especially when many samples (of various sample classes) are analyzed with multiple injections for each sample. Thus, the data must be analyzed in such a way as to extract the most meaningful information. The pixel-based and peak table-based Fisher ratio algorithmic approaches have been used successfully in the past to reduce the multi-dimensional data down to those chemical compounds that are changing between the sample classes relative to those that are not changing (i.e., chemical feature selection). We report on the initial development of a computationally fast novel tile-based Fisher-ratio software that addresses the challenges due to 2D retention time misalignment without explicitly aligning the data, which is often a shortcoming for both pixel-based and peak table-based algorithmic approaches. Concurrently, the tile-based Fisher-ratio algorithm significantly improves the sensitivity contrast of true positives against a background of potential false positives and noise. In this study, eight compounds, plus one internal standard, were spiked into diesel at various concentrations. The tile-based F-ratio algorithmic approach was able to "discover" all spiked analytes, within the complex diesel sample matrix with thousands of potential false positives, in each possible concentration comparison, even at the lowest absolute spiked analyte concentration ratio of 1.06, the ratio between the concentrations in the spiked diesel sample to the native concentration in diesel. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. BAT AGN Spectroscopic Survey - III. An Observed Link Between AGN Eddington Ratio and Narrow-Emission-Line Ratios

    Science.gov (United States)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; hide

    2016-01-01

    We investigate the observed relationship between black hole mass (M(sub BH)), bolometric luminosity (L(sub bol)) and Eddington ratio (lambda(sub Edd)) with optical emission-line ratios ([N II] lambda6583/Halpha, [S II]lambda-lamda6716, 6731/Halpha, [O I] lamda6300/Halpha, [O III] lamda5007/Hbeta, [Ne III] lamda3869/Hbeta and He II lamda4686/Hbeta) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] lamda6583/Halpha ratio exhibits a significant correlation with lamda(sub Edd) (R(sub Pear) = -0.44, p-value 3 x 10(exp. -13) sigma = 0.28 dex), and the correlation is not solely driven by M(sub BH) or L(sub bol). The observed correlation between [N II] lamda6583/Halpha ratio and M(sub BH) is stronger than the correlation with L(sub bol), but both are weaker than the lamda(sub Edd) correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] lamda6583/Halpha is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure lambda(sub Edd) and thus M(sub BH) from the measured L(sub bol), even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  16. Association between serum triglyceride to high-density lipoprotein cholesterol ratio and sarcopenia in elderly Korean males: The Korean National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Chung, Tae-Ha; Kwon, Yu-Jin; Shim, Jae-Yong; Lee, Yong-Jae

    2016-12-01

    We investigated the association between the triglycerides to high-density lipoprotein cholesterol (TG/HDL) ratio and sarcopenia in elderly Korean males. We examined the relationship between the TG/HDL ratio and sarcopenia in 879 elderly males ≥60years who participated in the 2010-2011 KNHANES. Sarcopenia was defined as an appendicular skeletal muscle mass (ASM) divided by the weight (%), which is >1 SD below the mean for young adults. The odds ratios (ORs) for sarcopenia were calculated using multiple logistic regression across the TG/HDL ratio quartiles (Q1: ≤1.4, Q2: 1.5-2.4, Q3: 2.5-3.8 and Q4: ≥3.9) after adjusting for confounding variables. The prevalence of sarcopenia significantly increased in accordance with TG/HDL ratio quartiles. Compared with the lowest quartile of the TG/HDL ratio, the corresponding OR (95% CI) of the highest quartile of the TG/HDL ratio for sarcopenia was 2.10 (1.12-3.91) after adjusting for age, body mass index (BMI), cigarette smoking, alcohol intake and physical activity. TG/HDL ratio was positively related with a higher risk of sarcopenia in elderly Korean males. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Elemental and isotopic characterization of Japanese and Philippine polished rice samples using instrumental neutron activation analysis and isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Pabroa, Preciosa Corazon B.; Sucgang, Raymond J.; Mendoza, Norman dS.; Ebihara, Mitsuru

    2011-01-01

    Rice is a staple food for most Asian countries such as the Philippines and Japan and as such its elemental and isotopic content are of interest to the consumers. Its elemental content may reflect the macro nutrient reduction during milling or probable toxic elements uptake. Three Japanese and four Philippine polished rice samples in his study mostly came from rice bought from supermarkets.These rice samples were washed, dried and ground to fine powder. Instrumental neutron activation analysis (INAA), a very sensitive non-destructive multi-element analytical technique, was used for the elemental analysis of the samples and isotope-ratio mass spectrometry (IRMS) was used to obtain the isotopic signatures of the samples. Results show that compared with the unpolished rice standard NIES CRM10b, the polished Japanese and Philippine rice sampled show reduced concentrations of elements by as much as 1/3 to 1/10 of Mg, Mn, K and Na. Levels of Ca and Zn are not greatly affected. Arsenic is found in all the Japanese rice tested at an average concentration of 0.103 μg/g and three out of four of the Philippine rice at an average concentration of 0.070 μg/g. Arsenic contamination may have been introduced from the fertilizer used in rice fields. Higher levels of Br are seen in two of the Philippine rice at 14 and 34 μg/g with the most probable source being the pesticide methyl bromide. Isotopic ratio of ae 13 C show signature of a C3 plant with possible narrow distinguishable signature of Japanese rice within -27.5 to -28.5 while Philippine rice within -29 to -30. More rice samples will be analyzed to gain better understanding of isotopic signatures to distinguish inter-varietal and/or geographical differences. Elemental composition of soil samples of rice samples sources will be determined for better understanding of uptake mechanisms. (author)

  18. Comprehensive characterization of natural organic matter by MALDI- and ESI-Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Cao, Dong; Huang, Huogao; Hu, Ming; Cui, Lin; Geng, Fanglan; Rao, Ziyu; Niu, Hongyun; Cai, Yaqi; Kang, Yuehui

    2015-01-01

    Highlights: • MALDI-FT-ICR-MS was firstly employed for molecular characterization of NOM. • 1,8-Bis(dimethyl-amino)-naphthalene (DMAN) was used as matrix. • Mass spectra of NOM generated by MALDI and ESI methods were compared. • Complementary molecular information of NOM was provided by MALDI. - Abstract: Natural organic matter (NOM) is a complex and non-uniform mixture of organic compounds which plays an important role in environmental processes. Due to the complexity, it is challenging to obtain fully detailed structural information about NOM. Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) has been demonstrated to be a powerful tool for providing molecular information about NOM, multiple ionization methods are needed for comprehensive characterization of NOM at the molecular level considering the ionizing selectivity of different ionization methods. This paper reports the first use of matrix assisted laser desorption/ionization (MALDI) method coupled with FT-ICR-MS for molecular characterization of NOM within a mass range of 200–800 Da. The mass spectral data obtained by MALDI were systematically compared with data generated by electrospray ionization (ESI). It showed that complementary molecular information about NOM which could not be detected by ESI, were provided by MALDI. More unsaturated and aromatic constituents of NOM with lower O/C ratio (O/C ratio < 0.5) were preferentially ionized in MALDI negative mode, whereas more polar constituents of NOM with higher O/C ratio were preferentially ionized in ESI negative mode. Molecular anions of NOM appearing at even m/z in MALDI negative ion mode were detected. The results show that NOM molecules with aromatic structures, moderate O/C ratio (0.7 > O/C ratio > 0.25) and lower H/C ratio were liable to form molecular anions at even m/z, whereas those with higher H/C ratio are more likely to form deprotonated ions at odd m/z. It is speculated that almost half of the NOM

  19. Determination of rare earth elements, thorium and uranium by inductively coupled plasma mass spectrometry and strontium isotopes by thermal ionization mass spectrometry in soil samples of Bryansk region contaminated due to Chernobyl accident

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Yonehara, H.; Kurotaki, K.; Shiraishi, K.; Ramzaev, V.; Barkovski, A.

    2001-01-01

    Inductively coupled plasma mass spectrometric (ICP-MS) determination of rare earth elements (REEs), thorium and uranium in forest, pasture, field and kitchen garden soils from a Russian territory and in certified reference materials (JLK-1, JSD-2 and BCR-1) is described. In addition to concentration data, strontium isotopic composition of the soil samples were measured by thermal ionization mass spectrometry. The measurements contributed to the understanding of the background levels of these elements in an area contaminated due to Chernobyl accident. There was not a significant variation in the concentration of REEs at different depth levels in forest soil samples, however, the ratio of Th/U varied from 3.32 to 3.60. Though concentration of U and Th varied to some extent, the ratio did not show much variation. The value of 87 Sr/ 86 Sr ratio, was in the top layer soil sample relatively higher than in the lower layers. (author)

  20. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  1. Aspect Ratio Dependence of Impact Fragmentation

    International Nuclear Information System (INIS)

    Inaoka, H.; Toyosawa, E.; Takayasu, H.; Inaoka, H.

    1997-01-01

    A numerical model of three-dimensional impact fragmentation produces a power-law cumulative fragment mass distribution followed by a flat tail. The result is consistent with an experimental result in a recent paper by Meibom and Balslev [Phys. Rev. Lett. 76, 2492 (1996)]. Our numerical simulation also implies that the fragment mass distribution changes from a power law with a flat tail to a power law with a sudden cutoff, depending on the aspect ratio of the fractured object. copyright 1997 The American Physical Society

  2. Differentiation of benign and malignant solid pancreatic masses using magnetic resonance elastography with spin-echo echo planar imaging and three-dimensional inversion reconstruction. A prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yu; Yu, Bing; Liu, Yanqing; Guo, Qiyong [Shengjing Hospital of China Medical University, Department of Radiology, Shenyang (China); Gao, Feng [Shengjing Hospital of China Medical University, Department of Hepato-Pancreato-Biliary Tumour Surgery, Shenyang (China); Li, Yue [Shengjing Hospital of China Medical University, Department of Pathology, Shenyang (China); Tao, Shengzhen; Glaser, Kevin J.; Ehman, Richard L. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Liu, Zaiyi [Guangdong Academy of Medical Sciences, Department of Radiology, Guangdong General Hospital, Guangdong (China)

    2018-03-15

    To determine the diagnostic performance of MR elastography (MRE) and compare it with serum CA19-9 in differentiating malignant from benign pancreatic masses, with emphasis on differentiating between pancreatic ductal adenocarcinoma (PDAC) and mass-forming pancreatitis (MFP). We performed a prospective, consecutive, 24-month study in 85 patients with solid pancreatic masses confirmed by histopathologic examinations. The mass stiffness and stiffness ratio (calculated as the ratio of mass stiffness to the parenchymal stiffness) were assessed. The diagnostic accuracy was analysed by calculating the area under the ROC curve (AUROC). The final diagnosis included 54 malignant tumours (43 patients with PDAC) and 31 benign masses (24 patients with MFP). The stiffness ratio showed better diagnostic performance than the mass stiffness and serum CA19-9 for the differentiation between malignant and benign masses (AUC: 0.912 vs. 0.845 vs. 0.702; P = 0.026, P < 0.001) and, specifically, between PDAC and MFP (AUC: 0.955 vs. 0.882 vs. 0.745; P = 0.026, P = 0.003). The sensitivity, specificity, and accuracy of stiffness ratio for the differentiation of PDAC and MFP were all higher than 0.9. MRE presents an effective and quantitative strategy for non-invasive differentiation between PDAC and MFP based on their mechanical properties. (orig.)

  3. The Cross-Sectional Relationship Between Body Mass Index, Waist-Hip Ratio and Cognitive Performance in Postmenopausal Women Enrolled in the Women's Health Initiative (WHI)

    Science.gov (United States)

    Kerwin, Diana R.; Zhang, Yinghua; Kotchen, Jane Morley; Espeland, Mark A.; Van Horn, Linda; McTigue, Kathleen M.; Robinson, Jennifer G.; Powell, Lynda; Kooperberg, Charles; Coker, Laura H.; Hoffmann, Raymond

    2010-01-01

    OBJECTIVES To determine if body weight (BMI) is independently associated with cognitive function in postmenopausal women and the relationship between body fat distribution as estimated by waist-hip-ratio (WHR) and cognitive function. DESIGN Cross-sectional data analysis SETTING Baseline data from the Women's Health Initiative (WHI) hormone trials. PARTICIPANTS 8745 postmenopausal women aged 65–79 years, free of clinical evidence of dementia and completed baseline evaluation in the Women's Health Initiative (WHI) hormone trials. MEASUREMENTS Participants completed a Modified Mini-Mental State Examination (3MSE), health and lifestyle questionnaires, and standardized measurements of height, weight, body circumferences and blood pressure. Statistical analysis of associations between 3MSE scores, BMI and WHR after controlling for known confounders. RESULTS With the exception of smoking and exercise, vascular disease risk factors, including hypertension, waist measurement, heart disease and diabetes, were significantly associated with 3MSE score and were included as co-variables in subsequent analyses. BMI was inversely related to 3MSE scores, for every 1 unit increase in BMI, 3MSE decrease 0.988 (p=.0001) after adjusting for age, education and vascular disease risk factors. BMI had the most pronounced association with poorer cognitive functioning scores among women with smaller waist measurements. Among women with the highest WHR, cognitive scores increased with BMI. CONCLUSION Increasing BMI is associated with poorer cognitive function in women with smaller WHR. Higher WHR, estimating central fat mass, is associated with higher cognitive function in this cross-sectional study. Further research is needed to clarify the mechanism for this association. PMID:20646100

  4. The alfalfa “almost darks” campaign: Pilot VLA HI observations of five high mass-to-light ratio systems

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, John M.; Martinkus, Charlotte P. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Leisman, Lukas; Haynes, Martha P.; Giovanelli, Riccardo; Hallenbeck, Gregory; Jones, Michael, E-mail: jcannon@macalester.edu, E-mail: cmartink@macalester.edu, E-mail: leisman@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: hallenbg@union.edu, E-mail: jonesmg@astro.cornell.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); and others

    2015-02-01

    We present new Very Large Array (VLA) H i spectral line imaging of five sources discovered by the ALFALFA extragalactic survey. These targets are drawn from a larger sample of systems that were not uniquely identified with optical counterparts during ALFALFA processing, and as such have unusually high H i mass to light ratios. The candidate “Almost Dark” objects fall into four broad categories: (1) objects with nearby H i neighbors that are likely of tidal origin; (2) objects that appear to be part of a system of multiple H i sources, but which may not be tidal in origin; (3) objects isolated from nearby ALFALFA H i detections, but located near a gas-poor early type galaxy; (4) apparently isolated sources, with no object of coincident redshift within ∼400 kpc. Roughly 75% of the 200 objects without identified counterparts in the α.40 database (Haynes et al. 2011) fall into category 1 (likely tidal), and were not considered for synthesis follow-up observations. The pilot sample presented here (AGC193953, AGC208602, AGC208399, AGC226178, and AGC233638) contains the first five sources observed as part of a larger effort to characterize H i sources with no readily identifiable optical counterpart at single dish resolution (3.′5). These objects span a range of H i mass [7.41 < log(M{sub Hi}) < 9.51] and H i mass to B-band luminosity ratios (3 < M{sub Hi}/L{sub B} < 9). We compare the H i total intensity and velocity fields to optical imaging drawn from the Sloan Digital Sky Survey and to ultraviolet imaging drawn from archival GALEX observations. Four of the sources with uncertain or no optical counterpart in the ALFALFA data are identified with low surface brightness optical counterparts in Sloan Digital Sky Survey imaging when compared with VLA H i intensity maps, and appear to be galaxies with clear signs of ordered rotation in the H i velocity fields. Three of these are detected in far-ultraviolet GALEX images, a likely indication of star formation within

  5. Mass Intellectuality and Democratic Leadership in Higher Education

    OpenAIRE

    Hall, Richard; Winn, J.

    2016-01-01

    Higher education in the UK is in crisis. The idea of the public university is under assault, and both the future of the sector and its relationship to society are being gambled. Higher education is increasingly unaffordable, its historic institutions are becoming untenable, and their purpose is resolutely instrumental. What and who have led us to this crisis? What are the alternatives? To whom do we look for leadership in revealing those alternatives? This book critically analyses intell...

  6. Impact of corpulence parameters and haemoglobin A1c on metabolic control in type 2 diabetic patients: comparison of apolipoprotein B/A-I ratio with fasting and postprandial conventional lipid ratios

    Directory of Open Access Journals (Sweden)

    Mustapha Diaf

    2015-05-01

    Full Text Available Background and objective: The incidence of diabetes co-morbidities could probably be better assessed by studying its associations with major corpulence parameters and glycaemic control indicators. We assessed the utility of body mass index (BMI, waist circumference (WC, and glycosylated haemoglobin (HbA1c levels in metabolic control for type 2 diabetic patients. Methods: Fasting and postprandial blood samples were collected from 238 type 2 diabetic patients aged 57.4±11.9 years. The sera were analysed for glucose, HbA1c, total cholesterol (TC, triglycerides (TG, high-density lipoprotein cholesterol (HDL-c, low-density lipoprotein cholesterol (LDL-c, and apolipoproteins (apoA-I and apoB. Ratios of lipids and apolipoproteins were calculated and their associations with BMI, WC, and HbA1c levels were analysed. Results: Our investigation showed increases in most fasting and postprandial lipid parameters according to BMI and WC. In men, postprandial HDL-c and TG levels were significantly higher (p<0.05 in overweight and obese patients, respectively, as well as in patients with abdominal obesity. Contrariwise, postprandial TC levels were significantly higher (p<0.01 in overweight and abdominal obese women. However, elevations of apoA-I and apoB levels were according to BMI and WC in both genders. There was a strong influence of BMI, WC, and HbA1c levels on the apoB/apoA-I ratio compared to traditional fasting and postprandial lipid ratios in both men and women. The apoB/apoA-I ratio was more correlated with postprandial TC/HDL and LDL-c/HDL-c ratios in men and with postprandial TG/HDL-c in women. Conclusion: The apoB/apoA-I ratio is helpful in assessing metabolic risk caused by overall obesity, abdominal obesity and impaired glycaemia in type 2 diabetic patients.

  7. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    Science.gov (United States)

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  8. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses.

    Science.gov (United States)

    Berg, Wendie A; Cosgrove, David O; Doré, Caroline J; Schäfer, Fritz K W; Svensson, William E; Hooley, Regina J; Ohlinger, Ralf; Mendelson, Ellen B; Balu-Maestro, Catherine; Locatelli, Martina; Tourasse, Christophe; Cavanaugh, Barbara C; Juhan, Valérie; Stavros, A Thomas; Tardivon, Anne; Gay, Joel; Henry, Jean-Pierre; Cohen-Bacrie, Claude

    2012-02-01

    To determine whether adding shear-wave (SW) elastographic features could improve accuracy of ultrasonographic (US) assessment of breast masses. From September 2008 to September 2010, 958 women consented to repeat standard breast US supplemented by quantitative SW elastographic examination in this prospective multicenter institutional review board-approved, HIPAA-compliant protocol. B-mode Breast Imaging Reporting and Data System (BI-RADS) features and assessments were recorded. SW elastographic evaluation (mean, maximum, and minimum elasticity of stiffest portion of mass and surrounding tissue; lesion-to-fat elasticity ratio; ratio of SW elastographic-to-B-mode lesion diameter or area; SW elastographic lesion shape and homogeneity) was performed. Qualitative color SW elastographic stiffness was assessed independently. Nine hundred thirty-nine masses were analyzable; 102 BI-RADS category 2 masses were assumed to be benign; reference standard was available for 837 category 3 or higher lesions. Considering BI-RADS category 4a or higher as test positive for malignancy, effect of SW elastographic features on area under the receiver operating characteristic curve (AUC), sensitivity, and specificity after reclassifying category 3 and 4a masses was determined. Median participant age was 50 years; 289 of 939 (30.8%) masses were malignant (median mass size, 12 mm). B-mode BI-RADS AUC was 0.950; eight of 303 (2.6%) BI-RADS category 3 masses, 18 of 193 (9.3%) category 4a lesions, 41 of 97 (42%) category 4b lesions, 42 of 57 (74%) category 4c lesions, and 180 of 187 (96.3%) category 5 lesions were malignant. By using visual color stiffness to selectively upgrade category 3 and lack of stiffness to downgrade category 4a masses, specificity improved from 61.1% (397 of 650) to 78.5% (510 of 650) (Pbreast US mass assessment without loss of sensitivity. © RSNA, 2012

  9. MASS-TO-LIGHT RATIOS FOR M31 GLOBULAR CLUSTERS: AGE DATING AND A SURPRISING METALLICITY TREND

    International Nuclear Information System (INIS)

    Strader, Jay; Huchra, John P.; Smith, Graeme H.; Brodie, Jean P.; Larsen, Soeren

    2009-01-01

    We have obtained velocity dispersions from Keck high-resolution integrated spectroscopy of 10 M31 globular clusters (GCs), including three candidate intermediate-age GCs. We show that these candidates have the same V-band mass-to-light (M/L V ) ratios as the other GCs, implying that they are likely to be old. We also find a trend of derived velocity dispersion with wavelength, but cannot distinguish between a systematic error and a physical effect. Our new measurements are combined with photometric and spectroscopic data from the literature in a re-analysis of all M31 GC M/L V values. In a combined sample of 27 GCs, we show that the metal-rich GCs have lower M/L V than the metal-poor GCs, in conflict with predictions from stellar population models. Fragmentary data for other galaxies support this observation. The M31 GC fundamental plane is extremely tight, and we follow up an earlier suggestion by Djorgovski to show that the fundamental plane can be used to estimate accurate distances (potentially 10% or better).

  10. Sulfur isotope in nature. Determination of sulfur isotope ratios in coal and petroleum by mass spectrometry

    International Nuclear Information System (INIS)

    Derda, M.

    1999-01-01

    Elementary sulfur or in chemical compounds is one of the elements widespread in the earth's crust and biosphere. Its participation in earth's crust amounts to 0.26 % by weight. Measurement of isotope composition of natural samples can deliver many information about origin, creation and transformation ranges of rocks and minerals. Sulfur isotope ratio contained in minerals is variable and for this reason investigation of isotope sulfur composition can deliver useful information about the geochemistry of each component. Therefore in the investigated sample it is necessary to determine not only the content of sulfur but also the isotope composition of each component. Differentiation of contents of sulfur-34 in natural sulfur compounds can reach up to 110 per mile. So large divergences can be explained by a kinetic effect or by bacterial reduction of sulphates. In this report a wide review of the results of investigations of isotope sulfur compositions in coal and petroleum are presented as well as the methods for the preparation of samples for mass spectrometry analysis are proposed. (author)

  11. Toward a Determination of the Proton-Electron Mass Ratio from the Lamb-Dip Measurement of HD

    Science.gov (United States)

    Tao, L.-G.; Liu, A.-W.; Pachucki, K.; Komasa, J.; Sun, Y. R.; Wang, J.; Hu, S.-M.

    2018-04-01

    Precision spectroscopy of the hydrogen molecule is a test ground of quantum electrodynamics (QED), and it may serve for the determination of fundamental constants. Using a comb-locked cavity ring-down spectrometer, for the first time, we observed the Lamb-dip spectrum of the R (1 ) line in the overtone of hydrogen deuteride (HD). The line position was determined to be 217 105 182.79 ±0.03stat±0.08syst MHz (δ ν /ν =4 ×10-10 ), which is the most accurate rovibrational transition ever measured in the ground electronic state of molecular hydrogen. Moreover, from calculations including QED effects up to the order meα6, we obtained predictions for this R (1 ) line as well as for the HD dissociation energy, which are less accurate but signaling the importance of the complete treatment of nonadiabatic effects. Provided that the theoretical calculation reaches the same accuracy, the present measurement will lead to a determination of the proton-to-electron mass ratio with a precision of 1.3 parts per billion.

  12. Energy profit ratio on LWR by uranium recycles

    International Nuclear Information System (INIS)

    Amano, Osamu; Uno, Takeki; Matsushima, Jun

    2009-01-01

    Energy profit ratio is defined as the ratio of output energy/input system total energy. In case of electric power generation, input energy is a total for fuel such as uranium mining and enrichment, fuel transportation, build nuclear power plant, M and O and for disposal waste and decommission of reactor vessel. Output energy is the total electricity on LWR during the plant life. EPR on both PWR and BWR is high value using gas centrifuge enrichment compared other type of electric power generation such as a thermal power, a hydraulic power, a wind power and a photovoltaic power. How is the EPR on LWR by MOX? We need understanding the energy of reprocessing spent fuel, MOX fuel fabrication, low level waste disposal and high level radioactive glass disposal. As we show the material balance for two cases, the first is the case of long term storage and reprocessing before FBR, the second is the MOX fuel cycle on LWR plant. The MOX fuel recycle is better EPR value rather than the case of long term storage and reprocessing before FBR (LTSRBF). At the gaseous diffusion enrichment case, MOX fuel recycle has 15 to 18% higher EPR value than LTSRBF. At the gas centrifuge enrichment case the MOX fuel recycle has 17 to 18 higher EPR value than LTSRBF. MOX fuel recycle decreases the uranium mining and refine mass, enrichment separative work and the spent fuel interim storage. It tells us the MOX fuel recycle is good way from view of EPR. (author)

  13. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  14. Associations of infant subcutaneous fat mass with total and abdominal fat mass at school-age. The Generation R Study

    Science.gov (United States)

    Santos, Susana; Gaillard, Romy; Oliveira, Andreia; Barros, Henrique; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Hofman, Albert; Jaddoe, Vincent WV

    2017-01-01

    Background Skinfold thickness enables the measurement of overall and regional subcutaneous fatness in infancy and may be associated with total and abdominal body fat in later childhood. We examined the associations of subcutaneous fat in infancy with total and abdominal fat at school-age. Methods In a population-based prospective cohort study among 821 children, we calculated total subcutaneous fat (sum of biceps, triceps, suprailiacal and subscapular skinfold thicknesses) and central-to-total subcutaneous fat ratio (sum of suprailiacal and subscapular skinfold thicknesses/total subcutaneous fat) at 1.5 and 24 months. At 6 years, we measured fat mass index (total fat/height3), central-to-total fat ratio (trunk fat/total fat) and android-to-gynoid fat ratio (android fat/gynoid fat) by dual-energy X-ray absorptiometry and preperitoneal fat mass area by abdominal ultrasound. Results Central-to-total subcutaneous fat ratio at 1.5 months was positively associated with fat mass index and central-to-total fat ratio at 6 years, whereas both total and central-to-total subcutaneous fat ratio at 24 months were positively associated with all childhood adiposity measures (pfat at 24 months was associated with an increased risk of childhood overweight (Odds Ratio 1.70 [95% Confidence Interval 1.36, 2.12]). These associations were weaker than those for body mass index and stronger among girls than boys. Conclusions Subcutaneous fat in infancy is positively associated with total and abdominal fat at school-age. Our results also suggest that skinfold thicknesses add little value to estimate later body fat, as compared to body mass index. PMID:27225335

  15. Indigenous instrumentation for mass spectrometry: Part II - development of plasma source mass spectrometers. PD-5-3

    International Nuclear Information System (INIS)

    Nataraju, V.

    2007-01-01

    The growing demands from analytical community, for a precise isotope ratio and ultra trace concentration measurements, has lead to significant improvement in mass spectrometer instrumentation development with respect to sensitivity, detection limits, precision and accuracy. Among the many analytical techniques available, plasma source mass spectrometers like Inductively Coupled Plasma Mass Spectrometry (ICPMS), multi collector (MC) ICPMS and Glow Discharge Mass Spectrometry (GDMS), have matured into reliable tools for the above applications. Where as ICPMS is by far the most successful method for aqueous solutions, GDMS is being applied for bulk and impurity analysis of conducting as well non-conducting solids. VPID, BARC has been developing mass spectrometers for different inorganic applications of DAE users. Over the years expertise has been developed in all the aspects of mass spectrometry instrumentation. Part 1 of this indigenous instrumentation on mass spectrometry gives details of magnetic sector instruments with either EI or TI source for isotopic ratio analysis. The present paper is a continuation of that on plasma source and quadrupole mass spectrometers. This paper covers i) ICP-QMS, ii) MC-ICPMS, iii) GDMS and iv) QMS

  16. Precision mass measurements at THe-trap and the FSU trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoecker, Martin Juergen

    2016-07-26

    THe-Trap is a Penning-trap mass spectrometer at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, that aims to measure the T/{sup 3}He mass ratio with a relative uncertainty of 10{sup -11}. Improvements of the measurement technique, in particular the measurement of systematic shifts, enabled measurements of mass ratios with relative uncertainties of 7.10{sup -11}, as demonstrated by a cyclotron frequency ratio determination on {sup 12}C{sup 4+}/{sup 16}O{sup 5+}. This uncertainty was limited by the lineshape. An improved theoretical model based on a rotating wave approximation can be used to describe dynamical interactions between the detection system and the ion, in order to better understand the lineshape and to further reduce the uncertainty. The Florida State University trap is a Penning-trap mass spectrometer located in Tallahassee, Florida (USA). In the context of this thesis, three mass ratios were measured, and further 20 mass ratio measurements analyzed, which resulted in the publication of the masses of {sup 82,83}Kr, {sup 131,134}Xe, {sup 86-88}Sr, and {sup 170-174,176}Yb with relative uncertainties between (0.9 - 1.3).10{sup -10}. These masses serve as reference masses for other experiments and have applications in the determination of the fine-structure constant alpha via the photon-recoil method.

  17. Reproducibility of isotope ratio measurements

    International Nuclear Information System (INIS)

    Elmore, D.

    1981-01-01

    The use of an accelerator as part of a mass spectrometer has improved the sensitivity for measuring low levels of long-lived radionuclides by several orders of magnitude. However, the complexity of a large tandem accelerator and beam transport system has made it difficult to match the precision of low energy mass spectrometry. Although uncertainties for accelerator measured isotope ratios as low as 1% have been obtained under favorable conditions, most errors quoted in the literature for natural samples are in the 5 to 20% range. These errors are dominated by statistics and generally the reproducibility is unknown since the samples are only measured once

  18. Use of isotope ratio mass spectrometry to differentiate between endogenous steroids and synthetic homologues in cattle: a review.

    Science.gov (United States)

    Janssens, Geert; Courtheyn, Dirk; Mangelinckx, Sven; Prévost, Stéphanie; Bichon, Emmanuelle; Monteau, Fabrice; De Poorter, Geert; De Kimpe, Norbert; Le Bizec, Bruno

    2013-04-15

    Although substantial technical advances have been achieved during the past decades to extend and facilitate the analysis of growth promoters in cattle, the detection of abuse of synthetic analogs of naturally occurring hormones has remained a challenging issue. When it became clear that the exogenous origin of steroid hormones could be traced based on the (13)C/(12)C isotope ratio of the substances, GC/C/IRMS has been successfully implemented to this aim since the end of the past century. However, due to the costly character of the instrumental setup, the susceptibility of the equipment to errors and the complex and time consuming sample preparation, this method is up until now only applied by a limited number of laboratories. In this review, the general principles as well as the practical application of GC/C/IRMS to differentiate between endogenous steroids and exogenously synthesized homologous compounds in cattle will be discussed in detail, and will be placed next to other existing and to be developed methods based on isotope ratio mass spectrometry. Finally, the link will be made with the field of sports doping, where GC/C/IRMS has been established within the World Anti-Doping Agency (WADA) approved methods as the official technique to differentiate between exogenous and endogenous steroids over the past few years. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Higher body mass index is associated with episodic memory deficits in young adults.

    Science.gov (United States)

    Cheke, Lucy G; Simons, Jon S; Clayton, Nicola S

    2016-11-01

    Obesity has become an international health crisis. There is accumulating evidence that excess bodyweight is associated with changes to the structure and function of the brain and with a number of cognitive deficits. In particular, research suggests that obesity is associated with hippocampal and frontal lobe dysfunction, which would be predicted to impact memory. However, evidence for such memory impairment is currently limited. We hypothesised that higher body mass index (BMI) would be associated with reduced performance on a test of episodic memory that assesses not only content, but also context and feature integration. A total of 50 participants aged 18-35 years, with BMIs ranging from 18 to 51, were tested on a novel what-where-when style episodic memory test: the "Treasure-Hunt Task". This test requires recollection of object, location, and temporal order information within the same paradigm, as well as testing the ability to integrate these features into a single event recollection. Higher BMI was associated with significantly lower performance on the what-where-when (WWW) memory task and all individual elements: object identification, location memory, and temporal order memory. After controlling for age, sex, and years in education, the effect of BMI on the individual what, where, and when tasks remained, while the WWW dropped below significance. This finding of episodic memory deficits in obesity is of concern given the emerging evidence for a role for episodic cognition in appetite regulation.

  20. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  1. Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio

    International Nuclear Information System (INIS)

    Aliev, Alikram N.

    2008-01-01

    In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4

  2. Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios

    Science.gov (United States)

    Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.

    2017-12-01

    Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.

  3. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios.

    Science.gov (United States)

    Zhang, Xiaobo; Yuan, Guangyin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-05-01

    Recently, commercial magnesium (Mg) alloys containing Al (such as AZ31 and AZ91) or Y (such as WE43) have been studied extensively for biomedical applications. However, these Mg alloys were developed as structural materials, not as biomaterials. In this study, a patented Mg-Nd-Zn-Zr (denoted as JDBM) alloy was investigated as a biomedical material. The microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of the alloy extruded at 320 °C with extrusion ratios of 8 and 25 were studied. The results show that the lower extrusion ratio results in finer grains and higher strength, but lower elongation, while the higher extrusion ratio results in coarser grains and lower strength, but higher elongation. The biocorrosion behavior of the alloy was investigated by hydrogen evolution and mass loss tests in simulated body fluid (SBF). The results show that the alloy extruded with lower extrusion ratio exhibits better corrosion resistance. The corrosion mode of the alloy is uniform corrosion, which is favorable for biomedical applications. Aging treatment on the as-extruded alloy improves the strength and decreases the elongation at room temperature, and has a small positive influence on the corrosion resistance in SBF. The cytotoxicity test indicates that the as-extruded JDBM alloy meets the requirement of cell toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Special features of the isotope ratio determination using mass-spectrometer with induction-bound plasma

    International Nuclear Information System (INIS)

    Stepanov, A.I.; Ramendik, G.I.; Fatyushina, E.V.

    2000-01-01

    The origin of the errors arising upon measuring relative abundance of Nd, Yb, and Gd isotopes on a HP-4500 mass-spectrometer (USA) is studied. It is shown that the main origin of the error is the different sensitivity of the mass-spectrometer to ions of different masses. Optimal content of the elements in the solutions is established upon determination of their isotopic abundance [ru

  5. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  6. Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry

    Science.gov (United States)

    Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping

    2018-01-01

    The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.

  7. Body Fat Distribution Ratios and Obstructive Sleep Apnea Severity in Youth With Obesity.

    Science.gov (United States)

    Glicksman, Amy; Hadjiyannakis, Stasia; Barrowman, Nicholas; Walker, Scott; Hoey, Lynda; Katz, Sherri Lynne

    2017-04-15

    Obesity and regional fat distribution, measured by neck fat mass percentage using dual-energy X-ray absorptiometry (DXA), correlate with obstructive sleep apnea (OSA) severity in adults. In obese children, neck-to-waist-circumference ratio predicts OSA. This study examined associations between body fat percentage and distribution and sleep-disordered breathing (SDB) severity in obese youth, measured with DXA. Cross-sectional retrospective study conducted at a tertiary children's hospital. Participants were aged 6 to 18 years with obesity (body mass index [BMI] > 99th percentile [BMI z-score 2.35] or > 95th percentile with comorbidity). They underwent polysomnography and DXA to quantify body fat percentage and distribution ratios (neck-to-abdominal fat percentage [NAF % ratio]). SDB was defined as apnea-hypopnea index (AHI) > 5 and OSA as obstructive AHI (OAHI) > 1 event/h. Relationships of BMI z-score and NAF % ratio to log AHI and log OAHI were evaluated. Thirty individuals participated; 18 male; median age 14.1 years. Twenty-four individuals had BMI z-scores > 2.35. Ten had AHI > 5 events/h. NAF % ratio was significantly associated with log AHI in males and with log OAHI in all, whereas total fat mass percent was not. The association between log OAHI and NAF % ratio was significant in males, but not females. NAF % ratio was significantly associated with log OAHI in those with BMI z-score above 2.35. NAF % ratio was associated with OSA severity in males and youth with BMI > 99th percentile; however, total fat mass percentage was not, suggesting that body fat distribution is associated with OSA risk in youth. © 2017 American Academy of Sleep Medicine

  8. Higher Daily Energy Expenditure and Respiratory Quotient, Rather Than Fat-Free Mass, Independently Determine Greater ad Libitum Overeating.

    Science.gov (United States)

    Piaggi, Paolo; Thearle, Marie S; Krakoff, Jonathan; Votruba, Susanne B

    2015-08-01

    Body fat-free mass (FFM), energy expenditure (EE), and respiratory quotient (RQ) are known predictors of daily food intake. Because FFM largely determines EE, it is unclear whether body composition per se or the underlying metabolism drives dietary intake. The objective of the study was to test whether 24-hour measures of EE and RQ and their components influence ad libitum food intake independently of FFM. One hundred seven healthy individuals (62 males/45 females, 84 Native Americans/23 whites; age 33 ± 8 y; body mass index 33 ± 8 kg/m(2); body fat 31% ± 8%) had 24-hour measures of EE in a whole-room indirect calorimeter during energy balance, followed by 3 days of ad libitum food intake using computerized vending machine systems. Body composition was estimated by dual-energy x-ray absorptiometry. FFM, 24-hour EE, RQ, spontaneous physical activity, sleeping EE (sleeping metabolic rate), awake and fed thermogenesis, and ad libitum food intake (INTAKE) were measured. Higher 24-hour RQ (P FFM (P = .65), were independent predictors of INTAKE. Mediation analysis demonstrated that 24-hour EE is responsible for 80% of the FFM effect on INTAKE (44.5 ± 16.9 kcal ingested per kilogram of FFM, P= .01), whereas the unique effect due to solely FFM was negligible (10.6 ± 23.2, P = .65). Spontaneous physical activity (r = 0.33, P = .001), but not sleeping metabolic rate (P = .71), positively predicted INTAKE, whereas higher awake and fed thermogenesis determined greater INTAKE only in subjects with a body mass index of 29 kg/m(2) or less (r = 0.44, P = .01). EE and RQ, rather than FFM, independently determine INTAKE, suggesting that competitive energy-sensing mechanisms driven by the preferential macronutrient oxidation and total energy demands may regulate food intake.

  9. Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry

    Science.gov (United States)

    Xu, Jianzhong; Zhang, Qi; Shi, Jinsen; Ge, Xinlei; Xie, Conghui; Wang, Junfeng; Kang, Shichang; Zhang, Ruixiong; Wang, Yuhang

    2018-01-01

    Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP) during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) and a multi-angle absorption photometer (MAAP) at Nam Co station (90°57' E, 30°46' N; 4730 m a.s.l.) at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1) over the whole campaign was ˜ 2.0 µg m-3, with organics accounting for 68 %, followed by sulfate (15 %), black carbon (8 %), ammonium (7 %), and nitrate (2 %). Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA), with an oxygen-to-carbon ratio (O / C) of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O / C ratio of 0.72), and an average O / C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the high-resolution mass spectra of OA identified two oxygenated

  10. THE ROMER DELAY AND MASS RATIO OF THE sdB+dM BINARY 2M 1938+4603 FROM KEPLER ECLIPSE TIMINGS

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Brad N.; Wade, Richard A.; Liss, Sandra E. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-07-10

    The eclipsing binary system 2M 1938+4603 consists of a pulsating hot subdwarf B star and a cool M dwarf companion in an effectively circular three-hour orbit. The light curve shows both primary and secondary eclipses, along with a strong reflection effect from the cool companion. Here, we present constraints on the component masses and eccentricity derived from the Romer delay of the secondary eclipse. Using six months of publicly available Kepler photometry obtained in short-cadence mode, we fit model profiles to the primary and secondary eclipses to measure their centroid values. We find that the secondary eclipse arrives on average 2.06 {+-} 0.12 s after the midpoint between primary eclipses. Under the assumption of a circular orbit, we calculate from this time delay a mass ratio of q = 0.2691 {+-} 0.0018 and individual masses of M{sub sd} = 0.372 {+-} 0.024 M{sub Sun} and M{sub c} = 0.1002 {+-} 0.0065 M{sub Sun} for the sdB and M dwarf, respectively. These results differ slightly from those of a previously published light-curve modeling solution; this difference, however, may be reconciled with a very small eccentricity, ecos {omega} Almost-Equal-To 0.00004. We also report a decrease in the orbital period of P-dot = (-1.23 {+-} 0.07) Multiplication-Sign 10{sup -10}.

  11. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA has fostered the more widespread use of a stable isotope technique to assess body composition in different population groups to address priority areas in public health nutrition in Member States. It has done this by supporting national and regional nutrition projects through its technical cooperation programme and coordinated research projects over many years. This publication was developed by an international group of experts to provide practical hands-on guidance in the use of this technique in settings where analysis of stable isotope ratios in biological samples is to be made by isotope ratio mass spectrometry. The publication is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical applications of state of the art methodologies to monitor changes in body composition can be found in IAEA Human Health Series No. 3, Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques

  12. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA has fostered the more widespread use of a stable isotope technique to assess body composition in different population groups to address priority areas in public health nutrition in Member States. It has done this by supporting national and regional nutrition projects through its technical cooperation programme and coordinated research projects over many years. This publication was developed by an international group of experts to provide practical hands-on guidance in the use of this technique in settings where analysis of stable isotope ratios in biological samples is to be made by isotope ratio mass spectrometry. The publication is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical applications of state of the art methodologies to monitor changes in body composition can be found in IAEA Human Health Series No. 3, Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques

  13. Do Strontium Isotope Ratios of Animal Bone and Teeth Really Reflect the Isotope Ratios of its birth- and growth-places?

    Science.gov (United States)

    Minami, M.; Goto, A.; Suzuki, K.; Kato, T.; Watanabe, K.; Hasegawa, T.

    2007-12-01

    Strontium enters the human body through the food chain as nutrients pass from bedrock through soil and water to plants and animals. Strontium substitutes for calcium in the hydroxyapatite mineral of skeletal tissue, and is stored there. 87Sr/86Sr ratios in an individual's bone and teeth could directly reflect the isotopic ratios found in the plants and animals that she or he consumed, which reflect the isotope ratios found in the soil and bedrock of that geologic region. Therefore, 87Sr/86Sr ratios of human skeletons could be useful tools for assessing human residential mobility in prehistory, and many studies on them have been often made. In this study, to evaluate whether the 87Sr/86Sr ratio of a bone or teeth really reflects the isotopic ratios of its birth and growth places, several bone and teeth samples were measured for 87Sr/86Sr ratios, compared with 87Sr/86Sr ratios of geological samples in their growth-places. Bone and teeth samples were leached with 5% acetic acid. After drying, samples were ashed in a muffle furnace at 825°C for 8h, and then digested in nitric acid, followed by cation exchange chromatography with 2.4M hydrochloric acid. 87Sr/86Sr ratios were measured using a thermal ionization mass Spectrometer (VG Sector 54) or an inductively coupled plasma mass spectrometer (Finnigan ELEMENT2). A modern boar bone collected at Asuke, Toyota City, Aichi prefecture, Japan showed a 87Sr/86Sr of 0.71001±0.00002 (2 σ), while stream sediments in the Asuke area showed around 0.710 (Asahara et al., 2006). The 87Sr/86Sr ratio of a modern black bass bone collected from Lake Biwa, Shiga prefecture, Japan was 0.71215±0.00002, while those of surface water in Lake Biwa was 0.71233±0.00002. The similar 87Sr/86Sr ratios between bone and its provenance geology could indicate that the 87Sr/86Sr ratios of bones reflect the isotopic ratios of the birth- and growth-places. The more results of modern and fossil skeletons will be shown in our presentation.

  14. Preference for women's body mass and waist-to-hip ratio in Tsimane' men of the Bolivian Amazon: biological and cultural determinants.

    Science.gov (United States)

    Sorokowski, Piotr; Kościński, Krzysztof; Sorokowska, Agnieszka; Huanca, Tomas

    2014-01-01

    The issue of cultural universality of waist-to-hip ratio (WHR) attractiveness in women is currently under debate. We tested men's preferences for female WHR in traditional society of Tsimane'(Native Amazonians) of the Bolivian rainforest (N = 66). Previous studies showed preferences for high WHR in traditional populations, but they did not control for the women's body mass.We used a method of stimulus creation that enabled us to overcome this problem. We found that WHR lower than the average WHR in the population is preferred independent of cultural conditions. Our participants preferred the silhouettes of low WHR, but high body mass index (BMI), which might suggest that previous results could be an artifact related to employed stimuli. We found also that preferences for female BMI are changeable and depend on environmental conditions and probably acculturation (distance from the city). Interestingly, the Tsimane' men did not associate female WHR with age, health, physical strength or fertility. This suggests that men do not have to be aware of the benefits associated with certain body proportions - an issue that requires further investigation.

  15. The atomic and molecular content of disks around very low-mass stars and brown dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Herczeg, G. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Carr, J. S. [Naval Research Laboratory, Code 7211, Washington, DC 20375 (United States); Bruderer, S., E-mail: pascucci@lpl.arizona.edu [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2013-12-20

    There is growing observational evidence that disk evolution is stellar-mass-dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from eight very low mass star and brown dwarf disks. We report the first detections of Ne{sup +}, H{sub 2}, CO{sub 2}, and tentative detections of H{sub 2}O toward these faint and low-mass disks. Two of our [Ne II] 12.81 μm emission lines likely trace the hot (≥5000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H{sub 2} S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [Ne II] emission in gas at ∼600 K. We confirm the higher C{sub 2}H{sub 2}/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H{sub 2}O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H{sub 2}O lines trace warm ≥600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks, which may result from a more efficient formation of non-migrating icy planetesimals. An O/C = 1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low mass stars and brown dwarfs.

  16. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).

    Science.gov (United States)

    Hofmann, D; Gehre, M; Jung, K

    2003-09-01

    In order to identify natural nitrogen isotope variations of biologically important amino acids four derivatization reactions (t-butylmethylsilylation, esterification with subsequent trifluoroacetylation, acetylation and pivaloylation) were tested with standard mixtures of 17 proteinogenic amino acids and plant (moss) samples using GC-C-IRMS. The possible fractionation of the nitrogen isotopes, caused for instance by the formation of multiple reaction products, was investigated. For biological samples, the esterification of the amino acids with subsequent trifluoroacetylation is recommended for nitrogen isotope ratio analysis. A sample preparation technique is described for the isotope ratio mass spectrometric analysis of amino acids from the non-protein (NPN) fraction of terrestrial moss. 14N/15N ratios from moss (Scleropodium spec.) samples from different anthropogenically polluted areas were studied with respect to ecotoxicologal bioindication.

  17. Isotopic ratios in the solar system

    International Nuclear Information System (INIS)

    1985-01-01

    This colloquium is aimed at presentation of isotope ratio measurements in different objects of solar system and surrounding interstellar space and evaluation of what information on composition and structure of primitive solar nebula and on chemical evolution of interstellar space in this part of the galaxy can be deduced from it. Isotope ratio in solar system got from laboratory study of extraterrestrial materials is a subject of this colloquium. Then isotope ratio measured in solar wind, planets and comets. Measurements either are made in-situ by mass spectrometry of ions in solar wind or planetery atmosphere gases either are remote measurements of spectra emitted by giant planets and comets. At last, planetology and astrophysics implications are presented and reviewed. Consraints for solar system formation model can be deduced from isotope ratio measurement. Particularly, isotope anomalies are marks of the processes, which have influenced the primitive solar nebula contraction [fr

  18. CD4/CD8 Ratio and KT Ratio Predict Yellow Fever Vaccine Immunogenicity in HIV-Infected Patients.

    Science.gov (United States)

    Avelino-Silva, Vivian I; Miyaji, Karina T; Hunt, Peter W; Huang, Yong; Simoes, Marisol; Lima, Sheila B; Freire, Marcos S; Caiaffa-Filho, Helio H; Hong, Marisa A; Costa, Dayane Alves; Dias, Juliana Zanatta C; Cerqueira, Natalia B; Nishiya, Anna Shoko; Sabino, Ester Cerdeira; Sartori, Ana M; Kallas, Esper G

    2016-12-01

    HIV-infected individuals have deficient responses to Yellow Fever vaccine (YFV) and may be at higher risk for adverse events (AE). Chronic immune activation-characterized by low CD4/CD8 ratio or high indoleamine 2,3-dioxygenase-1 (IDO) activity-may influence vaccine response in this population. We prospectively assessed AE, viremia by the YFV virus and YF-specific neutralizing antibodies (NAb) in HIV-infected (CD4>350) and -uninfected adults through 1 year after vaccination. The effect of HIV status on initial antibody response to YFV was measured during the first 3 months following vaccination, while the effect on persistence of antibody response was measured one year following vaccination. We explored CD4/CD8 ratio, IDO activity (plasma kynurenine/tryptophan [KT] ratio) and viremia by Human Pegivirus as potential predictors of NAb response to YFV among HIV-infected participants with linear mixed models. 12 HIV-infected and 45-uninfected participants were included in the final analysis. HIV was not significantly associated with AE, YFV viremia or NAb titers through the first 3 months following vaccination. However, HIV-infected participants had 0.32 times the NAb titers observed for HIV-uninfected participants at 1 year following YFV (95% CI 0.13 to 0.83, p = 0.021), independent of sex, age and prior vaccination. In HIV-infected participants, each 10% increase in CD4/CD8 ratio predicted a mean 21% higher post-baseline YFV Nab titer (p = 0.024). Similarly, each 10% increase in KT ratio predicted a mean 21% lower post-baseline YFV Nab titer (p = 0.009). Viremia by Human Pegivirus was not significantly associated with NAb titers. HIV infection appears to decrease the durability of NAb responses to YFV, an effect that may be predicted by lower CD4/CD8 ratio or higher KT ratio.

  19. CD4/CD8 Ratio and KT Ratio Predict Yellow Fever Vaccine Immunogenicity in HIV-Infected Patients

    Science.gov (United States)

    Hunt, Peter W.; Huang, Yong; Simoes, Marisol; Lima, Sheila B.; Freire, Marcos S.; Caiaffa-Filho, Helio H.; Hong, Marisa A.; Costa, Dayane Alves; Dias, Juliana Zanatta C.; Cerqueira, Natalia B.; Nishiya, Anna Shoko; Sabino, Ester Cerdeira; Sartori, Ana M.; Kallas, Esper G.

    2016-01-01

    Background HIV-infected individuals have deficient responses to Yellow Fever vaccine (YFV) and may be at higher risk for adverse events (AE). Chronic immune activation–characterized by low CD4/CD8 ratio or high indoleamine 2,3-dioxygenase-1 (IDO) activity—may influence vaccine response in this population. Methods We prospectively assessed AE, viremia by the YFV virus and YF-specific neutralizing antibodies (NAb) in HIV-infected (CD4>350) and -uninfected adults through 1 year after vaccination. The effect of HIV status on initial antibody response to YFV was measured during the first 3 months following vaccination, while the effect on persistence of antibody response was measured one year following vaccination. We explored CD4/CD8 ratio, IDO activity (plasma kynurenine/tryptophan [KT] ratio) and viremia by Human Pegivirus as potential predictors of NAb response to YFV among HIV-infected participants with linear mixed models. Results 12 HIV-infected and 45-uninfected participants were included in the final analysis. HIV was not significantly associated with AE, YFV viremia or NAb titers through the first 3 months following vaccination. However, HIV–infected participants had 0.32 times the NAb titers observed for HIV-uninfected participants at 1 year following YFV (95% CI 0.13 to 0.83, p = 0.021), independent of sex, age and prior vaccination. In HIV-infected participants, each 10% increase in CD4/CD8 ratio predicted a mean 21% higher post-baseline YFV Nab titer (p = 0.024). Similarly, each 10% increase in KT ratio predicted a mean 21% lower post-baseline YFV Nab titer (p = 0.009). Viremia by Human Pegivirus was not significantly associated with NAb titers. Conclusions HIV infection appears to decrease the durability of NAb responses to YFV, an effect that may be predicted by lower CD4/CD8 ratio or higher KT ratio. PMID:27941965

  20. Probing strongly interacting electroweak dynamics through W+W-/ZZ ratios at future e+e- colliders

    International Nuclear Information System (INIS)

    Barger, V.; Cheung, K.; Han, T.; Phillips, R.J.N.

    1995-01-01

    We point out that the ratio of W + W - →W + W - and W + W - →ZZ cross sections is a sensitive probe of the dynamics of electroweak symmetry breaking, in the c.m. energy region √s WW approx-gt 1 TeV where vector boson scattering may well become strong. We suggest ways in which this ratio can be extracted at a 1.5 TeV e + e - linear collider, using W ± ,Z→jj hadronic decays and relying on dijet mass resolution to provid statistical discrimination between W ± and Z. WW fusion processes studied here are unique for exploring scalar resonances of mass of about 1 TeV and are complementary to studies via the direct channel e + e - →W + W - for the vector and nonresonant cases. With an integrated luminosity of 200 fb -1 , the signals obtained are statistically significant. A comparision with a study of the e - e - →ννW - W - process is made. Enhancements of the signal rate from using a polarized electron beam, or at a 2 TeV e + e - linear colider and possible higher energy μ + μ - colliders, are also presented

  1. Probing strongly-interacting electroweak dynamics through W+W-/ZZ ratios at future e+e- colliders

    International Nuclear Information System (INIS)

    Barger, V.

    1995-01-01

    The authors point out that the ratio of W + W - → W + W - and W + W - → ZZ cross sections is a sensitive probe of the dynamics of electroweak symmetry breaking, in the CM energy region √s ww approx-gt 1 TeV where vector boson scattering may well become strong. They suggest ways in which this ratio can be extracted at a 1.5 TeV e + e - linear collider, using W ± , Z → jj hadronic decays and relying on dijet mass resolution to provide statistical discrimination between W ± and Z. WW fusion processes studied here are unique for exploring scalar resonances of mass about 1 TeV and are complementary to studies via the direct channel e + e - → W + W - for the vector and non-resonant cases. With an integrated luminosity of 200 fb -1 , the signals obtained are statistically significant. Comparison with a study of e - e - → ννW - W - process is made. Enhancements of the signal rate from using a polarized electron beam, or at a 2 TeV e + e - linear collider and possible higher energy μ + μ - colliders, are also presented

  2. Linear theory period ratios for surface helium enhanced double-mode Cepheids

    International Nuclear Information System (INIS)

    Cox, A.N.; Hodson, S.W.; King, D.S.

    1979-01-01

    Linear nonadiabatic theory period ratios for models of double-mode Cepheids with their two periods between 1 and 7 days have been computed, assuming differing amounts and depths of surface helium enhancement. Evolution theory masses and luminosities are found to be consistent with the observed periods. All models give Pi 1 /Pi 0 approx. =0.70 as observed for the 11 known variables, contrary to previous theoretical conclusions. The composition structure that best fits the period ratios has the helium mass fraction in the outer 10 -3 of the stellar mass (T< or =250,000 K) as 0.65, similar to a previous model for the triple-mode pulsator AC And. This enrichment can be established by a Cepheid wind and downward inverted μ gradient instability mixing in the lifetime of these low-mass classical Cepheids

  3. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--discrimination of ammonium nitrate sources.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.

  4. Enhanced tortuosity for electrolytes in microwave irradiated self-organized carbon-doped Ni/Co hydroxide nanocomposite electrodes with higher Ni/Co atomic ratio and rate capability for an asymmetric supercapacitor.

    Science.gov (United States)

    Kumar, Niraj; Kumar, Viresh; Panda, H S

    2017-11-03

    We demonstrate a green, facile and rapid microwave-mediated process for fabricating carbon black (CB) incorporated Ni/Co hydroxide porous nanocomposites and study the effect of various mass loading of CB on supercapacitor performance. The structure and interactions between CB and Ni/Co hydroxide are characterized by using x-ray diffraction, Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy, which suggest the miniaturization of the single-phase Ni/Co hydroxide formation time. A morphology study reveals that the addition of CB into Ni/Co hydroxide develops a loose network structure with well-defined architectural pores. In addition, the nanocomposites demonstrate noticeable improvements in porosity and atomic ratio of Ni/Co with an increasing percentage of carbon, which results in a higher diffusion of electrolytes, and hence electrical conduction. The developed electrode materials exhibit a maximum specific capacitance value of 1526 Fg -1 at current density 1 Ag -1 with excellent cyclic stability (92% retention at 5000 cycles), energy density (76 Wh Kg -1 ), power density (250 W Kg -1 ) and rate capability. A solid state asymmetric supercapacitor device is fabricated and utilized to brighten a commercial LED effectively for validating real usage.

  5. Enhanced tortuosity for electrolytes in microwave irradiated self-organized carbon-doped Ni/Co hydroxide nanocomposite electrodes with higher Ni/Co atomic ratio and rate capability for an asymmetric supercapacitor

    Science.gov (United States)

    Kumar, Niraj; Kumar, Viresh; Panda, H. S.

    2017-11-01

    We demonstrate a green, facile and rapid microwave-mediated process for fabricating carbon black (CB) incorporated Ni/Co hydroxide porous nanocomposites and study the effect of various mass loading of CB on supercapacitor performance. The structure and interactions between CB and Ni/Co hydroxide are characterized by using x-ray diffraction, Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy, which suggest the miniaturization of the single-phase Ni/Co hydroxide formation time. A morphology study reveals that the addition of CB into Ni/Co hydroxide develops a loose network structure with well-defined architectural pores. In addition, the nanocomposites demonstrate noticeable improvements in porosity and atomic ratio of Ni/Co with an increasing percentage of carbon, which results in a higher diffusion of electrolytes, and hence electrical conduction. The developed electrode materials exhibit a maximum specific capacitance value of 1526 Fg-1 at current density 1 Ag-1 with excellent cyclic stability (92% retention at 5000 cycles), energy density (76 Wh Kg-1), power density (250 W Kg-1) and rate capability. A solid state asymmetric supercapacitor device is fabricated and utilized to brighten a commercial LED effectively for validating real usage.

  6. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio...... was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly....

  7. Relationship of Waist-Hip Ratio and Body Mass Index to Blood ...

    African Journals Online (AJOL)

    This study investigated the relationship between two anthropometric measurements for obesity – body mass index (BMI) and ... the physiological and metabolic functions of the body, ..... Norfolk cohort of the European prospective investigation into cancer and nutrition (EPIC-Norfolk) study. ... Annals of Epidemiology 3, pp.35-.

  8. Linking black hole growth with host galaxies: the accretion-stellar mass relation and its cosmic evolution

    Science.gov (United States)

    Yang, G.; Brandt, W. N.; Vito, F.; Chen, C.-T. J.; Trump, J. R.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Koekemoer, A. M.; Schneider, D. P.; Vignali, C.; Wang, J.-X.

    2018-04-01

    Previous studies suggest that the growth of supermassive black holes (SMBHs) may be fundamentally related to host-galaxy stellar mass (M⋆). To investigate this SMBH growth-M⋆ relation in detail, we calculate long-term SMBH accretion rate as a function of M⋆ and redshift [\\overlineBHAR(M_{\\star }, z)] over ranges of log (M⋆/M⊙) = 9.5-12 and z = 0.4-4. Our \\overlineBHAR(M_{\\star }, z) is constrained by high-quality survey data (GOODS-South, GOODS-North and COSMOS), and by the stellar mass function and the X-ray luminosity function. At a given M⋆, \\overlineBHAR is higher at high redshift. This redshift dependence is stronger in more massive systems [for log (M⋆/M⊙) ≈ 11.5, \\overlineBHAR is three decades higher at z = 4 than at z = 0.5], possibly due to AGN feedback. Our results indicate that the ratio between \\overlineBHAR and average star formation rate (\\overlineSFR) rises towards high M⋆ at a given redshift. This \\overlineBHAR/\\overlineSFR dependence on M⋆ does not support the scenario that SMBH and galaxy growth are in lockstep. We calculate SMBH mass history [MBH(z)] based on our \\overlineBHAR(M_{\\star }, z) and the M⋆(z) from the literature, and find that the MBH-M⋆ relation has weak redshift evolution since z ≈ 2. The MBH/M⋆ ratio is higher towards massive galaxies: it rises from ≈1/5000 at log M⋆ ≲ 10.5 to ≈1/500 at log M⋆ ≳ 11.2. Our predicted MBH/M⋆ ratio at high M⋆ is similar to that observed in local giant ellipticals, suggesting that SMBH growth from mergers is unlikely to dominate over growth from accretion.

  9. Exposure to violence in childhood is associated with higher body mass index in adolescence.

    Science.gov (United States)

    Gooding, Holly C; Milliren, Carly; Austin, S Bryn; Sheridan, Margaret A; McLaughlin, Katie A

    2015-12-01

    To determine whether different types of childhood adversity are associated with body mass index (BMI) in adolescence, we studied 147 adolescents aged 13-17 years, 41% of whom reported exposure to at least one adversity (maltreatment, abuse, peer victimization, or witness to community or domestic violence). We examined associations between adversity type and age- and sex-specific BMI z-scores using linear regression and overweight and obese status using logistic regression. We adjusted for potential socio-demographic, behavioral, and psychological confounders and tested for effect modification by gender. Adolescents with a history of sexual abuse, emotional abuse, or peer victimization did not have significantly different BMI z-scores than those without exposure (p>0.05 for all comparisons). BMI z-scores were higher in adolescents who had experienced physical abuse (β=0.50, 95% CI 0.12-0.91) or witnessed domestic violence (β=0.85, 95% CI 0.30-1.40). Participants who witnessed domestic violence had almost 6 times the odds of being overweight or obese (95% CI: 1.09-30.7), even after adjustment for potential confounders. No gender-by-adversity interactions were found. Exposure to violence in childhood is associated with higher adolescent BMI. This finding highlights the importance of screening for violence in pediatric practice and providing obesity prevention counseling for youth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. USE OF GC-MS/COMBUSTION/IRMS TO IDENTIFY AND DETERMINE THE STABLE CARBON ISOTOPIC RATIO OF INDIVIDUAL LIPIDS

    Science.gov (United States)

    A system that couples a gas chromatograph (GC) via a split to a quadrapole mass spectrometer (MS) and, through a combustion interface, to an isotope ratio mass spectrometer (IRMS) allows the simultaneous detection of electron impact mass spectra and stable carbon isotope ratio an...

  11. Heavy element stable isotope ratios. Analytical approaches and applications

    International Nuclear Information System (INIS)

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-01-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.

  12. SDSS-IV MaNGA: global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane

    Science.gov (United States)

    Li, Hongyu; Mao, Shude; Cappellari, Michele; Ge, Junqiang; Long, R. J.; Li, Ran; Mo, H. J.; Li, Cheng; Zheng, Zheng; Bundy, Kevin; Thomas, Daniel; Brownstein, Joel R.; Roman Lopes, Alexandre; Law, David R.; Drory, Niv

    2018-05-01

    We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (`the mass-size' plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity, and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive (centre Spiral galaxies with large mass and size have the steepest gradients, while the most massive ETGs, especially above the critical mass Mcrit ≳ 2 × 1011 M⊙, where slow rotator ETGs start dominating, have much flatter gradients. This may be due to differences in their evolution histories, e.g. mergers.

  13. Increased left ventricular mass and diastolic dysfunction are associated with endothelial dysfunction in normotensive offspring of subjects with essential hypertension.

    Science.gov (United States)

    Zizek, Bogomir; Poredos, Pavel

    2007-01-01

    We aimed to investigate left ventricular (LV) morphology and function in normotensive offspring of subjects with essential hypertension (familial trait - FT), and to determine the association between LV mass and determinants of LV diastolic function and endothelium-dependent (NO-mediated) dilation of the brachial artery (BA). The study encompassed 76 volunteers of whom 44 were normotonics with FT aged 28-39 (mean 33) years and 32 age-matched controls without FT. LV mass and LV diastolic function was measured using conventional echocardiography and tissue Doppler imaging (TDI). LV diastolic filling properties were assessed and reported as the peak E/A wave ratio, and peak septal annular velocities (E(m) and E(m)/A(m) ratio) on TDI. Using high-resolution ultrasound, BA diameters at rest and during reactive hyperaemia (flow-mediated dilation--FMD) were measured. In subjects with FT, the LV mass index was higher than in controls (92.14+/-24.02 vs 70.08+/-20.58); p<0.001). Offspring of hypertensive families had worse LV diastolic function than control subjects (lower E/A ratio, lower E(m) and E(m)/A(m) ratio; p<0.001). In subjects with FT, FMD was decreased compared with the controls (6.11+/-3.28% vs 10.20+/-2.07%; p<0.001). LV mass index and E(m)/A(m) ratio were associated with FMD (p<0.001). In normotensive individuals with FT, LV morphological and functional changes were found. We demonstrated that an increase in LV mass and alterations in LV diastolic function are related to endothelial dysfunction.

  14. Tuned mass absorbers on damped structures under random load

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2008-01-01

    the mass ratio alone, and the damping can be determined subsequently. Only approximate results are available for the influence of damping in the original structure, typically in the form of series expansions. In the present paper it is demonstrated that for typical mass ratios in the order of a few percent......A substantial literature exists on the optimal choice of parameters of a tuned mass absorber on a structure excited by a force or by ground acceleration with random characteristics in the form of white noise. In the absence of structural damping the optimal frequency tuning is determined from...... for the response variance of a structure with initial damping in terms of the mass ratio and both damping ratios. Within this format the optimal tuning of the absorber turns out to be independent of the structural damping, and a simple explicit expression is obtained for the equivalent total damping....

  15. Maternal obesity, gestational weight gain and childhood cardiac outcomes: role of childhood body mass index.

    Science.gov (United States)

    Toemen, L; Gishti, O; van Osch-Gevers, L; Steegers, E A P; Helbing, W A; Felix, J F; Reiss, I K M; Duijts, L; Gaillard, R; Jaddoe, V W V

    2016-07-01

    Maternal obesity may affect cardiovascular outcomes in the offspring. We examined the associations of maternal prepregnancy body mass index and gestational weight gain with childhood cardiac outcomes and explored whether these associations were explained by parental characteristics, infant characteristics or childhood body mass index. In a population-based prospective cohort study among 4852 parents and their children, we obtained maternal weight before pregnancy and in early, mid- and late pregnancy. At age 6 years, we measured aortic root diameter (cm) and left ventricular dimensions. We calculated left ventricular mass (g), left ventricular mass index (g m(-2.7)), relative wall thickness ((2 × left ventricular posterior wall thickness)/left ventricular diameter), fractional shorting (%), eccentric left ventricular hypertrophy and concentric remodeling. A one standard deviation score (SDS) higher maternal prepregnancy body mass index was associated with higher left ventricular mass (0.10 SDS (95% confidence interval (CI) 0.08, 0.13)), left ventricular mass index (0.06 SDS (95% CI 0.03, 0.09)) and aortic root diameter (0.09 SDS (95% CI 0.06, 0.12)), but not with relative wall thickness or fractional shortening. A one SDS higher maternal prepregnancy body mass index was associated with an increased risk of eccentric left ventricular hypertrophy (odds ratio 1.21 (95% CI 1.03, 1.41)), but not of concentric remodeling. When analyzing the effects of maternal weight in different periods simultaneously, only maternal prepregnancy weight and early pregnancy weight were associated with left ventricular mass, left ventricular mass index and aortic root diameter (P-valuesMaternal prepregnancy body mass index and weight gain in early pregnancy are both associated with offspring cardiac structure in childhood, but these associations seem to be fully explained by childhood body mass index.

  16. GasBench/isotope ratio mass spectrometry: a carbon isotope approach to detect exogenous CO(2) in sparkling drinks.

    Science.gov (United States)

    Cabañero, Ana I; San-Hipólito, Tamar; Rupérez, Mercedes

    2007-01-01

    A new procedure for the determination of carbon dioxide (CO(2)) (13)C/(12)C isotope ratios, using direct injection into a GasBench/isotope ratio mass spectrometry (GasBench/IRMS) system, has been developed to improve isotopic methods devoted to the study of the authenticity of sparkling drinks. Thirty-nine commercial sparkling drink samples from various origins were analyzed. Values of delta(13)C(cava) ranged from -20.30 per thousand to -23.63 per thousand, when C3 sugar addition was performed for a second alcoholic fermentation. Values of delta(13)C(water) ranged from -5.59 per thousand to -6.87 per thousand in the case of naturally carbonated water or water fortified with gas from the spring, and delta(13)C(water) ranged from -29.36 per thousand to -42.09 per thousand when industrial CO(2) was added. It has been demonstrated that the addition of C4 sugar to semi-sparkling wine (aguja) and industrial CO(2) addition to sparkling wine (cava) or water can be detected. The new procedure has advantages over existing methods in terms of analysis time and sample treatment. In addition, it is the first isotopic method developed that allows (13)C/(12)C determination directly from a liquid sample without previous CO(2) extraction. No significant isotopic fractionation was observed nor any influence by secondary compounds present in the liquid phase. Copyright (c) 2007 John Wiley & Sons, Ltd.

  17. Determination of extremely low {sup 236}U/{sup 238}U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F. [Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz (Germany)]. E-mail: sergei.boulyga@univie.ac.at; Heumann, Klaus G. [Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz (Germany)

    2006-07-01

    A method by inductively coupled plasma mass spectrometry (Icp-Ms) was developed which allows the measurement of {sup 236}U at concentration ranges down to 3 x 10{sup -14} g g{sup -1} and extremely low {sup 236}U/{sup 238}U isotope ratios in soil samples of 10{sup -7}. By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5000 counts fg{sup -1} uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH{sup +}/U{sup +} down to a level of 10{sup -6}. An abundance sensitivity of 3 x 10{sup -7} was observed for {sup 236}U/{sup 238}U isotope ratio measurements at mass resolution 4000. The detection limit for {sup 236}U and the lowest detectable {sup 236}U/{sup 238}U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the {sup 236}U/{sup 238}U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the {sup 235}U/{sup 238}U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of {sup 236}U in the upper 0-10 cm soil layers varied from 2 x 10{sup -9} g g{sup -1} within radioactive spots close to the Chernobyl NPP to 3 x 10{sup -13} g g{sup -1} on a sampling site located by >200 km from Chernobyl.

  18. Parallel Assessment of Bone Mineral Density and RANKL/OPG Ratio in Saudi Females

    Directory of Open Access Journals (Sweden)

    AI Hassan

    2016-02-01

    Full Text Available Background: Osteoporosis is a significant risk factor for morbidity, and its high prevalence among Saudi women should be considered to be a public health problem. Quantitative ultrasound was recommended for bone mineral density (BMD screening. Receptor activator of nuclear factor kappa-B ligand (RANKL and osteoprotegerin (OPG and their ratio are critical for physiological bone remodelling, and related abnormalities may lead to several osteopathies. Methods: The BMD of 499 Saudi females aged 20 to 65 years was measured using quantitative ultrasound from the beginning of October 2013 to the end of March 2014 at the female medical unit of Taibah University, Madinah, KSA. Possible associated risk factors for low BMD were studied. Blood RANKL and OPG were measured by enzyme-linked immunosorbent assay (ELISA. Results: No significant differences were found between participants with normal and low BMD regarding the studied risk factors. However, there was a significant association (p < 0.05 between BMD and regular physical activity among participants aged 20 years to less than 35 years, and women aged 35–50 years with higher body mass index (BMI had higher BMD. The RANKL/OPG ratio was inversely associated (p = 0.04 with BMD. Conclusions: Regular physical activity is crucial for maximizing BMD in young females and decreasing the possibility of developing osteoporosis with ageing. The RANKL/OPG ratio might be considered a useful and easy-to-use tool for the prediction of low BMD.

  19. Addressing the strong CP problem with quark mass ratios

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Cruz, J.L.; Saldana-Salazar, U.J. [Benemerita Univ. Autonoma de Puebla (Mexico). Facultad de Ciencias Fisico-Matematicas; Hollik, W.G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-05-15

    The strong CP problem is one of many puzzles in the theoretical description of elementary particles physics that still lacks an explanation. Solutions to that problem usually comprise new symmetries or fields or both. The main problem seems to be how to achieve small CP in the strong interactions despite large CP violation in weak interactions. Observation of CP violation is exclusively through the Higgs-Yukawa interactions. In this letter, we show that with minimal assumptions on the structure of mass (Yukawa) matrices the strong CP problem does not exist in the Standard Model and no extension to solve this is needed. However, to solve the flavor puzzle, models based on minimal SU(3) flavor groups leading to the proposed flavor matrices are favored.

  20. Addressing the strong CP problem with quark mass ratios

    International Nuclear Information System (INIS)

    Diaz-Cruz, J.L.; Saldana-Salazar, U.J.

    2016-05-01

    The strong CP problem is one of many puzzles in the theoretical description of elementary particles physics that still lacks an explanation. Solutions to that problem usually comprise new symmetries or fields or both. The main problem seems to be how to achieve small CP in the strong interactions despite large CP violation in weak interactions. Observation of CP violation is exclusively through the Higgs-Yukawa interactions. In this letter, we show that with minimal assumptions on the structure of mass (Yukawa) matrices the strong CP problem does not exist in the Standard Model and no extension to solve this is needed. However, to solve the flavor puzzle, models based on minimal SU(3) flavor groups leading to the proposed flavor matrices are favored.