WorldWideScience

Sample records for higher light intensity

  1. Light intensity dependent optical rotation in azobenzene polymers

    Science.gov (United States)

    Ivanov, M.; Ilieva, D.; Petrova, T.; Dragostinova, V.; Todorov, T.; Nikolova, L.

    2006-05-01

    We investigate the self-induced rotation of the azimuth of light polarization ellipse in azobenzene polymers. It is initiated by the photoreorientation and ordering of the azobenzenes on illumination with elliptically polarized light resulting in the appearance of an optical axis whose direction is gradually rotated along the depth of the film. A macroscopic chiral structure is created with a pitch depending on light ellipticity and the photobirefringence ▵n in the successive layers of the film. In this work we make use of the fact that at elevated temperatures ▵n is very sensitive to light intensity. In our acrylic amorphous azobenzene polymer at temperatures 50-65°C the saturated values of ▵n are much higher for low intensity of the exciting light than for higher intensity. In this temperature range the polarization azimuth of monochromatic blue light with different intensity is rotated to a different angle after passing through the polymer film. This effect can be used for passive elements rotating the polarization azimuth depending on light intensity and for the formation of light beams with a space-variant polarization state.

  2. Nutrient concentrations in a Littorella uniflora community at higher CO2 concentrations and reduced light intensities

    DEFF Research Database (Denmark)

    Andersen, T.; Pedersen, O.; Andersen, F. Ø.

    2005-01-01

    laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic...... nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light...... intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field...

  3. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp.

    Science.gov (United States)

    Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang

    2014-02-01

    A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.

  4. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents.

    Directory of Open Access Journals (Sweden)

    Valerie Carson

    Full Text Available BACKGROUND: The minimal physical activity intensity that would confer health benefits among adolescents is unknown. The purpose of this study was to examine the associations of accelerometer-derived light-intensity (split into low and high physical activity, and moderate- to vigorous-intensity physical activity with cardiometabolic biomarkers in a large population-based sample. METHODS: The study is based on 1,731 adolescents, aged 12-19 years from the 2003/04 and 2005/06 National Health and Nutrition Examination Survey. Low light-intensity activity (100-799 counts/min, high light-intensity activity (800 counts/min to <4 METs and moderate- to vigorous-intensity activity (≥ 4 METs, Freedson age-specific equation were accelerometer-derived. Cardiometabolic biomarkers, including waist circumference, systolic blood pressure, diastolic blood pressure, HDL-cholesterol, and C-reactive protein were measured. Triglycerides, LDL- cholesterol, insulin, glucose, and homeostatic model assessments of β-cell function (HOMA-%B and insulin sensitivity (HOMA-%S were also measured in a fasting sub-sample (n=807. RESULTS: Adjusted for confounders, each additional hour/day of low light-intensity activity was associated with 0.59 (95% CI: 1.18-0.01 mmHG lower diastolic blood pressure. Each additional hour/day of high light-intensity activity was associated with 1.67 (2.94-0.39 mmHG lower diastolic blood pressure and 0.04 (0.001-0.07 mmol/L higher HDL-cholesterol. Each additional hour/day of moderate- to vigorous-intensity activity was associated with 3.54 (5.73-1.35 mmHG lower systolic blood pressure, 5.49 (1.11-9.77% lower waist circumference, 25.87 (6.08-49.34% lower insulin, and 16.18 (4.92-28.53% higher HOMA-%S. CONCLUSIONS: Time spent in low light-intensity physical activity and high light-intensity physical activity had some favorable associations with biomarkers. Consistent with current physical activity recommendations for adolescents, moderate- to

  5. Performance of Arrowroot (Marantha arundinacea) in various light intensities

    Science.gov (United States)

    Oktafani, M. B.; Supriyono; Budiastuti, MTh S.; Purnomo, D.

    2018-03-01

    Arrowroot (Marantha arundinacea) is one of the potential food crops to support food security programs. Light intensity is one of the important factors for plant growth. Arrowroot cultivation technology still need further development. Traditionally, arrowroot grows wild under canopy without intentisification of cultivating which have low productivity. The purpose of research was to investigate the suitable light intensity for arrowroot. The experiment was conducted at Jumantono as Experimental Field of Faculty of Agricultural, University of Sebelas Maret Surakarta located in Karanganyar, from March to September 2016. The experiment used a complete randomized block design (CRBD) of light intensity level there are 27400 lux (full sun light), 18900 lux (shaded 31%), 13500 lux (shaded 51%) and 7400 lux (shaded 72%). Each treatment was replicated six times so there were 24 experimental units. The results showed that arrowroot is a low light adaptive plant. Arrowroot under the light intensity 7400 lux (27% full light), the number of leaves and tillers is not significantly different than under full light, although the plant is higher. The highest tuber diameter and length were 1.91 and 25.06 cm, respectively, and tuber weight reached 607.5-651.67 g per plant.

  6. Light intensity modulates corneal power and refraction in the chick eye exposed to continuous light.

    Science.gov (United States)

    Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Avni, Isaac; Polat, Uri

    2008-09-01

    Continuous exposure of chicks to light was shown to result in severe hyperopia, accompanied by anterior segment changes, such as severe corneal flattening. Since rearing chicks in complete darkness results only in mild hyperopia and minor changes in corneal curvature, we hypothesized that light intensity may play a role in the development of refractive changes under continuous light illumination. To test this hypothesis, we examined the effects of rearing chicks under various continuous light intensities. More specifically, we investigated the refractive parameters of the chicks' eyes, and avoided light cycling effects on ocular development. To this end, thirty-eight chicks were reared under 24-h incandescent illumination, at three different light intensities: 10,000 lux (n=13), 500 lux (n=12), and 50 lux (n=13). Their eyes underwent repeated retinoscopy, keratometry, and ultrasound biometry, as well as caliper measurements of enucleated eyes. Both refraction and corneal refractive power were found to be correlated with light intensity. On day 90 after hatching, exposure to light intensities of 10,000, 500, and 50 lux resulted in hyperopia of +11.97+/-3.7 (mean+/-SD) +7.9+/-4.08 and +0.63+/-3.61 diopters (D), respectively. Under those intensities, corneal refractive power was 46.10+/-3.62, 49.72+/-4.16, and 56.88+/-4.92D, respectively. Axial length did not differ significantly among the groups. The vitreous chamber was significantly deeper in the high than in the low-intensity groups. Thus, during the early life of chicks exposed to continuous lighting, light intensity affects the vitreous chamber depth as well as the anterior segment parameters, most notably the cornea. The higher the intensity, the more severe was the corneal flattening observed and the hyperopia that developed, whereas continuous illumination at low intensities resulted in emmetropia. Thus, light intensity is an important factor that should be taken into account when studying refractive

  7. Early Birds by Light at Night: Effects of Light Color and Intensity on Daily Activity Patterns in Blue Tits.

    Science.gov (United States)

    de Jong, Maaike; Caro, Samuel P; Gienapp, Phillip; Spoelstra, Kamiel; Visser, Marcel E

    2017-08-01

    Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits ( Cyanistes caeruleus) exposed to similar intensities of green, red, or white light at night. Birds advanced their onset of activity in the morning under all light colors but more under red and white light than under green light. Offset of activity was slightly delayed in all light colors. The total activity over a 24-h period did not change but birds moved a part of their daily activity into the night. Since the effect of red and white lights are comparable, we tested the influence of light intensity in a follow-up experiment, where we compared the activity of the birds under different intensities of green and white light only. While in the higher range of intensities, the effects of white and green light were comparable; at lower intensities, green light had a less disturbing effect as compared with white light on daily rhythms in blue tits. Our results show that the extent of this disturbance can be mitigated by modulating the spectral characteristics and intensity of outdoor lighting, which is now feasible through the use of LED lighting.

  8. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing.

    Science.gov (United States)

    Ma, Rui; Lu, Fan; Bi, Yonghong; Hu, Zhengyu

    2015-08-01

    To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides). Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m(-2) s(-1) than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a. White light at 90 μmol m(-2) s(-1) or blue light 30 μmol m(-2) s(-1) were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.

  9. Dependency between light intensity and refractive development under light-dark cycles.

    Science.gov (United States)

    Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Solomon, Arieh S; Polat, Uri

    2011-01-01

    The emmetropization process involves fine-tuning the refractive state by altering the refractive components toward zero refraction. In this study, we provided light-dark cycle conditions at several intensities and examined the effect of light intensity on the progression of chicks' emmetropization. Chicks under high-, medium-, and low-light intensities (10,000, 500, and 50 lux, respectively) were followed for 90 days by retinoscopy, keratometry, as well as ultrasound measurements. Emmetropization was reached from days 30-50 and from days 50-60 for the low- and medium-intensity groups, respectively. On day 90, most chicks in the low-intensity group were myopic, with a mean refraction of -2.41D (95% confidence interval (CI) -2.9 to -1.8D), whereas no chicks in the high-intensity group developed myopia, but they exhibited a stable mean hyperopia of +1.1D. The medium-intensity group had a mean refraction of +0.03D. The low-intensity group had a deeper vitreous chamber depth and a longer axial length compared with the high-intensity group, and shifted refraction to the myopic side. The low-intensity group had a flatter corneal curvature, a deeper anterior chamber, and a thinner lens compared with the high-intensity group, and shifted refraction to the hyperopic side. In all groups the corneal power was correlated with the three examined levels of log light intensity for all examined times (e.g., day 20 r = 0.6 P light-dark cycles, light intensity is an environmental factor that modulates the process of emmetropization, and the low intensity of ambient light is a risk factor for developing myopia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Towards higher intensities

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Over the past 2 weeks, commissioning of the machine protection system has advanced significantly, opening up the possibility of higher intensity collisions at 3.5 TeV. The intensity has been increased from 2 bunches of 1010 protons to 6 bunches of 2x1010 protons. Luminosities of 6x1028 cm-2s-1 have been achieved at the start of fills, a factor of 60 higher than those provided for the first collisions on 30 March.   The recent increase in LHC luminosity as recorded by the experiments. (Graph courtesy of the experiments and M. Ferro-Luzzi) To increase the luminosity further, the commissioning crews are now trying to push up the intensity of the individual proton bunches. After the successful injection of nominal intensity bunches containing 1.1x1011 protons, collisions were subsequently achieved at 450 GeV with these intensities. However, half-way through the first ramping of these nominal intensity bunches to 3.5 TeV on 15 May, a beam instability was observed, leading to partial beam loss...

  11. Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities

    Science.gov (United States)

    Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.

    2018-02-01

    This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.

  12. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    Science.gov (United States)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  13. Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units.

    Science.gov (United States)

    Tongtaksin, A; Leevailoj, C

    This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was

  14. Preferency of soil macrofauna to crops residue at different light intensity

    Directory of Open Access Journals (Sweden)

    SUGIYARTO

    2007-10-01

    Full Text Available Every species of soil macrofauna prefer specific food and environment to be establish in it's habitat. Their diversity depend on variation of food and environmental condition. The aim of this research was to study the effect of different crop residue and light intensity on population of several soil macrofauna specieses. Mycrocosmos experiment was arranged in split-plot design with two treatments factor, i.e.: (1 crop residue (albizia, papaya, elephant grass, maize, sweet potato and without crop residue input, and (2 light intensities (0, 5, 15 and 25 Watt/day. The soil macrofauna were earthworms, millipedes, scarabids larvae and cocroachs. Results of the study showed that: (1 crop residues apllication increased soil macrofauna population, especially maize residue ( by 113%, respectively, compare to control tretment, (2 on higher light intensity, population of earthworms, scarabids larvae and cocroach decreased, but population of millipedes increased, (3 the highest macrofauna population was on maize residue and 5 Watt/day light intensity treatment.

  15. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-03-01

    Full Text Available The objective of this study was to investigate the response of light emitting diodes (LEDs at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm, red (639 nm and blue (470 nm LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1 and was lowered with decreased light intensity (70–80 μmol m−2 s−1. The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment.

  16. Temperature and light intensity interaction on Cercospora coffeicola sporulation and conidia germination

    Directory of Open Access Journals (Sweden)

    Marília Goulart da Silva

    2016-04-01

    Full Text Available ABSTRACT Difficulty in obtaining abundant sporulation in culture of many species of Cercospora may be the limiting factor for studies of biology, systematics, and inoculation of the genus. Therefore, it is necessary to understand the nutritional and environmental requirements that influence mycelial growth, sporulation and germination. As it is difficult to obtain conidia of Cercospora coffeicola in vitro, different temperatures (17, 22, 27, and 32 °C and light intensities (80, 160, 240, and 320 μmol m-2 s-1 were evaluated to optimize pathogen sporulation and assess favorable conditions for spore germination, aiming for a strategy of disease control. The dark treatment (0 μmol m-2 s-1 was added for sporulation. A significant interaction was found between temperature and light intensity for both variables. The highest sporulation rate of C. coffeicola occurred at a light intensity of 240 μmol m-2 s-1 and air temperature of 22 °C, reaching 5.9x106 con mL-1. Germination was higher at temperature 17 °C and light intensity of 320 μmol m-2 s-1, reaching 52%. Interaction between light intensity and temperature proved to influence the processes of sporulation and germination of C. coffeicola.

  17. effect of light curing unit characteristics on light intensity output

    African Journals Online (AJOL)

    2013-09-09

    Sep 9, 2013 ... in Nairobi and their effect on light intensity output, depth of cure (DOC) and ... result in gradual reduction in the energy output of ..... of LED lights are compared with QTH lights could ... influence on the SMH of dark shades.

  18. Intense beams of light ions

    International Nuclear Information System (INIS)

    Camarcat, Noel

    1985-01-01

    Results of experiments performed in order to accelerate intense beams of light and heavier ions are presented. The accelerating diodes are driven by existing pulsed power generators. Optimization of the generator structure is described in chapter I. Nuclear diagnostics of the accelerated light ion beams are presented in chapter II. Chapter III deals with the physics of intense charged particle beams. The models developed are applied to the calculation of the performances of the ion diodes described in the previous chapters. Chapter IV reports preliminary results on a multiply ionized carbon source driven by a 0.1 TW pulsed power generator. (author) [fr

  19. Red Color Light at Different Intensities Affects the Performance, Behavioral Activities and Welfare of Broilers

    Directory of Open Access Journals (Sweden)

    D. Senaratna

    2016-07-01

    Full Text Available Red light (RL marked higher weight gain (WG and preference of broilers compared to other light colors. This study aimed to investigate how different intensities of RL affect the performance, behavior and welfare of broilers. RL treatments were T1 = high intensity (320 lux, T2 = medium intensity (20 lux; T3 = dim intensity (5 lux, T4 = control/white light at (20 lux provided on 20L:4D schedule and T5 = negative control; 12 hours dark: 12 hours day light. Cobb strain broilers were used in a Complete Randomize Design with 6 replicates. WG, water/feed intake, feed conversion ratio (FCR, mortality, behavior and welfare were assessed. At 35 d, significantly (p<0.05 highest body weight (2,147.06 g±99 was recorded by T3. Lowest body weight (1,640.55 g±56 and FCR (1.34 were recorded by T5. Skin weight was the only carcass parameter showed a significant (p<0.05 influence giving the highest (56.2 g and the lowest (12.6 g values for T5 and T1 respectively. Reduced welfare status indicated by significantly (p<0.05 higher foot pad lesions, hock burns and breast blisters was found under T3, due to reduced expression of behavior. Highest walking (2.08%±1% was performed under T1 in the evening during 29 to 35 days. Highest dust bathing (3.01%±2% was performed in the morning during 22 to 28 days and highest bird interaction (BI (4.87%±4% was observed in the evening by T5 during 14 to 21 days. Light intensity×day session×age interaction was significantly (p<0.05 affected walking, dust bathing and BI. Light intensity significantly (p<0.05 affected certain behaviors such as lying, eating, drinking, standing, walking, preening while lying, wing/leg stretching, sleeping, dozing, BI, vocalization, idling. In conclusion, birds essentially required provision of light in the night for better performance. Exposed to 5 lux contributed to higher WG, potentially indicating compromised welfare status. Further researches are suggested to investigate RL intensity based

  20. Effects of Light Intensity on Growth, Anti-Stress Ability and Immune Function in Yellow Feathered Broilers

    Directory of Open Access Journals (Sweden)

    YL Guo

    Full Text Available ABSTRACT An experiment was conducted to investigate the effects of light intensity on growth, anti-stress ability, and immune function of yellow feathered broilers. A total of 480 one-day-old male Lingnan yellow feathered broilers were randomly allocated to 4 treatments based on light intensity (1, 5, 20 and 80 lx with 8 replicates of 15 chicks each. The experiment lasted for 63 days. Compared with those under high light intensity, broilers exposed to low light intensity had higher (p<0.05 total antioxidant capacity (T-AOC, glutathione peroxidase (GSH-Px, a-Naphthylacetate esterase (ANAE+, antibody titer, but lower (p<0.05 malonaldehyde (MDA levels and heterophil/lymphocyte ratio (H/L. There was a linear effect for T-AOC(p=0.002, GSH-Px(p≤0.047, MDA (p=0.003, H/L(p≤0.014, ANAE+ (p≤0.044, and antibody titer (p≤0.021 with T-AOC, GSH-Px, ANAE+, and antibody titer increased significantly as light intensity decreased, whereas MDA and H/L were decreased with the decrease in light intensity. These results suggested that broilers under low light intensity could have similar performance, better anti-stress ability, stronger immune function, and more efficient in energy usage as compared with those exposed to high light intensity environment.

  1. Effects of different light intensities in the morning on dim light melatonin onset.

    Science.gov (United States)

    Kozaki, Tomoaki; Toda, Naohiro; Noguchi, Hiroki; Yasukouchi, Akira

    2011-01-01

    The present study evaluated the effects of exposure to light intensity in the morning on dim light melatonin onset (DLMO). The tested light intensities were 750 lux, 150 lux, 3000 lux, 6000 lux and 12,000 lux (horizontal illuminance at cornea), using commercial 5000 K fluorescent lamps. Eleven healthy males aged 21-31 participated in 2-day experiments for each light condition. On the first experimental day (day 1), subjects were exposed to dim light (dim light (light conditions for 3 h in the morning. The experimental schedule after light exposure was the same as on day 1. On comparing day 2 with day 1, significant phase advances of DLMO were obtained at 3000 lux, 6000 lux and 12,000 lux. These findings indicate that exposure to a necessary intensity from an ordinary light source, such as a fluorescent lamp, in the morning within one day affects melatonin secretion.

  2. Abnormal environmental light exposure in the intensive care environment.

    Science.gov (United States)

    Fan, Emily P; Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C; Maas, Matthew B

    2017-08-01

    We sought to characterize ambient light exposure in the intensive care unit (ICU) environment to identify patterns of light exposure relevant to circadian regulation. A light monitor was affixed to subjects' bed at eye level in a modern intensive care unit and continuously recorded illuminescence for at least 24h per subject. Blood was sampled hourly and measured for plasma melatonin. Subjects underwent hourly vital sign and bedside neurologic assessments. Care protocols and the ICU environment were not modified for the study. A total of 67,324 30-second epochs of light data were collected from 17 subjects. Light intensity peaked in the late morning, median 64.1 (interquartile range 19.7-138.7) lux. The 75th percentile of light intensity exceeded 100lx only between 9AM and noon, and never exceeded 150lx. There was no correlation between melatonin amplitude and daytime, nighttime or total light exposure (Spearman's correlation coefficients all 0.5). Patients' environmental light exposure in the intensive care unit is consistently low and follows a diurnal pattern. No effect of nighttime light exposure was observed on melatonin secretion. Inadequate daytime light exposure in the ICU may contribute to abnormal circadian rhythms. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Impact of Environmental Light Intensity on Experimental Tumor Growth.

    Science.gov (United States)

    Suckow, Mark A; Wolter, William R; Duffield, Giles E

    2017-09-01

    Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×10 6 B16F10 melanoma cells or 2.5×10 5 Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (plight intensity mice compared to high and low light intensity mice. The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  5. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms.

    Directory of Open Access Journals (Sweden)

    Vasco Giovagnetti

    Full Text Available In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC and non-photochemical fluorescence quenching (NPQ, to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events with that of a slower increase (corresponding to the light diel cycle on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m-2 s-1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective 'safety valves' in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.

  6. The Effects of Light Intensity, Casing Layers, and Layering Styles on Royal Sun Medicinal Mushroom, Agaricus brasiliensis (Higher Basidiomycetes) Cultivation in Turkey.

    Science.gov (United States)

    Adanacioglu, Neşe; Boztok, Kaya; Akdeniz, Ramazan Cengiz

    2015-01-01

    The aim of this research is to evaluate the effects of light intensity, casing layers, and layering styles on the production of the culinary-medicinal mushroom Agaricus brasiliensis in Turkey. The experiments were designed in split-split plots and replicated twice. Three different light intensities-I1, 350 lux; I2, 450 lux; and I3, 750 lux-were used in main plots as environmental factors. A mixture of 4 different casing layers- peat (100%), peat-perlite (75%:25%), peat-clinoptilolite (75%:25%), and peat-perlite-clinoptilolite (60%:20%:20%)-were used at split plots and at split plots. S1, a flat, 3-cm casing layer; S2, a flat, 5-cm casing layer; and S3, casing soil ridges 10 cm wide × 4 cm high, 10 cm apart, were deposited on top of 1-cm overall soil casing layers. At the end of the harvest phase, the total yield was estimated per 100 kg of substrate. Biological efficiency (percentage) was determined from the fresh weight of the mushrooms and the dry weight of the compost at the end of the harvesting period. The highest total yield (7.2 kg/100 kg compost) and biological efficiency (27.63%) were achieved from I2 × peat-perlite-clinoptilolite × S2 treatment. Influence of light intensity, casing layer, layering style, and their interaction in treatments with color values (L*, a*, b*, chroma*, and hue*) also were examined. It has been shown that within color values, chroma* (saturation) values of mushroom caps were affected by light intensity, casing layer, and layering style treatments and light intensity × casing layer treatments and the brightness of mushroom caps tended to increase as light intensity increased.

  7. Magnetic orientation in birds: non-compass responses under monochromatic light of increased intensity.

    Science.gov (United States)

    Wiltschko, Wolfgang; Munro, Ursula; Ford, Hugh; Wiltschko, Roswitha

    2003-10-22

    Migratory Australian silvereyes (Zosterops lateralis) were tested under monochromatic light at wavelengths of 424 nm blue and 565 nm green. At a low light level of 7 x 10(15) quanta m(-2) s(-1) in the local geomagnetic field, the birds preferred their seasonally appropriate southern migratory direction under both wavelengths. Their reversal of headings when the vertical component of the magnetic field was inverted indicated normal use of the avian inclination compass. A higher light intensity of 43 x 10(15) quanta m(-2) s(-1), however, caused a fundamental change in behaviour: under bright blue, the silvereyes showed an axial tendency along the east-west axis; under bright green, they showed a unimodal preference of a west-northwesterly direction that followed a shift in magnetic north, but was not reversed by inverting the vertical component of the magnetic field. Hence it is not based on the inclination compass. The change in behaviour at higher light intensities suggests a complex interaction between at least two receptors. The polar nature of the response under bright green cannot be explained by the current models of light-dependent magnetoreception and will lead to new considerations on these receptive processes.

  8. Response to variable light intensity in photoacclimated algae and cyanobacteria exposed to atrazine

    Energy Technology Data Exchange (ETDEWEB)

    Deblois, Charles P.; Dufresne, Karine [Department of Biological Sciences-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Universite du Quebec a Montreal, Succ. Centre-Ville, Montreal, Quebec (Canada); Juneau, Philippe, E-mail: juneau.philippe@uqam.ca [Department of Biological Sciences-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Universite du Quebec a Montreal, Succ. Centre-Ville, Montreal, Quebec (Canada)

    2013-01-15

    Atrazine is frequently detected in freshwater ecosystems exposed to agricultural waste waters and runoffs worldwide and it can affect non-target organisms (mainly photoautotrophic) and modify community structure. Meanwhile, light environment is known to vary between aquatic ecosystems, but also before and during the exposure to atrazine and these variations may modify the sensitivity to atrazine of photoautotroph organisms. In this study, 10 species of phytoplankton (chlorophytes, baccilariophytes and cyanophytes) acclimated to low or high light intensities were exposed to atrazine and light of different intensities to compare their combined effect. Our data showed that chlorophytes and baccilariophytes were more resistant to atrazine compared to cyanophytes for all light conditions. Atrazine was found to inhibit {Phi}{sup Prime }{sub M}, {Psi}{sub 0}, P{sub M} and non-photochemical quenching for all species indicating an effect on electron transport, primary production and photoregulation processes. These data also indicate a higher sensitivity of {Psi}{sub 0} (average {Psi}{sub 0}-EC{sub 50} of 91 {+-} 11 nM or 19.6 {+-} 0.9 {mu}g L{sup -1}) compared to {Phi}{sup Prime }{sub M} (average {Phi}{sup Prime }{sub M}-EC{sub 50} of 217 {+-} 19 nM or 46.8 {+-} 4.1 {mu}g L{sup -1}) and suggest that photoregulation processes activated in presence of light decrease the effect of atrazine. We also showed that increasing light intensity decreased {Phi}{sup Prime }{sub M}-EC{sub 50} in both low (except baccilariophytes) and high light acclimated conditions. Despite this similarity, most species acclimated to high light were found to have higher or similar {Phi}{sup Prime }{sub M}-EC{sub 50} compared to low light acclimated cells and thus, were less sensitive to atrazine in low light and high light environments. We concluded that an increase in the plastoquinone pool induced by acclimation to high light decreased the sensitivity to atrazine in phytoplankton and we hypothesized

  9. LIGHT INTENSITY INFLUENCE ON STRONTIUM TITANATE BASED PHOTO- ELECTROCHEMICAL CELLS

    Directory of Open Access Journals (Sweden)

    D. Hertkorn

    2017-07-01

    Full Text Available The influence of light intensity on photo-electrochemical cells (PECs consisting of an n-type strontium titanate (SrTiO₃ photoanode and nickel cathode in potassium hydroxide electrolyte is studied. The band levels of an electrolyte-metal-semiconductor-electrolyte system are presented and the effect of different light intensities on the energy levels is investigated. Photocurrent density, quantum efficiency, and open circuit potential measurements are performed on the processed PECs under different light intensities (375 nm. It is demonstrated that a threshold value of the light intensity has to be reached in order to obtain positive photo activity and that beyond this value the performance remains nearly constant.

  10. Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity.

    Science.gov (United States)

    Stewart, Jared J; Polutchko, Stephanie K; Adams, William W; Demmig-Adams, Barbara

    2017-11-01

    This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO 2 uptake under growth conditions with light- and CO 2 -saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO 2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature's role in plant photosynthetic acclimation and adaptation.

  11. Light intensity modulation in phototherapy

    Science.gov (United States)

    Lukyanovich, P. A.; Zon, B. A.; Kunin, A. A.; Pankova, S. N.

    2015-04-01

    A hypothesis that blocking ATP synthesis is one of the main causes of the stimulating effect is considered based on analysis of the primary photostimulation mechanisms. The light radiation intensity modulation is substantiated and the estimates of such modulation parameters are made. An explanation is offered to the stimulation efficiency decrease phenomenon at the increase of the radiation dose during the therapy. The results of clinical research of the medical treatment in preventive dentistry are presented depending on the spectrum and parameters of the light flux modulation.

  12. Effect of Light Intensity and Photoperiod on Growth and Biochemical Composition of a Local Isolate of Nostoc calcicola.

    Science.gov (United States)

    Khajepour, Fateme; Hosseini, Seyed Abbas; Ghorbani Nasrabadi, Rasoul; Markou, Giorgos

    2015-08-01

    A study was conducted to investigate the effect of light intensity (21, 42, and 63 μmol photons m(-2) s(-1)) and photoperiod (8:16, 12:12, and 16:8 h light/dark) on the biomass production and its biochemical composition (total carotenoids, chlorophyll a, phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC), total protein, and carbohydrates) of a local isolate of Nostoc calcicola. The results revealed that N. calcicola prefers dim light; however, the most of the levels of light intensity and photoperiod investigated did not have a significant impact on biomass production. Increasing light intensity biomass content of chlorophyll a, PE, PC, APC, and total protein decreased, while total carotenoids and carbohydrate increased. The same behavior was observed also when light duration (photoperiod) increased. The interaction effect of increasing light intensity and photoperiod resulted in an increase of carbohydrate and total carotenoids, and to the decrease of chlorophyll a, PE, PC, APC, and total protein content. The results indicate that varying the light regime, it is capable to manipulate the biochemical composition of the local isolate of N. calcicola, producing either valuable phycobiliproteins or proteins under low light intensity and shorter photoperiods, or producing carbohydrates and carotenoids under higher light intensities and longer photoperiods.

  13. Light-Intensity Physical Activity and All-Cause Mortality.

    Science.gov (United States)

    Loprinzi, Paul D

    2017-07-01

    Research demonstrates that moderate-to-vigorous physical activity (MVPA) is associated with a reduced risk of all-cause mortality. Few studies have examined the effects of light-intensity physical activity on mortality. Therefore, the purpose of this study was to examine the association between objectively measured light-intensity physical activity and all-cause mortality risk. Longitudinal. National Health and Nutrition Examination Survey 2003-2006 with follow-up through December 31, 2011. Five thousand five hundred seventy-five U.S. adults. Participants wore an accelerometer for at least 4 days and completed questionnaires to assess sociodemographics and chronic disease information, with blood samples taken to assess biological markers. Follow-up mortality status was assessed via death certificate data from the National Death Index. Cox proportional hazard model. After adjusting for accelerometer-determined MVPA, age, gender, race-ethnicity, cotinine, weight status, poverty level, C-reactive protein, and comorbid illness, for every 60-minute increase in accelerometer-determined light-intensity physical activity, participants had a 16% reduced hazard of all-cause mortality (hazard ratio = .84; 95% confidence interval: .78-.91; p physical activity was inversely associated with all-cause mortality risk, independent of age, MVPA, and other potential confounders. In addition to MVPA, promotion of light-intensity physical activity is warranted.

  14. effect of light intensity on the cure characteristics of photo

    African Journals Online (AJOL)

    2012-05-05

    May 5, 2012 ... Objective: To determine the light intensity emitted by light curing units (LCUs) and its effect on the cure characteristics of ... of carbon-carbon double bonds conversion (11-13). Additionally, the light intensity output of a ... increases within the unit and in the restoration. This heat not only contributes to the ...

  15. Disruptive effects of light pollution on sleep in free-living birds: Season and/or light intensity-dependent?

    Science.gov (United States)

    Raap, Thomas; Sun, Jiachen; Pinxten, Rianne; Eens, Marcel

    2017-11-01

    Light pollution or artificial light at night (ALAN) is an increasing anthropogenic environmental pollutant posing an important potential threat for wildlife. Evidence of its effects on animal physiology and behaviour is accumulating. However, in order to effectively mitigate light pollution it is important to determine which factors contribute to the severity of effects of ALAN. In this experimental study we explored whether there are seasonal-dependent effects of ALAN on sleep in free-living great tits (Parus major), an important model species. Additionally, we looked at whether light intensity determined the severity of effects of ALAN on sleep. We therefore exposed animals to artificial light inside the nest box (3lx) in December (winter) and February (pre-breeding season). Results from February were compared with the results from a previous study in February, using a lower light intensity (1.6lx). We found little evidence for a season-dependent response. Effects of ALAN hardly differed between high and low light intensity. ALAN disrupted sleep with as main effect a decrease in sleep duration (≈-40min) as animals woke up earlier (≈-24min). However, compared to a natural dark situation sleep onset was delayed by high but not by low light intensity of ALAN. Our study underlines earlier found disruptive effects of ALAN on sleep of free-living animals. While we found no conclusive evidence for seasonal or light intensity-dependent effects of ALAN, additional experimental work using lower light intensities might show such differences. Examining potential management options is crucial in mitigating disruptive effects of light pollution, which will be an important focus for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Morphological composition of cultivar of Urochloa brizantha under light intensities

    Directory of Open Access Journals (Sweden)

    Erikelly Aline Ribeiro de Santana

    2013-12-01

    Full Text Available The implementation of silvopastoral systems (SSP is a management option that gives good results for animal production, but the shading of the trees can alter production, growth behavior and morphological composition of the forage. The aim of the study was to evaluate the morphological composition of Urochloa brizantha cultivars Marandu and Piatã under natural light and artificial shading of 30 and 60%. The experiment was conducted at FMVZ - UNESP, Botucatu. The experimental design was a randomized block in factorial arrangement 3 x 2 (three shading levels: 0, 30 and 60% and two cultivars: Marandu and Piatã with three replications and repeated measures in time (3 cuts. Sample collection occurred when the cultivars reached in 35 cm of height. Significant effects (P<0.05 of cultivar x shade x cut interaction were observed on the dry matter production of leaves and stems (Table 1. The higher production of leaves and stems (P<0.05 occurred for Piatã under natural light in the third cut (3731 and 1920 kg/ha, respectively. The absence of shade favored greater leaf production, 35 and 27% higher than the reductions of 30 and 60% respectively. The increment of stems for Piatã under natural light is related to the increase of inflorescences. The leaf:stem ratio was higher (P< 0.05 for Marandu under natural light (Table 2, with effect from the interaction cultivar x brightness level. A significant effect (P<0.05 cultivar x level of light reduction for light interception parameter was detected (Table 2. For Marandu, light levels were not influenced (P<0.05 light traps (Table 2, being close to the 95% criterion used for pasture management, justified by the collection at the point of balance between forage productivity and nutritional content, and strong relationship with high input grazing. The results indicate that the morphological composition of the cultivars is modified by reducing the light intensity.

  17. Intense, ultrashort light and dense, hot matter

    Indian Academy of Sciences (India)

    This article presents an overview of the physics and applications of the interaction of high intensity laser light with matter. It traces the crucial advances that have occurred over the past few decades in laser technology and nonlinear optics and then discusses physical phenomena that occur in intense laser fields and their ...

  18. Light-intensity and high-intensity interval training improve cardiometabolic health in rats.

    Science.gov (United States)

    Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Connolly, Kylie J; Fenning, Andrew S

    2016-09-01

    Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health.

  19. Photooptical response of the blood plasma to the low-intensity red light

    International Nuclear Information System (INIS)

    Mints, R.I.; Skopinov, S.A.; Yakovleva, S.V.

    1990-01-01

    Photooptical response to low-intensity red light by irradiation of the whole blood as well as of its pigmentless plasma part is investigated. It is shown by the example of blood irradiation that the mechanism of action of low-intensity red light on the blood is not directly related to pigmented molecular complexes. The conclusion is made, that the effect of low-intensity red light on living organisms includes mechanism not utilizing light absorption by a specialized molecule-photoreceptor as a primary photophysical act

  20. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  1. Characteristic Analysis Light Intensity Sensor Based On Plastic Optical Fiber At Various Configuration

    Science.gov (United States)

    Arifin, A.; Lusiana; Yunus, Muhammad; Dewang, Syamsir

    2018-03-01

    This research discusses the light intensity sensor based on plastic optical fiber. This light intensity sensor is made of plastic optical fiber consisting of two types, namely which is cladding and without cladding. Plastic optical fiber used multi-mode step-index type made of polymethyl metacrylate (PMMA). The infrared LED emits light into the optical fiber of the plastic and is subsequently received by the phototransistor to be converted to an electric voltage. The sensor configuration is made with three models: straight configuration, U configuration and gamma configuration with cladding and without cladding. The measured light source uses a 30 Watt high power LED with a light intensity of 0 to 10 Klux. The measured light intensity will affect the propagation of light inside the optical fiber sensor. The greater the intensity of the measured light, the greater the output voltage that is read on the computer. The results showed that the best optical fiber sensor characteristics were obtained in U configuration. Sensors with U-configuration without cladding had the best sensitivity and resolution values of 0.0307 volts/Klux and 0.0326 Klux. The advantages of this measuring light intensity based on the plastic optical fiber instrument are simple, easy-to-make operational systems, low cost, high sensitivity and resolution.

  2. LED intense headband light source for fingerprint analysis

    Science.gov (United States)

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  3. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells

    Science.gov (United States)

    Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj

    2018-05-01

    We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.

  4. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...

  5. Behavioral and physiological photoresponses to light intensity by intertidal microphytobenthos

    Science.gov (United States)

    Du, Guoying; Yan, Hongmei; Liu, Chunrong; Mao, Yunxiang

    2017-03-01

    Behavioral and physiological responses to light are the two major mechanisms by which natural microphytobenthic assemblages adapt to the intertidal environment and protect themselves from light stress. The present study investigated these photoresponses with different light intensities over 8 h of illumination, and used a specific inhibitor (Latrunculin A, Lat A) for migration to compare migratory and non-migratory microphytobenthos (MPB). Photosynthetic activity was detected using rapid light curves and induction curves by chlorophyll fluorescence. It showed distinct variation in migratory responses to different light intensities; high light induced downward migration to avoid photoinhibition, and low and medium light (50-250 μmol/(m2·s)) promoted upward migration followed by downward migration after certain period of light exposure. No significant difference in non-photochemical quenching (NPQ) or PSII maximal quantum yield (Fv/Fm) was detected between low and medium light irradiance, possibly indicating that only high light influences the photosynthetic capability of MPB. Decreased photosynthetic activity, indicated by three parameters, the maximum relative electron transport rate (rETRmax), minimum saturating irradiance (E k) and light utilization coefficient (α), was observed in MPB after exposure to prolonged illumination under low and medium light. Lat A effectively inhibited the migration of MPB in all light treatments and induced lower Fv/Fmunder high light (500 and 100 μmol/(m2·s)) and prolonged illumination at 250 μmol/(m2·s), but did not significantly influence Fv/Fmunder low light (0-100 μmol/(m2·s)) or NPQ. The increase of NPQ in Lat A treatments with time implied that the MPB assemblages can recover their physiological photoprotection capacity to adapt to light stress. Non-migratory MPB exhibited lower light use efficiency (lower α) and lower maximum photosynthetic capacity (lower rETRmax) than migratory MPB under light intensities above

  6. Crystalline silicon cell performance at low light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Reich, N.H.; van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C. [Utrecht University, Faculty of Science, Copernicus Institute for Sustainable Development and Innovation, Department of Science, Techonology and Society, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Lof, R.W.; Schropp, R.E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics - Physics of Device, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht (Netherlands); Sinke, W.C. [Energy research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)

    2009-09-15

    Measured and modelled JV characteristics of crystalline silicon cells below one sun intensity have been investigated. First, the JV characteristics were measured between 3 and 1000 W/m{sup 2} at 6 light levels for 41 industrially produced mono- and multi-crystalline cells from 8 manufacturers, and at 29 intensity levels for a single multi-crystalline silicon between 0.01 and 1000 W/m{sup 2}. Based on this experimental data, the accuracy of the following four modelling approaches was evaluated: (1) empirical fill factor expressions, (2) a purely empirical function, (3) the one-diode model and (4) the two-diode model. Results show that the fill factor expressions and the empirical function fail at low light intensities, but a new empirical equation that gives accurate fits could be derived. The accuracy of both diode models are very high. However, the accuracy depends considerably on the used diode model parameter sets. While comparing different methods to determine diode model parameter sets, the two-diode model is found to be preferred in principle: particularly its capability in accurately modelling V{sub OC} and efficiency with one and the same parameter set makes the two-diode model superior. The simulated energy yields of the 41 commercial cells as a function of irradiance intensity suggest unbiased shunt resistances larger than about 10 k{omega} cm{sup 2} may help to avoid low energy yields of cells used under predominantly low light intensities. Such cells with diode currents not larger than about 10{sup -9} A/cm{sup 2} are excellent candidates for Product Integrated PV (PIPV) appliances. (author)

  7. Interactive effects of photoperiod and light intensity on blood physiological and biochemical reactions of broilers grown to heavy weights.

    Science.gov (United States)

    Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L

    2013-04-01

    The effects of photoperiod, light intensity, and their interaction on blood acid-base balance, metabolites, and electrolytes in broiler chickens under environmentally controlled conditions were examined in 2 trials. A 3 × 3 factorial experiment in a randomized complete block design was used in this study. In each trial, all treatment groups were provided 23L:1D with 20 lx of intensity from placement to 7 d, and then subjected to the treatments. The 9 treatments consisted of 3 photoperiods [long/continuous (23L:1D) from d 8 to 56, regular/intermittent (2L:2D), and short/nonintermittent (8L:16D) from d 8 to 48 and 23L:1D from d 49 to 56, respectively] and exposure to 3 light intensities (10, 5.0, and 0.5 lx) from d 8 through d 56 at 50% RH. Feed and water were provided ad libitum. Venous blood samples were collected on d 7, 14, 28, 42, and 56. Main effects indicated that short/nonintermittent photoperiod significantly (P light intensity, or their interaction. There was no effect of light intensity on most of the blood variables examined. Acid-base regulation during photoperiod and light intensity exposure did not deteriorate despite a lower pH and higher partial pressure of CO2 with normal HCO3(-). These results indicate that continuous exposure of broiler chickens to varying light intensities had a minor effect on blood physiological variables, whereas the short photoperiod markedly affected most blood physiological variables without inducing physiological stress in broilers.

  8. Light intensity dependent Debye screening length in undoped photorefractive titanosillenite crystals

    OpenAIRE

    de Oliveira, I; Frejlich, J

    2012-01-01

    We report on the experimental evidence of the light intensity dependence of the Debye screening length l(s) in undoped photorefractive titanosillenite crystals (Bi12TiO20) by measuring the holographic gain and diffraction efficiency in a two-wave mixing experiment under 532 nm wavelength laser light. Debye length shows saturation at high values of the light intensity. Results are in agreement with the theoretical development. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/...

  9. Third-order optical intensity correlation measurements of pseudo-thermal light

    International Nuclear Information System (INIS)

    Chen Xi-Hao; Wu Wei; Meng Shao-Ying; Li Ming-Fei

    2014-01-01

    Third-order Hanbrury Brown—Twiss and double-slit interference experiments with a pseudo-thermal light are performed by recording intensities in single, double and triple optical paths, respectively. The experimental results verifies the theoretical prediction that the indispensable condition for achieving a interference pattern or ghost image in Nth-order intensity correlation measurements is the synchronous detection of the same light field by each reference detector, no matter the intensities recorded in one, or two, or N optical paths. It is shown that, when the reference detectors are scanned in the opposite directions, the visibility and resolution of the third-order spatial correlation function of thermal light is much better than that scanned in the same direction, but it is no use for obtaining the Nth-order interference pattern or ghost image in the thermal Nth-order interference or ghost imaging. (general)

  10. SiPM response to long and intense light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, S., E-mail: Sergey.Vinogradov@liverpool.ac.uk [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Leninskiy prospekt 53, Moscow (Russian Federation); Arodzero, A. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); RadiaBeam Technologies Inc., 1717 Stewart St., Santa Monica, CA 90404 (United States); Lanza, R.C. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Welsch, C.P. [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom)

    2015-07-01

    Recently Silicon Photomultipliers (SiPMs) have become well recognized as the detector of choice for various applications which demand good photon number resolution and time resolution of short weak light pulses in the nanosecond time scale. In the case of longer and more intensive light pulses, SiPM performance gradually degrades due to dark noise, afterpulsing, and non-instant cell recovering. Nevertheless, SiPM benefits are expected to overbalance their drawbacks in applications such as X-ray cargo inspection using Scintillation-Cherenkov detectors and accelerator beam loss monitoring with Cherenkov fibres, where light pulses of a microsecond time scale have to be detected with good amplitude and timing resolution in a wide dynamic range of 10{sup 5}–10{sup 6}. This report is focused on transient characteristics of a SiPM response on a long rectangular light pulse with special attention to moderate and high light intensities above the linear dynamic range. An analytical model of the transient response and an initial consideration of experimental results in comparison with the model are presented.

  11. Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae

    International Nuclear Information System (INIS)

    Kurpan Nogueira, Daniel P.; Silva, Anita F.; Araújo, Ofélia Q.F.; Chaloub, Ricardo M.

    2015-01-01

    Triacylglycerol (TAG) productivity of Isochrysis galbana, Nannochloropsis oceanica and Phaeodactylum tricornutum was compared to study their suitability for biotechnological applications. Photoautotrophic batch cultures grown at 20 °C and 50 μmol photons m −2  s −1 showed that N. oceanica had the least TAG content and TAG productivity of the three microalgae. Hence, effects of temperature and light intensity on growth rate and accumulation of TAG were subsequently assessed only in I. galbana and P. tricornutum by cultivation at 20 and 30 °C under 50, 300 and 600 μmol photons m −2  s −1 . Although P. tricornutum did not grow at temperatures higher than 20 °C, an increase in both TAG content (from 28.37 to 39.53%) and productivity (from 15.58 to 31.39 mg L −1  d −1 ) was observed at the highest irradiance values. We also found that combined effects of temperature and light intensity enhanced TAG content (from 18.59 to 31.71%) and productivity (from 11.76 to 21.67 mg L −1  d −1 ) in I. galbana. - Highlights: • Productivity of oil and biomass in batch-cultured marine microalgae was compared. • Increase in temperature and irradiance rose oil productivity in Isochrysis galbana. • An increase in light intensity rose oil productivity in Phaeodactylum tricornutum. • Phaeodactylum tricornutum showed the highest productivity in biomass and neutral lipids

  12. The role of lasers and intense pulsed light technology in dermatology

    Directory of Open Access Journals (Sweden)

    Husain Z

    2016-02-01

    Full Text Available Zain Husain,1 Tina S Alster1,2 1Department of Dermatology, Georgetown University Hospital, 2Washington Institute of Dermatologic Laser Surgery, Washington, DC, USA Abstract: The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. Keywords: laser, intense pulsed light, treatment, dermatology, technology

  13. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.

    Science.gov (United States)

    Sazgarnia, Ameneh; Shanei, Ahmad; Shanei, Mohammad Mahdi

    2014-01-01

    One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400-500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Light illumination intensity dependence of photovoltaic parameter in polymer solar cells with ammonium heptamolybdate as hole extraction layer.

    Science.gov (United States)

    Liu, Zhiyong; Niu, Shengli; Wang, Ning

    2018-01-01

    A low-temperature, solution-processed molybdenum oxide (MoO X ) layer and a facile method for polymer solar cells (PSCs) is developed. The PSCs based on a MoO X layer as the hole extraction layer (HEL) is a significant advance for achieving higher photovoltaic performance, especially under weaker light illumination intensity. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) measurements show that the (NH 4 ) 6 Mo 7 O 24 molecule decomposes and forms the molybdenum oxide (MoO X ) molecule when undergoing thermal annealing treatment. In this study, PSCs with the MoO X layer as the HEL exhibited better photovoltaic performance, especially under weak light illumination intensity (from 100 to 10mWcm -2 ) compared to poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)-based PSCs. Analysis of the current density-voltage (J-V) characteristics at various light intensities provides information on the different recombination mechanisms in the PSCs with a MoO X and PEDOT:PSS layer as the HEL. That the slopes of the open-circuit voltage (V OC ) versus light illumination intensity plots are close to 1 unity (kT/q) reveals that bimolecular recombination is the dominant and weaker monomolecular recombination mechanism in open-circuit conditions. That the slopes of the short-circuit current density (J SC ) versus light illumination intensity plots are close to 1 reveals that the effective charge carrier transport and collection mechanism of the MoO X /indium tin oxide (ITO) anode is the weaker bimolecular recombination in short-circuit conditions. Our results indicate that MoO X is an alternative candidate for high-performance PSCs, especially under weak light illumination intensity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities.

    Directory of Open Access Journals (Sweden)

    Ilse M Remmers

    Full Text Available Lipid production in microalgae is highly dependent on the applied light intensity. However, for the EPA producing model-diatom Phaeodactylum tricornutum, clear consensus on the impact of incident light intensity on lipid productivity is still lacking. This study quantifies the impact of different incident light intensities on the biomass, TAG and EPA yield on light in nitrogen starved batch cultures of P. tricornutum. The maximum biomass concentration and maximum TAG and EPA contents were found to be independent of the applied light intensity. The lipid yield on light was reduced at elevated light intensities (>100 μmol m-2 s-1. The highest TAG yield on light (112 mg TAG molph-1 was found at the lowest light intensity tested (60 μmol m-2 s-1, which is still relatively low to values reported in literature for other algae. Furthermore, mass balance analysis showed that the EPA fraction in TAG may originate from photosynthetic membrane lipids.

  16. Early Birds by Light at Night: Effects of Light Color and Intensity on Daily Activity Patterns in Blue Tits

    NARCIS (Netherlands)

    de Jong, Maaike; Caro, Samuel P.; Gienapp, Phillip; Spoelstra, Kamiel; Visser, Marcel E.

    2017-01-01

    Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits (Cyanistes caeruleus) exposed to similar intensities of

  17. Plasmas and intense laser light

    International Nuclear Information System (INIS)

    Kennedy, E.T.

    1984-01-01

    The present article begins with a description of the laser technology required to reach the high irradiances of interest and provides a brief outline of the more important diagnostic techniques used in investigating the plasmas. An introduction to plasma waves is given and the linear and nonlinear excitation of waves is discussed. The remainder of the article describes some of the experimental evidence supporting the interpretation of the plasma behaviour at high laser-light intensities in terms of the excitation of plasma waves and the subsequent heating of plasma by these waves. (author)

  18. Influence of light intensity on the photodegradation of bisphenol A polycarbonate

    NARCIS (Netherlands)

    Diepens, M.; Gijsman, P.

    2009-01-01

    The influence of light intensity on the photodegradation rate and photodegradation mechanisms of an unstabilized BPA-PC film was studied by irradiating the BPA-PC samples with a wavelength distribution comparable to terrestrial sunlight and varying irradiation intensities. The highest intensity used

  19. [Effect of light intensity on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicas under two kinds of culture methods].

    Science.gov (United States)

    Wei, Zi-Zhong; Zhao, Wen

    2014-01-01

    The effects of light intensity (0, 1000, 2000 and 3000 1x) on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicus under two kinds of culture methods (compound Chinese medicine preparation and microbial preparation) were studied. Results showed that the relative mass gain rate (WGR) and the specific growth rate (SGR) of juvenile sea cucumber were significantly affected by light intensity (P sea cucumber under different light intensities were 2000 1x > 1000 1x > 3000 1x > 0 1x. Under the same light intensity, the growth of juvenile sea cucumber under the two kinds of culture methods were significantly different (P sea cucumber. The order of amylase and lipase activity was 2000 1x > 1000 1x > 3000 1x > 0 1x, while that of protease activity was 1000 1x > 2000 1x > 0 1x > 3000 1x. Under the same light intensity, the digestive enzyme activities of the Chinese medicine treatment were generally higher than those of the microbial treatment.

  20. Growth of shredders on leaf litter biofilms: the effect of light intensity

    NARCIS (Netherlands)

    Franken, R.J.M.; Waluto, B.; Peeters, E.T.H.M.; Gardeniers, J.J.P.; Beijer, J.A.J.; Scheffer, M.

    2005-01-01

    1. The effect of light intensity on the decomposition of poplar (Populus nigra) leaves and growth of the shredders, Asellus aquaticus and Gammarus pulex, was studied in a laboratory experiment. The response was studied along a gradient of six light intensities of 0, 5, 23, 54, 97 and 156 ¿mol m -2

  1. Design of Automatic Intensity Varying Smart Street Lighting System

    Science.gov (United States)

    Gupta, Ashutosh; Gupta, Shipra

    2017-08-01

    The paper is proposed with an aim of power conservation. In this era of development, it is essential to develop a streetlight that turns on and off automatically without human interference. To achieve this light sensor have been placed in each panel which turns the street light on and off automatically. For energy conservation cool-white LED’s have been used in street light panel and dimmer modules have been installed which changes the intensity of the streetlight depending on the darkness.

  2. Unconventional Use of Intense Pulsed Light

    OpenAIRE

    Piccolo, D.; Di Marcantonio, D.; Crisman, G.; Cannarozzo, G.; Sannino, M.; Chiricozzi, A.; Chimenti, S.

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hype...

  3. Low-intensity blue-enriched white light (750 lux) and standard bright light (10,000 lux) are equally effective in treating SAD. A randomized controlled study.

    Science.gov (United States)

    Meesters, Ybe; Dekker, Vera; Schlangen, Luc J M; Bos, Elske H; Ruiter, Martine J

    2011-01-28

    Photoreceptor cells containing melanopsin play a role in the phase-shifting effects of short-wavelength light. In a previous study, we compared the standard light treatment (SLT) of SAD with treatment using short-wavelength blue-enriched white light (BLT). Both treatments used the same illuminance (10,000 lux) and were equally highly effective. It is still possible, however, that neither the newly-discovered photoreceptor cells, nor the biological clock play a major role in the therapeutic effects of light on SAD. Alternatively, these effects may at least be partly mediated by these receptor cells, which may have become saturated as a result of the high illuminances used in the therapy. This randomized controlled study compares the effects of low-intensity BLT to those of high-intensity SLT. In a 22-day design, 22 patients suffering from a major depression with a seasonal pattern (SAD) were given light treatment (10,000 lux) for two weeks on workdays. Subjects were randomly assigned to either of the two conditions, with gender and age evenly distributed over the groups. Light treatment either consisted of 30 minutes SLT (5000 °K) with the EnergyLight® (Philips, Consumer Lifestyle) with a vertical illuminance of 10,000 lux at eye position or BLT (17,000 °K) with a vertical illuminance of 750 lux using a prototype of the EnergyLight® which emitted a higher proportion of short-wavelengths. All participants completed questionnaires concerning mood, activation and sleep quality on a daily basis. Mood and energy levels were also assessed on a weekly basis by means of the SIGH-SAD and other assessment tools. On day 22, SIGH-SAD ratings were significantly lower than on day 1 (SLT 65.2% and BLT 76.4%). On the basis of all assessments no statistically significant differences were found between the two conditions. With sample size being small, conclusions can only be preliminary. Both treatment conditions were found to be highly effective. The therapeutic effects of low-intensity

  4. Low-intensity blue-enriched white light (750 lux and standard bright light (10 000 lux are equally effective in treating SAD. A randomized controlled study

    Directory of Open Access Journals (Sweden)

    Bos Elske H

    2011-01-01

    Full Text Available Abstract Background Photoreceptor cells containing melanopsin play a role in the phase-shifting effects of short-wavelength light. In a previous study, we compared the standard light treatment (SLT of SAD with treatment using short-wavelength blue-enriched white light (BLT. Both treatments used the same illuminance (10 000 lux and were equally highly effective. It is still possible, however, that neither the newly-discovered photoreceptor cells, nor the biological clock play a major role in the therapeutic effects of light on SAD. Alternatively, these effects may at least be partly mediated by these receptor cells, which may have become saturated as a result of the high illuminances used in the therapy. This randomized controlled study compares the effects of low-intensity BLT to those of high-intensity SLT. Method In a 22-day design, 22 patients suffering from a major depression with a seasonal pattern (SAD were given light treatment (10 000 lux for two weeks on workdays. Subjects were randomly assigned to either of the two conditions, with gender and age evenly distributed over the groups. Light treatment either consisted of 30 minutes SLT (5000°K with the EnergyLight® (Philips, Consumer Lifestyle with a vertical illuminance of 10 000 lux at eye position or BLT (17 000°K with a vertical illuminance of 750 lux using a prototype of the EnergyLight® which emitted a higher proportion of short-wavelengths. All participants completed questionnaires concerning mood, activation and sleep quality on a daily basis. Mood and energy levels were also assessed on a weekly basis by means of the SIGH-SAD and other assessment tools. Results On day 22, SIGH-SAD ratings were significantly lower than on day 1 (SLT 65.2% and BLT 76.4%. On the basis of all assessments no statistically significant differences were found between the two conditions. Conclusion With sample size being small, conclusions can only be preliminary. Both treatment conditions were found

  5. Gas sensing properties of indium–gallium–zinc–oxide gas sensors in different light intensity

    Directory of Open Access Journals (Sweden)

    Kuen-Lin Chen

    2015-06-01

    Full Text Available We have successfully observed the change in indium–gallium–zinc–oxide (IGZO gas sensor sensitivity by controlling the light emitting diode (LED power under the same gas concentrations. The light intensity dependence of sensor properties is discussed. Different LED intensities obviously affected the gas sensor sensitivity, which decays with increasing LED intensity. High LED intensity decreases not only gas sensor sensitivity but also the response time (T90, response time constant (τres and the absorption rate per second. Low intensity irradiated to sensor causes high sensitivity, but it needs larger response time. Similar results were also observed in other kinds of materials such as TiO2. According to the results, the sensing properties of gas sensors can be modulated by controlling the light intensity.

  6. Phenotypic plasticity of Neonotonia wightii and Pueraria phaseoloidesgrown under different light intensities

    Directory of Open Access Journals (Sweden)

    LEONARDO D.T. SANTOS

    2015-03-01

    Full Text Available Plants have the ability to undergo morphophysiological changes based on availability of light. The present study evaluated biomass accumulation, leaf morphoanatomy and physiology of Neonotonia wightii andPueraria phaseoloides grown in full sunlight, as well as in 30% and 50% shade. Two assays were performed, one for each species, using a randomized block design with 10 replicates. A higher accumulation of fresh mass in the shoot of the plants was observed for both species under cultivation in 50% shade, while no differences were detected between the full sunlight and 30% shade. N. wightii and P. phaseoloides showed increase in area and reduction in thickness leaf when cultivated in 50% shade. There were no changes in photosynthetic rate, stomatal conductance, water use efficiency and evapotranspiration of P. phaseoloidesplants because growth environment. However, the shade treatments caused alterations in physiological parameters of N. wightii. In both species, structural changes in the mesophyll occurred depending on the availability of light; however, the amount of leaf blade tissue remained unaltered. Despite the influence of light intensity variation on the morphophysiological plasticity ofN. wightiiand P. phaseoloides, no effects on biomass accumulation were observed in response to light.

  7. Evaluate Influence to Space Lighting Intensity in Main Control Room of RSG-GAS

    International Nuclear Information System (INIS)

    Teguh-Sulistyo; Yuyut-S-M; Yahya; Adin S

    2006-01-01

    Have been done by an activity evaluate factor depreciation influence to light source in Main Control Room (RKU). This Factor Depreciation is resulted from by defilement of effect of dirt, duration of light source utilized, way of installation, and others. Method used by perceives directly at light source, determining measurement dot in space RKU, measurement by using meter lux equipment and group storey; level depreciation of light source become light depreciation, and heavy. Than measurement result that lighting intensity in space RKU experience of decrease of equal to 1.5 %. After by stage; steps overcome the factor depreciation, result of measurement repeat obtained by decrease of equal to 0.87 %. Thereby the lighting intensity in space RKU becomes better. (author)

  8. Simultaneous effects of light intensity and phosphorus supply on the sterol content of phytoplankton.

    Directory of Open Access Journals (Sweden)

    Maike Piepho

    Full Text Available Sterol profiles of microalgae and their change with environmental conditions are of great interest in ecological food web research and taxonomic studies alike. Here, we investigated effects of light intensity and phosphorus supply on the sterol content of phytoplankton and assessed potential interactive effects of these important environmental factors on the sterol composition of algae. We identified sterol contents of four common phytoplankton genera, Scenedesmus, Chlamydomonas, Cryptomonas and Cyclotella, and analysed the change in sterol content with varying light intensities in both a high-phosphorus and a low-phosphorus approach. Sterol contents increased significantly with increasing light in three out of four species. Phosphorus-limitation reversed the change of sterol content with light intensity, i.e., sterol content decreased with increasing light at low phosphorus supply. Generally sterol contents were lower in low-phosphorus cultures. In conclusion, both light and phosphorus conditions strongly affect the sterol composition of algae and hence should be considered in ecological and taxonomic studies investigating the biochemical composition of algae. Data suggest a possible sterol limitation of growth and reproduction of herbivorous crustacean zooplankton during summer when high light intensities and low phosphorus supply decrease sterol contents of algae.

  9. Effect of expectation on pain assessment of lower- and higher-intensity stimuli.

    Science.gov (United States)

    Ružić, Valentina; Ivanec, Dragutin; Modić Stanke, Koraljka

    2017-01-01

    Pain modulation via expectation is a well-documented phenomenon. So far it has been shown that expectations about effectiveness of a certain treatment enhance the effectiveness of different analgesics and of drug-free pain treatments. Also, studies demonstrate that people assess same-intensity stimuli differently, depending on the experimentally induced expectations regarding the characteristics of the stimuli. Prolonged effect of expectation on pain perception and possible symmetry in conditions of lower- and higher-intensity stimuli is yet to be studied. Aim of this study is to determine the effect of expectation on the perception of pain experimentally induced by the series of higher- and lower-intensity stimuli. 192 healthy participants were assigned to four experimental groups differing by expectations regarding the intensity of painful stimuli series. Expectations of two groups were congruent with actual stimuli; one group expected and received lower-intensity stimuli and the other expected and received higher-intensity stimuli. Expectations of the remaining two groups were not congruent with actual stimuli; one group expected higher-intensity stimuli, but actually received lower-intensity stimuli while the other group expected lower-intensity stimuli, but in fact received higher-intensity ones. Each group received a series of 24 varied-intensity electrical stimuli rated by the participants on a 30° intensity scale. Expectation manipulation had statistically significant effect on pain intensity assessment. When expecting lower-intensity stimuli, the participants underestimated pain intensity and when expecting higher-intensity stimuli, they overestimated pain intensity. The effect size of expectations upon pain intensity assessment was equal for both lower- and higher-intensity stimuli. The obtained results imply that expectation manipulation can achieve the desired effect of decreasing or increasing both slight and more severe pain for a longer period of

  10. Higher order harmonic generation in the intense laser pulse

    International Nuclear Information System (INIS)

    Parvizi, R.; Bahrampour, A.; Karimi, M.

    2006-01-01

    The high intensity pulse of laser field ionizes the atoms and electrons are going to the continuum states of atoms. electrons absorb energy from the strong laser field. The back ground electromagnetic field causes to come back the electrons to ground states of atoms and the absorbed energy is emitted as a high order odd harmonics of incident light. The intensity of emitted harmonics depends on the material atoms and the laser pulse shape. I this paper the effects of step pulse duration on the high order harmonic radiated by the Argon, Helium, and Hydrogen atoms are reported.

  11. The role of lasers and intense pulsed light technology in dermatology

    Science.gov (United States)

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  12. Efficacy of intense pulse light therapy and tripple combination cream versus intense pulse light therapy and tripple combination cream alone in epidermal melasma treatment

    International Nuclear Information System (INIS)

    Shakeeb, N.; Noor, S.M.; Paracha, M.M.; Ullah, G.

    2018-01-01

    Objective:To compare the efficacy of intense pulse light therapy (IPL) and triple combination cream (TCC) versus intense pulse light therapy and triple combination cream alone in epidermal melasma treatment, downgrading MASI score to more than 10. Study Design:Randomized controlled trial. Place and Duration of Study:Dermatology Department, Lady Reading Hospital, Peshawar, from August 2014 to January 2015. Methodology:Patients of 18-45 years were included in the study with Fitzpatrick skin type II-V. Sample of 96 patients was divided in to three groups of 32 each, through consecutive (non-probability) sampling method. Detailed history was taken, Woods Lamp Examination done, and melasma area and severity index (MASI) score was calculated. TCC had to be applied daily at night for two months by group A patients while group B was consigned for IPL therapy fortnightly, and those in group C were given both for two months. Efficacy was compared by recalculating MASI score at treatment end as well as at follow-up after 4 weeks, using Chi-square test with significance at p < 0.05. Results:Male and female patients were 10 (31.2%) and 22 (68.8%) in group A, 7 (21.9%) and 25 (78.1%) in group B, while in group C were 12 (37.5%) and 20 (62.5%). The average age was 28.70 +8.70 years. MASI score reduction was achieved in 22 (68.8%) patients in group A; whereas, in 20 (62.5%) and 30(93.8%) patients in group B and C, respectively. Efficacy-wise distribution was significant (p=0.009). Conclusion:Intense pulse light therapy and triple combination cream are more efficacious in epidermal melasma treatment than intense pulse light therapy and triple combination cream alone. (author)

  13. Light-intensity physical activity is associated with insulin resistance in elderly Japanese women independent of moderate-to vigorous-intensity physical activity.

    Science.gov (United States)

    Gando, Yuko; Murakami, Haruka; Kawakami, Ryoko; Tanaka, Noriko; Sanada, Kiyoshi; Tabata, Izumi; Higuchi, Mitsuru; Miyachi, Motohiko

    2014-02-01

    It is unclear whether light physical activity is beneficially associated with insulin resistance, similar to moderate and/or vigorous physical activity. This cross-sectional study was performed to determine the relationship between the amount of light physical activity, as determined with a triaxial accelerometer, and insulin resistance. A total of 807 healthy men and women participated in this study. Physical activity was measured using a triaxial accelerometer worn for 28 days and summarized as light intensity (1.1-2.9 METs) or moderate to vigorous intensity (≥ 3.0 METs). Insulin resistance was evaluated by HOMA_R (FPG [mg/dL] × IRI [μU/mL]/405). The daily time spent in light physical activity was inversely associated with HOMA_R (r = -0.173, P physical activity and HOMA_R remained statistically significant (β = -0.119, P physical activity remained significantly associated with HOMA_R following further adjustment for moderate to vigorous intensity activity (β = -0.125, P physical activity was modeled as quartiles, especially in elderly women. These cross-sectional data suggest that light-intensity physical activity is beneficially associated with insulin resistance in elderly Japanese women.

  14. Invasive submerged freshwater macrophytes are more plastic in their response to light intensity than to the availability of free CO2 in air-equilibrated water

    DEFF Research Database (Denmark)

    Eller, Franziska; Alnoee, Anette B.; Boderskov, Teis

    2015-01-01

    1. The future increase in the atmospheric CO2 concentration is likely to affect the growth and performance of submerged freshwater macrophytes because of higher concentrations of free CO2 in the water at air equilibrium. We measured the plastic responses to free CO2 and light for several traits...... in all four species. 4. As the growth and photosynthesis of the four invasive bicarbonate users were only slightly affected by the CO2 availability in air-equilibrated water, the future rise in atmospheric CO2 is unlikely to exacerbate their invasive behaviour and may even reduce their competitiveness...... compensation point, and with higher concentrations of photosynthetic pigments and quantum yield. The bicarbonate uptake capacity was generally highest at the high light intensity and high concentrations of free CO2. Plasticity indices for light intensity were consistently higher than for CO2 availability...

  15. An Integrated Response of Trichodesmium erythraeum IMS101 Growth and Photo-Physiology to Iron, CO2, and Light Intensity.

    Science.gov (United States)

    Boatman, Tobias G; Oxborough, Kevin; Gledhill, Martha; Lawson, Tracy; Geider, Richard J

    2018-01-01

    We have assessed how varying CO 2 (180, 380, and 720 μatm) and growth light intensity (40 and 400 μmol photons m -2 s -1 ) affected Trichodesmium erythraeum IMS101 growth and photophysiology over free iron (Fe') concentrations between 20 and 9,600 pM. We found significant iron dependencies of growth rate and the initial slope and maximal relative PSII electron transport rates (rP m ). Under iron-limiting concentrations, high-light increased growth rates and rP m ; possibly indicating a lower allocation of resources to iron-containing photosynthetic proteins. Higher CO 2 increased growth rates across all iron concentrations, enabled growth to occur at lower Fe' concentrations, increased rP m and lowered the iron half saturation constants for growth (K m ). We attribute these CO 2 responses to the operation of the CCM and the ATP spent/saved for CO 2 uptake and transport at low and high CO 2 , respectively. It seems reasonable to conclude that T. erythraeum IMS101 can exhibit a high degree of phenotypic plasticity in response to CO 2 , light intensity and iron-limitation. These results are important given predictions of increased dissolved CO 2 and water column stratification (i.e., higher light exposures) over the coming decades.

  16. An Integrated Response of Trichodesmium erythraeum IMS101 Growth and Photo-Physiology to Iron, CO2, and Light Intensity

    Directory of Open Access Journals (Sweden)

    Tobias G. Boatman

    2018-04-01

    Full Text Available We have assessed how varying CO2 (180, 380, and 720 μatm and growth light intensity (40 and 400 μmol photons m−2 s−1 affected Trichodesmium erythraeum IMS101 growth and photophysiology over free iron (Fe′ concentrations between 20 and 9,600 pM. We found significant iron dependencies of growth rate and the initial slope and maximal relative PSII electron transport rates (rPm. Under iron-limiting concentrations, high-light increased growth rates and rPm; possibly indicating a lower allocation of resources to iron-containing photosynthetic proteins. Higher CO2 increased growth rates across all iron concentrations, enabled growth to occur at lower Fe′ concentrations, increased rPm and lowered the iron half saturation constants for growth (Km. We attribute these CO2 responses to the operation of the CCM and the ATP spent/saved for CO2 uptake and transport at low and high CO2, respectively. It seems reasonable to conclude that T. erythraeum IMS101 can exhibit a high degree of phenotypic plasticity in response to CO2, light intensity and iron-limitation. These results are important given predictions of increased dissolved CO2 and water column stratification (i.e., higher light exposures over the coming decades.

  17. Effect of the light spectrum of various substrates for inkjet printed conductive structures sintered with intense pulsed light

    International Nuclear Information System (INIS)

    Weise, Dana; Mitra, Kalyan Yoti; Ueberfuhr, Peter; Baumann, Reinhard R.

    2015-01-01

    In this work, the novel method of intense pulsed light (IPL) sintering of a nanoparticle silver ink is presented. Various patterns are printed with the Inkjet technology on two flexible foils with different light spectra. One is a clear Polyethylenterephthalat [PET] foil and the second is a light brownish Polyimide [PI] foil. The samples are flashed with different parameters regarding to pulse intensity and pulse length. Microscopic images are indicating the impact of the flashing parameters and the different light spectra of the substrates on the sintered structures. Sheet and line resistance are measured and the conductivity is calculated. A high influence of the property of the substrate with respect to light absorption and thermal conductivity on the functionality of printed conductive structures could be presented. With this new method of IPL sintering, highly conductive inkjet printed silver patterns could be manufactured within milliseconds on flexible polymeric foils without damaging the substrate

  18. High Intensity Organic Light-emitting Diodes

    Science.gov (United States)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  19. AFSC/RACE/GAP/Kotwicki: Relative light intensity collected during bottom trawl surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Assessing the effect of light intensity and light penetration on the distributionand behavior of walleye pollock (Gadus chalcogrammus) in the eastern Bering Sea and...

  20. Responses of fen plant species to groundwater level and light intensity

    NARCIS (Netherlands)

    Kotowski, W; van Andel, J; van Diggelen, R; Hogendorf, J.

    Characteristic species of sedge-moss fen communities occur in constantly wet, nutrient-poor sites with a high penetration of light through the vegetation canopy. We studied the effects of water table depth and differences in light intensity on the performance of fen species. Three fen species (Carex

  1. Measurement-device-independent quantum key distribution with correlated source-light-intensity errors

    Science.gov (United States)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2018-04-01

    We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.

  2. Effect of light intensity and irradiation time on the polymerization process of a dental composite resin

    Directory of Open Access Journals (Sweden)

    Discacciati José Augusto César

    2004-01-01

    Full Text Available Polymerization shrinkage is a critical factor affecting the longevity and acceptability of dental composite resins. The aim of this work was to evaluate the effect of light intensity and irradiation time on the polymerization process of a photo cured dental composite resin by measuring the Vickers hardness number (VHN and the volumetric polymerization shrinkage. Samples were prepared using a dental manual light-curing unit. The samples were submitted to irradiation times of 5, 10, 20 and 40 s, using 200 and 400 mW.cm-2 light intensities. Vickers hardness number was obtained at four different moments after photoactivation (immediate, 1 h, 24 h and 168 h. After this, volumetric polymerization shrinkage values were obtained through a specific density method. The values were analyzed by ANOVA and Duncan's (p = 0.05. Results showed increase in hardness values from the immediate reading to 1 h and 24 h readings. After 24 h no changes were observed regardless the light intensities or activation times. The hardness values were always smaller for the 200 mW.cm-2 light intensity, except for the 40 s irradiation time. No significant differences were detected in volumetric polymerization shrinkage considering the light intensity (p = 0.539 and the activation time (p = 0.637 factors. In conclusion the polymerization of the material does not terminate immediately after photoactivation and the increase of irradiation time can compensate a lower light intensity. Different combinations between light intensity and irradiation time, i.e., different amounts of energy given to the system, have not affected the polymerization shrinkage.

  3. Light Penetration and Light-Intensity in Sandy Marine-Sediments Measured with Irradiance and Scalar Irradiance Fiberoptic Microprobes Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; LASSEN, C.; JØRGENSEN, BB

    1994-01-01

    Fiber-optic microprobes for determining irradiance and scalar irradiance were used for light measurements in sandy sediments of different particle size. Intense scattering caused a maximum integral light intensity [photon scalar irradiance, E0(400 to 700 rim) and E0(700 to 880 nm)] at the sediment...... diffuse. Our results demonstrate the importance of measuring scalar irradiance when the role of light in photobiological processes in sediments, e.g. microbenthic photosynthesis, is investigated....... surface ranging from 180 % of incident collimated light in the coarsest sediment (250 to 500 mum grain size) up to 280 % in the finest sediment ( 1 mm in the coarsest sediments. Below 1 mm, light was attenuated exponentially with depth in all sediments. Light attenuation coefficients decreased...

  4. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.

    Science.gov (United States)

    Mielke, Marcelo S; Schaffer, Bruce

    2010-01-01

    The interactive effects of changing light intensity and soil flooding on the photosynthetic performance of Eugenia uniflora L. (Myrtaceae) seedlings in containers were examined. Two hypotheses were tested: (i) the photosynthetic apparatus of shade-adapted leaves can be rapidly acclimated to high light after transfer from shade to full sun, and (ii) photosynthetic acclimation to changing light intensity may be influenced by soil flooding. Seedlings cultivated in a shade house (40% of full sun, approximately 12 mol m(-)(2) day(-)(1)) for 6 months were transferred to full sun (20-40 mol m(-2) day(-1)) or shade (30% of full sun, approximately 8 mol m(-2) day(-1)) and subjected to soil flooding for 23 days or not flooded. Chlorophyll content index (CCI), chlorophyll fluorescence, leaf weight per area (LWA), photosynthetic light-response curves and leaf reflectance indexes were measured during soil flooding and after plants were unflooded. The CCI values increased throughout the experiment in leaves of shaded plants and decreased in leaves of plants transferred to full sun. There were no significant interactions between light intensity and flooding treatments for most of the variables analyzed, with the exception of Fv/Fm 22 days after plants were flooded and 5 days after flooded plants were unflooded. The light environment significantly affected LWA, and light environment and soil flooding significantly affected the light-saturated gross CO(2) assimilation rate expressed on area and dry weight bases (A(max-area) and A(max-wt), respectively), stomatal conductance of water vapor (g(ssat)) and intrinsic water use efficiency (A/g(s)). Five days after flooded plants were unflooded, the normalized difference vegetation index (NDVI) and the scaled photochemical reflectance index (sPRI) were significantly higher in shade than in sun leaves. Thirty days after transferring plants from the shade house to the light treatment, LWA was 30% higher in sun than in shade leaves, and A

  5. Exotic behavior of molecules in intense laser light fields. New research directions

    Energy Technology Data Exchange (ETDEWEB)

    Yamanouchi, Kaoru [Tokyo Univ., Department of Chemistry, Tokyo (Japan)

    2002-08-01

    The recent investigation of the dynamical behavior of molecules and clusters in intense laser fields has afforded us invaluable opportunities to understand fundamentals of the interaction between molecular species and light fields as well as to manipulate molecules and their dynamical pathways by taking advantage of characteristics of coherent ultrashort laser light fields. In the present report, new directions of this rapidly growing interdisciplinary research fields called molecular science in intense laser fields are discussed by referring to our recent studies. (author)

  6. Effects of forward and backward transitions in light intensities in tau-illuminance curves of the rat motor activity rhythm under constant dim light.

    Science.gov (United States)

    Cambras, Trinitat; Díez-Noguera, Antoni

    2012-07-01

    Circadian rhythms are strongly influenced by light intensity, the effects of which may persist beyond the duration of light exposure (aftereffects). Here, the authors constructed period-illuminance curves for the motor activity circadian rhythm of male and female rats by recording the effects of a series of small upward and downward steps in light intensity (illuminance ranging between .01 lux of dim red light and 1 lux of white light) on their activity. In all cases, stepwise changes were made in five logarithmic steps (irradiance: dim red light: .692 µW/cm(2) and white light: .006, .016, .044, .12, and .315 µW/cm(2), corresponding, respectively, to .02, .05, .14, .13, and 1 lux measured at cage level), with changes in intensity every 2 wks. One group of rats (DLD) started in dim red light, moved up to 1 lux white light, and then back down to the original light intensity. Another group (LDL) started at 1 lux, moved down to .01 lux, and then back up to the original intensity. Motor activity data were recorded throughout the experiment and tau values, the percentage of variance explained by the rhythm, and the mean motor activity for each stage and group were calculated. The results show differences in the dynamics of tau values between the DLD and LDL groups and between males and females. In the LDL group, the tau values of both males and females were dependent on light intensity, and were similar for the forward and backward transitions. In other words, no aftereffects were found, and no differences were detected between males and females. In the DLD group, however, differences were found between males and females. Males had a tau value of 24 h 20 min under dim red light, 25 h 40 min under 1 lux, and 24 h 50 min on return to dim red light. It is noticeable that the tau values of the backward branch of the illuminance curve contradicted classical predictions, since at .38 and .14 lux the tau values were shorter than those found under the same intensities after

  7. General theory of intensity correlation on light scattering

    International Nuclear Information System (INIS)

    Villaeys, A.A.

    1978-01-01

    A general theory for spatio-temporal intensity correlations measurements for a scattered beam is developed. A completely quantum mechanical description for both excitation and detection set up is used. This description is essentially valid for weak incident light beams and single photon absorption processes. From a unified point of view both, stationary as well as, time resolved experiments are described. The interest for such experiments in the study of processes like resonance raman scattering and resonance fluorescence is emphasized. Also an observable coherent contribution associated to different final levels of the target-atoms or molecules is obtained a result which cannot be reached by intensity measurements

  8. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    Science.gov (United States)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  9. Effects of light intensity on cylindrospermopsin production in the ...

    African Journals Online (AJOL)

    The role of light intensity on growth and the production of the hepatotoxin cylindrospermopsin (CYN) in the cyanobacterial harmful algal bloom species Cylindrospermopsis raciborskii was investigated using cultured isolates grown in N-free media under a series of neutral density screens. Maximum growth as indicated by ...

  10. Polydisperse-particle-size-distribution function determined from intensity profile of angularly scattered light

    International Nuclear Information System (INIS)

    Alger, T.W.

    1979-01-01

    A new method for determining the particle-size-distribution function of a polydispersion of spherical particles is presented. The inversion technique for the particle-size-distribution function is based upon matching the measured intensity profile of angularly scattered light with a summation of the intensity contributions of a series of appropriately spaced, narrowband, size-distribution functions. A numerical optimization technique is used to determine the strengths of the individual bands that yield the best agreement with the measured scattered-light-intensity profile. Because Mie theory is used, the method is applicable to spherical particles of all sizes. Several numerical examples demonstrate the application of this inversion method

  11. Effect of temperature, light intensity and growth regulators on ...

    African Journals Online (AJOL)

    Ansellia africana (Orchidaceae) is an important endangered medicinal plant species of South Africa which has been heavily exploited in recent years. Experiments were conducted in growth rooms at different temperatures (16, 26, 36°C) and in a nursery at different light intensities induced by shade cloth densities (200, 400, ...

  12. Light-activation through indirect ceramic restorations: does the overexposure compensate for the attenuation in light intensity during resin cement polymerization?

    Directory of Open Access Journals (Sweden)

    Albano Luis Novaes Bueno

    2011-02-01

    Full Text Available OBJECTIVES: This study evaluated the effects of light exposure through simulated indirect ceramic restorations (SICR on hardness (KHN of dual-cured resin cements (RCs, immediately after light-activation and 24 h later. MATERIAL AND METHODS: Three dual-cured RCs were evaluated: Eco-Link (Ivoclar Vivadent, Rely X ARC (3M ESPE, and Panavia F (Kuraray Medical Inc.. The RCs were manipulated in accordance to the manufacturers' instructions and were placed into cylindrical acrylic matrixes (1-mm-thick and 4-mm diameter. The RC light-activation (Optilux 501; Demetron Kerr was performed through a glass slide for 120 s (control group, or through 2-mm or 4-mm thick SICRs (IPS Empress II; Ivoclar Vivadent. The specimens were submitted to KHN analysis immediately and 24 h after light-activation. The data obtained at the 2 evaluation intervals were submitted to 2-way ANOVA repeated measures and post-hoc Tukey's test (pre-set alpha of 5%. RESULTS: Lower KHN was observed when light-activation was performed through SICRs for Eco-Link at all evaluation intervals and for Rely X ARC 24 h later. For Panavia F, no significant difference in KHN was observed between control and experimental groups, regardless of evaluation interval. Most groups exhibited higher KHN after 24 h than immediately after light-activation, with the exception of Rely X ARC light-activated through SICR, as no significant difference in KHN was found between evaluation intervals. CONCLUSIONS: Light overexposure did not compensate for light intensity attenuation due to the presence of SICR when Rely X and Eco-Link were used. Although hardness of such RCs increased over a 24-h interval, the RCs subjected to light overexposure did not reach the hardness values exhibited after direct light exposure.

  13. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    Directory of Open Access Journals (Sweden)

    Martin Olofsson

    2010-05-01

    Full Text Available Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function.Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head.In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  14. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    Science.gov (United States)

    Olofsson, Martin; Vallin, Adrian; Jakobsson, Sven; Wiklund, Christer

    2010-05-24

    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  15. Light intensity fluctuations on a layered microsphere irradiated by a monochromatic light wave: Modeling of an inhomogeneous cellular surface with numerical elements

    International Nuclear Information System (INIS)

    Choi, Moon Kyu

    2007-01-01

    The inhomogeneity of crystalline or amorphous unit cells of material is treated by the numerical boundary element method. This paper is especially about the effect of perturbed refractive index (or potential energy) of a material on the light intensity inside a layered microsphere when it is irradiated by monochromatic unpolarized plane light wave. The resultant light intensities on the particle surface show noise-like fluctuations depending on various parameters such as the material refractive indices, the light wavelength, the particle and core size, the numerical surface element size, etc. Both the numerical results and the experiments from a few other groups agree that large light absorption occurs just in a small wavelength range

  16. Performance analysis of solar cell arrays in concentrating light intensity

    Institute of Scientific and Technical Information of China (English)

    Xu Yongfeng; Li Ming; Wang Liuling; Lin Wenxian; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    tage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system.

  17. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.

    2013-12-17

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  18. Intense light-elicited upregulation of miR-21 facilitates glycolysis and cardioprotection through Per2-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Colleen Marie Bartman

    Full Text Available A wide search for ischemic preconditioning (IPC mechanisms of cardioprotection identified the light elicited circadian rhythm protein Period 2 (Per2 to be cardioprotective. Studies on cardiac metabolism found a key role for light elicited Per2 in mediating metabolic dependence on carbohydrate metabolism. To profile Per2 mediated pathways following IPC of the mouse heart, we performed a genome array and identified 352 abundantly expressed and well-characterized Per2 dependent micro RNAs. One prominent result of our in silico analysis for cardiac Per2 dependent micro RNAs revealed a selective role for miR-21 in the regulation of hypoxia and metabolic pathways. Based on this Per2 dependency, we subsequently found a diurnal expression pattern for miR-21 with higher miR-21 expression levels at Zeitgeber time (ZT 15 compared to ZT3. Gain or loss of function studies for miR-21 using miRNA mimics or miRNA inhibitors and a Seahorse Bioanalyzer uncovered a critical role of miR-21 for cellular glycolysis, glycolytic capacity, and glycolytic reserve. Exposing mice to intense light, a strategy to induce Per2, led to a robust induction of cardiac miR-21 tissue levels and decreased infarct sizes, which was abolished in miR-21-/- mice. Similarly, first translational studies in humans using intense blue light exposure for 5 days in healthy volunteers resulted in increased plasma miR-21 levels which was associated with increased phosphofructokinase activity, the rate-limiting enzyme in glycolysis. Together, we identified miR-21 as cardioprotective downstream target of Per2 and suggest intense light therapy as a potential strategy to enhance miR-21 activity and subsequent carbohydrate metabolism in humans.

  19. Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of Monascus ruber.

    Science.gov (United States)

    Wang, Liling; Dai, Yang; Chen, Wanping; Shao, Yanchun; Chen, Fusheng

    2016-12-21

    Light is a crucial environmental signal for fungi. In this work, the effects of different light intensities and colors on biomass, Monascus pigments (MPs) and citrinin production of Monascus ruber M7 were investigated. We have demonstrated that low intensity of blue light (500 lx) decreased Monascus biomass, increased MPs accumulation via upregulation of MpigA, MpigB, and MpigJ genes expression, but had no significant influence on citrinin production. High intensity of blue light (1500 lx) decreased citrinin accumulation but had no significant influence on biomass and MPs production after 14 days cultivation. Low intensity of green light (500 lx) stimulated citrinin production via upregulation of pksCT, mrl1, mrl2, and ctnA genes expression. One putative red light photoreceptor and two putative green light photoreceptors were identified in M. ruber M7. These observations will not only guide the practical production of Monascus but also contribute to our understanding light effects on Monascus.

  20. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    Science.gov (United States)

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  1. Effect of light intensity on ovarian gene expression, reproductive performance and body weight of rabbit does.

    Science.gov (United States)

    Sun, Liangzhan; Wu, Zhenyu; Li, Fuchang; Liu, Lei; Li, Jinglin; Zhang, Di; Sun, Chaoran

    2017-08-01

    The objective of the experiment was to find the minimum light intensity which could improve reproduction by examining its effect on ovarian gene expression, reproductive performance and body weight of rabbit does with three different light intensities: 60 (L), 80 (M), and 100 (H)lx. A total of 144 Rex-rabbits submitted to a 49-day reproductive regimen were used in this study. Ovaries were collected and relative abundance of mRNA for ovarian proteins of interest was examined with real-time PCR. Amount of protein for proteins of interest was examined by immunohistochemistry. Reproductive performance and doe bodyweight of the first three consecutive reproductive periods after initiation of the light intensity treatments were evaluated. The results provided evidence that light intensity had no effect on relative abundance of estradiol receptor-α (ER-α), follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), gonadotropin releasing hormone receptor 1 (GnRHR1) and progesterone receptor (PGR) mRNA. The relative abundance of growth hormone receptor (GHR) mRNA was, however, greater in Group L than M and H (Plight intensities (P>0.05). The bodyweight of the does in Group L was greater than the other two groups at first insemination, second insemination and the second postpartum period (P0.05). These observations suggest that light intensity between 60 and 100lx has no effect on the reproductive performance of rabbit does, however, the amounts of GHR mRNA and growth hormone (GH) protein were affected and the greater light intensity had a negative effect on bodyweight between the time of the first insemination and the second partum period. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of photoperiod length and light intensity on some welfare criteria, carcass, and meat quality characteristics in broilers

    Directory of Open Access Journals (Sweden)

    Evrim Dereli Fidan

    Full Text Available ABSTRACT The objective of this study was to investigate the effects of photoperiod length and light intensity on leg and eye health, tonic immobility, some blood parameters, carcass, and meat quality characteristics in broilers. A total of 272 one-day-old male broiler chicks (Ross 308 were randomly assigned to four treatment groups based on the photoperiod length (23L:1D or increasing duration of light and light intensity (20 lux vs. dim light with four replicates. In this study, photoperiod lenght had no effect on incidence of foot pad and hock burn. On the other hand, the effect of photoperiod lenght had significant influence on the gait score. The incidences of gait score (3 + 4 + 5 in bright and dim light groups was found as 21.4 and 41.0% in broilers, respectively. In addition, the effect of light intensity had statistical significance on gait score. The tonic immobility duration in 20 lux and dim light groups were 271.53 and 226.78 s, respectively, and tonic immobility duration was unaffected by light intensity. All the blood parameters, except for triglyceride, were not affected by light intensity. The dim light had a negative effect on broiler welfare as demonstrated by increased eye weight and dimensions. Cold carcass yield and whole breast and wing yields were lower in the dim light group than in 20 lux light intensity. The broilers kept with dim light had lower breast meat ultimate pH (6.19 and L* values (54.30 than those reared with 20 lux. These findings have a lot of implications on the use of increasing photoperiod and bright light to improve leg an eye health benefits for the broiler welfare in broilers.

  3. Statistical properties of intensity of partially polarised semiconductor laser light backscattered by a single-mode optical fibre

    International Nuclear Information System (INIS)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-01-01

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  4. Influence of intensive light exposure on the complex impedance of polymer light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Fábio Rogério Cury

    2008-06-01

    Full Text Available In this work we investigated the effect of visible radiation on the electrical properties of poly[(2-methoxy-5-hexyloxy-p-phenylenevinylene]- MH-PPV films and light emitting diodes. Complex impedance measurements of (Au or ITO/MH-PPV/(Au or Al samples were carried out at room temperature and exposed to white light. Over the frequency range from 100 mHz to 2 MHz, the electrical results of Au/MH-PPV/Au was dominated by the Cole-Cole approach, where the electrode influence is negligible. However, some additional influence of the interface was observed to occur when Al was used as electrode. These effects were observed under both dark and visible-light illumination conditions. A simple model based on resistor-capacitor parallel circuits was developed to represent the complex impedance of the samples, thereby separating bulk and interface contributions. We observed that the polymer electrical resistivity decreased while the dielectric constant of the polymer and the thickness of the Al/MH-PPV layer were almost constant with increasing light intensity. The decrease of the polymer layer resistance comes from a better charge injection due to a light induced dissociation of positive charge carriers at the electrode.

  5. Ambient and elevated carbon dioxide on growth, physiological and nutrient uptake parameters of perennial leguminous cover crops under low light intensities

    Science.gov (United States)

    Adaptability and optimum growth of cover crops in plantation crops is affected by the inherent nature of the cover crop species and the light intensity at canopy levels. Globally concentrations of atmospheric CO2 are increasing and this creates higher photosynthesis and nutrient demand by crops as l...

  6. Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity.

    Science.gov (United States)

    Michael, Scott; Jay, Ollie; Graham, Kenneth S; Davis, Glen M

    2017-08-01

    Systolic time intervals (STIs) provide noninvasive insights into cardiac sympathetic neural activity (cSNA). As the effect of exercise intensity on postexercise STI recovery is unclear, this study investigated the STI recovery profile after different exercise intensities. Eleven healthy males cycled for 8 min at 3 separate intensities: LOW (40%-45%), MOD (75%-80%), and HIGH (90%-95%) of heart-rate (HR) reserve. Bio-impedance cardiography was used to assess STIs - primarily pre-ejection period (PEP; inversely correlated with cSNA), as well as left ventricular ejection time (LVET) and PEP:LVET - during 10 min seated recovery immediately postexercise. Heart-rate variability (HRV), i.e., natural-logarithm of root mean square of successive differences (Ln-RMSSD), was calculated as an index of cardiac parasympathetic neural activity (cPNA). Higher preceding exercise intensity elicited a slower recovery of HR and Ln-RMSSD (p return to baseline by 10 min following any intensity (p ≤ 0.009). Recovery of STIs was also slower following higher intensity exercise (p ≤ 0.002). By 30 s postexercise, higher preceding intensity resulted in a lower PEP (98 ± 14 ms, 75 ± 6 ms, 66 ± 5 ms for LOW, MOD, and HIGH, respectively, p fashion. While exercise intensity must be considered, acute recovery may be a valuable period during which to concurrently monitor these noninvasive indices, to identify potentially abnormal cardiac autonomic responses.

  7. Verification of the light intensity from halogens curing lamps in comparison with the manufacturer's specifications

    International Nuclear Information System (INIS)

    Morales Ramirez, Elvis

    2011-01-01

    The light intensity emitted from halogens curing lamps is measured to determine if photoactivation units utilized in the Caja Costarricense de Seguro Social are complied with the manufacturer's specifications of the lamp and the resin. The light intensity mW/cm 2 from halogens curing lamps operated by odontologist of the Caja Costarricense de Seguro Social is compared with the manufacturer's specifications of the lamp. The light intensity is compared with the manufacturer's specifications of the resin. The results obtained are analyzed to specify that lamp or lamps have presented light intensities lower to indication of the manufacturer. A list of recommendations is performed for each Servicio de Odontologia of the Caja Costarricense de Seguro Social of the Region Central Sur of the results reported [es

  8. Catalogue of European earthquakes with intensities higher than 4

    International Nuclear Information System (INIS)

    Van Gils, J.M.; Leydecker, G.

    1991-01-01

    The catalogue of European earthquakes with intensities higher than 4 contains some 20 000 seismic events that happened in member countries of the European Communities, Switzerland and Austria. It was prepared on the basis of already existing national catalogues and includes historical data as well as present-day data. All historical data are harmonized as far as possible to the same intensity scale (MSK-scale) to make them suitable for computerization. Present-day data include instrumental and macroseismic data. Instrumental data are expressed in terms of magnitude (Richter scale) while macroseismic data are given in intensities. Compilation of seismic data can provide a basis for statistically supported studies of site selection procedures and the qualitative assessment of seismic risks. Three groups of seismic maps illustrate the content of the catalogue for different time periods and different intensities

  9. The instantaneous light-intensity function of a fluorescent lamp

    Energy Technology Data Exchange (ETDEWEB)

    Gluskin, Emanuel [Holon Institute of Technology, 52 Golomb St., Holon 58102 (Israel): Electrical Engineering Department, Ben-Gurion University, Beer-Sheva 84105 (Israel)]. E-mail: gluskin@ee.bgu.ac.il; Topalis, Frangiskos V. [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece); Kateri, Ifigenia [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece); Bisketzis, Nikolas [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece)

    2006-05-08

    Using some simple physics and 'system' considerations, the instantaneous light intensity function {psi}(t) of a fluorescent lamp fed via a regular ballast from the 50-60 Hz line is argued to be {psi}(t)={psi}{sub min}+bp(t), where p(t) is the instantaneous power function of the lamp, and b is a constant, and experiment confirms this formula well. The main frequency of {psi}(t), the very significant singularity of its waveform, and the relative intensity of the ripple, i.e., the depth of the modulation, are the focus. The results are important for research into the vision problem that some humans (autistic, but others, too) experience regarding fluorescent light. The inertia of the processes in the lamp which are responsible for the light emission, provides some nonzero emission at the instants when p(t) has zeros. The smaller the volume of the tube and the mass of the gas are, the more weakly the inertia of the processes is expressed, and the relatively smaller is {psi}{sub min}. However, it should be very difficult to theoretically obtain {psi}(t), in particular {psi}{sub min}, from the very complicated physics of the low-pressure discharge in the tube. We conclude that {psi}{sub min} has to be connected with the (also easily measured) lamp's inductance. The work should attract more attention of the physicists to the properties of the common fluorescent lamps. escent lamps.

  10. Effects of day-time exposure to different light intensities on light-induced melatonin suppression at night.

    Science.gov (United States)

    Kozaki, Tomoaki; Kubokawa, Ayaka; Taketomi, Ryunosuke; Hatae, Keisuke

    2015-07-04

    Bright nocturnal light has been known to suppress melatonin secretion. However, bright light exposure during the day-time might reduce light-induced melatonin suppression (LIMS) at night. The effective proportion of day-time light to night-time light is unclear; however, only a few studies on accurately controlling both day- and night-time conditions have been conducted. This study aims to evaluate the effect of different day-time light intensities on LIMS. Twelve male subjects between the ages of 19 and 23 years (mean ± S.D., 20.8 ± 1.1) gave informed consent to participate in this study. They were exposed to various light conditions (day-time light conditions). They were then exposed to bright light (300 lx) again between 01:00 and 02:30 (night-time light exposure). They provided saliva samples before (00:55) and after night-time light exposure (02:30). A one-tailed paired t test yielded significant decrements of melatonin concentration after night-time light exposure under day-time dim, 100- and 300-lx light conditions. No significant differences exist in melatonin concentration between pre- and post-night-time light exposure under day-time 900- and 2700-lx light conditions. Present findings suggest the amount of light exposure needed to prevent LIMS caused by ordinary nocturnal light in individuals who have a general life rhythm (sleep/wake schedule). These findings may be useful in implementing artificial light environments for humans in, for example, hospitals and underground shopping malls.

  11. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm

    Science.gov (United States)

    Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian

    2018-04-01

    Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.

  12. Current indications and new applications of intense pulsed light.

    Science.gov (United States)

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  13. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...... observation period. Side effects were evaluated clinically. No tumors appeared in untreated control mice or in just IPL-treated mice. Skin tumors developed in UV-exposed mice independently of IPL treatments. The time it took for 50% of the mice to first develop skin tumor ranged from 47 to 49 weeks...... in preoperative UV-exposed mice (p=0.94) and from 22 to 23 weeks in pre- and postoperative UV-exposed mice (p=0.11). IPL rejuvenation of lightly pigmented skin did not induce pigmentary changes (p=1.00). IPL rejuvenation of UV-pigmented skin resulted in an immediate increased skin pigmentation and a subsequent...

  14. The effect of light intensity on prey detection behavior in two Lake Malawi cichlids, Aulonocara stuartgranti and Tramitichromis sp.

    Science.gov (United States)

    Schwalbe, Margot A B; Webb, Jacqueline F

    2015-04-01

    Two sand-dwelling cichlids from Lake Malawi (Aulonocara stuartgranti, Tramitichromis sp.) that feed on benthic invertebrates, but have different lateral line phenotypes, use lateral line and/or visual cues to detect prey under light versus dark conditions. The current study examined how ecologically relevant variation in light intensity [0-800 lux (lx)] influences detection of prey (mobile, immobile) in each species by analyzing six behavioral parameters. Both species fed at light intensities ≥1 lx and trends in behavior among light intensities were informative. However, prey type and/or time of day (but not light intensity) predicted all four parameters analyzed with generalized linear mixed models in A. stuartgranti, whereas the interaction of light intensity and time of day predicted three of these parameters in Tramitichromis sp. Data suggest that the critical light intensity is 1-12 lx for both species, that the integration of visual and lateral line input explains differences in detection of mobile and immobile prey and behavioral changes at the transition from 1 to 0 lx in A. stuartgranti, and that Tramitichromis sp. likely uses binocular vision to locate prey. Differences in the sensory biology of species that exploit similar prey will have important implications for the trophic ecology of African cichlid fishes.

  15. Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Kaushik [Department of Chemical Engineering, GH Patel College of Engineering and Technology, Vallabh Vidyanagar 388 120, Gujarat (India); Das, Debabrata [Fermentation Technology Laboratory, Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-09-15

    Photofermentation was carried out with the spent fermentation broth obtained from the anaerobic dark fermentation in a two-stage process. For the first stage, i.e. dark fermentation Enterobacter cloacae DM 11 was used as hydrogen producing microorganism. For photofermentation Rhodobacter sphaeroides O.U. 001, a photo-heterotrophic purple non-sulfur bacterium, was used. pH study revealed that cumulative hydrogen production was maximum at initial medium pH of 7.0 {+-} 0.2. Biomass yield was also high at the vicinity of pH 7.0 and it decreased as the pH increased from 7.0 to 8.0. Increased light intensity resulted in an increase in the total volume of hydrogen evolved and also hydrogen production rate. However, light conversion efficiency decreased by increasing light intensity. A four-fold increase in light intensity resulted in a three-fold decrease in light conversion efficiency although the cumulative volume of hydrogen gas production increased. It was observed that only a maximum of 0.51% light conversion efficiency could be achieved but at the expense of very low light intensity of 2500 lux (3.75 W m{sup -2}). (author)

  16. Purifying Synthetic High-Strength Wastewater by Microalgae Chlorella Vulgaris Under Various Light Emitting Diode Wavelengths and Intensities

    Directory of Open Access Journals (Sweden)

    Zhigang Ge

    2013-06-01

    Full Text Available The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity.

  17. Multi-photon ionization of atoms and molecules by intense XUV-FEL light. Application to methanol and ethanol molecules

    International Nuclear Information System (INIS)

    Sato, Takahiro; Iwasaki, Atsushi; Okino, Tomoya; Yamanouchi, Kaoru; Yagishita, Akira; Yazawa, Hiroki; Kannari, Fumihiko; Aoyama, Makoto; Yamakawa, Koichi; Midorikawa, Katsumi; Nakano, Hidetoshi; Yabashi, Makina; Nagasono, Mitsuru; Higashiya, Atsushi; Togashi, Tadashi; Ishikawa, Tetsuya

    2009-01-01

    The photo-ionization processes of methanol (CH 3 OH, CD 3 OH) and ethanol (C 2 H 5 OH) and their dependences on the wavelength and the light-field intensity were investigated using intense XUV light at 51 and 61 nm at the XUV free electron laser facility of RIKEN SPring-8 Center. The light field intensity achieved at 51 nm was found to be intense enough to generate Ar 7+ from Ar. It was confirmed that (1) the stable dications, CH 2 OH 2+ and CH 2 OD 2+ , were produced respectively from CH 3 OH and CD 3 OH, and C 2 H 2 OH 2+ from CH 2 H 5 OH via the direct and/or stepwise two-photon absorption, and (2) C + and CH + were produced from C 2 H 5 OH via the stepwise two-photon absorption of the XUV light. It was also confirmed by the formation of H 3 O + from CH 3 OH and C 2 H 5 OH, and HOD 2 + from CD 3 OH that hydrogen migration processes were induced by the irradiation of the intense XUV light. (author)

  18. Electron Parametric Instabilities Driven by Relativistically Intense Laser Light in Plasma

    Science.gov (United States)

    Barr, H. C.; Mason, P.; Parr, D. M.

    1999-08-01

    A unified treatment of electron parametric instabilities driven by ultraintense laser light in plasma is described. It is valid for any intensity, polarization, plasma density, and scattering geometry. The method is applied to linearly polarized light in both underdense plasma and overdense plasma accessible by self-induced transparency. New options arise which are hybrids of stimulated Raman scattering, the two plasmon decay, the relativistic modulational and filamentation instabilities, and stimulated harmonic generation. There is vigorous growth over a wide range of wave numbers and harmonics.

  19. Evaluation of different pre-slaughter light intensities and fasting duration in broilers

    Directory of Open Access Journals (Sweden)

    IB Ramão

    2011-12-01

    Full Text Available The aim of this study was to determine the effects of different levels of light intensity (0, 5 or 20 lx and different pre-slaughter feed fasting duration (3, 6, 9, 12 and 15 hours on the parameters body weight loss, carcass yield, commercial cuts yield, water carcass retention, bacterial counts and breast meat pH. A number of 72 broiler chickens at 45 days of age (Cobb 500 strain was distributed in three chambers, in a total of 24 broilers per chamber. The results showed that feed fasting significantly influenced (p0.05. The presence of feed in the crop and gizzard did not depend on light intensity, but was affected by pre-slaughter feed fasting duration. Bacterial counts decreased with feed fasting duration (p<0.05.

  20. Surfaces in the interaction of intense long wavelength laser light with plasmas

    International Nuclear Information System (INIS)

    Jones, R.D.

    1985-01-01

    The role of surface in the interaction of intense CO 2 laser light with plasmas is reviewed. The collisionless absorption of long wavelength light is discussed. Specific comments on the role of ponderomotive forces and profile steepening on resonant absorption are made. It is shown that at intensities above 10 15 W/cm 2 the absorption is determined by ion acoustic-like surface modes. It is demonstrated experimentally that harmonics up to the forty-sixth can be generated in steep density profiles. Computer simulations and theoretical mechanisms for this phenomena are presented. The self generation of magnetic fields on surfaces is discussed. The role these fields play in the lateral transport of energy, the insulation of the target from hot electrons, and the acceleration of fast ions is discussed

  1. Modeling the interaction of light intensity, nutrient concentration and uranium toxicity in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, E.; Horemans, N.; Vandenhove, H. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Cedergreen, N. [University of Copenhagen (Denmark); Jager, T. [Vrije Universiteit Amsterdam (Netherlands)

    2014-07-01

    focused on (heterotrophic) animals, where usually only one food source with constant composition is taken into account. Reproduction can in most cases be modeled simplistically as continuous production of offspring in the final developmental stage. A DEB model for a (photoautotrophic) plant should take into account both light and nutrients as energy input. Additionally, reproduction takes place differently than in animals (e.g., vegetative reproduction). Until now, no plant model based on DEB has been developed yet. We here present the first DEB model for a plant. It explicitly takes light as an input of energy into account, which enables us to study the interaction of light intensity and radionuclides. As study organism, we chose Lemna minor,because of its advantages of being a relatively simple higher plant. We discuss the interaction of light intensity, nutrient concentration and radionuclides using uranium toxicity as a case study. Document available in abstract form only. (authors)

  2. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    Science.gov (United States)

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. The rise of the photosynthetic rate when light intensity increases is delayed in ndh gene-defective tobacco at high but not at low CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Mercedes eMartin

    2015-02-01

    Full Text Available The 11 plastid ndh genes have hovered frequently on the edge of dispensability, being absent in the plastid DNA of many algae and certain higher plants. We have compared the photosynthetic activity of tobacco (Nicotiana tabacum, cv. Petit Havana with five transgenic lines (ndhF, pr-ndhF, T181D, T181A and ndhF FC and found that photosynthetic performance is impaired in transgenic ndhF-defective tobacco plants at rapidly fluctuating light intensities and higher than ambient CO2 concentrations. In contrast to wild type and ndhF FC, which reach the maximum photosynthetic rate in less than one min when light intensity suddenly increases, ndh defective plants (ndhF and T181A show up to a 5 min delay in reaching the maximum photosynthetic rate at CO2 concentrations higher than the ambient 360 ppm. Net photosynthesis was determined at different CO2 concentrations when sequences of 130, 870, 61, 870 and 130 μmol m−2 s−1 PAR sudden light changes were applied to leaves and photosynthetic efficiency and entropy production were determined as indicators of photosynthesis performance. The two ndh-defective plants, ndhF and T181A, had lower photosynthetic efficiency and higher entropy production than wt, ndhF FC and T181D tobacco plants, containing full functional ndh genes, at CO2 concentrations above 400 ppm. We propose that the Ndh complex improves cyclic electron transport by adjusting the redox level of transporters during the low light intensity stage. In ndhF-defective strains, the supply of electrons through the Ndh complex fails, transporters remain over-oxidized (specially at high CO2 concentrations and the rate of cyclic electron transport is low, impairing the ATP level required to rapidly reach high CO2 fixation rates in the following high light phase. Hence, ndh genes could be dispensable at low but not at high atmospheric concentrations of CO2.

  4. Fruit ripening in Vitis vinifera: light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon berries.

    Science.gov (United States)

    Koch, Alfredo; Ebeler, Susan E; Williams, Larry E; Matthews, Mark A

    2012-06-01

    The roles of light and temperature in the accumulation of the vegetal impact compound 2-methoxy-3-isobutylpyrazine (MIBP) in grape (Vitis vinifera L.) berries were determined. Individual clusters were exposed to various light intensities using neutral density shade cloth before ripening, during ripening or throughout the season in three growing seasons. A recently developed method using headspace solid-phase microextraction combined with GC-MS in the selected ion-monitoring mode was employed to measure MIBP in berries. Berry MIBP concentration increased subsequent to berry set, reached a maximum prior to onset of ripening, and then decreased thereafter until harvest. Complete shading of clusters increased the concentration of MIBP more than 100% compared to unshaded controls in 2 out of 3 years. Light increasingly inhibited MIBP concentrations up to 25-50% of ambient light intensities (1500 µmol photons m(-2) s(-1) ). However, only changes in light intensity before ripening had any effect on MIBP accumulation or final MIBP concentration. Analyses of weather data showed that the 1 year in which shading was ineffective was unusually warm, warm early in the season, and had more hot days and higher early season degree days than the other 2 years. In controlled environment experiments, warm growth conditions reduced MIBP concentrations in fruit about as much as light exposure reduced MIBP concentrations in the field experiments. The results indicate that both light and temperature significantly affect MIBP in harvested fruit, but that the light environment during ripening does not significantly affect MIBP concentrations in the berries at harvest. Copyright © Physiologia Plantarum 2012.

  5. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities.

    Science.gov (United States)

    Mandotra, S K; Kumar, Pankaj; Suseela, M R; Nayaka, S; Ramteke, P W

    2016-02-01

    The present study dealt with biomass, lipid concentration, fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under different phosphate concentrations, pH and light intensities, one at a time. Among different phosphate concentrations, higher biomass (770.10±11.0mg/L) and lipid concentration (176.87±4.6mg/L) were at the concentration of 60mg/L. Light intensity at 6000lux yielded higher biomass and lipid concentration of 742.0±9.7 and 243.15±9.1mg/L, respectively. The biomass (769.0±12.3mg/L) and lipid (179.47±5.5mg/L) concentration were highest at pH 8 and pH 6, respectively. All the culture treatments showed marked effect on the fatty acid profile and biodiesel properties of the extracted oil. FAME derived biodiesel properties were compared with European biodiesel standards (EN 14214), Indian biodiesel standards (IS 15607) and American biodiesel standards (ASTM D 6751-08) to assess the suitability of algal oil as biodiesel feedstock. Copyright © 2015. Published by Elsevier Ltd.

  6. Antioxidant capacity reduced in scallions grown under elevated CO 2 independent of assayed light intensity

    Science.gov (United States)

    Levine, Lanfang H.; Paré, Paul W.

    2009-10-01

    Long-duration manned space missions mandate the development of a sustainable life support system and effective countermeasures against damaging space radiation. To mitigate the risk of inevitable exposure to space radiation, cultivation of fresh fruits and vegetables rich in antioxidants is an attractive alternative to pharmacological agents. However it has yet to be established whether antioxidant properties of crops can be preserved or enhanced in a space environment where environmental conditions differ from that which plants have acclimated to on earth. Scallion ( Allium fistulosum) rich in antioxidant vitamins C and A, and flavonoids was used as a model plant to study the impact of a range of CO 2 concentrations and light intensities that are likely encountered in a space habitat on food quality traits. Scallions were hydroponically grown in controlled environmental chambers under a combination of 3 CO 2 concentrations of 400, 1200 and 4000 μmol mol -1 and 3 light intensity levels of 150, 300, 450 μmol m -2 s -1. Total antioxidant activity (TAA) of scallion extracts was determined using a radical cation scavenging assay. Both elevated CO 2 and increasing light intensity enhanced biomass accumulation, but effects on TAA (based on dry weight) differed. TAA was reduced for plants grown under elevated CO 2, but remained unchanged with increases in light intensity. Elevated CO 2 stimulated greater biomass production than antioxidants, while an increase in photosynthetic photo flux promoted the synthesis of antioxidant compounds at a rate similar to that of biomass. Consequently light is a more effective stimulus than CO 2 for antioxidant production.

  7. Light intensity modulates the response of two Antarctic diatom species to ocean acidification

    Directory of Open Access Journals (Sweden)

    Jasmin Pascale Heiden

    2016-12-01

    Full Text Available It is largely unknown how rising atmospheric CO2 concentrations and changes in the upper mixed layer depth, with its subsequent effects on light availability will affect phytoplankton physiology in the Southern Ocean. Linking seasonal variations in the availability of CO2 and light to abundances and physiological traits of key phytoplankton species could aid to understand their abilities to acclimate to predicted future climatic conditions. To investigate the combined effects of CO2 and light on two ecologically relevant Antarctic diatoms (Fragilariopsis curta and Odontella weisflogii a matrix of three light intensities (LL=20, ML=200, HL=500 µmol photons m-2 s-1 and three pCO2 levels (low=180, ambient=380, high=1000 µatm was applied assessing their effects on growth, particulate organic carbon (POC fixation and photophysiology. Under ambient pCO2, POC production rates were highest already at low light in Fragilariopsis, indicating saturation of photosynthesis, while in Odontella highest rates were only reached at medium irradiances. In both species ocean acidification did not stimulate, but rather inhibited, growth and POC production under low and medium light. This effect was, however, amended under high growth irradiances. Low pCO2 levels inhibited growth and POC production in both species at low and medium light, and further decreased absETRs under high light. Our results suggest that Southern Ocean diatoms were sensitive to changes in pCO2, showing species-specific responses, which were further modulated by light intensity. The two diatom species represent distinct ecotypes and revealed discrete physiological traits that matched their seasonal occurrence with the related physical conditions in Antarctic coastal waters.

  8. Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique)

    International Nuclear Information System (INIS)

    Charalampous, Georgios; Hardalupas, Yannis

    2011-01-01

    The dependence of fluorescent and scattered light intensities from spherical droplets on droplet diameter was evaluated using Mie theory. The emphasis is on the evaluation of droplet sizing, based on the ratio of laser-induced fluorescence and scattered light intensities (LIF/Mie technique). A parametric study is presented, which includes the effects of scattering angle, the real part of the refractive index and the dye concentration in the liquid (determining the imaginary part of the refractive index). The assumption that the fluorescent and scattered light intensities are proportional to the volume and surface area of the droplets for accurate sizing measurements is not generally valid. More accurate sizing measurements can be performed with minimal dye concentration in the liquid and by collecting light at a scattering angle of 60 deg. rather than the commonly used angle of 90 deg. Unfavorable to the sizing accuracy are oscillations of the scattered light intensity with droplet diameter that are profound at the sidescatter direction (90 deg.) and for droplets with refractive indices around 1.4.

  9. Effect of light intensity on the performance of silicon solar cell ...

    African Journals Online (AJOL)

    This work, presents the intense light effect on electrical parameters of silicon solar such as short circuit current, open circuit voltage, series and shunt resistances, maximum power, conversion efficiency, fill factor. After the resolution of the continuity equation which leads to the solar cell photocurrent and photovoltage ...

  10. effect of light intensity on the performance of silicon solar cell

    African Journals Online (AJOL)

    (Received 31 January 2017; Revision Accepted 7 April 2017). ABSTRACT. This work, presents the intense light effect on electrical parameters of silicon solar such as short circuit current, open circuit voltage, series and shunt ... level, which is a source of carrier photogeneration,. 123. Martial Zoungrana, Laboratory of ...

  11. Light Intensity-Dependent Modulation of Chlorophyll b Biosynthesis and Photosynthesis by Overexpression of Chlorophyllide a Oxygenase in Tobacco1[C][OA

    Science.gov (United States)

    Biswal, Ajaya K.; Pattanayak, Gopal K.; Pandey, Shiv S.; Leelavathi, Sadhu; Reddy, Vanga S.; Govindjee; Tripathy, Baishnab C.

    2012-01-01

    Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%–80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation. PMID:22419827

  12. Effect of Different Light Intensities on Total Phenolics and Flavonoids Synthesis and Anti-oxidant Activities in Young Ginger Varieties (Zingiber officinale Roscoe)

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Rahmat, Asmah; Wahab, Puteri Edaroyati Megat; Halim, Mohd Ridzwan Abd

    2010-01-01

    Nowadays, phytochemicals and antioxidants in plants are raising interest in consumers for their roles in the maintenance of human health. Phenolics and flavonoids are known for their health-promoting properties due to protective effects against cardiovascular disease, cancers and other disease. Ginger (Zingiber officinale) is one of the traditional folk medicinal plants and it is widely used in cooking in Malaysia. In this study, four levels of glasshouse light intensities (310, 460, 630 and 790 μmol m−2s−1) were used in order to consider the effect of light intensity on the production, accumulation and partitioning of total phenolics (TP), total flavonoids (TF) and antioxidant activities in two varieties of Malaysian young ginger (Zingiber officinale). TF biosynthesis was highest in the Halia Bara variety under 310 μmol m−2s−1 and TP was high in this variety under a light intensity of 790 μmol m−2s−1. The highest amount of these components accumulated in the leaves and after that in the rhizomes. Also, antioxidant activities determined by the 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) assay in both of varieties, increased significantly (p ≤ 0.01) with increasing TF concentration, and high antioxidant activity was observed in the leaves of Halia Bara grown under 310 μmol m−2s−1. The ferric reducing (FRAP) activity of the rhizomes was higher than that of the leaves in 310 μmol m−2s−1 of sun light. This study indicates the ability of different light intensities to enhance the medicinal components and antioxidant activities of the leaves and young rhizomes of Zingiber officinale varieties. Additionally, this study also validated their medicinal potential based on TF and TP contents. PMID:21152306

  13. Effect of Different Light Intensities on Total Phenolics and Flavonoids Synthesis and Anti-oxidant Activities in Young Ginger Varieties (Zingiber officinale Roscoe

    Directory of Open Access Journals (Sweden)

    Ali Ghasemzadeh

    2010-10-01

    Full Text Available Nowadays, phytochemicals and antioxidants in plants are raising interest in consumers for their roles in the maintenance of human health. Phenolics and flavonoids are known for their health-promoting properties due to protective effects against cardiovascular disease, cancers and other disease. Ginger (Zingiber officinale is one of the traditional folk medicinal plants and it is widely used in cooking in Malaysia. In this study, four levels of glasshouse light intensities (310, 460, 630 and 790 μmol m−2s−1 were used in order to consider the effect of light intensity on the production, accumulation and partitioning of total phenolics (TP, total flavonoids (TF and antioxidant activities in two varieties of Malaysian young ginger (Zingiber officinale. TF biosynthesis was highest in the Halia Bara variety under 310 μmol m−2s−1 and TP was high in this variety under a light intensity of 790 μmol m−2s−1. The highest amount of these components accumulated in the leaves and after that in the rhizomes. Also, antioxidant activities determined by the 1,1-Diphenyl-2-picryl-hydrazyl (DPPH assay in both of varieties, increased significantly (p ≤ 0.01 with increasing TF concentration, and high antioxidant activity was observed in the leaves of Halia Bara grown under 310 μmol m−2s−1. The ferric reducing (FRAP activity of the rhizomes was higher than that of the leaves in 310 μmol m−2s−1 of sun light. This study indicates the ability of different light intensities to enhance the medicinal components and antioxidant activities of the leaves and young rhizomes of Zingiber officinale varieties. Additionally, this study also validated their medicinal potential based on TF and TP contents.

  14. Excitation of random intense single-cycle light-pulse chains in optical fiber

    International Nuclear Information System (INIS)

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  15. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.

    Science.gov (United States)

    Ferreira, V S; Pinto, R F; Sant'Anna, C

    2016-03-01

    Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.

  16. Side effects from intense pulsed light

    DEFF Research Database (Denmark)

    Thaysen-Petersen, Daniel; Erlendsson, Andres M; Nash, J F

    2017-01-01

    BACKGROUND AND OBJECTIVE: Intense pulsed light (IPL) is a mainstream treatment for hair removal. Side effects after IPL are known, but risk factors remain to be investigated. The objective of this study was to assess the contribution of skin pigmentation, fluence level, and ultraviolet radiation...... stacking of 46 J/cm2. Areas were subsequently randomized to no UVR or single solar-simulated UVR exposure of 3 Standard Erythema Dose at 30 minutes or 24 hours after IPL. Each area had a corresponding control, resulting in 15 treatment sites. Follow-up visits were scheduled up to 4 weeks after IPL. Outcome...... measures were: (i) blinded clinical skin reactions; (ii) objectively measured erythema and pigmentation; (iii) pain measured by visual analog scale (VAS); (iv) histology (H&E, Fontana-Masson); and (v) mRNA-expression of p53. RESULTS: Fifteen subjects with FST II-IV completed the protocol. IPL induced...

  17. Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2.

    Science.gov (United States)

    Pérez-López, Usue; Sgherri, Cristina; Miranda-Apodaca, Jon; Micaelli, Francesco; Lacuesta, Maite; Mena-Petite, Amaia; Quartacci, Mike Frank; Muñoz-Rueda, Alberto

    2018-02-01

    The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e. an acyanic-green leaf cv. and an anthocyanic-red one, were grown under high light intensity or elevated CO 2 or both in order to evaluate how environmental conditions may affect the production of secondary phenolic metabolites and, thus, lettuce quality. Mild light stress imposed for a short time under ambient or elevated CO 2 concentration increased phenolics compounds as well as antioxidant capacity in both lettuce cvs, indicating how the cultivation practice could enhance the health-promoting benefits of lettuce. The phenolic profile depended on pigmentation and the anthocyanic-red cv. always maintained a higher phenolic amount as well as antioxidant capacity than the acyanic-green one. In particular, quercetin, quercetin-3-O-glucuronide, kaempferol, quercitrin and rutin accumulated under high light or high CO 2 in the anthocyanic-red cv., whereas cyanidin derivatives were responsive to mild light stress, both at ambient and elevated CO 2 . In both cvs total free and conjugated phenolic acids maintained higher values under all altered environmental conditions, whereas luteolin reached significant amounts when both stresses were administered together, indicating, in this last case, that the enzymatic regulation of the flavonoid synthesis could be differently affected, the synthesis of flavones being favored. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    Science.gov (United States)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  19. 3D study of bifacial silicon solar cell under intense light ...

    African Journals Online (AJOL)

    This work presents a three-dimensional study of bifacial silicon solar cell under intense light concentration and under constant magnetic field. This approach is based on the resolution of the minority continuity equation, taking into account the distribution of the electric field in the bulk evaluated as a function of both majority ...

  20. Requirements of blue, UV-A, and UV-B light for normal growth of higher plants, as assessed by actions spectra for growth and related phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T. [Kobe Women`s Univ., Higashisuma (Japan)

    1994-12-31

    It is very important for experimental purposes, as well as for the practical use of plants when not enough sunlight is available. To grow green higher plants in their normal forms under artificial lighting constructing efficient and economically reasonable lighting systems is not an easy task. One possible approach would be to simulate sunlight in intensity and the radiation spectrum, but its high construction and running costs are not likely to allow its use in practice. Sunlight may be excessive in irradiance in some or all portions of the spectrum. Reducing irradiance and removing unnecessary wavebands might lead to an economically feasible light source. However, removing or reducing a particular waveband from sunlight for testing is not easy. Another approach might be to find the wavebands required for respective aspects of plant growth and to combine them in a proper ratio and intensity. The latter approach seems more practical and economical, and the aim of this Workshop lies in advancing this approach. I summarize our present knowledge on the waveband requirements of higher plants for the regions of blue, UV-A and UV-B.

  1. Continuous and high-intensity interval training: which promotes higher pleasure?

    Directory of Open Access Journals (Sweden)

    Bruno R R Oliveira

    Full Text Available OBJECTIVES: To compare the psychological responses to continuous (CT and high-intensity interval training (HIT sessions. METHODS: Fifteen men attended one CT session and one HIT session. During the first visit, the maximum heart rate, VO2Peak and respiratory compensation point (RCP were determined through a maximal cardiopulmonary exercise test. The HIT stimulus intensity corresponded to 100% of VO2Peak, and the average intensity of both sessions was maintained at 15% below the RCP. The order of the sessions was randomized. Psychological and physiological variables were recorded before, during and after each session. RESULTS: There were no significant differences between the average percentages of VO2 during the two exercise sessions (HIT: 73.3% vs. CT: 71.8%; p = 0.779. Lower responses on the feeling scale (p≤0.01 and higher responses on the felt arousal scale (p≤0.001 and the rating of perceived exertion were obtained during the HIT session. Despite the more negative feeling scale responses observed during HIT and a greater feeling of fatigue (measured by Profile of Mood States afterwards (p<0.01, the physical activity enjoyment scale was not significantly different between the two conditions (p = 0.779. CONCLUSION: Despite the same average intensity for both conditions, similar psychological responses under HIT and CT conditions were not observed, suggesting that the higher dependence on anaerobic metabolism during HIT negatively influenced the feeling scale responses.

  2. Photosynthetic adaptation to light intensity in plants native to shaded and exposed habitats. [Rumex acetosa; Geum rivale; Lamium galeobdolon; Plantago lanceolata

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, O; Holmgren, P

    1966-01-01

    Photosynthetic adaptation to light intensity has been studied in clones of populations from shaded and exposed habitats of Rumex acetosa and Geum rivale. Clones of the shade species Lamium galeobdolon and the sun species Plantago lanceolata were also included for comparison. The plants were grown under controlled conditions at a high and a low light intensity. The capacity of photosynthetic carbon dioxide uptake at low as well as at saturating light intensities was determined on single attached leaves. As was previously demonstrated in Solidago virgaurea, clones of populations native to shaded and to exposed environments show differences in the photosynthetic response to light intensity during growth. The data provide evidence that populations of the same species native to habitats with contrasting light intensities differ in their photosynthetic properties in an adaptive manner in a similar mode as sun and shade species. 1 reference, 1 figure, 2 tables.

  3. Multi-photon ionization of atoms and molecules by intense XUV-FEL light. Application to methanol and ethanol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takahiro; Iwasaki, Atsushi; Okino, Tomoya; Yamanouchi, Kaoru [Tokyo Univ., School of Science, Tokyo (Japan); Yagishita, Akira [Institute of Materials Structure Science, Photon Factory, Tsukuba, Ibaraki (Japan); Yazawa, Hiroki; Kannari, Fumihiko [Keio Univ., Graduate School of Science and Technology, Yokohama, Kanagawa (Japan); Aoyama, Makoto; Yamakawa, Koichi [Japan Atomic Energy Agency, Kansai Photon Science Inst., Kizugawa, Kyoto (Japan); Midorikawa, Katsumi [RIKEN, Laser Technology Laboratory, Wako, Saitama (Japan); Nakano, Hidetoshi [NTT Corp., NTT Basic Research Laboratories, Atsugi, Kanagawa (Japan); Yabashi, Makina; Nagasono, Mitsuru; Higashiya, Atsushi; Togashi, Tadashi; Ishikawa, Tetsuya [RIKEN SPring-8 XFEL Project, Sayo, Hyogo (Japan)

    2009-12-15

    The photo-ionization processes of methanol (CH{sub 3}OH, CD{sub 3}OH) and ethanol (C{sub 2}H{sub 5}OH) and their dependences on the wavelength and the light-field intensity were investigated using intense XUV light at 51 and 61 nm at the XUV free electron laser facility of RIKEN SPring-8 Center. The light field intensity achieved at 51 nm was found to be intense enough to generate Ar{sup 7+} from Ar. It was confirmed that (1) the stable dications, CH{sub 2}OH{sup 2+} and CH{sub 2}OD{sup 2+}, were produced respectively from CH{sub 3}OH and CD{sub 3}OH, and C{sub 2}H{sub 2}OH{sup 2+} from CH{sub 2}H{sub 5}OH via the direct and/or stepwise two-photon absorption, and (2) C{sup +} and CH{sup +} were produced from C{sub 2}H{sub 5}OH via the stepwise two-photon absorption of the XUV light. It was also confirmed by the formation of H{sub 3}O{sup +} from CH{sub 3}OH and C{sub 2}H{sub 5}OH, and HOD{sub 2}{sup +} from CD{sub 3}OH that hydrogen migration processes were induced by the irradiation of the intense XUV light. (author)

  4. Photocathode fatigue of L-24 PM head due to high intensity light pulses

    International Nuclear Information System (INIS)

    Bailey, K.F.

    1980-01-01

    The sensitivity of radiation detectors which utilizes photomultipliers was determined after exposing the multiplier phototubes to high intensity light pulses. Test results found that generally less than a 5% change was found

  5. Higher light intensity induces modulations in brain activity even during regular daytime working hours

    NARCIS (Netherlands)

    Smolders, K.C.H.J.; de Kort, Y.A.W.; Cluitmans, P.J.M.

    2016-01-01

    We investigated the effect of exposure to bright white light as compared to a commonly experienced illuminance (1000 lx vs. 200 lx at eye level, 4000 K) on electroencephalography spectral power density during daytime. Spectral power density was measured during one hour of exposure in the morning and

  6. The influence of low intensities of light pollution on bat communities in a semi-natural context.

    Directory of Open Access Journals (Sweden)

    Aurelie Lacoeuilhe

    Full Text Available Anthropogenic light pollution is an increasingly significant issue worldwide. Over the past century, the use of artificial lighting has increased in association with human activity. Artificial lights are suspected to have substantial effects on the ecology of many species, e.g., by producing discontinuities in the territories of nocturnal animals. We analyzed the potential influence of the intensity and type of artificial light on bat activity in a semi-natural landscape in France. We used a species approach, followed by a trait-based approach, to light sensitivity. We also investigated whether the effect of light could be related to foraging traits. We performed acoustic surveys at sites located along a gradient of light intensities to assess the activity of 15 species of bats. We identified 2 functional response groups of species: one group that was light-tolerant and one group that was light-intolerant. Among the species in the latter group that appear to be disadvantaged by lighting conditions, many are rare and threatened in Europe, whereas the species from the former group are better able to thrive in disturbed habitats such as lighted areas and may actually benefit from artificial lighting. Finally, several methods of controlling light pollution are suggested for the conservation of bat communities. Recommendations for light management and the creation of dim-light corridors are proposed; these strategies may play an important role in protecting against the impact of light pollution on nocturnal animals.

  7. The influence of low intensities of light pollution on bat communities in a semi-natural context.

    Science.gov (United States)

    Lacoeuilhe, Aurelie; Machon, Nathalie; Julien, Jean-François; Le Bocq, Agathe; Kerbiriou, Christian

    2014-01-01

    Anthropogenic light pollution is an increasingly significant issue worldwide. Over the past century, the use of artificial lighting has increased in association with human activity. Artificial lights are suspected to have substantial effects on the ecology of many species, e.g., by producing discontinuities in the territories of nocturnal animals. We analyzed the potential influence of the intensity and type of artificial light on bat activity in a semi-natural landscape in France. We used a species approach, followed by a trait-based approach, to light sensitivity. We also investigated whether the effect of light could be related to foraging traits. We performed acoustic surveys at sites located along a gradient of light intensities to assess the activity of 15 species of bats. We identified 2 functional response groups of species: one group that was light-tolerant and one group that was light-intolerant. Among the species in the latter group that appear to be disadvantaged by lighting conditions, many are rare and threatened in Europe, whereas the species from the former group are better able to thrive in disturbed habitats such as lighted areas and may actually benefit from artificial lighting. Finally, several methods of controlling light pollution are suggested for the conservation of bat communities. Recommendations for light management and the creation of dim-light corridors are proposed; these strategies may play an important role in protecting against the impact of light pollution on nocturnal animals.

  8. The Sensory Quality of Meat, Game, Poultry, Seafood and Meat Products as Affected by Intense Light Pulses: A Systematic Review

    OpenAIRE

    Tomasevic, Igor; Rajkovic, Andreja

    2015-01-01

    The effect of intense light pulses (ILP) on sensory quality of 16 different varieties of meat, meat products, game, poultry and seafood are reviewed. Changes induced by ILP are animal species, type of meat product and fluences applied dependent. ILP significantly deteriorates sensory quality of cooked meat products. It causes less change in the sensory properties of dry cured than cooked meat products while fermented sausage is least affected. The higher fluence applied significantly changes ...

  9. High- but not low-intensity light leads to oxidative stress and quality loss of cold-stored baby leaf spinach.

    Science.gov (United States)

    Glowacz, Marcin; Mogren, Lars M; Reade, John P H; Cobb, Andrew H; Monaghan, James M

    2015-07-01

    Quality management in the fresh produce industry is an important issue. Spinach is exposed to various adverse conditions (temperature, light, etc.) within the supply chain. The present experiments were conducted to investigate the effect of light conditions (dark, low-intensity light (LL) and high-intensity light (HL)) and photoperiod (6 h HL and 18 h dark) on the quality changes of cold-stored spinach. HL exposure resulted in oxidative stress, causing tissue damage and quality loss as evidenced by increased membrane damage and water loss. The content of total ascorbic acid was reduced under HL conditions. On the other hand, storage of spinach under LL conditions gave promising results, as nutritional quality was not reduced, while texture maintenance was improved. No significant differences, with the exception of nutritional quality, were found between spinach leaves stored under continuous (24 h) low-intensity light (30-35 µmol m(-2) s(-1)) and their counterparts stored under the same light integral over 6 h (130-140 µmol m(-2) s(-1)). LL extended the shelf-life of spinach. The amount of light received by the leaves was the key factor affecting produce quality. Light intensity, however, has to be low enough not to cause excess oxidative stress and lead to accelerated senescence. © 2014 Society of Chemical Industry.

  10. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator

    Science.gov (United States)

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-09-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.

  11. DOE Solid-State Lighting in Higher Ed Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Naomi J.; Curry, Ku' Uipo J.

    2010-07-20

    The focus of the workshop was on higher education facilities because college and university campuses are an important market for lighting products and they use almost every kind of luminaire on the market. This workshop was seen as a chance for SSL manufacturers large and small to get the inside scoop from a group of people that specify, pay for, install, use, maintain, and dispose of lighting systems for nearly every type of application. Workshop attendees explored the barriers to SSL adoption, the applications where SSL products could work better than existing technologies, and where SSL luminaires are currently falling short. This report summarizes the Workshop activities and presentation highlights.

  12. THE CYTOTOXIC EFFECTS OF LOW INTENSITY VISIBLE AND INFRARED LIGHT ON HUMAN BREAST CANCER (MCF7 CELLS

    Directory of Open Access Journals (Sweden)

    P Peidaee

    2013-03-01

    Full Text Available A concept of using low intensity light therapy (LILT as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7 cells and human epidermal melanocytes (HEM cells (control were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm. The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH cytotoxic activity and PrestoBlueTM cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlueTM assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  13. Light-front higher-spin theories in flat space

    Science.gov (United States)

    Ponomarev, Dmitry; Skvortsov, Evgeny

    2017-03-01

    We revisit the problem of interactions of higher-spin fields in flat space. We argue that all no-go theorems can be avoided by the light-cone approach, which results in more interaction vertices as compared to the usual covariant approaches. It is stressed that there exist two-derivative gravitational couplings of higher-spin fields. We show that some reincarnation of the equivalence principle still holds for higher-spin fields—the strength of gravitational interaction does not depend on spin. Moreover, it follows from the results by Metsaev that there exists a complete chiral higher-spin theory in four dimensions. We give a simple derivation of this theory and show that the four-point scattering amplitude vanishes. Also, we reconstruct the quartic vertex of the scalar field in the unitary higher-spin theory, which turns out to be perturbatively local.

  14. Light-front higher-spin theories in flat space

    International Nuclear Information System (INIS)

    Ponomarev, Dmitry; Skvortsov, Evgeny

    2017-01-01

    We revisit the problem of interactions of higher-spin fields in flat space. We argue that all no-go theorems can be avoided by the light-cone approach, which results in more interaction vertices as compared to the usual covariant approaches. It is stressed that there exist two-derivative gravitational couplings of higher-spin fields. We show that some reincarnation of the equivalence principle still holds for higher-spin fields—the strength of gravitational interaction does not depend on spin. Moreover, it follows from the results by Metsaev that there exists a complete chiral higher-spin theory in four dimensions. We give a simple derivation of this theory and show that the four-point scattering amplitude vanishes. Also, we reconstruct the quartic vertex of the scalar field in the unitary higher-spin theory, which turns out to be perturbatively local. (paper)

  15. High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms

    Science.gov (United States)

    Wagner, Karoline; Bengtsson, Mia M.; Findlay, Robert H.; Battin, Tom J.; Ulseth, Amber J.

    2017-07-01

    Changes in the riparian vegetation along stream channels, diurnal light availability, and longitudinal fluctuations in the local light regime in streams influence primary production and carbon (C) cycling in benthic stream biofilms. To investigate the influence of light availability on the uptake dynamics of autochthonous and allochthonous dissolved organic carbon (DOC) in benthic biofilms, we experimentally added 13C-labeled allochthonous DOC to biofilms grown under light intensities ranging from 5 to 152 μmol photons m-2 s-1. We calculated the net C flux, which showed that benthic biofilms released autochthonous DOC across the entire light gradient. Light availability and diurnal light patterns influenced C uptake by benthic biofilms. More allochthonous DOC was respired under low light availability and at night, whereas under high light availability and during the day mainly autochthonous C was respired by the benthic biofilm community. Furthermore, phenol oxidase activity (indicative of allochthonous DOC uptake) was more elevated under low light availability, whereas beta-glucosidase activity (indicative of autochthonous DOC use) increased with light intensity. Collectively, our results suggest that biofilms exposed to high light inputs preferentially used autochthonous DOC, whereas biofilms incubated at attenuated levels showed greater use of allochthonous DOC. This has implications for the spatial dynamics of DOC uptake in streams and speaks against the occurrence of priming effects in algal-dominated stream biofilms.

  16. Influence of light intensity on the toxicity of atrazine to the submerged freshwater aquatic macrophyte Elodea canadensis.

    Science.gov (United States)

    Brain, Richard A; Hoberg, James; Hosmer, Alan J; Wall, Steven B

    2012-05-01

    Light intensity can have a profound influence on the degree of phytotoxicity experienced by plants exposed to photosystem II (PSII) inhibiting herbicides. This relationship was evaluated in the submerged aquatic macrophyte Elodea canadensis exposed to three different concentrations of atrazine (510, 1000 and 2000 μg a.i./L) plus an untreated control at three different light intensities (0, 500 and 6000 lx) under static-renewal conditions for 14 days. Under 500 lx light intensity, control plants demonstrated a rapid increase in shoot length but minimal increase in dry shoot weight, suggesting limited photosynthesis. Based on shoot-length and biomass, growth was not affected by any atrazine exposure relative to controls under dark conditions (0 lx). Under low-light conditions at 500 lx, exposures to 510, 1000 and 2000 μg a.i./L atrazine significantly decreased net shoot lengths by 34%, 38% and 35%, respectively, relative to corresponding (500 lx) controls. However, atrazine exposure under this light condition did not significantly decrease biomass (dry shoot weight). Compared to 6000 lx, only approximately 8% of photosynthetically active radiation (PAR) was measured under 500 lx intensity, indicating that minimal PAR was available for photosynthesis. Under optimal light conditions (6000 lx), net shoot lengths significantly decreased in the treated atrazine groups by 48%, 51% and 68%, and net dry shoot weights (biomass) were significantly decreased by 79%, 81% and 91%, respectively, relative to corresponding (6000 lx) controls. These data show that under low light conditions, atrazine-induced effects on dry shoot weight (biomass) are dependent on available PAR and active photosynthesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Pigment variations in Emiliania huxleyi (CCMP370) as a response to changes in light intensity or quality.

    Science.gov (United States)

    Garrido, José L; Brunet, Christophe; Rodríguez, Francisco

    2016-12-01

    Many studies on photoacclimation examine the pigment responses to changes in light intensity, but variations in light climate in the aquatic environment are also related to changes in spectral composition. We have employed a high-performance liquid chromatography method with improved resolution towards chlorophyll c and fucoxanthin-related xanthophylls to examine the pigment composition of Emiliania huxleyi CCMP 370 under different light intensities and spectral qualities. To maintain its photosynthetic performance, E. huxleyi CCMP370 promotes drastic pigment changes that can be either the interconversion of pigments in pools with the same basic chromophoric structure (Fucoxanthin type or chlorophyll c type), or the ex novo synthesis (Diatoxanthin). These changes are linked either to variations in light quality (Fucoxanthin related xanthophylls) or in light intensity (chlorophyll c 3 /Monovinyl chlorophyll c 3 , Diadinoxanthin/Diatoxanthin, β,ɛ-carotene/ β,β-carotene). Fucoxanthin and 19'-hexanoyloxyfucoxanthin proportions were highly dependent on spectral conditions. Whereas Fucoxanthin dominated in green and red light, 19'-hexanoyloxyfucoxanthin prevailed under blue spectral conditions. Our results suggest that the huge pigment diversity enhanced the photoacclimative capacities of E. huxleyi to efficiently perform under changing light environments. The ubiquity and success in the global ocean as well as the capacity of E. huxleyi to form large surface blooms might be associated to the plasticity described here. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077.

    Science.gov (United States)

    Pancha, Imran; Chokshi, Kaumeel; Mishra, Sandhya

    2015-03-01

    Microalgal mixotrophic cultivation is one of the most potential ways to enhance biomass and biofuel production. In the present study, first of all ability of microalgae Scenedesmus sp. CCNM 1077 to utilize various carbon sources under mixotrophic growth condition was evaluated followed by optimization of glucose concentration and light intensity to obtain higher biomass, lipid and carbohydrate contents. Under optimized condition i.e. 4 g/L glucose and 150 μmol m(-2) s(-1) light intensity, Scenedesmus sp. CCNM 1077 produced 1.2g/L dry cell weight containing 23.62% total lipid and 42.68% carbohydrate. Addition of glucose shown nutritional stress ameliorating effects and around 70% carbohydrate and 25% total lipid content was found with only 21% reduction in dry cell weight under nitrogen starved condition. This study shows potential application of mixotrophically grown Scenedesmus sp. CCNM 1077 for bioethanol and biodiesel production feed stock. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Suppression of visceral pain by action of the low intensity polarized light on acupuncture antinociceptive points].

    Science.gov (United States)

    Lymans'kyĭ, Iu P; Tamarova, Z A; Huliar, S O

    2003-01-01

    In experiments on mice, statistically authentic weakening of visceral pain has been shown after an action of low intensity polarized light from a device Bioptron on antinociceptive acupuncture points (AP). Pain was caused by an intraperitoneal injection of 2% acetic acid (0.1 ml/10 g). The intensity of pain was judged on duration and frequency of painful behavioral reactions (writhing, licking of abdomen), as well as on duration of sleep, eating and motor activity. In animals which immediately after injections of acetic acid were exposed to polarized light of low intensity for 10 min, applied on any of antinociceptive APs (E-36, E-43, VC-8, RP-6), the duration of painful behavioral reaction was determined to be reduced, while that of non-painful one increased. The comparison of the total duration of the writhing at control and experimental mice showed that an activation of AP E-43 induced the greatest analgesic effect (76.5%), from AP VC-8 it was 76.3%, from RP-6--46.8%, and from E-36--41.4%. We have concluded that the effect of polarized light of low intensity on APs was a convenient non-pharmacological method of treating visceral pain.

  20. Effect of intense pulsed light on immature burn scars: A clinical study

    Directory of Open Access Journals (Sweden)

    Arindam Sarkar

    2014-01-01

    Full Text Available Introduction: As intense pulsed light (IPL is widely used to treat cutaneous vascular malformations and also used as non-ablative skin rejunuvation to remodel the skin collagen. A study has been undertaken to gauze the effect of IPL on immature burn scars with regard to vascularity, pliability and height. Materials and Methods: This study was conducted between June 2013 and May 2014, among patients with immature burn scars that healed conservatively within 2 months. Photographic evidence of appearance of scars and grading and rating was done with Vancouver Scar Scale parameters. Ratings were done for both case and control scar after the completion of four IPL treatment sessions and were compared. Results: Out of the 19 cases, vascularity, pliability and height improved significantly (P < 0.05 in 13, 14 and 11 scars respectively following IPL treatment. Conclusions: Intense pulsed light was well-tolerated by patients, caused good improvement in terms of vascularity, pliability, and height of immature burn scar.

  1. Light impacts embryonic and early larval development of the European eel, Anguilla anguilla

    DEFF Research Database (Denmark)

    Politis, Sebastian Nikitas; Butts, Ian; Tomkiewicz, Jonna

    2014-01-01

    Little is known about the natural ecology of European eel during early life history. Weextend our understandings on the ecology of this species by studying howearly life stages perform under various light regimes.We assessed the effects of intensity, photoperiod (12:12 and 24:0 h light/dark) and ......Little is known about the natural ecology of European eel during early life history. Weextend our understandings on the ecology of this species by studying howearly life stages perform under various light regimes.We assessed the effects of intensity, photoperiod (12:12 and 24:0 h light...... stages. In particular, for the 12:12 h photoperiod, embryonic survival, until 26 h post-fertilization was significantly higher when reared under low (62 ± 13%) than those reared under high intensity light (42 ± 13%). Furthermore, embryos reared in low light had a higher hatch success (16 ± 7%) than those...... in high intensity light (12 ± 7%). Larval yolk-sac area was significantly affected by photoperiod and body area was significantly affected by the interaction between intensity × photoperiod. The highest incidence of deformities (75%) occurred when embryos were reared in high intensity white light under...

  2. Effects of Light Intensity on Development and Chlorophyll Content in the Arabidopsis Mutant Plants with Defects in Photosynthesis

    Directory of Open Access Journals (Sweden)

    E.Yu. Garnik

    2015-12-01

    Full Text Available The developmental stages and adaptability to different light intensity (150 µmol*m-2*s-1 and 100 µmol*m-2*s-1 in Arabidopsis mutant lines with defects of photosynthetic apparatus were analyzed. Plant development in the mutant lines depended on the light intensity to varying degrees. Lines ch1-1 (lack of the chlorophyllide a oxygenase and rtn16 (decreased chlorophyll a and b amounts were the most susceptible to the light decrease. No one of the investigated lines demonstrated chlorophyll a/b rate alteration under the different light conditions. The depleted chlorophyll content has had the major effect on the mutant plants development under the different light conditions. The different chlorophyll a/b rate correlated with the different adaptability of mutant plants to low light.

  3. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise.

    Directory of Open Access Journals (Sweden)

    Jacob S Thum

    Full Text Available Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT may provide an alternative to moderate intensity continuous exercise (MICT to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2 initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax with 1 min of active recovery between bouts or MICT (20 min of cycling at 45% Wmax in randomized order. During exercise, rating of perceived exertion (RPE, affect, and blood lactate concentration (BLa were measured. Additionally, the Physical Activity Enjoyment Scale (PACES was completed after exercise. Results showed higher enjoyment (p = 0.013 in response to HIIT (103.8 ± 9.4 versus MICT (84.2 ± 19.1. Eleven of 12 participants (92% preferred HIIT to MICT. However, affect was lower (p<0.05 and HR, RPE, and BLa were higher (p<0.05 in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus.NCT:02981667.

  4. Effects of four dim vs high intensity red color light regimens on growth performance and welfare of broilers.

    Science.gov (United States)

    Senaratna, D; Samarakone, T S; Gunawardena, W W D A

    2018-01-01

    Broilers show clear preference towards red color light (RL). However setting of an optimum light intensity is difficult since dim intensities that favor growth reduce welfare. This experiment was conducted to test the most effective RL intensity regimen (Dim [5 lux; DI] vs high [320 lux; HI]) in combination applied at different growth stages that favors for both performance and welfare. Complete randomize design was adopted with 6 replicates. Treatments were; T1 = early DI (8-21 d)+latter HI (22-35 d); T2 = early DI (8-28 d)+latter HI (29-35 d), T3 = early HI (8-21 d)+latter DI (22-35 d), T4 = early HI (8-28 d)+latter DI (29-35 d) and T5 = control (white light; WT) (8-35 d) at medium intensity (20 lux). Body weight (BW), weight gain (WG), water/feed intake and ratio, feed conversion ratios (FCR) were assessed. Common behaviours (15) were recorded by scan sampling method. Lameness, foot pad dermatitis, breast blisters, hock burning damage were assessed as welfare parameters. Fear reactions were tested using Tonic Immobility Test. Ocular and carcass evaluations were done. Meat and tibiae were analyzed for fat and bone ash respectively. On 35 d, the highest BW (2,155.72±176 g), WG (1,967.78±174 g) were recorded by T2 compared to WT (BW WT = 1,878.22±155, WG WT = 1,691.83±160). But, application of RL, either DI, or HI during early/latter stage had no significant effect on FCR. Under HI, birds showed much higher active behaviours. DI encourages eating. Though LI changed from DI to HI, same trend could be seen even under HI. The highest leg strength (218.5±120 s) was recorded by T2. The lowest leg strength (64.58±33 s) and the highest ocular weight (2.48±1 g) were recorded by T1. Significantly (plighting regimen for optimizing production, better welfare of broilers and improving health benefits of meat.

  5. Lighting, sleep and circadian rhythm: An intervention study in the intensive care unit.

    Science.gov (United States)

    Engwall, Marie; Fridh, Isabell; Johansson, Lotta; Bergbom, Ingegerd; Lindahl, Berit

    2015-12-01

    Patients in an intensive care unit (ICU) may risk disruption of their circadian rhythm. In an intervention research project a cycled lighting system was set up in an ICU room to support patients' circadian rhythm. Part I aimed to compare experiences of the lighting environment in two rooms with different lighting environments by lighting experiences questionnaire. The results indicated differences in advantage for the patients in the intervention room (n=48), in perception of daytime brightness (p=0.004). In nighttime, greater lighting variation (p=0.005) was found in the ordinary room (n=52). Part II aimed to describe experiences of lighting in the room equipped with the cycled lighting environment. Patients (n=19) were interviewed and the results were presented in categories: "A dynamic lighting environment", "Impact of lighting on patients' sleep", "The impact of lighting/lights on circadian rhythm" and "The lighting calms". Most had experiences from sleep disorders and half had nightmares/sights and circadian rhythm disruption. Nearly all were pleased with the cycled lighting environment, which together with daylight supported their circadian rhythm. In night's actual lighting levels helped patients and staff to connect which engendered feelings of calm. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Influence of Different Light Sources, Illumination Intensities and Storage Times on the Vitamin C Content in Pasteurized Milk

    OpenAIRE

    ÇAKMAKÇI, Songül; TURGUT, Tamer

    2005-01-01

    The effect of various light sources and illumination intensities on the destruction of vitamin C was determined during the storage of pasteurized milk. For this purpose, raw cow's milk was pasteurized at 72 oC for 15 s, and then stored in 2 different refrigerators (4 ± 1oC) illuminated by fluorescent and tungsten light (normal light) sources with intensities of 1100, 2400 and 5800 lux. As a control group, a pasteurized milk sample was stored at the same temperature under dark conditi...

  7. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity.

    Science.gov (United States)

    Baird, Emily; Fernandez, Diana C; Wcislo, William T; Warrant, Eric J

    2015-01-01

    Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion-a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus.

  8. Effects of light intensity on the morphology and CAM photosynthesis of Vanilla planifolia Andrews

    Directory of Open Access Journals (Sweden)

    María Claudia Díez

    2017-01-01

    Full Text Available Vanilla planifolia is a neotropical orchid, whose fruits produce the natural vanilla, a fundamental ingredient for the food and cosmetic industry. Because of its importance in the world market, it is cultivated in many tropical countries and recently its cultivation has started in Colombia. This species requires shade for its development; however, the optimal of light conditions are unknown. This work evaluates the effect of different light intensities on CAM photosynthesis, physiology, morphology, and growth of this species. For this, vanilla seedlings were subjected to four treatments of relative illumination (RI (T1=8%, T2=17%, T3=31% and T4=67%. Most CO2 assimilation occurred along night in all treatments, which confirms that vanilla is a strong CAM species. Plants grown under high lighting (67% RI had almost half of the photosynthesis in treatments of intermediate lighting (17 and 31%, which is consistent with the lower nocturnal acid accumulation in that treatment. Likewise, the photochemical efficiency of photosystem II (Fv / Fm showed that in plants of the 67% RI occurred high radiation stress. On the other hand, vanilla plants reached greater length, leaf area, and total biomass when grown under intermediate radiation (17 and 31% RI. These results suggest that high radiation alters the functioning of vanilla plants, inhibiting photosynthesis and growth, and that highly shaded environments not significantly affected the CAM photosynthesis of vanilla; however, in the long-term this species showed higher photosynthesis and growth under intermediate levels of radiation

  9. Pulsed neutron intensity from rectangular shaped light water moderator with fast-neutron reflector

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatsu

    1982-01-01

    With a view to enhancing the thermal-neutron intensity obtained from a pulsed neutron source, an experimental study has been made to determine the optimum size of a rectangular shaped light water moderator provided with fast neutron reflector of beryllium oxide or graphite, and decoupled thermal-neutronically by means of Cd sheet. The optimum dimensions for the moderator are derived for the neutron emission surface and the thickn ess, for the cases in which the neutron-producing target is placed beneath the moderator (''wing geometry'') or immediately behind the moderator (''slab geometry''). The major conclusions drawn from the experimental results are as follows. The presence of the Cd decoupler inserted between the moderator and reflector prevent the enhancement of thermal-neutron emission time gained by the provision of reflector. With a graphite reflector about 14 cm thick, (a) the optimum area of emission surface would be 25 x 25 cm 2 for wing geometry and still larger for slab geometry, and (b) the optimum moderator thickness would be 5.5 cm for slab geometry and 8.5 cm for wing geometry. It is thus concluded that a higher neutron emission intensity can be obtained with slab than with wing geometry provided that a large emission surface can be adopted for the moderator. (author)

  10. Fast algal eco-toxicity assessment: Influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU.

    Science.gov (United States)

    Camuel, Alexandre; Guieysse, Benoit; Alcántara, Cynthia; Béchet, Quentin

    2017-06-01

    In order to develop a rapid assay suitable for algal eco-toxicity assessments under conditions representative of natural ecosystems, this study evaluated the short-term (Chlorella vulgaris was exposed to these herbicides under 'standard' low light intensity (as prescribed by OECD201 guideline), the 20min-EC 50 values recorded via oxygen productivity (atrazine: 1.32±0.07μM; DCMU: 0.31±0.005μM) were similar the 96-h EC 50 recorded via algal growth (atrazine: 0.56μM; DCMU: 0.41μM), and within the range of values reported in the literature. 20min-EC50 values increased by factors of 3.0 and 2.1 for atrazine and DCMU, respectively, when light intensity increased from 60 to 1400μmolm -2 s -1 of photosynthetically active radiation, or PAR. Further investigation showed that exposure time significantly also impacted the sensitivity of C. vulgaris under high light intensity (>840μmolm -2 s -1 as PAR) as the EC 50 for atrazine and DCMU decreased by up to 6.2 and 2.1 folds, respectively, after 50min of exposure at a light irradiance of 1400μmolm -2 s -1 as PAR. This decrease was particularly marked at high light intensities and low algae concentrations and is explained by the herbicide disruption of the electron transfer chain triggering photo-inhibition at high light intensities. Eco-toxicity assessments aiming to understand the potential impact of toxic compounds on natural ecosystems should therefore be performed over sufficient exposure times (>20min for C. vulgaris) and under light intensities relevant to these ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Influence of light intensity and spectral composition of artificial light at night on melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus.

    Science.gov (United States)

    Brüning, Anika; Hölker, Franz; Franke, Steffen; Kleiner, Wibke; Kloas, Werner

    2018-02-01

    In this study we investigated the influence of artificial light at night (ALAN) of different intensities (0, 1, 10, 100 lx) and different colours (blue, green, red) on the daily melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus, a ubiquitous cyprinid, which occur in standing and moderately flowing freshwater habitats of central Europe. Melatonin concentrations were significantly lowered under nocturnal white light already at 1 lx. Low intensity blue, green and red ALAN lowered the melatonin levels significantly in comparison to a dark control. We conclude that ALAN can disturb melatonin rhythms in roach at very low intensities and at different wavelengths and thus light pollution in urban waters has the potential to impact biological rhythms in fish. However, mRNA expression of gonadotropins was not affected by ALAN during the period of the experiments. Thus, suspected implications of ALAN on reproduction of roach could not be substantiated.

  12. The effect of intense light pulses on the sensory quality and instrumental color of meat from different animal breeds

    OpenAIRE

    Tomašević I.

    2015-01-01

    Intense light pulses (ILP) are an emerging processing technology, which has a potential to decontaminate food products. The light generated by ILP lamps consists of a continuum broadband spectrum from deep UV to the infrared, especially rich in UV range below 400 nm, which is germicidal. Evaluation of the effect of intense light pulses (ILP) on sensory quality of meat, game and poultry was performed using two kinds of red meat (beef and pork), two kinds of ...

  13. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    Directory of Open Access Journals (Sweden)

    István Monostori

    2018-05-01

    Full Text Available The use of light-emitting diode (LED technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  14. Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat.

    Science.gov (United States)

    Seo, Seong-Hyun; Ha, Ji-San; Yoo, Chan; Srivastava, Ankita; Ahn, Chi-Yong; Cho, Dae-Hyun; La, Hyun-Joon; Han, Myung-Soo; Oh, Hee-Mock

    2017-11-01

    The optimal culture conditions are critical factors for high microalgal biomass and lipid productivity. To optimize the photoautotrophic culture conditions, combination of the pH (regulated by CO 2 supply), dilution rate, and light intensity was systematically investigated for Ettlia sp. YC001 cultivation in a chemostat during 143days. The biomass productivity increased with the increase in dilution rate and light intensity, but decreased with increasing pH. The average lipid content was 19.8% and statistically non-variable among the tested conditions. The highest biomass and lipid productivities were 1.48gL -1 d -1 and 291.4mgL -1 d -1 with a pH of 6.5, dilution rate of 0.78d -1 , and light intensity of 1500μmolphotonsm -2 s -1 . With a sufficient supply of CO 2 and nutrients, the light intensity was the main determinant of the photosynthetic rate. Therefore, the surface-to-volume ratio of a photobioreactor should enable efficient light distribution to enhance microalgal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of Light Intensity on Growth and Pigment Production by Monascus ruber in Submerged Fermentation.

    Science.gov (United States)

    Bühler, Rose Marie Meinicke; Müller, Bruna Luíse; Moritz, Denise Esteves; Vendruscolo, Francielo; de Oliveira, Debora; Ninow, Jorge Luiz

    2015-07-01

    To reduce environmental problems caused by glycerine accumulation and to make the production of biodiesel more profitable, crude glycerin without treatment was used as substrate for obtaining higher value-added bioproducts. Monascus ruber is a filamentous fungus that produces pigments, particularly red ones, which are used for coloring foods (rice wine and meat products). The interest in developing pigments from natural sources is increasing due to the restriction of using synthetic dyes. The effects of temperature, pH, microorganism morphology, aeration, nitrogen source, and substrates have been studied in the cultivation of M. ruber. In this work, it was observed that light intensity is also an important factor that should be considered for understanding the metabolism of the fungus. In M. ruber cultivation, inhibition of growth and pigment production was observed in Petri dishes and blaffed flasks exposed to direct illumination. Growth and pigment production were higher in Petri dishes and flasks exposed to red light and in the absence of light. Radial growth rate of M. ruber in plates in darkness was 1.50 mm day(-1) and in plates exposed to direct illumination was 0.59 mm day(-1). Maximum production of red pigments (8.32 UA) and biomass (8.82 g L(-1)) were obtained in baffled flasks covered with red film and 7.17 UA of red pigments, and 7.40 g L(-1) of biomass was obtained in flasks incubated in darkness. Under conditions of 1248 lux of luminance, the maximum pigment production was 4.48 UA, with production of 6.94 g L(-1) of biomass, indicating that the fungus has photoreceptors which influence the physiological responses.

  16. Unconventional use of intense pulsed light.

    Science.gov (United States)

    Piccolo, D; Di Marcantonio, D; Crisman, G; Cannarozzo, G; Sannino, M; Chiricozzi, A; Chimenti, S

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hypertrophic scar (5 cases) and keloid scar (5 cases), Becker's nevus (2 cases), hidradenitis suppurativa (2 cases), and sarcoidosis (1 case). Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator's experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre). Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  17. Position Detection Based on Intensities of Reflected Infrared Light

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie

    measurements of reflected light intensities, and includes easy calibration. The method for reconstructing 3D positions has been implemented in a prototype of a “non-Touch Screen” for a computer, so that the user can control a cursor in three dimensions by moving his/hers hand in front of the computer screen....... The 2D position reconstruction method is mplemented in a prototype of a human-machine interface (HMI) for an electrically powered wheelchair, such that the wheelchair user can control the movement of the wheelchair by head movements. Both “non-Touch Screen” prototype and wheelchair HMI has been tested...

  18. Influence of Two Different Light Intensities from 16:00 to 20:30 Hours on Evening Dressing Behavior in the Cold

    OpenAIRE

    Kim, Hee-Eun; Tokura, Hiromi

    2007-01-01

    The present experiment tested our hypothesis that the subjects will wear more clothing in the evening cold under the influence of bright light exposure in the late afternoon and evening. Nine young female adults participated in this study. Light intensity was controlled from 9:00 h to 16:00 h at 100 lx, and from 16:00 h to 20:30 h either at 3000 lx in the bright light (»Bright«) or at 10 lx in the dim light (»Dim«) conditions. Light intensity was maintained at 10 lx from 20:30 h to ...

  19. Ca²⁺ signal contributing to the synthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia'.

    Science.gov (United States)

    Hu, Zenghui; Li, Tianjiao; Zheng, Jian; Yang, Kai; He, Xiangfeng; Leng, Pingsheng

    2015-06-01

    The floral scent is an important part of plant volatile compounds, and is influenced by environmental factors. The emission of monoterpenes of Lilium 'siberia' is regulated by light intensity, but the mechanism is large unknown. In this study, the expression of Li-mTPS, a monoterpene synthase gene in the tepals of Lilium 'siberia', and net Ca(2+) flux were investigated after exposure to different levels of light intensity (0, 100, 300, 600, 1000, and 1500 μmol m(-2) s(-1)). Moreover the effect of LaCl3 and ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) on the Li-mTPS expression, monoterpene emission, and net Ca(2+) flux were examined at 600 μmol m(-2) s(-1). The results showed that along with the enhancement of light intensity, the expression level of Li-mTPS increased gradually, and the net Ca(2+) influx was also enhanced showing a similar pattern. It was found that LaCl3 and EGTA effectively inhibited the increase in expression of Li-mTPS and the net Ca(2+) influx induced by light treatment. Moreover, the release amounts of monoterpenes decreased significantly after treatment with LaCl3 and EGTA. So it can be concluded that Ca(2+) signal contributed to the biosynthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia' tepals. The increased light intensity firstly triggered the Ca(2+) influx to cytoplasm, and then the gene expression of monoterpene synthases downstream was activated to regulate the biosynthesis and emission of monoterpenes. But in the signaling pathway other mechanisms were thought to be involved in the emission of monoterpenes regulated by light intensity, which need to be investigated in future research. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity

    Directory of Open Access Journals (Sweden)

    Emily eBaird

    2015-10-01

    Full Text Available Like its diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specialisations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion - a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta’s flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta’s adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus.

  1. Numerical study of the light output intensity of the bilayer organic light-emitting diodes

    Science.gov (United States)

    Lu, Feiping

    2017-02-01

    The structure of organic light-emitting diodes (OLEDs) is one of most important issues that influence the light output intensity (LOI) of OLEDs. In this paper, based on a simple but accurate optical model, the influences of hole and electron transport layer thickness on the LOI of bilayer OLEDs, which with N,N0- bis(naphthalen-1-yl)-N,N0- bis(phenyl)- benzidine (NPB) or N,N'- diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4-diamine (TPD) as hole transport layer, with tris(8-hydroxyquinoline) aluminum (Alq3) as electron transport and light emitting layers, were investigated. The laws of LOI for OLEDs under different organic layer thickness values were obtained. The results show that the LOI of devices varies in accordance with damped cosine or sine function as the increasing of organic layer thickness, and the results show that the bilayer OLEDs with the structure of Glass/ITO/NPB (55 nm)/Alq3 (75 nm)/Al and Glass/ITO/TPB (60 nm)/Alq3 (75 nm)/Al have most largest LOI. When the thickness of Alq3 is less than 105 nm, the OLEDs with TPD as hole transport layer have larger LOI than that with NPB as hole transport layer. The results obtained in this paper can present an in-depth understanding of the working mechanism of OLEDs and help ones fabricate high efficiency OLEDs.

  2. Effects of four dim vs high intensity red color light regimens on growth performance and welfare of broilers

    Directory of Open Access Journals (Sweden)

    D. Senaratna

    2018-01-01

    Full Text Available Objective Broilers show clear preference towards red color light (RL. However setting of an optimum light intensity is difficult since dim intensities that favor growth reduce welfare. This experiment was conducted to test the most effective RL intensity regimen (Dim [5 lux; DI] vs high [320 lux; HI] in combination applied at different growth stages that favors for both performance and welfare. Methods Complete randomize design was adopted with 6 replicates. Treatments were; T1 = early DI (8–21 d+latter HI (22–35 d; T2 = early DI (8–28 d+latter HI (29–35 d, T3 = early HI (8–21 d+latter DI (22–35 d, T4 = early HI (8–28 d+latter DI (29–35 d and T5 = control (white light; WT (8–35 d at medium intensity (20 lux. Body weight (BW, weight gain (WG, water/feed intake and ratio, feed conversion ratios (FCR were assessed. Common behaviours (15 were recorded by scan sampling method. Lameness, foot pad dermatitis, breast blisters, hock burning damage were assessed as welfare parameters. Fear reactions were tested using Tonic Immobility Test. Ocular and carcass evaluations were done. Meat and tibiae were analyzed for fat and bone ash respectively. Results On 35 d, the highest BW (2,155.72±176 g, WG (1,967.78±174 g were recorded by T2 compared to WT (BWWT = 1,878.22±155, WGWT = 1,691.83±160. But, application of RL, either DI, or HI during early/latter stage had no significant effect on FCR. Under HI, birds showed much higher active behaviours. DI encourages eating. Though LI changed from DI to HI, same trend could be seen even under HI. The highest leg strength (218.5±120 s was recorded by T2. The lowest leg strength (64.58±33 s and the highest ocular weight (2.48±1 g were recorded by T1. Significantly (p<0.05 the highest skin weight (162.17±6 g but the lowest fat% in meat (13.03%±5% was recorded by T2. Conclusion Early exposure to DI-RL up to 28 days followed by exposure to HI-RL is the most favorable lighting regimen for

  3. The effect of spectral property and intensity of light on natural refractive development and compensation to negative lenses in guinea pigs.

    Science.gov (United States)

    Li, Wentao; Lan, Weizhong; Yang, Shiqi; Liao, Yunru; Xu, Qinglin; Lin, Lixia; Yang, Zhikuan

    2014-10-02

    To investigate the effect of spectral composition and light intensity on refractive development in guinea pigs. One-week-old guinea pigs were randomly assigned to groups exposed to broad-spectrum Solux halogen light (BS) or spiked-spectrum fluorescent light (FL) at both high (Hi, 10,000 lux) and low (Lo, 500 lux) intensities under a 12:12 light/dark cycle. Half of the animals in each group were used as controls (n = 24, 20, 22, and 20, respectively), and half were fitted with binocular -4-diopter (D) lenses (L, lenses; n = 22, 20, 24, and 22, respectively). Refractive error, corneal curvature, and axial dimensions were determined by cycloplegic retinoscopy, photokeratometry, and A-scan ultrasonography, respectively. Guinea pigs exposed to FL and BS showed similar changes in refraction under both high (HiFL: 2.26 ± 0.55 D versus HiBS: 2.17 ± 0.65 D, P > 0.05)- and low-intensity lighting (LoFL: 1.39 ± 0.88 D versus LoBS: 1.40 ± 0.93 D, P > 0.05). This was also true for the groups wearing lenses (HiFL-L: -1.81 ± 0.73 D versus HiBS-L: -1.45 ± 0.99 D, P > 0.05; LoFL-L: -2.58 ± 0.65 D versus LoBS-L: -2.29 ± 0.50 D, P > 0.05). Nevertheless, animals under high-intensity lighting exhibited a significantly larger hyperopic shift compared with those under low-intensity lighting (HiFL versus LoFL: P development and negative lens compensation. As found in other species, effects of light intensity on refractive development were also observed in guinea pigs in both illuminants. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  4. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities.

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    Full Text Available Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad. 'Sambok Honey' and 'Speed' as the scion and bottle gourd (Lagenaria siceraria Stanld. 'RS Dongjanggun' as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m-2 s-1. Our proteomic analysis revealed 24 and 27 differentially expressed proteins in 'Sambok Honey' and 'Speed', respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m-2 s-1 results in better protein expression responses in grafted seedlings.

  5. Violation of Bloch's Law That Specifies Reciprocity of Intensity and Duration with Brief Light Flashes

    Directory of Open Access Journals (Sweden)

    Ernest Greene

    2013-12-01

    Full Text Available For more than a century researchers have been reporting that the visual impact of a very brief flash is determined by the quantity of photons that the flash delivers. This has been variously described as the Bunsen-Roscoe Law or Bloch's Law, often specified as reciprocity of intensity × duration. Prior research found no evidence for such reciprocity when microsecond-duration flashes from a light-emitting diode array were used to display the major contours of nameable shapes. The present work tested with flash durations ranging up to 100 ms and also found no reciprocity. This departure from classic principles might be due to the specific range of wavelengths of the light-emitting diodes and to a mesopic level of ambient light, which together would preclude activation of rods. The reciprocity of intensity and duration may only be valid with full dark adaptation and very dim flashes that activate rods.

  6. Differential response of Scots pine seedlings to variable intensity and ratio of red and far-red light.

    Science.gov (United States)

    Razzak, Abdur; Ranade, Sonali Sachin; Strand, Åsa; García-Gil, M R

    2017-08-01

    We investigated the response to increasing intensity of red (R) and far-R (FR) light and to a decrease in R:FR ratio in Pinus sylvestris L. (Scots pine) seedling. The results showed that FR high-irradiance response for hypocotyl elongation may be present in Scots pine and that this response is enhanced by increasing light intensity. However, both hypocotyl inhibition and pigment accumulation were more strongly affected by the R light compared with FR light. This is in contrast to previous reports in Arabidopsis thaliana (L.) Heynh. In the angiosperm, A. thaliana R light shows an overall milder effect on inhibition of hypocotyl elongation and on pigment biosynthesis compared with FR suggesting conifers and angiosperms respond very differently to the different light regimes. Scots pine shade avoidance syndrome with longer hypocotyls, shorter cotyledons and lower chlorophyll content in response to shade conditions resembles the response observed in A. thaliana. However, anthocyanin accumulation increased with shade in Scots pine, which again differs from what is known in angiosperms. Overall, the response of seedling development and physiology to R and FR light in Scots pine indicates that the regulatory mechanism for light response may differ between gymnosperms and angiosperms. © 2017 John Wiley & Sons Ltd.

  7. Flashing light in microalgae biotechnology.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa.

    Directory of Open Access Journals (Sweden)

    Theoharis eOuzounis

    2015-02-01

    Full Text Available To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. ’Batavia’ (green and cv. ‘Lollo Rossa’ (red] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T lamps yielding 90 (±10 µmol m-2 s-1 for up to 20 hr, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED light treatments were Control (no blue addition, 1B 06-08 (Blue light at 45 µmol m-2 s-1 from 06:00 to 08:00, 1B 21-08 (Blue light at 45 µmol m-2 s-1 from 21:00 to 08:00, 2B 17-19 (Blue at 80 µmol m-2 s-1 from 17:00 to 19:00, and (1B 17-19 Blue at 45 µmol m-2 s-1from 17:00 to 19:00. Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent.

  9. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa.

    Science.gov (United States)

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. "Batavia" (green) and cv. "Lollo Rossa" (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m(-2) s(-1) for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m(-2) s(-1) from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m(-2) s(-1) from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m(-2) s(-1) from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m(-2) s(-1) from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent.

  10. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa

    Science.gov (United States)

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. “Batavia” (green) and cv. “Lollo Rossa” (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m−2 s−1 for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m−2 s−1 from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m−2 s−1 from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m−2 s−1 from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m−2 s−1 from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent. PMID:25767473

  11. Unconventional Use of Intense Pulsed Light

    Directory of Open Access Journals (Sweden)

    D. Piccolo

    2014-01-01

    Full Text Available According to the literature, intense pulsed light (IPL represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne, due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases, port-wine stain (PWS (10 cases, disseminated porokeratosis (10 cases, pilonidal cyst (3 cases, seborrheic keratosis (10 cases, hypertrophic scar (5 cases and keloid scar (5 cases, Becker’s nevus (2 cases, hidradenitis suppurativa (2 cases, and sarcoidosis (1 case. Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator’s experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre. Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  12. Parameter study for polymer solar modules based on various cell lengths and light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Burgers, A.R.; Bende, E.E.; Kroon, J.M. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Veenstra, S.C. [ECN Solar Energy, Solliance, High Tech Campus 5, P63, 5656AE Eindhoven (Netherlands)

    2013-10-15

    Polymer solar cells may be applied in portable electronic devices, where light intensity and spectral distribution of the illuminating source can be very different compared to outdoor applications. As the power output of solar cells depends on temperature, light intensity and spectrum, the design of the module must be optimized for the specific illumination conditions in the different applications. The interconnection area between cells in a module must be as narrow as possible to maximize the active area, also called geometrical fill factor, of the module. Laser scribing has the potential to realize this. The optimal width of the interconnection zone depends both on technological limitations, e.g. laser scribe width and the minimal distance between scribes, and electrical limitations like resistive losses. The latter depends on the generated current in the cell and thus also on illumination intensity. Besides that, also the type of junction, i.e. a single or tandem junction, will influence the optimal geometry. In this paper a calculation model is presented that can be used for electrical modeling of polymer cells and modules in order to optimize the performance for the specific illumination conditions.

  13. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.

    Science.gov (United States)

    Opperhuizen, Anne-Loes; Stenvers, Dirk J; Jansen, Remi D; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2017-07-01

    Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.

  14. On the anomalous interaction of intense light fluxes with a dense plasma

    International Nuclear Information System (INIS)

    D'yachenko, V.F.; Imshennik, V.S.

    1979-01-01

    The process of interaction of a light wave with plasma is considered in the framework of the system of the Maxwell-Vlasov equations without taking accout of particle collisions. The plasma were incident onto the plasma surface is monochromatic and linearly polarized. Plasma is cold and completely ionized. The concentration of charged particles is above critical one and varies in the direction of vector of the wave electric field. The results of several numerical calculations of this problem are presented. They show that if the energy flux density of the wave exceeds some critical one, plasma absorbes light intensively. Studied is the mechanism of nonlinear interaction of oscillations which leads to arising of multiflux motion and explaining this effect

  15. Photodynamic Therapy Activated by Intense Pulsed Light in the Treatment of Nonmelanoma Skin Cancer

    Directory of Open Access Journals (Sweden)

    Domenico Piccolo

    2018-02-01

    Full Text Available Photodynamic therapy (PDT with topical 5-aminolevulinic acid (ALA or methyl aminolevulinate (MAL has proven to be a highly effective conservative method for the treatment of actinic keratosis (AK, Bowen’s disease (BD, and superficial basal cell carcinoma (sBCC. PDT is traditionally performed in association with broad-spectrum continuous-wave light sources, such as red or blue light. Recently, intense pulsed light (IPL devices have been investigated as an alternative light source for PDT in the treatment of nonmelanoma skin cancers (NMSC. We herein report our observational findings in a cohort of patients with a diagnosis of AK, sBCC, and BD that is treated with MAL-PDT using IPL, as well as we review published data on the use of IPL-PDT in NMSC.

  16. Observations of MeV electrons and scattered light from intense, subpicosecond laser-plasma interactions

    International Nuclear Information System (INIS)

    Darrow, C.; Lane, S.; Klem, D.; Perry, M.D.

    1993-01-01

    In this paper the authors present work in progress in their experimental investigation of the coupling of intense, subpicosecond laser pulses with plasmas preformed on solid targets. (This situation is to be contrasted with the interaction of intense laser fields with solid-density matter. A subject which has generated considerable interest in the last several years.) The characterization of the energy distribution of energetic electrons which escape a solid target irradiated by an intense laser is discussed. The authors have also performed experiments to study the excitation of parametric instabilities near the quarter-critical layer and second-harmonic generation near the critical layer in the plasma. They discuss some preliminary scattered light spectroscopy measurements

  17. Effect of Light Intensity for Optimum Biomass and Lipid Production from Scenedesmus dimorphus (Turpin) Kützing

    Science.gov (United States)

    Kurniawati, F. N.; Mahajoeno, E.; Sunarto; Sari, S. L. A.

    2017-07-01

    One source of alternative energy substitute for petroleum raw materials is renewable vegetable oils known as biodiesel. Biodiesel can be produced from microalgae, since it was more efficient and environmentally friendly. Scenedesmus dimorphus (Turpin) Kützing was developed as a source of biodiesel since it had potential of high lipid production. The aims of this research were to know the rate of growth of Scenedesmus dimorphus in different lighting and the optimimum light intensity for biomass and lipid production. This research used a completely randomized design consisting of 3 treatments with 3 replications. Treatments in this research were the light intensity, i.e. 7,500, 10,000, and 12,500 lux. Scenedesmus dimorphus was grew in Bold’s Basal Medium (BBM). Parameters observed in this research were the cell number, biomass and lipid production of S. dimorphus. Data were analyzed by ANOVA followed by DMRT 5%. The results showed that the optimum growth rate of S. dimorphus was in the intensity of 12,500 lux that was 100.80 x 106 cells.ml-1. The optimum production of biomass and lipids was in treatment 12,500 lux i.e; 1.1407 g.L-1 and 0.2520 g.L-1 (22.28% dry weight).

  18. Inhibition of enteric pathogens and surrogates using integrated, high intensity 405nm led light on the surface of almonds

    Science.gov (United States)

    The disinfecting properties of 405 nm light were investigated against Escherichia coli O157:H7, Salmonella, and their non-pathogenic surrogate bacteria on the surface of almonds. High intensity monochromatic blue light (MBL) was generated from an array of narrow-band 405 nm light-emitting diodes (LE...

  19. Light intensity and thermal responses

    NARCIS (Netherlands)

    te Kulve, M.; Schellen, L.; Schlangen, L.; Frijns, A.J.H.; van Marken Lichtenbelt, W.D.; Nicol, Fergus; Roaf, Susan; Brotas, Luisa; Humphreys, Michael

    2016-01-01

    Temperature and light are both major factors in the design of a comfortable indoor environment. Moreover, there might be an interaction between light exposure and human thermal responses. However, results of experiments conducted so far are inconclusive and current understanding of the relation

  20. The impact of morning light intensity and environmental temperature on body temperatures and alertness.

    Science.gov (United States)

    Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D

    2017-06-01

    Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effect of high wavelengths low intensity light during dark period on physical exercise performance, biochemical and haematological parameters of swimming rats.

    Science.gov (United States)

    Beck, W; Gobatto, C

    2016-03-01

    Nocturnal rodents should be assessed at an appropriate time of day, which leads to a challenge in identifying an adequate environmental light which allows animal visualisation without perturbing physiological homeostasis. Thus, we analysed the influence of high wavelength and low intensity light during dark period on physical exercise and biochemical and haematological parameters of nocturnal rats. We submitted 80 animals to an exhaustive exercise at individualised intensity under two different illuminations during dark period. Red light (> 600 nm; sports performance experiments.

  2. Is the BLM system ready to go to higher intensities?

    CERN Document Server

    Sapinski, M; Dehning, B; Effinger, E; Emery, J; Goddard, B; Guerrero, A; Grishin, S; Holzer, E; Jackson, S; Kurfuerst, C; Lechner, A; Marsili, A; Misiowiec, M; Nebot, E; Nordt, A; Priebe, A; Roderick, C; Schmidt, R; Verweij, A; Wenninger, J; Zamantzas, C; Zimmermann, F

    2011-01-01

    The higher beam intensities will enhance the effects of the beam losses observed during 2010 run. In particular beam losses due to so called UFO events are discussed, but also other beam loss phenomena like luminosity losses, injection losses and the leakage from the collimation system are considered. The current understanding of the quench limits reflected in the BLM thresholds on the cold magnets is presented. The thresholds for possible increased beam energy are reviewed.

  3. Effects of temperature and light intensity on the uptake and assimilation of 15N-labeled ammonium and nitrate in Indica and Japonica rice plants

    International Nuclear Information System (INIS)

    Ta, T.C.; Ohira, Koji

    1982-01-01

    The effects of various environmental condition such as temperature and light intensity on the uptake and assimilation of ammonium and nitrate in 4-week-old Indica and Japonica rice plants were studied using the 15 N tracer technique. Both temperature and light intensity profoundly affected the uptake and assimilation of ammonium and nitrate, and the effects were more apparent in the utilization of nitrate by both Indica and Japonica rice plants. The uptake as well as assimilation of the two forms of nitrogen were greatly inhibited at low temperature and low light intensity. On the other hand, although no significant difference in the effects of environmental conditions on the utilization of ammonium was observed between the Indica and Japonica rice plants, the former were more sensitive than the latter in the utilization of nitrate. At high temperature and high light intensity, the Indica rice plants absorbed, reduced, and assimilated nitrate more effectively than the Japonica, and this effect disappeared when the temperature or light intensity was reduced. (author)

  4. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controlled [correction of controled] environment conditions.

    Science.gov (United States)

    Tikhomirov, A A; Ushakova, S A; Gribovskaya, I A; Tirranen, L S; Manukovsky, N S; Zolotukhin, I G; Karnachuk, R A; Gros, J B; Lasseur, Ch

    2003-01-01

    To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 micromoles m-2 s-1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m2) of the wheat crops was attained at the irradiance of 920 micromoles m-2 s-1. Light intensity of 1150 micromoles m-2 s-1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m2) as compared to 920 micromoles m-2 s-1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 micromoles m-2 s-1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of

  5. INFLUENCE OF HIGH LIGHT INTENSITY ON THE CELLS OF CYANOBACTERIA ANABAENA VARIABILIS SP. ATCC 29413

    Directory of Open Access Journals (Sweden)

    OPRIŞ SANDA

    2012-12-01

    Full Text Available In this article is presented the result of research regardind the effect of high light intensity on the cells of Anabaena variabilis sp. ATCC 29413, the main objective is to study the adaptation of photosynthetic apparatus to light stress. Samples were analyzed in the present of herbicide diuron (DCMU which blocks electron flow from photosystem II and without diuron. During treatment maximum fluorescence and photosystems efficiency are significantly reduced, reaching very low values compared with the blank, as a result of photoinhibition installation. Also by this treatment is shown the importance of the mechanisms by which cells detect the presence of light stress and react accordingly.

  6. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    Science.gov (United States)

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  7. Biocapture of CO2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods

    Directory of Open Access Journals (Sweden)

    Pengfei Guo

    2018-03-01

    Full Text Available Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO2 in biogas. The microalgae–fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulgaris–Ganoderma lucidum > Chlorella vulgaris–activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m−2 s−1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology.

  8. Biocapture of CO2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods

    Science.gov (United States)

    Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun

    2018-01-01

    Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO2 in biogas. The microalgae–fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulgaris–Ganoderma lucidum > Chlorella vulgaris–activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m−2 s−1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology. PMID:29543784

  9. THE EFFECT OF MAGNETIC FIELD ON THE EFFICIENCY OF A SILICON SOLAR CELL UNDER AN INTENSE LIGHT CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zoungrana Martial

    2017-06-01

    Full Text Available This work put in evidence, magnetic field effect the electrical parameters of a silicon solar cell illuminated by an intense light concentration: external load electric power, conversion efficiency, fill factor, external optimal charge load. Due to the high photogeneration of carrier in intense light illumination mode, in addition of magnetic field, we took into account the carrier gradient electric field in the base of the solar cell. Taking into account this electric field and the applied magnetic field in our model led to new analytical expressions of the continuity equation, the photocurrent and the photovoltage.

  10. Detection of internal structure by scattered light intensity: Application to kidney cell sorting

    Science.gov (United States)

    Goolsby, C. L.; Kunze, M. E.

    1985-01-01

    Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.

  11. Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources

    Directory of Open Access Journals (Sweden)

    Eliane Dalva Godoy Danesi

    2011-03-01

    Full Text Available The effects of light intensity and temperature in S. platensis cultivation with potassium nitrate or urea as nitrogen source were investigated, as well as the biomass chlorophyll contents of this cyanobacteria, through the Response Surface Methodology. Experiments were performed at temperatures from 25 to 34.5ºC and light intensities from 15 to 69 µmol photons m-2 s-1, in mineral medium. In cultivations with both sources of nitrogen, KNO3 and urea, statistic evaluation through multiple regression, no interactions of such independent variables were detected in the results of the dependent variables maximum cell concentration, chlorophyll biomass contents, cell and chlorophyll productivities, as well as in the nitrogen-cell conversion factor. In cultivation performed with both sources of nitrogen, it was possible to obtain satisfactory adjustments to relate the dependent variables to the independent variables. The best results were achieved at temperature of 30ºC, at light intensity of 60 µmol photons m-2s-1, for cell growth, with cell productivity of approximately 95 mg L-1 d-1 in cultivations with urea. For the chlorophyll biomass content, the most adequate light intensity was 24 µmol photons m-2 s-1.

  12. Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Davis, Maria C; Fiehn, Oliver; Durnford, Dion G

    2013-07-01

    There are several well-described acclimation responses to excess light in green algae but the effect on metabolism has not been thoroughly investigated. This study examines the metabolic changes during photoacclimation to high-light (HL) stress in Chlamydomonas reinhardtii using nuclear magnetic resonance and mass spectrometry. Using principal component analysis, a clear metabolic response to HL intensity was observed on global metabolite pools, with major changes in the levels of amino acids and related nitrogen metabolites. Amino acid pools increased during short-term photoacclimation, but were especially prominent in HL-acclimated cultures. Unexpectedly, we observed an increase in mitochondrial metabolism through downstream photorespiratory pathways. The expression of two genes encoding key enzymes in the photorespiratory pathway, glycolate dehydrogenase and malate synthase, were highly responsive to the HL stress. We propose that this pathway contributes to metabolite pools involved in nitrogen assimilation and may play a direct role in photoacclimation. Our results suggest that primary and secondary metabolism is highly pliable and plays a critical role in coping with the energetic imbalance during HL exposure and a necessary adjustment to support an increased growth rate that is an effective energy sink for the excess reducing power generated during HL stress. © 2013 John Wiley & Sons Ltd.

  13. Effect of Light Intensity on the Relative Dominance of Toxigenic and Nontoxigenic Strains of Microcystis aeruginosa ▿

    Science.gov (United States)

    LeBlanc Renaud, Susan; Pick, Frances R.; Fortin, Nathalie

    2011-01-01

    In aquatic ecosystems, the factors that regulate the dominance of toxin-producing cyanobacteria over non-toxin-producing strains of the same species are largely unknown. One possible hypothesis is that limiting resources lead to the dominance of the latter because of the metabolic costs associated with toxin production. In this study, we tested the effect of light intensity on the performance of a microcystin-producing strain of Microcystis aeruginosa (UTCC 300) when grown in mixed cultures with non-microcystin-producing strains with similar intrinsic growth rates (UTCC 632 and UTCC 633). The endpoints measured included culture growth rates, microcystin concentrations and composition, and mcyD gene copy numbers determined using quantitative PCR (Q-PCR). In contrast to the predicted results, under conditions of low light intensity (20 μmol·m−2·s−1), the toxigenic strain became dominant in both of the mixed cultures based on gene copy numbers and microcystin concentrations. When grown under conditions of high light intensity (80 μmol·m−2·s−1), the toxigenic strain still appeared to dominate over nontoxigenic strain UTCC 632 but less so over strain UTCC 633. Microcystins may not be so costly to produce that toxigenic cyanobacteria are at a disadvantage in competition for limiting resources. PMID:21841026

  14. Growth, photosynthesis and stress indicators in young rosewood plants (Aniba rosaeodora Ducke) under different light intensities

    OpenAIRE

    Gonçalves, José Francisco de Carvalho; Barreto, Denize Caranhas de Sousa; Santos Junior, Ulysses Moreira dos; Fernandes, Andreia Varmes; Sampaio, Paulo de Tarso Barbosa; Buckeridge, Marcos Silveira

    2005-01-01

    Aniba rosaeodora is an Amazonian tree species that belongs to the family Lauraceae. Due to intense exploitation for extraction of essential oils (mainly linalol), A. rosaeodora is now considered an endangered species. On the other hand, there is little information about its ecophysiology which would be useful to support future forest planting programs. Hence, the effect of different light intensities on the growth and photosynthetic characteristics of young plants of A. rosaeodora was studied...

  15. Relationship between 3-Methyl-2,4-nonanedione Concentration and Intensity of Light-induced Off-odor in Soy Bean Oil.

    Science.gov (United States)

    Sano, Takashi; Iwahashi, Maiko; Imagi, Jun; Sato, Toshiro; Yamashita, Toshiyuki; Fukusaki, Eiichiro; Bamba, Takeshi

    2016-05-01

    A beany and green off-odor is developed in soy bean oil (SBO) under light-induced oxidative conditions. 3-Methyl-2,4-nonanedione (3-MND) was inferred as the compound responsible for the off-odor. In this study, we designed a simple quantification method for 3-MND in SBO, and evaluated the relationship between the 3-MND concentration and the intensity of the off-odor. 3-MND was analyzed by GC/MS with a thermal desorption unit system. By our method, the 3-MND concentration was found to increase with storage days and the SBO content under light exposure, and there was a high correlation between the measured 3-MND concentration and the intensity of the light-induced off-odor in SBO (R = 0.9586).

  16. Effects of light intensity on the distribution of anthocyanins in Kalanchoe brasiliensis Camb. and Kalanchoe pinnata (Lamk.) Pers.

    Science.gov (United States)

    Cruz, Bruna P; Chedier, Luciana M; Peixoto, Paulo H P; Fabri, Rodrigo L; Pimenta, Daniel S

    2012-03-01

    This paper compares two medicinal species of Kalanchoe, which are often used interchangeably by the population, regarding the distribution of anthocyanins under the influence of four luminosity levels for 6 months. For the morphoanatomical analysis, the 6th stem node of each plant was sectioned. Usual histochemical tests revealed the presence of anthocyanins by cross sections of the stems, petioles and leaf blades. The petioles and leaf blades were submitted to the extraction with acidified methanol, and the anthocyanins were quantified by spectrophotometric readings. At the macroscopic level, it was noticed for both species a higher presence of anthocyanins in stems and petioles of plants under full sunlight. The microscopy of K. brasiliensis stems evidenced the deposition of anthocyanins in the subjacent tissue to the epidermis and cortex, which increased with light intensity. In K. pinnata a subepidermal collenchyma was observed, which interfered in the visualization of anthocyanins. In petioles and leaf blades of K. brasiliensis the deposition of anthocyanins was peripheral, and in K. pinnata it was also throughout the cortex. The quantification of anthocyanins in petioles showed in 70% of light higher averages than in 25%, but in leaf blades there were no significant results. This study contributes to the pharmacognosy of Kalanchoe and it is sustained by the description of flavonoids as biological markers of the genus.

  17. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise

    Science.gov (United States)

    Thum, Jacob S.; Parsons, Gregory; Whittle, Taylor

    2017-01-01

    Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (pHIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. Trial Registration: NCT:02981667. PMID:28076352

  18. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    Science.gov (United States)

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-05

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.

  19. From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic Reflectances.

    Science.gov (United States)

    Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2015-10-01

    We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.

  20. The intense pulsed light systems : new treatment possibilities for vascular, pigmented lesions and hair removal

    NARCIS (Netherlands)

    C.A. Schroeter (Careen)

    2004-01-01

    textabstractGiven all of the differences in between laser and IPLS devices and the need for additional information in IPLS treatment applications, the aim of this study was to evaluate new treatment possibilities using Intense Pulsed Light Sources and to address the following questions: 1. What

  1. Rigorous modelling of light's intensity angular-profile in Abbe refractometers with absorbing homogeneous fluids

    International Nuclear Information System (INIS)

    García-Valenzuela, A; Contreras-Tello, H; Márquez-Islas, R; Sánchez-Pérez, C

    2013-01-01

    We derive an optical model for the light intensity distribution around the critical angle in a standard Abbe refractometer when used on absorbing homogenous fluids. The model is developed using rigorous electromagnetic optics. The obtained formula is very simple and can be used suitably in the analysis and design of optical sensors relying on Abbe type refractometry.

  2. Studying Intense Pulsed Light Method Along With Corticosteroid Injection in Treating Keloid Scars

    OpenAIRE

    Shamsi Meymandi, Simin; Rezazadeh, Azadeh; Ekhlasi, Ali

    2014-01-01

    Background: Results of various studies suggest that the hypertrophic and keloid scars are highly prevalent in the general population and are irritating both physically and mentally. Objective: Considering the variety of existing therapies, intense pulsed light (IPL) method along with corticosteroid injection was evaluated in treating these scars. Materials and Methods: 86 subjects were included in this clinical trial. Eight sessions of therapeutic intervention were done with IPL along with co...

  3. LM-OSL signals from some insulators: an analysis of the dependency of the detrapping probability on stimulation light intensity

    DEFF Research Database (Denmark)

    Bulur, E.; Bøtter-Jensen, L.; Murray, A.S.

    2001-01-01

    Optically stimulated luminescence (OSL) signals from various insulators including quartz, Al2O3 : C, BeO and NaCl have been studied using the linear modulation OSL (LM-OSL) technique. LM-OSL is based on the linear increase of the stimulation light power from zero to a maximum during the measurement...... is not always correct. The initial decay rates of the blue (similar to 470 nm) light stimulated constant power OSL decay curves were examined to test the relation between the detrapping rates and the stimulation light intensity. In SiO2, Al2O3 : C and BeO a linear relation between the detrapping rates....... The resultant OSL curve initially increases and then decays after reaching a maximum, The analysis of LM-OSL data usually assumes a linear relationship between the detrapping rate and the stimulation light intensity. However, experiments carried out using various insulators have shown that this assumption...

  4. The effect of prolonged light intensity exercise in the heat on executive function.

    Science.gov (United States)

    Parker, Sarah M; Erin, Jennifer R; Pryor, Riana R; Khorana, Priya; Suyama, Joe; Guyette, Frank X; Reis, Steven E; Hostler, David

    2013-09-01

    When people are involved in outdoor activities, it is important to be able to assess a situation and make rational decisions. The goal of this study is to determine the effects of 90 minutes of light-intensity exercise in a hot environment on executive functioning capabilities of healthy individuals. In this prospective laboratory study, 40 healthy male and female subjects 18 to 45 years of age performed treadmill exercise while wearing athletic clothing and a backpack in either a hot or temperate environment. Vital signs, core and skin temperature, and perceptual measures (thermal sensation, sweating, comfort, and perceived exertion) were measured before, during, and after the treadmill test. Cognitive function was measured before and after the treadmill test using the Wisconsin Card Sorting Test (WCST) and a Psychomotor Vigilance Test (PVT). Subjects in the hot condition reached a similar core temp of 38.2° ± 0.5°C vs 37.7° ± 0.3°C (P = .325) in the temperate group but had a higher heart rate (P affect executive function or vigilance. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  5. Interactive effects of temperature and light during deep convection: a case study on growth and condition of the diatom Thalassiosira weissflogii

    DEFF Research Database (Denmark)

    Walter, B.; Peters, J.; van Beusekom, J. E. E.

    2015-01-01

    pulses of a higher light intensity (120 mmol m22 s21, 2/22 hlight/dark). Both experimental light conditions offered the same daily light dose. No growth was observed at temperatures below 88C. Above 88C, growth rates were significantly higher under low light conditions compared with those of short pulsed...... light exposures, indicating a higher efficiency of light utilization. This could be related to (i) a higher content of Chl a per cell in the lowlight trial and/or (ii) a more efficient transfer of light energy into growth as indicated by constantly low carbohydrate levels.In contrast, pulsed intense...... did not provide sufficient light to reach full light saturation. In general, photosynthesis was more strongly affected by temperature under pulsed light than under low light conditions. Our results indicate that model estimates of primary production in relation to deep convection, which are based...

  6. Understanding the molecular mechanisms underlying the effects of light intensity on flavonoid production by RNA-seq analysis in Epimedium pseudowushanense B.L.Guo.

    Science.gov (United States)

    Pan, Junqian; Chen, Haimei; Guo, Baolin; Liu, Chang

    2017-01-01

    Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4). Next, the leaves under the treatment of three light intensity levels ("L", "M" and "H") with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs) were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors, including 31

  7. Effects of diffuse light on radiation use efficiency depend on the response of stomatal conductance to dynamic light intensity

    Directory of Open Access Journals (Sweden)

    Tao eLi

    2016-02-01

    Full Text Available The stimulating effect of diffuse light on radiation use efficiency (RUE of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD.Two Anthurium andreanum cultivars (‘Pink Champion’ and ‘Royal Champion’ were grown in two glasshouses covered by clear (control and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (gs varied strongly in response to transient PPFD in ‘Royal Champion’, whereas it remained relatively constant in ‘Pink Champion’. Instantaneous net leaf photosynthesis (Pn in both cultivars approached steady state Pn in diffuse light treatment. In control treatment this only occurred in ‘Pink Champion’. These cultivar differences were reflected by a higher RUE (8% in ‘Royal Champion’ in diffuse light treatment compared with control, whereas no effect on RUE was observed in ‘Pink Champion’. We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent.

  8. Lighting intensity of the soilsurface and restocking of oak groves

    Science.gov (United States)

    Slepykh, Victor; Zubko, Anna; Povolotckaia, Nina

    2016-04-01

    Oak groves of Caucasian Mineral Vody region (CMVR) possess a high ecological and balneological potential which defines the significance of their preservation and reproduction [1]. The role assessment of lighting intensity on renewal of oak groves was carried out on four trial squares (ts) in natural sixty-seven years old forest stand with prevalence of English oak (Quercus robur L.) with unimodal sity (type of the habitat - C1). The illumination was measured at the grass level by the universal measuring instrument of meteoparameters ATT-9508 with an illumination sensor of ATA-1591. The assessment of reforestation was carried out according to the established standards [2]. In the winter of 2005 there was conducted a selecting cutting cabin of the forest stand according to a local method on ts2 with intensity 30%, on ts4 - 50% after which the illumination on the soil surface in relation to illumination of an open place in the summer of 2005 increased from 4.9% to 33.9% on ts2, and from 5.9% to 24.4% on ts4. But by 2014 the illumination decreased till 3.0% on ts2, till 5.4% on ts4 because of an intensive soil grassing down. The control was carried out by ts1 and ts3 on which from 2005 to 2014 the illumination of the soil surface decreased from 4 to 2% as a result of the development of all storeys. As a result due to an intensive soil grassing-down, the total quantity of young oak trees decreased from 2005 to 2014 from 25.6 thousand pcs/ha to 5.9 thousand pcs/ha on ts2; on from 17.3 thousand pcs/ha to 4.0 thousand pcs/ha on ts4. At the same time the total quantity of young oak trees on control squares increased respectively for 1.4% (from 18.8 thousand pcs/ha to 19.1 thousand pcs/ha) on ts1, for 38.7% (from 25.2 thousand pcs/ha to 41.1 thousand pcs/ha). The experiment showed that small young oak trees perishes in the first years of their life from a lack of light and competition from grasland vegetation without providing successful reforestation. Conclusion. So it is

  9. Selective detection of Escherichia coli by imaging of the light intensity transmitted through an optical disk

    Science.gov (United States)

    Shiramizu, Hideyuki; Kuroda, Chiaki; Ohki, Yoshimichi; Shima, Takayuki; Wang, Xiaomin; Fujimaki, Makoto

    2018-03-01

    We have developed an optical disk system for imaging transmitted light from Escherichia coli dispersed on an optical disk. When E. coli was stained using Bismarck brown, the transmittance was found to decrease in images obtained at λ = 405 nm. The results indicate that transmittance imaging is suitable for finding the difference in light intensity between stained and unstained E. coli, whereas the reflectance images were scarcely changed by staining. Therefore, E. coli can be selectively discriminated from abiotic contaminants using transmittance imaging.

  10. Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity.

    Science.gov (United States)

    Taisova, A S; Yakovlev, A G; Fetisova, Z G

    2014-03-01

    This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell

  11. EVALUATION OF DIELECTRIC CURING MONITORING INVESTIGATING LIGHT-CURING DENTAL FILLING COMPOSITES

    Directory of Open Access Journals (Sweden)

    Johannes Steinhaus

    2011-05-01

    Full Text Available The aim of this study is the evaluation of a dielectric analysis (DEA method monitoring the curing behaviour of a light curing dental filling material in real-time. The evaluation is to extract the influence of light intensity on the photo-curing process of dental composite filling materials. The intensity change is obtained by measuring the curing process at different sample depth. It could be shown that increasing sample thickness, and therefore exponentially decreasing light intensity, causes a proportional decrease in the initial curing rate. Nevertheless, the results give rise to the assumption that lower illumination intensities over a long period cause higher overall conversion, and thus better mechanical properties. This would allow for predictions of the impact of different curing-rates on the final mechanical properties.

  12. Influence of temperature and light intensity on Ru(II) complex based organic-inorganic device

    International Nuclear Information System (INIS)

    Asubay, Sezai; Durap, Feyyaz; Aydemir, Murat; Baysal, Akin; Ocak, Yusuf Selim; Tombak, Ahmet

    2016-01-01

    An organic-inorganic junction was fabricated by forming [Ru(Cy_2PNHCH_2-C_4H_3O)(η"6-p-cymene)Cl_2] complex thin film using spin coating technique on n-Si and evaporating Au metal on the film. It was seen that the structure had perfect rectification property. Current-voltage (I-V) measurements were carried out in dark and under various illumination conditions (between 50-100 mW/cm"2) and with the temperature range from 303 to 380 K. The structure showed unusually forward and reverse bias temperature and light sensing behaviors. It was seen that the current both in forward and reverse bias increased with the increase in light intensity and temperature.

  13. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    International Nuclear Information System (INIS)

    Liu Yingchuan; Kuang Leman

    2011-01-01

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  14. Effects of UV light intensity on electrochemical wet etching of SiC for the fabrication of suspended graphene

    Science.gov (United States)

    O, Ryong-Sok; Takamura, Makoto; Furukawa, Kazuaki; Nagase, Masao; Hibino, Hiroki

    2015-03-01

    We report on the effects of UV light intensity on the photo assisted electrochemical wet etching of SiC(0001) underneath an epitaxially grown graphene for the fabrication of suspended structures. The maximum etching rate of SiC(0001) was 2.5 µm/h under UV light irradiation in 1 wt % KOH at a constant current of 0.5 mA/cm2. The successful formation of suspended structures depended on the etching rate of SiC. In the Raman spectra of the suspended structures, we did not observe a significant increase in the intensity of the D peak, which originates from defects in graphene sheets. This is most likely explained by the high quality of the single-crystalline graphene epitaxially grown on SiC.

  15. Effect of Light Curing Unit Characteristics on Light Intensity Output ...

    African Journals Online (AJOL)

    Background: Modern dental composite restorations are wholly dependent on the use of Visible Light Curing devices. The characteristics of these devices may influence the quality of composite resin restorations. Objective: To determine the characteristics of light curing units (LCUs) in dental clinics in Nairobi and their effect ...

  16. Understanding the molecular mechanisms underlying the effects of light intensity on flavonoid production by RNA-seq analysis in Epimedium pseudowushanense B.L.Guo.

    Directory of Open Access Journals (Sweden)

    Junqian Pan

    Full Text Available Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4. Next, the leaves under the treatment of three light intensity levels ("L", "M" and "H" with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors

  17. Effect of oxygen at low and high light intensities on the growth of Neochloris oleoabundans

    NARCIS (Netherlands)

    Sousa, C.A.; Compadre, A.; Vermuë, M.H.; Wijffels, R.H.

    2013-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at near-saturating light intensity in a fully-controlled photobioreactor. At the partial oxygen pressures tested (PO2=0.24; 0.42; 0.63; 0.84 bar), the specific growth rate was 1.36; 1.16; 0.93 and 0.68 day-1,

  18. Impact of light polarization on photoluminescence intensity and quantum efficiency in AlGaN and AlInGaN layers

    Science.gov (United States)

    Netzel, C.; Knauer, A.; Weyers, M.

    2012-12-01

    We analyzed emission intensity, quantum efficiency, and emitted light polarization of c-plane AlGaN and AlInGaN layers (λ = 320-350 nm) by temperature dependent photoluminescence. Low indium content in AlInGaN structures causes a significant intensity increase by change of the polarization of the emitted light. Polarization changes from E ⊥ c to E ‖ c with increasing aluminum content. It switches back to E ⊥ c with the incorporation of indium. The polarization degree decreases with temperature. This temperature dependence can corrupt internal quantum efficiency determination by temperature dependent photoluminescence.

  19. Influence of Exercise Intensity for Improving Depressed Mood in Depression: A Dose-Response Study.

    Science.gov (United States)

    Meyer, Jacob D; Koltyn, Kelli F; Stegner, Aaron J; Kim, Jee-Seon; Cook, Dane B

    2016-07-01

    Exercise effectively improves mood in major depressive disorder (MDD), but the optimal exercise stimulus to improve depressed mood is unknown. To determine the dose-response relationship of acute exercise intensity with depressed mood responses to exercise in MDD. We hypothesized that the acute response to exercise would differ between light, moderate, and hard intensity exercise with higher intensities yielding more beneficial responses. Once weekly, 24 women (age: 38.6±14.0) diagnosed with MDD underwent a 30-minute session at one of three steady-state exercise intensities (light, moderate, hard; rating of perceived exertion 11, 13 or 15) or quiet rest on a stationary bicycle. Depressed mood was evaluated with the Profile of Mood States before, 10 and 30 minutes post-exercise. Exercise reduced depressed mood 10 and 30 minutes following exercise, but this effect was not influenced by exercise intensity. Participants not currently taking antidepressants (n=10) had higher baseline depression scores, but did not demonstrate a different antidepressant response to exercise compared to those taking antidepressants. To acutely improve depressed mood, exercise of any intensity significantly improved feelings of depression with no differential effect following light, moderate, or hard exercise. Pharmacological antidepressant usage did not limit the mood-enhancing effect of acute exercise. Acute exercise should be used as a symptom management tool to improve mood in depression, with even light exercise an effective recommendation. These results need to be replicated and extended to other components of exercise prescription (e.g., duration, frequency, mode) to optimize exercise guidelines for improving depression. Copyright © 2016. Published by Elsevier Ltd.

  20. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    International Nuclear Information System (INIS)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-01-01

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiency of holes

  1. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity

    OpenAIRE

    Baird, Emily; Fernandez, Diana C.; Wcislo, William T.; Warrant, Eric J.

    2015-01-01

    Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain ex...

  2. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS

    Science.gov (United States)

    Dong, Chen; Fu, Yuming; Liu, Guanghui; Liu, Hong

    2014-06-01

    Minimizing energy consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. As a primary source of energy, light is one of the most important environmental factors for plant growth. The purpose of this study is to investigate the effects of low light intensity at different stages on growth, pigment composition, photosynthetic efficiency, biological production and antioxidant defence systems of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 3 intensity-controlled stages according to growth period (a total of 65 days): seedling stage (first 20 days), heading and flowering stage (middle 30 days) and grain filling stage (last 15 days). Initial light condition of the control was 420 μmol m-2 s-1 and the light intensity increased with the growth of wheat plants. The light intensities of group I and II at the first stage and the last stage were adjusted to the half level of the control respectively. For group III, the first and the last stage were both adjusted to half level of the control. During the middle 30 days, all treatments were kept the same intensity. The results indicated that low-light treatment at seedling stage, biomass, nutritional contents, components of inedible biomass and healthy index (including peroxidase (POD) activity, malondialdehyde (MDA) and proline content) of wheat plants have no significant difference to the control. Furthermore, unit kilojoule yield of group I reached 0.591 × 10-3 g/kJ and induced the highest energy efficiency. However, low-light treatment at grain filling stage affected the final production significantly.

  3. Intense light-ion beams provide a robust, common-driver path toward ignition, gain, and commercial fusion energy

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Cook, D.L.

    1993-01-01

    Intense light-ion beams are being developed for investigations of inertial confinement fusion (ICF). This effort has concentrated on developing the Particle Beam Fusion Accelerator II (PBFA II) at Sandia as a driver for ICF target experiments, on design concepts for a high-yield, high-gain Laboratory Microfusion Facility (LMF), and on a comprehensive system study of a light-ion beam-driven commercial fusion reactor (LIBRA). Reports are given on the status of design concepts and research in these areas. (author)

  4. HYDROGEN PRODUCTION BY THE CYANOBACTERIUM PLECTONEMA BORYANUM: EFFECTS OF INITIAL NITRATE CONCENTRATION, LIGHT INTENSITY, AND INHIBITION OF PHOTOSYSTEM II BY DCMU

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B.; Huesemann, M.

    2008-01-01

    The alarming rate at which atmospheric carbon dioxide levels are increasing due to the burning of fossil fuels will have incalculable consequences if disregarded. Fuel cells, a source of energy that does not add to carbon dioxide emissions, have become an important topic of study. Although signifi cant advances have been made related to fuel cells, the problem of cheap and renewable hydrogen production still remains. The cyanobacterium Plectonema boryanum has demonstrated potential as a resolution to this problem by producing hydrogen under nitrogen defi cient growing conditions. Plectonema boryanum cultures were tested in a series of experiments to determine the effects of light intensity, initial nitrate concentration, and photosystem II inhibitor DCMU (3-(3,4- dichlorophenyl)-1,1-dimethylurea) upon hydrogen production. Cultures were grown in sterile Chu. No. 10 medium within photobioreactors constantly illuminated by halogen lights. Because the enzyme responsible for hydrogen production is sensitive to oxygen, the medium was continuously sparged with argon/CO2 (99.7%/0.3% vol/vol) by gas dispersion tubes immersed in the culture. Hydrogen production was monitored by using a gas chromatograph equipped with a thermal conductivity detector. In the initial experiment, the effects of initial nitrate concentration were tested and results revealed cumulative hydrogen production was maximum at an initial nitrate concentration of 1 mM. A second experiment was then conducted at an initial nitrate concentration of 1 mM to determine the effects of light intensity at 50, 100, and 200 μmole m-2 s-1. Cumulative hydrogen production increased with increasing light intensity. A fi nal experiment, conducted at an initial nitrate concentration of 2 mM, tested the effects of high light intensity at 200 and 400 μmole m-2 s-1. Excessive light at 400 μmole m-2 s-1 decreased cumulative hydrogen production. Based upon all experiments, cumulative hydrogen production rates were optimal

  5. Polyphenolic composition and antioxidant capacity of legume based swards are affected by light intensity in a Mediterranean agroforestry system.

    Science.gov (United States)

    Re, Giovanni Antonio; Piluzza, Giovanna; Sanna, Federico; Molinu, Maria Giovanna; Sulas, Leonardo

    2018-06-01

    In Mediterranean grazed woodlands, microclimate changes induced by trees influence the growth and development of the understory, but very little is known about its polyphenolic composition in relation to light intensity. We investigated the bioactive compounds and antioxidant capacity of different legume-based swards and variations due to full sunlight and partial shade. The research was carried out in a cork oak agrosilvopastoral system in Sardinia. The highest values of DPPH reached 7 mmol TEAC 100 g -1 DW, total phenolics 67.1 g GAE kg -1 DW and total flavonoids 7.5 g CE kg -1 DW. Compared to full sunlight, partial shade reduced DPPH values by 29 and 42%, and the total phenolic content by 23 and 53% in 100% legume mixture and semi natural pasture. Twelve phenolic compounds were detected: chlorogenic acid in 80% legume mixture (partial shade) and verbascoside in pure sward of bladder clover (full sunlight) were the most abundant. Light intensity significantly affected antioxidant capacity, composition and levels of phenolic compounds. Our results provide new insights into the effects of light intensity on plant secondary metabolites from legume based swards, underlining the important functions provided by agroforestry systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Subcarrier intensity modulation for MIMO visible light communications

    Science.gov (United States)

    Celik, Yasin; Akan, Aydin

    2018-04-01

    In this paper, subcarrier intensity modulation (SIM) is investigated for multiple-input multiple-output (MIMO) visible light communication (VLC) systems. A new modulation scheme called DC-aid SIM (DCA-SIM) is proposed for the spatial modulation (SM) transmission plan. Then, DCA-SIM is extended for multiple subcarrier case which is called DC-aid Multiple Subcarrier Modulation (DCA-MSM). Bit error rate (BER) performances of the considered system are analyzed for different MIMO schemes. The power efficiencies of DCA-SIM and DCA-MSM are shown in correlated MIMO VLC channels. The upper bound BER performances of the proposed models are obtained analytically for PSK and QAM modulation types in order to validate the simulation results. Additionally, the effect of power imbalance method on the performance of SIM is studied and remarkable power gains are obtained compared to the non-power imbalanced cases. In this work, Pulse amplitude modulation (PAM) and MSM-Index are used as benchmarks for single carrier and multiple carrier cases, respectively. And the results show that the proposed schemes outperform PAM and MSM-Index for considered single carrier and multiple carrier communication scenarios.

  7. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice

    Directory of Open Access Journals (Sweden)

    Mark Graham Poolman

    2014-11-01

    Full Text Available Previously we have used a genome scale model of rice metabolism to describe how metabolism reconfigures at different light intensities in an expanding leaf of rice. Although this established that the metabolism of the leaf was adequatelyrepresented, in the model, the scenario was not that of the typical function of the leaf --- to provide material for the rest of the plant. Here we extend our analysis to explore the transition to a source leaf as export of photosynthate increases at the expense of making leaf biomass precursors, again as a function of light intensity. In particular we investigate whether, when the leaf is making a smaller range of compounds for export to the phloem, the same changes occur in the interactions between mitochondrial and chloroplast metabolism as seen in biomass synthesis for growth when light intensity increases. Our results show that the same changes occur qualitatively, though there are slight quantitative differences reflecting differences in the energy and redox requirements for the different metabolic outputs.

  8. Responses of crayfish photoreceptor cells following intense light adaptation.

    Science.gov (United States)

    Cummins, D R; Goldsmith, T H

    1986-01-01

    After intense orange adapting exposures that convert 80% of the rhodopsin in the eye to metarhodopsin, rhabdoms become covered with accessory pigment and appear to lose some microvillar order. Only after a delay of hours or even days is the metarhodopsin replaced by rhodopsin (Cronin and Goldsmith 1984). After 24 h of dark adaptation, when there has been little recovery of visual pigment, the photoreceptor cells have normal resting potentials and input resistances, and the reversal potential of the light response is 10-15 mV (inside positive), unchanged from controls. The log V vs log I curve is shifted about 0.6 log units to the right on the energy axis, quantitatively consistent with the decrease in the probability of quantum catch expected from the lowered concentration of rhodopsin in the rhabdoms. Furthermore, at 24 h the photoreceptors exhibit a broader spectral sensitivity than controls, which is also expected from accumulations of metarhodopsin in the rhabdoms. In three other respects, however, the transduction process appears to be light adapted: The voltage responses are more phasic than those of control photoreceptors. The relatively larger effect (compared to controls) of low extracellular Ca++ (1 mmol/l EGTA) in potentiating the photoresponses suggests that the photoreceptors may have elevated levels of free cytoplasmic Ca++. The saturating depolarization is only about 30% as large as the maximal receptor potentials of contralateral, dark controls, and by that measure the log V-log I curve is shifted downward by 0.54 log units.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity

    NARCIS (Netherlands)

    Sousa, C.A.; Winter, de L.; Janssen, M.G.J.; Vermue, M.H.; Wijffels, R.H.

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (PO2=0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06

  10. The Relationship between Thermal Comfort and Light Intensity with Sleep Quality and Eye Tiredness in Shift Work Nurses

    OpenAIRE

    Azmoon, Hiva; Dehghan, Habibollah; Akbari, Jafar; Souri, Shiva

    2013-01-01

    Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. Method. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT) and photometer (Hagner ...

  11. Geolocation by light

    DEFF Research Database (Denmark)

    Lisovski, Simeon; Hewson, Chris M.; Klaassen, Raymond H. G.

    2012-01-01

    1. Geolocation by light allows for tracking animal movements, based on measurements of light intensity over time by a data-logging device (‘geolocator’). Recent developments of ultra-light devices (.... However, an inherent problem of geolocators is that any factor or process that changes the natural light intensity pattern also affects the positions calculated from these light patterns. Although the most important factors have been identified, estimation of their effect on the accuracy and precision...... of positions estimated has been lacking but is very important for the analyses and interpretation of geolocator data. 2. The ‘threshold method’ is mainly used to derive positions by defining sunrise and sunset times from the light intensity pattern for each recorded day. This method requires calibration...

  12. Reduction of Bacterial Pathogens and Potential Surrogates on the Surface of Almonds Using High-Intensity 405-Nanometer Light.

    Science.gov (United States)

    Lacombe, Alison; Niemira, Brendan A; Sites, Joseph; Boyd, Glenn; Gurtler, Joshua B; Tyrell, Breanna; Fleck, Melissa

    2016-11-01

    The disinfecting properties of high-intensity monochromatic blue light (MBL) were investigated against Escherichia coli O157:H7, Salmonella , and nonpathogenic bacteria inoculated onto the surface of almonds. MBL was generated from an array of narrow-band 405-nm light-emitting diodes. Almonds were inoculated with higher or lower levels (8 or 5 CFU/g) of pathogenic E. coli O157:H7 and Salmonella , as well as nonpathogenic E. coli K-12 and an avirulent strain of Salmonella Typhimurium, for evaluation as potential surrogates for their respective pathogens. Inoculated almonds were treated with MBL for 0, 1, 2, 4, 6, 8, and 10 min at a working distance of 7 cm. Simultaneous to treatment, cooling air was directed onto the almonds at a rate of 4 ft 3 /min (1.89 ×10 -3 m 3 /s), sourced through a container of dry ice. An infrared camera was used to monitor the temperature readings after each run. For E. coli K-12, reductions of up to 1.85 or 1.63 log CFU/g were seen for higher and lower inoculum levels, respectively; reductions up to 2.44 and 1.44 log CFU/g were seen for E. coli O157:H7 (higher and lower inoculation levels, respectively). Attenuated Salmonella was reduced by up to 0.54 and 0.97 log CFU/g, whereas pathogenic Salmonella was reduced by up to 0.70 and 0.55 log CFU/g (higher and lower inoculation levels, respectively). Inoculation level did not significantly impact minimum effective treatment times, which ranged from 1 to 4 min. Temperatures remained below ambient throughout treatment, indicating that MBL is a nonthermal antimicrobial process. The nonpathogenic strains of E. coli and Salmonella each responded to MBL in a comparable manner to their pathogenic counterparts. These results suggest that these nonpathogenic strains may be useful in experiments with MBL in which a surrogate is required, and that MBL warrants further investigation as a potential antimicrobial treatment for low-moisture foods.

  13. The Relationship between Thermal Comfort and Light Intensity with Sleep Quality and Eye Tiredness in Shift Work Nurses

    Science.gov (United States)

    Azmoon, Hiva; Dehghan, Habibollah; Akbari, Jafar; Souri, Shiva

    2013-01-01

    Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. Method. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT) and photometer (Hagner Model) were used for measuring the thermal conditions and illumination intensity, respectively. To measure the sleep quality, visual tiredness, and thermal comfort, Pittsburg sleep quality index, eye fatigue questionnaire, and thermal comfort questionnaire were used, respectively. The data were analyzed with descriptive statistics, Student's t-test, and Pearson correlation. Results. Correlation between thermal comfort which was perceived from the self-reporting of people with eye tiredness was −0.38 (P = 0.002). Pearson correlation between thermal comfort and sleep quality showed a positive and direct relationship (r = 0.241, P = 0.33) but the correlation between thermal comfort, which was perceived from the self-reporting of shift nurses, and WBGT index was a weak relationship (r = 0.019). Conclusion. Based on the obtained findings, it can be concluded that a defect in environmental conditions such as thermal conditions and light intensity and also lack of appropriate managerial plan for night shift-work nurses are destructive and negative factors for the physical and mental health of this group of practitioners. PMID:23476674

  14. The relationship between thermal comfort and light intensity with sleep quality and eye tiredness in shift work nurses.

    Science.gov (United States)

    Azmoon, Hiva; Dehghan, Habibollah; Akbari, Jafar; Souri, Shiva

    2013-01-01

    Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT) and photometer (Hagner Model) were used for measuring the thermal conditions and illumination intensity, respectively. To measure the sleep quality, visual tiredness, and thermal comfort, Pittsburg sleep quality index, eye fatigue questionnaire, and thermal comfort questionnaire were used, respectively. The data were analyzed with descriptive statistics, Student's t-test, and Pearson correlation. Correlation between thermal comfort which was perceived from the self-reporting of people with eye tiredness was -0.38 (P = 0.002). Pearson correlation between thermal comfort and sleep quality showed a positive and direct relationship (r = 0.241, P = 0.33) but the correlation between thermal comfort, which was perceived from the self-reporting of shift nurses, and WBGT index was a weak relationship (r = 0.019). Based on the obtained findings, it can be concluded that a defect in environmental conditions such as thermal conditions and light intensity and also lack of appropriate managerial plan for night shift-work nurses are destructive and negative factors for the physical and mental health of this group of practitioners.

  15. The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature

    Directory of Open Access Journals (Sweden)

    Sylvia Bonilla

    2016-06-01

    Full Text Available Toxic cyanobacterial blooms in freshwaters are thought to be a consequence of the combined effects of anthropogenic eutrophication and climate change. It is expected that climate change will affect water mixing regimes that alter the water transparency and ultimately the light environment for phytoplankton. Blooms of the potentially toxic cyanobacterium Cylindrospermopsis raciborskii are expanding from tropical towards temperate regions. Several hypotheses have been proposed to explain this expansion, including an increase in water temperature due to climate change and the high phenotypic plasticity of the species that allows it to exploit different light environments. We performed an analysis based on eight lakes in tropical, subtropical and temperate regions to examine the distribution and abundance of C. raciborskii in relation to water temperature and transparency. We then conducted a series of short-term factorial experiments that combined three temperatures and two light intensity levels using C. raciborskii cultures alone and in interaction with another cyanobacterium to identify its growth capacity. Our results from the field, in contrast to predictions, showed no differences in dominance (>40% to the total biovolume of C. raciborskii between climate regions. C. raciborskii was able to dominate the phytoplankton in a wide range of light environments (euphotic zone = 1.5 to 5 m, euphotic zone/mixing zone ratio <0.5 to >1.5. Moreover, C. raciborskii was capable of dominating the phytoplankton at low temperatures (<15°C. Our experimental results showed that C. raciborskii growing in interaction was enhanced by the increase of the temperature and light intensity. C. raciborskii growth in high light intensities and at a wide range of temperatures, suggests that any advantage that this species may derive from climate change that favors its dominance in the phytoplankton is likely due to changes in the light environment rather than changes in

  16. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controled environment conditions

    Science.gov (United States)

    Tikhomirov, A.; Ushakova, S.; Gribovskaya, I.; Tirranen, L.; Manukovsky, N.; Zolotukhin, I.

    To investigate feasibility of enhancing closedness in a new generation of biological life support systems (LSS) to involve the inedible phytomass into intrasystem mass exchange the vermicomposting method we have chosen made possible to produce soil-like substrate (SLS) suitable for growing plants. However, to use the SLS in life support systems call for investigation of its physical, chemical and other parameters. Of special importance among them is the capacity of SLS to provide the LSS photosynthesizing component with required mineral elements in selected cultivation conditions. In this connection the aim of this work was to study opportunities of enhancing pr4oduction activity of wheat and radish cenoses by varying the intensity of photosynthetically active radiation (PAR) without decreasing the harvest index. Increase of light intensity to 250 W/m 2 PAR decreased the intensity of visible photosynthesis of wheat cenosi and slightly increased visible photosynthesis of radish cenosis as compared to 200 W/m 2 PAR. The maximum productivity of wheat cenosis both total and seeds corresponded to the irradiance of 200 W/m 2 PAR. The light intensity of 250 W/m2 PAR decreased productivity of wheat plants and had no significant effect of the productivity of radish cenosis as compared to 200 W/m 2 PAR. Qualitative and quantitative composition of microflora of the watering solution and SLS was determined by the condition of plants, development phase and PAR intensity. By the end of wheat vegetation under 250 W/m 2 there were an order more bacteria of the colon rod group and phytopathogenic bacteria in the watering solution and SLS than under other illumination conditions. Investigation of the mineral composition of SLS and the watering solution demonstrated that one of the reasons of inadequate response of the cenosis under study to elevated PAR intensity may be deficiency of accessible forms of some mineral elements, e.g. nitrogen. The above said materials evidence that

  17. Modeling and simulation of a 3D-CMOS silicon photodetector for low-intensity light detection

    Science.gov (United States)

    Sabri Alirezaei, Iman; Burte, Edmund P.

    2016-03-01

    This paper presents a design and simulation of a novel high performance 3D-silicon photodetector for implementing in the low intensity light detection at room temperature (300K). The photodetector is modeled by inspiration of general MEMS fabrication to make a 3D- structure in the silicon substrate using a bulk micromachining process, and based on a complementary metal-oxide semiconductor (CMOS) technology. The design includes a vertical n+/p junction as an optical window for lateral illumination. The simulation is carried out using COMSOL Multiphysics relying on theoretical and physical concepts, and then, the assessment of the results is done by the numerical analysis with SILVACO (Atlas) device simulator. Light is regarded as a monochromatic beam with a wavelength of 633nm that is placed 1μm far from the optical window. The simulation is considered under the reverse bias dc voltage in the steadystate. We present photocurrent-voltage (Iph-V) characteristics under different light intensities (2… 10[mW/cm2]), and dark current-voltage (Id-V) characteristics. Comparative studies of sensitivity dependence on the dopant concentration in the substrate as an intrinsic region are accomplished utilizing two different p-type silicon substrates with 1×1015 [1/cm3] and 4×1012 [1/cm3] doping concentration. Moreover, the sensitivity is evaluated with respect to the active substrate thickness. The simulated results confirmed that the high optical sensitivity of the photodetector with low dark current can be realized in this model.

  18. Efficiency of light curing units in a government dental school.

    Science.gov (United States)

    Nassar, Hani M; Ajaj, Reem; Hasanain, Fatin

    2018-01-01

    The light intensity of a light-curing unit is a crucial factor that affects the clinical longevity of resin composites. This study aimed to investigate the efficiency of light-curing units in use at a local governmental dental school for curing conventional and bulk-fill resin materials. A total of 166 light-curing units at three locations were examined, and the brand, type, clinic location, diameter of curing tip, tip cleanliness (using a visual score), and the output (in mW/cm 2 using a digital radiometer) were recorded. Only 23.5% of the units examined had clean tips, with the graduate student clinical area containing the highest percentage of clean tips. Further, tips with poor cleanliness score values were associated with significantly lower output intensities. A small percentage (9.4%) of units was capable of producing intensities higher than 1,200 mW/cm 2 and lower than 600 mW/cm 2 (7.6%). The majority of the low intensity units were located in the undergraduate student area, which also contained the highest number of units with intensities between 900 and 1,200 mW/cm 2 . The output of all the units in service was satisfactory for curing conventional resin composites, and most units were capable of curing bulk-fill resin materials.

  19. Acute alerting effects of light: A systematic literature review.

    Science.gov (United States)

    Souman, Jan L; Tinga, Angelica M; Te Pas, Susan F; van Ee, Raymond; Vlaskamp, Björn N S

    2018-01-30

    Periodic, well timed exposure to light is important for our health and wellbeing. Light, in particular in the blue part of the spectrum, is thought to affect alertness both indirectly, by modifying circadian rhythms, and directly, giving rise to acute effects. We performed a systematic review of empirical studies on direct, acute effects of light on alertness to evaluate the reliability of these effects. In total, we identified 68 studies in which either light intensity, spectral distribution, or both were manipulated, and evaluated the effects on behavioral measures of alertness, either subjectively or measured in reaction time performance tasks. The results show that increasing the intensity of polychromatic white light has been found to increase subjective ratings of alertness in a majority of studies, though a substantial proportion of studies failed to find significant effects, possibly due to small sample sizes or high baseline light intensities. The effect of the color temperature of white light on subjective alertness is less clear. Some studies found increased alertness with higher color temperatures, but other studies reported no detrimental effects of filtering out the short wavelengths from the spectrum. Similarly, studies that used monochromatic light exposure showed no systematic pattern for the effects of blue light compared to longer wavelengths. Far fewer studies investigated the effects of light intensity or spectrum on alertness as measured with reaction time tasks and of those, very few reported significant effects. In general, the small sample sizes used in studies on acute alerting effects of light make it difficult to draw definitive conclusions and better powered studies are needed, especially studies that allow for the construction of dose-response curves. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of light Si doping on the properties of GaN

    International Nuclear Information System (INIS)

    Shang, Lin; Zhai, Guangmei; Jia, Zhigang; Mei, Fuhong; Lu, Taiping; Liu, Xuguang; Xu, Bingshe

    2016-01-01

    An obvious increase in electron mobility and yellow luminescence (YL) band intensity was found in light Si doping GaN. For a series of GaN samples with different doping concentration, the dislocation density is almost the same. It is inferred that the abrupt increase in mobility and YL intensity does not originate from the change of dislocation density. The mobility behavior is attributed to the screening of scattering by dislocation and increase of ionized impurity scattering with the increase of Si doping concentration. At lower doping level, the screening of dislocation scattering is dominant, which results in the increase in carrier mobility. At higher doping level, the increase in ionized impurity scattering leads to the decrease in carrier mobility. Higher mobility causes longer diffusion length of nonequilibrium carrier. More dislocations will participate in the recombination process which induces stronger YL intensity in light Si doping GaN.

  1. Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Monshupanee, T; Incharoensakdi, A

    2014-04-01

    Glycogen (GL) and lipids (LP) are efficient biofuel substrates, whereas polyhydroxybutyrate (PHB) is a potent biodegradable plastic. This study aimed to increase accumulation of these three compounds in Synechocystis sp. PCC 6803. Under autophototrophic growth, co-accumulation of the three compounds reached maximum level in a mid-stationary phase at 39·2% of dry weight (22·7% GL, 14·1% LP and 2·4% PHB). Nitrogen deprivation increased this to 61·5% (36·8% GL, 11·2% LP and 13·5% PHB), higher than that achieved by phosphorus, sulfur, iron or calcium deprivation. Combining nitrogen deprivation with 0·4% (w/v) glucose addition for heterophototrophic growth and optimizing the light intensity (200 μmol photons m(-2) s(-1) ) synergistically enhanced combined accumulation to 71·1% of biomass (41·3% GL, 16·7% LP and 13·1% PHB), a higher level than previously reported in Synechocystis. However, the maximum coproductivity of GL, LP and PHB (at 0·72 g l(-1) ) was obtained in the 12-day heterophototrophic culture without nitrogen deprivation. Accumulation of GL, LP and PHB was enhanced under both autophototrophic and heterophototrophic conditions by optimizations of nutrient and light supplies. This study provides a means for increasing co-production of potent bioenergy substrates and useful biomaterials in Synechocystis which may also be applicable to other cyanobacteria. © 2013 The Society for Applied Microbiology.

  2. Productivity of duckweed (Lemna minor as alternative forage feed for livestock in different light intensities

    Directory of Open Access Journals (Sweden)

    Uti Nopriani

    2015-12-01

    Full Text Available Duckweed (Lemna minor is a small aquatic plant that grow and float in water and spread extensively. Lemna minor is potential as a source of high quality forage. This study aimed to determine optimal light intensity on Lemna minor to generate maximum productivity. Parameters observed were physical-biological and chemical characteristics of the media (pH value, temperature, cover area, decreased of media volume, BOD, COD, nitrate, nitrite and phosphate, plant growth acceleration (number of shoots, leaf diameter and chlorophyll-a, biomass production, doubling time of cover area and the number of daughters. This study was done based on a completely randomized design with 4 levels of shading. While treatment was: without shading, shading 30%, shading 50% and shading 70% using paranet shade. Each treatment consisted of 4 replications. Result showed that the productivity of Lemna minor included the number of daughters, chlorophyll-a, biomass production, cover area, absorbed phosphate and doubling time the number of daughters reached the highest level without shading treatment (1007,21-2813,57 lux. The decrease of intensity of light, the increase the diameter of leaf. Decrease of media volume was positively correlated to size of cover area. Biomass production influenced by a wide doubling time of cover area and number of daughters.

  3. The Relationship between Thermal Comfort and Light Intensity with Sleep Quality and Eye Tiredness in Shift Work Nurses

    Directory of Open Access Journals (Sweden)

    Hiva Azmoon

    2013-01-01

    Full Text Available Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. Method. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT and photometer (Hagner Model were used for measuring the thermal conditions and illumination intensity, respectively. To measure the sleep quality, visual tiredness, and thermal comfort, Pittsburg sleep quality index, eye fatigue questionnaire, and thermal comfort questionnaire were used, respectively. The data were analyzed with descriptive statistics, Student's t-test, and Pearson correlation. Results. Correlation between thermal comfort which was perceived from the self-reporting of people with eye tiredness was −0.38 (P=0.002. Pearson correlation between thermal comfort and sleep quality showed a positive and direct relationship (r=0.241, P=0.33 but the correlation between thermal comfort, which was perceived from the self-reporting of shift nurses, and WBGT index was a weak relationship (r=0.019. Conclusion. Based on the obtained findings, it can be concluded that a defect in environmental conditions such as thermal conditions and light intensity and also lack of appropriate managerial plan for night shift-work nurses are destructive and negative factors for the physical and mental health of this group of practitioners.

  4. Profiling of Indoor Plant to Deteriorate Carbon Dioxide Using Low Light Intensity

    Directory of Open Access Journals (Sweden)

    Suhaimi Shamsuri Mohd Mahathir

    2016-01-01

    Full Text Available Reasonable grounds that human needs the plants because their abilities reduce carbon dioxide (CO2. However, it is not constantly human with the plants, especially in the building. This paper intends to study the abilities of seven plants (Anthurium, Dumb Cane, Golden Pothos, Prayer Plants, Spider Plant, and Syngonium to absorb CO2 gas. The research was conducted in chambers (one cubic meter with temperature, lux intensity and CO2 concentration at 25±10C, 300 lux, and 450±10 ppm. Before experimental were carried out, all plants selected should be assimilated with an indoor setting for performance purpose, and the experiment was conducted during daytime (9 am-5 pm. The experiments run in triplicate. Based on the results that are using extremely low light that ever conducted on plants, only Spider Plants are not capable to absorb CO2, instead turn up the CO2 rate during respiration. Meanwhile, Prayer Plant is the most plant performed with CO2 reduction is 7.62%, and this plant also has equivalent results in triplicate study based on an ANOVA test with significant value at 0.072. The conclusions of this research, only Spider Plant cannot survive at indoor condition with extremely low light for plants live and reduce CO2 concentration for indoor air quality (IAQ. The rate of 300 lux is a minimum light at indoor that are set by the Department of Occupational Safety and Health (DOSH, Malaysia.

  5. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.

    Science.gov (United States)

    Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M

    2014-07-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when

  6. Performance analysis of solar cell arrays in concentrating light intensity

    International Nuclear Information System (INIS)

    Xu Yongfeng; Li Ming; Lin Wenxian; Wang Liuling; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    Performance of concentrating photovoltaic/thermal system is researched by experiment and simulation calculation. The results show that the I-V curve of the GaAs cell array is better than that of crystal silicon solar cell arrays and the exergy produced by 9.51% electrical efficiency of the GaAs solar cell array can reach 68.93% of the photovoltaic/thermal system. So improving the efficiency of solar cell arrays can introduce more exergy and the system value can be upgraded. At the same time, affecting factors of solar cell arrays such as series resistance, temperature and solar irradiance also have been analyzed. The output performance of a solar cell array with lower series resistance is better and the working temperature has a negative impact on the voltage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system. (semiconductor devices)

  7. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    Science.gov (United States)

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  8. Thermographic analysis of photodynamic therapy with intense pulsed light and needle-free injection photosensitizer delivery: an animal study

    Science.gov (United States)

    Requena, Michelle B.; Stringasci, Mirian D.; Pratavieira, Sebastião.; Vollet-Filho, José Dirceu; de Nardi, Andrigo B.; Escobar, Andre; da Rocha, Rozana W.; Bagnato, Vanderlei S.; de Menezes, Priscila F. C.

    2018-02-01

    The photodynamic therapy (PDT) is a therapeutic modality that depends mostly on photosensitizer (PS), light and molecular oxygen species. However, there are still technical limitations in clinical PDT that are under constant development, particularly concerning PS and light delivery. Intense Pulsed Light (IPL) sources are systems able to generate pulses of high energy with polychromatic light. IPL is a technique mainly used in the cosmetic area to perform various skin treatments for therapeutic and aesthetic applications. The goals of this study were to determine temperature variance during the application of IPL in porcine skin model, and the PDT effects using this light source with PS delivery by a commercial high pressure, needle-free injection system. The PSs tested were Indocyanine Green (ICG) and Photodithazine (PDZ), and the results showed an increase bellow 10 °C in the skin surface using a thermographic camera to measure. In conclusion, our preliminary study demonstrated that IPL associated with needle-free injection PS delivery could be a promising alternative to PDT.

  9. Intense Pulsed Light (IPL) in Aesthetic Dermatology

    Science.gov (United States)

    Pytras, B.; Drozdowski, P.; Zub, K.

    2011-08-01

    Introduction. Newer and newer technologies have been widely developed in recent years due to increasing need for aesthetic medicine procedures. Less invasive methods of skin imperfection and time-related lesions removal, IPL (Intense Pulse Light) being one of them, are gaining more and more interest. The shorter the "downtime" for the patient is and the more efficient the procedure results, the more popular the method becomes. Materials and methods_Authors analyse the results of treatment of a 571 patients-group (501 women and 70 men) aged 5-72 years in the period: October 2006-August 2010. IPL™ Quantum (Lumenis Ltd.) device with 560 nm. cut-off filter was used. Results. The results were regarded as: very good, good or satisfying (%):Skin photoaging symptomes 37/40/23, Isolated facial dyschromia 30/55/25, Isolated facial erythema 62/34/4, Lower limbs teleangiectasia 12/36/52, Keratosis solaris on hands 100/-/-. Approximately half of the patients developed transitory erythema and 25%- transitory, mild, circumscribed oedema. Following undesirable effects were noted: skin thermal irritation (6,1% of the patients) and skin hypopigmentation (2% of the patients). Discussion. Results and post-treatment management proposed by authors are similar to those reported by other authors. Conclusions. Treatment results of the 571-patients group prove IPL to be a very efficient method of non-ablative skin rejuvenation. It turned out effective also in lower limbs teleangiectasia treatment. It presents low risk of transitory and mild side effects. Futhermore, with short or no downtime, it is well-tolerated by the patients.

  10. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process.

    Science.gov (United States)

    Sun, Xian; Cao, Yu; Xu, Hui; Liu, Yan; Sun, Jianrui; Qiao, Dairong; Cao, Yi

    2014-03-01

    Triacylglyceride (TAG) and carbohydrate are potential feedstock for biofuels production. In this study, a two-stage process was applied for enhancing TAG/carbohydrate production in the selected microalgae - Neochloris oleoabundans HK-129. In stage I, effects of nitrogen, light intensity and iron on cell growth were investigated, and the highest biomass productivity of 292.83±5.83mg/L/d was achieved. In stage II, different nitrogen-starvation periods, light intensities and iron concentrations were employed to trigger accumulation of TAG and carbohydrate. The culture under 2-day N-starvation, 200μmol/m(2)/s light intensity and 0.037mM Fe(3+) concentration produced the maximum TAG and carbohydrate productivity of 51.58mg/L/d and 90.70mg/L/d, respectively. Nitrogen starvation period and light intensity had marked effects on TAG/carbohydrate accumulation and fatty acids profile, compared to iron concentration. The microalgal lipid was mainly composed of C16/C18 fatty acids (90.02%), saturated fatty acids (29.82%), and monounsaturated fatty acids (32.67%), which is suitable for biodiesel synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Siu A., E-mail: chin@physics.tamu.edu [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Ashour, Omar A. [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Nikolić, Stanko N. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Belić, Milivoj R. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar)

    2016-10-23

    It is well known that Akhmediev breathers of the nonlinear cubic Schrödinger equation can be superposed nonlinearly via the Darboux transformation to yield breathers of higher order. Surprisingly, we find that the peak height of each Akhmediev breather only adds linearly to form the peak height of the final breather. Using this peak-height formula, we show that at any given periodicity, there exists a unique high-order breather of maximal intensity. Moreover, these high-order breathers form a continuous hierarchy, growing in intensity with increasing periodicity. For any such higher-order breather, a simple initial wave function can be extracted from the Darboux transformation to dynamically generate that breather from the nonlinear Schrödinger equation. - Highlights: • Proved an analytical formula for the peak-height of an nth-order Akhmediev breather. • Constructed nth-order Akhmediev breathers of maximal peak intensity. • Extracted initial wave functions that can be used experimentally to produce these maximal breathers in optical fibers.

  12. Effect of Locomotor Respiratory Coupling Induced by Cortical Oxygenated Hemoglobin Levels During Cycle Ergometer Exercise of Light Intensity.

    Science.gov (United States)

    Oyanagi, Keiichi; Tsubaki, Atsuhiro; Yasufuku, Yuichi; Takai, Haruna; Kera, Takeshi; Tamaki, Akira; Iwata, Kentaro; Onishi, Hideaki

    This study aimed to clarify the effects of locomotor-respiratory coupling (LRC) induced by light load cycle ergometer exercise on oxygenated hemoglobin (O2Hb) in the dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), and sensorimotor cortex (SMC). The participants were 15 young healthy adults (9 men and 6 women, mean age: 23.1 ± 1.8 (SEM) years). We conducted a task in both LRC-inducing and LRC-non-inducing conditions for all participants. O2Hb was measured using near-infrared spectroscopy. The LRC frequency ratio during induction was 2:1; pedaling rate, 50 rpm; and intensity of load, 30 % peak volume of oxygen uptake. The test protocol included a 3-min rest prior to exercise, steady loading motion for 10 min, and 10-min rest post exercise (a total of 23 min). In the measurement of O2Hb, we focused on the DLPFC, SMA, and SMC. The LRC frequency was significantly higher in the LRC-inducing condition (p < 0.05). O2Hb during exercise was significantly lower in the DLPFC and SMA, under the LRC-inducing condition (p < 0.05). The study revealed that even light load could induce LRC and that O2Hb in the DLPFC and SMA decreases during exercise via LRC induction.

  13. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.

    Science.gov (United States)

    Chang, Hai-Xing; Huang, Yun; Fu, Qian; Liao, Qiang; Zhu, Xun

    2016-04-01

    Understanding and optimizing the microalgae growth process is an essential prerequisite for effective CO2 capture using microalgae in photobioreactors. In this study, the kinetic characteristics of microalgae Chlorella vulgaris growth in response to light intensity and dissolved inorganic carbon (DIC) concentration were investigated. The greatest values of maximum biomass concentration (Xmax) and maximum specific growth rate (μmax) were obtained as 2.303 g L(-1) and 0.078 h(-1), respectively, at a light intensity of 120 μmol m(-2) s(-1) and DIC concentration of 17 mM. Based on the results, mathematical models describing the coupled effects of light intensity and DIC concentration on microalgae growth and CO2 biofixation are proposed. The models are able to predict the temporal evolution of C. vulgaris growth and CO2 biofixation rates from lag to stationary phases. Verification experiments confirmed that the model predictions agreed well with the experimental results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Methodology for assessing the lighting of pedestrian crossings based on light intensity parameters

    Directory of Open Access Journals (Sweden)

    Tomczuk Piotr

    2017-01-01

    Full Text Available One of the possible preventive measures that could improve safety at crossings is to assess the state of illumination of the lighting installation located in the transition area for pedestrians. The City of Warsaw has undertaken to comprehensively assess the pedestrian crossings to determine the level of road safety and the condition of lighting. The lighting conditions related to pedestrian crossings without traffic lights in three central districts of the city were investigated. The conducted field research and the work of the team of experts lead to the development of tools to assess the level of risk due to the lighting conditions measured at night. The newly developed and used method of assessment and the experience gained should provide a valuable contribution to the development of uniform risk assessment rules for pedestrian crossings in Poland. The authors of this paper have attempted to systematize the description of the method of evaluation of the lighting installed in the area of pedestrian crossings.

  15. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.

    Science.gov (United States)

    Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang

    2013-09-20

    A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.

  16. Active Appearance Segmentation for Intensity Inhomogeneity in Light Sheet Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Jensen, Casper Bo; Lyksborg, Mark; Hecksher-Sørensen, J.

    2016-01-01

    inhomogeneities which are often seen in Light Sheet Fluorescence Microscopy (LSFM) images. This robustness is achieved by modelling the appearance of an image as a regularized Normalized Gradient Field (rNGF). We perform two experiments to challenge the model. First it is tested using a repeated leave......Active Appearance Models (AAM) are used for annotating or segmenting shapes in biomedical images. Performance relies heavily on the image data used to train the AAM. In this paper we improve the generalization properties of the model by making it robust to slowly varying spatial intensity......-one-out approach on images with minimal imperfections where the left out images are corrupted by a simulated bias field and segmented using the AAM. Secondly we test the model on LSFM images with common acquisition problems. In both experiments the proposed approach outperforms the often used AAM implementation...

  17. Intense pulsed light treatment for dry eye disease due to meibomian gland dysfunction; a 3-year retrospective study.

    Science.gov (United States)

    Toyos, Rolando; McGill, William; Briscoe, Dustin

    2015-01-01

    The purpose of this study was to determine the clinical benefits of intense-pulsed-light therapy for the treatment of dry-eye disease caused by meibomian gland dysfunction (MGD). MGD is the leading cause of evaporative dry eye disease. It is currently treated with a range of methods that have been shown to be only somewhat effective, leading to the need for advanced treatment options. A retrospective noncomparative interventional case series was conducted with 91 patients presenting with severe dry eye syndrome. Treatment included intense-pulsed-light therapy and gland expression at a single outpatient clinic over a 30-month study. Pre/post tear breakup time data were available for a subset of 78 patients. For all patients, a specially developed technique for the treatment of dry eye syndrome was applied as a series of monthly treatments until there was adequate improvement in dry eye syndrome symptoms by physician judgment, or until patient discontinuation. Primary outcomes included change in tear breakup time, self-reported patient satisfaction, and adverse events. Physician-judged improvement in dry eye tear breakup time was found for 68 of 78 patients (87%) with seven treatment visits and four maintenance visits on average (medians), and 93% of patients reported post-treatment satisfaction with degree of dry eye syndrome symptoms. Adverse events, most typically redness or swelling, were found for 13% of patients. No serious adverse events were found. Although preliminary, study results of intense-pulsed-light therapy treatment for dry eye syndrome caused by meibomian gland dysfunction are promising. A multisite clinical trial with a larger sample, treatment comparison groups, and randomized controlled trials is currently underway.

  18. Cost-benefit analysis of retrofit of high-intensity discharge factory lighting with energy-saving alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Preston, D.J. [Alabama Industrial Assessment Center, The University of Alabama, 1530 W. Tremont St, Allentown, PA 18102 (United States); Woodbury, K.A. [Alabama Industrial Assessment Center, The University of Alabama, 290 Hardaway Hall, Box 870276, Tuscaloosa, AL 35487-0276 (United States)

    2013-05-15

    Due to increased concern about overall energy costs and the appearance of efficient and inexpensive lighting system alternatives, factories and plants with high-intensity discharge (HID) lighting are forced to consider retrofit with more modern, energy-efficient lighting. The decision is complicated from an economic perspective, and there is a lack of information readily available on the topic. This study provides an analysis of the replacement by retrofit of common probe-start metal halide and high-pressure sodium industrial lighting systems. Retrofit options considered include the more recent pulse-start metal halide lamps and a range of T5 high output and T8 fluorescent lamp configurations. Recent data on lighting system pricing, labor and energy costs, and time required for tasks are reported. The results generated include savings, payback period, and net present value for many retrofit options, as well as the change in energy consumption, carbon footprint, and lumen output for each retrofit. Effects of varying rate of return and daily duration of operation are considered. Based on change in lumen output, payback period, net present value, and comparison of lighting quality, one or two options are recommended from the overall retrofit options considered. A fluorescent retrofit is recommended for each of the HID initial scenarios considered. The payback period is no more than 3 years in any recommended case. The focus of this study is on the potential energy and cost savings, and some proposed solutions may, or may not, be acceptable due to lack of illuminance uniformity.

  19. Sole-Source Lighting for Controlled-Environment Agriculture

    Science.gov (United States)

    Mitchell.Cary; Stutte, Gary W.

    2015-01-01

    Since plants on Earth evolved under broad-spectrum solar radiation, anytime they are grown exclusively under electric lighting that does not contain all wavelengths in similar proportion to those in sunlight, plant appearance and size could be uniquely different. Nevertheless, plants have been grown for decades under fluorescent (FL) (1) + incandescent (IN) (2) lamps as a sole source of lighting (SSL), and researchers have become comfortable that, in certain proportions of FL + IN for a given species, plants can appear "normal" relative to their growth outdoors. The problem with using such traditional SSLs for commercial production typically is short lamp lifespans and not obtaining enough photosynthetically active radiation (PAR, 400-700 nm) when desired. These limitations led to supplementation of FL + IN lamp outputs with longer-lived, high-intensity discharge (HID) lamps in growth chambers (3). As researchers became comfortable that mixes of orange-biased high-pressure sodium (HPS) and blue-biased metal halide (MH) HIDs together also could give normal plant growth at higher intensities, growth chambers and phytotrons subsequently were equipped mainly with HID lamps, with their intense thermal output filtered out by ventilated light caps or thermal-controlled water barriers. For the most part, IN and HID lamps have found a home in commercial protected horticulture, usually for night-break photoperiod lighting (IN) or for seasonal supplemental lighting (mostly HPS) in greenhouses. However, lack of economically viable options for SSL have held back aspects of year-round indoor agriculture from taking off commercially.

  20. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    Science.gov (United States)

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  1. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris.

    Science.gov (United States)

    Momokawa, Naoko; Kadono, Yasuro; Kudoh, Hiroshi

    2011-11-01

    For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris. Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology. Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface. R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.

  2. Influence of evaporation conditions of Alq3 on the performance of organic light emitting diodes

    International Nuclear Information System (INIS)

    Zhang Fujun; Xu Zheng; Zhao Dewei; Zhao Suling; Jiang Weiwei; Yuan Guangcai; Song Dandan; Wang Yongsheng; Xu Xurong

    2007-01-01

    The influence of evaporation conditions of organic semiconductor material tris(8-hydroxyquinoline)aluminium (Alq 3 ) on the performance of organic light emitting diodes (OLEDs) is reported. In the process of organic material thermal evaporation, the chamber was dark or had white light from a 100 W filament lamp. The devices prepared in the dark show higher emission intensity and efficiency compared with the ones prepared in white light under the same driving voltage. Atomic force microscopy measurements show that surface morphology and phase of Alq 3 thin films are quite different for the previous cases. The different evaporation conditions are found to have direct effects on the electrical and luminance performance. The Alq 3 thin films prepared in the dark as active emission layers of OLEDs show higher intensity and efficiency

  3. Optical fiber design with orbital angular momentum light purity higher than 99.9.

    Science.gov (United States)

    Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Wu, Yuqing; Li, Qingyu; Qian, Qi; Chen, Dongdan; Yang, Zhongmin

    2015-11-16

    The purity of the synthesized orbital-angular-momentum (OAM) light in the fiber is inversely proportional to channel crosstalk level in the OAM optical fiber communication system. Here the relationship between the fiber structure and the purity is firstly demonstrated in theory. The graded-index optical fiber is proposed and designed for the OAM light propagation with the purity higher than 99.9%. 16 fiber modes (10 OAM modes) have been supported by a specific designed graded-index optical fiber with dispersion less than 35 ps/(km∙nm). Such fiber design has suppressed the intrinsic crosstalk to be lower than -30 dB, and can be potentially used for the long distance OAM optical communication system.

  4. APPLICATION OF INTENSIVE LIGHT RADIATION IN THE PATIENT WITH ERYTHEMATOTELANGIECTATIC ROSACEA

    Directory of Open Access Journals (Sweden)

    T. A. Gaydina

    2018-01-01

    Full Text Available We present a description of the clinical case of a patient with an erythematotelangiectatic type of rosacea. Rosacea is a chronic recurrent dermatosis, characterized by skin lesions of the face in the  form of erythema and papulopustular elements, which has  polyethological origin. The disease occurs more frequently in women  aged 30-50 years who have a certain genetic predisposition to  transient reddening of the skin of the face or less often of the neck  and the decollete zone. It is believed that the dermatosis is more  likely to affect the I and II phototypes, but the disease can occur in  any skin phototype. The patient came to the clinic with complaints  about rashes in the chin and nasolabial triangle, flushing of the face,  accompanied by tingling and burning. The patient turned to the clinic with complaints about rashes in the chin and nasolabial triangle,  flushing of the face, accompanied by tingling and burning. She never consulted a dermatologist before. A diagnosis was made: “erythematotelangiectatic type of rosacea” (according to the  classification proposed by the USA National Rosacea Society, stage I  — persistent erythema and telangiectasia. Using the scale of diagnostic evaluation of rosacea, it was evaluated at 12 points.  There are many approaches to the treatment of rosacea. Drug  therapy is divided into systemic, external and complex. Systemic therapy has a number of side effects, so for light and medium-to- severe rosacea, only external therapy is more often prescribed.  Because of the presence of pathologically altered vessels, the low  efficacy of metronidazole, the patient was assigned a course of  phototherapy with intense incoherent pulsating light at standard  parameters. There was a significant improvement after two  procedures, but vessels smaller than 0.4 mm remained intact, so the duration of the first pulse was increased in order to influence small- caliber vessels

  5. Light Sources and Lighting Circuits

    Science.gov (United States)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    means of using filler gas with a higher atomic weight. Regarding fluorescent lamps, studies and developments for longer operating life and improvement in the lumen maintenance factor for the straight-type and circular-type fluorescent lamps were actively pursued. Regarding self-ballasted fluorescent lamps, the main stream of development was aimed at reducing lamp size and increasing energy conservation, and the development of new products that took advantage of these features proceeded. In regard to LED light sources, basic research and product development, including new application development, were vigorously implemented. In basic research, studies were reported, not only on efficacy improvements through optimization of the LED chips, phosphor layers, and packaging technology, but also on photometry, colorimetry, and visual psychology. In the field of application, applications were studied for general lighting sources and also for a wide range of fields, such as automotive headlights and visible light communication. Also, many academic conferences and exhibitions were held domestically and overseas, and the high level of interest suggests high expectations for this next-generation light source. Regarding HID lamps, there was much activity in research and development and in the commercialization of the ceramic metal halide lamp product, and products were commercialized with features such as higher efficiency (130 lm/W) and higher color rendering properties (R9 ≥ 90). In the high-pressure sodium lamps, there were many study reports concerning plant growth and insect pest control using its low insect-attracting characteristics. With high-pressure mercury lamps, there were many reports on reducing lamp size and increasing intensity for use as a light source for projectors.

  6. Investigation of rf plasma light sources for dye laser excitation

    International Nuclear Information System (INIS)

    Kendall, J.S.; Jaminet, J.F.

    1975-06-01

    Analytical and experimental studies were performed to assess the applicability of radio frequency (rf) induction heated plasma light sources for potential excitation of continuous dye lasers. Experimental efforts were directed toward development of a continuous light source having spectral flux and emission characteristics approaching that required for pumping organic dye lasers. Analytical studies were performed to investigate (1) methods of pulsing the light source to obtain higher radiant intensity and (2) methods of integrating the source with a reflective cavity for pumping a dye cell. (TFD)

  7. Ill-lighting syndrome: prevalence in shift-work personnel in the anaesthesiology and intensive care department of three Italian hospitals

    Directory of Open Access Journals (Sweden)

    Zanatta Paolo

    2009-03-01

    Full Text Available Abstract Background Light is one of the most important factors in our interaction with the environment; it is indispensable to visual function and neuroendocrine regulation, and is essential to our emotional perception and evaluation of the environment. Previous studies have focussed on the effects of prolonged anomalous exposure to artificial light and, in the field of work-related illness. Studies have been carried out on shift-work personnel, who are obliged to experience alterations in the physiological alternation of day and night, with anomalous exposure to light stimuli in hours normally reserved for sleep. In order to identify any signs and symptoms of the so-called ill-lighting syndrome, we carried out a study on a sample of anaesthesiologists and nurses employed in the operating theatres and Intensive Care Departments of three Italian hospitals. We measured the subjective emotional discomfort (stress experienced by these subjects, and its correlation with environmental discomfort factors, in particular the level of lighting, in their workplace. Methods We used a questionnaire developed by the Scandinavian teams who investigated Sick-Building Syndrome, that was self-administered on one day in the environments where the degree of illumination was measured according to UNIEN12464-1 regulations. Results Upon comparison of the types of exposure with the horizontal luminance values (lux measured ( 1500 lux and the degree of stress reported, (Intensive Care: mean stress = 55.8%, high stress = 34.6%; Operating Theatres: mean stress = 51.5%, high stress = 33.8%, it can be observed that the percentage of high stress was reduced as the exposure to luminance was increased, although this finding was not statistically significant. Conclusion We cannot share other authors' enthusiasm regarding the effects on workers well-being correlated to the use of fluorescent lighting. The stress level of our workers was found to be more heavily influenced by

  8. Enhancing the efficacy of AREDS antioxidants in light-induced retinal degeneration.

    Science.gov (United States)

    Wong, Paul; Markey, M; Rapp, C M; Darrow, R M; Ziesel, A; Organisciak, D T

    2017-01-01

    week of supplemental AREDS plus carnosic acid resulted in higher levels of rod and cone cell proteins, and higher levels of retinal DNA than for AREDS alone. Rhodopsin regeneration was unaffected by the rosemary treatment. Retinal gene array analysis showed reduced expression of medium- wavelength opsin 1 and arrestin C in the high-light reared rats versus the low-light rats. The transition of rats from low cyclic light to a high cyclic light environment resulted in the differential expression of 280 gene markers, enriched for genes related to inflammation, apoptosis, cytokine, innate immune response, and receptors. Rosemary, zinc oxide plus rosemary, and AREDS plus rosemary suppressed 131, 241, and 266 of these genes (respectively) in high-light versus low-light animals and induced a small subset of changes in gene expression that were independent of light rearing conditions. Long-term environmental light intensity is a major determinant of retinal gene and protein expression, and of visual cell survival following acute photooxidative insult. Rats preconditioned by high-light rearing exhibit lower levels of cone opsin mRNA and protein, and lower mCAR protein, than low-light reared animals, but greater retention of retinal DNA and proteins following photooxidative damage. Rosemary enhanced the protective efficacy of AREDS and led to the greatest effect on the retinal genome in animals reared in high environmental light. Chronic administration of rosemary antioxidants may be a useful adjunct to the therapeutic benefit of AREDS in slowing disease progression in AMD.

  9. Evaluation of Daylight Intensity for Sustainbility in Residential Buildings in Cantonment Cottages Multan

    Directory of Open Access Journals (Sweden)

    SUMRA YOUSUF

    2017-07-01

    Full Text Available Day lighting is a useful and effective source of energy savings and visual comforts in buildings. Occupants expect good daylight in their living spaces for better living environment. The quality and quantity of natural light entering in to a building depend on both internal and external factors. Daylight strategies basically depend on the accessibility of natural light that is determined by the latitude of the building site and the conditions surrounding the building. Daylight provides lighting energy and energy demand reduction during peak utility hours. Bringing daylight into a building that displaces electric lighting and provides sufficient illumination is the greenest way to light a building presently. This research, aims at analyzing the daylight intensity in residential buildings in Cantonment Cottages Multan which is one of the hottest and progresse city of Pakistan. The intensity of daylight can be expressed in the terms of luminance and daylight factor. In this research, the 5 and 7 marla houses in Cantt Cottages in Multan were selected. The device lux meter was used for measuring intensity with which the brightness appears to the human eye. The readings were taken by placing Lux Meter at the center and near windows in each building component at 2-4 pm. Inorderto evaluate the daylight intensity, the measured luminance in each component of building is compared with the standard illuminance as per recommendation of CIBSE (Chartered Institute of Building Service Engineers. After investigation, it has been found that daylight factor is much higher than the standard values

  10. Quantum and classical correlations of intense beams of light investigated via joint photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Agliati, Andrea [Quanta System S.p.A., Via IV Novembre, 116-21058, Solbiate Olona (Vatican City State, Holy See,) (Italy); Bondani, Maria [INFM/CNR, Unita di Como (Italy); Andreoni, Alessandra [Dipartimento di Fisica e Matematica, Universita degli Studi dell' Insubria, Como (Italy); Cillis, Giovanni De [Dipartimento di Fisica dell' Universita di Milano (Italy); Paris, Matteo G A [Dipartimento di Fisica dell' Universita di Milano (Italy)

    2005-12-01

    We address joint photodetection as a method for discriminating between the classical correlations of a thermal beam divided by a beam splitter and the quantum entanglement of a twin beam obtained by parametric down-conversion. We show that for intense beams of light the detection of the difference photocurrent may be used, in principle, in order to reveal entanglement, while the simple measurement of the correlation coefficient is not sufficient. We have experimentally measured the correlation coefficient and the variance of the difference photocurrent for several classical and quantum states. Results are in good agreement with theoretical predictions taking into account the extra noise in the generated fields that is due to the pump laser fluctuations.

  11. Quantum and classical correlations of intense beams of light investigated via joint photodetection

    International Nuclear Information System (INIS)

    Agliati, Andrea; Bondani, Maria; Andreoni, Alessandra; Cillis, Giovanni De; Paris, Matteo G A

    2005-01-01

    We address joint photodetection as a method for discriminating between the classical correlations of a thermal beam divided by a beam splitter and the quantum entanglement of a twin beam obtained by parametric down-conversion. We show that for intense beams of light the detection of the difference photocurrent may be used, in principle, in order to reveal entanglement, while the simple measurement of the correlation coefficient is not sufficient. We have experimentally measured the correlation coefficient and the variance of the difference photocurrent for several classical and quantum states. Results are in good agreement with theoretical predictions taking into account the extra noise in the generated fields that is due to the pump laser fluctuations

  12. Higher coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Nagashima, Keisuke; Kawachi, Tetsuya

    2001-01-01

    X-ray lasers generated by an ultra short pulse laser have advantages such as monochromatic, short pulse duration, small beam divergence, high intensity, and coherence. Spatial coherence is most important for applications, we have investigated the transient collisional excitation (TCE) scheme x-ray laser lasing from Ne-like titanium (31.6 nm), Ne-like silver (13.9 nm) and tin (11.9 nm). However, the spatial coherence was not so good with this scheme. We have been studying to improve the spatial coherence of the x-ray laser and have proposed to use coherent seed light tuned to the x-ray laser wavelength generated from higher harmonics generation (HHG), which is introduced to the x-ray laser medium (Ne-like titanium, Ni-like silver plasmas). We present about the theoretical study of the coupling efficiency HHG light with x-ray laser medium. (author)

  13. Growth, physiological and biochemical responses of Camptotheca acuminata seedlings to different light environments

    Directory of Open Access Journals (Sweden)

    Xiaohua eMa

    2015-05-01

    Full Text Available Light intensity critically affects plant growth. Camptotheca acuminata is a light-demanding species, but its optimum light intensity is not known. To investigate the response of C. acuminata seedlings to different light intensities, specifically 100% irradiance (PAR, 1500±30 μmol m-2 s-1, 75% irradiance, 50% irradiance, and 25% irradiance, a pot experiment was conducted to analyze growth parameters, photosynthetic pigments, gas exchange, chlorophyll fluorescence, stomatal structure and density, chloroplast ultrastructure, ROS concentrations, and antioxidant activities. Plants grown under 75% irradiance had significantly higher total biomass, seedling height, ground diameter, photosynthetic capacity, photochemical efficiency and photochemical quenching than those grown under 100%, 25%, and 50% irradiance. Malondialdehyde (MDA content, relative electrolyte conductivity (REC, superoxide anion (O2.- production, and peroxide (H2O2 content were lower under 75% irradiance. The less pronounced plant growth under 100% and 25% irradiance was associated with a decline in photosynthetic capacity and photochemical efficiency, with increases in the activity of specific antioxidants (i.e., superoxidase dismutase, peroxidase, and catalase, and with increases in MDA content and REC. Lower levels of irradiance were associated with significantly higher concentrations of chlorophyll (Chl a and b and lower Chla/b ratios. Stomatal development was most pronounced under 75% irradiance. Modification of chloroplast development was found to be an important mechanism of responding to different light intensities in C. acuminata. The results indicated that 75% irradiance is optimal for the growth of C. acuminata seedlings. The improvement in C. acuminata growth under 75% irradiance was attributable to increased photosynthesis, less accumulation of ROS, and the maintenance of the stomatal and chloroplast structure.

  14. Higher Serum Levels of Free ĸ plus λ Immunoglobulin Light Chains Ameliorate Survival of Hemodialysis Patients

    DEFF Research Database (Denmark)

    Thilo, Florian; Caspari, Christina; Scholze, Alexandra

    2011-01-01

    Background/Aims: Impaired immune function is common in patients with chronic renal failure. Now, we determined whether serum levels of free immunoglobulin light chains predict mortality in patients with chronic kidney disease stage 5 on hemodialysis. Methods: We performed a prospective cohort study...... of 160 hemodialysis patients with a median follow-up of 15 months (interquartile range, 3-44 months). Serum levels of free κ and λ immunoglobulin light chains were measured at the start of the study. The primary end point was mortality from any cause. Results: In survivors, median serum levels of free κ...... plus λ immunoglobulin light chains were significantly higher compared with nonsurvivors (p light chains above the median compared with patients with serum levels below the median of 210 mg...

  15. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    Science.gov (United States)

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  16. Wii Fit U intensity and enjoyment in adults.

    Science.gov (United States)

    Tripette, Julien; Murakami, Haruka; Ando, Takafumi; Kawakami, Ryoko; Tanaka, Noriko; Tanaka, Shigeho; Miyachi, Motohiko

    2014-08-26

    The Wii Fit series (Nintendo Inc., Japan) provides active video games (AVGs) to help adults to maintain a sufficient level of daily physical activity (PA). The second generation of home AVG consoles is now emerging with new game modalities (including a portable mini screen in the case of the new Wii U). The present study was performed to investigate the intensity and enjoyment of Wii Fit U games among adults. Metabolic equivalent (METs, i.e., intensity) of the Wii Fit U activities were evaluated using metabolic chambers in 16 sedentary adults (8 women and 8 men). A short version of the physical activity enjoyment scale was completed for each activity. Wii Fit U activities were distributed over a range from 2.2  ±  0.4 METs (Hula dance) to 4.7  ±  1.2 (Hip-hop dance). Seven activities were classified as light-intensity PA (game modality does not induce higher METs. Men exercised at higher intensities than women. There was no correlation between enjoyment and MET values in women or men. More and more moderate-intensity activities are available through video gaming, but the average intensity (3.2  ±  0.6) is still low. Users should be aware that AVGs alone cannot fulfill the recommendations for PA, and the video games industry still must innovate further to enhance gaming intensity and make the tool more attractive to health and fitness professionals.

  17. The efficiency, energy intensity and visual impact of the accent lighting in the retail grocery stores

    Directory of Open Access Journals (Sweden)

    Ľudmila Nagyová

    2014-11-01

    Full Text Available Over the last few years, topics of displaying, presentation, lighting, energy saving and issues related to the environment while selling the fresh food (fruits, vegetable, bakery products, meat are becoming an important matter among traders. However, just bigger companies with transnational capital have devoted their attention to this issue yet. Generally, the energy costs make up 70% of operating costs in retail stores where the cooling system and lighting are the most energy consuming. Accent lighting in modern retails is largely involved in the overall design and atmosphere in shops and plays a crucial role in presenting the goods as well. Using of accent lighting can draw the customer's attention to a specific part of the sales area and achieve the overall harmonization in the store. With the rational using of combination of energy saving and effective accent lighting retailers can achieve not only attractive presentation of displayed products but also appreciable savings in the operation of their stores. It is the only factor that can be exactly measured and controlled. Using a Colour and Lux Meters we found out the intensity and color temperature of accent lighting used in domestic and foreign retail chains for the different kinds of fresh food products. Based on the obtained values we have compiled graphs, which are showing visual comfort. We also identified different types of accent lighting, which we assigned to their impact on emotional involvement of consumers. The starting points were the tests we conducted in simulated laboratory conditions. While searching of a compromise between effective and energy efficient accent lighting we take into consideration consumers' emotional response as well as the annual electricity consumption of different types of light sources. At the end we recommend options for energy-efficient, effective and spectacular lighting while using the optimal number of light sources and their logical organization

  18. Empirical Study of How Traffic Intensity Detector Parameters Influence Dynamic Street Lighting Energy Consumption: A Case Study in Krakow, Poland

    Directory of Open Access Journals (Sweden)

    Igor Wojnicki

    2018-04-01

    Full Text Available The deployment of dynamic street lighting, which adjusts lighting levels to fulfill particular needs, leads to energy savings. These savings contribute to the overall lighting infrastructure maintenance cost. Yet another contribution is the cost of traffic intensity data. The data is read directly from sensor systems or intelligent transportation systems (ITSs. The more frequent the readings are, the more costly they become, because of hardware capabilities, data transfer and software license costs, among others. The paper investigates a relationship between the frequency of readings, in particular the averaging window size and step, and achieved energy savings. It is based on a simulation, taking into account a representative part of a city and traffic intensity data, which span over a period of one year. While the energy consumption reduction is simulated, all data, including each luminaire power setting, induction loop locations and street characteristics, come from a representative sample of the city of Krakow, Poland. Controlling the power settings complies with the lighting standard CEN/TR 13201. Analysis of the outcomes indicates that the shorter the window size or step are, the more energy saving that is available. In particular, for the previous standard CEN/TR 13201 2004, having the window size and step at 15 min results in 26.75% of energy saving, while reducing these values to 6 min provides 27%. Savings are more profound for the current standard (CEN/TR 13201 2014, assuming a 15 min size and step results in 47.43%, while having a 6 min size and step provides 47.69%. The results can serve as a guideline for identifying the economic viability of dynamic lighting control systems. Additionally, it can be observed that the current lighting standard provides far greater potential for dynamic control then the previous standard.

  19. Individuals underestimate moderate and vigorous intensity physical activity.

    Directory of Open Access Journals (Sweden)

    Karissa L Canning

    Full Text Available BACKGROUND: It is unclear whether the common physical activity (PA intensity descriptors used in PA guidelines worldwide align with the associated percent heart rate maximum method used for prescribing relative PA intensities consistently between sexes, ethnicities, age categories and across body mass index (BMI classifications. OBJECTIVES: The objectives of this study were to determine whether individuals properly select light, moderate and vigorous intensity PA using the intensity descriptions in PA guidelines and determine if there are differences in estimation across sex, ethnicity, age and BMI classifications. METHODS: 129 adults were instructed to walk/jog at a "light," "moderate" and "vigorous effort" in a randomized order. The PA intensities were categorized as being below, at or above the following %HRmax ranges of: 50-63% for light, 64-76% for moderate and 77-93% for vigorous effort. RESULTS: On average, people correctly estimated light effort as 51.5±8.3%HRmax but underestimated moderate effort as 58.7±10.7%HRmax and vigorous effort as 69.9±11.9%HRmax. Participants walked at a light intensity (57.4±10.5%HRmax when asked to walk at a pace that provided health benefits, wherein 52% of participants walked at a light effort pace, 19% walked at a moderate effort and 5% walked at a vigorous effort pace. These results did not differ by sex, ethnicity or BMI class. However, younger adults underestimated moderate and vigorous intensity more so than middle-aged adults (P<0.05. CONCLUSION: When the common PA guideline descriptors were aligned with the associated %HRmax ranges, the majority of participants underestimated the intensity of PA that is needed to obtain health benefits. Thus, new subjective descriptions for moderate and vigorous intensity may be warranted to aid individuals in correctly interpreting PA intensities.

  20. Breaking Up Sitting with Light-Intensity Physical Activity: Implications for Shift-Workers

    Directory of Open Access Journals (Sweden)

    Grace E. Vincent

    2017-10-01

    Full Text Available Prolonged sitting, restricted sleep, and circadian disruption are all independent risk factors for non-communicable diseases. Previous research has demonstrated that breaking up sitting with light-intensity physical activity has clear benefits for the health of day workers, but these findings may not apply in the presence of sleep restriction and/or circadian disruption—both of which are commonly experienced by shift-workers. Specifically, sleep restriction, and circadian disruption result in acute physiological changes that may offset the benefits of breaking up sitting. This commentary will explore the potential benefits of breaking up sitting for health, work performance, and subsequent sleep in shift-workers. Future areas of research designed to understand the mechanisms by which prolonged sitting and shift work impact worker health and safety and to support the design of effective occupational health and safety interventions are proposed.

  1. Valuation of the light intensity from curing lamps of the students of odontology of the Universidad de Costa Rica during 2011, with respect to the manufacturer's specifications

    International Nuclear Information System (INIS)

    Solano Badilla, Lucrecia

    2011-01-01

    The behavior of the light intensity from halogens curing lamps used by students at the Facultad de Odontologia of the Universidad de Costa Rica (UCR) is studied with respect to the manufacturer's specifications of the lamp and the resin. The distribution of the type of curing lamp per student is described, as well as some characteristics of them. The light intensity mW/cm 2 of the curing lamps operated by students at the Facultad de Odontologia is compared with the manufacturer's specifications of the lamp. The light intensity mW/cm 2 is compared with the manufacturer's specifications of the resin utilized, by brand, by students of the Facultad de Odontologia of the UCR for their photopolymerization [es

  2. Higher-twist effects in the B → π transition form factor from QCD light-cone sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Khodjamirian, Alexander; Rusov, Aleksey [Universitaet Siegen (Germany). Fakultaet IV, Department Physik, Theoretische Physik 1 Walter-Flex-Strasse 3 57068 Siegen

    2016-07-01

    I report on the progress in calculating new higher-twist corrections to the QCD light-cone sum rule for the B → π transition form factor. First, the expansion of the massive heavy-quark propagator in the external gluonic field near the light-cone was extended to include new terms containing the gluon-field strength derivatives. The resulting analytical expressions for the twist-5 and twist-6 contributions to the correlation function were obtained in a factorized approximation, expressed via the product of the quark-condensate density and the lower-twist pion distribution amplitudes. The numerical analysis of new higher-twist effects is in progress.

  3. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources

    Directory of Open Access Journals (Sweden)

    Jacques Lalevée

    2015-04-01

    Full Text Available Photoinitiators (PI or photoinitiating systems (PIS usable in light induced cationic polymerization (CP and free radical promoted cationic polymerization (FRPCP reactions (more specifically for cationic ring opening polymerization (ROP together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  4. Evaluation of the Safety and Effectiveness of Intense Pulsed Light in the Treatment of Meibomian Gland Dysfunction

    Directory of Open Access Journals (Sweden)

    Xiaodan Jiang

    2016-01-01

    Full Text Available Purpose. This study aims to explore the safety and efficacy of a novel treatment-intense pulsed light (IPL in MGD eyes. Methods. This study is a prospective and open label study. Forty eyes of 40 MGD patients were recruited in the study and received 4 consecutive IPL treatments on day 1, day 15, day 45, and day 75. Ten ocular surface symptoms were evaluated with a subjective face score at every visit. Best spectacle corrected visual acuity, intraocular pressure (IOP, conjunctival injection, upper and lower tear meniscus height (TMH, tear break-up time (TBUT, corneal staining, lid margin and meibomian gland assessments, and meibography were also recorded at every visit, as well as the adverse effects on the eye and ocular surface. Results. Significant improvements were observed in single and total ocular surface symptom scores, TBUT, and conjunctival injection at all the visits after the initial IPL treatment (P<0.05. Compared to baseline, the signs of eyelid margin, meibomian gland secretion quality, and expressibility were significantly improved at every visit after treatments. There was no regional and systemic threat observed in any patient. Conclusion. Intense pulsed light (IPL therapy is a safe and efficient treatment in relieving symptoms and signs of MGD eyes.

  5. Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors.

    Science.gov (United States)

    Bonnineau, Chloé; Sague, Irene Gallardo; Urrea, Gemma; Guasch, Helena

    2012-05-01

    In multiple stress situations, the co-occurrence of environmental and chemical factors can influence organisms' ability to cope with toxicity. In this context, the influence of light adaptation on the response of freshwater biofilms to sudden light changes or to herbicides exposure was investigated by determining various parameters: diatom community composition, photosynthetic parameters, chlorophyll a content, antioxidant enzyme activities. Biofilms were grown in microcosms under sub-optimal, saturating, and high light intensities and showed already described characteristics of shade/light adaptation (community structure, photosynthetic adaptation, etc.). Light history modulated antioxidant and photosynthetic responses of biofilms to the stress caused by short-term exposure to sudden light changes or to herbicides. First biofilms adapted to sub-optimal light intensity (shade-adapted) were found to be more sensitive to an increase in light intensity than high-light adapted ones to a reduction in light intensity. Second, while light history influenced biofilms' response to glyphosate, it had little influence on biofilms' response to copper and none on its response to oxyfluorfen. Indeed glyphosate exposure led to a stronger decrease in photosynthetic efficiency of shade-adapted biofilms (EC(50) = 11.7 mg L(-1)) than of high-light adapted communities (EC(50) = 35.6 mg L(-1)). Copper exposure led to an activation of ascorbate peroxidase (APX) in biofilms adapted to sub-optimal and saturating light intensity while the protein content decreased in all biofilms exposed to copper. Oxyfluorfen toxicity was independent of light history provoking an increase in APX activity. In conclusion this study showed that both previous exposure to contaminants and physical habitat characteristics might influence community tolerance to disturbances strongly.

  6. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius "Diabolo".

    Science.gov (United States)

    Zhang, Huihui; Zhong, Haixiu; Wang, Jifeng; Sui, Xin; Xu, Nan

    2016-01-01

    The present study aims to investigate the differences in leaf pigment content and the photosynthetic characteristics under natural and low light intensities between the Chinese native Physocarpus amurensis Maxim and the imported Physocarpus opulifolius "Diabolo" from North America. We aim to discuss the responses and the adaptive mechanism of these two cultivars of Physocarpus to a low light environment. The results show that the specific leaf area (SLA) and the chlorophyll content were significantly increased in the leaves of both Physocarpus cultivars in response to a low light intensity, and the SLA and chlorophyll content were higher in the leaves of low light-treated P. opulifolius "Diabolo" compared with the leaves of low light-treated P. amurensis Maxim. Moreover, the content of anthocyanin was markedly reduced in the leaves of P. opulifolius "Diabolo" under low light intensity, which allowed for a greater capacity of photon capture under the low light condition. Under natural light, the photosynthetic carbon assimilation capacity was greater in the leaves of P. amurensis Maxim compared with the leaves of P. opulifolius "Diabolo" that were rich with anthocyanin. However, in response to low light, AQY, P max, LCP and LSP decreased to a lesser extent in the leaves of P. opulifolius "Diabolo" compared with the leaves of P. amurensis Maxim. These results suggest that P. opulifolius "Diabolo" exhibits a greater ability in adaption to low light, and it is probably related to the relatively higher chlorophyll content and the smaller SLA in the leaves of P. opulifolius "Diabolo." In addition, the low light intensity resulted in a reduced photochemical activity of photosystem (PS) II in the leaves of both Physocarpus, as evidenced by increased values of the relative variable fluorescence at point J and point I on the OJIP curve. This result suggests that the electron acceptor in PS II was the major responsive site to the low light stress in the leaves of both

  7. Hematoporphyrin-sensitized degradation of deoxyribose and DNA in high intensity near-UV picosecond pulsed laser photolysis

    International Nuclear Information System (INIS)

    Gantchev, T.G.; Lier, J.E. van; Grabner, G.; Keskinova, E.; Angelov, D.

    1995-01-01

    The photosensitized degradation of deoxyribose and DNA, using hematoporphyrin (HP) and picosecond laser pulses at high intensities was studied. Aldehyde formation from 2-deoxy-D-ribose and long-chain double-stranded DNA, when analyzed as a function of light intensity, followed a non-linear dependence, suggesting the involvement of multiphoton light absorption by HP. The degradation mechanism was studied by analysis of the yield dependence on excitation intensity and the effect of added radical scavengers. The participation of OH radicals in the degradation process was confirmed by spin trapping techniques. At low light intensities, added N 2 O largely increased product formation, suggesting that HP photoionization predominates under these conditions. At higher intensities (I ≥ 3 GW/cm 2 ) the product yield was not affected by N 2 O which, combined with spin trapping data, suggested that OH radical formation occurred, but that neither HP photoionization nor peroxy formation was involved. Single and double strand breaks in supercoiled plasmid DNA (pBR 322) confirmed the generation of OH or OH-like radicals during high-intensity excitation of HP. A mechanism involving a multistep excitation of HP, followed by resonance energy transfer to H 2 O resulting in dissociation to yield OH and H atoms, is proposed. (author)

  8. Exercise Intensity and Incidence of Metabolic Syndrome: The SUN Project.

    Science.gov (United States)

    Hidalgo-Santamaria, María; Fernandez-Montero, Alejandro; Martinez-Gonzalez, Miguel A; Moreno-Galarraga, Laura; Sanchez-Villegas, Almudena; Barrio-Lopez, María T; Bes-Rastrollo, Maira

    2017-04-01

    Emerging evidence suggests that vigorous physical activity may be associated with higher cardioprotective benefits than moderate physical activity. This study aimed to assess the long-term relationship between the intensity of leisure time physical activity (LTPA) and the risk of developing metabolic syndrome (MS) in a prospective cohort study. The Seguimiento Universidad de Navarra (SUN) Project comprises Spanish university graduates. Participants (n=10,145) initially free of MS were followed for a minimum of 6 years (2008-2014). Analysis was conducted in 2015. Physical activity was assessed though a validated questionnaire. The intensity of each physical activity was measured in METs. The intensity of LTPA was estimated by the ratio between total METs/week and total hours of LTPA/week, obtaining the mean METs/hour of LTPA. MS was defined according to the harmonizing definition. The association between the intensity of LTPA (METs/hour) and MS was assessed with logistic regression models adjusting for potential confounders. Among 10,145 participants initially free of any MS criteria, 412 new MS cases were observed. Vigorous LTPA was associated with a 37% relatively lower risk (AOR=0.63, 95% CI=0.44, 0.89) compared with light LTPA. For a given total energy expenditure, independent of the time spent on it, participants who performed vigorous LTPA exhibited a higher reduction in the risk of MS than those who performed light to moderate LTPA. Vigorous LTPA was significantly associated with lower risk of developing MS after a 6-year follow-up period. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Objective and subjective measures of exercise intensity during thermo-neutral and hot yoga.

    Science.gov (United States)

    Boyd, Corinne N; Lannan, Stephanie M; Zuhl, Micah N; Mora-Rodriguez, Ricardo; Nelson, Rachael K

    2018-04-01

    While hot yoga has gained enormous popularity in recent years, owing in part to increased environmental challenge associated with exercise in the heat, it is not clear whether hot yoga is more vigorous than thermo-neutral yoga. Therefore, the aim of this study was to determine objective and subjective measures of exercise intensity during constant intensity yoga in a hot and thermo-neutral environment. Using a randomized, crossover design, 14 participants completed 2 identical ∼20-min yoga sessions in a hot (35.3 ± 0.8 °C; humidity: 20.5% ± 1.4%) and thermo-neutral (22.1 ± 0.2 °C; humidity: 27.8% ± 1.6%) environment. Oxygen consumption and heart rate (HR) were recorded as objective measures (percentage of maximal oxygen consumption and percentage of maximal HR (%HRmax)) and rating of perceived exertion (RPE) was recorded as a subjective measure of exercise intensity. There was no difference in exercise intensity based on percentage of maximal oxygen consumption during hot versus thermo-neutral yoga (30.9% ± 2.3% vs. 30.5% ± 1.8%, p = 0.68). However, exercise intensity was significantly higher during hot versus thermo-neutral yoga based on %HRmax (67.0% ± 2.3% vs. 60.8% ± 1.9%, p = 0.01) and RPE (12 ± 1 vs. 11 ± 1, p = 0.04). According to established exercise intensities, hot yoga was classified as light-intensity exercise based on percentage of maximal oxygen consumption but moderate-intensity exercise based on %HRmax and RPE while thermo-neutral yoga was classified as light-intensity exercise based on percentage of maximal oxygen uptake, %HRmax, and RPE. Despite the added hemodynamic stress and perception that yoga is more strenuous in a hot environment, we observed similar oxygen consumption during hot versus thermo-neutral yoga, classifying both exercise modalities as light-intensity exercise.

  10. Bumblebees perform well-controlled landings in dim light

    Directory of Open Access Journals (Sweden)

    Therese Reber

    2016-09-01

    Full Text Available To make a smooth touchdown when landing, an insect must be able to reliably control its approach speed as well as its body and leg position – behaviors that are thought to be regulated primarily by visual information. Bumblebees forage and land under a broad range of light intensities and while their behavior during the final moments of landing has been described in detail in bright light, little is known about how this is affected by decreasing light intensity. Here, we investigate this by characterizing the performance of bumblebees, B. terrestris, landing on a flat platform at two different orientations (horizontal and vertical and at four different light intensities (ranging from 600 lx down to 19 lx. As light intensity decreased, the bees modified their body position and the distance at which they extended their legs, suggesting that the control of landing in these insects is visually mediated. Nevertheless, the effect of light intensity was small and the landings were still well controlled, even in the dimmest light. We suggest that the changes in landing behavior that occurred in dim light might represent adaptations that allow the bees to perform smooth landings across the broad range of light intensities at which they are active.

  11. Bumblebees Perform Well-Controlled Landings in Dim Light.

    Science.gov (United States)

    Reber, Therese; Dacke, Marie; Warrant, Eric; Baird, Emily

    2016-01-01

    To make a smooth touchdown when landing, an insect must be able to reliably control its approach speed as well as its body and leg position-behaviors that are thought to be regulated primarily by visual information. Bumblebees forage and land under a broad range of light intensities and while their behavior during the final moments of landing has been described in detail in bright light, little is known about how this is affected by decreasing light intensity. Here, we investigate this by characterizing the performance of bumblebees, B. terrestris, landing on a flat platform at two different orientations (horizontal and vertical) and at four different light intensities (ranging from 600 lx down to 19 lx). As light intensity decreased, the bees modified their body position and the distance at which they extended their legs, suggesting that the control of landing in these insects is visually mediated. Nevertheless, the effect of light intensity was small and the landings were still well controlled, even in the dimmest light. We suggest that the changes in landing behavior that occurred in dim light might represent adaptations that allow the bees to perform smooth landings across the broad range of light intensities at which they are active.

  12. Case histories of intense pulsed light phototherapy in dermatology - the HPPL™ and IFL™ technologies

    Directory of Open Access Journals (Sweden)

    Alessandro Martella

    2017-06-01

    Full Text Available The intense pulsed light (IPL and laser technologies are widely used for skin rejuvenation and for treating several dermatological disorders such as skin dyschromia and acne, and for non-ablative dermal remodeling of rhytides and hypertrophic scars. Technological evolution is rapid. The High Power Pulsed Light™ [HPPL™] and Incoherent Fast Light™ technologies [IFL™, Novavision Group S.p.A., 20826 Misinto (MB, Italy] are recent innovations in the field of IPL technologies; IFL™ is a further evolution of the already advanced HPPL™ system. The paper presents a selection of case histories of dermatological lesions treated with the HPPL™ and IFL™ technologies. All study materials were appropriately peer-reviewed for ethical problems.

  13. A Systematic Review of the Energy Cost and Metabolic Intensity of Yoga.

    Science.gov (United States)

    Larson-Meyer, D Enette

    2016-08-01

    With the increasing popularity of Hatha yoga, it is important to understand the energy cost and METs of yoga practice within the context of the American College of Sports Medicine (ACSM) and the American Heart Association (AHA) physical activity guidelines. This systematic review evaluated the energy cost and metabolic intensity of yoga practice including yoga asanas (poses/postures) and pranayamas (breath exercises) measured by indirect calorimetry. The English-speaking literature was surveyed via PubMed using the general terms "yoga" and "energy expenditure" with no date limitations. Thirteen manuscripts were initially identified with an additional four located from review of manuscript references. Of the 17 studies, 10 evaluated the energy cost and METs of full yoga sessions or flow through Surya Namaskar (sun salutations), eight of individual asanas, and five of pranayamas. METs for yoga practice averaged 3.3 ± 1.6 (range = 1.83-7.4 METs) and 2.9 ± 0.8 METs when one outlier (i.e., 7.4 METs for Surya Namaskar) was omitted. METs for individual asanas averaged 2.2 ± 0.7 (range = 1.4-4.0 METs), whereas that of pranayamas was 1.3 ± 0.3. On the basis of ACSM/AHA classification, the intensity of most asanas and full yoga sessions ranged from light (less than 3 METs) to moderate aerobic intensity (3-6 METs), with the majority classified as light intensity. This review suggests that yoga is typically classified as a light-intensity physical activity. However, a few sequences/poses, including Surya Namaskar, meet the criteria for moderate- to vigorous-intensity activity. In accordance with the ACSM/AHA guidelines, the practice of asana sequences with MET intensities higher than three (i.e., >10 min) can be accumulated throughout the day and count toward daily recommendations for moderate- or vigorous-intensity physical activity.

  14. High-intensity sources for light ions

    International Nuclear Information System (INIS)

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H + and H - beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented

  15. Risk-associated health disorders occuring in junior schoolchildren who attend schools with higher stress and intensity of educational process

    Directory of Open Access Journals (Sweden)

    N.V. Zaitseva

    2017-03-01

    Full Text Available We performed comparative sanitary-hygienic assessment of regime, stress and intensity of educational process in different educational establishments, a comprehensive secondary school and an innovative educational establishment - lyceum. We detected that studying regime tended to be tight, classes were longer and more intense than in an ordinary school, and educational process involved considerable intellectual, sensory and emotional loads for children; such loads reached "1st category intense" level. Schoolchildren attending lyceums are also busy with additional educational programs and it significantly increases length of total educational load on them. By the end of a school year 20% of lyceum pupils suffer from sympathoadrenal system overstress and it doesn't only determine emotional tonus level in children but also leads to disorders in concentration and decision-making speed, lower reading speed and articulation, slower motor reactions. 15% of lyceum pupils have higher activity of autonomous nervous system and lower adaptation of cardiovascular system to psycho emotional and physical loads. Lyceum pupils also run 2.5 times higher risk of chronic nervous system diseases evolvement than school children attending ordinary schools. Autonomous nervous system disorders, posture disorders and nutrition disorders are predominant nosologic pathology forms in lyceum pupils as they occur in them 1.6-2.9 times more frequent than in schoolchildren of the same age who attend an ordinary comprehensive school. We detected direct correlation between higher intellectual and emotional components of educational process, and total educational intensity as well, and frequency of autonomous system disorders and musculoskeletal system diseases in pupils.

  16. Selection of full-sib families of Panicum maximum Jacq under low light conditions

    Directory of Open Access Journals (Sweden)

    Douglas Mochi Victor

    2015-04-01

    Full Text Available The silvopastoral system is a viable technological alternative to extensive cattle grazing, however, for it to be successful, forage grass genotypes adapted to reduced light need to be identified. The objective of this study was to select progenies of Panicum maximum tolerant to low light conditions for use in breeding programs and to study the genetic control and performance of some traits associated with shade tolerance. Six full-sib progenies were evaluated in full sun, 50% and 70% of light reduction in pots and subjected to cuttings. Progeny genotypic values ​​(GV increased with light reduction in relation to plant height (H and specific leaf area (SLA. The traits total dry mass accumulation (DM and leaf dry mass accumulation (LDM had GV higher in 50% shade and intermediate in 70% shade. The GV of tiller number (TIL and root dry mass accumulation (RDM decreased with light reduction. The highest positive correlations were obtained for the traits H and RDM with SLA and DM; the highest negative correlations were between TIL and SLA and RDM, and H and LDM. The progenies showed higher tolerance to 50% light reduction and, among them, two stood out and will be used in breeding programs. It was also found that it is not necessary to evaluate some traits under all light conditions. All traits had high broad sense heritability and high genotypic correlation between progenies in all light intensities. There is genetic difference among the progenies regarding the response to different light intensities, which will allow selection for shade tolerance

  17. Continuous ultra-low-intensity artificial daylight is not as effective as red LED light in photodynamic therapy of multiple actinic keratoses

    DEFF Research Database (Denmark)

    Wiegell, Stine Regin; Heydenreich, Jakob; Fabricius, Susanne

    2011-01-01

    Daylight-mediated photodynamic therapy (PDT) is a simple and tolerable treatment of nonmelanoma skin cancer. It is of interest which light intensity is sufficient to prevent accumulation of protoporphyrin IX (PpIX) and effectively treat actinic keratoses (AKs). We compared the efficacy of PDT...

  18. Influence of inlet concentration and light intensity on the photocatalytic oxidation of nitrogen(II) oxide at the surface of Aeroxide® TiO2 P25

    International Nuclear Information System (INIS)

    Dillert, Ralf; Stötzner, Julia; Engel, Astrid; Bahnemann, Detlef W.

    2012-01-01

    Highlights: ► The photocatalytic oxidation of nitrogen(II) oxide at the TiO 2 surface was studied. ► The effect of the UV(A) light intensity on the reaction rate was evaluated. ► The effect of the NO concentration on the reaction rate was evaluated. ► A mechanistic model for the heterogeneous NO oxidation is presented. ► A rate law describing the influence of NO concentration and light intensity is given. - Abstract: Air pollution by nitrogen oxides represents a serious environmental problem in urban areas where numerous sources of these pollutants are concentrated. One approach to reduce the concentration of these air pollutants is the light-induced oxidation in the presence of molecular oxygen and a photocatalytically active building material, e.g., paints, roof tiles, or pavement stones. Herein, results of an investigation concerning the photocatalytic oxidation of nitrogen(II) oxide (NO) in the presence of molecular oxygen and UV(A) irradiated TiO 2 powder are presented. The standard operating procedure described in ISO 22197-1 which was developed to characterize the photocatalytic activity of air-cleaning products was successfully applied to determine the photocatalytic activity of a bare TiO 2 powder. The experimental data reveal that at the light intensity stipulated by the operation procedure the amount of NO removed from the gas phase by photocatalytic oxidation is strongly affected by small changes of this light intensity as well as of the NO concentration in the gas stream in the photoreactor. Therefore, these parameters have to be controlled very carefully. Based upon the experimental data obtained in this study a rate law for the photocatalytic NO oxidation inside the photoreactor is derived.

  19. An intervention to reduce sitting and increase light-intensity physical activity at work: Design and rationale of the 'Stand & Move at Work' group randomized trial.

    Science.gov (United States)

    Buman, Matthew P; Mullane, Sarah L; Toledo, Meynard J; Rydell, Sarah A; Gaesser, Glenn A; Crespo, Noe C; Hannan, Peter; Feltes, Linda; Vuong, Brenna; Pereira, Mark A

    2017-02-01

    American workers spend 70-80% of their time at work being sedentary. Traditional approaches to increase moderate-vigorous physical activity (MVPA) may be perceived to be harmful to productivity. Approaches that target reductions in sedentary behavior and/or increases in standing or light-intensity physical activity [LPA] may not interfere with productivity and may be more feasible to achieve through small changes accumulated throughout the workday METHODS/DESIGN: This group randomized trial (i.e., cluster randomized trial) will test the relative efficacy of two sedentary behavior focused interventions in 24 worksites across two states (N=720 workers). The MOVE+ intervention is a multilevel individual, social, environmental, and organizational intervention targeting increases in light-intensity physical activity in the workplace. The STAND+ intervention is the MOVE+ intervention with the addition of the installation and use of sit-stand workstations to reduce sedentary behavior and enhance light-intensity physical activity opportunities. Our primary outcome will be objectively-measured changes in sedentary behavior and light-intensity physical activity over 12months, with additional process measures at 3months and longer-term sustainability outcomes at 24months. Our secondary outcomes will be a clustered cardiometabolic risk score (comprised of fasting glucose, insulin, triglycerides, HDL-cholesterol, and blood pressure), workplace productivity, and job satisfaction DISCUSSION: This study will determine the efficacy of a multi-level workplace intervention (including the use of a sit-stand workstation) to reduce sedentary behavior and increase LPA and concomitant impact on cardiometabolic health, workplace productivity, and satisfaction. ClinicalTrials.gov Identifier: NCT02566317 (date of registration: 10/1/2015). Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Evaluation of effect of different disposable infection control barriers on light intensity of light-curing unit and microhardness of composite - An in vitro study.

    Science.gov (United States)

    Khode, Rajiv Tarachand; Shenoi, Pratima Ramakrishna; Kubde, Rajesh R; Makade, Chetana S; Wadekar, Kanchan D; Khode, Priyanka Tarachand

    2017-01-01

    This study evaluated effect of infection control barriers on light intensity (LI) of light-curing unit (LCU) and microhardness of composite. Four different disposable barriers ( n = 30) were tested against the control. LI for each barrier was measured with Lux meter. One hundred and fifty Teflon molds were equally divided into five groups of thirty each. Composite was filled in bulk in these molds and cured without and with barrier. Microhardness was evaluated on top and bottom surface of composite specimen with microhardness testing machine and hardness ratio (HR) was derived. One-way analysis of variance, Tukey's honestly significant difference test, and paired t -test using SPSS version 18 software. All barriers had significantly reduced the baseline LI of LCU ( P glove pieces (LCGP) significantly reduced the microhardness of the composite ( P < 0.05). However, HR determined inadequate curing only with LCGP. Although entire tested barrier significantly reduced the LI; none, except LCGP markedly affected the degree of cure of the composite.

  1. Evaluation of daylight intensity for sustainbility in residential buildings in cantonment cottages multan

    International Nuclear Information System (INIS)

    Yousuf, S.; Maqsood, S.

    2017-01-01

    Day lighting is a useful and effective source of energy savings and visual comforts in buildings. Occupants expect good daylight in their living spaces for better living environment. The quality and quantity of natural light entering in to a building depend on both internal and external factors. Daylight strategies basically depend on the accessibility of natural light that is determined by the latitude of the building site and the conditions surrounding the building. Daylight provides lighting energy and energy demand reduction during peak utility hours. Bringing daylight into a building that displaces electric lighting and provides sufficient illumination is the greenest way to light a building presently. This research, aims at analyzing the daylight intensity in residential buildings in Cantonment Cottages Multan which is one of the hottest and progresse city of Pakistan. The intensity of daylight can be expressed in the terms of luminance and daylight factor. In this research, the 5 and 7 marla houses in Cantt Cottages in Multan were selected. The device lux meter was used for measuring intensity with which the brightness appears to the human eye. The readings were taken by placing Lux Meter at the center and near windows in each building component at 2-4 pm. In order to evaluate the daylight intensity, the measured luminance in each component of building is compared with the standard illuminance as per recommendation of CIBSE (Chartered Institute of Building Service Engineers). After investigation, it has been found that daylight factor is much higher than the standard values as per recommended by CIBSE. The design parameters including building orientation, glazing area, room size to window opening ratio etc. is not appropriate with respect to sustainable design. (author)

  2. In-office dental bleaching with light vs. without light: A systematic review and meta-analysis.

    Science.gov (United States)

    Maran, Bianca Medeiros; Burey, Adrieli; de Paris Matos, Thalita; Loguercio, Alessandro D; Reis, Alessandra

    2018-03-01

    A systematic review and meta-analysis were performed to answer the following research question: Does light-activated in-office vital bleaching have a greater whitening efficacy and higher tooth sensitivity (TS) in comparison with in-office vital bleaching without light when used in adults? Only randomized clinical trials (RCTs) involving adults who had in-office bleaching with and without light activation were included. Controlled vocabulary and keywords were used in a comprehensive search for titles and abstracts in PubMed, and this search was adapted for Scopus, Web of Science, LILACS, BBO, Cochrane Library, and SIGLE without restrictions in May 2016 and was updated in August 2017. IADR abstracts (1990-2016), unpublished- and ongoing-trial registries, dissertations, and theses were also searched. The risk-of-bias tool of the Cochrane Collaboration was used for quality assessment. The quality of the evidence was rated using the Grading of Recommendations: Assessment, Development, and Evaluation approach. Through the use of the random effects model, a meta-analysis with a subgroup analysis (low and high hydrogen peroxide concentration) was conducted for color change (ΔE*, ΔSGU) as well as the risk and intensity of TS. We retrieved 6663 articles, but after removing duplicates and non-relevant articles, only 21 RCTs remained. No significant difference in ΔE*, ΔSGU, and risk and intensity of TS was observed (p > .05). For ΔE and risk of TS, the quality of the evidence was graded as moderate whereas the evidence for ΔSGU and intensity of TS was graded as very low and low, respectively. Without considering variations in the protocols, the activation of in-office bleaching gel with light does not seem to improve color change or affect tooth sensitivity, regardless of the hydrogen peroxide concentration. (PROSPERO - CRD42016037630). Although it is commercially claimed that in-office bleaching associated with light improves and accelerates color change, this

  3. The latest from the LHC : Training for higher intensities

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Three weeks of intense machine development were brought to a satisfactory conclusion on the night of 21 September with the final validation of the machine protection systems for operation with bunch trains. The machine is now ready to accept more and more trains of bunches.   On Wednesday 22 September, the first physics fill was made using bunch trains, with 3 trains of 8 bunches per beam, providing 16 pairs of colliding bunches per experiment. This fill was used to restart operation for physics both for the machine and for the experiments. On Thursday, the number of bunches was increased to 56 per beam, providing 47 colliding pairs at Points 1, 5 and 8, and a smaller number at Point 2 to meet the requirements of ALICE. This is roughly the same intensity that we had in the machine in August. The first fill made under these conditions, fill 1366, brought an unexpected bonus. Bunches of nominal intensity were injected into the LHC with a smaller than usual transverse size, which was expected to cau...

  4. Emotion differentiation and intensity during acute tobacco abstinence: A comparison of heavy and light smokers.

    Science.gov (United States)

    Sheets, Erin S; Bujarski, Spencer; Leventhal, Adam M; Ray, Lara A

    2015-08-01

    The ability to recognize and label discrete emotions, termed emotion differentiation, is particularly pertinent to overall emotion regulation abilities. Patterns of deficient emotion differentiation have been associated with mood and anxiety disorders but have yet to be examined in relation to nicotine dependence. This study employed ecological momentary assessment to examine smokers' subjective experience of discrete emotions during 24-h of forced tobacco abstinence. Thirty daily smokers rated their emotions up to 23 times over the 24-hour period, and smoking abstinence was biologically verified. From these data, we computed individual difference measures of emotion differentiation, overall emotion intensity, and emotional variability. As hypothesized, heavy smokers reported poorer negative emotion differentiation than light smokers (d=0.55), along with more intense negative emotion (d=0.97) and greater negative emotion variability (d=0.97). No differences were observed in positive emotion differentiation. Across the sample, poorer negative emotion differentiation was associated with greater endorsement of psychological motives to smoke, including negative and positive reinforcement motives, while positive emotion differentiation was not. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of light intensity on growth, anatomy and forage quality of two tropical grasses (Brachiaria brizantha and Panicum maximum var. trichoglume).

    NARCIS (Netherlands)

    Deinum, B.; Sulastri, R.D.; Zeinab, M.H.J.; Maassen, A.

    1996-01-01

    Effects of light intensity on growth, histology and anatomy, and nutritive value were studied in seedlings of two shade tolerant species: Brachiaria brizantha and Panicum maximum var. trichoglume. They were studied under greenhouse conditions in pots with sandy soil and sufficient N and cut after a

  6. Associations of low-intensity light physical activity with physical performance in community-dwelling elderly Japanese: A cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Kazuhiro P Izawa

    Full Text Available Physical activity and physical performance relate to quality of life, mortality, and morbidity in elderly people. However, little is known about differences in physical performance related to low-intensity light physical activity (LLPA, high-intensity light physical activity (HLPA, and moderate-intensity physical activity (MPA and how they are separated by sex in elderly populations.This study aimed to determine differences in LLPA, HLPA, MPA, and physical performance, and associations between these measures in community-dwelling elderly men and women.Physical activity and physical performance such as timed-up-and-go test, one-leg standing time, and maximum gait speed were measured in 181 community-dwelling elderly men (mean age, 75.1 ± 5.3 years and 109 women (mean age, 73.4 ± 4.8 years in 2013. Physical activity was classified as LLPA (1.6~1.9 METs of physical activity, HLPA (2.0~2.9 METs of physical activity, and MPA (over 3 METs of physical activity. The association between the values of these three intensities of physical activity in the participants was assessed by Pearson's correlation coefficients. Multiple linear regression analyses were used to assess the association of physical performance values with the three groups defined by accelerometer-measured physical activity intensity adjusted for sociographic, behavioral, and multiple diseases in the participants.MPA was beneficially associated with all physical performance indicators in the men (all P<0.05 and women (all P<0.05. Only HLPA showed significant associations with the timed-up-and-go test (P = 0.001 and maximum gait speed (P = 0.006 in women.These results may support the notion that not only HLPA in women but MPA in both sexes appears to improve physical performance in elderly populations.The present study findings provide novel epidemiological evidence for the potential benefits of HLPA in women and also reinforce the potential benefits of MPA in both sexes, which is the

  7. Comparative Phenotypical and Molecular Analyses of Arabidopsis Grown under Fluorescent and LED Light

    Directory of Open Access Journals (Sweden)

    Franka Seiler

    2017-06-01

    Full Text Available Comparative analyses of phenotypic and molecular traits of Arabidopsis thaliana grown under standardised conditions is still a challenge using climatic devices supplied with common light sources. These are in most cases fluorescent lights, which have several disadvantages such as heat production at higher light intensities, an invariable spectral output, and relatively rapid “ageing”. This results in non-desired variations of growth conditions and lowers the comparability of data acquired over extended time periods. In this study, we investigated the growth behaviour of Arabidopsis Col0 under different light conditions, applying fluorescent compared to LED lamps, and we conducted physiological as well as gene expression analyses. By changing the spectral composition and/or light intensity of LEDs we can clearly influence the growth behaviour of Arabidopsis and thereby study phenotypic attributes under very specific light conditions that are stable and reproducible, which is not necessarily given for fluorescent lamps. By using LED lights, we can also roughly mimic the sun light emission spectrum, enabling us to study plant growth in a more natural-like light set-up. We observed distinct growth behaviour under the different light regimes which was reflected by physiological properties of the plants. In conclusion, LEDs provide variable emission spectra for studying plant growth under defined, stable light conditions.

  8. High Output LED-Based Profile Lighting Fixture

    DEFF Research Database (Denmark)

    Török, Lajos; Beczkowski, Szymon; Munk-Nielsen, Stig

    2011-01-01

    Recent developments in power light emitting diode (LED) industry have made LEDs suitable for being efficiently used in high intensity lighting fixtures instead of the commonly used high intensity discharge (HID) lamps. A high output LEDbased profile-light fixture is presented in this paper...

  9. Controlling Light Harvesting with Light

    NARCIS (Netherlands)

    Gwizdala, M.S.; Berera, R.; Kirilovsky, D.; van Grondelle, R.; Kruger, T.P.J.

    2016-01-01

    When exposed to intense sunlight, all organisms performing oxygenic photosynthesis implement various photoprotective strategies to prevent potentially lethal photodamage. The rapidly responding photoprotective mechanisms, occurring in the light-harvesting pigment-protein antennae, take effect within

  10. Efficacy of 670 nm Light Therapy to Protect against Photoreceptor Cell Death Is Dependent on the Severity of Damage

    Directory of Open Access Journals (Sweden)

    Joshua A. Chu-Tan

    2016-01-01

    Full Text Available Photobiomodulation at a wavelength of 670 nm has been shown to be effective in preventing photoreceptor cell death in the retina. We treated Sprague-Dawley (SD rats with varying doses of 670 nm light (9; 18; 36; 90 J/cm2 before exposing them to different intensities of damaging white light (750; 1000; 1500 lux. 670 nm light exhibited a biphasic response in its amelioration of cell death in light-induced degeneration in vivo. Lower light damage intensities required lower doses of 670 nm light to reduce TUNEL cell death. At higher damage intensities, the highest dose of 670 nm light showed protection. In vitro, the Seahorse XFe96 Extracellular Flux Analyzer revealed that 670 nm light directly influences mitochondrial metabolism by increasing the spare respiratory capacity of mitochondria in 661 W photoreceptor-like cells in light damaged conditions. Our findings further support the use of 670 nm light as an effective treatment against retinal degeneration as well as shedding light on the mechanism of protection through the increase of the mitochondrial spare respiratory capacity.

  11. The effects of season, aeration and light intensity on the performance of pacific whiteleg shrimp (Litopenaeus vannamei) polycultured with seaweed (Gracilaria verrucosa)

    Science.gov (United States)

    Susilowati, T.; Desrina; Hutabarat, J.; Anggoro, S.; Zainuri, M.; Sarjito; Basuki, F.; Yuniarti, T.

    2018-04-01

    This study was aimed to determine impact of stocking season, additional oxygen supply and light intensity on performance of pacific white leg shrimp (Litopenaeus vannamei) polycultured with seaweed Gracilaria verrucosa. Three sets of experiments were used and each experiment was conducted separately in 3 different season (factor W). Three factors and the interaction, that is, stocking seasons (W1: March-June;. W2 : July-October and W3 : November-February), Oxygen supply (O, with or without supply aeration of 6.5 ppm) and light intensity (with or without addition of light 640 lux) was observed. The experiment was conducted in 16 polyethilen net place in concrete tanks (1.2 m3). Shrimp (average weight 0.1 g and lenght 1.2 cm) with density 94 shrimp/m3 and seaweed 2.188 g/m3, cultured for 94 days. Data collected included absolute growth, specific growth rate (SGR), survival rate (SR) and biomass production of shrimp and seaweed. The result showed that culture period March to June, additonal light and suply DO gave the best result with shrimp absolute growth 13.23 g, SGR 5.09 %/day, SR 99.64 % and biomass production 1.256.36 g/m3. Absolute growth of G. verrucosa was 5.223.75g, SGR 268 %/day and biomass production 12.608.55 g/m3.

  12. CLASSIFICATION OF SEVERAL SKIN CANCER TYPES BASED ON AUTOFLUORESCENCE INTENSITY OF VISIBLE LIGHT TO NEAR INFRARED RATIO

    Directory of Open Access Journals (Sweden)

    Aryo Tedjo

    2009-12-01

    Full Text Available Skin cancer is a malignant growth on the skin caused by many factors. The most common skin cancers are Basal Cell Cancer (BCC and Squamous Cell Cancer (SCC. This research uses a discriminant analysis to classify some tissues of skin cancer based on criterion number of independent variables. An independent variable is variation of excitation light sources (LED lamp, filters, and sensors to measure Autofluorescence Intensity (IAF of visible light to near infrared (VIS/NIR ratio of paraffin embedded tissue biopsy from BCC, SCC, and Lipoma. From the result of discriminant analysis, it is known that the discriminant function is determined by 4 (four independent variables i.e., Blue LED-Red Filter, Blue LED-Yellow Filter, UV LED-Blue Filter, and UV LED-Yellow Filter. The accuracy of discriminant in classifying the analysis of three skin cancer tissues is 100 %.

  13. AUTOMATIC LIGHT CONTROL

    Science.gov (United States)

    Artzt, M.

    1957-08-27

    A control system for a projection kinescope used in a facsimile scanning system and, in particular, meams for maintaining substantially constant the light emanating from the flying spot on the face of the kinescope are described. In general, the invention provides a feeler member disposed in such a position with respect to a projecting lens as to intercept a portion of the light striking the lens. Suitable circuitry in conjunction with a photomultiplier tube provides a signal proportional to the light intensity of the flying spot. The grid bias on the kinescope is controlled by this signal to maintain the intensity of the spot substantially constant.

  14. Development and evaluation of a light-emitting diode endoscopic light source

    Science.gov (United States)

    Clancy, Neil T.; Li, Rui; Rogers, Kevin; Driscoll, Paul; Excel, Peter; Yandle, Ron; Hanna, George; Copner, Nigel; Elson, Daniel S.

    2012-03-01

    Light-emitting diode (LED) based endoscopic illumination devices have been shown to have several benefits over arclamp systems. LEDs are energy-efficient, small, durable, and inexpensive, however their use in endoscopy has been limited by the difficulty in efficiently coupling enough light into the endoscopic light cable. We have demonstrated a highly homogenised lightpipe LED light source that combines the light from four Luminus LEDs emitting in the red, green, blue and violet using innovative dichroics that maximise light throughput. The light source spectrally combines light from highly divergent incoherent sources that have a Lambertian intensity profile to provide illumination matched to the acceptance numerical aperture of a liquid light guide or fibre bundle. The LED light source was coupled to a standard laparoscope and performance parameters (power, luminance, colour temperature) compared to a xenon lamp. Although the total illuminance from the endoscope was lower, adjustment of the LEDs' relative intensities enabled contrast enhancement in biological tissue imaging. The LED light engine was also evaluated in a minimally invasive surgery (MIS) box trainer and in vivo during a porcine MIS procedure where it was used to generate 'narrowband' images. Future work using the violet LED could enable photodynamic diagnosis of bladder cancer.

  15. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts.

    Directory of Open Access Journals (Sweden)

    Li Wu

    Full Text Available As an important successional stage and main type of biological soil crusts (BSCs in Shapotou region of China (southeastern edge of Tengger Desert, lichen soil crusts (LSCs often suffer from many stresses, such as desiccation and excess light intensity. In this study, the chlorophyll fluorescence and CO2 exchange in the rehydrated LSCs were detected under a series of photosynthetically active radiation (PAR gradients to study the photosynthetic acclimation of LSCs. The results showed that although desiccation leaded to the loss of photosynthetic activity in LSCs, the fluorescence parameters including Fo, Fv and Fv/Fm of LSCs could be well recovered after rehydration. After the recovery of photosynthetic activity, the effective photosynthetic efficiency ΦPSII detected by Imaging PAM had declined to nearly 0 within both the lichen thallus upper and lower layers when the PAR increased to 200 μE m-2 s-1, however the net photosynthesis detected by the CO2 gas analyzer in the LSCs still appeared when the PAR increased to 1000 μE m-2 s-1. Our results indicate that LSCs acclimating to high PAR, on the one hand is ascribed to the special structure in crust lichens, making the incident light into the lichen thallus be weakened; on the other hand the massive accumulation of photosynthetic pigments in LSCs also provides a protective barrier for the photosynthetic organisms against radiation damage. Furthermore, the excessive light energy absorbed by crust lichens is also possibly dissipated by the increasing non-photochemical quenching, therefore to some extent providing some protection for LSCs.

  16. Adaptation of Rhodopseudomonas acidophila strain 7050 to growth at different light intensities: what are the benefits to changing the type of LH2?

    Science.gov (United States)

    Gardiner, A T; Niedzwiedzki, D M; Cogdell, R J

    2018-04-01

    Typical purple bacterial photosynthetic units consist of light harvesting one/reaction centre 'core' complexes surrounded by light harvesting two complexes. Factors such as the number and size of photosynthetic units per cell, as well as the type of light harvesting two complex that is produced, are controlled by environmental factors. In this paper, the change in the type of LH2 present in the Rhodopsuedomonas acidophila strain 7050 is described when cells are grown at a range of different light intensities. This species contains multiple pucBA genes that encode the apoproteins that form light-harvesting complex two, and a more complex mixture of spectroscopic forms of this complex has been found than was previously thought to be the case. Femto-second time resolved absorption has been used to investigate how the energy transfer properties in the membranes of high-light and low-light adapted cells change as the composition of the LH2 complexes varies.

  17. Effect of green light spectra on the reduction of retinal damage and stress in goldfish, Carassius auratus

    International Nuclear Information System (INIS)

    Song, Jin Ah; Kim, Na Na; Choi, Young Jae; Choi, Cheol Young

    2016-01-01

    We investigated the effect of light spectra on retinal damage and stress in goldfish using green (530 nm) and red (620 nm) light emitting diodes (LEDs) at three intensities each (0.5, 1.0, and 1.5 W/m"2). We measured the change in the levels of plasma cortisol and H_2O_2 and expression and levels of caspase-3. The apoptotic response of green and red LED spectra was assessed using the terminal transferase dUTP nick end labeling (TUNEL) assay. Stress indicator (cortisol and H_2O_2) and apoptosis-related genes (caspase-3) decreased in green light, but increased in red light with higher light intensities over time. The TUNEL assay revealed that more apoptotic cells were detected in outer nuclear layers after exposure to red LED over time with the increase in light intensity, than the other spectra. These results indicate that green light efficiently reduces retinal damage and stress, whereas red light induces it. Therefore, red light-induced retina damage may induce apoptosis in goldfish retina. -- Highlights: •Green light efficiently reduces retinal damage and stress. •Green spectra reduce caspase production and apoptosis. •Red light-induced retina damage may induce apoptosis in goldfish retina. •The retina of goldfish recognizes green spectra as a stable environment.

  18. Effect of green light spectra on the reduction of retinal damage and stress in goldfish, Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jin Ah; Kim, Na Na; Choi, Young Jae; Choi, Cheol Young, E-mail: choic@kmou.ac.kr

    2016-07-22

    We investigated the effect of light spectra on retinal damage and stress in goldfish using green (530 nm) and red (620 nm) light emitting diodes (LEDs) at three intensities each (0.5, 1.0, and 1.5 W/m{sup 2}). We measured the change in the levels of plasma cortisol and H{sub 2}O{sub 2} and expression and levels of caspase-3. The apoptotic response of green and red LED spectra was assessed using the terminal transferase dUTP nick end labeling (TUNEL) assay. Stress indicator (cortisol and H{sub 2}O{sub 2}) and apoptosis-related genes (caspase-3) decreased in green light, but increased in red light with higher light intensities over time. The TUNEL assay revealed that more apoptotic cells were detected in outer nuclear layers after exposure to red LED over time with the increase in light intensity, than the other spectra. These results indicate that green light efficiently reduces retinal damage and stress, whereas red light induces it. Therefore, red light-induced retina damage may induce apoptosis in goldfish retina. -- Highlights: •Green light efficiently reduces retinal damage and stress. •Green spectra reduce caspase production and apoptosis. •Red light-induced retina damage may induce apoptosis in goldfish retina. •The retina of goldfish recognizes green spectra as a stable environment.

  19. Light-controlled motility in prokaryotes and the problem of directional light perception.

    Science.gov (United States)

    Wilde, Annegret; Mullineaux, Conrad W

    2017-11-01

    The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea. © FEMS 2017.

  20. Investigations into light-front interactions for massless fields (I): non-constructibility of higher spin quartic amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Anders K.H. [Academy of Textiles, Engineering and Economics, University of Borås,Allégatan 1, SE-50190 Borås (Sweden)

    2016-12-27

    The dynamical commutators of the light-front Poincaré algebra yield first order differential equations in the p{sup +} momenta for the interaction vertex operators. The homogeneous solution to the equation for the quartic vertex is studied. Consequences as regards the constructibility assumption of quartic higher spin amplitudes from cubic amplitudes are discussed. The existence of quartic contact interactions unrelated to cubic interactions by Poincaré symmetry indicates that the higher spin S-matrix is not constructible. Thus quartic amplitude based no-go results derived by BCFW recursion for Minkowski higher spin massless fields may be circumvented.

  1. Representation of chromatic distribution for lighting system

    Science.gov (United States)

    Rossi, Maurizio; Musante, Fulvio

    2015-01-01

    For the luminaire manufacturer, the measurement of the lighting intensity distribution (LID) emitted by lighting fixture is based on photometry. So light is measured as an achromatic value of intensity and there is no the possibility to discriminate the measurement of white vs. colored light. At the Laboratorio Luce of Politecnico di Milano a new instrument for the measurement of spectral radiant intensities distribution for lighting system has been built: the goniospectra- radiometer. This new measuring tool is based on a traditional mirror gonio-photometer with a CCD spectraradiometer controlled by a PC. Beside the traditional representation of photometric distribution we have introduced a new representation where, in addition to the information about the distribution of luminous intensity in space, new details about the chromaticity characteristic of the light sources have been implemented. Some of the results of this research have been applied in developing and testing a new line of lighting system "My White Light" (the research project "Light, Environment and Humans" funded in the Italian Lombardy region Metadistretti Design Research Program involving Politecnico di Milano, Artemide, Danese, and some other SME of the Lighting Design district), giving scientific notions and applicative in order to support the assumption that colored light sources can be used for the realization of interior luminaries that, other than just have low power consumption and long life, may positively affect the mood of people.

  2. Application of polarization information to a light-controlling-light technique.

    Science.gov (United States)

    Liang, J C; Wang, H C

    2017-09-15

    Nonlinear effects of photo-induced waveguides based on isomerization photochemistry are investigated. It is found that polarization information of the controlling light can be used to control the propagation of the signal light in all-optical waveguides, and an accurate and convenient light-controlling-light scheme is proposed, that is, controlling propagation of the signal light by synergic use of the intensity information and polarization information of the controlling light. The polarization dependence of optical nonlinearity is expected to enrich the connotation of the optical nonlinear effects and has theoretical significance and practical value.

  3. Design of TIR collimating lens for ordinary differential equation of extended light source

    Science.gov (United States)

    Zhan, Qianjing; Liu, Xiaoqin; Hou, Zaihong; Wu, Yi

    2017-10-01

    The source of LED has been widely used in our daily life. The intensity angle distribution of single LED is lambert distribution, which does not satisfy the requirement of people. Therefore, we need to distribute light and change the LED's intensity angle distribution. The most commonly method to change its intensity angle distribution is the free surface. Generally, using ordinary differential equations to calculate free surface can only be applied in a point source, but it will lead to a big error for the expand light. This paper proposes a LED collimating lens based on the ordinary differential equation, combined with the LED's light distribution curve, and adopt the method of calculating the center gravity of the extended light to get the normal vector. According to the law of Snell, the ordinary differential equations are constructed. Using the runge-kutta method for solution of ordinary differential equation solution, the curve point coordinates are gotten. Meanwhile, the edge point data of lens are imported into the optical simulation software TracePro. Based on 1mm×1mm single lambert body for light conditions, The degrees of collimating light can be close to +/-3. Furthermore, the energy utilization rate is higher than 85%. In this paper, the point light source is used to calculate partial differential equation method and compared with the simulation of the lens, which improve the effect of 1 degree of collimation.

  4. Determination of angle of light deflection in higher-derivative gravity theories

    Science.gov (United States)

    Xu, Chenmei; Yang, Yisong

    2018-03-01

    Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.

  5. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo; Kwak, Joon Seop, E-mail: jskwak@sunchon.ac.kr

    2016-10-15

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective current path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.

  6. Is Less Noise, Light and Parental/Caregiver Stress in the Neonatal Intensive Care Unit Better for Neonates?

    Science.gov (United States)

    Venkataraman, Rohini; Kamaluddeen, Majeeda; Amin, Harish; Lodha, Abhay

    2018-01-15

    In utero sensory stimuli and interaction with the environment strongly influence early phases of fetal and infant development. Extremely premature infants are subjected to noxious procedures and routine monitoring, in addition to exposure to excessive light and noise, which disturb the natural sleep cycle and induce stress. Non-invasive ventilation, measures to prevent sepsis, and human milk feeding improve short-term and long-term neurodevelopmental outcomes in premature infants. To preserve brain function, and to improve quality of life and long-term neurodevelopmental outcomes, the focus now is on the neonatal intensive care unit (NICU) environment and its impact on the infant during hospital stay. The objectives of this write-up are to understand the effects of environmental factors, including lighting and noise in the NICU, on sensory development of the infant, the need to decrease parental and caregiver stress, and to review existing literature, local policies and recommendations.

  7. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”

    Science.gov (United States)

    Zhang, Huihui; Zhong, Haixiu; Wang, JIfeng; Sui, Xin

    2016-01-01

    The present study aims to investigate the differences in leaf pigment content and the photosynthetic characteristics under natural and low light intensities between the Chinese native Physocarpus amurensis Maxim and the imported Physocarpus opulifolius “Diabolo” from North America. We aim to discuss the responses and the adaptive mechanism of these two cultivars of Physocarpus to a low light environment. The results show that the specific leaf area (SLA) and the chlorophyll content were significantly increased in the leaves of both Physocarpus cultivars in response to a low light intensity, and the SLA and chlorophyll content were higher in the leaves of low light-treated P. opulifolius “Diabolo” compared with the leaves of low light-treated P. amurensis Maxim. Moreover, the content of anthocyanin was markedly reduced in the leaves of P. opulifolius “Diabolo” under low light intensity, which allowed for a greater capacity of photon capture under the low light condition. Under natural light, the photosynthetic carbon assimilation capacity was greater in the leaves of P. amurensis Maxim compared with the leaves of P. opulifolius “Diabolo” that were rich with anthocyanin. However, in response to low light, AQY, Pmax, LCP and LSP decreased to a lesser extent in the leaves of P. opulifolius “Diabolo” compared with the leaves of P. amurensis Maxim. These results suggest that P. opulifolius “Diabolo” exhibits a greater ability in adaption to low light, and it is probably related to the relatively higher chlorophyll content and the smaller SLA in the leaves of P. opulifolius “Diabolo.” In addition, the low light intensity resulted in a reduced photochemical activity of photosystem (PS) II in the leaves of both Physocarpus, as evidenced by increased values of the relative variable fluorescence at point J and point I on the OJIP curve. This result suggests that the electron acceptor in PS II was the major responsive site to the low light stress in

  8. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”

    Directory of Open Access Journals (Sweden)

    Huihui Zhang

    2016-06-01

    Full Text Available The present study aims to investigate the differences in leaf pigment content and the photosynthetic characteristics under natural and low light intensities between the Chinese native Physocarpus amurensis Maxim and the imported Physocarpus opulifolius “Diabolo” from North America. We aim to discuss the responses and the adaptive mechanism of these two cultivars of Physocarpus to a low light environment. The results show that the specific leaf area (SLA and the chlorophyll content were significantly increased in the leaves of both Physocarpus cultivars in response to a low light intensity, and the SLA and chlorophyll content were higher in the leaves of low light-treated P. opulifolius “Diabolo” compared with the leaves of low light-treated P. amurensis Maxim. Moreover, the content of anthocyanin was markedly reduced in the leaves of P. opulifolius “Diabolo” under low light intensity, which allowed for a greater capacity of photon capture under the low light condition. Under natural light, the photosynthetic carbon assimilation capacity was greater in the leaves of P. amurensis Maxim compared with the leaves of P. opulifolius “Diabolo” that were rich with anthocyanin. However, in response to low light, AQY, Pmax, LCP and LSP decreased to a lesser extent in the leaves of P. opulifolius “Diabolo” compared with the leaves of P. amurensis Maxim. These results suggest that P. opulifolius “Diabolo” exhibits a greater ability in adaption to low light, and it is probably related to the relatively higher chlorophyll content and the smaller SLA in the leaves of P. opulifolius “Diabolo.” In addition, the low light intensity resulted in a reduced photochemical activity of photosystem (PS II in the leaves of both Physocarpus, as evidenced by increased values of the relative variable fluorescence at point J and point I on the OJIP curve. This result suggests that the electron acceptor in PS II was the major responsive site to the

  9. Monochromic radiation through light-emitting diode (LED positively augments in vitro shoot regeneration in Orchid (Dendrobium sonia

    Directory of Open Access Journals (Sweden)

    Vandita Billore

    2017-07-01

    Full Text Available Monochromatic lights emitted by light-emitting diodes (LEDs have generated great interest for efficient and controlled growth in vitro, especially of plants which are endangered or require specific intensity and wavelength of light. In the present study, we have evaluated the effect of monochromatic LEDs on in vitro morphogenesis: growth, proliferation of shoot cultures, and rooting of Dendrobium sonia. Different light sources viz. white LEDs (W, blue LEDs (B, yellow LEDs (Y and red LEDs (R were tested under photoperiod of 16 h of exposure and 8 h of dark. The frequency of morphogenesis depended on the wavelength of the applied monochromatic light. Higher wavelength monochromatic light (yellow light was observed to induce higher shoot proliferation (98%, early PLB (protocorm-like bodies formation, differentiation into green buds and shoot initiation as compared to red, blue and white light treatments. Yellow light also yielded higher number of shoots per explants (29 shoots/explant than red, blue and white light treatments. The results suggest that the monochromatic light sources stimulate morphogenic effects on in vitro culture of Dendrobium sonia, and that yellow light treatment can be used to enhance the efficiency of micropropagation.

  10. LED Context Lighting System in Residential Areas

    Directory of Open Access Journals (Sweden)

    Sook-Youn Kwon

    2014-01-01

    Full Text Available As issues of environment and energy draw keen interest around the globe due to such problems as global warming and the energy crisis, LED with high optical efficiency is brought to the fore as the next generation lighting. In addition, as the national income level gets higher and life expectancy is extended, interest in the enhancement of life quality is increasing. Accordingly, the trend of lightings is changing from mere adjustment of light intensity to system lighting in order to enhance the quality of one’s life as well as reduce energy consumption. Thus, this study aims to design LED context lighting system that automatically recognizes the location and acts of a user in residential areas and creates an appropriate lighting environment. The proposed system designed in this study includes three types of processing: first, the creation of a lighting environment index suitable for the user’s surroundings and lighting control scenarios and second, it measures and analyzes the optical characteristics that change depending on the dimming control of lighting and applies them to the index. Lastly, it adopts PIR, piezoelectric, and power sensor to grasp the location and acts of the user and create a lighting environment suitable for the current context.

  11. The impact of architectural design upon the environmental sound and light exposure of neonates who require intensive care: an evaluation of the Boekelheide Neonatal Intensive Care Nursery.

    Science.gov (United States)

    Stevens, D C; Akram Khan, M; Munson, D P; Reid, E J; Helseth, C C; Buggy, J

    2007-12-01

    To evaluate the differences in environmental sound, illumination and physiological parameters in the Boekelheide Neonatal Intensive Care Unit (BNICU), which was designed to comply with current recommendations and standards, as compared with a conventional neonatal intensive care unit (CNICU). Prospectively designed observational study. Median sound levels in the unoccupied BNICU (37.6 dBA) were lower than the CNICU (42.1 dBA, P<0.001). Median levels of minimum (6.4 vs 48.4 lux, P<0.05) and maximum illumination (357 vs 402 lux, P<0.05) were lower in the BNICU. A group of six neonates delivered at 32 weeks gestation showed significantly less periodic breathing (14 vs 21%) and awake time (17.6 vs 29.3%) in the BNICU as compared to the CNICU. Light and sound were both significantly reduced in the BNICU. Care in the BNICU was associated with improved physiological parameters.

  12. Early Birds by Light at Night

    NARCIS (Netherlands)

    Jong, De Maaike; Caro, Samuel P.; Gienapp, Phillip; Spoelstra, Kamiel; Visser, Marcel E.

    2017-01-01

    Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits (Cyanistes caeruleus) exposed to similar intensities of

  13. Angular-dependent light scattering from cancer cells in different phases of the cell cycle.

    Science.gov (United States)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-10-10

    Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.

  14. Direct monitoring of erythrocytes aggregation under the effect of the low-intensity magnetic field by measuring light transmission at wavelength 800 nm

    Science.gov (United States)

    Elblbesy, Mohamed A.

    2017-12-01

    Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.

  15. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    G. M. Weiss

    2017-12-01

    Full Text Available Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  16. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Science.gov (United States)

    Weiss, Gabriella M.; Pfannerstill, Eva Y.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.

    2017-12-01

    Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  17. [Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash].

    Science.gov (United States)

    Du, She-ni; Bai, Gang-shuan; Liang, Yin-li

    2011-04-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.

  18. Ponderomotive and thermal filamentation of laser light

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1985-01-01

    As targets are irradiated with longer, more energetic pulses of laser light, longer-scalelength plasmas are produced. Filamentation is a potentially important process in such plasmas. In this instability, perturbations in the intensity profile of an incident light beam grow in amplitude, causing the beam to break up into intense filaments. The instability arises when a local increase in the light intensity creates a depression in plasma density either directly, via the ponderomotive force, or indirectly, via enhanced collisional absorption and subsequent plasma expansion. The density depression refracts the light into the lower-density region, enhancing the intensity perturbations. The instability is termed either ponderomotive or thermal filamentation, depending on which mechanism generates the density depression. The analogous process involving the entire beam is called self-focusing. Filamentation can significantly affect laser-plasma coupling. Intensity enhancements can introduce or modify other instabilities, change the location of the energy deposition, and possibly aggravate deleterious collective effects such as hot-electron generation

  19. Stopping light in its tracks

    Science.gov (United States)

    Eggleton, B. J.; Martijn de Sterke, C.; Slusher, R. E.; Krug, Peter A.; Sipe, J. E.

    1996-12-01

    To control the speed of a light pulse without absorbing its photons, or distorting its shape, is a challenging problem. However, this has been accomplished using fiber gratings, as part of a joint research program of the University of Sydney, the Australian Photonics Research Centre, Lucent Technologies, and the University of Toronto. The gratings are written in the optical fiber's core by directing a UV beam onto it via a periodic phase mask. Through a photochemical process still not well-understood, the periodic intensity pattern burns a permanent index of refraction change in the core.1-2 In our experiments, we use gratings with a period of about 350 nm chosen to reflect light at 1.05 u m and a length of 5.5 cm.3 Because the grating has over 150,000 periods, an index change of only 0.0003 is sufficient to limit the transmission to less than 30 dB on resonance. Essentially no light is transmitted by such a grating at the Bragg resonance; yet a nanometer away, light propagates through as if the grating were absent. As we tune away from resonance, the light's group velocity increases from zero to c/n (where c is the speed of light in a vacuum and n=1.46 is the refractive index of the core of the fiber), leading to a dispersion about 100,000 times larger than that of bare fiber. Gratings can thus slow down a pulse of light, but at the price of tearing it apart.4 At high light intensities a nonlinearly, with the index of refraction increasing with intensity.5 In the center of the pulse, where the intensity is the highest, the index is thus raised the most. Since regions of high index attract light, the nonlinearity acts as a "glue," counteracting the strong dispersive effects of the grating.

  20. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity

    KAUST Repository

    Cheng, Tuoyuan; Wei, Chunhai; Leiknes, TorOve

    2017-01-01

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14 μmol/m2/s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50 mg/L, initial phosphate phosphorus 2-10 mg/L and microalgal seed 40 mg/L. Maximum microalgal biomass and minimum generation time were 370.9 mg/L and 2.5 d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2 mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5 mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5 L/m2/h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent.

  1. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity

    KAUST Repository

    Cheng, Tuoyuan

    2017-05-29

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14 μmol/m2/s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50 mg/L, initial phosphate phosphorus 2-10 mg/L and microalgal seed 40 mg/L. Maximum microalgal biomass and minimum generation time were 370.9 mg/L and 2.5 d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2 mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5 mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5 L/m2/h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent.

  2. Relevance of sunscreen application method, visible light and sunlight intensity to free-radical protection: A study of ex vivo human skin.

    Science.gov (United States)

    Haywood, Rachel

    2006-01-01

    With the continued rise in skin cancers worldwide there is a need for effective skin protection against sunlight damage. It was shown previously that sunscreens, which claimed UVA protection (SPF 20+), provided limited protection against UV-induced ascorbate radicals in human skin. Here the results of an electron spin resonance (ESR) investigation to irradiate ex vivo human skin with solar-simulated light are reported. The ascorbate radical signal in the majority of skin samples was directly proportional to the irradiance over relevant sunlight intensities (0.9-2.9 mW cm(-2)). Radical production (substratum-corneum) by UV (wavelengths 400 nm) was approximately 67% and 33% respectively. Ascorbate radicals were in steady state concentration at low irradiance (approximately 1 mW cm(-2) equivalent to UK sunlight), but at higher irradiance (approximately 3 mW cm(-2)) decreased with time, suggesting ascorbate depletion. Radical protection by a four star-rated sunscreen (with UVA protection) was optimal when applied as a thin film (40-60% at 2 mg cm(-2)) but less so when rubbed into the skin (37% at 4 mg cm(-2) and no significant protection at 2 mg cm(-2)), possibly due to cream filling crevices, which reduced film thickness. This study validates ESR determinations of the ascorbate radical for quantitative protection measurements. Visible light contribution to radical production, and loss of protection when sunscreen is rubbed into skin, has implications for sunscreen design and use for the prevention of free-radical damage.

  3. Adaptive Lighting Design – Staged Experiences of Light

    DEFF Research Database (Denmark)

    Søndergaard, Karin; Petersen, Kjell Yngve

    2015-01-01

    involved in the negotiations of how the lighting design unfolds. Each installation stages a specified place, where participants perform their own experiences of being and moving in dynamically changing lighting settings. Through investigative actions participants test the ways that the lighting...... compositions influence their ability to orient themselves within the geography of the space and how the balances in light colours and luminous intensities affect their experience of directionality, distances, and scales. In short, the experience of being present in the space as well as one’s experience......Adaptive Lighting Design – Staged Experiences of Light The two installations, White Cube and White Box, enable experience-based studies as a form of perceptual activity, wherein lighting conditions are examined in a dialectical exchange between the system and the people participating. Adaptive...

  4. Light storage via slow-light four-wave mixing

    International Nuclear Information System (INIS)

    Fan, Yun-Fei; Wang, Hai-Hua; Wei, Xiao-Gang; Li, Ai-Jun; Kang, Zhi-Hui; Wu, Jin-Hui; Zhang, Han-Zhuang; Xu, Huai-Liang; Gao, Jin-Yue

    2012-01-01

    We experimentally demonstrate a light storage via slow-light four-wave mixing in a solid-state medium with a four-level double lambda scheme. Using slow light based on electromagnetically induced transparency, we obtain a slowed four-wave mixing signal pulse together with the slowed probe pulse. During the propagation of light pulses, the storage and retrieval of both the slowed four-wave mixing pulse and the slowed probe pulse are studied by manipulating the intensities of the control fields. -- Highlights: ► A light storage via slow-light four-wave mixing is observed in a solid. ► The probe pulse is slowed under electromagnetically induced transparency. ► A slowed four-wave mixing pulse is obtained by slow light. ► The storage of slowed double pulses is studied.

  5. Light tuning DC and AC electrical properties of ZnO-rGO based hybrid nanocomposite film

    Science.gov (United States)

    Nath, Debarati; Mandal, S. K.; Deb, Debajit; Rakshit, J. K.; Dey, P.; Roy, J. N.

    2018-03-01

    We have investigated the electrical and optoelectrical properties of a zinc oxide (ZnO):reduced graphene oxide (rGO) nanocomposite film prepared through the sol gel process on a glass substrate under dark and illumination conditions of light. The bandgap of the composite film is decreased from the pure ZnO nanofilm due to the formation of a Zn-O-C bond in the composite film. The linear behavior in the Current-Voltage curve is attributed to Ohmic contact between ZnO and rGO grains. The photocurrent of the composite film is found to increase with an increase in light intensity having two different slopes, indicating an enhancement of the mobility of carriers and dissociation rate of excitons. The observed decrement of the impedance value with the intensity of light may be due to the flow of charge carriers and the presence of the light dependent relaxation process in the system. Nyquist plots have been fitted using a parallel combination of grain boundary resistances and grain boundary capacitance at different intensities of light. The relaxation frequency is observed to shift towards the high frequency regime. Carrier transit time has been calculated from relaxation frequency showing opposite behavior with the intensity of light. These results indicate the higher generations of photogenerated carriers at the interface between rGO and ZnO grains and an enhancement of the charge transport process due to the increment of the mobility of charge carriers in the system.

  6. The Light-Emitting Diode as a Light Detector

    Science.gov (United States)

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  7. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  8. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  9. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  10. Intense ion beam diagnostics for light ion inertial fusion experiments on PBFA 2

    International Nuclear Information System (INIS)

    Leeper, R.J.; Stygar, W.A.; Bailey, J.E.; Baldwin, G.T.; Bloomquist, D.D.; Carlson, A.L.; Chandler, G.; Crist, C.E.; Cooper, G.; Derszon, M.S.; Dukart, R.J.; Fehl, D.L.; Hebron, D.E.; Johnson, D.J.; Kensek, R.P.; Landron, C.O.; Lee, J.R.; Lockner, T.R.; Mattson, C.R.; Matzen, M.K.; Maenchen, J.; Mehlhorn, T.A.; Mix, L.P.; Muron, D.J.; Nash, T.; Nelson, W.E.; Reyes, P.; Rockett, P.; Ruiz, C.L.; Schmidlapp, A.; Stinnett, R.W.; Sujka, B.; Wenger, D.F.

    1991-01-01

    A review of recent developments in intense ion beam diagnostics used in the light ion inertial confinement fusion (ICF) program on the PBFA-2 accelerator at Sandia National Laboratories will be presented. These developments have occurred in each of several generic classes of diagnostics, namely, imaging diagnostics, particle spectrograph diagnostics, nuclear activation, and visible spectroscopy. Critical beam parameters measured by the diagnostic include spatial profile, absolute number, species, anode plasma temperature and density, beam divergence, and beam voltage current density, and power density. A unique feature of these diagnostics is that they are capable of operating in hard (multi-Mev) X-ray (bremsstrahlung) backgrounds of some 10 10 - 10 12 rad/s. The operating principles of each diagnostic will be summarized in the paper, with examples of how the diagnostics may be integrated together to form a complete diagnostic system. The paper will close with a discussion of several near diagnostic systems that are presently being developed. 13 refs., 6 figs

  11. Influence of the quantity and quality of light on photosynthetic periodicity in coral endosymbiotic algae.

    Directory of Open Access Journals (Sweden)

    Michal Sorek

    Full Text Available Symbiotic corals, which are benthic organisms intimately linked with their environment, have evolved many ways to deal with fluctuations in the local marine environment. One possible coping mechanism is the endogenous circadian clock, which is characterized as free running, maintaining a ~24 h periodicity of circuits under constant stimuli or in the absence of external cues. The quantity and quality of light were found to be the most influential factors governing the endogenous clock for plants and algae. Unicellular dinoflagellate algae are among the best examples of organisms that exhibit circadian clocks using light as the dominant signal. This study is the first to examine the effects of light intensity and quality on the rhythmicity of photosynthesis in the symbiotic dinoflagellate Symbiodinium sp., both as a free-living organism and in symbiosis with the coral Stylophora pistillata. Oxygen production measurements in Symbiodinium cultures exhibited rhythmicity with a periodicity of approximately 24 h under constant high light (LL, whereas under medium and low light, the cycle time increased. Exposing Symbiodinium cultures and corals to spectral light revealed different effects of blue and red light on the photosynthetic rhythm, specifically shortening or increasing the cycle time respectively. These findings suggest that the photosynthetic rhythm is entrained by different light cues, which are wired to an endogenous circadian clock. Furthermore, we provide evidence that mRNA expression was higher under blue light for two potential cryptochrome genes and higher under red light for a phytochrome gene isolated from Symbiodinium. These results offer the first evidence of the impact of the intensity and quality of light on the photosynthetic rhythm in algal cells living freely or as part of a symbiotic association. Our results indicate the presence of a circadian oscillator in Symbiodinium governing the photosynthetic apparatus through a light

  12. [Effects of different NO3--N/NH4+-N ratios on cucumber seedlings growth, nitrogen absorption and metabolism under suboptimal temperature and light intensity].

    Science.gov (United States)

    Zhang, Xiao Cui; Liu, Yu Mei; Bai, Long Qiang; He, Chao Xing; Yu, Xian Chang; Li, Yan Su

    2016-08-01

    Cucumber (cv. Zhongnong 26) was used as material, the effects of NO 3 - -N/NH 4 + -N ratios on growth and physiological characteristics of cucumber seedlings under suboptimal temperature and light intensity (18 ℃/10 ℃,180 ± 20 μmol·m -2 ·s -1 ) were studied. Total nitrogen in the nutrient solution was equal and three NO 3 - -N/NH 4 + -N ratios, 26:2, 21:7 and 14:14, were applied as treatments. The results showed that cucumber treated by NO 3 - -N/NH 4 + -N=21:7 had the longest total root length, the biggest root volume and root surface area, and the maximum number of root tips. H + -ATPase activity and relative expression of genes encoding nitrate transporter (NRT) and ammonium transporter (AMT) in cucumber roots were increased significantly by the treatment of NO 3 - -N/NH 4 + -N=21:7. In addition, nitrate reductase (NR), glutamine synthetase (GS) and glutamate synthase (GOGAT) in cucumber leaves under the treatment of NO 3 - -N/NH 4 + -N=21:7 were higher. As a result, the nitrogen content and biomass of cucumber were significantly increased. Compared with the plants under the treatment of NO 3 - -N/NH 4 + -N=26:2 or 14:14, cucumber seedlings under the treatment of NO 3 - -N/NH 4 + -N=21:7 had the highest biomass and total dry mass (DM) which were increased by 14.0% and 19.3% respectively under suboptimal temperature and light intensity. In conclusion, under suboptimal environmental conditions, NO 3 - -N/NH 4 + -N ratio could be adjusted to increase nitrogen absorption and metabolism of cucumber and alleviate the de-trimental effects caused by suboptimal conditions and promoted the cucumber growth.

  13. Spectral Light Measurements in Microbenthic Phototrophic Communities with a Fiberoptic Microprobe Coupled to a Sensitive Diode-Array Detector Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    with microelectrode measurements of oxygenic photosynthesis in the coastal sediment. With an incident light intensity of 200 muEinst m-2 s-1, photon scalar irradiance reached a maximum of 283 muEinst m-2 s-1 at the sediment surface. The lower boundary of the euphotic zone was 2.2 mm below the surface at a light......A diode array detector system for microscale light measurements with fiber-optic microprobes was developed; it measures intensities of 400-900-nm light over >6 orders of magnitude with a spectral resolution of 2-5 nm. Fiber-optic microprobes to measure field radiance or scalar irradiance were...... extinction maxima in measured radiance spectra at 430-550 nm (Chl a and carotenoids), 620-625 nm (phycocyanin), 675 nm (Chl a), 745-750 nm (BChl c), 800-810 nm, and 860-880 nm (BChl a). Scalar irradiance spectra exhibited a different spectral composition and a higher light intensity at the sediment surface...

  14. Curtain color and lighting program in broiler production: I - general performance

    Directory of Open Access Journals (Sweden)

    Valéria Maria Nascimento Abreu

    2011-09-01

    Full Text Available The objective of the present study was to evaluate mortality and performance, darkling beetle population (Alphitobius diaperinus, light intensity, electrical energy consumption and economic efficiency of broilers reared under two lighting programs (nearly continuous or intermittent and two curtain colors (yellow or blue. The experiment was conducted between June, 2004 and May, 2005. Six flocks were sequentially housed in four 12 × 10 m broiler houses divided into 4 pens with 200 birds each. Litter was reused six times or until flock 6. Body weight and feed conversion were determined on days 21, 35, and 42 of each flock. Mortality was recorded daily. Electrical energy consumption was recorded at the end of the grow-out of each flock (every 42 days. A completely randomized design in a 6 × 2 × 2 factorial arrangement (flocks, lighting programs, curtains with four replicates per treatment was applied. Broilers reared in houses with yellow curtains and under nearly continuous lighting programs presented the best feed conversion ratio and the highest body weight. Nearly continuous lighting programs resulted in 1.48 times more sudden deaths and 1.34 times higher general mortality when compared with intermittent lighting programs. Electrical energy consumption was 2.12 times higher in nearly continuous lighting programs in relation to intermittent lighting programs. The presence of darkling beetles was higher in broiler houses with blue curtains and intermittent lighting program. The economic analysis showed the feasibility of using a mixed system, with intermittent light program in winter and spring and nearly continuous lighting program in the summer and autumn, both in broiler houses with yellow curtains.

  15. The light-harvesting complexes of higher plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers

    NARCIS (Netherlands)

    Wientjes, I.E.; Croce, R.

    2011-01-01

    The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) a1-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge

  16. The light-harvesting complexes of higher-plant Photosystem I : Lhca1/4 and Lhca2/3 form two red-emitting heterodimers

    NARCIS (Netherlands)

    Wientjes, Emilie; Croce, Roberta

    2011-01-01

    The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) al-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge

  17. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation

    Science.gov (United States)

    Zhong, Zhaoyang; Woo, Kyoohee; Kim, Inhyuk; Hwang, Hyewon; Kwon, Sin; Choi, Young-Man; Lee, Youngu; Lee, Taik-Min; Kim, Kwangyoung; Moon, Jooho

    2016-04-01

    Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced

  18. Generation of shock fronts in the interaction of short pulses of intense laser light in supercritical plasma

    International Nuclear Information System (INIS)

    Lopez V, V.E.; Ondarza R, R.

    2004-01-01

    The investigation of the laser interaction with plasma has been carried out mainly in laboratories of Europe, Japan and United States during the last decades. This studies concern the propagation of intense light laser in a non homogeneous plasma, the radiation absorption and the generation of suprathermal electrons, among others. Numerical simulations made by Denavit, for radiation pulses for up of 10 20 W/cm 2 on solid targets, have allowed to observe the generation of ionic crash fronts with high propagation speeds. In this work it is expanded the study of this effect through algorithms of particles simulation. (Author)

  19. Light field intensification induced by nanoinclusions in optical thin-films

    International Nuclear Information System (INIS)

    Zhu Zhiwu; Cheng Xiangai; Huang Liangjin; Liu Zejin

    2012-01-01

    Inclusions even in tens of nanometers scale (nanoinclusion) can cause electric field intensifications locally in an optical thin-film when irradiated by laser. It was modeled by using finite element analysis, and the dependences of local light field on complex refractive index, diameter and embedded depth of the nanoinclusion were simulated. In addition, the average light intensity inside the nanodefect was calculated as well as the energy deposition rate. The modeling results show that extinction coefficient of a nanoinclusion has more significant effects on local light field than real part of the refractive index. A light intensification as large as 4× can occur owing to a metallic nanoinclusion and the peaks of electric field distribution locating on the boundary of the particulate. Energy deposition rate, reflecting the behavior of laser induced damage to the thin-film, is found to have the highest value at a certain extinction coefficient, instead of the state that, for a defect, a higher extinction coefficient causes a higher speed of laser absorption. And when this coefficient is relatively small, the energy deposition rate grows linearly with it. Finally, regarding high absorptive nanoinclusions, the larger can induce stronger laser intensification and higher average of energy deposition rate, whereas no significant difference is made by low absorptive nanoinclusions of different sizes.

  20. Light Intensity Regulates LC-PUFA Incorporation into Lipids of Pavlova lutheri and the Final Desaturase and Elongase Activities Involved in Their Biosynthesis.

    Science.gov (United States)

    Guihéneuf, Freddy; Mimouni, Virginie; Tremblin, Gérard; Ulmann, Lionel

    2015-02-04

    The microalga Pavlova lutheri is a candidate for the production of omega-3 long-chain polyunsaturated fatty acid (LC-PUFA), due to its ability to accumulate both eicosapentaenoic (EPA) and docosahexaenoic acids. Outstanding questions need to be solved to understand the complexity of n-3 LC-PUFA synthesis and partitioning into lipids, especially its metabolic regulation, and which enzymes and/or abiotic factors control their biosynthesis. In this study, the radioactivity of 14 C-labeled arachidonic acid incorporated into the total lipids of P. lutheri grown under different light intensities and its conversion into labeled LC-PUFA were monitored. The results highlighted for the first time the light-dependent incorporation of LC-PUFA into lipids and the light-dependent activity of the final desaturation and elongation steps required to synthesize and accumulate n-3 C20/C22 LC-PUFA. The incorporation of arachidonic acid into lipids under low light and the related Δ17-desaturation activity measured explain the variations in fatty acid profile of P. lutheri, especially the accumulation of n-3 LC-PUFA such as EPA under low light conditions.

  1. Influence of inlet concentration and light intensity on the photocatalytic oxidation of nitrogen(II) oxide at the surface of Aeroxide{sup Registered-Sign} TiO{sub 2} P25

    Energy Technology Data Exchange (ETDEWEB)

    Dillert, Ralf, E-mail: dillert@iftc.uni-hannover.de [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany); Laboratorium fuer Nano- und Quantenengineering, Leibniz Universitaet Hannover, Schneiderberg 39, 30167 Hannover (Germany); Stoetzner, Julia [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany); Engel, Astrid [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany); Laboratorium fuer Nano- und Quantenengineering, Leibniz Universitaet Hannover, Schneiderberg 39, 30167 Hannover (Germany); Bahnemann, Detlef W. [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The photocatalytic oxidation of nitrogen(II) oxide at the TiO{sub 2} surface was studied. Black-Right-Pointing-Pointer The effect of the UV(A) light intensity on the reaction rate was evaluated. Black-Right-Pointing-Pointer The effect of the NO concentration on the reaction rate was evaluated. Black-Right-Pointing-Pointer A mechanistic model for the heterogeneous NO oxidation is presented. Black-Right-Pointing-Pointer A rate law describing the influence of NO concentration and light intensity is given. - Abstract: Air pollution by nitrogen oxides represents a serious environmental problem in urban areas where numerous sources of these pollutants are concentrated. One approach to reduce the concentration of these air pollutants is the light-induced oxidation in the presence of molecular oxygen and a photocatalytically active building material, e.g., paints, roof tiles, or pavement stones. Herein, results of an investigation concerning the photocatalytic oxidation of nitrogen(II) oxide (NO) in the presence of molecular oxygen and UV(A) irradiated TiO{sub 2} powder are presented. The standard operating procedure described in ISO 22197-1 which was developed to characterize the photocatalytic activity of air-cleaning products was successfully applied to determine the photocatalytic activity of a bare TiO{sub 2} powder. The experimental data reveal that at the light intensity stipulated by the operation procedure the amount of NO removed from the gas phase by photocatalytic oxidation is strongly affected by small changes of this light intensity as well as of the NO concentration in the gas stream in the photoreactor. Therefore, these parameters have to be controlled very carefully. Based upon the experimental data obtained in this study a rate law for the photocatalytic NO oxidation inside the photoreactor is derived.

  2. Control and Driving Methods for LED Based Intelligent Light Sources

    OpenAIRE

    Beczkowski, Szymon

    2012-01-01

    High power light-emitting diodes allow the creation of luminaires capable of generating saturated colour light at very high efficacies. Contrary to traditional light sources like incandescent and high-intensity discharge lamps, where colour is generated using filters, LEDs use additive light mixing, where the intensity of each primary colour diode has to be adjusted to the needed intensity to generate specified colour. The function of LED driver is to supply the diode with power needed to ach...

  3. Carcass and meat quality of Gokceada Goat kids reared under extensive and semi-intensive production systems.

    Science.gov (United States)

    Ozcan, Mustafa; Yalcintan, Hulya; Tölü, Cemil; Ekiz, Bulent; Yilmaz, Alper; Savaş, Türker

    2014-01-01

    The aim was to compare the carcass and meat quality characteristics of male and female Gokceada Goat kids produced in extensive (n=20) and semi-intensive (n=20) systems. In extensive and semi-intensive produced kids pre-slaughter weights were 17.44 and 12.51 kg; cold carcass weights were 8.66 and 5.35 kg and cold dressing percentages were 54.9 and 49.28%, respectively. The effect of kid sex was not significant on hot and cold dressing percentages, back fat thickness, M. longissimus dorsi section area, carcass fatness and conformation scores, and carcass measurements, while female kids had higher omental and mesenteric fat and kidney knob and channel fat percentages than male kids. Extensive produced kids had lower meat lightness. Panellists evaluated extensive system kids with higher scores of kid odour intensity, flavour intensity and overall acceptability. It was concluded that it would be more appropriate to use an extensive system in Gokceada Goat breeding for kid meat production. © 2013.

  4. The application of multispectral light detectors to gauge detonative events by means of their emitted light signature

    CSIR Research Space (South Africa)

    Olivier, Marius

    2016-09-01

    Full Text Available It is well known that reacting explosives emit light of varying intensity across the light spectrum. Measurement of this emitted light could have many applications, i.a. the creation of a database of characteristic light signatures at specific...

  5. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes

    Science.gov (United States)

    Yang, Hsiang-Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; van Grondelle, Rienk; Moerner, W. E.

    2015-03-01

    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and photoprotection are balanced. Some of the biological steps in the photoprotective processes have been extensively studied and physiological regulatory factors have been identified. For example, the effect of lumen pH in changing carotenoid composition has been explored. However, the importance of photophysical dynamics in the initial light-harvesting steps and its relation to photoprotection remain poorly understood. Conformational and excited-state dynamics of multi-chromophore pigment-protein complexes are often difficult to study and limited information can be extracted from ensemble-averaged measurements. To address the problem, we use the Anti-Brownian ELectrokinetic (ABEL) trap to investigate the fluorescence from individual copies of light-harvesting complex II (LHCII), the primary antenna protein in higher plants, in a solution-phase environment. Perturbative surface immobilization or encapsulation schemes are avoided, and therefore the intrinsic dynamics and heterogeneity in the fluorescence of individual proteins are revealed. We perform simultaneous measurements of fluorescence intensity (brightness), excited-state lifetime, and emission spectrum of single trapped proteins. By analyzing the correlated changes between these observables, we identify forms of LHCII with different fluorescence intensities and excited-state lifetimes. The distinct forms may be associated with different energy dissipation mechanisms in the energy transfer chain. Changes of relative populations in response to pH and carotenoid composition are observed, which may extend our understanding of the molecular mechanisms of photoprotection.

  6. Long-pulsed Nd:YAG laser vs. intense pulsed light for hair removal in dark skin: a randomized controlled trial.

    Science.gov (United States)

    Ismail, S A

    2012-02-01

    Although several lasers meet the wavelength criteria for selective follicular destruction, the treatment of darker skin phototypes is particularly challenging because absorption of laser energy by the targeted hairs is compromised by an increased concentration of epidermal melanin. To compare satisfaction level, safety and effectiveness of a long-pulsed Nd:YAG laser and intense pulsed light (IPL) in axillary hair reduction in subjects with dark skin. The study design was a within-patient, right-left, assessor-blinded, comparison of long-pulsed Nd:YAG laser and IPL. Fifty women (skin phototypes IV-VI) volunteered for removal of axillary hair. Five sessions at 4- to 6-week intervals were performed. Hair counts at both sides were compared at baseline and 6months after the last session. Final overall evaluations were performed by subjects and clinician at the end of the study. Satisfaction was scored for both devices. Thirty-nine women completed the study. At 6months, the decrease in hair counts on the laser side (79·4%, Pvs. pretreatment) was significantly (Pvs. pretreatment). Only temporary adverse effects were reported at both sides. Higher pain scores and more inflammation were reported with Nd:YAG laser; however, it was preferred by 29 volunteers (74%). Volunteers reported higher satisfaction score with Nd:YAG laser (PDark skin can be treated by both systems safely and effectively; however, long-pulsed (1064 nm) Nd:YAG laser is more effective as reported by both subjects and clinician. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  7. Adhesion characteristics of VO2 ink film sintered by intense pulsed light for smart window

    Science.gov (United States)

    Youn, Ji Won; Lee, Seok-Jae; Kim, Kwang-Seok; Kim, Dae Up

    2018-05-01

    Progress in the development of energy-efficient coatings on glass has led to the research of smart windows that can modulate solar energy in response to an external stimulus like light, heat, or electricity. Thermochromic smart windows have attracted great interest because they provide highly visible transparency and intelligently controllable solar heat. VO2 has been widely used as coating material for thermochromism owing to its reversible metal-to-insulator transition near room temperature. However, unstable crystalline phases and expensive fabrication processes of VO2 films limit their facile application in smart windows. To overcome these restrictions, we manufactured nanoinks based on VO2 nanoparticles and fabricated films using spin coating and intense pulsed light (IPL) sintering on a quartz substrate. We examined adhesion between the VO2 nanoink films and the quartz substrate by varying the applied voltages and the number of pulses. The average adhesion of thin films increased to 83 and 108 N/m as the applied voltage during IPL sintering increased from 1400 to 2000 V. By increasing the number of pulses from 5 to 20, the adhesive strength increased from 83 to 94 N/m at 1400 V, and decreased from 108 to 96 N/m at 2000 V voltage.

  8. Müller glial cells contribute to dim light vision in the spectacled caiman (Caiman crocodilus fuscus): Analysis of retinal light transmission.

    Science.gov (United States)

    Agte, Silke; Savvinov, Alexey; Karl, Anett; Zayas-Santiago, Astrid; Ulbricht, Elke; Makarov, Vladimir I; Reichenbach, Andreas; Bringmann, Andreas; Skatchkov, Serguei N

    2018-05-16

    In this study, we show the capability of Müller glial cells to transport light through the inverted retina of reptiles, specifically the retina of the spectacled caimans. Thus, confirming that Müller cells of lower vertebrates also improve retinal light transmission. Confocal imaging of freshly isolated retinal wholemounts, that preserved the refractive index landscape of the tissue, indicated that the retina of the spectacled caiman is adapted for vision under dim light conditions. For light transmission experiments, we used a setup with two axially aligned objectives imaging the retina from both sides to project the light onto the inner (vitreal) surface and to detect the transmitted light behind the retina at the receptor layer. Simultaneously, a confocal microscope obtained images of the Müller cells embedded within the vital tissue. Projections of light onto several representative Müller cell trunks within the inner plexiform layer, i.e. (i) trunks with a straight orientation, (ii) trunks which are formed by the inner processes and (iii) trunks which get split into inner processes, were associated with increases in the intensity of the transmitted light. Projections of light onto the periphery of the Müller cell endfeet resulted in a lower intensity of transmitted light. In this way, retinal glial (Müller) cells support dim light vision by improving the signal-to-noise ratio which increases the sensitivity to light. The field of illuminated photoreceptors mainly include rods reflecting the rod dominance of the of tissue. A subpopulation of Müller cells with downstreaming cone cells led to a high-intensity illumination of the cones, while the surrounding rods were illuminated by light of lower intensity. Therefore, Müller cells that lie in front of cones may adapt the intensity of the transmitted light to the different sensitivities of cones and rods, presumably allowing a simultaneous vision with both receptor types under dim light conditions

  9. Computer generated holography with intensity-graded patterns

    Directory of Open Access Journals (Sweden)

    Rossella Conti

    2016-10-01

    Full Text Available Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs, which modulate the spatial phase of the incident laser beam. A variety of algorithms are employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different level of chanelrhodopsin2 (ChR2, one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light.

  10. Interactions between the visual and the magnetoreception system: different effects of bichromatic light regimes on the directional behavior of migratory birds.

    Science.gov (United States)

    Wiltschko, Roswitha; Dehe, Lars; Gehring, Dennis; Thalau, Peter; Wiltschko, Wolfgang

    2013-01-01

    When magnetic compass orientation of migratory robins was tested, the birds proved well oriented under low intensity monochromatic light of shorter wavelengths up to 565 nm green; from 583 nm yellow onward, they were disoriented. In the present study, we tested robins under bichromatic lights composed (1) of 424 nm blue and 565 nm green and (2) of 565 nm green and 583 nm yellow at two intensities. Under dim blue-green light with a total quantal flux of ca. 8 × 10(15)quanta/sm(2), the birds were well oriented in their migratory direction by their inclination compass; under blue-green light of twice this intensity, their orientation became axial. In both cases, the magnetic directional information was mediated by the radical pair processes in the eye. When green and yellow light were combined, however, the nature of the behavior changed. Under green-yellow light of the higher intensity, the birds showed a 'fixed direction' response that was polar, no longer controlled by the normal inclination compass; under dim green-yellow light, the response became axial. Under these two light conditions, the respective directional information was mediated by the magnetite-based receptors in the skin of the upper beak. Apparently, yellow light leads to a change from one magnetoreception system to the other. How this change is effected is still unknown; it appears to reflect complex interactions between the visual and the two magnetoreception systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Assessment of photoreactivation following ultraviolet light disinfection

    International Nuclear Information System (INIS)

    Kashimada, K.; Kamiko, N.; Yamamoto, K.; Ohgaki, S.

    1996-01-01

    Photoreactivation of microorganisms following UV disinfection is one of the research topics of interest in assessing the performance of UV disinfection, because there is little consensus on how the visible light intensity relates to the photoreactivation rate and the maximum survival in wastewater treatment processes. Apparent photoreactivation by a fluorescent lamp was observed in case of indicator bacteria (heterotrophic bacteria, coliform bacteria, fecal coliforms) in raw sewage, but not E. coli B and E. coli K12 A/λ(F+). Inactivation of fecal coliform was observed simultaneously during photoreactivation process by sunlight. Dose rate at 360 nm wave length as visible light intensity showed that it was a useful indicator for assessing the photoreactivation rate and the maximum survival when photoreactivation took place by both fluorescent lamp and sunlight. The model for photoreactivation was developed. The photoreactivation rate increased with increasing visible light intensity at 360 nm. However, the maximum survival value may not be affected by visible light intensity. (author)

  12. Higher-order-mode (HOM) power in elliptical superconducting cavities for intense pulsed proton accelerators

    CERN Document Server

    Sang Ho Kim; Dong O Jeon; Sundeli, R

    2002-01-01

    In linacs for intense pulsed proton accelerators, the beam has a multiple time-structure, and each beam time-structure generates resonance. When a higher-order mode (HOM) is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power, too. In order to understand the effects of a complex beam time-structure on the mode excitations and the resulting HOM powers in elliptical superconducting cavities, analytic expressions are developed, with which the beam-induced voltage and corresponding power are explored, taking into account the properties of HOM frequency behavior in elliptical superconducting cavities. The results and understandings from this analysis are presented with the beam parameters of the Spallation Neutron Source (SNS) superconducting linac.

  13. Spotlight on fish: light pollution affects circadian rhythms of European perch but does not cause stress.

    Science.gov (United States)

    Brüning, Anika; Hölker, Franz; Franke, Steffen; Preuer, Torsten; Kloas, Werner

    2015-04-01

    Flora and fauna evolved under natural day and night cycles. However, natural light is now enhanced by artificial light at night, particularly in urban areas. This alteration of natural light environments during the night is hypothesised to alter biological rhythms in fish, by effecting night-time production of the hormone melatonin. Artificial light at night is also expected to increase the stress level of fish, resulting in higher cortisol production. In laboratory experiments, European perch (Perca fluviatilis) were exposed to four different light intensities during the night, 0 lx (control), 1 lx (potential light level in urban waters), 10 lx (typical street lighting at night) and 100 lx. Melatonin and cortisol concentrations were measured from water samples every 3h during a 24 hour period. This study revealed that the nocturnal increase in melatonin production was inhibited even at the lowest light level of 1 lx. However, cortisol levels did not differ between control and treatment illumination levels. We conclude that artificial light at night at very low intensities may disturb biological rhythms in fish since nocturnal light levels around 1 lx are already found in urban waters. However, enhanced stress induction could not be demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Optical bistability controlling light with light

    CERN Document Server

    Gibbs, Hyatt

    1985-01-01

    Optical Bistability: Controlling Light with Light focuses on optical bistability in nonlinear optical systems. Emphasis is on passive (non-laser) systems that exhibit reversible bistability with input intensity as the hysteresis variable, along with the physics and the potential applications of such systems for nonlinear optical signal processing. This book consists of seven chapters and begins with a historical overview of optical bistability in lasers and passive systems. The next chapter describes steady-state theories of optical bistability, including the Bonifacio-Lugiato model, as we

  15. Lighting for Education.

    Science.gov (United States)

    Ontario Ministry of Colleges and Universities, Toronto.

    Some of the qualities and quantities that must be juggled to produce good lighting for educational facilities are analyzed with photographs, tables, and drawings. The three categories of lamps used for school lighting (incandescent, fluorescent, and high intensity discharge) are described; a lamp selection guide gives the design characteristics of…

  16. Characterization of heat emission of light-curing units.

    Science.gov (United States)

    Wahbi, Mohammed A; Aalam, F A; Fatiny, F I; Radwan, S A; Eshan, I Y; Al-Samadani, K H

    2012-04-01

    This study was designed to analyze the heat emissions produced by light-curing units (LCUs) of different intensities during their operation. The null hypothesis was that the tested LCUs would show no differences in their temperature rises. FIVE COMMERCIALLY AVAILABLE LCUS WERE TESTED: a "Flipo" plasma arc, "Cromalux 100" quartz-tungsten-halogen, "L.E. Demetron 1" second-generation light-emitting diode (LED), and "Blue Phase C5" and "UltraLume 5" third-generation LED LCUs. The intensity of each LCU was measured with two radiometers. The temperature rise due to illumination was registered with a type-K thermocouple, which was connected to a computer-based data acquisition system. Temperature changes were recorded in continues 10 and 20 s intervals up to 300 s. The Flipo (ARC) light source revealed the highest mean heat emission while the L.E. Demetron 1 LED showing the lowest mean value at 10 and 20 s exposure times. Moreover, Cromalux (QTH) recorded the second highest value for all intervals (12.71, 14.63, 14.60) of heat emission than Blue Phase C5 (LED) (12.25, 13.87, 13.69), interestingly at 20 s illumination for all intervals the highest results (18.15, 19.27, 20.31) were also recorded with Flipo (PAC) LCU, and the lowest (6.71, 5.97, 5.55) with L.E. Demetron 1 LED, while Blue Phase C5 (LED) recorded the second highest value at the 1st and 2nd 20 s intervals (14.12, 11.84, 10.18) of heat emission than Cromalux (QTH) (12.26, 11.43, 10.26). The speed of temperature or heat rise during the 10 and 20 s depends on light intensity of emitted light. However, the QTH LCU was investigated resulted in a higher temperature rise than LED curing units of the same power density. The PAC curing unit induced a significantly higher heat emission and temperature increase in all periods, and data were statistically different than the other tested groups (p < .05). LED (Blue Phase C5) was not statistically significant (p < .05) (at 10 s) than QTH units, also LED (Blue

  17. [CAM in Tillandsia usneoides: Studies on the pathway of carbon and the dependency of CO2-exchange on light intensity, temperature and water content of the plant].

    Science.gov (United States)

    Kluge, M; Lange, O L; Eichmann, M V; Schmid, R

    1973-12-01

    Tillandsia usneoides, in the common sense a non-succulent plant, exhibits CO2 exchange characterized by net CO2 dark fixation during the night and depression of CO2 exchange during the day. Malate has been demonstrated to accumulate during CO2 dark fixation and to be converted to carbohydrates in light. Thus, T. usneoides exhibits CAM like typical succulents.Net CO2 uptake during the day is increased with net CO2 output being suppressed in duration of time and extent when light intensity increases. Furthermore, a slight increase in CO2 fixation during the following night can be observed if the plants were treated with high light intensity during the previous day.Curves of CO2 exchange typical for CAM are obtained if T. usneoides is kept at 15°C and 20°C. Lower temperature tend to increase CO2 uptake during the day and to inhibit CO2 dark fixation. Temperatures higher than 20°C favour loss of CO2 by respiration, which becomes apparent during the whole day and night at 30°C and higher temperatures. Thus, T. usneoides gains carbon only at temperatures well below 25°C.Net CO2 uptake during the day occurs only in moist plant material and is inhibited in plants cept under water stress conditions. However, CO2 uptake during the night is clearly favoured if the plants dry out. Therefore dry plants gain more carbon than moist ones.Curves of CO2 exchange typical for CAM were also obtained with 13 other species of the genus Tillandsia.The exhibition of CAM by the non-succulent T. usneoides calls for a new definition of the term "succulence" if it is to remain useful in characterizing this metabolic pathway. Because CO2-fixing cells of T. usneoides possess relatively large vacuoles and are relatively poor in chloroplasts, they resembles the assimilatory cells of typical CAM-exhibiting succulents. Therefore, if "succulence" only means the capacity of big vacuoles to store malate, the assimilatory cells in T. usneoides are succulent. It seems to be useful to investigate

  18. Resonance broadening in an intense light field

    International Nuclear Information System (INIS)

    Andreev, S.P.; Lisitsa, V.S.

    1977-01-01

    Collisions of identical atoms in a strong resonance radiation field E 0 cosωt, for which the atomic oscillation period is comparable to the collision time of the atoms, are considered. The problem is treated in terms of the simplest two-level atomic model. The problem of light absorption in such collisions is reduced to the problem of inelastic transitions in a three-level compound system of two atoms and an electromagnetic field. Corresponding probabilities and inelastic scattering integral cross sections for transitions between energy levels in such a system are calculated for two extreme cases- the impact (rapid collisions) and the static one (slow collisions). In the general case the cross sections depend nonlinearly on Esub(0). For small Esub(0) as compared to a certain critical Esub(0)* the results are similar to those of the well-known linear theory of resonance broadening. For Esub(0)>>Esub(0)* the absorption in the line wing is found to decrease (with increase of Esub(0)-the medium becomes more ''transparent''). The kinetics of light absorption in the medium of identical atoms with constant absorption capacity is analysed

  19. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity.

    Science.gov (United States)

    Sousa, Cláudia; de Winter, Lenneke; Janssen, Marcel; Vermuë, Marian H; Wijffels, René H

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Intense pulsed light therapy for the treatment of evaporative dry eye disease.

    Science.gov (United States)

    Vora, Gargi K; Gupta, Preeya K

    2015-07-01

    Evaporative dry eye disease is one of the most common types of dry eye. It is often the result of chronic meibomian gland dysfunction (MGD) and associated ocular rosacea. Evaporative dry eye and MGD significantly reduce patient's quality of life. Traditional treatments, such as artificial tears, warm compresses, and medications, such as topical cyclosporine, azithromycin, and oral doxycycline, provide some relief; however, many patients still suffer from dry eye symptoms. Intense pulsed light (IPL) therapy, which has been used extensively in dermatology to treat chronic skin conditions, is a relatively new treatment in ophthalmology for patients with evaporative dry eye disease. There are very few studies published on the use of IPL in patients with dry eye disease. The present review describes the theoretical mechanisms of IPL treatment of MGD and ocular rosacea. Personal clinical experience and recently presented data are reported as well. IPL therapy has promising results for evaporative dry eye patients. There are statistically significant improvements in clinical exam findings of dry eye disease. More importantly, patients report subjective improvement in their symptoms. More research is needed in this area to help understand the mechanism of dry eye disease and how it can be effectively treated.

  1. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity.

    Science.gov (United States)

    Cheng, Tuoyuan; Wei, Chun-Hai; Leiknes, TorOve

    2017-10-01

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14μmol/m 2 /s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50mg/L, initial phosphate phosphorus 2-10mg/L and microalgal seed 40mg/L. Maximum microalgal biomass and minimum generation time were 370.9mg/L and 2.5d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5L/m 2 /h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Intense pulsed light for photo-rejuvenation and freckles of middle eastern skin

    International Nuclear Information System (INIS)

    El Bedewi, A.F.

    2003-01-01

    Facial ageing is a gradual process which could be due to intrinsic and extrinsic causes and it ultimately results in the appearance of activity induced tissue ptosis, wrinkles, epidermal and dermal artoply, dryness, senile lentigo, flushing, telangiectasia and enlarged pores. Moreover, freckles are frequently seen on the face and other sun exposed areas and it is characterized with incrreased melanin in the epidermis. Intense Pulsed Light (IPL)is the latest technology for selective photo-thermolysis as a non-ablative photo-rejuvenation. Thirty-four patients of age ranging between 35- 70 years with skin type ranging between III-V with or without freckles were treated with 3-5 sessions of IPL. Three weeks intervals were considered between every two succesive session. Irradiation wavelength was controlled using cutoff filters ranging from 535 to 580 nmwith a fluence of 25-35 j/cm-2. Significant improvement was demonstrated after 6 months by computerized image analysis compared with the baseline. IPL was found to be effective and saf treatment for fine wrinkles, facial freckles, telangiectasia, flushing as well as post-inflammatory hyper-pigmentation with a high satisfactory level and a relatively afew adverse effects

  3. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    1996-01-01

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... the day at prevailing light intensities. A 1-dimensional diffusion-reaction model was used to estimate gross photosynthesis and oxygen respiration per volume of sediment, as well as the euphotic depth and the sediment-water interface concentration of oxygen. Areal gross photosynthesis ranged from 9...

  4. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    the investigations of lighting scenarios carried out in two test installations: White Cube and White Box. The test installations are discussed as large-scale experiential instruments. In these test installations we examine what could potentially occur when light using LED technology is integrated and distributed......Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  5. Fundamental Physics at the Intensity Frontier

    CERN Document Server

    Hewett, J.L.; Brock, R.; Butler, J.N.; Casey, B.C.K.; Collar, J.; de Gouvea, A.; Essig, R.; Grossman, Y.; Haxton, W.; Jaros, J.A.; Jung, C.K.; Lu, Z.T.; Pitts, K.; Ligeti, Z.; Patterson, J.R.; Ramsey-Musolf, M.; Ritchie, J.L.; Roodman, A.; Scholberg, K.; Wagner, C.E.M.; Zeller, G.P.; Aefsky, S.; Afanasev, A.; Agashe, K.; Albright, C.; Alonso, J.; Ankenbrandt, C.; Aoki, M.; Arguelles, C.A.; Arkani-Hamed, N.; Armendariz, J.R.; Armendariz-Picon, C.; Arrieta Diaz, E.; Asaadi, J.; Asner, D.M.; Babu, K.S.; Bailey, K.; Baker, O.; Balantekin, B.; Baller, B.; Bass, M.; Batell, B.; Beacham, J.; Behr, J.; Berger, N.; Bergevin, M.; Berman, E.; Bernstein, R.; Bevan, A.J.; Bishai, M.; Blanke, M.; Blessing, S.; Blondel, A.; Blum, T.; Bock, G.; Bodek, A.; Bonvicini, G.; Bossi, F.; Boyce, J.; Breedon, R.; Breidenbach, M.; Brice, S.J.; Briere, R.A.; Brodsky, S.; Bromberg, C.; Bross, A.; Browder, T.E.; Bryman, D.A.; Buckley, M.; Burnstein, R.; Caden, E.; Campana, P.; Carlini, R.; Carosi, G.; Castromonte, C.; Cenci, R.; Chakaberia, I.; Chen, Mu-Chun; Cheng, C.H.; Choudhary, B.; Christ, N.H.; Christensen, E.; Christy, M.E.; Chupp, T.E.; Church, E.; Cline, D.B.; Coan, T.E.; Coloma, P.; Comfort, J.; Coney, L.; Cooper, J.; Cooper, R.J.; Cowan, R.; Cowen, D.F.; Cronin-Hennessy, D.; Datta, A.; Davies, G.S.; Demarteau, M.; DeMille, D.P.; Denig, A.; Dermisek, R.; Deshpande, A.; Dewey, M.S.; Dharmapalan, R.; Dhooghe, J.; Dietrich, M.R.; Diwan, M.; Djurcic, Z.; Dobbs, S.; Duraisamy, M.; Dutta, Bhaskar; Duyang, H.; Dwyer, D.A.; Eads, M.; Echenard, B.; Elliott, S.R.; Escobar, C.; Fajans, J.; Farooq, S.; Faroughy, C.; Fast, J.E.; Feinberg, B.; Felde, J.; Feldman, G.; Fierlinger, P.; Fileviez Perez, P.; Filippone, B.; Fisher, P.; Flemming, B.T.; Flood, K.T.; Forty, R.; Frank, M.J.; Freyberger, A.; Friedland, A.; Gandhi, R.; Ganezer, K.S.; Garcia, A.; Garcia, F.G.; Gardner, S.; Garrison, L.; Gasparian, A.; Geer, S.; Gehman, V.M.; Gershon, T.; Gilchriese, M.; Ginsberg, C.; Gogoladze, I.; Gonderinger, M.; Goodman, M.; Gould, H.; Graham, M.; Graham, P.W.; Gran, R.; Grange, J.; Gratta, G.; Green, J.P.; Greenlee, H.; Group, R.C.; Guardincerri, E.; Gudkov, V.; Guenette, R.; Haas, A.; Hahn, A.; Han, T.; Handler, T.; Hardy, J.C.; Harnik, R.; Harris, D.A.; Harris, F.A.; Harris, P.G.; Hartnett, J.; He, B.; Heckel, B.R.; Heeger, K.M.; Henderson, S.; Hertzog, D.; Hill, R.; Hinds, E.A.; Hitlin, D.G.; Holt, R.J.; Holtkamp, N.; Horton-Smith, G.; Huber, P.; Huelsnitz, W.; Imber, J.; Irastorza, I.; Jaeckel, J.; Jaegle, I.; James, C.; Jawahery, A.; Jensen, D.; Jessop, C.P.; Jones, B.; Jostlein, H.; Junk, T.; Kagan, A.L.; Kalita, M.; Kamyshkov, Y.; Kaplan, D.M.; Karagiorgi, G.; Karle, A.; Katori, T.; Kayser, B.; Kephart, R.; Kettell, S.; Kim, Y.K.; Kirby, M.; Kirch, K.; Klein, J.; Kneller, J.; Kobach, A.; Kohl, M.; Kopp, J.; Kordosky, M.; Korsch, W.; Kourbanis, I.; Krisch, A.D.; Krizan, P.; Kronfeld, A.S.; Kulkarni, S.; Kumar, K.S.; Kuno, Y.; Kutter, T.; Lachenmaier, T.; Lamm, M.; Lancaster, J.; Lancaster, M.; Lane, C.; Lang, K.; Langacker, P.; Lazarevic, S.; Le, T.; Lee, K.; Lesko, K.T.; Li, Y.; Lindgren, M.; Lindner, A.; Link, J.; Lissauer, D.; Littenberg, L.S.; Littlejohn, B.; Liu, C.Y.; Loinaz, W.; Lorenzon, W.; Louis, W.C.; Lozier, J.; Ludovici, L.; Lueking, L.; Lunardini, C.; MacFarlane, D.B.; Machado, P.A.N.; Mackenzie, P.B.; Maloney, J.; Marciano, W.J.; Marsh, W.; Marshak, M.; Martin, J.W.; Mauger, C.; McFarland, K.S.; McGrew, C.; McLaughlin, G.; McKeen, D.; McKeown, R.; Meadows, B.T.; Mehdiyev, R.; Melconian, D.; Merkel, H.; Messier, M.; Miller, J.P.; Mills, G.; Minamisono, U.K.; Mishra, S.R.; Mocioiu, I.; Sher, S.Moed; Mohapatra, R.N.; Monreal, B.; Moore, C.D.; Morfin, J.G.; Mousseau, J.; Moustakas, L.A.; Mueller, G.; Mueller, P.; Muether, M.; Mumm, H.P.; Munger, C.; Murayama, H.; Nath, P.; Naviliat-Cuncin, O.; Nelson, J.K.; Neuffer, D.; Nico, J.S.; Norman, A.; Nygren, D.; Obayashi, Y.; O'Connor, T.P.; Okada, Y.; Olsen, J.; Orozco, L.; Orrell, J.L.; Osta, J.; Pahlka, B.; Paley, J.; Papadimitriou, V.; Papucci, M.; Parke, S.; Parker, R.H.; Parsa, Z.; Partyka, K.; Patch, A.; Pati, J.C.; Patterson, R.B.; Pavlovic, Z.; Paz, Gil; Perdue, G.N.; Perevalov, D.; Perez, G.; Petti, R.; Pettus, W.; Piepke, A.; Pivovaroff, M.; Plunkett, R.; Polly, C.C.; Pospelov, M.; Povey, R.; Prakesh, A.; Purohit, M.V.; Raby, S.; Raaf, J.L.; Rajendran, R.; Rajendran, S.; Rameika, G.; Ramsey, R.; Rashed, A.; Ratcliff, B.N.; Rebel, B.; Redondo, J.; Reimer, P.; Reitzner, D.; Ringer, F.; Ringwald, A.; Riordan, S.; Roberts, B.L.; Roberts, D.A.; Robertson, R.; Robicheaux, F.; Rominsky, M.; Roser, R.; Rosner, J.L.; Rott, C.; Rubin, P.; Saito, N.; Sanchez, M.; Sarkar, S.; Schellman, H.; Schmidt, B.; Schmitt, M.; Schmitz, D.W.; Schneps, J.; Schopper, A.; Schuster, P.; Schwartz, A.J.; Schwarz, M.; Seeman, J.; Semertzidis, Y.K.; Seth, K.K.; Shafi, Q.; Shanahan, P.; Sharma, R.; Sharpe, S.R.; Shiozawa, M.; Shiltsev, V.; Sigurdson, K.; Sikivie, P.; Singh, J.; Sivers, D.; Skwarnicki, T.; Smith, N.; Sobczyk, J.; Sobel, H.; Soderberg, M.; Song, Y.H.; Soni, A.; Souder, P.; Sousa, A.; Spitz, J.; Stancari, M.; Stavenga, G.C.; Steffen, J.H.; Stepanyan, S.; Stoeckinger, D.; Stone, S.; Strait, J.; Strassler, M.; Sulai, I.A.; Sundrum, R.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Takeuchi, T.; Tanedo, P.; Taneja, S.; Tang, J.; Tanner, D.B.; Tayloe, R.; Taylor, I.; Thomas, J.; Thorn, C.; Tian, X.; Tice, B.G.; Tobar, M.; Tolich, N.; Toro, N.; Towner, I.S.; Tsai, Y.; Tschirhart, R.; Tunnell, C.D.; Tzanov, M.; Upadhye, A.; Urheim, J.; Vahsen, S.; Vainshtein, A.; Valencia, E.; Van de Water, R.G.; Van de Water, R.S.; Velasco, M.; Vogel, J.; Vogel, P.; Vogelsang, W.; Wah, Y.W.; Walker, D.; Weiner, N.; Weltman, A.; Wendell, R.; Wester, W.; Wetstein, M.; White, C.; Whitehead, L.; Whitmore, J.; Widmann, E.; Wiedemann, G.; Wilkerson, J.; Wilkinson, G.; Wilson, P.; Wilson, R.J.; Winter, W.; Wise, M.B.; Wodin, J.; Wojcicki, S.; Wojtsekhowski, B.; Wongjirad, T.; Worcester, E.; Wurtele, J.; Xin, T.; Xu, J.; Yamanaka, T.; Yamazaki, Y.; Yavin, I.; Yeck, J.; Yeh, M.; Yokoyama, M.; Yoo, J.; Young, A.; Zimmerman, E.; Zioutas, K.; Zisman, M.; Zupan, J.; Zwaska, R.; Intensity Frontier Workshop

    2012-01-01

    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.

  6. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  7. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  8. Light quantity affects the regulation of cell shape in Fremyella diplosiphon

    Directory of Open Access Journals (Sweden)

    Bagmi ePattanaik

    2012-05-01

    Full Text Available In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-dependent cellular morphology is less well understood. In natural aquatic environments, light quality and intensity change simultaneously at varying depths of the water column. Thus, we hypothesize that changes in morphology that also have been attributed to differences in the prevalent wavelengths of available light may largely be associated with changes in light intensity. Fremyella diplosiphon shows highly reproducible light-dependent changes in pigmentation and morphology. Under red light (RL, F. diplosiphon cells are blue-green in color, due to the accumulation of high levels of phycocyanin, a RL- absorbing pigment in the light-harvesting complexes or phycobilisomes (PBSs, and the shape of cells are short and rounded. Conversely, under green light (GL, F. diplosiphon cells are red in color due to accumulation of GL- absorbing phycoerythrin in PBSs, and are longer and brick-shaped. GL is enriched at lower depths in the water column, where overall levels of light also are reduced, i.e., to 10% or less of the intensity found at the water surface. We hypothesize that longer cells under low light intensity, which is generally enriched in green wavelengths, are associated with greater levels of total photosynthetic pigments in the thylakoid membranes. To test this hypothesis, we grew F. diplosiphon under increasing intensities of GL and observed whether the length of cells diminished due to reduced pressure to maintain larger cells and the associated increased photosynthetic membrane capacity under high light intensity, independent of whether it is light of

  9. High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue

    International Nuclear Information System (INIS)

    Canpolat, M.; Mourant, J.R.

    2000-01-01

    Measurement of light transport in tissue has the potential to be an inexpensive and practical tool for non-invasive tissue diagnosis in medical applications because it can provide information on both morphological and biochemical properties. To capitalize on the potential of light transport as a diagnostic tool, an understanding of what information can be gleaned from light transport measurements is needed. We present data concerning the sensitivity of light transport measurements, made in clinically relevant geometries, to scattering properties. The intensity of the backscattered light at small source-detector separations is shown to be sensitive to the phase function, and furthermore the collected light intensity is found to be correlated with the amount of high-angle scattering in the medium. (author)

  10. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-07-01

    Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adults reared on green ash foliage subjected to these factors was assayed. Mature leaves generally were more nutritious with greater amino acids and a greater ratio of protein to non-structural carbohydrate (P:C) than young leaves, in particular when trees were grown in shade. On the other hand, mature leaves had lower amounts of trypsin and chymotrypsin inhibitors, and total phenolics compared to young leaves. Lower defense of mature leaves alone, or along with higher nutritional quality may lead to increased survival and longevity of emerald ash borer feeding on mature leaves. Sunlight reduced amino acids and P:C ratio, irrespective of leaf age and girdling, and elevated total protein of young foliage, but not protein of mature leaves. Sunlight also dramatically increased all investigated defensive compounds of young, but not mature leaves. Girdling reduced green ash foliar nutrition, especially, of young leaves grown in shade and of mature leaves grown in sun. However emerald ash borer performance did not differ when fed leaves from trees grown in sun or shade, or from girdled or control trees. One explanation is that emerald ash borer reared on lower nutritional quality food may compensate for nutrient deficiency by increasing its consumption rate. The strong interactions among leaf age, light intensity, and girdling on nutrition and defense highlight the need for caution when interpreting data without considering possible interactions.

  11. Photophoretic trampoline—Interaction of single airborne absorbing droplets with light

    Science.gov (United States)

    Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia

    2012-09-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  12. Evaluation of shear bond strength of orthodontic brackets using trans-illumination technique with different curing profiles of LED light-curing unit in posterior teeth.

    Science.gov (United States)

    Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman

    2013-11-21

    Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.

  13. Efficacy and mode of action of a noise-sensor light alarm to decrease noise in the pediatric intensive care unit: a prospective, randomized study.

    Science.gov (United States)

    Jousselme, Chloé; Vialet, Renaud; Jouve, Elisabeth; Lagier, Pierre; Martin, Claude; Michel, Fabrice

    2011-03-01

    To determine whether a sound-activated light-alarm device could reduce the noise in the central area of our pediatric intensive care unit and to determine whether this reduction was significant enough to decrease the noise that could be perceived by a patient located in a nearby room. The secondary objective was to determine the mode of action of the device. In a 16-bed pediatric and neonatal intensive care unit, a large and clearly noticeable sound-activated light device was set in the noisiest part of the central area of our unit, and noise measurements were made in the central area and in a nearby room. In a prospective, quasi-experimental design, sound levels were compared across three different situations--no device present, device present and turned on, and device present but turned off--and noise level measurements were made over a total of 18 days. None. Setting a sound-activated light device on or off. When the device was present, the noise was about 2 dB lower in the central area and in a nearby room, but there was no difference in noise level with the device turned on vs. turned off. The noise decrease in the central area was of limited importance but was translated in a nearby room. The sound-activated light device did not directly decrease noise when turned on, but repetition of the visual signal throughout the day raised staff awareness of noise levels over time.

  14. How to harvest efficient laser from solar light

    Science.gov (United States)

    Zhao, Changming; Guan, Zhe; Zhang, Haiyang

    2018-02-01

    Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.

  15. Noise analysis of a white-light supercontinuum light source for multiple wavelength confocal laser scanning fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Gail [Centre for Biophotonics, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR (United Kingdom)

    2005-08-07

    Intensity correlations of a Ti : sapphire, Kr/Ar and a white-light supercontinuum were performed to quantify the typical signal amplitude fluctuations and hence ascertain the comparative output stability of the white-light supercontinuum source for confocal laser scanning microscopy (CLSM). Intensity correlations across a two-pixel sample (n = 1000) of up to 98%, 95% and 94% were measured for the Ti : sapphire, Kr/Ar and white-light supercontinuum source, respectively. The white-light supercontinuum noise level is therefore acceptable for CLSM, with the added advantage of wider wavelength flexibility over traditional CLSM excitation sources. The relatively low-noise white-light supercontinuum was then used to perform multiple wavelength sequential CLSM of guinea pig detrusor to confirm the reliability of the system and to demonstrate system flexibility.

  16. Light Therapy Boxes for Seasonal Affective Disorder

    Science.gov (United States)

    Seasonal affective disorder treatment: Choosing a light therapy box Light therapy boxes can offer an effective treatment for seasonal affective disorder. Features such as light intensity, safety, cost and ...

  17. Extinction of polarized light in ferrofluids with different magnetic particle concentrations

    International Nuclear Information System (INIS)

    Socoliuc, V.; Popescu, L.B.

    2012-01-01

    The magnetic field intensity and nanoparticle concentration dependence of the polarized light extinction in a ferrofluid made of magnetite particles stabilized with technical grade oleic acid dispersed in transformer oil was experimentally investigated. The magnetically induced optical anisotropy, i.e. the dichroism divided by concentration, was found to decrease with increasing sample concentration from 2% to 8%. The magnetically induced change in the optical extinction of light polarized at 54.74 o with respect to the magnetic field direction was found to be positive for the less concentrated sample (2%) and negative for the samples with 4% and 8% magnetic nanoparticle concentrations, the more negative the higher the concentration and field intensity. Based on the theoretically proven fact that the particle orientation mechanism has no effect on the extinction of light polarized at 54.74 o with respect to the field direction, we analyzed the experimental findings in the frames of the agglomeration and long-range pair correlations theories for the magnetically induced optical anisotropy in ferrofluids. We developed a theoretical model in the approximation of single scattering for the optical extinction coefficient of a ferrofluid with magnetically induced particle agglomeration. The model predicts the existence of a polarization independent component of the optical extinction coefficient that is experimentally measurable at 54.74 o polarization angle. The change in the optical extinction of light polarized at 54.74 o is positive if only the formation of straight n-particle chains is considered and may become negative in the hypothesis that the longer chains degenerate to more isotropic structures (polymer-like coils, globules or bundles of chains). The model for the influence on the light absorption of the long-range pair correlations, published elsewhere, predicts that the change in the optical extinction of light polarized at 54.74 o is always negative, the more

  18. Self-Regulated Learning Skills and Online Activities between Higher and Lower Performers on a Web-Intensive Undergraduate Engineering Course

    Science.gov (United States)

    Lawanto, Oenardi; Santoso, Harry B.; Lawanto, Kevin N.; Goodridge, Wade

    2017-01-01

    The objective of this study was to evaluate students' self-regulated learning (SRL) skills used in a Web-intensive learning environment. The research question guiding the study was: How did the use of student SRL skills and student engagement in online activities compare between higher- and lower-performing students participating in a…

  19. Intense Pulsed Light: Friend or Foe? Molecular Evidence to Clarify Doubts.

    Science.gov (United States)

    Ferreira, Liliana; Vitorino, Rui; Neuparth, Maria João; Rodrigues, David; Gama, Adelina; Faustino-Rocha, Ana I; Ferreira, Rita; Oliveira, Paula A

    2018-02-01

    Intense pulsed light (IPL) has been extensively applied in the field of dermatology and aesthetics; however, the long-term consequences of its use are poorly unknown, and to the best of our knowledge there is no study on the effect of IPL in neoplastic lesions. In order to better understand the molecular mechanisms underlying IPL application in the skin, we used an animal model of carcinogenesis obtained by chemical induction with 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). Institute of Cancer Research (ICR) mice were administered DMBA and/or TPA and treated with IPL. Skin was evaluated by histopathology and 2DE-blot-MS/MS analysis. Our data evidenced an inflammatory response and a metabolic remodeling of skin towards a glycolytic phenotype after chronic exposure to IPL, which was accomplished by increased oxidative stress and susceptibility to apoptosis. These alterations induced by IPL were more notorious in the DMBA sensitized skin. Keratins and metabolic proteins seem to be the more susceptible to oxidative modifications that might result in loss of function, contributing for the histological changes observed in treated skin. Data highlight the deleterious impact of IPL on skin phenotype, which justifies the need for more experimental studies in order to increase our understanding of the IPL long-term safety. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Quantitative Analysis of L-Edge White Line Intensities: The Influence of Saturation and Transverse Coherence

    International Nuclear Information System (INIS)

    Hahlin, A.

    2001-01-01

    We have performed x-ray absorption spectroscopy at the Fe, Ni, and Co L2,3 edges of in situ grown thin magnetic films. We compare electron yield measurements performed at SSRL and BESSY-I. Differences in the L2,3 white line intensities are found for all three elements, comparing data from the two facilities. We propose a correlation between spectral intensities and the degree of spatial coherence of the exciting radiation. The electron yield saturation effects are stronger for light with a higher degree of spatial coherence. Therefore the observed, coherence related, intensity variations are due to an increase in the absorption coefficient, and not to secondary channel related effects

  1. Quantitative analysis of L-edge white line intensities: the influence of saturation and transverse coherence.

    Science.gov (United States)

    Hahlin, A; Karis, O; Brena, B; Dunn, J H; Arvantis, D

    2001-03-01

    We have performed x-ray absorption spectroscopy at the Fe, Ni, and Co L2,3 edges of in situ grown thin magnetic films. We compare electron yield measurements performed at SSRL and BESSY-I. Differences in the L2,3 white line intensities are found for all three elements, comparing data from the two facilities. We propose a correlation between spectral intensities and the degree of spatial coherence of the exciting radiation. The electron yield saturation effects are stronger for light with a higher degree of spatial coherence. Therefore the observed, coherence related, intensity variations are due to an increase in the absorption coefficient, and not to secondary channel related effects.

  2. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    A. T. Wieg

    2016-12-01

    Full Text Available We introduce high thermal conductivity aluminum nitride (AlN as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l’Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  3. Photosynthesis-related infrared light transmission changes in spinach leaf segments

    International Nuclear Information System (INIS)

    Akimoto, T.

    1985-01-01

    The time courses of infrared light transmission changes and fluorescence induced by light in spinach leaf segments were measured. The illumination by red light exhibited a complex wave pattern. The transmission approached the baseline after repeating decreases and increases. Illumination by far-red light decreased the transmission. One of the differences between the two responses was the difference between the two amplitudes of the first increasing component. The component in the red light response was larger than the component in the far-red light response. The transmission decrease by far-red light is supposed to correspond to ''red drop.'' The transmission decrease by far-red light was suppressed by red light. This is due to an activation of a transmission-increasing component. This probably corresponds to ''enhancement.'' A proportional correlation existed between the intensity of far-red light and the minimum intensity of red light that suppressed the transmission decrease induced by far-red light. The component which made Peak D in the time course of fluorescence yield and the first increasing component in the transmission changes were suppressed by intense light

  4. Background light measurements in the deep ocean

    Science.gov (United States)

    Aoki, T.; Kitamura, T.; Matsuno, S.; Mitsui, K.; Ohashi, Y.

    1986-04-01

    The ambient light intensity at depths from 1500 to 4700 m at the DUMAND site near Hawaii is determined experimentally. The instrument (two 5-inch-diameter hemispherical photomultiplier elements enclosed in a glass sphere filled with transparent silicon gel, a cylindrical stainless-steel electronics housing, and an A1/PVC frame) and the data-processing techniques are described, and the results of both ship-suspended and bottom-tethered deployments are presented in graphs and characterized. The bottom-tethered data are shown to be stable, and the absolute flux (218 + 20 or - 60 photons/sq cm s) at 4700 m is considered consistent with the beta decay of K-40. Higher and less stable intensities in the ship-suspended data are attributed to bioluminescence stimulated by the motion of the instrument.

  5. 75 FR 11920 - General Electric Lighting-Ravenna Lamp Plant, Lighting Division, Including On-Site Leased Workers...

    Science.gov (United States)

    2010-03-12

    ... to the production of high intensity discharge lamps. The review shows that on August 24, 2007, a...-Ravenna Lamp Plant, Lighting Division, Including On-Site Leased Workers from Devore Technologies, Ravenna..., 2009, applicable to workers of General Electric Lighting-Ravenna Lamp Plant, Lighting Division...

  6. Quantum dots, advantages and drawbacks for lighting applications

    International Nuclear Information System (INIS)

    Schmidmayr, D.; Zehetner, J.

    2014-01-01

    At present 19% of the world-wide consumed electricity is used for lighting purposes. Compared e.g. to the well-known incandescent light bulb a modern warm white LED with a similar light quality has a 25 times higher lifetime and operates approximately ten times more efficient. One major component limiting the efficiency is the color conversion material (phosphor). Due to broad emission bandwidths of traditional phosphors energy is wasted. In order to further improve efficiency new robust fluorescent materials which allow selective, narrow band conversion are needed. In this paper we investigate the potential of quantum dots and show that they are able to increase both luminous flux and spectral coverage at the same time. Furthermore we evaluate the optical properties of quantum dot samples under thermal stress and aerial oxygen influence. Photoluminescence intensity degradation as well as a shift of the emission peak wavelength still pose a problem. (authors)

  7. Case Study on Justification: High Intensity Discharge Lamps. Annex II

    International Nuclear Information System (INIS)

    2016-01-01

    High intensity discharge lamps produce bright white light of a high intensity in an energy efficient manner. These lamps are typically used in large numbers in public and professional settings such as shops, warehouses, hotels and offices. They are also used in outdoor applications to illuminate streets, buildings, statues, flags and gardens and further as architectural lighting. They also have applications associated with film projection in cinemas, manufacture of semiconductors, fluorescence endoscopy and microscopy, schlieren photography, hologram projection, ultraviolet curing, sky beamers and car headlights. Some types of high intensity discharge lamp, as well as certain other consumer products for lighting, contain radioactive substances for functional reasons. The radionuclides that are typically incorporated into high intensity discharge lamps are 85 Kr and 232 Th. Given the wide range of uses, specific decisions on justification may be required for different applications. A small number of safety assessments for high intensity discharge lamps have been carried out and published. No published decisions at the national level specifically addressing the justification of the use of high intensity discharge lamps have been identified

  8. Lighting Options for Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  9. Public lighting tele-diagnosis and control

    Energy Technology Data Exchange (ETDEWEB)

    Auditor,

    1990-12-01

    Greater efficiency and reliability can be input into public lighting systems through the use of innovative electronic on-line control and monitoring systems. These employ microprocessors to manage a central control center for the automatic, partial or total, switching on and off of the lights, as well as, for regulating their intensity; for indicating power shortages at inlets and outlets; automatically controlling relays; detecting and indicating, through analog or digital displays, voltage, current, lighting intensity, etc. The microprocessors are also incorporated in auto-test circuits at each individual lighting unit to monitor and relay the information on the unit's operational condition back to the control center. This results in overall cost and energy savings for the public utility.

  10. Electromagnetic Coupling Between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System

    CERN Document Server

    Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M

    2013-01-01

    The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.

  11. Cosmic Infrared Background Fluctuations and Zodiacal Light

    Science.gov (United States)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2016-06-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ˜2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  12. Fourth Order Nonlinear Intensity and the corresponding Refractive ...

    African Journals Online (AJOL)

    Nonlinear effects occur whenever the optical fields associated with one or more intense light such as from laser beams propagating in a crystal are large enough to produce polarization fields. This paper describes how the fourth order nonlinear intensity and the corresponding effective refractive index that is intensity ...

  13. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source

    Science.gov (United States)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.

    2013-12-01

    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  14. Hydroxyapatite supported Ag3PO4 nanoparticles with higher visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Hong Xiaoting; Wu Xiaohui; Zhang Qiuyun; Xiao Mingfeng; Yang Gelin; Qiu Meirong; Han Guocheng

    2012-01-01

    Hydroxyapatite supported Ag 3 PO 4 nanocomposites have been synthesized by a wet impregnation process. UV-vis absorption spectra show a red shift of the absorption edges for the composite systems compared to pure hydroxyapatite support. The surface structure and morphology of the nanocomposites were characterized by Brunauer-Emmett-Teller (BET) apparatus, X-ray diffraction (XRD), transmission electron microscopy (TEM). The results suggest that Ag 3 PO 4 nanoparticles (6-17 nm in diameter) are well dispersed on the hydroxyapatite support and Ag 3 PO 4 nanoparticles density is larger for the higher Ag + loading sample. The as-prepared nanocomposite photocatalysts showed a pronounced photocatalytic activity upon decomposition of methylene blue dye in aqueous solution under both visible light (wavelength > 400 nm) and UV-vis light irradiation. A synergic mechanism of inherent photocatalytic capability of Ag 3 PO 4 and the accelerated electron/hole separation resulting from the photoinduced electrons captured by the slow-released Ag + at the interface of Ag 3 PO 4 and hydroxyapatite is proposed for the nanocomposites on the enhancement of photocatalytic performance in comparison to that of pure Ag 3 PO 4 nanoparticles. The support of hydroxyapatite may also act as an absorbent which favors the mass transfer in heterogeneous photocatalysis reaction.

  15. Dose-dependent responses of avian daily rhythms to artificial light at night

    NARCIS (Netherlands)

    De Jong, M.; Jeninga, L.; Ouyang, Jenny; van Oers, K.; Spoelstra, K.; Visser, M.E.

    2016-01-01

    Recent studies have shown that animals are affected by night-time light exposure. Light is a continuous variable, but our knowledge on how individuals react to different light intensities during the night is limited. We therefore determined the relationship between night light intensity and the

  16. Dose-dependent responses of avian daily rhythms to artificial light at night

    NARCIS (Netherlands)

    de Jong, Maaike; Jeninga, Lizanne; Ouyang, Jenny Q; van Oers, Kees; Spoelstra, Kamiel; Visser, Marcel E

    2015-01-01

    Recent studies have shown that animals are affected by night-time light exposure. Light is a continuous variable, but our knowledge on how individuals react to different light intensities during the night is limited. We therefore determined the relationship between night light intensity and the

  17. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with Nike KrF Laser

    Science.gov (United States)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Obenschain, S. P.; McLean, E. A.; Lehmberg, R. H.

    2008-11-01

    With the short wavelength (248 nm), large bandwidth (1˜2 THz), and ISI beam smoothing, Nike KrF laser is expected to have higher LPI thresholds than observed at other laser facilities. Previous measurements using the Nike laser [J. L. Weaver et al, Phys. Plasmas 14, 056316 (2007)] showed no LPI evidence from CH targets up to I˜2x10^15 W/cm^2. For further experiments to detect LPI excitation, Nike capabilities have been extended to achieve higher laser intensities by tighter beam focusing and higher power pulses. This talk will present results of a recent LPI experiment with the extended Nike capabilities focusing on light emission data in spectral ranges relevant to the Raman (SRS) and Two-Plasmon Decay (TPD) instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. The measurements were conducted at laser intensities of 10^15˜10^16 W/cm^2 on planar targets of CH solids and RF foams.

  18. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China].

    Science.gov (United States)

    Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan

    2014-09-01

    Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in

  19. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Kassaee, A; Finlay, J [University of Pennsylvania, Philadelphia, PA (United States); Taleei, R [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanism of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.

  20. Use of diffusive optical fibers for plant lighting

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, T.; Kitaya, Y.; Fujiwara, K. [Chiba Univ., Matsudo (Japan); Kino, S.; Kinowaki, M. [Topy Green Ltd., Tokyo (Japan)

    1994-12-31

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. Kitaya et al. (1988) developed a lighting system in which two rooting beds were arranged; one above and the other under fluorescent lamps. Lettuce plants grew normally in the lower bed and suspended upside-down under the upper bed. The lettuce plants suspended upside-down were given the light in upward direction (upward lighting). No significant difference in growth, development and morphology was found between the lettuce plants grown by the downward and upward lighting. Combining upward and downward lighting, improved spacing efficiency and reduced electricity cost per plant compared with conventional, downward lighting. From the above example, when designing a lighting system for plants with lamps more lighting direction should be considered. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in reduced space with sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and advantages and disadvantages are discussed.

  1. Reversible structural transformation and enhanced performance of PEDOT:PSS-based hybrid solar cells driven by light intensity.

    Science.gov (United States)

    Thomas, Joseph Palathinkal; Srivastava, Saurabh; Zhao, Liyan; Abd-Ellah, Marwa; McGillivray, Donald; Kang, Jung Soo; Rahman, Md Anisur; Moghimi, Nafiseh; Heinig, Nina F; Leung, Kam Tong

    2015-04-15

    Hybrid solar cells made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) and appropriate amounts of a cosolvent and a fluorosurfactant on planar n-type silicon substrates showed a photoconversion efficiency (PCE) of above 13%. These cells also exhibited stable, reproducible, and high external quantum efficiency (EQE) that was not sensitive to light-bias intensity (LBI). In contrast, solar cells made of pristine PSS showed low PCE and high EQE only under certain measurement conditions. The EQE was found to degrade with increasing LBI. Here we report that the LBI-sensitive variation of EQE of the low-PCE cells is related to a reversible structural transformation from a quinoid to a benzoid structure of PEDOT.

  2. Within-patient right-left blinded comparison of diode (810 nm) laser therapy and intense pulsed light therapy for hair removal.

    Science.gov (United States)

    Cameron, H; Ibbotson, S H; Dawe, R S; Ferguson, J; Moseley, H

    2008-10-01

    Excessive facial hair in women can cause significant psychological distress. A variety of treatment methods are available, including lasers and, more recently, intense pulsed light (IPL) sources. There are very few studies comparing laser and IPL devices. The purpose of our study was to compare a laser diode device with an IPL, using a within-patient, right-left, assessor-blinded, controlled, study design. Hair counts were made, using coded close-up photographs. Treatments were carried out on three occasions at 6-week intervals, and a final assessment was made 6 weeks following the third treatment. Patient self-assessment was also included. Nine women were recruited, and seven completed the study. Average hair counts in a 16 cm(2) area before and after treatment were, respectively, 42.4 and 10.4 (laser), 38.1 and 20.4 (IPL), 45.3 and 44.7 (control). Both laser and IPL reduced the hair count substantially; laser vs control was significant at P=0.028, but IPL vs control had P=0.13, suggesting that more subjects or more treatments were required if statistical significance were to be achieved. Despite subjecting the patients to higher pain scores and more inflammation, laser was preferred by five patients; two preferred IPL and one had no preference.

  3. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  4. Dose-dependent responses of avian daily rhythms to artificial light at night

    NARCIS (Netherlands)

    Jong, de M.; Jeninga, L.; Ouyang, J.Q.; Oers, van K.; Spoelstra, K.; Visser, M.E.

    2016-01-01

    Recent studies have shown that animals are affected by night-time light exposure. Light is a continuous variable, but our knowledge on how individuals react to different light intensities during the night is limited. We therefore determined the relationship between night light intensity and the

  5. Effectiveness of Intense Pulsed Light treatment in solar lentigo: a retrospective study

    Directory of Open Access Journals (Sweden)

    İlgen Ertam

    2014-03-01

    Full Text Available Intense Pulsed Light (IPL; is a light system of 500-1200 nm wavelength which is used for the treatment of hair removal, hyperpigmentation, non-ablative skin resurfacing and superficial vascular lesions. The mechanism of action is thought to be the focal epidermal coagulation due to selective photothermolysis in the epidermal keratinocytes and melanocytes. A variety of laser systems can be used in the treatment of lsolar entigo. The aim of this study is to investigate the effectiveness of IPL in solar lentigo. Materials and Methods: The archives of Cosmetology Unit retrospectively reviewed for the patients with the diagnosis of solar lentigo from March 2007 to November 2010. There were 139 files of patients who were diagnosed as solar lentigo clinically and dermoscopically and treated by IPL (L900 a & m IPL. Informed consent was taken from all patients. Among them, 42 patients who had come to controls regularly and had photographed before and after treatment included into the study. Results: A total of 52 lesions of 42 female and 1 male patient included into the study. Patients’ mean age was 42±9.6 years, ranging between 33 to 88. Of the lesions, 27 lesions(51.9% were on cheek, 7 lesions (13.5% were on zygoma, 6 lesions (11.5% were on chin, 4 lesions (7.7% were on hands, 4 lesions (7.7% were on forehead, 2 lesions(3.8% were on nose, 2 lesions (3.8% were on forearm. The mean number of sessions was 3.28 ranging between 1 and 7. After treatment, improvement was over 75% in 57,7% lesions, 50-75% in 17.3% of the lesions, 25-50% in 17.3% of the lesions, under 25% in 7.7% of the lesions. Conclusion: According to the results of our work, IPL can be accepted as an effective, cheap and safety method in terms of its side effects in treatment of solar lentigo.

  6. Effects of light-emitting diode light v. fluorescent light on growing performance, activity levels and well-being of non-beak-trimmed W-36 pullets.

    Science.gov (United States)

    Liu, K; Xin, H; Settar, P

    2018-01-01

    More energy-efficient, readily dimmable, long-lasting and more affordable light-emitting diode (LED) lights are increasingly finding applications in poultry production facilities. Despite anecdotal evidence about the benefits of such lighting on bird performance and behavior, concrete research data were lacking. In this study, a commercial poultry-specific LED light (dim-to-blue, controllable correlated color temperature (CCT) from 4500 to 5300 K) and a typical compact fluorescent light (CFL) (soft white, CCT=2700 K) were compared with regards to their effects on growing performance, activity levels, and feather and comb conditions of non-beak-trimmed W-36 pullets during a 14-week rearing period. A total of 1280-day-old pullets in two successive batches, 640 birds each, were used in the study. For each batch, pullets were randomly assigned to four identical litter-floor rooms equipped with perches, two rooms per light regimen, 160 birds per room. Body weight, BW uniformity (BWU), BW gain (BWG) and cumulative mortality rate (CMR) of the pullets were determined every 2 weeks from day-old to 14 weeks of age (WOA). Activity levels of the pullets at 5 to 14 WOA were delineated by movement index. Results revealed that pullets under the LED and CFL lights had comparable BW (1140±5 g v. 1135±5 g, P=0.41), BWU (90.8±1.0% v. 91.9±1.0%, P=0.48) and CMR (1.3±0.6% v. 2.7±0.6%, P=0.18) at 14 WOA despite some varying BWG during the rearing. Circadian activity levels of the pullets were higher under the LED light than under the CFL light, possibly resulting from differences in spectrum and/or perceived light intensity between the two lights. No feather damage or comb wound was apparent in either light regimen at the end of the rearing period. The results contribute to understanding the impact of emerging LED lights on pullets rearing which is a critical component of egg production.

  7. Effect on light intensity and mineral nutrition on carbohydrate and organic acid content in leaves of young coffee plants

    International Nuclear Information System (INIS)

    Georgiev, G.; Vento, Kh.

    1975-01-01

    Young coffee plants (Coffea arabica, L., var. Caturra) were grown under different conditions of mineral nutrition (1/8 N-P-K, N-P-K, 3 N-P-K, N 1/2-P-K and N-2P-K) and illumination (directly in the sunlight or shaded) with the aim of studying the effect of light and mineral nutrition on carbohydrate and organic acid content of the leaves. For determining these compounds 14 CO 2 was used. Sugars were separated after the method of paper chromatography. The results obtained showed that the incorporation of 14 C in sugars and organic acids was more intensive in plants grown directly in the sunlight, while in starch 14 C was incorporated more intensively in the shaded plants. Carbohydrate content rose parallel to the increase of nitrogen in the nutrient solution. Changingthe rate of phosphorus from 1/2P to two doses exerted highest effect on 14 C incorporation in starch and in hemicellulose. (author)

  8. Emergy-based comparative analysis of energy intensity in different industrial systems.

    Science.gov (United States)

    Liu, Zhe; Geng, Yong; Wang, Hui; Sun, Lu; Ma, Zhixiao; Tian, Xu; Yu, Xiaoman

    2015-12-01

    With the rapid economic development, energy consumption of China has been the second place in the world next to the USA. Usually, measuring energy consumption intensity or efficiency applies heat unit which is joule per gross domestic production (GDP) or coal equivalent per GDP. However, this measuring approach is only oriented by the conversion coefficient of heat combustion which does not match the real value of the materials during their formation in the ecological system. This study applied emergy analysis to evaluate the energy consumption intensity to fill this gap. Emergy analysis is considered as a bridge between ecological system and economic system, which can evaluate the contribution of ecological products and services as well as the load placed on environmental systems. In this study, emergy indicator for performing energy consumption intensity of primary energy was proposed. Industrial production is assumed as the main contributor of energy consumption compared to primary and tertiary industries. Therefore, this study validated this method by investigating the two industrial case studies which were Dalian Economic Development Area (DEDA) and Fuzhou economic and technological area (FETA), to comparatively study on their energy consumption intensity between the different kinds of industrial systems and investigate the reasons behind the differences. The results show that primary energy consumption (PEC) of DEDA was much higher than that of FETA during 2006 to 2010 and its primary energy consumption ratio (PECR) to total emergy involvement had a dramatically decline from year 2006 to 2010. In the same time, nonrenewable energy of PEC in DEDA was also much higher than that in FETA. The reason was that industrial structure of DEDA was mainly formed by heavy industries like petro-chemistry industry, manufacturing industries, and high energy-intensive industries. However, FETA was formed by electronic business, food industry, and light industries. Although

  9. Simulations of the Light Scattering Properties of Metal/Oxide Core/Shell Nanospheres

    International Nuclear Information System (INIS)

    Ruffino, F.; Piccitto, G.; Grimaldi, M.G.; Ruffino, F.; Grimaldi, M.G.

    2014-01-01

    Given the importance of the optical properties of metal/dielectric core/shell nanoparticles, in this work we focus our attention on the light scattering properties, within the Mie framework, of some specific categories of these noteworthy nano structures. In particular, we report theoretical results of angle-dependent light scattering intensity and scattering efficiency for Ag/Ag 2 O, Al/Al 2 O 2 , Cu/Cu 2 O, Pd/PdO, and Ti/TiO 2 core/shell nanoparticles as a function of the core radius/shell thickness ratio and on a relative comparison. The results highlight the light scattering characteristics of these systems as a function of the radius/shell thickness ratio, helping in the choice of the more suitable materials and sizes for specific applications (i.e., dynamic light scattering for biological and molecular recognition, increasing light trapping in thin-film silicon, organic solar cells for achieving a higher photocurrent).

  10. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G; Garzella, D; Labat, M; Carre, B; Bougeard, M; Salieres, P; Merdji, H; Gobert, O [CEA Saclay, DSM, DRECAM, Serv. Photons Atomes Mol., F-91191 Gif sur Yvette, (France); Lambert, G; Hara, T; Tanikawa, T; Kitamura, H; Shintake, T; Tanaka, Y; Tahara, K [RIKEN SPring Centre, Harima Inst., Hyogo 679-5148, (Japan); Lambert, G; Labat, M; Chubar, O; Couprie, M E [Groupe Magnetisme et Insertion, Synchrotron Soleil, F-91192 Gif sur Yvette, (France); Hara, T; Kitamura, H; Shintake, T; Inoue, S; Tanaka, Y [XFEL Project Head Office, RIKEN, Hyogo 679-5148, (Japan)

    2008-07-01

    Conventional synchrotron radiation sources enable the structure of matter to be studied at near-atomic spatial resolution and picosecond temporal resolution. Free-electron lasers promise to extend this down to femtosecond timescales. The process by which free-electron lasers amplify synchrotron light-known as self-amplified spontaneous emission - is only partially temporally coherent, but this can be improved by seeding it with an external laser. Here we explore the use of seed light produced by high-order harmonic generation in a gas, covering wavelengths from the ultraviolet to soft X-rays. Using the SPring-8 Compact SASE Source test accelerator, we demonstrate an increase of three orders of magnitude in the intensity of the fundamental radiation at 160 nm, halving of the free-electron laser saturation length, and the generation of nonlinear harmonics at 54 nm and 32 nm. The low seed level used in this demonstration suggests that nonlinear harmonic schemes should enable the generation of fully coherent soft X-rays at wavelengths down to the so-called 'water window', vital for the study of biological samples. (authors)

  11. 1,213 Cases of Treatment of Facial Acne Using Indocyanine Green and Intense Pulsed Light in Asian Skin

    Directory of Open Access Journals (Sweden)

    Kui Young Park

    2015-01-01

    Full Text Available Background. Photodynamic therapy (PDT has been used for acne, with various combinations of photosensitizers and light sources. Objective. We evaluated the effectiveness and safety of indocyanine green (ICG and intense pulsed light (IPL in the treatment of acne. Materials and Methods. A total of 1,213 patients with facial acne were retrospectively reviewed. Patients received three or five treatments of ICG and IPL at two-week intervals. Clinical response to treatment was assessed by comparing pre- and posttreatment clinical photographs and patient satisfaction scores. Results. Marked to excellent improvement was noted in 483 of 1,213 (39.8% patients, while minimal to moderate improvement was achieved in the remaining 730 (60.2% patients. Patient satisfaction scores revealed that 197 (16.3% of 1,213 patients were highly satisfied, 887 (73.1% were somewhat satisfied, and 129 (10.6% were unsatisfied. There were no significant side effects. Conclusion. These results suggest that PDT with ICG and IPL can be effectively and safely used in the treatment of acne.

  12. The effect of light intensity and temperature on performance of photoelectrochemical solar cells of structure ITO/TiO2/PVC-LiClO4/graphite

    International Nuclear Information System (INIS)

    Mohd Yusri Abd Rahman; Muhammad Mat Salleh; Ibrahim Abu Talib; Muhammad Yahaya

    2006-01-01

    The photovoltaic characteristics of a photoelectrochemical solar cells of ITO/TiO 2 /PVC-LiCIO 4 /Graphite are reported. This paper is concerned with the effect of light intensity and temperature on performance of the device. The photoelectrochemical solar cell material was a screen-printed layer of titanium dioxide onto an ITO-covered glass substrate which was used as a working electrode of the device. The electrolyte used was PVC-LiCIO 4 that was prepared by solution casting technique. The ionic conductivity of the electrolyte as a function of temperature was obtained from impedance spectroscopy technique. The graphite film which serve as a counter electrode were prepared onto glass substrate by electron beam evaporation technique. The current-voltage, I-V characteristics of the device under illumination of 20, 40, 60, 80 and 100 mWcm -2 light from tungsten halogen lamp at 40 degree C were obtained using Keithley Voltmeter 175A and Keithley Amperemeter 197A. The current-voltage under illumination of 100 mWcm -2 at 30 degree C, 35 degree C, 40 degree C, 45 degree C and 50 degree C respectively were also obtained. It was found that efficiency of the device increases with both light intensity and temperature

  13. High Resolution Near Infrared Spectrometer to Study the Zodiacal Light Spectrum

    Science.gov (United States)

    Kutyrev, Alexander; Arendt, R.; Dwek, E.; Moseley, S. H.; Silverberg, R.; Rapchun, D.

    2007-12-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 612, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I line at 5184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program. The project is supported by NASA ROSES-APRA grant.

  14. Enhancement of Light Localization in Hybrid Thue-Morse/Periodic Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Rihab Asmi

    2016-01-01

    Full Text Available The electric field intensity in one-dimensional (1D quasiperiodic and hybrid photonics band-gap structures is studied in the present paper. The photonic structures are ordered according to Fibonacci, Thue-Morse, Cantor, Rudin-Shapiro, Period-Doubling, Paper-Folding, and Baum-Sweet sequences. The study shows that the electric field intensity is higher for the Thue-Morse multilayer systems. After that the Thue-Morse structure will be combined with a periodic structure to form a hybrid photonic structure. It is shown that this hybrid system is the best for a strong localization of light. The proposed structures have been modeled using the Transfer Matrix Method.

  15. Adopting an Active Learning Approach to Teaching in a Research-Intensive Higher Education Context Transformed Staff Teaching Attitudes and Behaviours

    Science.gov (United States)

    White, Paul J.; Larson, Ian; Styles, Kim; Yuriev, Elizabeth; Evans, Darrell R.; Rangachari, P. K.; Short, Jennifer L.; Exintaris, Betty; Malone, Daniel T.; Davie, Briana; Eise, Nicole; Mc Namara, Kevin; Naidu, Somaiya

    2016-01-01

    The conventional lecture has significant limitations in the higher education context, often leading to a passive learning experience for students. This paper reports a process of transforming teaching and learning with active learning strategies in a research-intensive educational context across a faculty of 45 academic staff and more than 1,000…

  16. Non-imaging optics for LED-lighting

    NARCIS (Netherlands)

    Berg, van den J.B.; Castro, R.M.; Draisma, J.; Evers, J.H.M.; Hendriks, M.; Krehel, O.; Kryven, I.; Mora, K.; Szabó, B.T.; Zwiernik, P.W.; Boon, M.A.A.

    2013-01-01

    In this report, several methods are investigated to rapidly compute the light intensity function, either in the far field or on a finite-distance screen, of light emanating from a light fixture with a given shape. Different shapes are considered, namely polygonal and (piecewise) smooth. In the first

  17. Modeling Water Clarity and Light Quality in Oceans

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abdelrhman

    2016-11-01

    Full Text Available Phytoplankton is a primary producer of organic compounds, and it forms the base of the food chain in ocean waters. The concentration of phytoplankton in the water column controls water clarity and the amount and quality of light that penetrates through it. The availability of adequate light intensity is a major factor in the health of algae and phytoplankton. There is a strong negative coupling between light intensity and phytoplankton concentration (e.g., through self-shading by the cells, which reduces available light and in return affects the growth rate of the cells. Proper modeling of this coupling is essential to understand primary productivity in the oceans. This paper provides the methodology to model light intensity in the water column, which can be included in relevant water quality models. The methodology implements relationships from bio-optical models, which use phytoplankton chlorophyll a (chl-a concentration as a surrogate for light attenuation, including absorption and scattering by other attenuators. The presented mathematical methodology estimates the reduction in light intensity due to absorption by pure seawater, chl-a pigment, non-algae particles (NAPs and colored dissolved organic matter (CDOM, as well as backscattering by pure seawater, phytoplankton particles and NAPs. The methods presented facilitate the prediction of the effects of various environmental and management scenarios (e.g., global warming, altered precipitation patterns, greenhouse gases on the wellbeing of phytoplankton communities in the oceans as temperature-driven chl-a changes take place.

  18. Assessment of lighting needs by W-36 laying hens via preference test.

    Science.gov (United States)

    Ma, H; Xin, H; Zhao, Y; Li, B; Shepherd, T A; Alvarez, I

    2016-04-01

    Light intensity, spectrum and pattern may affect laying hen behaviors and production performance. However, requirements of these lighting parameters from the hens' standpoint are not fully understood. This study was conducted to investigate hens' needs for light intensity and circadian rhythm using a light tunnel with five identical compartments each at a different fluorescent light intensity of hens were able to move freely among the respective compartments. A group of four W-36 laying hens (23 to 30 weeks of age) were tested each time, and six groups or replicates were conducted. Behaviors of the hens were continuously recorded, yielding data on daily time spent, daily feed intake, daily feeding time, and eggs laid under each light intensity and daily inter-compartment movement. The results show that the hens generally spent more time in lower light intensities. Specifically, the hens spent 6.4 h (45.4%) at 5 lux, 3.0 h (22.1%) at 15 lux, 3.1 h (22.2%) at 30 lux and 1.5 h (10.3%) at 100 lux under light condition; and an accumulation of 10.0 h in darkness (feed intake (87.3 g/hen) among the different light conditions mirrored the trend of time spent in the respective light intensity, that is, highest at 5 lux (28.4 g/hen, 32.5% daily total) and lowest at 100 lux (5.8 g/hen, 6.7%). Hen-day egg production rate was 96.0%. Most of the eggs were laid in hens. Further studies to assess or verify welfare and performance responses of the hens to the preferred lighting conditions and rhythm over extended periods are recommended.

  19. Current-Voltage Characteristics of Nb2O5 nanoporous via light illumination

    Science.gov (United States)

    Samihah Khairir, Nur; Rani, Rozina Abdul; Fazlida Hanim Abdullah, Wan; Hafiz Mamat, Mohamad; Kadir, Rosmalini Abdul; Rusop, M.; Sabirin Zoolfakar, Ahmad

    2018-03-01

    This work discussed the effect of light on I-V characteristics of anodized niobium pentoxide (Nb2O5) which formed nanoporous structure film. The structure was synthesized by anodizing niobium foils in glycerol based solution with 10 wt% supplied by two different voltages, 5V and 10V. The anodized foils that contained Nb2O5 film were then annealed to obtain an orthorhombic phase for 30 minutes at 450°C. The metal contact used for I-V testing was platinum (Pt) and it was deposited using thermal evaporator at 30nm thickness. I-V tests were conducted under different condition; dark and illumination to study the effect of light on I-V characteristics of anodized nanoporous Nb2O5. Higher anodization voltage and longer anodization time resulted in higher pore dispersion and larger pore size causing the current to increase. The increase of conductivity in I-V behaviour of Nb2O5 device is also affected by the illumination test as higher light intensity caused space charge region width to increase, thus making it easier for electron transfer between energy band gap.

  20. Toward a Miami University Model for Internet-Intensive Higher Education.

    Science.gov (United States)

    Wolfe, Christopher R.; Crider, Linda; Mayer, Larry; McBride, Mark; Sherman, Richard; Vogel, Robert

    1998-01-01

    Describes principles underlying an emerging model for Internet-intensive undergraduate instruction at Miami University (Ohio) in which students learn by creating online materials themselves; faculty facilitate active learning; student intellectual exchanges are enriched; and the seminar sensibility is extended. Four applications are examined: a…

  1. Structure of the higher plant light harvesting complex I: In vivo characterization and structural interdependence of the Lhca proteins

    NARCIS (Netherlands)

    Klimmek, F.; Ganeteg, U.; Ihalainen, J.A.; van Roon, H.; Jensen, P.E.; Scheller, H.V.; Dekker, J.P.; Jansson, S.

    2005-01-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding

  2. Light-induced nonthermal population of optical phonons in nanocrystals

    Science.gov (United States)

    Falcão, Bruno P.; Leitão, Joaquim P.; Correia, Maria R.; Soares, Maria R.; Wiggers, Hartmut; Cantarero, Andrés; Pereira, Rui N.

    2017-03-01

    Raman spectroscopy is widely used to study bulk and nanomaterials, where information is frequently obtained from spectral line positions and intensities. In this study, we monitored the Raman spectrum of ensembles of semiconductor nanocrystals (NCs) as a function of optical excitation intensity (optical excitation experiments). We observe that in NCs the red-shift of the Raman peak position with increasing light power density is much steeper than that recorded for the corresponding bulk material. The increase in optical excitation intensity results also in an increasingly higher temperature of the NCs as obtained with Raman thermometry through the commonly used Stokes/anti-Stokes intensity ratio. More significantly, the obtained dependence of the Raman peak position on temperature in optical excitation experiments is markedly different from that observed when the same NCs are excited only thermally (thermal excitation experiments). This difference is not observed for the control bulk material. The inefficient diffusion of photogenerated charges in nanoparticulate systems, due to their inherently low electrical conductivity, results in a higher steady-state density of photoexcited charges and, consequently, also in a stronger excitation of optical phonons that cannot decay quickly enough into acoustic phonons. This results in a nonthermal population of optical phonons and thus the Raman spectrum deviates from that expected for the temperature of the system. Our study has major consequences to the general application of Raman spectroscopy to nanomaterials.

  3. Application of Cherenkov light observation to reactor measurements (1). Estimation of reactor power from Cherenkov light intensity

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Takeuchi, Tomoaki; Kimura, Nobuaki; Ohtsuka, Noriaki; Tsuchiya, Kunihiko; Sano, Tadafumi; Nakajima, Ken; Homma, Ryohei; Kosuge, Fumiaki

    2015-01-01

    Development of the reactor measurement system was started to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. The system would be applied as a monitoring system in severe accidents and for the advanced operation management technology in existing LWRs. The calculation and the observation were performed to obtain the quantity of the Cherenkov light caused by the gamma and beta rays emitted from the fuels in the core of Kyoto University Research Reactor. The results indicate that the real-time reactor power can be estimated from the brightness of the Cherenkov light observed by a CCD camera. This method can also work for the estimation of the burn-up of spent fuels at commercial reactors. Since the observed brightness value of the Cherenkov light was influenced by the camera position, the optical observation method should be improved to achieve high accuracy observation. (author)

  4. Controlling light oxidation flavor in milk by blocking riboflavin excitation wavelengths by interference.

    Science.gov (United States)

    Webster, J B; Duncan, S E; Marcy, J E; O'Keefe, S F

    2009-01-01

    Milk packaged in glass bottles overwrapped with iridescent films (treatments blocked either a single visible riboflavin [Rb] excitation wavelength or all visible Rb excitation wavelengths; all treatments blocked UV Rb excitation wavelengths) was exposed to fluorescent lighting at 4 degrees C for up to 21 d and evaluated for light-oxidized flavor. Controls consisted of bottles with no overwrap (light-exposed treatment; represents the light barrier properties of the glass packaging) and bottles overwrapped with aluminum foil (light-protected treatment). A balanced incomplete block multi-sample difference test, using a ranking system and a trained panel, was used for evaluation of light oxidation flavor intensity. Volatiles were evaluated by gas chromatography and Rb degradation was evaluated by fluorescence spectroscopy. Packaging overwraps limited production of light oxidation flavor over time but not to the same degree as the complete light block. Blocking all visible and UV Rb excitation wavelengths reduced light oxidation flavor better than blocking only a single visible excitation wavelength plus all UV excitation wavelengths. Rb degraded over time in all treatments except the light-protected control treatment and only minor differences in the amount of degradation among treatments was observed. Hexanal production was significantly higher in the light-exposed control treatment compared to the light-protected control treatment from day 7; it was only sporadically significantly higher in the 570 nm and 400 nm block treatments. Pentanal, heptanal, and an unidentified volatile compound also increased in concentration over time, but there were no significant differences in concentration among the packaging overwrap treatments for these compounds.

  5. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea.

    Directory of Open Access Journals (Sweden)

    Qunfeng Zhang

    Full Text Available To investigate the effect of light intensity and temperature on the biosynthesis and accumulation of quality-related metabolites, field grown tea plants were shaded by Black Net and Nano-insulating Film (with additional 2-4°C cooling effect with un-shaded plants as a control. Young shoots were subjected to UPLC-Q-TOF MS followed by multivariate statistical analysis. Most flavonoid metabolites (mainly flavan-3-ols, flavonols and their glycosides decreased significantly in the shading treatments, while the contents of chlorophyll, β-carotene, neoxanthin and free amino acids, caffeine, benzoic acid derivatives and phenylpropanoids increased. Comparison between two shading treatments indicated that the lower temperature under Nano shading decreased flavonols and their glycosides but increased accumulation of flavan-3-ols and proanthocyanidins. The comparison also showed a greater effect of temperature on galloylation of catechins than light intensity. Taken together, there might be competition for substrates between the up- and down-stream branches of the phenylpropanoid/flavonoid pathway, which was influenced by light intensity and temperature.

  6. New class of uncertainty relations for partially coherent light

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1984-01-01

    A class of uncertainty relations for partially coherent light is derived; the uncertainty relations in this class express the fact that the product of the effective widths of the space-domain intensity and the spatial-frequency-domain intensity of the light has a lower bound and that this lower

  7. Light intensity influences variations in the structural and physiological traits in the leaves of Iris pumila L.

    Directory of Open Access Journals (Sweden)

    Vuleta Ana

    2011-01-01

    Full Text Available Ambient light significantly influences the structural and physiological characteristics of Iris pumila leaves. A random sample of Iris clones native to an exposed site at the Deliblato Sands, Serbia was partially covered with a neutral screen that transmitted 35% of daylight, so that each clone experienced reduced and full sunlight at the same time. The sun-exposed leaves were significantly thicker, had greater stomatal density, exhibited higher lipid peroxidation, increased activities of SOD, APX, CAT enzymes and higher contents of non-enzymatic antioxidants (anthocyanins and phenols and water deficit relative to shade-leaves. The activities of GR, GPX, and GST enzymes was unaffected by the irradiance level.

  8. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  9. 46 CFR 120.410 - Lighting fixtures.

    Science.gov (United States)

    2010-10-01

    ...) Each table lamp, desk lamp, floor lamp, or similar equipment must be secured in place so that it cannot... Fixtures,” UL 1571, “Incandescent Lighting Fixtures,” UL 1572, “High Intensity Discharge Lighting Fixtures...

  10. 3D study in modelling in static regime of a bi facial polycrystalline solar cell under intense light and under a constant magnetic field

    International Nuclear Information System (INIS)

    ZOUNGRANA Martial

    2010-01-01

    In this work we propose a three-dimensional (3D) study of magnetic field, light concentration and electron gradient concentration electric field respective influences on bi facial polycrystalline silicon solar cell behaviour. The hold account of these parameters in our study leads to the new expressions of continuity equations, electric and electronic parameters. On the basis of these equations, grain size, grain boundary recombination velocity, magnetic field and light intensity effects on carriers density, photocurrent, photovoltage, electric and electronic parameters are analysed. We finally propose an equivalent electric model of bi facial polycrystalline silicon solar cell under magnetic field. According to this model, electric parameters expressions was established (shunt and series resistances, space charge zone capacity ) and we study magnetic field, grain size, grain boundary recombination velocity and light concentration influences on these parameters.(Author) [fr

  11. Noise and light exposures for extremely low birth weight newborns during their stay in the neonatal intensive care unit.

    Science.gov (United States)

    Lasky, Robert E; Williams, Amber L

    2009-02-01

    The objectives of this study were to characterize noise and light levels for extremely low birth weight newborns throughout their stay in the NICU, evaluate factors influencing noise and light levels, and determine whether exposures meet recommendations from the American Academy of Pediatrics. Sound and light were measured inside the beds of extremely low birth weight newborns (n = 22) from birth to discharge. Measurements were recorded for 20 consecutive hours weekly from birth until 36 weeks' postmenstrual age, biweekly until 40 weeks, and every 4 weeks thereafter. Clinical variables including bed type and method of respiratory support were recorded at each session. Age-related changes in respiratory support and bed type explained the weekly increase of 0.22 dB in sound level and 3.67 lux in light level. Old incubators were the noisiest bed types, and new incubators were the quietest. Light levels were significantly higher in open beds than in incubators. The variations in noise and light levels over time were greatest for open beds. Noise and light levels were much less affected by respiratory support in incubators compared with open beds. A typical extremely low birth weight neonate was exposed to noise levels averaging 56.44 dB(A) and light levels averaging 70.56 lux during their stay from 26 to 42 weeks' postmenstrual age in the NICU. Noise levels were rarely within American Academy of Pediatrics recommendations (5.51% of the time), whereas light levels almost always met recommendations (99.37% of the time). Bed type and respiratory support explained differences in noise and light levels that extremely low birth weight newborns experience during their hospital stay. Noise levels exceeded recommendations, although evidence supporting those recommendations is lacking. Well-designed intervention studies are needed to determine the effects of noise reduction on the development of extremely low birth weight newborns.

  12. Measurements of the Spectral Light Emission from Decaying High Pressure Helium Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stevefelt, J; Johansson, J

    1971-04-15

    The rate of electron density decay has been determined in a helium pulsed discharge plasma at pressures ranging from 100 to 600 Torr, primarily during the early afterglow where the electron density is from 1019 to 2 x 1017/m3. Measurements of the electrical conductivity and the absolute intensity of the light emission were made. The effective recombination rate coefficient was found to increase faster than linearly with gas pressure. The total photon emission rate was significantly lower than the effective recombination rate. Below 400 Torr pressure the afterglow was dominated by He-bands, which were related to the recombination of He{sub 2+} and He{sub 3+} ions. At higher pressures the appearance of intense lines originating from the atomic n = 3 and 23 P states is proposed to result from the He{sub 4+} recombination. Absorption measurements of the atomic metastable concentration gave evidence for recombination directly into the 23 S state. The concentration of molecular metastables was surprisingly low. The light emission had a Techi dependence, with 0 < chi < 0.35 for the intense atomic lines and 0.78 < chi < 1.10 for the molecular bands

  13. Measurements of the Spectral Light Emission from Decaying High Pressure Helium Plasmas

    International Nuclear Information System (INIS)

    Stevefelt, J.; Johansson, J.

    1971-04-01

    The rate of electron density decay has been determined in a helium pulsed discharge plasma at pressures ranging from 100 to 600 Torr, primarily during the early afterglow where the electron density is from 10 19 to 2 x 10 17 /m 3 . Measurements of the electrical conductivity and the absolute intensity of the light emission were made. The effective recombination rate coefficient was found to increase faster than linearly with gas pressure. The total photon emission rate was significantly lower than the effective recombination rate. Below 400 Torr pressure the afterglow was dominated by He-bands, which were related to the recombination of He 2 + and He 3 + ions. At higher pressures the appearance of intense lines originating from the atomic n = 3 and 2 3 P states is proposed to result from the He 4 + recombination. Absorption measurements of the atomic metastable concentration gave evidence for recombination directly into the 2 3 S state. The concentration of molecular metastables was surprisingly low. The light emission had a T e χ dependence, with 0 < χ < 0.35 for the intense atomic lines and 0.78 < χ < 1.10 for the molecular bands

  14. Spontaneous and light-induced photon emission from intact brains of chick embryos

    Institute of Scientific and Technical Information of China (English)

    张锦珠; 于文斗; 孙彤

    1997-01-01

    Photon emission (PE) and light-induced photon emission(LPE) of intact brains isolated from chick embryos have been measured by using the single photon counting device. Experimental results showed that the intensi-ty level of photon emission was detected to be higher from intact brain than from the medium in which the brain was immerged during measuring, and the emission intensity was related to the developmental stages, the healthy situation of the measured embryos, and the freshness of isolated brains as well. After white light illumination, a short-life de-layed emission from intact brains was observed, and its relaxation behavior followed a hyperbolic rather than an expo-nential law. According to the hypothesis of biophoton emission originating from a delocalized coherent electromagnetic field and Frohlich’s idea of coherent long-range interactions in biological systems, discussions were made on the signifi-cance of photon emission in studying cell communication, biological regulation, living system’

  15. Projecting light beams with 3D waveguide arrays

    Science.gov (United States)

    Crespi, Andrea; Bragheri, Francesca

    2017-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on the phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase patterns with several singularity points. We also simulate the propagation of the projected beam, showing the possibility to concentrate light. We note that these devices should be at reach of current technology, thus perspectives are open for the generation of complex free-space optical beams from integrated waveguide circuits.

  16. Treatment of hypertrophic scars and keloids using intense pulsed light (IPL).

    Science.gov (United States)

    Erol, O Onur; Gurlek, Ali; Agaoglu, Galip; Topcuoglu, Ela; Oz, Hayat

    2008-11-01

    Keloids and hypertrophic scars are extremely disturbing to patients, both physically and psychologically. This study prospectively assessed the safety and efficacy of intense pulsed light (IPL) on scars originating from burns, trauma, surgery, and acne. Hypertrophic scars in 109 patients, originating from surgical incisions (n = 55), traumatic cuts (traffic accidents) (n = 24), acne scars (n = 6), keloids (n = 5), and burns (n = 19), were treated using an IPL Quantum device. Treatment was administered at 2-4-week intervals, and patients received an average of 8 treatments (range = 6-24). Using digital photographs, Changes in scar appearance were assessed by two physicians who were blinded to the study patients and treatments. The photographs were graded on a scale of 0 to 4 (none, minimal, moderate, good, excellent) for improvement in overall clinical appearance and reduction in height, erythema, and hardness. An overall clinical improvement in the appearance of scars and reductions in height, erythema, and hardness were seen in the majority of the patients (92.5%). Improvement was excellent in 31.2% of the patients, good in 25.7%, moderate in 34%, and minimal in 9.1%. Over half the patients had good or excellent improvement. In the preventive IPL treatment group, 65% had good to excellent improvement in clinical appearance. Patient satisfaction was very high. This study suggests that IPL is effective not only in improving the appearance of hypertrophic scars and keloids regardless of their origin, but also in reducing the height, redness, and hardness of scars.

  17. Intensive Mode Delivery of a Neuroanatomy Unit: Lower Final Grades but Higher Student Satisfaction

    Science.gov (United States)

    Whillier, Stephney; Lystad, Reidar P.

    2013-01-01

    In 2011, Macquarie University moved to a three-session academic year which included two 13-week sessions (traditional mode) and one seven-week session (intensive mode). This study was designed to compare the intensive and traditional modes of delivery in a unit of undergraduate neuroanatomy. The new intensive mode neuroanatomy unit provided the…

  18. Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations.

    Science.gov (United States)

    Hoffmann, Julia; Palme, Rupert; Eccard, Jana Anja

    2018-07-01

    Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. Initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radiotelemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Design of a higher harmonic RF system for the Advanced Light Source

    CERN Document Server

    Byrd, J M; De Santis, S; Kosta, S; Lo, C C; Plate, D; Rimmer, R A; Franks, M

    2000-01-01

    We report on the design and fabrication of a third harmonic radiofrequency (RF) system for the Advanced Light Source (ALS) to be used for lengthening the bunch and increasing the Touschek-dominated beam lifetime. We plan to install five single-cell 1.5 GHz copper RF cavities in one-half of an ALS straight section with a predicted increase in the lifetime by a factor of 3. Each RF cell is designed to sustain a maximum voltage of 125 kV with a power dissipation of 5 kW. We present measurements made on an aluminum cavity model characterizing the RF properties of cavity such as the cavity R/Q and higher-order modes (HOMs). In particular, resonances in the cavity tuners were studied in order to avoid heating of the tuner bellows. Initial measurements of the copper cavities indicate a Q value of 21 000, resulting in a shunt impedance of 1.69 M OMEGA per cell

  20. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.; Foulds, Ian G.; Goriely, A.

    2013-01-01

    heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore

  1. Advanced Solid State Lighting for Human Evaluation

    Data.gov (United States)

    National Aeronautics and Space Administration — Lighting intensity and color have a significant impact on human circadian rhythms.  Advanced solid state lighting was developed for the Advanced Exploration System...

  2. Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities.

    Science.gov (United States)

    Vinyard, David J; Gimpel, Javier; Ananyev, Gennady M; Mayfield, Stephen P; Dismukes, G Charles

    2014-03-12

    The D1 protein of Photosystem II (PSII) provides most of the ligating amino acid residues for the Mn4CaO5 water-oxidizing complex (WOC) and half of the reaction center cofactors, and it is present as two isoforms in the cyanobacterium Synechococcus elongatus PCC 7942. These isoforms, D1:1 and D1:2, confer functional advantages for photosynthetic growth at low and high light intensities, respectively. D1:1, D1:2, and seven point mutations in the D1:2 background that are native to D1:1 were expressed in the green alga Chlamydomonas reinhardtii. We used these nine strains to show that those strains that confer a higher yield of PSII charge separation under light-limiting conditions (where charge recombination is significant) have less efficient photochemical turnover, measured in terms of both a lower WOC turnover probability and a longer WOC cycle period. Conversely, these same strains under light saturation (where charge recombination does not compete) confer a correspondingly faster O2 evolution rate and greater protection against photoinhibition. Taken together, the data clearly establish that PSII primary charge separation is a trade-off between photochemical productivity (water oxidation and plastoquinone reduction) and charge recombination (photoprotection). These trade-offs add up to a significant growth advantage for the two natural isoforms. These insights provide fundamental design principles for engineering of PSII reaction centers with optimal photochemical efficiencies for growth at low versus high light intensities.

  3. Behavior of Layers under Different Light Sources

    Directory of Open Access Journals (Sweden)

    BO Tavares

    2015-12-01

    Full Text Available ABSTRACT Light is an important factor in the management of laying poultry. The ideal lamp spectrum that provides the best welfare conditions still needs to be determined. Wavelength and light intensity influence poultry behavior and their welfare. This study evaluated the influence of four lamps types with different light spectra on the behavior of seventy 52-week laying hens. Incandescent, fluorescent, and sodium and mercury vapor lamps were set in a different poultry house each and supplied similar light intensities. Layer behavior was video-recorded three times weekly using video cameras installed on the ceiling. The effects of different wavelengths emitted by the light sources on layer behavior were evaluated by the Kruskal-Wallis median test. Results indicated that incandescent and sodium vapor lamps increased the occurrence of nesting, and of active behaviors, such as floor-scratching and pecking.

  4. Study on the Light Scattering from Random Rough Surfaces by Kirrhoff Approximation

    Directory of Open Access Journals (Sweden)

    Keding Yan

    2014-07-01

    Full Text Available In order to study the space distribution characteristics of light scattering from random rough surfaces, the linear filtering method is used to generate a series of Gaussian randomly rough surfaces, and the Kirchhoff Approximation is used to calculate the scattered light intensity distribution from random metal and dielectric rough surfaces. The three characteristics of the scattered light intensity distribution peak, the intensity distribution width and the position of peak are reviewed. Numerical calculation results show that significant differences between scattering characteristics of metal surfaces and the dielectric surfaces exist. The light scattering characteristics are jointly influenced by the slope distribution and reflectance of surface element. The scattered light intensity distribution is affected by common influence of surface local slope distribution and surface local reflectivity. The results can provide a basis theory for the research to lidar target surface scattering characteristics.

  5. Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Cheloni, Giulia; Cosio, Claudia; Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch

    2014-10-15

    Highlights: • Light intensity and spectral composition affect Cu uptake and effects to C. reinhardtii. • High light (HL) reduced Cu effect on growth inhibition, oxidative stress and damage. • HL in combination with Cu up-regulated genes involved in the antioxidant responses. • HL with increased UVB radiation exacerbated Cu uptake and Cu-induced toxic effects. - Abstract: The present study showed the important role of light intensity and spectral composition on Cu uptake and effects on green alga Chlamydomonas reinhardtii. High-intenisty light (HL) increased cellular Cu concentrations, but mitigated the Cu-induced decrease in chlorophyll fluorescence, oxidative stress and lipid peroxidation at high Cu concentrations, indicating that Cu and HL interact in an antagonistic manner. HL up-regulated the transcription of genes involved in the antioxidant response in C. reinhardtii and thus reduced the oxidative stress upon exposure to Cu and HL. Combined exposure to Cu and UVBR resulted in an increase of cellular Cu contents and caused severe oxidative damage to the cells. The observed effects were higher than the sum of the effects corresponding to exposure to UVBR or Cu alone suggesting a synergistic interaction.

  6. Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study.

    Science.gov (United States)

    Collings, Paul J; Wijndaele, Katrien; Corder, Kirsten; Westgate, Kate; Ridgway, Charlotte L; Dunn, Valerie; Goodyer, Ian; Ekelund, Ulf; Brage, Soren

    2014-02-24

    Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (physical activity/d). During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity

  7. Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study

    Science.gov (United States)

    2014-01-01

    Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less

  8. A Fiberoptic Scalar Irradiance Microsensor - Application for Spectral Light Measurements in Sediments

    DEFF Research Database (Denmark)

    LASSEN, C.; PLOUG, H.; JØRGENSEN, BB

    1992-01-01

    in sediments was measured at 100-mu-m spatial resolution. Light was available for photosynthesis near the sediment surface at a higher intensity and a different spectral composition than could be expected from the illumination. By the combination of oxygen microelectrodes and the present fibre......The manufacturing of a new spherical fibreoptic microsensor is described. The microsensor measures scalar irradiance, i.e. the spherically integrated light at a point in space. The light collector of the probe was a 70-mu-m diffusing sphere cast on the tip of a 125-mu-m wide optical fibre tapered......-optic microsensor it is now possible to study the depth distribution of microbenthic photosynthesis in relation to the available photosynthetically active radiation at less-than-or-equal-to 100-mu-m resolution....

  9. The Effects of Different Light Qualities on Gamma Ray-Treated Scenedesmus

    Directory of Open Access Journals (Sweden)

    Adoracion Arañez

    1992-06-01

    Full Text Available Unialgal culture of Scenedesmus quadricauda (Turp. Breb. suspended in distilled water was treated with 0 Gy (control, 40 Gy, 80 Gy, and 120 Gy gamma rays from a to 60Co source at Philippine Nuclear Research Institute, placed in one-liter flasks, enough Bold basal medium added to give a transmittance of 97% determined by using a spectrophotometer, kept in the dark for 24 hrs., then placed in vials and distributed equally in three growth chambers with white light, red light, and blue light. The lighting was continuous with algae subjected to the same light intensity, and the temperature maintained at 30±1° C. A sterile regimen was followed.For the first two weeks, the growth rates of algae under white light were highest, followed by those under red light, while those grown under blue light had the lowest growth rate. After the second week, differences in growth rates were not significant anymore. During the first week, generally low doses of gamma radiation had stimulating effects on growth rates while high doses had inhibitory effects on growth. The abnormal Scenedesmus observed were enlarged cells of normal shape in coenobia of two cells and four cells, enlarged cells that were not forming coenobia, coenobia composed of enlarged cells of abnormal shape, coenobia composed of enlarged cells of different sizes, cells with kidney-shape chloroplast, coenobia with cells that were not in alignment as in the normal ones, and cells that were colorless. Percentage of coenobia with enlarged cells determined one week after the treatment showed that higher doses generally produced more enlarged cells than lower doses. Treated algae grown in red light and blue light which showed lesser growth rates than those under white light had higher percentage of enlarged cells. Enlarged cells of normal shape were successfully propagated for more than ten generations.

  10. Teager-Kaiser Energy and Higher-Order Operators in White-Light Interference Microscopy for Surface Shape Measurement

    Directory of Open Access Journals (Sweden)

    Abdel-Ouahab Boudraa

    2005-10-01

    Full Text Available In white-light interference microscopy, measurement of surface shape generally requires peak extraction of the fringe function envelope. In this paper the Teager-Kaiser energy and higher-order energy operators are proposed for efficient extraction of the fringe envelope. These energy operators are compared in terms of precision, robustness to noise, and subsampling. Flexible energy operators, depending on order and lag parameters, can be obtained. Results show that smoothing and interpolation of envelope approximation using spline model performs better than Gaussian-based approach.

  11. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    Science.gov (United States)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  12. Comparing Two Methods of Cryotherapy and Intense Pulsed Light with Triamcinolone Injection in the Treatment of Keloid and Hypertrophic Scars: A Clinical Trial.

    Science.gov (United States)

    Meymandi, Simin Shamsi; Moosazadeh, Mahmood; Rezazadeh, Azadeh

    2016-10-01

    Keloid and hypertrophic scars are abnormal manifestations of wounds that occur following skin injuries in the form of local proliferation of fibroblasts and increased production of collagen. There are several ways to cure these scars; treatment must be selected based on the nature of the scars. In this clinical trial, two methods-cryotherapy and intense pulsed light (IPL)-are compared in the treatment of scars, and the results are presented in terms of improvement level, complications, and patient satisfaction. This clinical trial was conducted in southeastern Iran. The intervention group included scars that underwent the IPL method and the control group, which consisted of scars that were subjected to cryotherapy. In both methods, intralesional corticosteroid injection was administered. To select samples, the easy sampling method was used. To determine the expected outcomes, the criteria determined in the Vancouver scar scale were used. Data were analyzed using the Mix Model, chi-square test, and t test. In this study, 166 samples of keloid and hypertrophic scars were cured using two methods (Cryotherapy, 83; IPL, 83). The recovery rate was higher in the Cryotherapy group than in the IPL group ( p  > 0.05), and the incidence of complications was also higher in the Cryotherapy group (14.5% vs. 12%). Moreover, patients were more satisfied, although not significantly so, with the cryotherapy method ( p  = 0.09). Both methods were highly successful in curing scars; participants were totally satisfied with both methods.

  13. New insight into the disinfection mechanism of Fusarium monoliforme and Aspergillus niger by TiO2 photocatalyst under low intensity UVA light.

    Science.gov (United States)

    Pokhum, Chonlada; Viboonratanasri, Duangamon; Chawengkijwanich, Chamorn

    2017-11-01

    Titanium dioxide (TiO 2) photocatalytic reaction has great potential for the disinfection of harmful pathogens. However, the disinfection mechanisms of TiO 2 photocatalysis are not yet well-known for fungi and protozoa. In this work, the photocatalytic disinfection mechanism of Fusarium monoliforme and Aspergillus niger under low intensity UVA light (365nm, niger was more sensitive to UVA-light. Serious destructions of cell membrane and cellular organelles were shown in A. niger exposed to UVA-light only and photocatalytic treatments. However, morphological change in A. niger cell wall was only observed in photocatalytic treatment. Changes to the outermost melanin like layer and cell wall of A. niger spore due to photocatalytic treatment were greatly apparent while the intracellular organelles of A. niger spore were not affected. Therefore, regrowth of A. niger on agar plate was expected from the germination of A. niger spore in the subsequent dark. These observations give a better understanding of the photocatalytic disinfection mechanism toward fungi. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zhang, Zhao; Zhang, Yan; Zuo, Chao

    2017-08-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of ±37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ∼0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  15. Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao

    2017-10-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  16. Visibility of changes in light intensity caused by voltage leaps

    International Nuclear Information System (INIS)

    Seljeseth, Helge; Mogstad, Olve

    2006-05-01

    Sintef Energy Research was engaged by NVE to evaluate the official requirements on voltage leaps in regulations concerning quality of delivery, and simultaneously conduct tests with a panel of test persons in order to get more detailed evaluations and recommendations to the existing requirements on voltage leaps. Tests and laboratory experiments have been performed on a total of 96 test persons, and the results reveal that voltage leaps even smaller than the 3 percent limit set by Norwegian regulations are visible to most people. The majority of the test persons consider the light conditions as unacceptably bad when light conditions are near the limit of voltage leap. Moreover, 25 percent of the test persons considered the light quality unacceptable when the voltage leap was well under half of the official limit.The results of the experiments indicates a need for narrowing the restrictions on voltage leaps in the Norwegian power network in order to limit the size and frequency of this kind of disturbance in the voltage. Recommendations for regulations are elaborated in chapter 3 (ml)

  17. White light emission and effect of annealing on the Ho3+–Yb3+ codoped BaCa2Al8O15 phosphor

    International Nuclear Information System (INIS)

    Kumari, Astha; Rai, Vineet Kumar

    2015-01-01

    Graphical abstract: The upconversion emission spectra of the Ho 3+ /Yb 3+ doped/codoped BaCa 2 Al 8 O 15 phosphors with different doping concentrations of Ho 3+ /Yb 3+ ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa 2 Al 8 O 15 phosphors codoped with Ho 3+ –Yb 3+ have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pump power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa 2 Al 8 O 15 (BCAO) phosphors codoped with suitable Ho 3+ –Yb 3+ dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.

  18. Light induced tunnel effect in CNT-Si photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Aramo, C., E-mail: aramo@na.infn.it [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Ambrosio, M. [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Bonavolontà, C. [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Dip. di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Boscardin, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Via Sommarive 18, Povo di Trento, 38123 Trento (Italy); Castrucci, P. [INFN, Sezione di Roma “Tor Vergata”, Dip. di Fisica, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Crivellari, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Via Sommarive 18, Povo di Trento, 38123 Trento (Italy); De Crescenzi, M. [INFN, Sezione di Roma “Tor Vergata”, Dip. di Fisica, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); De Lisio, C. [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Dip. di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Fiandrini, E. [INFN, Sezione di Perugia, Dip. di Fisica, Università degli Studi di Perugia, Piazza Università 1, 06100 Perugia (Italy); and others

    2016-07-11

    Negative differential resistance (NDR), for which the current is a decreasing function of the voltage, has been observed in the current–voltage curves of several types of structures. We measured tunnelling current and NDR by illuminating large area heterojunction obtained by growing Multi Wall Carbon Nanotubes on the surface of n-doped Silicon substrate. In the absence of light, the current flow is null until a junction threshold of about 2.4 V is reached, beyond which the dark current flows at room temperature with a very low intensity of few nA. When illuminated, a current of tens nA is observed at a drain voltage of about 1.5 V. At higher voltage the current intensity decreases according to a negative resistance of the order of MΩ. In the following we report details of tunneling photodiode realized and negative resistance characteristics.

  19. A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes

    Science.gov (United States)

    Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui

    2014-05-01

    A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.

  20. Light requirements in microalgal photobioreactors. An overview of biophotonic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana P. [Universidade Catolica Portuguesa, Porto (Portugal). CBQF/Escola Superior de Biotecnologia; Silva, Susana O. [Universidade Catolica Portuguesa, Porto (Portugal). CBQF/Escola Superior de Biotecnologia; INESC Porto, Porto (Portugal); Baptista, Jose M. [INESC Porto, Porto (Portugal); Universidade da Madeira, Funchal (Portugal). Centro de Competencia de Ciencias Exactas e de Engenharia; Malcata, F. Xavier [ISMAI - Instituto Superior da Maia, Avioso S. Pedro (Portugal); Universidade Nova de Lisboa, Oeiras (Portugal). Inst. de Tecnologia Quimica e Biologica

    2011-03-15

    In order to enhance microalgal growth in photobioreactors (PBRs), light requirement is one of the most important parameters to be addressed; light should indeed be provided at the appropriate intensity, duration, and wavelength. Excessive intensity may lead to photo-oxidation and -inhibition, whereas low light levels will become growth-limiting. The constraint of light saturation may be overcome via either of two approaches: increasing photosynthetic efficiency by genetic engineering, aimed at changing the chlorophyll antenna size; or increasing flux tolerance, via tailoring the photonic spectrum, coupled with its intensity and temporal characteristics. These approaches will allow an increased control over the illumination features, leading to maximization of microalgal biomass and metabolite productivity. This minireview briefly introduces the nature of light, and describes its harvesting and transformation by microalgae, as well as its metabolic effects under excessively low or high supply. Optimization of the photosynthetic efficiency is discussed under the two approaches referred to above; the selection of light sources, coupled with recent improvements in light handling by PBRs, are chronologically reviewed and critically compared. (orig.)