WorldWideScience

Sample records for higher error rates

  1. Parental Cognitive Errors Mediate Parental Psychopathology and Ratings of Child Inattention.

    Science.gov (United States)

    Haack, Lauren M; Jiang, Yuan; Delucchi, Kevin; Kaiser, Nina; McBurnett, Keith; Hinshaw, Stephen; Pfiffner, Linda

    2017-09-01

    We investigate the Depression-Distortion Hypothesis in a sample of 199 school-aged children with ADHD-Predominantly Inattentive presentation (ADHD-I) by examining relations and cross-sectional mediational pathways between parental characteristics (i.e., levels of parental depressive and ADHD symptoms) and parental ratings of child problem behavior (inattention, sluggish cognitive tempo, and functional impairment) via parental cognitive errors. Results demonstrated a positive association between parental factors and parental ratings of inattention, as well as a mediational pathway between parental depressive and ADHD symptoms and parental ratings of inattention via parental cognitive errors. Specifically, higher levels of parental depressive and ADHD symptoms predicted higher levels of cognitive errors, which in turn predicted higher parental ratings of inattention. Findings provide evidence for core tenets of the Depression-Distortion Hypothesis, which state that parents with high rates of psychopathology hold negative schemas for their child's behavior and subsequently, report their child's behavior as more severe. © 2016 Family Process Institute.

  2. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    Science.gov (United States)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  3. Estimating the annotation error rate of curated GO database sequence annotations

    Directory of Open Access Journals (Sweden)

    Brown Alfred L

    2007-05-01

    Full Text Available Abstract Background Annotations that describe the function of sequences are enormously important to researchers during laboratory investigations and when making computational inferences. However, there has been little investigation into the data quality of sequence function annotations. Here we have developed a new method of estimating the error rate of curated sequence annotations, and applied this to the Gene Ontology (GO sequence database (GOSeqLite. This method involved artificially adding errors to sequence annotations at known rates, and used regression to model the impact on the precision of annotations based on BLAST matched sequences. Results We estimated the error rate of curated GO sequence annotations in the GOSeqLite database (March 2006 at between 28% and 30%. Annotations made without use of sequence similarity based methods (non-ISS had an estimated error rate of between 13% and 18%. Annotations made with the use of sequence similarity methodology (ISS had an estimated error rate of 49%. Conclusion While the overall error rate is reasonably low, it would be prudent to treat all ISS annotations with caution. Electronic annotators that use ISS annotations as the basis of predictions are likely to have higher false prediction rates, and for this reason designers of these systems should consider avoiding ISS annotations where possible. Electronic annotators that use ISS annotations to make predictions should be viewed sceptically. We recommend that curators thoroughly review ISS annotations before accepting them as valid. Overall, users of curated sequence annotations from the GO database should feel assured that they are using a comparatively high quality source of information.

  4. Relating Complexity and Error Rates of Ontology Concepts. More Complex NCIt Concepts Have More Errors.

    Science.gov (United States)

    Min, Hua; Zheng, Ling; Perl, Yehoshua; Halper, Michael; De Coronado, Sherri; Ochs, Christopher

    2017-05-18

    Ontologies are knowledge structures that lend support to many health-information systems. A study is carried out to assess the quality of ontological concepts based on a measure of their complexity. The results show a relation between complexity of concepts and error rates of concepts. A measure of lateral complexity defined as the number of exhibited role types is used to distinguish between more complex and simpler concepts. Using a framework called an area taxonomy, a kind of abstraction network that summarizes the structural organization of an ontology, concepts are divided into two groups along these lines. Various concepts from each group are then subjected to a two-phase QA analysis to uncover and verify errors and inconsistencies in their modeling. A hierarchy of the National Cancer Institute thesaurus (NCIt) is used as our test-bed. A hypothesis pertaining to the expected error rates of the complex and simple concepts is tested. Our study was done on the NCIt's Biological Process hierarchy. Various errors, including missing roles, incorrect role targets, and incorrectly assigned roles, were discovered and verified in the two phases of our QA analysis. The overall findings confirmed our hypothesis by showing a statistically significant difference between the amounts of errors exhibited by more laterally complex concepts vis-à-vis simpler concepts. QA is an essential part of any ontology's maintenance regimen. In this paper, we reported on the results of a QA study targeting two groups of ontology concepts distinguished by their level of complexity, defined in terms of the number of exhibited role types. The study was carried out on a major component of an important ontology, the NCIt. The findings suggest that more complex concepts tend to have a higher error rate than simpler concepts. These findings can be utilized to guide ongoing efforts in ontology QA.

  5. Logical error rate scaling of the toric code

    International Nuclear Information System (INIS)

    Watson, Fern H E; Barrett, Sean D

    2014-01-01

    To date, a great deal of attention has focused on characterizing the performance of quantum error correcting codes via their thresholds, the maximum correctable physical error rate for a given noise model and decoding strategy. Practical quantum computers will necessarily operate below these thresholds meaning that other performance indicators become important. In this work we consider the scaling of the logical error rate of the toric code and demonstrate how, in turn, this may be used to calculate a key performance indicator. We use a perfect matching decoding algorithm to find the scaling of the logical error rate and find two distinct operating regimes. The first regime admits a universal scaling analysis due to a mapping to a statistical physics model. The second regime characterizes the behaviour in the limit of small physical error rate and can be understood by counting the error configurations leading to the failure of the decoder. We present a conjecture for the ranges of validity of these two regimes and use them to quantify the overhead—the total number of physical qubits required to perform error correction. (paper)

  6. 45 CFR 98.100 - Error Rate Report.

    Science.gov (United States)

    2010-10-01

    ... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND... the total dollar amount of payments made in the sample); the average amount of improper payment; and... not received. (e) Costs of Preparing the Error Rate Report—Provided the error rate calculations and...

  7. On the problem of non-zero word error rates for fixed-rate error correction codes in continuous variable quantum key distribution

    International Nuclear Information System (INIS)

    Johnson, Sarah J; Ong, Lawrence; Shirvanimoghaddam, Mahyar; Lance, Andrew M; Symul, Thomas; Ralph, T C

    2017-01-01

    The maximum operational range of continuous variable quantum key distribution protocols has shown to be improved by employing high-efficiency forward error correction codes. Typically, the secret key rate model for such protocols is modified to account for the non-zero word error rate of such codes. In this paper, we demonstrate that this model is incorrect: firstly, we show by example that fixed-rate error correction codes, as currently defined, can exhibit efficiencies greater than unity. Secondly, we show that using this secret key model combined with greater than unity efficiency codes, implies that it is possible to achieve a positive secret key over an entanglement breaking channel—an impossible scenario. We then consider the secret key model from a post-selection perspective, and examine the implications for key rate if we constrain the forward error correction codes to operate at low word error rates. (paper)

  8. Comprehensive Error Rate Testing (CERT)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) implemented the Comprehensive Error Rate Testing (CERT) program to measure improper payments in the Medicare...

  9. Linear transceiver design for nonorthogonal amplify-and-forward protocol using a bit error rate criterion

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2014-04-01

    The ever growing demand of higher data rates can now be addressed by exploiting cooperative diversity. This form of diversity has become a fundamental technique for achieving spatial diversity by exploiting the presence of idle users in the network. This has led to new challenges in terms of designing new protocols and detectors for cooperative communications. Among various amplify-and-forward (AF) protocols, the half duplex non-orthogonal amplify-and-forward (NAF) protocol is superior to other AF schemes in terms of error performance and capacity. However, this superiority is achieved at the cost of higher receiver complexity. Furthermore, in order to exploit the full diversity of the system an optimal precoder is required. In this paper, an optimal joint linear transceiver is proposed for the NAF protocol. This transceiver operates on the principles of minimum bit error rate (BER), and is referred as joint bit error rate (JBER) detector. The BER performance of JBER detector is superior to all the proposed linear detectors such as channel inversion, the maximal ratio combining, the biased maximum likelihood detectors, and the minimum mean square error. The proposed transceiver also outperforms previous precoders designed for the NAF protocol. © 2002-2012 IEEE.

  10. Technological Advancements and Error Rates in Radiation Therapy Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Margalit, Danielle N., E-mail: dmargalit@partners.org [Harvard Radiation Oncology Program, Boston, MA (United States); Harvard Cancer Consortium and Brigham and Women' s Hospital/Dana Farber Cancer Institute, Boston, MA (United States); Chen, Yu-Hui; Catalano, Paul J.; Heckman, Kenneth; Vivenzio, Todd; Nissen, Kristopher; Wolfsberger, Luciant D.; Cormack, Robert A.; Mauch, Peter; Ng, Andrea K. [Harvard Cancer Consortium and Brigham and Women' s Hospital/Dana Farber Cancer Institute, Boston, MA (United States)

    2011-11-15

    Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system at Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique

  11. Technological Advancements and Error Rates in Radiation Therapy Delivery

    International Nuclear Information System (INIS)

    Margalit, Danielle N.; Chen, Yu-Hui; Catalano, Paul J.; Heckman, Kenneth; Vivenzio, Todd; Nissen, Kristopher; Wolfsberger, Luciant D.; Cormack, Robert A.; Mauch, Peter; Ng, Andrea K.

    2011-01-01

    Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)–conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system at Brigham and Women’s Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher’s exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01–0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08–0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique

  12. Safe and effective error rate monitors for SS7 signaling links

    Science.gov (United States)

    Schmidt, Douglas C.

    1994-04-01

    This paper describes SS7 error monitor characteristics, discusses the existing SUERM (Signal Unit Error Rate Monitor), and develops the recently proposed EIM (Error Interval Monitor) for higher speed SS7 links. A SS7 error monitor is considered safe if it ensures acceptable link quality and is considered effective if it is tolerant to short-term phenomena. Formal criteria for safe and effective error monitors are formulated in this paper. This paper develops models of changeover transients, the unstable component of queue length resulting from errors. These models are in the form of recursive digital filters. Time is divided into sequential intervals. The filter's input is the number of errors which have occurred in each interval. The output is the corresponding change in transmit queue length. Engineered EIM's are constructed by comparing an estimated changeover transient with a threshold T using a transient model modified to enforce SS7 standards. When this estimate exceeds T, a changeover will be initiated and the link will be removed from service. EIM's can be differentiated from SUERM by the fact that EIM's monitor errors over an interval while SUERM's count errored messages. EIM's offer several advantages over SUERM's, including the fact that they are safe and effective, impose uniform standards in link quality, are easily implemented, and make minimal use of real-time resources.

  13. Color-motion feature-binding errors are mediated by a higher-order chromatic representation.

    Science.gov (United States)

    Shevell, Steven K; Wang, Wei

    2016-03-01

    Peripheral and central moving objects of the same color may be perceived to move in the same direction even though peripheral objects have a different true direction of motion [Nature429, 262 (2004)10.1038/429262a]. The perceived, illusory direction of peripheral motion is a color-motion feature-binding error. Recent work shows that such binding errors occur even without an exact color match between central and peripheral objects, and, moreover, the frequency of the binding errors in the periphery declines as the chromatic difference increases between the central and peripheral objects [J. Opt. Soc. Am. A31, A60 (2014)JOAOD60740-323210.1364/JOSAA.31.000A60]. This change in the frequency of binding errors with the chromatic difference raises the general question of the chromatic representation from which the difference is determined. Here, basic properties of the chromatic representation are tested to discover whether it depends on independent chromatic differences on the l and the s cardinal axes or, alternatively, on a more specific higher-order chromatic representation. Experimental tests compared the rate of feature-binding errors when the central and peripheral colors had the identical s chromaticity (so zero difference in s) and a fixed magnitude of l difference, while varying the identical s level in center and periphery (thus always keeping the s difference at zero). A chromatic representation based on independent l and s differences would result in the same frequency of color-motion binding errors at everyslevel. The results are contrary to this prediction, thus showing that the chromatic representation at the level of color-motion feature binding depends on a higher-order chromatic mechanism.

  14. Dispensing error rate after implementation of an automated pharmacy carousel system.

    Science.gov (United States)

    Oswald, Scott; Caldwell, Richard

    2007-07-01

    A study was conducted to determine filling and dispensing error rates before and after the implementation of an automated pharmacy carousel system (APCS). The study was conducted in a 613-bed acute and tertiary care university hospital. Before the implementation of the APCS, filling and dispensing rates were recorded during October through November 2004 and January 2005. Postimplementation data were collected during May through June 2006. Errors were recorded in three areas of pharmacy operations: first-dose or missing medication fill, automated dispensing cabinet fill, and interdepartmental request fill. A filling error was defined as an error caught by a pharmacist during the verification step. A dispensing error was defined as an error caught by a pharmacist observer after verification by the pharmacist. Before implementation of the APCS, 422 first-dose or missing medication orders were observed between October 2004 and January 2005. Independent data collected in December 2005, approximately six weeks after the introduction of the APCS, found that filling and error rates had increased. The filling rate for automated dispensing cabinets was associated with the largest decrease in errors. Filling and dispensing error rates had decreased by December 2005. In terms of interdepartmental request fill, no dispensing errors were noted in 123 clinic orders dispensed before the implementation of the APCS. One dispensing error out of 85 clinic orders was identified after implementation of the APCS. The implementation of an APCS at a university hospital decreased medication filling errors related to automated cabinets only and did not affect other filling and dispensing errors.

  15. A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.

    Science.gov (United States)

    Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema

    2016-01-01

    A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.

  16. Aniseikonia quantification: error rate of rule of thumb estimation.

    Science.gov (United States)

    Lubkin, V; Shippman, S; Bennett, G; Meininger, D; Kramer, P; Poppinga, P

    1999-01-01

    To find the error rate in quantifying aniseikonia by using "Rule of Thumb" estimation in comparison with proven space eikonometry. Study 1: 24 adult pseudophakic individuals were measured for anisometropia, and astigmatic interocular difference. Rule of Thumb quantification for prescription was calculated and compared with aniseikonia measurement by the classical Essilor Projection Space Eikonometer. Study 2: parallel analysis was performed on 62 consecutive phakic patients from our strabismus clinic group. Frequency of error: For Group 1 (24 cases): 5 ( or 21 %) were equal (i.e., 1% or less difference); 16 (or 67% ) were greater (more than 1% different); and 3 (13%) were less by Rule of Thumb calculation in comparison to aniseikonia determined on the Essilor eikonometer. For Group 2 (62 cases): 45 (or 73%) were equal (1% or less); 10 (or 16%) were greater; and 7 (or 11%) were lower in the Rule of Thumb calculations in comparison to Essilor eikonometry. Magnitude of error: In Group 1, in 10/24 (29%) aniseikonia by Rule of Thumb estimation was 100% or more greater than by space eikonometry, and in 6 of those ten by 200% or more. In Group 2, in 4/62 (6%) aniseikonia by Rule of Thumb estimation was 200% or more greater than by space eikonometry. The frequency and magnitude of apparent clinical errors of Rule of Thumb estimation is disturbingly large. This problem is greatly magnified by the time and effort and cost of prescribing and executing an aniseikonic correction for a patient. The higher the refractive error, the greater the anisometropia, and the worse the errors in Rule of Thumb estimation of aniseikonia. Accurate eikonometric methods and devices should be employed in all cases where such measurements can be made. Rule of thumb estimations should be limited to cases where such subjective testing and measurement cannot be performed, as in infants after unilateral cataract surgery.

  17. Analysis of gross error rates in operation of commercial nuclear power stations

    International Nuclear Information System (INIS)

    Joos, D.W.; Sabri, Z.A.; Husseiny, A.A.

    1979-01-01

    Experience in operation of US commercial nuclear power plants is reviewed over a 25-month period. The reports accumulated in that period on events of human error and component failure are examined to evaluate gross operator error rates. The impact of such errors on plant operation and safety is examined through the use of proper taxonomies of error, tasks and failures. Four categories of human errors are considered; namely, operator, maintenance, installation and administrative. The computed error rates are used to examine appropriate operator models for evaluation of operator reliability. Human error rates are found to be significant to a varying degree in both BWR and PWR. This emphasizes the import of considering human factors in safety and reliability analysis of nuclear systems. The results also indicate that human errors, and especially operator errors, do indeed follow the exponential reliability model. (Auth.)

  18. Cognitive tests predict real-world errors: the relationship between drug name confusion rates in laboratory-based memory and perception tests and corresponding error rates in large pharmacy chains.

    Science.gov (United States)

    Schroeder, Scott R; Salomon, Meghan M; Galanter, William L; Schiff, Gordon D; Vaida, Allen J; Gaunt, Michael J; Bryson, Michelle L; Rash, Christine; Falck, Suzanne; Lambert, Bruce L

    2017-05-01

    Drug name confusion is a common type of medication error and a persistent threat to patient safety. In the USA, roughly one per thousand prescriptions results in the wrong drug being filled, and most of these errors involve drug names that look or sound alike. Prior to approval, drug names undergo a variety of tests to assess their potential for confusability, but none of these preapproval tests has been shown to predict real-world error rates. We conducted a study to assess the association between error rates in laboratory-based tests of drug name memory and perception and real-world drug name confusion error rates. Eighty participants, comprising doctors, nurses, pharmacists, technicians and lay people, completed a battery of laboratory tests assessing visual perception, auditory perception and short-term memory of look-alike and sound-alike drug name pairs (eg, hydroxyzine/hydralazine). Laboratory test error rates (and other metrics) significantly predicted real-world error rates obtained from a large, outpatient pharmacy chain, with the best-fitting model accounting for 37% of the variance in real-world error rates. Cross-validation analyses confirmed these results, showing that the laboratory tests also predicted errors from a second pharmacy chain, with 45% of the variance being explained by the laboratory test data. Across two distinct pharmacy chains, there is a strong and significant association between drug name confusion error rates observed in the real world and those observed in laboratory-based tests of memory and perception. Regulators and drug companies seeking a validated preapproval method for identifying confusing drug names ought to consider using these simple tests. By using a standard battery of memory and perception tests, it should be possible to reduce the number of confusing look-alike and sound-alike drug name pairs that reach the market, which will help protect patients from potentially harmful medication errors. Published by the BMJ

  19. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3.

    Science.gov (United States)

    Han, Mira V; Thomas, Gregg W C; Lugo-Martinez, Jose; Hahn, Matthew W

    2013-08-01

    Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.

  20. Classification based upon gene expression data: bias and precision of error rates.

    Science.gov (United States)

    Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L

    2007-06-01

    Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp

  1. A critique of recent models for human error rate assessment

    International Nuclear Information System (INIS)

    Apostolakis, G.E.

    1988-01-01

    This paper critically reviews two groups of models for assessing human error rates under accident conditions. The first group, which includes the US Nuclear Regulatory Commission (NRC) handbook model and the human cognitive reliability (HCR) model, considers as fundamental the time that is available to the operators to act. The second group, which is represented by the success likelihood index methodology multiattribute utility decomposition (SLIM-MAUD) model, relies on ratings of the human actions with respect to certain qualitative factors and the subsequent derivation of error rates. These models are evaluated with respect to two criteria: the treatment of uncertainties and the internal coherence of the models. In other words, this evaluation focuses primarily on normative aspects of these models. The principal findings are as follows: (1) Both of the time-related models provide human error rates as a function of the available time for action and the prevailing conditions. However, the HCR model ignores the important issue of state-of-knowledge uncertainties, dealing exclusively with stochastic uncertainty, whereas the model presented in the NRC handbook handles both types of uncertainty. (2) SLIM-MAUD provides a highly structured approach for the derivation of human error rates under given conditions. However, the treatment of the weights and ratings in this model is internally inconsistent. (author)

  2. Individual Differences and Rating Errors in First Impressions of Psychopathy

    Directory of Open Access Journals (Sweden)

    Christopher T. A. Gillen

    2016-10-01

    Full Text Available The current study is the first to investigate whether individual differences in personality are related to improved first impression accuracy when appraising psychopathy in female offenders from thin-slices of information. The study also investigated the types of errors laypeople make when forming these judgments. Sixty-seven undergraduates assessed 22 offenders on their level of psychopathy, violence, likability, and attractiveness. Psychopathy rating accuracy improved as rater extroversion-sociability and agreeableness increased and when neuroticism and lifestyle and antisocial characteristics decreased. These results suggest that traits associated with nonverbal rating accuracy or social functioning may be important in threat detection. Raters also made errors consistent with error management theory, suggesting that laypeople overappraise danger when rating psychopathy.

  3. The assessment of cognitive errors using an observer-rated method.

    Science.gov (United States)

    Drapeau, Martin

    2014-01-01

    Cognitive Errors (CEs) are a key construct in cognitive behavioral therapy (CBT). Integral to CBT is that individuals with depression process information in an overly negative or biased way, and that this bias is reflected in specific depressotypic CEs which are distinct from normal information processing. Despite the importance of this construct in CBT theory, practice, and research, few methods are available to researchers and clinicians to reliably identify CEs as they occur. In this paper, the author presents a rating system, the Cognitive Error Rating Scale, which can be used by trained observers to identify and assess the cognitive errors of patients or research participants in vivo, i.e., as they are used or reported by the patients or participants. The method is described, including some of the more important rating conventions to be considered when using the method. This paper also describes the 15 cognitive errors assessed, and the different summary scores, including valence of the CEs, that can be derived from the method.

  4. Estimating error rates for firearm evidence identifications in forensic science

    Science.gov (United States)

    Song, John; Vorburger, Theodore V.; Chu, Wei; Yen, James; Soons, Johannes A.; Ott, Daniel B.; Zhang, Nien Fan

    2018-01-01

    Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science. This paper describes the recently developed congruent matching cells (CMC) method for image comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate estimation. The CMC method divides compared topography images into correlation cells. Four identification parameters are defined for quantifying both the topography similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. A declared match requires a significant number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation between the distributions of CMC numbers observed for known matching and known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides manufactured by the same process also yielded widely separated distributions. The test results were used to develop two statistical models for the probability mass function of CMC correlation scores. The models were applied to develop a framework for estimating cumulative false positive and false negative error rates and individual error rates of declared matches and non-matches for this population of breech face impressions. The prospect for applying the models to large populations and realistic case work is also discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm evidence identifications, thus emulating methods used for forensic identification of DNA evidence. PMID:29331680

  5. Error rate of automated calculation for wound surface area using a digital photography.

    Science.gov (United States)

    Yang, S; Park, J; Lee, H; Lee, J B; Lee, B U; Oh, B H

    2018-02-01

    Although measuring would size using digital photography is a quick and simple method to evaluate the skin wound, the possible compatibility of it has not been fully validated. To investigate the error rate of our newly developed wound surface area calculation using digital photography. Using a smartphone and a digital single lens reflex (DSLR) camera, four photographs of various sized wounds (diameter: 0.5-3.5 cm) were taken from the facial skin model in company with color patches. The quantitative values of wound areas were automatically calculated. The relative error (RE) of this method with regard to wound sizes and types of camera was analyzed. RE of individual calculated area was from 0.0329% (DSLR, diameter 1.0 cm) to 23.7166% (smartphone, diameter 2.0 cm). In spite of the correction of lens curvature, smartphone has significantly higher error rate than DSLR camera (3.9431±2.9772 vs 8.1303±4.8236). However, in cases of wound diameter below than 3 cm, REs of average values of four photographs were below than 5%. In addition, there was no difference in the average value of wound area taken by smartphone and DSLR camera in those cases. For the follow-up of small skin defect (diameter: <3 cm), our newly developed automated wound area calculation method is able to be applied to the plenty of photographs, and the average values of them are a relatively useful index of wound healing with acceptable error rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Generalizing human error rates: A taxonomic approach

    International Nuclear Information System (INIS)

    Buffardi, L.; Fleishman, E.; Allen, J.

    1989-01-01

    It is well established that human error plays a major role in malfunctioning of complex, technological systems and in accidents associated with their operation. Estimates of the rate of human error in the nuclear industry range from 20-65% of all system failures. In response to this, the Nuclear Regulatory Commission has developed a variety of techniques for estimating human error probabilities for nuclear power plant personnel. Most of these techniques require the specification of the range of human error probabilities for various tasks. Unfortunately, very little objective performance data on error probabilities exist for nuclear environments. Thus, when human reliability estimates are required, for example in computer simulation modeling of system reliability, only subjective estimates (usually based on experts' best guesses) can be provided. The objective of the current research is to provide guidelines for the selection of human error probabilities based on actual performance data taken in other complex environments and applying them to nuclear settings. A key feature of this research is the application of a comprehensive taxonomic approach to nuclear and non-nuclear tasks to evaluate their similarities and differences, thus providing a basis for generalizing human error estimates across tasks. In recent years significant developments have occurred in classifying and describing tasks. Initial goals of the current research are to: (1) identify alternative taxonomic schemes that can be applied to tasks, and (2) describe nuclear tasks in terms of these schemes. Three standardized taxonomic schemes (Ability Requirements Approach, Generalized Information-Processing Approach, Task Characteristics Approach) are identified, modified, and evaluated for their suitability in comparing nuclear and non-nuclear power plant tasks. An agenda for future research and its relevance to nuclear power plant safety is also discussed

  7. Multicenter Assessment of Gram Stain Error Rates.

    Science.gov (United States)

    Samuel, Linoj P; Balada-Llasat, Joan-Miquel; Harrington, Amanda; Cavagnolo, Robert

    2016-06-01

    Gram stains remain the cornerstone of diagnostic testing in the microbiology laboratory for the guidance of empirical treatment prior to availability of culture results. Incorrectly interpreted Gram stains may adversely impact patient care, and yet there are no comprehensive studies that have evaluated the reliability of the technique and there are no established standards for performance. In this study, clinical microbiology laboratories at four major tertiary medical care centers evaluated Gram stain error rates across all nonblood specimen types by using standardized criteria. The study focused on several factors that primarily contribute to errors in the process, including poor specimen quality, smear preparation, and interpretation of the smears. The number of specimens during the evaluation period ranged from 976 to 1,864 specimens per site, and there were a total of 6,115 specimens. Gram stain results were discrepant from culture for 5% of all specimens. Fifty-eight percent of discrepant results were specimens with no organisms reported on Gram stain but significant growth on culture, while 42% of discrepant results had reported organisms on Gram stain that were not recovered in culture. Upon review of available slides, 24% (63/263) of discrepant results were due to reader error, which varied significantly based on site (9% to 45%). The Gram stain error rate also varied between sites, ranging from 0.4% to 2.7%. The data demonstrate a significant variability between laboratories in Gram stain performance and affirm the need for ongoing quality assessment by laboratories. Standardized monitoring of Gram stains is an essential quality control tool for laboratories and is necessary for the establishment of a quality benchmark across laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Bounding quantum gate error rate based on reported average fidelity

    International Nuclear Information System (INIS)

    Sanders, Yuval R; Wallman, Joel J; Sanders, Barry C

    2016-01-01

    Remarkable experimental advances in quantum computing are exemplified by recent announcements of impressive average gate fidelities exceeding 99.9% for single-qubit gates and 99% for two-qubit gates. Although these high numbers engender optimism that fault-tolerant quantum computing is within reach, the connection of average gate fidelity with fault-tolerance requirements is not direct. Here we use reported average gate fidelity to determine an upper bound on the quantum-gate error rate, which is the appropriate metric for assessing progress towards fault-tolerant quantum computation, and we demonstrate that this bound is asymptotically tight for general noise. Although this bound is unlikely to be saturated by experimental noise, we demonstrate using explicit examples that the bound indicates a realistic deviation between the true error rate and the reported average fidelity. We introduce the Pauli distance as a measure of this deviation, and we show that knowledge of the Pauli distance enables tighter estimates of the error rate of quantum gates. (fast track communication)

  9. CREME96 and Related Error Rate Prediction Methods

    Science.gov (United States)

    Adams, James H., Jr.

    2012-01-01

    Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and

  10. [The effectiveness of error reporting promoting strategy on nurse's attitude, patient safety culture, intention to report and reporting rate].

    Science.gov (United States)

    Kim, Myoungsoo

    2010-04-01

    The purpose of this study was to examine the impact of strategies to promote reporting of errors on nurses' attitude to reporting errors, organizational culture related to patient safety, intention to report and reporting rate in hospital nurses. A nonequivalent control group non-synchronized design was used for this study. The program was developed and then administered to the experimental group for 12 weeks. Data were analyzed using descriptive analysis, X(2)-test, t-test, and ANCOVA with the SPSS 12.0 program. After the intervention, the experimental group showed significantly higher scores for nurses' attitude to reporting errors (experimental: 20.73 vs control: 20.52, F=5.483, p=.021) and reporting rate (experimental: 3.40 vs control: 1.33, F=1998.083, porganizational culture and intention to report. The study findings indicate that strategies that promote reporting of errors play an important role in producing positive attitudes to reporting errors and improving behavior of reporting. Further advanced strategies for reporting errors that can lead to improved patient safety should be developed and applied in a broad range of hospitals.

  11. Error rate performance of narrowband multilevel CPFSK signals

    Science.gov (United States)

    Ekanayake, N.; Fonseka, K. J. P.

    1987-04-01

    The paper presents a relatively simple method for analyzing the effect of IF filtering on the performance of multilevel FM signals. Using this method, the error rate performance of narrowband FM signals is analyzed for three different detection techniques, namely limiter-discriminator detection, differential detection and coherent detection followed by differential decoding. The symbol error probabilities are computed for a Gaussian IF filter and a second-order Butterworth IF filter. It is shown that coherent detection and differential decoding yields better performance than limiter-discriminator detection and differential detection, whereas two noncoherent detectors yield approximately identical performance.

  12. Double symbol error rates for differential detection of narrow-band FM

    Science.gov (United States)

    Simon, M. K.

    1985-01-01

    This paper evaluates the double symbol error rate (average probability of two consecutive symbol errors) in differentially detected narrow-band FM. Numerical results are presented for the special case of MSK with a Gaussian IF receive filter. It is shown that, not unlike similar results previously obtained for the single error probability of such systems, large inaccuracies in predicted performance can occur when intersymbol interference is ignored.

  13. Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts.

    Science.gov (United States)

    Meyer, Andreas L S; Wiens, John J

    2018-01-01

    Estimates of diversification rates are invaluable for many macroevolutionary studies. Recently, an approach called BAMM (Bayesian Analysis of Macro-evolutionary Mixtures) has become widely used for estimating diversification rates and rate shifts. At the same time, several articles have concluded that estimates of net diversification rates from the method-of-moments (MS) estimators are inaccurate. Yet, no studies have compared the ability of these two methods to accurately estimate clade diversification rates. Here, we use simulations to compare their performance. We found that BAMM yielded relatively weak relationships between true and estimated diversification rates. This occurred because BAMM underestimated the number of rates shifts across each tree, and assigned high rates to small clades with low rates. Errors in both speciation and extinction rates contributed to these errors, showing that using BAMM to estimate only speciation rates is also problematic. In contrast, the MS estimators (particularly using stem group ages), yielded stronger relationships between true and estimated diversification rates, by roughly twofold. Furthermore, the MS approach remained relatively accurate when diversification rates were heterogeneous within clades, despite the widespread assumption that it requires constant rates within clades. Overall, we caution that BAMM may be problematic for estimating diversification rates and rate shifts. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. High cortisol awakening response is associated with impaired error monitoring and decreased post-error adjustment.

    Science.gov (United States)

    Zhang, Liang; Duan, Hongxia; Qin, Shaozheng; Yuan, Yiran; Buchanan, Tony W; Zhang, Kan; Wu, Jianhui

    2015-01-01

    The cortisol awakening response (CAR), a rapid increase in cortisol levels following morning awakening, is an important aspect of hypothalamic-pituitary-adrenocortical axis activity. Alterations in the CAR have been linked to a variety of mental disorders and cognitive function. However, little is known regarding the relationship between the CAR and error processing, a phenomenon that is vital for cognitive control and behavioral adaptation. Using high-temporal resolution measures of event-related potentials (ERPs) combined with behavioral assessment of error processing, we investigated whether and how the CAR is associated with two key components of error processing: error detection and subsequent behavioral adjustment. Sixty university students performed a Go/No-go task while their ERPs were recorded. Saliva samples were collected at 0, 15, 30 and 60 min after awakening on the two consecutive days following ERP data collection. The results showed that a higher CAR was associated with slowed latency of the error-related negativity (ERN) and a higher post-error miss rate. The CAR was not associated with other behavioral measures such as the false alarm rate and the post-correct miss rate. These findings suggest that high CAR is a biological factor linked to impairments of multiple steps of error processing in healthy populations, specifically, the automatic detection of error and post-error behavioral adjustment. A common underlying neural mechanism of physiological and cognitive control may be crucial for engaging in both CAR and error processing.

  15. Error rate on the director's task is influenced by the need to take another's perspective but not the type of perspective.

    Science.gov (United States)

    Legg, Edward W; Olivier, Laure; Samuel, Steven; Lurz, Robert; Clayton, Nicola S

    2017-08-01

    Adults are prone to responding erroneously to another's instructions based on what they themselves see and not what the other person sees. Previous studies have indicated that in instruction-following tasks participants make more errors when required to infer another's perspective than when following a rule. These inference-induced errors may occur because the inference process itself is error-prone or because they are a side effect of the inference process. Crucially, if the inference process is error-prone, then higher error rates should be found when the perspective to be inferred is more complex. Here, we found that participants were no more error-prone when they had to judge how an item appeared (Level 2 perspective-taking) than when they had to judge whether an item could or could not be seen (Level 1 perspective-taking). However, participants were more error-prone in the perspective-taking variants of the task than in a version that only required them to follow a rule. These results suggest that having to represent another's perspective induces errors when following their instructions but that error rates are not directly linked to errors in inferring another's perspective.

  16. Errors of car wheels rotation rate measurement using roller follower on test benches

    Science.gov (United States)

    Potapov, A. S.; Svirbutovich, O. A.; Krivtsov, S. N.

    2018-03-01

    The article deals with rotation rate measurement errors, which depend on the motor vehicle rate, on the roller, test benches. Monitoring of the vehicle performance under operating conditions is performed on roller test benches. Roller test benches are not flawless. They have some drawbacks affecting the accuracy of vehicle performance monitoring. Increase in basic velocity of the vehicle requires increase in accuracy of wheel rotation rate monitoring. It determines the degree of accuracy of mode identification for a wheel of the tested vehicle. To ensure measurement accuracy for rotation velocity of rollers is not an issue. The problem arises when measuring rotation velocity of a car wheel. The higher the rotation velocity of the wheel is, the lower the accuracy of measurement is. At present, wheel rotation frequency monitoring on roller test benches is carried out by following-up systems. Their sensors are rollers following wheel rotation. The rollers of the system are not kinematically linked to supporting rollers of the test bench. The roller follower is forced against the wheels of the tested vehicle by means of a spring-lever mechanism. Experience of the test bench equipment operation has shown that measurement accuracy is satisfactory at small rates of vehicles diagnosed on roller test benches. With a rising diagnostics rate, rotation velocity measurement errors occur in both braking and pulling modes because a roller spins about a tire tread. The paper shows oscillograms of changes in wheel rotation velocity and rotation velocity measurement system’s signals when testing a vehicle on roller test benches at specified rates.

  17. The 95% confidence intervals of error rates and discriminant coefficients

    Directory of Open Access Journals (Sweden)

    Shuichi Shinmura

    2015-02-01

    Full Text Available Fisher proposed a linear discriminant function (Fisher’s LDF. From 1971, we analysed electrocardiogram (ECG data in order to develop the diagnostic logic between normal and abnormal symptoms by Fisher’s LDF and a quadratic discriminant function (QDF. Our four years research was inferior to the decision tree logic developed by the medical doctor. After this experience, we discriminated many data and found four problems of the discriminant analysis. A revised Optimal LDF by Integer Programming (Revised IP-OLDF based on the minimum number of misclassification (minimum NM criterion resolves three problems entirely [13, 18]. In this research, we discuss fourth problem of the discriminant analysis. There are no standard errors (SEs of the error rate and discriminant coefficient. We propose a k-fold crossvalidation method. This method offers a model selection technique and a 95% confidence intervals (C.I. of error rates and discriminant coefficients.

  18. Error rates in forensic DNA analysis: Definition, numbers, impact and communication

    NARCIS (Netherlands)

    Kloosterman, A.; Sjerps, M.; Quak, A.

    2014-01-01

    Forensic DNA casework is currently regarded as one of the most important types of forensic evidence, and important decisions in intelligence and justice are based on it. However, errors occasionally occur and may have very serious consequences. In other domains, error rates have been defined and

  19. The Relationship of Error Rate and Comprehension in Second and Third Grade Oral Reading Fluency.

    Science.gov (United States)

    Abbott, Mary; Wills, Howard; Miller, Angela; Kaufman, Journ

    2012-01-01

    This study explored the relationships of oral reading speed and error rate on comprehension with second and third grade students with identified reading risk. The study included 920 2nd graders and 974 3rd graders. Participants were assessed using Dynamic Indicators of Basic Early Literacy Skills (DIBELS) and the Woodcock Reading Mastery Test (WRMT) Passage Comprehension subtest. Results from this study further illuminate the significant relationships between error rate, oral reading fluency, and reading comprehension performance, and grade-specific guidelines for appropriate error rate levels. Low oral reading fluency and high error rates predict the level of passage comprehension performance. For second grade students below benchmark, a fall assessment error rate of 28% predicts that student comprehension performance will be below average. For third grade students below benchmark, the fall assessment cut point is 14%. Instructional implications of the findings are discussed.

  20. Accelerated testing for cosmic soft-error rate

    International Nuclear Information System (INIS)

    Ziegler, J.F.; Muhlfeld, H.P.; Montrose, C.J.; Curtis, H.W.; O'Gorman, T.J.; Ross, J.M.

    1996-01-01

    This paper describes the experimental techniques which have been developed at IBM to determine the sensitivity of electronic circuits to cosmic rays at sea level. It relates IBM circuit design and modeling, chip manufacture with process variations, and chip testing for SER sensitivity. This vertical integration from design to final test and with feedback to design allows a complete picture of LSI sensitivity to cosmic rays. Since advanced computers are designed with LSI chips long before the chips have been fabricated, and the system architecture is fully formed before the first chips are functional, it is essential to establish the chip reliability as early as possible. This paper establishes techniques to test chips that are only partly functional (e.g., only 1Mb of a 16Mb memory may be working) and can establish chip soft-error upset rates before final chip manufacturing begins. Simple relationships derived from measurement of more than 80 different chips manufactured over 20 years allow total cosmic soft-error rate (SER) to be estimated after only limited testing. Comparisons between these accelerated test results and similar tests determined by ''field testing'' (which may require a year or more of testing after manufacturing begins) show that the experimental techniques are accurate to a factor of 2

  1. Error-Rate Bounds for Coded PPM on a Poisson Channel

    Science.gov (United States)

    Moision, Bruce; Hamkins, Jon

    2009-01-01

    Equations for computing tight bounds on error rates for coded pulse-position modulation (PPM) on a Poisson channel at high signal-to-noise ratio have been derived. These equations and elements of the underlying theory are expected to be especially useful in designing codes for PPM optical communication systems. The equations and the underlying theory apply, more specifically, to a case in which a) At the transmitter, a linear outer code is concatenated with an inner code that includes an accumulator and a bit-to-PPM-symbol mapping (see figure) [this concatenation is known in the art as "accumulate-PPM" (abbreviated "APPM")]; b) The transmitted signal propagates on a memoryless binary-input Poisson channel; and c) At the receiver, near-maximum-likelihood (ML) decoding is effected through an iterative process. Such a coding/modulation/decoding scheme is a variation on the concept of turbo codes, which have complex structures, such that an exact analytical expression for the performance of a particular code is intractable. However, techniques for accurately estimating the performances of turbo codes have been developed. The performance of a typical turbo code includes (1) a "waterfall" region consisting of a steep decrease of error rate with increasing signal-to-noise ratio (SNR) at low to moderate SNR, and (2) an "error floor" region with a less steep decrease of error rate with increasing SNR at moderate to high SNR. The techniques used heretofore for estimating performance in the waterfall region have differed from those used for estimating performance in the error-floor region. For coded PPM, prior to the present derivations, equations for accurate prediction of the performance of coded PPM at high SNR did not exist, so that it was necessary to resort to time-consuming simulations in order to make such predictions. The present derivation makes it unnecessary to perform such time-consuming simulations.

  2. Voice recognition versus transcriptionist: error rated and productivity in MRI reporting

    International Nuclear Information System (INIS)

    Strahan, Rodney H.; Schneider-Kolsky, Michal E.

    2010-01-01

    Full text: Purpose: Despite the frequent introduction of voice recognition (VR) into radiology departments, little evidence still exists about its impact on workflow, error rates and costs. We designed a study to compare typographical errors, turnaround times (TAT) from reported to verified and productivity for VR-generated reports versus transcriptionist-generated reports in MRI. Methods: Fifty MRI reports generated by VR and 50 finalised MRI reports generated by the transcriptionist, of two radiologists, were sampled retrospectively. Two hundred reports were scrutinised for typographical errors and the average TAT from dictated to final approval. To assess productivity, the average MRI reports per hour for one of the radiologists was calculated using data from extra weekend reporting sessions. Results: Forty-two % and 30% of the finalised VR reports for each of the radiologists investigated contained errors. Only 6% and 8% of the transcriptionist-generated reports contained errors. The average TAT for VR was 0 h, and for the transcriptionist reports TAT was 89 and 38.9 h. Productivity was calculated at 8.6 MRI reports per hour using VR and 13.3 MRI reports using the transcriptionist, representing a 55% increase in productivity. Conclusion: Our results demonstrate that VR is not an effective method of generating reports for MRI. Ideally, we would have the report error rate and productivity of a transcriptionist and the TAT of VR.

  3. Evaluation of soft errors rate in a commercial memory EEPROM

    International Nuclear Information System (INIS)

    Claro, Luiz H.; Silva, A.A.; Santos, Jose A.

    2011-01-01

    Soft errors are transient circuit errors caused by external radiation. When an ion intercepts a p-n region in an electronic component, the ionization produces excess charges along the track. These charges when collected can flip internal values, especially in memory cells. The problem affects not only space application but also terrestrial ones. Neutrons induced by cosmic rays and alpha particles, emitted from traces of radioactive contaminants contained in packaging and chip materials, are the predominant sources of radiation. The soft error susceptibility is different for different memory technology hence the experimental study are very important for Soft Error Rate (SER) evaluation. In this work, the methodology for accelerated tests is presented with the results for SER in a commercial electrically erasable and programmable read-only memory (EEPROM). (author)

  4. Process error rates in general research applications to the Human ...

    African Journals Online (AJOL)

    Objective. To examine process error rates in applications for ethics clearance of health research. Methods. Minutes of 586 general research applications made to a human health research ethics committee (HREC) from April 2008 to March 2009 were examined. Rates of approval were calculated and reasons for requiring ...

  5. Agreeableness and Conscientiousness as Predictors of University Students' Self/Peer-Assessment Rating Error

    Science.gov (United States)

    Birjandi, Parviz; Siyyari, Masood

    2016-01-01

    This paper presents the results of an investigation into the role of two personality traits (i.e. Agreeableness and Conscientiousness from the Big Five personality traits) in predicting rating error in the self-assessment and peer-assessment of composition writing. The average self/peer-rating errors of 136 Iranian English major undergraduates…

  6. The nearest neighbor and the bayes error rates.

    Science.gov (United States)

    Loizou, G; Maybank, S J

    1987-02-01

    The (k, l) nearest neighbor method of pattern classification is compared to the Bayes method. If the two acceptance rates are equal then the asymptotic error rates satisfy the inequalities Ek,l + 1 ¿ E*(¿) ¿ Ek,l dE*(¿), where d is a function of k, l, and the number of pattern classes, and ¿ is the reject threshold for the Bayes method. An explicit expression for d is given which is optimal in the sense that for some probability distributions Ek,l and dE* (¿) are equal.

  7. Voice recognition versus transcriptionist: error rates and productivity in MRI reporting.

    Science.gov (United States)

    Strahan, Rodney H; Schneider-Kolsky, Michal E

    2010-10-01

    Despite the frequent introduction of voice recognition (VR) into radiology departments, little evidence still exists about its impact on workflow, error rates and costs. We designed a study to compare typographical errors, turnaround times (TAT) from reported to verified and productivity for VR-generated reports versus transcriptionist-generated reports in MRI. Fifty MRI reports generated by VR and 50 finalized MRI reports generated by the transcriptionist, of two radiologists, were sampled retrospectively. Two hundred reports were scrutinised for typographical errors and the average TAT from dictated to final approval. To assess productivity, the average MRI reports per hour for one of the radiologists was calculated using data from extra weekend reporting sessions. Forty-two % and 30% of the finalized VR reports for each of the radiologists investigated contained errors. Only 6% and 8% of the transcriptionist-generated reports contained errors. The average TAT for VR was 0 h, and for the transcriptionist reports TAT was 89 and 38.9 h. Productivity was calculated at 8.6 MRI reports per hour using VR and 13.3 MRI reports using the transcriptionist, representing a 55% increase in productivity. Our results demonstrate that VR is not an effective method of generating reports for MRI. Ideally, we would have the report error rate and productivity of a transcriptionist and the TAT of VR. © 2010 The Authors. Journal of Medical Imaging and Radiation Oncology © 2010 The Royal Australian and New Zealand College of Radiologists.

  8. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    Science.gov (United States)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  9. A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    Science.gov (United States)

    Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  10. Analytical expression for the bit error rate of cascaded all-optical regenerators

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Bischoff, S.

    2003-01-01

    We derive an approximate analytical expression for the bit error rate of cascaded fiber links containing all-optical 2R-regenerators. A general analysis of the interplay between noise due to amplification and the degree of reshaping (nonlinearity) of the regenerator is performed.......We derive an approximate analytical expression for the bit error rate of cascaded fiber links containing all-optical 2R-regenerators. A general analysis of the interplay between noise due to amplification and the degree of reshaping (nonlinearity) of the regenerator is performed....

  11. National Suicide Rates a Century after Durkheim: Do We Know Enough to Estimate Error?

    Science.gov (United States)

    Claassen, Cynthia A.; Yip, Paul S.; Corcoran, Paul; Bossarte, Robert M.; Lawrence, Bruce A.; Currier, Glenn W.

    2010-01-01

    Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the…

  12. Topological quantum computing with a very noisy network and local error rates approaching one percent.

    Science.gov (United States)

    Nickerson, Naomi H; Li, Ying; Benjamin, Simon C

    2013-01-01

    A scalable quantum computer could be built by networking together many simple processor cells, thus avoiding the need to create a single complex structure. The difficulty is that realistic quantum links are very error prone. A solution is for cells to repeatedly communicate with each other and so purify any imperfections; however prior studies suggest that the cells themselves must then have prohibitively low internal error rates. Here we describe a method by which even error-prone cells can perform purification: groups of cells generate shared resource states, which then enable stabilization of topologically encoded data. Given a realistically noisy network (≥10% error rate) we find that our protocol can succeed provided that intra-cell error rates for initialisation, state manipulation and measurement are below 0.82%. This level of fidelity is already achievable in several laboratory systems.

  13. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    International Nuclear Information System (INIS)

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A.

    2011-01-01

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa. Conclusions: There is a lack of correlation between

  14. Error rates in forensic DNA analysis: definition, numbers, impact and communication.

    Science.gov (United States)

    Kloosterman, Ate; Sjerps, Marjan; Quak, Astrid

    2014-09-01

    Forensic DNA casework is currently regarded as one of the most important types of forensic evidence, and important decisions in intelligence and justice are based on it. However, errors occasionally occur and may have very serious consequences. In other domains, error rates have been defined and published. The forensic domain is lagging behind concerning this transparency for various reasons. In this paper we provide definitions and observed frequencies for different types of errors at the Human Biological Traces Department of the Netherlands Forensic Institute (NFI) over the years 2008-2012. Furthermore, we assess their actual and potential impact and describe how the NFI deals with the communication of these numbers to the legal justice system. We conclude that the observed relative frequency of quality failures is comparable to studies from clinical laboratories and genetic testing centres. Furthermore, this frequency is constant over the five-year study period. The most common causes of failures related to the laboratory process were contamination and human error. Most human errors could be corrected, whereas gross contamination in crime samples often resulted in irreversible consequences. Hence this type of contamination is identified as the most significant source of error. Of the known contamination incidents, most were detected by the NFI quality control system before the report was issued to the authorities, and thus did not lead to flawed decisions like false convictions. However in a very limited number of cases crucial errors were detected after the report was issued, sometimes with severe consequences. Many of these errors were made in the post-analytical phase. The error rates reported in this paper are useful for quality improvement and benchmarking, and contribute to an open research culture that promotes public trust. However, they are irrelevant in the context of a particular case. Here case-specific probabilities of undetected errors are needed

  15. Comparing Response Times and Error Rates in a Simultaneous Masking Paradigm

    Directory of Open Access Journals (Sweden)

    F Hermens

    2014-08-01

    Full Text Available In simultaneous masking, performance on a foveally presented target is impaired by one or more flanking elements. Previous studies have demonstrated strong effects of the grouping of the target and the flankers on the strength of masking (e.g., Malania, Herzog & Westheimer, 2007. These studies have predominantly examined performance by measuring offset discrimination thresholds as a measure of performance, and it is therefore unclear whether other measures of performance provide similar outcomes. A recent study, which examined the role of grouping on error rates and response times in a speeded vernier offset discrimination task, similar to that used by Malania et al. (2007, suggested a possible dissociation between the two measures, with error rates mimicking threshold performance, but response times showing differential results (Panis & Hermens, 2014. We here report the outcomes of three experiments examining this possible dissociation, and demonstrate an overall similar pattern of results for error rates and response times across a broad range of mask layouts. Moreover, the pattern of results in our experiments strongly correlates with threshold performance reported earlier (Malania et al., 2007. Our results suggest that outcomes in a simultaneous masking paradigm do not critically depend on the outcome measure used, and therefore provide evidence for a common underlying mechanism.

  16. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    Science.gov (United States)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  17. Bit error rate analysis of free-space optical communication over general Malaga turbulence channels with pointing error

    KAUST Repository

    Alheadary, Wael Ghazy

    2016-12-24

    In this work, we present a bit error rate (BER) and achievable spectral efficiency (ASE) performance of a freespace optical (FSO) link with pointing errors based on intensity modulation/direct detection (IM/DD) and heterodyne detection over general Malaga turbulence channel. More specifically, we present exact closed-form expressions for adaptive and non-adaptive transmission. The closed form expressions are presented in terms of generalized power series of the Meijer\\'s G-function. Moreover, asymptotic closed form expressions are provided to validate our work. In addition, all the presented analytical results are illustrated using a selected set of numerical results.

  18. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A. [Canis Lupus LLC and Department of Human Oncology, University of Wisconsin, Merrimac, Wisconsin 53561 (United States); Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States); Departments of Human Oncology, Medical Physics, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2011-02-15

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa

  19. Assessment of salivary flow rate: biologic variation and measure error.

    NARCIS (Netherlands)

    Jongerius, P.H.; Limbeek, J. van; Rotteveel, J.J.

    2004-01-01

    OBJECTIVE: To investigate the applicability of the swab method in the measurement of salivary flow rate in multiple-handicap drooling children. To quantify the measurement error of the procedure and the biologic variation in the population. STUDY DESIGN: Cohort study. METHODS: In a repeated

  20. The type I error rate for in vivo Comet assay data when the hierarchical structure is disregarded

    DEFF Research Database (Denmark)

    Hansen, Merete Kjær; Kulahci, Murat

    the type I error rate is greater than the nominal _ at 0.05. Closed-form expressions based on scaled F-distributions using the Welch-Satterthwaite approximation are provided to show how the type I error rate is aUected. With this study we hope to motivate researchers to be more precise regarding......, and this imposes considerable impact on the type I error rate. This study aims to demonstrate the implications that result from disregarding the hierarchical structure. DiUerent combinations of the factor levels as they appear in a literature study give type I error rates up to 0.51 and for all combinations...

  1. Invariance of the bit error rate in the ancilla-assisted homodyne detection

    International Nuclear Information System (INIS)

    Yoshida, Yuhsuke; Takeoka, Masahiro; Sasaki, Masahide

    2010-01-01

    We investigate the minimum achievable bit error rate of the discrimination of binary coherent states with the help of arbitrary ancillary states. We adopt homodyne measurement with a common phase of the local oscillator and classical feedforward control. After one ancillary state is measured, its outcome is referred to the preparation of the next ancillary state and the tuning of the next mixing with the signal. It is shown that the minimum bit error rate of the system is invariant under the following operations: feedforward control, deformations, and introduction of any ancillary state. We also discuss the possible generalization of the homodyne detection scheme.

  2. Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors.

    Science.gov (United States)

    Stevens, Kathleen E; Chang, Diana; Zwack, Erin E; Sebert, Michael E

    2011-01-01

    Competence for genetic transformation in Streptococcus pneumoniae develops in response to accumulation of a secreted peptide pheromone and was one of the initial examples of bacterial quorum sensing. Activation of this signaling system induces not only expression of the proteins required for transformation but also the production of cellular chaperones and proteases. We have shown here that activity of this pathway is sensitively responsive to changes in the accuracy of protein synthesis that are triggered by either mutations in ribosomal proteins or exposure to antibiotics. Increasing the error rate during ribosomal decoding promoted competence, while reducing the error rate below the baseline level repressed the development of both spontaneous and antibiotic-induced competence. This pattern of regulation was promoted by the bacterial HtrA serine protease. Analysis of strains with the htrA (S234A) catalytic site mutation showed that the proteolytic activity of HtrA selectively repressed competence when translational fidelity was high but not when accuracy was low. These findings redefine the pneumococcal competence pathway as a response to errors during protein synthesis. This response has the capacity to address the immediate challenge of misfolded proteins through production of chaperones and proteases and may also be able to address, through genetic exchange, upstream coding errors that cause intrinsic protein folding defects. The competence pathway may thereby represent a strategy for dealing with lesions that impair proper protein coding and for maintaining the coding integrity of the genome. The signaling pathway that governs competence in the human respiratory tract pathogen Streptococcus pneumoniae regulates both genetic transformation and the production of cellular chaperones and proteases. The current study shows that this pathway is sensitively controlled in response to changes in the accuracy of protein synthesis. Increasing the error rate during

  3. Type-II generalized family-wise error rate formulas with application to sample size determination.

    Science.gov (United States)

    Delorme, Phillipe; de Micheaux, Pierre Lafaye; Liquet, Benoit; Riou, Jérémie

    2016-07-20

    Multiple endpoints are increasingly used in clinical trials. The significance of some of these clinical trials is established if at least r null hypotheses are rejected among m that are simultaneously tested. The usual approach in multiple hypothesis testing is to control the family-wise error rate, which is defined as the probability that at least one type-I error is made. More recently, the q-generalized family-wise error rate has been introduced to control the probability of making at least q false rejections. For procedures controlling this global type-I error rate, we define a type-II r-generalized family-wise error rate, which is directly related to the r-power defined as the probability of rejecting at least r false null hypotheses. We obtain very general power formulas that can be used to compute the sample size for single-step and step-wise procedures. These are implemented in our R package rPowerSampleSize available on the CRAN, making them directly available to end users. Complexities of the formulas are presented to gain insight into computation time issues. Comparison with Monte Carlo strategy is also presented. We compute sample sizes for two clinical trials involving multiple endpoints: one designed to investigate the effectiveness of a drug against acute heart failure and the other for the immunogenicity of a vaccine strategy against pneumococcus. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Symbol error rate performance evaluation of the LM37 multimegabit telemetry modulator-demodulator unit

    Science.gov (United States)

    Malek, H.

    1981-01-01

    The LM37 multimegabit telemetry modulator-demodulator unit was tested for evaluation of its symbol error rate (SER) performance. Using an automated test setup, the SER tests were carried out at various symbol rates and signal-to-noise ratios (SNR), ranging from +10 to -10 dB. With the aid of a specially designed error detector and a stabilized signal and noise summation unit, measurement of the SER at low SNR was possible. The results of the tests show that at symbol rates below 20 megasymbols per second (MS)s) and input SNR above -6 dB, the SER performance of the modem is within the specified 0.65 to 1.5 dB of the theoretical error curve. At symbol rates above 20 MS/s, the specification is met at SNR's down to -2 dB. The results of the SER tests are presented with the description of the test setup and the measurement procedure.

  5. High speed and adaptable error correction for megabit/s rate quantum key distribution.

    Science.gov (United States)

    Dixon, A R; Sato, H

    2014-12-02

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.

  6. Errors of first-order probe correction for higher-order probes in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Nielsen, Jeppe Majlund; Pivnenko, Sergiy

    2004-01-01

    An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe.......An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe....

  7. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Hoskinson; R C. Rope; L G. Blackwood; R D. Lee; R K. Fink

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and a predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences

  8. Error rates and resource overheads of encoded three-qubit gates

    Science.gov (United States)

    Takagi, Ryuji; Yoder, Theodore J.; Chuang, Isaac L.

    2017-10-01

    A non-Clifford gate is required for universal quantum computation, and, typically, this is the most error-prone and resource-intensive logical operation on an error-correcting code. Small, single-qubit rotations are popular choices for this non-Clifford gate, but certain three-qubit gates, such as Toffoli or controlled-controlled-Z (ccz), are equivalent options that are also more suited for implementing some quantum algorithms, for instance, those with coherent classical subroutines. Here, we calculate error rates and resource overheads for implementing logical ccz with pieceable fault tolerance, a nontransversal method for implementing logical gates. We provide a comparison with a nonlocal magic-state scheme on a concatenated code and a local magic-state scheme on the surface code. We find the pieceable fault-tolerance scheme particularly advantaged over magic states on concatenated codes and in certain regimes over magic states on the surface code. Our results suggest that pieceable fault tolerance is a promising candidate for fault tolerance in a near-future quantum computer.

  9. Medical errors in hospitalized pediatric trauma patients with chronic health conditions

    Directory of Open Access Journals (Sweden)

    Xiaotong Liu

    2014-01-01

    Full Text Available Objective: This study compares medical errors in pediatric trauma patients with and without chronic conditions. Methods: The 2009 Kids’ Inpatient Database, which included 123,303 trauma discharges, was analyzed. Medical errors were identified by International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis codes. The medical error rates per 100 discharges and per 1000 hospital days were calculated and compared between inpatients with and without chronic conditions. Results: Pediatric trauma patients with chronic conditions experienced a higher medical error rate compared with patients without chronic conditions: 4.04 (95% confidence interval: 3.75–4.33 versus 1.07 (95% confidence interval: 0.98–1.16 per 100 discharges. The rate of medical error differed by type of chronic condition. After controlling for confounding factors, the presence of a chronic condition increased the adjusted odds ratio of medical error by 37% if one chronic condition existed (adjusted odds ratio: 1.37, 95% confidence interval: 1.21–1.5, and 69% if more than one chronic condition existed (adjusted odds ratio: 1.69, 95% confidence interval: 1.48–1.53. In the adjusted model, length of stay had the strongest association with medical error, but the adjusted odds ratio for chronic conditions and medical error remained significantly elevated even when accounting for the length of stay, suggesting that medical complexity has a role in medical error. Higher adjusted odds ratios were seen in other subgroups. Conclusion: Chronic conditions are associated with significantly higher rate of medical errors in pediatric trauma patients. Future research should evaluate interventions or guidelines for reducing the risk of medical errors in pediatric trauma patients with chronic conditions.

  10. Bit Error Rate Minimizing Channel Shortening Equalizers for Single Carrier Cyclic Prefixed Systems

    National Research Council Canada - National Science Library

    Martin, Richard K; Vanbleu, Koen; Ysebaert, Geert

    2007-01-01

    .... Previous work on channel shortening has largely been in the context of digital subscriber lines, a wireline system that allows bit allocation, thus it has focused on maximizing the bit rate for a given bit error rate (BER...

  11. Symbol and Bit Error Rates Analysis of Hybrid PIM-CDMA

    Directory of Open Access Journals (Sweden)

    Ghassemlooy Z

    2005-01-01

    Full Text Available A hybrid pulse interval modulation code-division multiple-access (hPIM-CDMA scheme employing the strict optical orthogonal code (SOCC with unity and auto- and cross-correlation constraints for indoor optical wireless communications is proposed. In this paper, we analyse the symbol error rate (SER and bit error rate (BER of hPIM-CDMA. In the analysis, we consider multiple access interference (MAI, self-interference, and the hybrid nature of the hPIM-CDMA signal detection, which is based on the matched filter (MF. It is shown that the BER/SER performance can only be evaluated if the bit resolution conforms to the condition set by the number of consecutive false alarm pulses that might occur and be detected, so that one symbol being divided into two is unlikely to occur. Otherwise, the probability of SER and BER becomes extremely high and indeterminable. We show that for a large number of users, the BER improves when increasing the code weight . The results presented are compared with other modulation schemes.

  12. On Kolmogorov asymptotics of estimators of the misclassification error rate in linear discriminant analysis

    KAUST Repository

    Zollanvari, Amin

    2013-05-24

    We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.

  13. On Kolmogorov asymptotics of estimators of the misclassification error rate in linear discriminant analysis

    KAUST Repository

    Zollanvari, Amin; Genton, Marc G.

    2013-01-01

    We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.

  14. Confidence Intervals Verification for Simulated Error Rate Performance of Wireless Communication System

    KAUST Repository

    Smadi, Mahmoud A.

    2012-12-06

    In this paper, we derived an efficient simulation method to evaluate the error rate of wireless communication system. Coherent binary phase-shift keying system is considered with imperfect channel phase recovery. The results presented demonstrate the system performance under very realistic Nakagami-m fading and additive white Gaussian noise channel. On the other hand, the accuracy of the obtained results is verified through running the simulation under a good confidence interval reliability of 95 %. We see that as the number of simulation runs N increases, the simulated error rate becomes closer to the actual one and the confidence interval difference reduces. Hence our results are expected to be of significant practical use for such scenarios. © 2012 Springer Science+Business Media New York.

  15. FPGA-based Bit-Error-Rate Tester for SEU-hardened Optical Links

    CERN Document Server

    Detraz, S; Moreira, P; Papadopoulos, S; Papakonstantinou, I; Seif El Nasr, S; Sigaud, C; Soos, C; Stejskal, P; Troska, J; Versmissen, H

    2009-01-01

    The next generation of optical links for future High-Energy Physics experiments will require components qualified for use in radiation-hard environments. To cope with radiation induced single-event upsets, the physical layer protocol will include Forward Error Correction (FEC). Bit-Error-Rate (BER) testing is a widely used method to characterize digital transmission systems. In order to measure the BER with and without the proposed FEC, simultaneously on several devices, a multi-channel BER tester has been developed. This paper describes the architecture of the tester, its implementation in a Xilinx Virtex-5 FPGA device and discusses the experimental results.

  16. Benefits and risks of using smart pumps to reduce medication error rates: a systematic review.

    Science.gov (United States)

    Ohashi, Kumiko; Dalleur, Olivia; Dykes, Patricia C; Bates, David W

    2014-12-01

    Smart infusion pumps have been introduced to prevent medication errors and have been widely adopted nationally in the USA, though they are not always used in Europe or other regions. Despite widespread usage of smart pumps, intravenous medication errors have not been fully eliminated. Through a systematic review of recent studies and reports regarding smart pump implementation and use, we aimed to identify the impact of smart pumps on error reduction and on the complex process of medication administration, and strategies to maximize the benefits of smart pumps. The medical literature related to the effects of smart pumps for improving patient safety was searched in PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) (2000-2014) and relevant papers were selected by two researchers. After the literature search, 231 papers were identified and the full texts of 138 articles were assessed for eligibility. Of these, 22 were included after removal of papers that did not meet the inclusion criteria. We assessed both the benefits and negative effects of smart pumps from these studies. One of the benefits of using smart pumps was intercepting errors such as the wrong rate, wrong dose, and pump setting errors. Other benefits include reduction of adverse drug event rates, practice improvements, and cost effectiveness. Meanwhile, the current issues or negative effects related to using smart pumps were lower compliance rates of using smart pumps, the overriding of soft alerts, non-intercepted errors, or the possibility of using the wrong drug library. The literature suggests that smart pumps reduce but do not eliminate programming errors. Although the hard limits of a drug library play a main role in intercepting medication errors, soft limits were still not as effective as hard limits because of high override rates. Compliance in using smart pumps is key towards effectively preventing errors. Opportunities for improvement include upgrading drug

  17. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Jiayu Zhang

    2018-05-01

    Full Text Available The Semi-Strapdown Inertial Navigation System (SSINS provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS inertial measurement unit (MIMU outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.

  18. Maximum inflation of the type 1 error rate when sample size and allocation rate are adapted in a pre-planned interim look.

    Science.gov (United States)

    Graf, Alexandra C; Bauer, Peter

    2011-06-30

    We calculate the maximum type 1 error rate of the pre-planned conventional fixed sample size test for comparing the means of independent normal distributions (with common known variance) which can be yielded when sample size and allocation rate to the treatment arms can be modified in an interim analysis. Thereby it is assumed that the experimenter fully exploits knowledge of the unblinded interim estimates of the treatment effects in order to maximize the conditional type 1 error rate. The 'worst-case' strategies require knowledge of the unknown common treatment effect under the null hypothesis. Although this is a rather hypothetical scenario it may be approached in practice when using a standard control treatment for which precise estimates are available from historical data. The maximum inflation of the type 1 error rate is substantially larger than derived by Proschan and Hunsberger (Biometrics 1995; 51:1315-1324) for design modifications applying balanced samples before and after the interim analysis. Corresponding upper limits for the maximum type 1 error rate are calculated for a number of situations arising from practical considerations (e.g. restricting the maximum sample size, not allowing sample size to decrease, allowing only increase in the sample size in the experimental treatment). The application is discussed for a motivating example. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Error in the delivery of radiation therapy: Results of a quality assurance review

    International Nuclear Information System (INIS)

    Huang, Grace; Medlam, Gaylene; Lee, Justin; Billingsley, Susan; Bissonnette, Jean-Pierre; Ringash, Jolie; Kane, Gabrielle; Hodgson, David C.

    2005-01-01

    Purpose: To examine error rates in the delivery of radiation therapy (RT), technical factors associated with RT errors, and the influence of a quality improvement intervention on the RT error rate. Methods and materials: We undertook a review of all RT errors that occurred at the Princess Margaret Hospital (Toronto) from January 1, 1997, to December 31, 2002. Errors were identified according to incident report forms that were completed at the time the error occurred. Error rates were calculated per patient, per treated volume (≥1 volume per patient), and per fraction delivered. The association between tumor site and error was analyzed. Logistic regression was used to examine the association between technical factors and the risk of error. Results: Over the study interval, there were 555 errors among 28,136 patient treatments delivered (error rate per patient = 1.97%, 95% confidence interval [CI], 1.81-2.14%) and among 43,302 treated volumes (error rate per volume = 1.28%, 95% CI, 1.18-1.39%). The proportion of fractions with errors from July 1, 2000, to December 31, 2002, was 0.29% (95% CI, 0.27-0.32%). Patients with sarcoma or head-and-neck tumors experienced error rates significantly higher than average (5.54% and 4.58%, respectively); however, when the number of treated volumes was taken into account, the head-and-neck error rate was no longer higher than average (1.43%). The use of accessories was associated with an increased risk of error, and internal wedges were more likely to be associated with an error than external wedges (relative risk = 2.04; 95% CI, 1.11-3.77%). Eighty-seven errors (15.6%) were directly attributed to incorrect programming of the 'record and verify' system. Changes to planning and treatment processes aimed at reducing errors within the head-and-neck site group produced a substantial reduction in the error rate. Conclusions: Errors in the delivery of RT are uncommon and usually of little clinical significance. Patient subgroups and

  20. [Medical errors: inevitable but preventable].

    Science.gov (United States)

    Giard, R W

    2001-10-27

    Medical errors are increasingly reported in the lay press. Studies have shown dramatic error rates of 10 percent or even higher. From a methodological point of view, studying the frequency and causes of medical errors is far from simple. Clinical decisions on diagnostic or therapeutic interventions are always taken within a clinical context. Reviewing outcomes of interventions without taking into account both the intentions and the arguments for a particular action will limit the conclusions from a study on the rate and preventability of errors. The interpretation of the preventability of medical errors is fraught with difficulties and probably highly subjective. Blaming the doctor personally does not do justice to the actual situation and especially the organisational framework. Attention for and improvement of the organisational aspects of error are far more important then litigating the person. To err is and will remain human and if we want to reduce the incidence of faults we must be able to learn from our mistakes. That requires an open attitude towards medical mistakes, a continuous effort in their detection, a sound analysis and, where feasible, the institution of preventive measures.

  1. Prepopulated radiology report templates: a prospective analysis of error rate and turnaround time.

    Science.gov (United States)

    Hawkins, C M; Hall, S; Hardin, J; Salisbury, S; Towbin, A J

    2012-08-01

    Current speech recognition software allows exam-specific standard reports to be prepopulated into the dictation field based on the radiology information system procedure code. While it is thought that prepopulating reports can decrease the time required to dictate a study and the overall number of errors in the final report, this hypothesis has not been studied in a clinical setting. A prospective study was performed. During the first week, radiologists dictated all studies using prepopulated standard reports. During the second week, all studies were dictated after prepopulated reports had been disabled. Final radiology reports were evaluated for 11 different types of errors. Each error within a report was classified individually. The median time required to dictate an exam was compared between the 2 weeks. There were 12,387 reports dictated during the study, of which, 1,173 randomly distributed reports were analyzed for errors. There was no difference in the number of errors per report between the 2 weeks; however, radiologists overwhelmingly preferred using a standard report both weeks. Grammatical errors were by far the most common error type, followed by missense errors and errors of omission. There was no significant difference in the median dictation time when comparing studies performed each week. The use of prepopulated reports does not alone affect the error rate or dictation time of radiology reports. While it is a useful feature for radiologists, it must be coupled with other strategies in order to decrease errors.

  2. Confidence Intervals Verification for Simulated Error Rate Performance of Wireless Communication System

    KAUST Repository

    Smadi, Mahmoud A.; Ghaeb, Jasim A.; Jazzar, Saleh; Saraereh, Omar A.

    2012-01-01

    In this paper, we derived an efficient simulation method to evaluate the error rate of wireless communication system. Coherent binary phase-shift keying system is considered with imperfect channel phase recovery. The results presented demonstrate

  3. The Sustained Influence of an Error on Future Decision-Making.

    Science.gov (United States)

    Schiffler, Björn C; Bengtsson, Sara L; Lundqvist, Daniel

    2017-01-01

    Post-error slowing (PES) is consistently observed in decision-making tasks after negative feedback. Yet, findings are inconclusive as to whether PES supports performance accuracy. We addressed the role of PES by employing drift diffusion modeling which enabled us to investigate latent processes of reaction times and accuracy on a large-scale dataset (>5,800 participants) of a visual search experiment with emotional face stimuli. In our experiment, post-error trials were characterized by both adaptive and non-adaptive decision processes. An adaptive increase in participants' response threshold was sustained over several trials post-error. Contrarily, an initial decrease in evidence accumulation rate, followed by an increase on the subsequent trials, indicates a momentary distraction of task-relevant attention and resulted in an initial accuracy drop. Higher values of decision threshold and evidence accumulation on the post-error trial were associated with higher accuracy on subsequent trials which further gives credence to these parameters' role in post-error adaptation. Finally, the evidence accumulation rate post-error decreased when the error trial presented angry faces, a finding suggesting that the post-error decision can be influenced by the error context. In conclusion, we demonstrate that error-related response adaptations are multi-component processes that change dynamically over several trials post-error.

  4. The Sustained Influence of an Error on Future Decision-Making

    Directory of Open Access Journals (Sweden)

    Björn C. Schiffler

    2017-06-01

    Full Text Available Post-error slowing (PES is consistently observed in decision-making tasks after negative feedback. Yet, findings are inconclusive as to whether PES supports performance accuracy. We addressed the role of PES by employing drift diffusion modeling which enabled us to investigate latent processes of reaction times and accuracy on a large-scale dataset (>5,800 participants of a visual search experiment with emotional face stimuli. In our experiment, post-error trials were characterized by both adaptive and non-adaptive decision processes. An adaptive increase in participants’ response threshold was sustained over several trials post-error. Contrarily, an initial decrease in evidence accumulation rate, followed by an increase on the subsequent trials, indicates a momentary distraction of task-relevant attention and resulted in an initial accuracy drop. Higher values of decision threshold and evidence accumulation on the post-error trial were associated with higher accuracy on subsequent trials which further gives credence to these parameters’ role in post-error adaptation. Finally, the evidence accumulation rate post-error decreased when the error trial presented angry faces, a finding suggesting that the post-error decision can be influenced by the error context. In conclusion, we demonstrate that error-related response adaptations are multi-component processes that change dynamically over several trials post-error.

  5. Soft error rate simulation and initial design considerations of neutron intercepting silicon chip (NISC)

    Science.gov (United States)

    Celik, Cihangir

    Advances in microelectronics result in sub-micrometer electronic technologies as predicted by Moore's Law, 1965, which states the number of transistors in a given space would double every two years. The most available memory architectures today have submicrometer transistor dimensions. The International Technology Roadmap for Semiconductors (ITRS), a continuation of Moore's Law, predicts that Dynamic Random Access Memory (DRAM) will have an average half pitch size of 50 nm and Microprocessor Units (MPU) will have an average gate length of 30 nm over the period of 2008-2012. Decreases in the dimensions satisfy the producer and consumer requirements of low power consumption, more data storage for a given space, faster clock speed, and portability of integrated circuits (IC), particularly memories. On the other hand, these properties also lead to a higher susceptibility of IC designs to temperature, magnetic interference, power supply, and environmental noise, and radiation. Radiation can directly or indirectly affect device operation. When a single energetic particle strikes a sensitive node in the micro-electronic device, it can cause a permanent or transient malfunction in the device. This behavior is called a Single Event Effect (SEE). SEEs are mostly transient errors that generate an electric pulse which alters the state of a logic node in the memory device without having a permanent effect on the functionality of the device. This is called a Single Event Upset (SEU) or Soft Error . Contrary to SEU, Single Event Latchup (SEL), Single Event Gate Rapture (SEGR), or Single Event Burnout (SEB) they have permanent effects on the device operation and a system reset or recovery is needed to return to proper operations. The rate at which a device or system encounters soft errors is defined as Soft Error Rate (SER). The semiconductor industry has been struggling with SEEs and is taking necessary measures in order to continue to improve system designs in nano

  6. Error and discrepancy in radiology: inevitable or avoidable?

    OpenAIRE

    Brady, Adrian P.

    2016-01-01

    Abstract Errors and discrepancies in radiology practice are uncomfortably common, with an estimated day-to-day rate of 3?5% of studies reported, and much higher rates reported in many targeted studies. Nonetheless, the meaning of the terms ?error? and ?discrepancy? and the relationship to medical negligence are frequently misunderstood. This review outlines the incidence of such events, the ways they can be categorized to aid understanding, and potential contributing factors, both human- and ...

  7. Low dose rate gamma ray induced loss and data error rate of multimode silica fibre links

    International Nuclear Information System (INIS)

    Breuze, G.; Fanet, H.; Serre, J.

    1993-01-01

    Fiber optics data transmission from numerous multiplexed sensors, is potentially attractive for nuclear plant applications. Multimode silica fiber behaviour during steady state gamma ray exposure is studied as a joint programme between LETI CE/SACLAY and EDF Renardieres: transmitted optical power and bit error rate have been measured on a 100 m optical fiber

  8. Time-discrete higher order ALE formulations: a priori error analysis

    KAUST Repository

    Bonito, Andrea

    2013-03-16

    We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds\\' quadrature. They involve a mild restriction on the time steps for the practical Runge-Kutta-Radau methods of any order. The key ingredients are the stability results shown earlier in Bonito et al. (Time-discrete higher order ALE formulations: stability, 2013) along with a novel ALE projection. Numerical experiments illustrate and complement our theoretical results. © 2013 Springer-Verlag Berlin Heidelberg.

  9. Who Do Hospital Physicians and Nurses Go to for Advice About Medications? A Social Network Analysis and Examination of Prescribing Error Rates.

    Science.gov (United States)

    Creswick, Nerida; Westbrook, Johanna Irene

    2015-09-01

    To measure the weekly medication advice-seeking networks of hospital staff, to compare patterns across professional groups, and to examine these in the context of prescribing error rates. A social network analysis was conducted. All 101 staff in 2 wards in a large, academic teaching hospital in Sydney, Australia, were surveyed (response rate, 90%) using a detailed social network questionnaire. The extent of weekly medication advice seeking was measured by density of connections, proportion of reciprocal relationships by reciprocity, number of colleagues to whom each person provided advice by in-degree, and perceptions of amount and impact of advice seeking between physicians and nurses. Data on prescribing error rates from the 2 wards were compared. Weekly medication advice-seeking networks were sparse (density: 7% ward A and 12% ward B). Information sharing across professional groups was modest, and rates of reciprocation of advice were low (9% ward A, 14% ward B). Pharmacists provided advice to most people, and junior physicians also played central roles. Senior physicians provided medication advice to few people. Many staff perceived that physicians rarely sought advice from nurses when prescribing, but almost all believed that an increase in communication between physicians and nurses about medications would improve patient safety. The medication networks in ward B had higher measures for density, reciprocation, and fewer senior physicians who were isolates. Ward B had a significantly lower rate of both procedural and clinical prescribing errors than ward A (0.63 clinical prescribing errors per admission [95%CI, 0.47-0.79] versus 1.81/ admission [95%CI, 1.49-2.13]). Medication advice-seeking networks among staff on hospital wards are limited. Hubs of advice provision include pharmacists, junior physicians, and senior nurses. Senior physicians are poorly integrated into medication advice networks. Strategies to improve the advice-giving networks between senior

  10. Assessment of the rate and etiology of pharmacological errors by nurses of two major teaching hospitals in Shiraz

    Directory of Open Access Journals (Sweden)

    Fatemeh Vizeshfar

    2015-06-01

    Full Text Available Medication errors have serious consequences for patients, their families and care givers. Reduction of these faults by care givers such as nurses can increase the safety of patients. The goal of study was to assess the rate and etiology of medication error in pediatric and medical wards. This cross-sectional-analytic study is done on 101 registered nurses who had the duty of drug administration in medical pediatric and adults’ wards. Data was collected by a questionnaire including demographic information, self report faults, etiology of medication error and researcher observations. The results showed that nurses’ faults in pediatric wards were 51/6% and in adults wards were 47/4%. The most common faults in adults wards were later or sooner drug administration (48/6%, and administration of drugs without prescription and administering wrong drugs were the most common medication errors in pediatric wards (each one 49/2%. According to researchers’ observations, the medication error rate of 57/9% was rated low in adults wards and the rate of 69/4% in pediatric wards was rated moderate. The most frequent medication errors in both adults and pediatric wards were that nurses didn’t explain the reason and type of drug they were going to administer to patients. Independent T-test showed a significant change in faults observations in pediatric wards (p=0.000 and in adults wards (p=0.000. Several studies have shown medication errors all over the world, especially in pediatric wards. However, by designing a suitable report system and use a multi disciplinary approach, we can be reduced the occurrence of medication errors and its negative consequences.

  11. Error and discrepancy in radiology: inevitable or avoidable?

    Science.gov (United States)

    Brady, Adrian P

    2017-02-01

    Errors and discrepancies in radiology practice are uncomfortably common, with an estimated day-to-day rate of 3-5% of studies reported, and much higher rates reported in many targeted studies. Nonetheless, the meaning of the terms "error" and "discrepancy" and the relationship to medical negligence are frequently misunderstood. This review outlines the incidence of such events, the ways they can be categorized to aid understanding, and potential contributing factors, both human- and system-based. Possible strategies to minimise error are considered, along with the means of dealing with perceived underperformance when it is identified. The inevitability of imperfection is explained, while the importance of striving to minimise such imperfection is emphasised. • Discrepancies between radiology reports and subsequent patient outcomes are not inevitably errors. • Radiologist reporting performance cannot be perfect, and some errors are inevitable. • Error or discrepancy in radiology reporting does not equate negligence. • Radiologist errors occur for many reasons, both human- and system-derived. • Strategies exist to minimise error causes and to learn from errors made.

  12. SU-E-T-114: Analysis of MLC Errors On Gamma Pass Rates for Patient-Specific and Conventional Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, D; Ehler, E [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: To evaluate whether a 3D patient-specific phantom is better able to detect known MLC errors in a clinically delivered treatment plan than conventional phantoms. 3D printing may make fabrication of such phantoms feasible. Methods: Two types of MLC errors were introduced into a clinically delivered, non-coplanar IMRT, partial brain treatment plan. First, uniformly distributed random errors of up to 3mm, 2mm, and 1mm were introduced into the MLC positions for each field. Second, systematic MLC-bank position errors of 5mm, 3.5mm, and 2mm due to simulated effects of gantry and MLC sag were introduced. The original plan was recalculated with these errors on the original CT dataset as well as cylindrical and planar IMRT QA phantoms. The original dataset was considered to be a perfect 3D patient-specific phantom. The phantoms were considered to be ideal 3D dosimetry systems with no resolution limitations. Results: Passing rates for Gamma Index (3%/3mm and no dose threshold) were calculated on the 3D phantom, cylindrical phantom, and both on a composite and field-by-field basis for the planar phantom. Pass rates for 5mm systematic and 3mm random error were 86.0%, 89.6%, 98% and 98.3% respectively. For 3.5mm systematic and 2mm random error the pass rates were 94.7%, 96.2%, 99.2% and 99.2% respectively. For 2mm systematic error with 1mm random error the pass rates were 99.9%, 100%, 100% and 100% respectively. Conclusion: A 3D phantom with the patient anatomy is able to discern errors, both severe and subtle, that are not seen using conventional phantoms. Therefore, 3D phantoms may be beneficial for commissioning new treatment machines and modalities, patient-specific QA and end-to-end testing.

  13. SU-E-T-114: Analysis of MLC Errors On Gamma Pass Rates for Patient-Specific and Conventional Phantoms

    International Nuclear Information System (INIS)

    Sterling, D; Ehler, E

    2015-01-01

    Purpose: To evaluate whether a 3D patient-specific phantom is better able to detect known MLC errors in a clinically delivered treatment plan than conventional phantoms. 3D printing may make fabrication of such phantoms feasible. Methods: Two types of MLC errors were introduced into a clinically delivered, non-coplanar IMRT, partial brain treatment plan. First, uniformly distributed random errors of up to 3mm, 2mm, and 1mm were introduced into the MLC positions for each field. Second, systematic MLC-bank position errors of 5mm, 3.5mm, and 2mm due to simulated effects of gantry and MLC sag were introduced. The original plan was recalculated with these errors on the original CT dataset as well as cylindrical and planar IMRT QA phantoms. The original dataset was considered to be a perfect 3D patient-specific phantom. The phantoms were considered to be ideal 3D dosimetry systems with no resolution limitations. Results: Passing rates for Gamma Index (3%/3mm and no dose threshold) were calculated on the 3D phantom, cylindrical phantom, and both on a composite and field-by-field basis for the planar phantom. Pass rates for 5mm systematic and 3mm random error were 86.0%, 89.6%, 98% and 98.3% respectively. For 3.5mm systematic and 2mm random error the pass rates were 94.7%, 96.2%, 99.2% and 99.2% respectively. For 2mm systematic error with 1mm random error the pass rates were 99.9%, 100%, 100% and 100% respectively. Conclusion: A 3D phantom with the patient anatomy is able to discern errors, both severe and subtle, that are not seen using conventional phantoms. Therefore, 3D phantoms may be beneficial for commissioning new treatment machines and modalities, patient-specific QA and end-to-end testing

  14. Shuttle bit rate synchronizer. [signal to noise ratios and error analysis

    Science.gov (United States)

    Huey, D. C.; Fultz, G. L.

    1974-01-01

    A shuttle bit rate synchronizer brassboard unit was designed, fabricated, and tested, which meets or exceeds the contractual specifications. The bit rate synchronizer operates at signal-to-noise ratios (in a bit rate bandwidth) down to -5 dB while exhibiting less than 0.6 dB bit error rate degradation. The mean acquisition time was measured to be less than 2 seconds. The synchronizer is designed around a digital data transition tracking loop whose phase and data detectors are integrate-and-dump filters matched to the Manchester encoded bits specified. It meets the reliability (no adjustments or tweaking) and versatility (multiple bit rates) of the shuttle S-band communication system through an implementation which is all digital after the initial stage of analog AGC and A/D conversion.

  15. The effect of speaking rate on serial-order sound-level errors in normal healthy controls and persons with aphasia.

    Science.gov (United States)

    Fossett, Tepanta R D; McNeil, Malcolm R; Pratt, Sheila R; Tompkins, Connie A; Shuster, Linda I

    Although many speech errors can be generated at either a linguistic or motoric level of production, phonetically well-formed sound-level serial-order errors are generally assumed to result from disruption of phonologic encoding (PE) processes. An influential model of PE (Dell, 1986; Dell, Burger & Svec, 1997) predicts that speaking rate should affect the relative proportion of these serial-order sound errors (anticipations, perseverations, exchanges). These predictions have been extended to, and have special relevance for persons with aphasia (PWA) because of the increased frequency with which speech errors occur and because their localization within the functional linguistic architecture may help in diagnosis and treatment. Supporting evidence regarding the effect of speaking rate on phonological encoding has been provided by studies using young normal language (NL) speakers and computer simulations. Limited data exist for older NL users and no group data exist for PWA. This study tested the phonologic encoding properties of Dell's model of speech production (Dell, 1986; Dell,et al., 1997), which predicts that increasing speaking rate affects the relative proportion of serial-order sound errors (i.e., anticipations, perseverations, and exchanges). The effects of speech rate on the error ratios of anticipation/exchange (AE), anticipation/perseveration (AP) and vocal reaction time (VRT) were examined in 16 normal healthy controls (NHC) and 16 PWA without concomitant motor speech disorders. The participants were recorded performing a phonologically challenging (tongue twister) speech production task at their typical and two faster speaking rates. A significant effect of increased rate was obtained for the AP but not the AE ratio. Significant effects of group and rate were obtained for VRT. Although the significant effect of rate for the AP ratio provided evidence that changes in speaking rate did affect PE, the results failed to support the model derived predictions

  16. Selectively Fortifying Reconfigurable Computing Device to Achieve Higher Error Resilience

    Directory of Open Access Journals (Sweden)

    Mingjie Lin

    2012-01-01

    Full Text Available With the advent of 10 nm CMOS devices and “exotic” nanodevices, the location and occurrence time of hardware defects and design faults become increasingly unpredictable, therefore posing severe challenges to existing techniques for error-resilient computing because most of them statically assign hardware redundancy and do not account for the error tolerance inherently existing in many mission-critical applications. This work proposes a novel approach to selectively fortifying a target reconfigurable computing device in order to achieve hardware-efficient error resilience for a specific target application. We intend to demonstrate that such error resilience can be significantly improved with effective hardware support. The major contributions of this work include (1 the development of a complete methodology to perform sensitivity and criticality analysis of hardware redundancy, (2 a novel problem formulation and an efficient heuristic methodology to selectively allocate hardware redundancy among a target design’s key components in order to maximize its overall error resilience, and (3 an academic prototype of SFC computing device that illustrates a 4 times improvement of error resilience for a H.264 encoder implemented with an FPGA device.

  17. A novel multitemporal insar model for joint estimation of deformation rates and orbital errors

    KAUST Repository

    Zhang, Lei

    2014-06-01

    Orbital errors, characterized typically as longwavelength artifacts, commonly exist in interferometric synthetic aperture radar (InSAR) imagery as a result of inaccurate determination of the sensor state vector. Orbital errors degrade the precision of multitemporal InSAR products (i.e., ground deformation). Although research on orbital error reduction has been ongoing for nearly two decades and several algorithms for reducing the effect of the errors are already in existence, the errors cannot always be corrected efficiently and reliably. We propose a novel model that is able to jointly estimate deformation rates and orbital errors based on the different spatialoral characteristics of the two types of signals. The proposed model is able to isolate a long-wavelength ground motion signal from the orbital error even when the two types of signals exhibit similar spatial patterns. The proposed algorithm is efficient and requires no ground control points. In addition, the method is built upon wrapped phases of interferograms, eliminating the need of phase unwrapping. The performance of the proposed model is validated using both simulated and real data sets. The demo codes of the proposed model are also provided for reference. © 2013 IEEE.

  18. Novel relations between the ergodic capacity and the average bit error rate

    KAUST Repository

    Yilmaz, Ferkan

    2011-11-01

    Ergodic capacity and average bit error rate have been widely used to compare the performance of different wireless communication systems. As such recent scientific research and studies revealed strong impact of designing and implementing wireless technologies based on these two performance indicators. However and to the best of our knowledge, the direct links between these two performance indicators have not been explicitly proposed in the literature so far. In this paper, we propose novel relations between the ergodic capacity and the average bit error rate of an overall communication system using binary modulation schemes for signaling with a limited bandwidth and operating over generalized fading channels. More specifically, we show that these two performance measures can be represented in terms of each other, without the need to know the exact end-to-end statistical characterization of the communication channel. We validate the correctness and accuracy of our newly proposed relations and illustrated their usefulness by considering some classical examples. © 2011 IEEE.

  19. Maximum type 1 error rate inflation in multiarmed clinical trials with adaptive interim sample size modifications.

    Science.gov (United States)

    Graf, Alexandra C; Bauer, Peter; Glimm, Ekkehard; Koenig, Franz

    2014-07-01

    Sample size modifications in the interim analyses of an adaptive design can inflate the type 1 error rate, if test statistics and critical boundaries are used in the final analysis as if no modification had been made. While this is already true for designs with an overall change of the sample size in a balanced treatment-control comparison, the inflation can be much larger if in addition a modification of allocation ratios is allowed as well. In this paper, we investigate adaptive designs with several treatment arms compared to a single common control group. Regarding modifications, we consider treatment arm selection as well as modifications of overall sample size and allocation ratios. The inflation is quantified for two approaches: a naive procedure that ignores not only all modifications, but also the multiplicity issue arising from the many-to-one comparison, and a Dunnett procedure that ignores modifications, but adjusts for the initially started multiple treatments. The maximum inflation of the type 1 error rate for such types of design can be calculated by searching for the "worst case" scenarios, that are sample size adaptation rules in the interim analysis that lead to the largest conditional type 1 error rate in any point of the sample space. To show the most extreme inflation, we initially assume unconstrained second stage sample size modifications leading to a large inflation of the type 1 error rate. Furthermore, we investigate the inflation when putting constraints on the second stage sample sizes. It turns out that, for example fixing the sample size of the control group, leads to designs controlling the type 1 error rate. © 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A minimum bit error-rate detector for amplify and forward relaying systems

    KAUST Repository

    Ahmed, Qasim Zeeshan; Alouini, Mohamed-Slim; Aissa, Sonia

    2012-01-01

    In this paper, a new detector is being proposed for amplify-and-forward (AF) relaying system when communicating with the assistance of L number of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the system. The complexity of the system is further reduced by implementing this detector adaptively. The proposed detector is free from channel estimation. Our results demonstrate that the proposed detector is capable of achieving a gain of more than 1-dB at a BER of 10 -5 as compared to the conventional minimum mean square error detector when communicating over a correlated Rayleigh fading channel. © 2012 IEEE.

  1. A minimum bit error-rate detector for amplify and forward relaying systems

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2012-05-01

    In this paper, a new detector is being proposed for amplify-and-forward (AF) relaying system when communicating with the assistance of L number of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the system. The complexity of the system is further reduced by implementing this detector adaptively. The proposed detector is free from channel estimation. Our results demonstrate that the proposed detector is capable of achieving a gain of more than 1-dB at a BER of 10 -5 as compared to the conventional minimum mean square error detector when communicating over a correlated Rayleigh fading channel. © 2012 IEEE.

  2. Error rates of a full-duplex system over EGK fading channels subject to laplacian interference

    KAUST Repository

    Soury, Hamza

    2017-07-31

    This paper develops a mathematical paradigm to study downlink error rates and throughput for half-duplex (HD) terminals served by a full-duplex (FD) base station (BS). Particularly, we study the dominant intra-cell interferer problem that appears between HD users scheduled on the same FD-channel. The distribution of the dominant interference is first characterized via its distribution function, which is derived in closed-form. Assuming Nakagami-m fading, the probability of error for different modulation schemes is studied and a unified closed-form expression for the average symbol error rate is derived. To this end, we show the effective downlink throughput gain, harvested by employing FD communication at a BS that serves HD users, as a function of the signal-to-interference-ratio when compared to an idealized HD interference and noise free BS operation.

  3. Error-rate performance analysis of incremental decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel; Yang, Hongchuan; Alouini, Mohamed-Slim

    2011-01-01

    In this paper, we investigate an incremental opportunistic relaying scheme where the selected relay chooses to cooperate only if the source-destination channel is of an unacceptable quality. In our study, we consider regenerative relaying in which the decision to cooperate is based on a signal-to-noise ratio (SNR) threshold and takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive a closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation based on the exact probability density function (PDF) of each hop. Furthermore, we evaluate the asymptotic error performance and the diversity order is deduced. We show that performance simulation results coincide with our analytical results. © 2011 IEEE.

  4. Error-rate performance analysis of incremental decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel

    2011-06-01

    In this paper, we investigate an incremental opportunistic relaying scheme where the selected relay chooses to cooperate only if the source-destination channel is of an unacceptable quality. In our study, we consider regenerative relaying in which the decision to cooperate is based on a signal-to-noise ratio (SNR) threshold and takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive a closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation based on the exact probability density function (PDF) of each hop. Furthermore, we evaluate the asymptotic error performance and the diversity order is deduced. We show that performance simulation results coincide with our analytical results. © 2011 IEEE.

  5. [Medication error management climate and perception for system use according to construction of medication error prevention system].

    Science.gov (United States)

    Kim, Myoung Soo

    2012-08-01

    The purpose of this cross-sectional study was to examine current status of IT-based medication error prevention system construction and the relationships among system construction, medication error management climate and perception for system use. The participants were 124 patient safety chief managers working for 124 hospitals with over 300 beds in Korea. The characteristics of the participants, construction status and perception of systems (electric pharmacopoeia, electric drug dosage calculation system, computer-based patient safety reporting and bar-code system) and medication error management climate were measured in this study. The data were collected between June and August 2011. Descriptive statistics, partial Pearson correlation and MANCOVA were used for data analysis. Electric pharmacopoeia were constructed in 67.7% of participating hospitals, computer-based patient safety reporting systems were constructed in 50.8%, electric drug dosage calculation systems were in use in 32.3%. Bar-code systems showed up the lowest construction rate at 16.1% of Korean hospitals. Higher rates of construction of IT-based medication error prevention systems resulted in greater safety and a more positive error management climate prevailed. The supportive strategies for improving perception for use of IT-based systems would add to system construction, and positive error management climate would be more easily promoted.

  6. Soft error rate analysis methodology of multi-Pulse-single-event transients

    International Nuclear Information System (INIS)

    Zhou Bin; Huo Mingxue; Xiao Liyi

    2012-01-01

    As transistor feature size scales down, soft errors in combinational logic because of high-energy particle radiation is gaining more and more concerns. In this paper, a combinational logic soft error analysis methodology considering multi-pulse-single-event transients (MPSETs) and re-convergence with multi transient pulses is proposed. In the proposed approach, the voltage pulse produced at the standard cell output is approximated by a triangle waveform, and characterized by three parameters: pulse width, the transition time of the first edge, and the transition time of the second edge. As for the pulse with the amplitude being smaller than the supply voltage, the edge extension technique is proposed. Moreover, an efficient electrical masking model comprehensively considering transition time, delay, width and amplitude is proposed, and an approach using the transition times of two edges and pulse width to compute the amplitude of pulse is proposed. Finally, our proposed firstly-independently-propagating-secondly-mutually-interacting (FIP-SMI) is used to deal with more practical re-convergence gate with multi transient pulses. As for MPSETs, a random generation model of MPSETs is exploratively proposed. Compared to the estimates obtained using circuit level simulations by HSpice, our proposed soft error rate analysis algorithm has 10% errors in SER estimation with speed up of 300 when the single-pulse-single-event transient (SPSET) is considered. We have also demonstrated the runtime and SER decrease with the increment of P0 using designs from the ISCAS-85 benchmarks. (authors)

  7. Accurate Bit Error Rate Calculation for Asynchronous Chaos-Based DS-CDMA over Multipath Channel

    Science.gov (United States)

    Kaddoum, Georges; Roviras, Daniel; Chargé, Pascal; Fournier-Prunaret, Daniele

    2009-12-01

    An accurate approach to compute the bit error rate expression for multiuser chaosbased DS-CDMA system is presented in this paper. For more realistic communication system a slow fading multipath channel is considered. A simple RAKE receiver structure is considered. Based on the bit energy distribution, this approach compared to others computation methods existing in literature gives accurate results with low computation charge. Perfect estimation of the channel coefficients with the associated delays and chaos synchronization is assumed. The bit error rate is derived in terms of the bit energy distribution, the number of paths, the noise variance, and the number of users. Results are illustrated by theoretical calculations and numerical simulations which point out the accuracy of our approach.

  8. PS-022 Complex automated medication systems reduce medication administration error rates in an acute medical ward

    DEFF Research Database (Denmark)

    Risør, Bettina Wulff; Lisby, Marianne; Sørensen, Jan

    2017-01-01

    Background Medication errors have received extensive attention in recent decades and are of significant concern to healthcare organisations globally. Medication errors occur frequently, and adverse events associated with medications are one of the largest causes of harm to hospitalised patients...... cabinet, automated dispensing and barcode medication administration; (2) non-patient specific automated dispensing and barcode medication administration. The occurrence of administration errors was observed in three 3 week periods. The error rates were calculated by dividing the number of doses with one...

  9. Considering the role of time budgets on copy-error rates in material culture traditions: an experimental assessment.

    Science.gov (United States)

    Schillinger, Kerstin; Mesoudi, Alex; Lycett, Stephen J

    2014-01-01

    Ethnographic research highlights that there are constraints placed on the time available to produce cultural artefacts in differing circumstances. Given that copying error, or cultural 'mutation', can have important implications for the evolutionary processes involved in material culture change, it is essential to explore empirically how such 'time constraints' affect patterns of artefactual variation. Here, we report an experiment that systematically tests whether, and how, varying time constraints affect shape copying error rates. A total of 90 participants copied the shape of a 3D 'target handaxe form' using a standardized foam block and a plastic knife. Three distinct 'time conditions' were examined, whereupon participants had either 20, 15, or 10 minutes to complete the task. One aim of this study was to determine whether reducing production time produced a proportional increase in copy error rates across all conditions, or whether the concept of a task specific 'threshold' might be a more appropriate manner to model the effect of time budgets on copy-error rates. We found that mean levels of shape copying error increased when production time was reduced. However, there were no statistically significant differences between the 20 minute and 15 minute conditions. Significant differences were only obtained between conditions when production time was reduced to 10 minutes. Hence, our results more strongly support the hypothesis that the effects of time constraints on copying error are best modelled according to a 'threshold' effect, below which mutation rates increase more markedly. Our results also suggest that 'time budgets' available in the past will have generated varying patterns of shape variation, potentially affecting spatial and temporal trends seen in the archaeological record. Hence, 'time-budgeting' factors need to be given greater consideration in evolutionary models of material culture change.

  10. Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors.

    Science.gov (United States)

    Gustafsson, Mats G; Wallman, Mikael; Wickenberg Bolin, Ulrika; Göransson, Hanna; Fryknäs, M; Andersson, Claes R; Isaksson, Anders

    2010-06-01

    Successful use of classifiers that learn to make decisions from a set of patient examples require robust methods for performance estimation. Recently many promising approaches for determination of an upper bound for the error rate of a single classifier have been reported but the Bayesian credibility interval (CI) obtained from a conventional holdout test still delivers one of the tightest bounds. The conventional Bayesian CI becomes unacceptably large in real world applications where the test set sizes are less than a few hundred. The source of this problem is that fact that the CI is determined exclusively by the result on the test examples. In other words, there is no information at all provided by the uniform prior density distribution employed which reflects complete lack of prior knowledge about the unknown error rate. Therefore, the aim of the study reported here was to study a maximum entropy (ME) based approach to improved prior knowledge and Bayesian CIs, demonstrating its relevance for biomedical research and clinical practice. It is demonstrated how a refined non-uniform prior density distribution can be obtained by means of the ME principle using empirical results from a few designs and tests using non-overlapping sets of examples. Experimental results show that ME based priors improve the CIs when employed to four quite different simulated and two real world data sets. An empirically derived ME prior seems promising for improving the Bayesian CI for the unknown error rate of a designed classifier. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Two-dimensional optoelectronic interconnect-processor and its operational bit error rate

    Science.gov (United States)

    Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.

    2004-10-01

    Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.

  12. Modeling of Bit Error Rate in Cascaded 2R Regenerators

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper

    2006-01-01

    and the regenerating nonlinearity is investigated. It is shown that an increase in nonlinearity can compensate for an increase in noise figure or decrease in signal power. Furthermore, the influence of the improvement in signal extinction ratio along the cascade and the importance of choosing the proper threshold......This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments...

  13. Error-free 5.1 Tbit/s data generation on a single-wavelength channel using a 1.28 Tbaud symbol rate

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Galili, Michael; Oxenløwe, Leif Katsuo

    2009-01-01

    We demonstrate a record bit rate of 5.1 Tbit/s on a single wavelength using a 1.28 Tbaud OTDM symbol rate, DQPSK data-modulation, and polarisation-multiplexing. Error-free performance (BER......We demonstrate a record bit rate of 5.1 Tbit/s on a single wavelength using a 1.28 Tbaud OTDM symbol rate, DQPSK data-modulation, and polarisation-multiplexing. Error-free performance (BER...

  14. Commission errors of active intentions: the roles of aging, cognitive load, and practice.

    Science.gov (United States)

    Boywitt, C Dennis; Rummel, Jan; Meiser, Thorsten

    2015-01-01

    Performing an intended action when it needs to be withheld, for example, when temporarily prescribed medication is incompatible with the other medication, is referred to as commission errors of prospective memory (PM). While recent research indicates that older adults are especially prone to commission errors for finished intentions, there is a lack of research on the effects of aging on commission errors for still active intentions. The present research investigates conditions which might contribute to older adults' propensity to perform planned intentions under inappropriate conditions. Specifically, disproportionally higher rates of commission errors for still active intentions were observed in older than in younger adults with both salient (Experiment 1) and non-salient (Experiment 2) target cues. Practicing the PM task in Experiment 2, however, helped execution of the intended action in terms of higher PM performance at faster ongoing-task response times but did not increase the rate of commission errors. The results have important implications for the understanding of older adults' PM commission errors and the processes involved in these errors.

  15. Barriers to medical error reporting

    Directory of Open Access Journals (Sweden)

    Jalal Poorolajal

    2015-01-01

    Full Text Available Background: This study was conducted to explore the prevalence of medical error underreporting and associated barriers. Methods: This cross-sectional study was performed from September to December 2012. Five hospitals, affiliated with Hamadan University of Medical Sciences, in Hamedan,Iran were investigated. A self-administered questionnaire was used for data collection. Participants consisted of physicians, nurses, midwives, residents, interns, and staffs of radiology and laboratory departments. Results: Overall, 50.26% of subjects had committed but not reported medical errors. The main reasons mentioned for underreporting were lack of effective medical error reporting system (60.0%, lack of proper reporting form (51.8%, lack of peer supporting a person who has committed an error (56.0%, and lack of personal attention to the importance of medical errors (62.9%. The rate of committing medical errors was higher in men (71.4%, age of 50-40 years (67.6%, less-experienced personnel (58.7%, educational level of MSc (87.5%, and staff of radiology department (88.9%. Conclusions: This study outlined the main barriers to reporting medical errors and associated factors that may be helpful for healthcare organizations in improving medical error reporting as an essential component for patient safety enhancement.

  16. Residents' numeric inputting error in computerized physician order entry prescription.

    Science.gov (United States)

    Wu, Xue; Wu, Changxu; Zhang, Kan; Wei, Dong

    2016-04-01

    Computerized physician order entry (CPOE) system with embedded clinical decision support (CDS) can significantly reduce certain types of prescription error. However, prescription errors still occur. Various factors such as the numeric inputting methods in human computer interaction (HCI) produce different error rates and types, but has received relatively little attention. This study aimed to examine the effects of numeric inputting methods and urgency levels on numeric inputting errors of prescription, as well as categorize the types of errors. Thirty residents participated in four prescribing tasks in which two factors were manipulated: numeric inputting methods (numeric row in the main keyboard vs. numeric keypad) and urgency levels (urgent situation vs. non-urgent situation). Multiple aspects of participants' prescribing behavior were measured in sober prescribing situations. The results revealed that in urgent situations, participants were prone to make mistakes when using the numeric row in the main keyboard. With control of performance in the sober prescribing situation, the effects of the input methods disappeared, and urgency was found to play a significant role in the generalized linear model. Most errors were either omission or substitution types, but the proportion of transposition and intrusion error types were significantly higher than that of the previous research. Among numbers 3, 8, and 9, which were the less common digits used in prescription, the error rate was higher, which was a great risk to patient safety. Urgency played a more important role in CPOE numeric typing error-making than typing skills and typing habits. It was recommended that inputting with the numeric keypad had lower error rates in urgent situation. An alternative design could consider increasing the sensitivity of the keys with lower frequency of occurrence and decimals. To improve the usability of CPOE, numeric keyboard design and error detection could benefit from spatial

  17. PERBANDINGAN BIT ERROR RATE KODE REED-SOLOMON DENGAN KODE BOSE-CHAUDHURI-HOCQUENGHEM MENGGUNAKAN MODULASI 32-FSK

    Directory of Open Access Journals (Sweden)

    Eva Yovita Dwi Utami

    2016-11-01

    Full Text Available Kode Reed-Solomon (RS dan kode Bose-Chaudhuri-Hocquenghem (BCH merupakan kode pengoreksi error yang termasuk dalam jenis kode blok siklis. Kode pengoreksi error diperlukan pada sistem komunikasi untuk memperkecil error pada informasi yang dikirimkan. Dalam makalah ini, disajikan hasil penelitian kinerja BER sistem komunikasi yang menggunakan kode RS, kode BCH, dan sistem yang tidak menggunakan kode RS dan kode BCH, menggunakan modulasi 32-FSK pada kanal Additive White Gaussian Noise (AWGN, Rayleigh dan Rician. Kemampuan memperkecil error diukur menggunakan nilai Bit Error Rate (BER yang dihasilkan. Hasil penelitian menunjukkan bahwa kode RS seiring dengan penambahan nilai SNR, menurunkan nilai BER yang lebih curam bila dibandingkan sistem dengan kode BCH. Sedangkan kode BCH memberikan keunggulan saat SNR bernilai kecil, memiliki BER lebih baik daripada sistem dengan kode RS.

  18. Error-rate performance analysis of opportunistic regenerative relaying

    KAUST Repository

    Tourki, Kamel

    2011-09-01

    In this paper, we investigate an opportunistic relaying scheme where the selected relay assists the source-destination (direct) communication. In our study, we consider a regenerative opportunistic relaying scheme in which the direct path can be considered unusable, and takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We first derive the exact statistics of each hop, in terms of probability density function (PDF). Then, the PDFs are used to determine accurate closed form expressions for end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation where the detector may use maximum ration combining (MRC) or selection combining (SC). Finally, we validate our analysis by showing that performance simulation results coincide with our analytical results over linear network (LN) architecture and considering Rayleigh fading channels. © 2011 IEEE.

  19. Reliability of perceived neighbourhood conditions and the effects of measurement error on self-rated health across urban and rural neighbourhoods.

    Science.gov (United States)

    Pruitt, Sandi L; Jeffe, Donna B; Yan, Yan; Schootman, Mario

    2012-04-01

    Limited psychometric research has examined the reliability of self-reported measures of neighbourhood conditions, the effect of measurement error on associations between neighbourhood conditions and health, and potential differences in the reliabilities between neighbourhood strata (urban vs rural and low vs high poverty). We assessed overall and stratified reliability of self-reported perceived neighbourhood conditions using five scales (social and physical disorder, social control, social cohesion, fear) and four single items (multidimensional neighbouring). We also assessed measurement error-corrected associations of these conditions with self-rated health. Using random-digit dialling, 367 women without breast cancer (matched controls from a larger study) were interviewed twice, 2-3 weeks apart. Test-retest (intraclass correlation coefficients (ICC)/weighted κ) and internal consistency reliability (Cronbach's α) were assessed. Differences in reliability across neighbourhood strata were tested using bootstrap methods. Regression calibration corrected estimates for measurement error. All measures demonstrated satisfactory internal consistency (α ≥ 0.70) and either moderate (ICC/κ=0.41-0.60) or substantial (ICC/κ=0.61-0.80) test-retest reliability in the full sample. Internal consistency did not differ by neighbourhood strata. Test-retest reliability was significantly lower among rural (vs urban) residents for two scales (social control, physical disorder) and two multidimensional neighbouring items; test-retest reliability was higher for physical disorder and lower for one multidimensional neighbouring item among the high (vs low) poverty strata. After measurement error correction, the magnitude of associations between neighbourhood conditions and self-rated health were larger, particularly in the rural population. Research is needed to develop and test reliable measures of perceived neighbourhood conditions relevant to the health of rural populations.

  20. Power penalties for multi-level PAM modulation formats at arbitrary bit error rates

    Science.gov (United States)

    Kaliteevskiy, Nikolay A.; Wood, William A.; Downie, John D.; Hurley, Jason; Sterlingov, Petr

    2016-03-01

    There is considerable interest in combining multi-level pulsed amplitude modulation formats (PAM-L) and forward error correction (FEC) in next-generation, short-range optical communications links for increased capacity. In this paper we derive new formulas for the optical power penalties due to modulation format complexity relative to PAM-2 and due to inter-symbol interference (ISI). We show that these penalties depend on the required system bit-error rate (BER) and that the conventional formulas overestimate link penalties. Our corrections to the standard formulas are very small at conventional BER levels (typically 1×10-12) but become significant at the higher BER levels enabled by FEC technology, especially for signal distortions due to ISI. The standard formula for format complexity, P = 10log(L-1), is shown to overestimate the actual penalty for PAM-4 and PAM-8 by approximately 0.1 and 0.25 dB respectively at 1×10-3 BER. Then we extend the well-known PAM-2 ISI penalty estimation formula from the IEEE 802.3 standard 10G link modeling spreadsheet to the large BER case and generalize it for arbitrary PAM-L formats. To demonstrate and verify the BER dependence of the ISI penalty, a set of PAM-2 experiments and Monte-Carlo modeling simulations are reported. The experimental results and simulations confirm that the conventional formulas can significantly overestimate ISI penalties at relatively high BER levels. In the experiments, overestimates up to 2 dB are observed at 1×10-3 BER.

  1. Rate estimation in partially observed Markov jump processes with measurement errors

    OpenAIRE

    Amrein, Michael; Kuensch, Hans R.

    2010-01-01

    We present a simulation methodology for Bayesian estimation of rate parameters in Markov jump processes arising for example in stochastic kinetic models. To handle the problem of missing components and measurement errors in observed data, we embed the Markov jump process into the framework of a general state space model. We do not use diffusion approximations. Markov chain Monte Carlo and particle filter type algorithms are introduced, which allow sampling from the posterior distribution of t...

  2. The effectiveness of risk management program on pediatric nurses' medication error.

    Science.gov (United States)

    Dehghan-Nayeri, Nahid; Bayat, Fariba; Salehi, Tahmineh; Faghihzadeh, Soghrat

    2013-09-01

    Medication therapy is one of the most complex and high-risk clinical processes that nurses deal with. Medication error is the most common type of error that brings about damage and death to patients, especially pediatric ones. However, these errors are preventable. Identifying and preventing undesirable events leading to medication errors are the main risk management activities. The aim of this study was to investigate the effectiveness of a risk management program on the pediatric nurses' medication error rate. This study is a quasi-experimental one with a comparison group. In this study, 200 nurses were recruited from two main pediatric hospitals in Tehran. In the experimental hospital, we applied the risk management program for a period of 6 months. Nurses of the control hospital did the hospital routine schedule. A pre- and post-test was performed to measure the frequency of the medication error events. SPSS software, t-test, and regression analysis were used for data analysis. After the intervention, the medication error rate of nurses at the experimental hospital was significantly lower (P error-reporting rate was higher (P medical environment, applying the quality-control programs such as risk management can effectively prevent the occurrence of the hospital undesirable events. Nursing mangers can reduce the medication error rate by applying risk management programs. However, this program cannot succeed without nurses' cooperation.

  3. The study of error for analysis in dynamic image from the error of count rates in Nal (Tl) scintillation camera

    International Nuclear Information System (INIS)

    Oh, Joo Young; Kang, Chun Goo; Kim, Jung Yul; Oh, Ki Baek; Kim, Jae Sam; Park, Hoon Hee

    2013-01-01

    This study is aimed to evaluate the effect of T 1/2 upon count rates in the analysis of dynamic scan using NaI (Tl) scintillation camera, and suggest a new quality control method with this effects. We producted a point source with '9 9m TcO 4 - of 18.5 to 185 MBq in the 2 mL syringes, and acquired 30 frames of dynamic images with 10 to 60 seconds each using Infinia gamma camera (GE, USA). In the second experiment, 90 frames of dynamic images were acquired from 74 MBq point source by 5 gamma cameras (Infinia 2, Forte 2, Argus 1). There were not significant differences in average count rates of the sources with 18.5 to 92.5 MBq in the analysis of 10 to 60 seconds/frame with 10 seconds interval in the first experiment (p>0.05). But there were significantly low average count rates with the sources over 111 MBq activity at 60 seconds/frame (p<0.01). According to the second analysis results of linear regression by count rates of 5 gamma cameras those were acquired during 90 minutes, counting efficiency of fourth gamma camera was most low as 0.0064%, and gradient and coefficient of variation was high as 0.0042 and 0.229 each. We could not find abnormal fluctuation in χ 2 test with count rates (p>0.02), and we could find the homogeneity of variance in Levene's F-test among the gamma cameras (p>0.05). At the correlation analysis, there was only correlation between counting efficiency and gradient as significant negative correlation (r=-0.90, p<0.05). Lastly, according to the results of calculation of T 1/2 error from change of gradient with -0.25% to +0.25%, if T 1/2 is relatively long, or gradient is high, the error increase relationally. When estimate the value of 4th camera which has highest gradient from the above mentioned result, we could not see T 1/2 error within 60 minutes at that value. In conclusion, it is necessary for the scintillation gamma camera in medical field to manage hard for the quality of radiation measurement. Especially, we found a

  4. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    Directory of Open Access Journals (Sweden)

    Wei He

    Full Text Available A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF for space instruments. A model for the system functional error rate (SFER is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA is presented. Based on experimental results of different ions (O, Si, Cl, Ti under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2, while the MTTF is approximately 110.7 h.

  5. Errors in laboratory medicine: practical lessons to improve patient safety.

    Science.gov (United States)

    Howanitz, Peter J

    2005-10-01

    Patient safety is influenced by the frequency and seriousness of errors that occur in the health care system. Error rates in laboratory practices are collected routinely for a variety of performance measures in all clinical pathology laboratories in the United States, but a list of critical performance measures has not yet been recommended. The most extensive databases describing error rates in pathology were developed and are maintained by the College of American Pathologists (CAP). These databases include the CAP's Q-Probes and Q-Tracks programs, which provide information on error rates from more than 130 interlaboratory studies. To define critical performance measures in laboratory medicine, describe error rates of these measures, and provide suggestions to decrease these errors, thereby ultimately improving patient safety. A review of experiences from Q-Probes and Q-Tracks studies supplemented with other studies cited in the literature. Q-Probes studies are carried out as time-limited studies lasting 1 to 4 months and have been conducted since 1989. In contrast, Q-Tracks investigations are ongoing studies performed on a yearly basis and have been conducted only since 1998. Participants from institutions throughout the world simultaneously conducted these studies according to specified scientific designs. The CAP has collected and summarized data for participants about these performance measures, including the significance of errors, the magnitude of error rates, tactics for error reduction, and willingness to implement each of these performance measures. A list of recommended performance measures, the frequency of errors when these performance measures were studied, and suggestions to improve patient safety by reducing these errors. Error rates for preanalytic and postanalytic performance measures were higher than for analytic measures. Eight performance measures were identified, including customer satisfaction, test turnaround times, patient identification

  6. Residents' Ratings of Their Clinical Supervision and Their Self-Reported Medical Errors: Analysis of Data From 2009.

    Science.gov (United States)

    Baldwin, DeWitt C; Daugherty, Steven R; Ryan, Patrick M; Yaghmour, Nicholas A; Philibert, Ingrid

    2018-04-01

    Medical errors and patient safety are major concerns for the medical and medical education communities. Improving clinical supervision for residents is important in avoiding errors, yet little is known about how residents perceive the adequacy of their supervision and how this relates to medical errors and other education outcomes, such as learning and satisfaction. We analyzed data from a 2009 survey of residents in 4 large specialties regarding the adequacy and quality of supervision they receive as well as associations with self-reported data on medical errors and residents' perceptions of their learning environment. Residents' reports of working without adequate supervision were lower than data from a 1999 survey for all 4 specialties, and residents were least likely to rate "lack of supervision" as a problem. While few residents reported that they received inadequate supervision, problems with supervision were negatively correlated with sufficient time for clinical activities, overall ratings of the residency experience, and attending physicians as a source of learning. Problems with supervision were positively correlated with resident reports that they had made a significant medical error, had been belittled or humiliated, or had observed others falsifying medical records. Although working without supervision was not a pervasive problem in 2009, when it happened, it appeared to have negative consequences. The association between inadequate supervision and medical errors is of particular concern.

  7. Resisting attraction: Individual differences in executive control are associated with subject-verb agreement errors in production.

    Science.gov (United States)

    Veenstra, Alma; Antoniou, Kyriakos; Katsos, Napoleon; Kissine, Mikhail

    2018-04-19

    We propose that attraction errors in agreement production (e.g., the key to the cabinets are missing) are related to two components of executive control: working memory and inhibitory control. We tested 138 children aged 10 to 12, an age when children are expected to produce high rates of errors. To increase the potential of individual variation in executive control skills, participants came from monolingual, bilingual, and bidialectal language backgrounds. Attraction errors were elicited with a picture description task in Dutch and executive control was measured with a digit span task, Corsi blocks task, switching task, and attentional networks task. Overall, higher rates of attraction errors were negatively associated with higher verbal working memory and, independently, with higher inhibitory control. To our knowledge, this is the first demonstration of the role of both working memory and inhibitory control in attraction errors in production. Implications for memory- and grammar-based models are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Refractive errors in children and adolescents in Bucaramanga (Colombia).

    Science.gov (United States)

    Galvis, Virgilio; Tello, Alejandro; Otero, Johanna; Serrano, Andrés A; Gómez, Luz María; Castellanos, Yuly

    2017-01-01

    The aim of this study was to establish the frequency of refractive errors in children and adolescents aged between 8 and 17 years old, living in the metropolitan area of Bucaramanga (Colombia). This study was a secondary analysis of two descriptive cross-sectional studies that applied sociodemographic surveys and assessed visual acuity and refraction. Ametropias were classified as myopic errors, hyperopic errors, and mixed astigmatism. Eyes were considered emmetropic if none of these classifications were made. The data were collated using free software and analyzed with STATA/IC 11.2. One thousand two hundred twenty-eight individuals were included in this study. Girls showed a higher rate of ametropia than boys. Hyperopic refractive errors were present in 23.1% of the subjects, and myopic errors in 11.2%. Only 0.2% of the eyes had high myopia (≤-6.00 D). Mixed astigmatism and anisometropia were uncommon, and myopia frequency increased with age. There were statistically significant steeper keratometric readings in myopic compared to hyperopic eyes. The frequency of refractive errors that we found of 36.7% is moderate compared to the global data. The rates and parameters statistically differed by sex and age groups. Our findings are useful for establishing refractive error rate benchmarks in low-middle-income countries and as a baseline for following their variation by sociodemographic factors.

  9. Refractive errors in children and adolescents in Bucaramanga (Colombia

    Directory of Open Access Journals (Sweden)

    Virgilio Galvis

    Full Text Available ABSTRACT Purpose: The aim of this study was to establish the frequency of refractive errors in children and adolescents aged between 8 and 17 years old, living in the metropolitan area of Bucaramanga (Colombia. Methods: This study was a secondary analysis of two descriptive cross-sectional studies that applied sociodemographic surveys and assessed visual acuity and refraction. Ametropias were classified as myopic errors, hyperopic errors, and mixed astigmatism. Eyes were considered emmetropic if none of these classifications were made. The data were collated using free software and analyzed with STATA/IC 11.2. Results: One thousand two hundred twenty-eight individuals were included in this study. Girls showed a higher rate of ametropia than boys. Hyperopic refractive errors were present in 23.1% of the subjects, and myopic errors in 11.2%. Only 0.2% of the eyes had high myopia (≤-6.00 D. Mixed astigmatism and anisometropia were uncommon, and myopia frequency increased with age. There were statistically significant steeper keratometric readings in myopic compared to hyperopic eyes. Conclusions: The frequency of refractive errors that we found of 36.7% is moderate compared to the global data. The rates and parameters statistically differed by sex and age groups. Our findings are useful for establishing refractive error rate benchmarks in low-middle-income countries and as a baseline for following their variation by sociodemographic factors.

  10. Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate

    International Nuclear Information System (INIS)

    Chau, H.F.

    2002-01-01

    A secret key shared through quantum key distribution between two cooperative players is secure against any eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the quantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate of the quantum channel is less than 0.5-0.1√(5)≅27.6%, thereby making it the most error resistant scheme known to date

  11. A novel multitemporal insar model for joint estimation of deformation rates and orbital errors

    KAUST Repository

    Zhang, Lei; Ding, Xiaoli; Lu, Zhong; Jung, Hyungsup; Hu, Jun; Feng, Guangcai

    2014-01-01

    be corrected efficiently and reliably. We propose a novel model that is able to jointly estimate deformation rates and orbital errors based on the different spatialoral characteristics of the two types of signals. The proposed model is able to isolate a long

  12. Teamwork and clinical error reporting among nurses in Korean hospitals.

    Science.gov (United States)

    Hwang, Jee-In; Ahn, Jeonghoon

    2015-03-01

    To examine levels of teamwork and its relationships with clinical error reporting among Korean hospital nurses. The study employed a cross-sectional survey design. We distributed a questionnaire to 674 nurses in two teaching hospitals in Korea. The questionnaire included items on teamwork and the reporting of clinical errors. We measured teamwork using the Teamwork Perceptions Questionnaire, which has five subscales including team structure, leadership, situation monitoring, mutual support, and communication. Using logistic regression analysis, we determined the relationships between teamwork and error reporting. The response rate was 85.5%. The mean score of teamwork was 3.5 out of 5. At the subscale level, mutual support was rated highest, while leadership was rated lowest. Of the participating nurses, 522 responded that they had experienced at least one clinical error in the last 6 months. Among those, only 53.0% responded that they always or usually reported clinical errors to their managers and/or the patient safety department. Teamwork was significantly associated with better error reporting. Specifically, nurses with a higher team communication score were more likely to report clinical errors to their managers and the patient safety department (odds ratio = 1.82, 95% confidence intervals [1.05, 3.14]). Teamwork was rated as moderate and was positively associated with nurses' error reporting performance. Hospital executives and nurse managers should make substantial efforts to enhance teamwork, which will contribute to encouraging the reporting of errors and improving patient safety. Copyright © 2015. Published by Elsevier B.V.

  13. Modeling the cosmic-ray-induced soft-error rate in integrated circuits: An overview

    International Nuclear Information System (INIS)

    Srinivasan, G.R.

    1996-01-01

    This paper is an overview of the concepts and methodologies used to predict soft-error rates (SER) due to cosmic and high-energy particle radiation in integrated circuit chips. The paper emphasizes the need for the SER simulation using the actual chip circuit model which includes device, process, and technology parameters as opposed to using either the discrete device simulation or generic circuit simulation that is commonly employed in SER modeling. Concepts such as funneling, event-by-event simulation, nuclear history files, critical charge, and charge sharing are examined. Also discussed are the relative importance of elastic and inelastic nuclear collisions, rare event statistics, and device vs. circuit simulations. The semi-empirical methodologies used in the aerospace community to arrive at SERs [also referred to as single-event upset (SEU) rates] in integrated circuit chips are reviewed. This paper is one of four in this special issue relating to SER modeling. Together, they provide a comprehensive account of this modeling effort, which has resulted in a unique modeling tool called the Soft-Error Monte Carlo Model, or SEMM

  14. Error forecasting schemes of error correction at receiver

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2007-08-01

    To combat error in computer communication networks, ARQ (Automatic Repeat Request) techniques are used. Recently Chakraborty has proposed a simple technique called the packet combining scheme in which error is corrected at the receiver from the erroneous copies. Packet Combining (PC) scheme fails: (i) when bit error locations in erroneous copies are the same and (ii) when multiple bit errors occur. Both these have been addressed recently by two schemes known as Packet Reversed Packet Combining (PRPC) Scheme, and Modified Packet Combining (MPC) Scheme respectively. In the letter, two error forecasting correction schemes are reported, which in combination with PRPC offer higher throughput. (author)

  15. Kurzweil Reading Machine: A Partial Evaluation of Its Optical Character Recognition Error Rate.

    Science.gov (United States)

    Goodrich, Gregory L.; And Others

    1979-01-01

    A study designed to assess the ability of the Kurzweil reading machine (a speech reading device for the visually handicapped) to read three different type styles produced by five different means indicated that the machines tested had different error rates depending upon the means of producing the copy and upon the type style used. (Author/CL)

  16. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  17. Minimizing Symbol Error Rate for Cognitive Relaying with Opportunistic Access

    KAUST Repository

    Zafar, Ammar

    2012-12-29

    In this paper, we present an optimal resource allocation scheme (ORA) for an all-participate(AP) cognitive relay network that minimizes the symbol error rate (SER). The SER is derived and different constraints are considered on the system. We consider the cases of both individual and global power constraints, individual constraints only and global constraints only. Numerical results show that the ORA scheme outperforms the schemes with direct link only and uniform power allocation (UPA) in terms of minimizing the SER for all three cases of different constraints. Numerical results also show that the individual constraints only case provides the best performance at large signal-to-noise-ratio (SNR).

  18. Maximum type I error rate inflation from sample size reassessment when investigators are blind to treatment labels.

    Science.gov (United States)

    Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic

    2016-05-30

    Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  19. On the symmetric α-stable distribution with application to symbol error rate calculations

    KAUST Repository

    Soury, Hamza

    2016-12-24

    The probability density function (PDF) of the symmetric α-stable distribution is investigated using the inverse Fourier transform of its characteristic function. For general values of the stable parameter α, it is shown that the PDF and the cumulative distribution function of the symmetric stable distribution can be expressed in terms of the Fox H function as closed-form. As an application, the probability of error of single input single output communication systems using different modulation schemes with an α-stable perturbation is studied. In more details, a generic formula is derived for generalized fading distribution, such as the extended generalized-k distribution. Later, simpler expressions of these error rates are deduced for some selected special cases and compact approximations are derived using asymptotic expansions.

  20. Distribution of the Determinant of the Sample Correlation Matrix: Monte Carlo Type One Error Rates.

    Science.gov (United States)

    Reddon, John R.; And Others

    1985-01-01

    Computer sampling from a multivariate normal spherical population was used to evaluate the type one error rates for a test of sphericity based on the distribution of the determinant of the sample correlation matrix. (Author/LMO)

  1. Attitudes of Mashhad Public Hospital's Nurses and Midwives toward the Causes and Rates of Medical Errors Reporting.

    Science.gov (United States)

    Mobarakabadi, Sedigheh Sedigh; Ebrahimipour, Hosein; Najar, Ali Vafaie; Janghorban, Roksana; Azarkish, Fatemeh

    2017-03-01

    Patient's safety is one of the main objective in healthcare services; however medical errors are a prevalent potential occurrence for the patients in treatment systems. Medical errors lead to an increase in mortality rate of the patients and challenges such as prolonging of the inpatient period in the hospitals and increased cost. Controlling the medical errors is very important, because these errors besides being costly, threaten the patient's safety. To evaluate the attitudes of nurses and midwives toward the causes and rates of medical errors reporting. It was a cross-sectional observational study. The study population was 140 midwives and nurses employed in Mashhad Public Hospitals. The data collection was done through Goldstone 2001 revised questionnaire. SPSS 11.5 software was used for data analysis. To analyze data, descriptive and inferential analytic statistics were used. Standard deviation and relative frequency distribution, descriptive statistics were used for calculation of the mean and the results were adjusted as tables and charts. Chi-square test was used for the inferential analysis of the data. Most of midwives and nurses (39.4%) were in age range of 25 to 34 years and the lowest percentage (2.2%) were in age range of 55-59 years. The highest average of medical errors was related to employees with three-four years of work experience, while the lowest average was related to those with one-two years of work experience. The highest average of medical errors was during the evening shift, while the lowest were during the night shift. Three main causes of medical errors were considered: illegibile physician prescription orders, similarity of names in different drugs and nurse fatigueness. The most important causes for medical errors from the viewpoints of nurses and midwives are illegible physician's order, drug name similarity with other drugs, nurse's fatigueness and damaged label or packaging of the drug, respectively. Head nurse feedback, peer

  2. Type I Error Rates and Power Estimates of Selected Parametric and Nonparametric Tests of Scale.

    Science.gov (United States)

    Olejnik, Stephen F.; Algina, James

    1987-01-01

    Estimated Type I Error rates and power are reported for the Brown-Forsythe, O'Brien, Klotz, and Siegal-Tukey procedures. The effect of aligning the data using deviations from group means or group medians is investigated. (RB)

  3. The decline and fall of Type II error rates

    Science.gov (United States)

    Steve Verrill; Mark Durst

    2005-01-01

    For general linear models with normally distributed random errors, the probability of a Type II error decreases exponentially as a function of sample size. This potentially rapid decline reemphasizes the importance of performing power calculations.

  4. Performance Analysis for Bit Error Rate of DS- CDMA Sensor Network Systems with Source Coding

    Directory of Open Access Journals (Sweden)

    Haider M. AlSabbagh

    2012-03-01

    Full Text Available The minimum energy (ME coding combined with DS-CDMA wireless sensor network is analyzed in order to reduce energy consumed and multiple access interference (MAI with related to number of user(receiver. Also, the minimum energy coding which exploits redundant bits for saving power with utilizing RF link and On-Off-Keying modulation. The relations are presented and discussed for several levels of errors expected in the employed channel via amount of bit error rates and amount of the SNR for number of users (receivers.

  5. Minimum Symbol Error Rate Detection in Single-Input Multiple-Output Channels with Markov Noise

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    Minimum symbol error rate detection in Single-Input Multiple- Output(SIMO) channels with Markov noise is presented. The special case of zero-mean Gauss-Markov noise is examined closer as it only requires knowledge of the second-order moments. In this special case, it is shown that optimal detection...

  6. Tax revenue and inflation rate predictions in Banda Aceh using Vector Error Correction Model (VECM)

    Science.gov (United States)

    Maulia, Eva; Miftahuddin; Sofyan, Hizir

    2018-05-01

    A country has some important parameters to achieve the welfare of the economy, such as tax revenues and inflation. One of the largest revenues of the state budget in Indonesia comes from the tax sector. Besides, the rate of inflation occurring in a country can be used as one measure, to measure economic problems that the country facing. Given the importance of tax revenue and inflation rate control in achieving economic prosperity, it is necessary to analyze the relationship and forecasting tax revenue and inflation rate. VECM (Vector Error Correction Model) was chosen as the method used in this research, because of the data used in the form of multivariate time series data. This study aims to produce a VECM model with optimal lag and to predict the tax revenue and inflation rate of the VECM model. The results show that the best model for data of tax revenue and the inflation rate in Banda Aceh City is VECM with 3rd optimal lag or VECM (3). Of the seven models formed, there is a significant model that is the acceptance model of income tax. The predicted results of tax revenue and the inflation rate in Kota Banda Aceh for the next 6, 12 and 24 periods (months) obtained using VECM (3) are considered valid, since they have a minimum error value compared to other models.

  7. A Hybrid Unequal Error Protection / Unequal Error Resilience ...

    African Journals Online (AJOL)

    The quality layers are then assigned an Unequal Error Resilience to synchronization loss by unequally allocating the number of headers available for synchronization to them. Following that Unequal Error Protection against channel noise is provided to the layers by the use of Rate Compatible Punctured Convolutional ...

  8. Accurate and fast methods to estimate the population mutation rate from error prone sequences

    Directory of Open Access Journals (Sweden)

    Miyamoto Michael M

    2009-08-01

    Full Text Available Abstract Background The population mutation rate (θ remains one of the most fundamental parameters in genetics, ecology, and evolutionary biology. However, its accurate estimation can be seriously compromised when working with error prone data such as expressed sequence tags, low coverage draft sequences, and other such unfinished products. This study is premised on the simple idea that a random sequence error due to a chance accident during data collection or recording will be distributed within a population dataset as a singleton (i.e., as a polymorphic site where one sampled sequence exhibits a unique base relative to the common nucleotide of the others. Thus, one can avoid these random errors by ignoring the singletons within a dataset. Results This strategy is implemented under an infinite sites model that focuses on only the internal branches of the sample genealogy where a shared polymorphism can arise (i.e., a variable site where each alternative base is represented by at least two sequences. This approach is first used to derive independently the same new Watterson and Tajima estimators of θ, as recently reported by Achaz 1 for error prone sequences. It is then used to modify the recent, full, maximum-likelihood model of Knudsen and Miyamoto 2, which incorporates various factors for experimental error and design with those for coalescence and mutation. These new methods are all accurate and fast according to evolutionary simulations and analyses of a real complex population dataset for the California seahare. Conclusion In light of these results, we recommend the use of these three new methods for the determination of θ from error prone sequences. In particular, we advocate the new maximum likelihood model as a starting point for the further development of more complex coalescent/mutation models that also account for experimental error and design.

  9. The impact of work-related stress on medication errors in Eastern Region Saudi Arabia.

    Science.gov (United States)

    Salam, Abdul; Segal, David M; Abu-Helalah, Munir Ahmad; Gutierrez, Mary Lou; Joosub, Imran; Ahmed, Wasim; Bibi, Rubina; Clarke, Elizabeth; Qarni, Ali Ahmed Al

    2018-05-07

    To examine the relationship between overall level and source-specific work-related stressors on medication errors rate. A cross-sectional study examined the relationship between overall levels of stress, 25 source-specific work-related stressors and medication error rate based on documented incident reports in Saudi Arabia (SA) hospital, using secondary databases. King Abdulaziz Hospital in Al-Ahsa, Eastern Region, SA. Two hundred and sixty-nine healthcare professionals (HCPs). The odds ratio (OR) and corresponding 95% confidence interval (CI) for HCPs documented incident report medication errors and self-reported sources of Job Stress Survey. Multiple logistic regression analysis identified source-specific work-related stress as significantly associated with HCPs who made at least one medication error per month (P stress were two times more likely to make at least one medication error per month than non-stressed HCPs (OR: 1.95, P = 0.081). This is the first study to use documented incident reports for medication errors rather than self-report to evaluate the level of stress-related medication errors in SA HCPs. Job demands, such as social stressors (home life disruption, difficulties with colleagues), time pressures, structural determinants (compulsory night/weekend call duties) and higher income, were significantly associated with medication errors whereas overall stress revealed a 2-fold higher trend.

  10. The Relation Between Inflation in Type-I and Type-II Error Rate and Population Divergence in Genome-Wide Association Analysis of Multi-Ethnic Populations.

    Science.gov (United States)

    Derks, E M; Zwinderman, A H; Gamazon, E R

    2017-05-01

    Population divergence impacts the degree of population stratification in Genome Wide Association Studies. We aim to: (i) investigate type-I error rate as a function of population divergence (F ST ) in multi-ethnic (admixed) populations; (ii) evaluate the statistical power and effect size estimates; and (iii) investigate the impact of population stratification on the results of gene-based analyses. Quantitative phenotypes were simulated. Type-I error rate was investigated for Single Nucleotide Polymorphisms (SNPs) with varying levels of F ST between the ancestral European and African populations. Type-II error rate was investigated for a SNP characterized by a high value of F ST . In all tests, genomic MDS components were included to correct for population stratification. Type-I and type-II error rate was adequately controlled in a population that included two distinct ethnic populations but not in admixed samples. Statistical power was reduced in the admixed samples. Gene-based tests showed no residual inflation in type-I error rate.

  11. Error rates of a full-duplex system over EGK fading channels subject to laplacian interference

    KAUST Repository

    Soury, Hamza; Elsawy, Hesham; Alouini, Mohamed-Slim

    2017-01-01

    modulation schemes is studied and a unified closed-form expression for the average symbol error rate is derived. To this end, we show the effective downlink throughput gain, harvested by employing FD communication at a BS that serves HD users, as a function

  12. Error baseline rates of five sample preparation methods used to characterize RNA virus populations.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Kugelman

    Full Text Available Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic "no amplification" method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a "targeted" amplification method, sequence-independent single-primer amplification (SISPA as a "random" amplification method, rolling circle reverse transcription sequencing (CirSeq as an advanced "no amplification" method, and Illumina TruSeq RNA Access as a "targeted" enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4-5 of all compared methods.

  13. Error baseline rates of five sample preparation methods used to characterize RNA virus populations

    Science.gov (United States)

    Kugelman, Jeffrey R.; Wiley, Michael R.; Nagle, Elyse R.; Reyes, Daniel; Pfeffer, Brad P.; Kuhn, Jens H.; Sanchez-Lockhart, Mariano; Palacios, Gustavo F.

    2017-01-01

    Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic “no amplification” method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a “targeted” amplification method, sequence-independent single-primer amplification (SISPA) as a “random” amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced “no amplification” method, and Illumina TruSeq RNA Access as a “targeted” enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4−5) of all compared methods. PMID:28182717

  14. Type I error rates of rare single nucleotide variants are inflated in tests of association with non-normally distributed traits using simple linear regression methods.

    Science.gov (United States)

    Schwantes-An, Tae-Hwi; Sung, Heejong; Sabourin, Jeremy A; Justice, Cristina M; Sorant, Alexa J M; Wilson, Alexander F

    2016-01-01

    In this study, the effects of (a) the minor allele frequency of the single nucleotide variant (SNV), (b) the degree of departure from normality of the trait, and (c) the position of the SNVs on type I error rates were investigated in the Genetic Analysis Workshop (GAW) 19 whole exome sequence data. To test the distribution of the type I error rate, 5 simulated traits were considered: standard normal and gamma distributed traits; 2 transformed versions of the gamma trait (log 10 and rank-based inverse normal transformations); and trait Q1 provided by GAW 19. Each trait was tested with 313,340 SNVs. Tests of association were performed with simple linear regression and average type I error rates were determined for minor allele frequency classes. Rare SNVs (minor allele frequency < 0.05) showed inflated type I error rates for non-normally distributed traits that increased as the minor allele frequency decreased. The inflation of average type I error rates increased as the significance threshold decreased. Normally distributed traits did not show inflated type I error rates with respect to the minor allele frequency for rare SNVs. There was no consistent effect of transformation on the uniformity of the distribution of the location of SNVs with a type I error.

  15. Heat conduction errors and time lag in cryogenic thermometer installations

    Science.gov (United States)

    Warshawsky, I.

    1973-01-01

    Installation practices are recommended that will increase rate of heat exchange between the thermometric sensing element and the cryogenic fluid and that will reduce the rate of undesired heat transfer to higher-temperature objects. Formulas and numerical data are given that help to estimate the magnitude of heat-conduction errors and of time lag in response.

  16. Social motivation in prospective memory: higher importance ratings and reported performance rates for social tasks.

    Science.gov (United States)

    Penningroth, Suzanna L; Scott, Walter D; Freuen, Margaret

    2011-03-01

    Few studies have addressed social motivation in prospective memory (PM). In a pilot study and two main studies, we examined whether social PM tasks possess a motivational advantage over nonsocial PM tasks. In the pilot study and Study 1, participants listed their real-life important and less important PM tasks. Independent raters categorized the PM tasks as social or nonsocial. Results from both studies showed a higher proportion of tasks rated as social when important tasks were requested than when less important tasks were requested. In Study 1, participants also reported whether they had remembered to perform each PM task. Reported performance rates were higher for tasks rated as social than for those rated as nonsocial. Finally, in Study 2, participants rated the importance of two hypothetical PM tasks, one social and one nonsocial. The social PM task was rated higher in importance. Overall, these findings suggest that social PM tasks are viewed as more important than nonsocial PM tasks and they are more likely to be performed. We propose that consideration of the social relevance of PM will lead to a more complete and ecologically valid theoretical description of PM performance. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  17. Relating physician's workload with errors during radiation therapy planning.

    Science.gov (United States)

    Mazur, Lukasz M; Mosaly, Prithima R; Hoyle, Lesley M; Jones, Ellen L; Chera, Bhishamjit S; Marks, Lawrence B

    2014-01-01

    To relate subjective workload (WL) levels to errors for routine clinical tasks. Nine physicians (4 faculty and 5 residents) each performed 3 radiation therapy planning cases. The WL levels were subjectively assessed using National Aeronautics and Space Administration Task Load Index (NASA-TLX). Individual performance was assessed objectively based on the severity grade of errors. The relationship between the WL and performance was assessed via ordinal logistic regression. There was an increased rate of severity grade of errors with increasing WL (P value = .02). As the majority of the higher NASA-TLX scores, and the majority of the performance errors were in the residents, our findings are likely most pertinent to radiation oncology centers with training programs. WL levels may be an important factor contributing to errors during radiation therapy planning tasks. Published by Elsevier Inc.

  18. Performance analysis for the bit-error rate of SAC-OCDMA systems

    Science.gov (United States)

    Feng, Gang; Cheng, Wenqing; Chen, Fujun

    2015-09-01

    Under low power, Gaussian statistics by invoking the central limit theorem is feasible to predict the upper bound in the spectral-amplitude-coding optical code division multiple access (SAC-OCDMA) system. However, this case severely underestimates the bit-error rate (BER) performance of the system under high power assumption. Fortunately, the exact negative binomial (NB) model is a perfect replacement for the Gaussian model in the prediction and evaluation. Based on NB statistics, a more accurate closed-form expression is analyzed and derived for the SAC-OCDMA system. The experiment shows that the obtained expression provides a more precise prediction of the BER performance under the low and high power assumptions.

  19. Errors as a Means of Reducing Impulsive Food Choice.

    Science.gov (United States)

    Sellitto, Manuela; di Pellegrino, Giuseppe

    2016-06-05

    Nowadays, the increasing incidence of eating disorders due to poor self-control has given rise to increased obesity and other chronic weight problems, and ultimately, to reduced life expectancy. The capacity to refrain from automatic responses is usually high in situations in which making errors is highly likely. The protocol described here aims at reducing imprudent preference in women during hypothetical intertemporal choices about appetitive food by associating it with errors. First, participants undergo an error task where two different edible stimuli are associated with two different error likelihoods (high and low). Second, they make intertemporal choices about the two edible stimuli, separately. As a result, this method decreases the discount rate for future amounts of the edible reward that cued higher error likelihood, selectively. This effect is under the influence of the self-reported hunger level. The present protocol demonstrates that errors, well known as motivationally salient events, can induce the recruitment of cognitive control, thus being ultimately useful in reducing impatient choices for edible commodities.

  20. Standardized error severity score (ESS) ratings to quantify risk associated with child restraint system (CRS) and booster seat misuse.

    Science.gov (United States)

    Rudin-Brown, Christina M; Kramer, Chelsea; Langerak, Robin; Scipione, Andrea; Kelsey, Shelley

    2017-11-17

    Although numerous research studies have reported high levels of error and misuse of child restraint systems (CRS) and booster seats in experimental and real-world scenarios, conclusions are limited because they provide little information regarding which installation issues pose the highest risk and thus should be targeted for change. Beneficial to legislating bodies and researchers alike would be a standardized, globally relevant assessment of the potential injury risk associated with more common forms of CRS and booster seat misuse, which could be applied with observed error frequency-for example, in car seat clinics or during prototype user testing-to better identify and characterize the installation issues of greatest risk to safety. A group of 8 leading world experts in CRS and injury biomechanics, who were members of an international child safety project, estimated the potential injury severity associated with common forms of CRS and booster seat misuse. These injury risk error severity score (ESS) ratings were compiled and compared to scores from previous research that had used a similar procedure but with fewer respondents. To illustrate their application, and as part of a larger study examining CRS and booster seat labeling requirements, the new standardized ESS ratings were applied to objective installation performance data from 26 adult participants who installed a convertible (rear- vs. forward-facing) CRS and booster seat in a vehicle, and a child test dummy in the CRS and booster seat, using labels that only just met minimal regulatory requirements. The outcome measure, the risk priority number (RPN), represented the composite scores of injury risk and observed installation error frequency. Variability within the sample of ESS ratings in the present study was smaller than that generated in previous studies, indicating better agreement among experts on what constituted injury risk. Application of the new standardized ESS ratings to installation

  1. Sample size re-assessment leading to a raised sample size does not inflate type I error rate under mild conditions.

    Science.gov (United States)

    Broberg, Per

    2013-07-19

    One major concern with adaptive designs, such as the sample size adjustable designs, has been the fear of inflating the type I error rate. In (Stat Med 23:1023-1038, 2004) it is however proven that when observations follow a normal distribution and the interim result show promise, meaning that the conditional power exceeds 50%, type I error rate is protected. This bound and the distributional assumptions may seem to impose undesirable restrictions on the use of these designs. In (Stat Med 30:3267-3284, 2011) the possibility of going below 50% is explored and a region that permits an increased sample size without inflation is defined in terms of the conditional power at the interim. A criterion which is implicit in (Stat Med 30:3267-3284, 2011) is derived by elementary methods and expressed in terms of the test statistic at the interim to simplify practical use. Mathematical and computational details concerning this criterion are exhibited. Under very general conditions the type I error rate is preserved under sample size adjustable schemes that permit a raise. The main result states that for normally distributed observations raising the sample size when the result looks promising, where the definition of promising depends on the amount of knowledge gathered so far, guarantees the protection of the type I error rate. Also, in the many situations where the test statistic approximately follows a normal law, the deviation from the main result remains negligible. This article provides details regarding the Weibull and binomial distributions and indicates how one may approach these distributions within the current setting. There is thus reason to consider such designs more often, since they offer a means of adjusting an important design feature at little or no cost in terms of error rate.

  2. Rich or poor: Who should pay higher tax rates?

    Science.gov (United States)

    Murilo Castro de Oliveira, Paulo

    2017-08-01

    A dynamic agent model is introduced with an annual random wealth multiplicative process followed by taxes paid according to a linear wealth-dependent tax rate. If poor agents pay higher tax rates than rich agents, eventually all wealth becomes concentrated in the hands of a single agent. By contrast, if poor agents are subject to lower tax rates, the economic collective process continues forever.

  3. Symbol Error Rate of MPSK over EGK Channels Perturbed by a Dominant Additive Laplacian Noise

    KAUST Repository

    Souri, Hamza; Alouini, Mohamed-Slim

    2015-01-01

    The Laplacian noise has received much attention during the recent years since it affects many communication systems. We consider in this paper the probability of error of an M-ary phase shift keying (PSK) constellation operating over a generalized fading channel in presence of a dominant additive Laplacian noise. In this context, the decision regions of the receiver are determined using the maximum likelihood and the minimum distance detectors. Once the decision regions are extracted, the resulting symbol error rate expressions are computed and averaged over an Extended Generalized-K fading distribution. Generic closed form expressions of the conditional and the average probability of error are obtained in terms of the Fox’s H function. Simplifications for some special cases of fading are presented and the resulting formulas end up being often expressed in terms of well known elementary functions. Finally, the mathematical formalism is validated using some selected analytical-based numerical results as well as Monte- Carlo simulation-based results.

  4. Symbol Error Rate of MPSK over EGK Channels Perturbed by a Dominant Additive Laplacian Noise

    KAUST Repository

    Souri, Hamza

    2015-06-01

    The Laplacian noise has received much attention during the recent years since it affects many communication systems. We consider in this paper the probability of error of an M-ary phase shift keying (PSK) constellation operating over a generalized fading channel in presence of a dominant additive Laplacian noise. In this context, the decision regions of the receiver are determined using the maximum likelihood and the minimum distance detectors. Once the decision regions are extracted, the resulting symbol error rate expressions are computed and averaged over an Extended Generalized-K fading distribution. Generic closed form expressions of the conditional and the average probability of error are obtained in terms of the Fox’s H function. Simplifications for some special cases of fading are presented and the resulting formulas end up being often expressed in terms of well known elementary functions. Finally, the mathematical formalism is validated using some selected analytical-based numerical results as well as Monte- Carlo simulation-based results.

  5. Frequency and analysis of non-clinical errors made in radiology reports using the National Integrated Medical Imaging System voice recognition dictation software.

    Science.gov (United States)

    Motyer, R E; Liddy, S; Torreggiani, W C; Buckley, O

    2016-11-01

    Voice recognition (VR) dictation of radiology reports has become the mainstay of reporting in many institutions worldwide. Despite benefit, such software is not without limitations, and transcription errors have been widely reported. Evaluate the frequency and nature of non-clinical transcription error using VR dictation software. Retrospective audit of 378 finalised radiology reports. Errors were counted and categorised by significance, error type and sub-type. Data regarding imaging modality, report length and dictation time was collected. 67 (17.72 %) reports contained ≥1 errors, with 7 (1.85 %) containing 'significant' and 9 (2.38 %) containing 'very significant' errors. A total of 90 errors were identified from the 378 reports analysed, with 74 (82.22 %) classified as 'insignificant', 7 (7.78 %) as 'significant', 9 (10 %) as 'very significant'. 68 (75.56 %) errors were 'spelling and grammar', 20 (22.22 %) 'missense' and 2 (2.22 %) 'nonsense'. 'Punctuation' error was most common sub-type, accounting for 27 errors (30 %). Complex imaging modalities had higher error rates per report and sentence. Computed tomography contained 0.040 errors per sentence compared to plain film with 0.030. Longer reports had a higher error rate, with reports >25 sentences containing an average of 1.23 errors per report compared to 0-5 sentences containing 0.09. These findings highlight the limitations of VR dictation software. While most error was deemed insignificant, there were occurrences of error with potential to alter report interpretation and patient management. Longer reports and reports on more complex imaging had higher error rates and this should be taken into account by the reporting radiologist.

  6. How does aging affect the types of error made in a visual short-term memory 'object-recall' task?

    Science.gov (United States)

    Sapkota, Raju P; van der Linde, Ian; Pardhan, Shahina

    2014-01-01

    This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits.

  7. Bit Error-Rate Minimizing Detector for Amplify-and-Forward Relaying Systems Using Generalized Gaussian Kernel

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2013-01-01

    In this letter, a new detector is proposed for amplifyand- forward (AF) relaying system when communicating with the assistance of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the receiver. The probability density function is estimated with the help of kernel density technique. A generalized Gaussian kernel is proposed. This new kernel provides more flexibility and encompasses Gaussian and uniform kernels as special cases. The optimal window width of the kernel is calculated. Simulations results show that a gain of more than 1 dB can be achieved in terms of BER performance as compared to the minimum mean square error (MMSE) receiver when communicating over Rayleigh fading channels.

  8. Data Analysis & Statistical Methods for Command File Errors

    Science.gov (United States)

    Meshkat, Leila; Waggoner, Bruce; Bryant, Larry

    2014-01-01

    This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.

  9. On the Symbol Error Rate of M-ary MPSK over Generalized Fading Channels with Additive Laplacian Noise

    KAUST Repository

    Soury, Hamza

    2015-01-07

    This work considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox’s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations [1].

  10. On the Symbol Error Rate of M-ary MPSK over Generalized Fading Channels with Additive Laplacian Noise

    KAUST Repository

    Soury, Hamza; Alouini, Mohamed-Slim

    2015-01-01

    This work considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox’s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations [1].

  11. Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction

    Directory of Open Access Journals (Sweden)

    Boulesteix Anne-Laure

    2009-12-01

    Full Text Available Abstract Background In biometric practice, researchers often apply a large number of different methods in a "trial-and-error" strategy to get as much as possible out of their data and, due to publication pressure or pressure from the consulting customer, present only the most favorable results. This strategy may induce a substantial optimistic bias in prediction error estimation, which is quantitatively assessed in the present manuscript. The focus of our work is on class prediction based on high-dimensional data (e.g. microarray data, since such analyses are particularly exposed to this kind of bias. Methods In our study we consider a total of 124 variants of classifiers (possibly including variable selection or tuning steps within a cross-validation evaluation scheme. The classifiers are applied to original and modified real microarray data sets, some of which are obtained by randomly permuting the class labels to mimic non-informative predictors while preserving their correlation structure. Results We assess the minimal misclassification rate over the different variants of classifiers in order to quantify the bias arising when the optimal classifier is selected a posteriori in a data-driven manner. The bias resulting from the parameter tuning (including gene selection parameters as a special case and the bias resulting from the choice of the classification method are examined both separately and jointly. Conclusions The median minimal error rate over the investigated classifiers was as low as 31% and 41% based on permuted uninformative predictors from studies on colon cancer and prostate cancer, respectively. We conclude that the strategy to present only the optimal result is not acceptable because it yields a substantial bias in error rate estimation, and suggest alternative approaches for properly reporting classification accuracy.

  12. Determination of corrosion rate of reinforcement with a modulated guard ring electrode; analysis of errors due to lateral current distribution

    International Nuclear Information System (INIS)

    Wojtas, H.

    2004-01-01

    The main source of errors in measuring the corrosion rate of rebars on site is a non-uniform current distribution between the small counter electrode (CE) on the concrete surface and the large rebar network. Guard ring electrodes (GEs) are used in an attempt to confine the excitation current within a defined area. In order to better understand the functioning of modulated guard ring electrode and to assess its effectiveness in eliminating errors due to lateral spread of current signal from the small CE, measurements of the polarisation resistance performed on a concrete beam have been numerically simulated. Effect of parameters such as rebar corrosion activity, concrete resistivity, concrete cover depth and size of the corroding area on errors in the estimation of polarisation resistance of a single rebar has been examined. The results indicate that modulated GE arrangement fails to confine the lateral spread of the CE current within a constant area. Using the constant diameter of confinement for the calculation of corrosion rate may lead to serious errors when test conditions change. When high corrosion activity of rebar and/or local corrosion occur, the use of the modulated GE confinement may lead to significant underestimation of the corrosion rate

  13. Using lexical variables to predict picture-naming errors in jargon aphasia

    Directory of Open Access Journals (Sweden)

    Catherine Godbold

    2015-04-01

    real word errors when items were phonologically simpler (shorter, more dense and higher frequency neighbourhoods, higher usage (higher frequency and earlier age-of-acquisitionand less visually complex. Correct responses were also more likely to be elicited by high name agreement targets. The strongest contribution was from the phonology and usage components. Target-error overlap in non-word errors was predicted only by phonology, with phonologically-simpler items predicting lower overlap. These results demonstrate that output in jargon aphasia is modulated by properties of target items. Increasing activation in the system improves output in predictable ways. As well as predicting an item’s susceptibility to error (e.g., increased error rates for longer, low density, low frequency, late acquired, low name agreement and high visual complexity items, we could predict the nature of the error on the basis of target characteristics (e.g., non-word errors more likely for longer, low density, low frequency, late acquired, high visual complexity items. Increasing the strength of the signal reaching the phonological level reduces the rate of non-word error production but can result in lower target-error overlap, perhaps due to increased competition between activated phonemes. These findings are considered within the context of current models of single word production (e.g., Dell et al., 1997.

  14. Comparison of Bit Error Rate of Line Codes in NG-PON2

    Directory of Open Access Journals (Sweden)

    Tomas Horvath

    2016-05-01

    Full Text Available This article focuses on simulation and comparison of line codes NRZ (Non Return to Zero, RZ (Return to Zero and Miller’s code for NG-PON2 (Next-Generation Passive Optical Network Stage 2 using. Our article provides solutions with Q-factor, BER (Bit Error Rate, and bandwidth comparison. Line codes are the most important part of communication over the optical fibre. The main role of these codes is digital signal representation. NG-PON2 networks use optical fibres for communication that is the reason why OptSim v5.2 is used for simulation.

  15. Statistical analysis of error rate of large-scale single flux quantum logic circuit by considering fluctuation of timing parameters

    International Nuclear Information System (INIS)

    Yamanashi, Yuki; Masubuchi, Kota; Yoshikawa, Nobuyuki

    2016-01-01

    The relationship between the timing margin and the error rate of the large-scale single flux quantum logic circuits is quantitatively investigated to establish a timing design guideline. We observed that the fluctuation in the set-up/hold time of single flux quantum logic gates caused by thermal noises is the most probable origin of the logical error of the large-scale single flux quantum circuit. The appropriate timing margin for stable operation of the large-scale logic circuit is discussed by taking the fluctuation of setup/hold time and the timing jitter in the single flux quantum circuits. As a case study, the dependence of the error rate of the 1-million-bit single flux quantum shift register on the timing margin is statistically analyzed. The result indicates that adjustment of timing margin and the bias voltage is important for stable operation of a large-scale SFQ logic circuit.

  16. Statistical analysis of error rate of large-scale single flux quantum logic circuit by considering fluctuation of timing parameters

    Energy Technology Data Exchange (ETDEWEB)

    Yamanashi, Yuki, E-mail: yamanasi@ynu.ac.jp [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan); Masubuchi, Kota; Yoshikawa, Nobuyuki [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2016-11-15

    The relationship between the timing margin and the error rate of the large-scale single flux quantum logic circuits is quantitatively investigated to establish a timing design guideline. We observed that the fluctuation in the set-up/hold time of single flux quantum logic gates caused by thermal noises is the most probable origin of the logical error of the large-scale single flux quantum circuit. The appropriate timing margin for stable operation of the large-scale logic circuit is discussed by taking the fluctuation of setup/hold time and the timing jitter in the single flux quantum circuits. As a case study, the dependence of the error rate of the 1-million-bit single flux quantum shift register on the timing margin is statistically analyzed. The result indicates that adjustment of timing margin and the bias voltage is important for stable operation of a large-scale SFQ logic circuit.

  17. Clinical errors and medical negligence.

    Science.gov (United States)

    Oyebode, Femi

    2013-01-01

    This paper discusses the definition, nature and origins of clinical errors including their prevention. The relationship between clinical errors and medical negligence is examined as are the characteristics of litigants and events that are the source of litigation. The pattern of malpractice claims in different specialties and settings is examined. Among hospitalized patients worldwide, 3-16% suffer injury as a result of medical intervention, the most common being the adverse effects of drugs. The frequency of adverse drug effects appears superficially to be higher in intensive care units and emergency departments but once rates have been corrected for volume of patients, comorbidity of conditions and number of drugs prescribed, the difference is not significant. It is concluded that probably no more than 1 in 7 adverse events in medicine result in a malpractice claim and the factors that predict that a patient will resort to litigation include a prior poor relationship with the clinician and the feeling that the patient is not being kept informed. Methods for preventing clinical errors are still in their infancy. The most promising include new technologies such as electronic prescribing systems, diagnostic and clinical decision-making aids and error-resistant systems. Copyright © 2013 S. Karger AG, Basel.

  18. Scaling prediction errors to reward variability benefits error-driven learning in humans.

    Science.gov (United States)

    Diederen, Kelly M J; Schultz, Wolfram

    2015-09-01

    Effective error-driven learning requires individuals to adapt learning to environmental reward variability. The adaptive mechanism may involve decays in learning rate across subsequent trials, as shown previously, and rescaling of reward prediction errors. The present study investigated the influence of prediction error scaling and, in particular, the consequences for learning performance. Participants explicitly predicted reward magnitudes that were drawn from different probability distributions with specific standard deviations. By fitting the data with reinforcement learning models, we found scaling of prediction errors, in addition to the learning rate decay shown previously. Importantly, the prediction error scaling was closely related to learning performance, defined as accuracy in predicting the mean of reward distributions, across individual participants. In addition, participants who scaled prediction errors relative to standard deviation also presented with more similar performance for different standard deviations, indicating that increases in standard deviation did not substantially decrease "adapters'" accuracy in predicting the means of reward distributions. However, exaggerated scaling beyond the standard deviation resulted in impaired performance. Thus efficient adaptation makes learning more robust to changing variability. Copyright © 2015 the American Physiological Society.

  19. Outlier removal, sum scores, and the inflation of the Type I error rate in independent samples t tests: the power of alternatives and recommendations.

    Science.gov (United States)

    Bakker, Marjan; Wicherts, Jelte M

    2014-09-01

    In psychology, outliers are often excluded before running an independent samples t test, and data are often nonnormal because of the use of sum scores based on tests and questionnaires. This article concerns the handling of outliers in the context of independent samples t tests applied to nonnormal sum scores. After reviewing common practice, we present results of simulations of artificial and actual psychological data, which show that the removal of outliers based on commonly used Z value thresholds severely increases the Type I error rate. We found Type I error rates of above 20% after removing outliers with a threshold value of Z = 2 in a short and difficult test. Inflations of Type I error rates are particularly severe when researchers are given the freedom to alter threshold values of Z after having seen the effects thereof on outcomes. We recommend the use of nonparametric Mann-Whitney-Wilcoxon tests or robust Yuen-Welch tests without removing outliers. These alternatives to independent samples t tests are found to have nominal Type I error rates with a minimal loss of power when no outliers are present in the data and to have nominal Type I error rates and good power when outliers are present. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence.

    Science.gov (United States)

    Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh

    2015-11-01

    In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations.

  1. How does aging affect the types of error made in a visual short-term memory ‘object-recall’ task?

    Directory of Open Access Journals (Sweden)

    Raju P Sapkota

    2015-01-01

    Full Text Available This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76, and 17 normally aging older (Mean = 66.5 years, SD = 6.30 adults participated. Memory stimuli comprised 2 or 4 real world objects (the memory load presented sequentially, each for 650ms, at random locations on a computer screen. After a 1000ms retention interval, a test display was presented, comprising an empty box at one of the previously presented 2 or 4 memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors vs. objects that had not been presented at all in the memory display (non-memory errors were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items, false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets, slot and flexible resource models, and spatial coding deficits.

  2. Eliminating US hospital medical errors.

    Science.gov (United States)

    Kumar, Sameer; Steinebach, Marc

    2008-01-01

    Healthcare costs in the USA have continued to rise steadily since the 1980s. Medical errors are one of the major causes of deaths and injuries of thousands of patients every year, contributing to soaring healthcare costs. The purpose of this study is to examine what has been done to deal with the medical-error problem in the last two decades and present a closed-loop mistake-proof operation system for surgery processes that would likely eliminate preventable medical errors. The design method used is a combination of creating a service blueprint, implementing the six sigma DMAIC cycle, developing cause-and-effect diagrams as well as devising poka-yokes in order to develop a robust surgery operation process for a typical US hospital. In the improve phase of the six sigma DMAIC cycle, a number of poka-yoke techniques are introduced to prevent typical medical errors (identified through cause-and-effect diagrams) that may occur in surgery operation processes in US hospitals. It is the authors' assertion that implementing the new service blueprint along with the poka-yokes, will likely result in the current medical error rate to significantly improve to the six-sigma level. Additionally, designing as many redundancies as possible in the delivery of care will help reduce medical errors. Primary healthcare providers should strongly consider investing in adequate doctor and nurse staffing, and improving their education related to the quality of service delivery to minimize clinical errors. This will lead to an increase in higher fixed costs, especially in the shorter time frame. This paper focuses additional attention needed to make a sound technical and business case for implementing six sigma tools to eliminate medical errors that will enable hospital managers to increase their hospital's profitability in the long run and also ensure patient safety.

  3. On the symbol error rate of M-ary MPSK over generalized fading channels with additive Laplacian noise

    KAUST Repository

    Soury, Hamza

    2014-06-01

    This paper considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox\\'s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations. © 2014 IEEE.

  4. On the symbol error rate of M-ary MPSK over generalized fading channels with additive Laplacian noise

    KAUST Repository

    Soury, Hamza; Alouini, Mohamed-Slim

    2014-01-01

    This paper considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox's H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations. © 2014 IEEE.

  5. Impact of catheter reconstruction error on dose distribution in high dose rate intracavitary brachytherapy and evaluation of OAR doses

    International Nuclear Information System (INIS)

    Thaper, Deepak; Shukla, Arvind; Rathore, Narendra; Oinam, Arun S.

    2016-01-01

    In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this study is to evaluate the impact of catheter reconstruction error on dose distribution in CT based intracavitary brachytherapy planning and evaluation of its effect on organ at risk (OAR) like bladder, rectum and sigmoid and target volume High risk clinical target volume (HR-CTV)

  6. A Fast Soft Bit Error Rate Estimation Method

    Directory of Open Access Journals (Sweden)

    Ait-Idir Tarik

    2010-01-01

    Full Text Available We have suggested in a previous publication a method to estimate the Bit Error Rate (BER of a digital communications system instead of using the famous Monte Carlo (MC simulation. This method was based on the estimation of the probability density function (pdf of soft observed samples. The kernel method was used for the pdf estimation. In this paper, we suggest to use a Gaussian Mixture (GM model. The Expectation Maximisation algorithm is used to estimate the parameters of this mixture. The optimal number of Gaussians is computed by using Mutual Information Theory. The analytical expression of the BER is therefore simply given by using the different estimated parameters of the Gaussian Mixture. Simulation results are presented to compare the three mentioned methods: Monte Carlo, Kernel and Gaussian Mixture. We analyze the performance of the proposed BER estimator in the framework of a multiuser code division multiple access system and show that attractive performance is achieved compared with conventional MC or Kernel aided techniques. The results show that the GM method can drastically reduce the needed number of samples to estimate the BER in order to reduce the required simulation run-time, even at very low BER.

  7. Time-discrete higher order ALE formulations: a priori error analysis

    KAUST Repository

    Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.

    2013-01-01

    We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our

  8. Error Free Software

    Science.gov (United States)

    1985-01-01

    A mathematical theory for development of "higher order" software to catch computer mistakes resulted from a Johnson Space Center contract for Apollo spacecraft navigation. Two women who were involved in the project formed Higher Order Software, Inc. to develop and market the system of error analysis and correction. They designed software which is logically error-free, which, in one instance, was found to increase productivity by 600%. USE.IT defines its objectives using AXES -- a user can write in English and the system converts to computer languages. It is employed by several large corporations.

  9. How Do Simulated Error Experiences Impact Attitudes Related to Error Prevention?

    Science.gov (United States)

    Breitkreuz, Karen R; Dougal, Renae L; Wright, Melanie C

    2016-10-01

    The objective of this project was to determine whether simulated exposure to error situations changes attitudes in a way that may have a positive impact on error prevention behaviors. Using a stratified quasi-randomized experiment design, we compared risk perception attitudes of a control group of nursing students who received standard error education (reviewed medication error content and watched movies about error experiences) to an experimental group of students who reviewed medication error content and participated in simulated error experiences. Dependent measures included perceived memorability of the educational experience, perceived frequency of errors, and perceived caution with respect to preventing errors. Experienced nursing students perceived the simulated error experiences to be more memorable than movies. Less experienced students perceived both simulated error experiences and movies to be highly memorable. After the intervention, compared with movie participants, simulation participants believed errors occurred more frequently. Both types of education increased the participants' intentions to be more cautious and reported caution remained higher than baseline for medication errors 6 months after the intervention. This study provides limited evidence of an advantage of simulation over watching movies describing actual errors with respect to manipulating attitudes related to error prevention. Both interventions resulted in long-term impacts on perceived caution in medication administration. Simulated error experiences made participants more aware of how easily errors can occur, and the movie education made participants more aware of the devastating consequences of errors.

  10. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    Science.gov (United States)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  11. Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas

    Science.gov (United States)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  12. Bit error rate testing of fiber optic data links for MMIC-based phased array antennas

    Science.gov (United States)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  13. Optimization of Trade-offs in Error-free Image Transmission

    Science.gov (United States)

    Cox, Jerome R.; Moore, Stephen M.; Blaine, G. James; Zimmerman, John B.; Wallace, Gregory K.

    1989-05-01

    The availability of ubiquitous wide-area channels of both modest cost and higher transmission rate than voice-grade lines promises to allow the expansion of electronic radiology services to a larger community. The band-widths of the new services becoming available from the Integrated Services Digital Network (ISDN) are typically limited to 128 Kb/s, almost two orders of magnitude lower than popular LANs can support. Using Discrete Cosine Transform (DCT) techniques, a compressed approximation to an image may be rapidly transmitted. However, intensity or resampling transformations of the reconstructed image may reveal otherwise invisible artifacts of the approximate encoding. A progressive transmission scheme reported in ISO Working Paper N800 offers an attractive solution to this problem by rapidly reconstructing an apparently undistorted image from the DCT coefficients and then subse-quently transmitting the error image corresponding to the difference between the original and the reconstructed images. This approach achieves an error-free transmission without sacrificing the perception of rapid image delivery. Furthermore, subsequent intensity and resampling manipulations can be carried out with confidence. DCT coefficient precision affects the amount of error information that must be transmitted and, hence the delivery speed of error-free images. This study calculates the overall information coding rate for six radiographic images as a function of DCT coefficient precision. The results demonstrate that a minimum occurs for each of the six images at an average coefficient precision of between 0.5 and 1.0 bits per pixel (b/p). Apparently undistorted versions of these six images can be transmitted with a coding rate of between 0.25 and 0.75 b/p while error-free versions can be transmitted with an overall coding rate between 4.5 and 6.5 b/p.

  14. MEDICAL ERROR: CIVIL AND LEGAL ASPECT.

    Science.gov (United States)

    Buletsa, S; Drozd, O; Yunin, O; Mohilevskyi, L

    2018-03-01

    The scientific article is focused on the research of the notion of medical error, medical and legal aspects of this notion have been considered. The necessity of the legislative consolidation of the notion of «medical error» and criteria of its legal estimation have been grounded. In the process of writing a scientific article, we used the empirical method, general scientific and comparative legal methods. A comparison of the concept of medical error in civil and legal aspects was made from the point of view of Ukrainian, European and American scientists. It has been marked that the problem of medical errors is known since ancient times and in the whole world, in fact without regard to the level of development of medicine, there is no country, where doctors never make errors. According to the statistics, medical errors in the world are included in the first five reasons of death rate. At the same time the grant of medical services practically concerns all people. As a man and his life, health in Ukraine are acknowledged by a higher social value, medical services must be of high-quality and effective. The grant of not quality medical services causes harm to the health, and sometimes the lives of people; it may result in injury or even death. The right to the health protection is one of the fundamental human rights assured by the Constitution of Ukraine; therefore the issue of medical errors and liability for them is extremely relevant. The authors make conclusions, that the definition of the notion of «medical error» must get the legal consolidation. Besides, the legal estimation of medical errors must be based on the single principles enshrined in the legislation and confirmed by judicial practice.

  15. Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates.

    Science.gov (United States)

    Fottrell, Edward; Byass, Peter; Berhane, Yemane

    2008-03-25

    As in any measurement process, a certain amount of error may be expected in routine population surveillance operations such as those in demographic surveillance sites (DSSs). Vital events are likely to be missed and errors made no matter what method of data capture is used or what quality control procedures are in place. The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles has important implications for the role of DSSs as platforms for public health research and clinical trials. Such knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with realistic margins of error and validity. This study uses the first 10-year dataset from the Butajira Rural Health Project (BRHP) DSS, Ethiopia, covering approximately 336,000 person-years of data. Simple programmes were written to introduce random errors and omissions into new versions of the definitive 10-year Butajira dataset. Key parameters of sex, age, death, literacy and roof material (an indicator of poverty) were selected for the introduction of errors based on their obvious importance in demographic and health surveillance and their established significant associations with mortality. Defining the original 10-year dataset as the 'gold standard' for the purposes of this investigation, population, age and sex compositions and Poisson regression models of mortality rate ratios were compared between each of the intentionally erroneous datasets and the original 'gold standard' 10-year data. The composition of the Butajira population was well represented despite introducing random errors, and differences between population pyramids based on the derived datasets were subtle. Regression analyses of well-established mortality risk factors were largely unaffected even by relatively high levels of random errors in the data. The low sensitivity of parameter estimates and regression analyses to significant amounts of

  16. Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates

    Directory of Open Access Journals (Sweden)

    Berhane Yemane

    2008-03-01

    Full Text Available Abstract Background As in any measurement process, a certain amount of error may be expected in routine population surveillance operations such as those in demographic surveillance sites (DSSs. Vital events are likely to be missed and errors made no matter what method of data capture is used or what quality control procedures are in place. The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles has important implications for the role of DSSs as platforms for public health research and clinical trials. Such knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with realistic margins of error and validity. Methods This study uses the first 10-year dataset from the Butajira Rural Health Project (BRHP DSS, Ethiopia, covering approximately 336,000 person-years of data. Simple programmes were written to introduce random errors and omissions into new versions of the definitive 10-year Butajira dataset. Key parameters of sex, age, death, literacy and roof material (an indicator of poverty were selected for the introduction of errors based on their obvious importance in demographic and health surveillance and their established significant associations with mortality. Defining the original 10-year dataset as the 'gold standard' for the purposes of this investigation, population, age and sex compositions and Poisson regression models of mortality rate ratios were compared between each of the intentionally erroneous datasets and the original 'gold standard' 10-year data. Results The composition of the Butajira population was well represented despite introducing random errors, and differences between population pyramids based on the derived datasets were subtle. Regression analyses of well-established mortality risk factors were largely unaffected even by relatively high levels of random errors in the data. Conclusion The low sensitivity of parameter

  17. Error Detection and Error Classification: Failure Awareness in Data Transfer Scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Louisiana State University; Balman, Mehmet; Kosar, Tevfik

    2010-10-27

    Data transfer in distributed environment is prone to frequent failures resulting from back-end system level problems, like connectivity failure which is technically untraceable by users. Error messages are not logged efficiently, and sometimes are not relevant/useful from users point-of-view. Our study explores the possibility of an efficient error detection and reporting system for such environments. Prior knowledge about the environment and awareness of the actual reason behind a failure would enable higher level planners to make better and accurate decisions. It is necessary to have well defined error detection and error reporting methods to increase the usability and serviceability of existing data transfer protocols and data management systems. We investigate the applicability of early error detection and error classification techniques and propose an error reporting framework and a failure-aware data transfer life cycle to improve arrangement of data transfer operations and to enhance decision making of data transfer schedulers.

  18. Impact of automated dispensing cabinets on medication selection and preparation error rates in an emergency department: a prospective and direct observational before-and-after study.

    Science.gov (United States)

    Fanning, Laura; Jones, Nick; Manias, Elizabeth

    2016-04-01

    The implementation of automated dispensing cabinets (ADCs) in healthcare facilities appears to be increasing, in particular within Australian hospital emergency departments (EDs). While the investment in ADCs is on the increase, no studies have specifically investigated the impacts of ADCs on medication selection and preparation error rates in EDs. Our aim was to assess the impact of ADCs on medication selection and preparation error rates in an ED of a tertiary teaching hospital. Pre intervention and post intervention study involving direct observations of nurses completing medication selection and preparation activities before and after the implementation of ADCs in the original and new emergency departments within a 377-bed tertiary teaching hospital in Australia. Medication selection and preparation error rates were calculated and compared between these two periods. Secondary end points included the impact on medication error type and severity. A total of 2087 medication selection and preparations were observed among 808 patients pre and post intervention. Implementation of ADCs in the new ED resulted in a 64.7% (1.96% versus 0.69%, respectively, P = 0.017) reduction in medication selection and preparation errors. All medication error types were reduced in the post intervention study period. There was an insignificant impact on medication error severity as all errors detected were categorised as minor. The implementation of ADCs could reduce medication selection and preparation errors and improve medication safety in an ED setting. © 2015 John Wiley & Sons, Ltd.

  19. Error-rate performance analysis of incremental decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel

    2010-10-01

    In this paper, we investigate an incremental opportunistic relaying scheme where the selected relay chooses to cooperate only if the source-destination channel is of an unacceptable quality. In our study, we consider regenerative relaying in which the decision to cooperate is based on a signal-to-noise ratio (SNR) threshold and takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive a closed-form expression for the end-to-end biterror rate (BER) of binary phase-shift keying (BPSK) modulation based on the exact probability density function (PDF) of each hop. Furthermore, we evaluate the asymptotic error performance and the diversity order is deduced. We show that performance simulation results coincide with our analytical results. ©2010 IEEE.

  20. Error-rate performance analysis of incremental decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel; Yang, Hongchuan; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we investigate an incremental opportunistic relaying scheme where the selected relay chooses to cooperate only if the source-destination channel is of an unacceptable quality. In our study, we consider regenerative relaying in which the decision to cooperate is based on a signal-to-noise ratio (SNR) threshold and takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive a closed-form expression for the end-to-end biterror rate (BER) of binary phase-shift keying (BPSK) modulation based on the exact probability density function (PDF) of each hop. Furthermore, we evaluate the asymptotic error performance and the diversity order is deduced. We show that performance simulation results coincide with our analytical results. ©2010 IEEE.

  1. Calculation of the soft error rate of submicron CMOS logic circuits

    International Nuclear Information System (INIS)

    Juhnke, T.; Klar, H.

    1995-01-01

    A method to calculate the soft error rate (SER) of CMOS logic circuits with dynamic pipeline registers is described. This method takes into account charge collection by drift and diffusion. The method is verified by comparison of calculated SER's to measurement results. Using this method, the SER of a highly pipelined multiplier is calculated as a function of supply voltage for a 0.6 microm, 0.3 microm, and 0.12 microm technology, respectively. It has been found that the SER of such highly pipelined submicron CMOS circuits may become too high so that countermeasures have to be taken. Since the SER greatly increases with decreasing supply voltage, low-power/low-voltage circuits may show more than eight times the SER for half the normal supply voltage as compared to conventional designs

  2. Video Error Correction Using Steganography

    Science.gov (United States)

    Robie, David L.; Mersereau, Russell M.

    2002-12-01

    The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  3. Evolutionary enhancement of the SLIM-MAUD method of estimating human error rates

    International Nuclear Information System (INIS)

    Zamanali, J.H.; Hubbard, F.R.; Mosleh, A.; Waller, M.A.

    1992-01-01

    The methodology described in this paper assigns plant-specific dynamic human error rates (HERs) for individual plant examinations based on procedural difficulty, on configuration features, and on the time available to perform the action. This methodology is an evolutionary improvement of the success likelihood index methodology (SLIM-MAUD) for use in systemic scenarios. It is based on the assumption that the HER in a particular situation depends of the combined effects of a comprehensive set of performance-shaping factors (PSFs) that influence the operator's ability to perform the action successfully. The PSFs relate the details of the systemic scenario in which the action must be performed according to the operator's psychological and cognitive condition

  4. Inclusive bit error rate analysis for coherent optical code-division multiple-access system

    Science.gov (United States)

    Katz, Gilad; Sadot, Dan

    2002-06-01

    Inclusive noise and bit error rate (BER) analysis for optical code-division multiplexing (OCDM) using coherence techniques is presented. The analysis contains crosstalk calculation of the mutual field variance for different number of users. It is shown that the crosstalk noise depends deeply on the receiver integration time, the laser coherence time, and the number of users. In addition, analytical results of the power fluctuation at the received channel due to the data modulation at the rejected channels are presented. The analysis also includes amplified spontaneous emission (ASE)-related noise effects of in-line amplifiers in a long-distance communication link.

  5. Analysis of error patterns in clinical radiotherapy

    International Nuclear Information System (INIS)

    Macklis, Roger; Meier, Tim; Barrett, Patricia; Weinhous, Martin

    1996-01-01

    Purpose: Until very recently, prescription errors and adverse treatment events have rarely been studied or reported systematically in oncology. We wished to understand the spectrum and severity of radiotherapy errors that take place on a day-to-day basis in a high-volume academic practice and to understand the resource needs and quality assurance challenges placed on a department by rapid upswings in contract-based clinical volumes requiring additional operating hours, procedures, and personnel. The goal was to define clinical benchmarks for operating safety and to detect error-prone treatment processes that might function as 'early warning' signs. Methods: A multi-tiered prospective and retrospective system for clinical error detection and classification was developed, with formal analysis of the antecedents and consequences of all deviations from prescribed treatment delivery, no matter how trivial. A department-wide record-and-verify system was operational during this period and was used as one method of treatment verification and error detection. Brachytherapy discrepancies were analyzed separately. Results: During the analysis year, over 2000 patients were treated with over 93,000 individual fields. A total of 59 errors affecting a total of 170 individual treated fields were reported or detected during this period. After review, all of these errors were classified as Level 1 (minor discrepancy with essentially no potential for negative clinical implications). This total treatment delivery error rate (170/93, 332 or 0.18%) is significantly better than corresponding error rates reported for other hospital and oncology treatment services, perhaps reflecting the relatively sophisticated error avoidance and detection procedures used in modern clinical radiation oncology. Error rates were independent of linac model and manufacturer, time of day (normal operating hours versus late evening or early morning) or clinical machine volumes. There was some relationship to

  6. Video Error Correction Using Steganography

    Directory of Open Access Journals (Sweden)

    Robie David L

    2002-01-01

    Full Text Available The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  7. Correct mutual information, quantum bit error rate and secure transmission efficiency in Wojcik's eavesdropping scheme on ping-pong protocol

    OpenAIRE

    Zhang, Zhanjun

    2004-01-01

    Comment: The wrong mutual information, quantum bit error rate and secure transmission efficiency in Wojcik's eavesdropping scheme [PRL90(03)157901]on ping-pong protocol have been pointed out and corrected

  8. Finding the right coverage : The impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates

    NARCIS (Netherlands)

    Fountain, Emily D.; Pauli, Jonathan N.; Reid, Brendan N.; Palsboll, Per J.; Peery, M. Zachariah

    Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown.

  9. The calculation of average error probability in a digital fibre optical communication system

    Science.gov (United States)

    Rugemalira, R. A. M.

    1980-03-01

    This paper deals with the problem of determining the average error probability in a digital fibre optical communication system, in the presence of message dependent inhomogeneous non-stationary shot noise, additive Gaussian noise and intersymbol interference. A zero-forcing equalization receiver filter is considered. Three techniques for error rate evaluation are compared. The Chernoff bound and the Gram-Charlier series expansion methods are compared to the characteristic function technique. The latter predicts a higher receiver sensitivity

  10. Impact of Measurement Error on Synchrophasor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yilu [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ewing, Paul D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhao, Jiecheng [Univ. of Tennessee, Knoxville, TN (United States); Tan, Jin [Univ. of Tennessee, Knoxville, TN (United States); Wu, Ling [Univ. of Tennessee, Knoxville, TN (United States); Zhan, Lingwei [Univ. of Tennessee, Knoxville, TN (United States)

    2015-07-01

    Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include the possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.

  11. Error estimation in plant growth analysis

    Directory of Open Access Journals (Sweden)

    Andrzej Gregorczyk

    2014-01-01

    Full Text Available The scheme is presented for calculation of errors of dry matter values which occur during approximation of data with growth curves, determined by the analytical method (logistic function and by the numerical method (Richards function. Further formulae are shown, which describe absolute errors of growth characteristics: Growth rate (GR, Relative growth rate (RGR, Unit leaf rate (ULR and Leaf area ratio (LAR. Calculation examples concerning the growth course of oats and maize plants are given. The critical analysis of the estimation of obtained results has been done. The purposefulness of joint application of statistical methods and error calculus in plant growth analysis has been ascertained.

  12. Error detecting capabilities of the shortened Hamming codes adopted for error detection in IEEE Standard 802.3

    Science.gov (United States)

    Fujiwara, Toru; Kasami, Tadao; Lin, Shu

    1989-09-01

    The error-detecting capabilities of the shortened Hamming codes adopted for error detection in IEEE Standard 802.3 are investigated. These codes are also used for error detection in the data link layer of the Ethernet, a local area network. The weight distributions for various code lengths are calculated to obtain the probability of undetectable error and that of detectable error for a binary symmetric channel with bit-error rate between 0.00001 and 1/2.

  13. The impact of transmission errors on progressive 720 lines HDTV coded with H.264

    Science.gov (United States)

    Brunnström, Kjell; Stålenbring, Daniel; Pettersson, Martin; Gustafsson, Jörgen

    2010-02-01

    TV sent over the networks based on the Internet Protocol i.e IPTV is moving towards high definition (HDTV). There has been quite a lot of work on how the HDTV is affected by different codecs and bitrates, but the impact of transmission errors over IP-networks have been less studied. The study was focusing on H.264 encoded 1280x720 progressive HDTV format and was comparing three different concealment methods for different packet loss rates. One is included in a propriety decoder, one is part of FFMPEG and different length of freezing. The target is to simulate what typically IPTV settop-boxes will do when encountering packet loss. Another aim is to study whether the presentation upscaled on the full HDTV screen or presented pixel mapped in a smaller area in the center of the sceen would have an effect on the quality. The results show that there were differences between the two packet loss concealment methods in FFMPEG and in the propriety codec. Freezing seemed to have similar effect as been reported before. For low rates of transmission errors the coding impairments has impact on the quality, but for higher degree of transmission errors these does not affect the quality, since they become overshadowed by transmission error. An interesting effect where the higher bitrate videos goes from having higher quality for lower degree of packet loss, to having lower quality than the lower bitrate video at higher packet loss, was discovered. The different way of presenting the video i.e. upscaled or not-upscaled was significant on the 95% level, but just about.

  14. Bit-error-rate performance analysis of self-heterodyne detected radio-over-fiber links using phase and intensity modulation

    DEFF Research Database (Denmark)

    Yin, Xiaoli; Yu, Xianbin; Tafur Monroy, Idelfonso

    2010-01-01

    We theoretically and experimentally investigate the performance of two self-heterodyne detected radio-over-fiber (RoF) links employing phase modulation (PM) and quadrature biased intensity modulation (IM), in term of bit-error-rate (BER) and optical signal-to-noise-ratio (OSNR). In both links, self...

  15. Real-time soft error rate measurements on bulk 40 nm SRAM memories: a five-year dual-site experiment

    Science.gov (United States)

    Autran, J. L.; Munteanu, D.; Moindjie, S.; Saad Saoud, T.; Gasiot, G.; Roche, P.

    2016-11-01

    This paper reports five years of real-time soft error rate experimentation conducted with the same setup at mountain altitude for three years and then at sea level for two years. More than 7 Gbit of SRAM memories manufactured in CMOS bulk 40 nm technology have been subjected to the natural radiation background. The intensity of the atmospheric neutron flux has been continuously measured on site during these experiments using dedicated neutron monitors. As the result, the neutron and alpha component of the soft error rate (SER) have been very accurately extracted from these measurements, refining the first SER estimations performed in 2012 for this SRAM technology. Data obtained at sea level evidence, for the first time, a possible correlation between the neutron flux changes induced by the daily atmospheric pressure variations and the measured SER. Finally, all of the experimental data are compared with results obtained from accelerated tests and numerical simulation.

  16. Spelling errors among children with ADHD symptoms: the role of working memory.

    Science.gov (United States)

    Re, Anna Maria; Mirandola, Chiara; Esposito, Stefania Sara; Capodieci, Agnese

    2014-09-01

    Research has shown that children with attention deficit/hyperactivity disorder (ADHD) may present a series of academic difficulties, including spelling errors. Given that correct spelling is supported by the phonological component of working memory (PWM), the present study examined whether or not the spelling difficulties of children with ADHD are emphasized when children's PWM is overloaded. A group of 19 children with ADHD symptoms (between 8 and 11 years of age), and a group of typically developing children matched for age, schooling, gender, rated intellectual abilities, and socioeconomic status, were administered two dictation texts: one under typical conditions and one under a pre-load condition that required the participants to remember a series of digits while writing. The results confirmed that children with ADHD symptoms have spelling difficulties, produce a higher percentages of errors compared to the control group children, and that these difficulties are enhanced under a higher load of PWM. An analysis of errors showed that this holds true, especially for phonological errors. The increased errors in the PWM condition was not due to a tradeoff between working memory and writing, as children with ADHD also performed more poorly in the PWM task. The theoretical and practical implications are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  18. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting.

    Science.gov (United States)

    Waheeb, Waddah; Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.

  19. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting.

    Directory of Open Access Journals (Sweden)

    Waddah Waheeb

    Full Text Available Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN and the Dynamic Ridge Polynomial Neural Network (DRPNN. Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.

  20. Characteristics of pediatric chemotherapy medication errors in a national error reporting database.

    Science.gov (United States)

    Rinke, Michael L; Shore, Andrew D; Morlock, Laura; Hicks, Rodney W; Miller, Marlene R

    2007-07-01

    Little is known regarding chemotherapy medication errors in pediatrics despite studies suggesting high rates of overall pediatric medication errors. In this study, the authors examined patterns in pediatric chemotherapy errors. The authors queried the United States Pharmacopeia MEDMARX database, a national, voluntary, Internet-accessible error reporting system, for all error reports from 1999 through 2004 that involved chemotherapy medications and patients aged error reports, 85% reached the patient, and 15.6% required additional patient monitoring or therapeutic intervention. Forty-eight percent of errors originated in the administering phase of medication delivery, and 30% originated in the drug-dispensing phase. Of the 387 medications cited, 39.5% were antimetabolites, 14.0% were alkylating agents, 9.3% were anthracyclines, and 9.3% were topoisomerase inhibitors. The most commonly involved chemotherapeutic agents were methotrexate (15.3%), cytarabine (12.1%), and etoposide (8.3%). The most common error types were improper dose/quantity (22.9% of 327 cited error types), wrong time (22.6%), omission error (14.1%), and wrong administration technique/wrong route (12.2%). The most common error causes were performance deficit (41.3% of 547 cited error causes), equipment and medication delivery devices (12.4%), communication (8.8%), knowledge deficit (6.8%), and written order errors (5.5%). Four of the 5 most serious errors occurred at community hospitals. Pediatric chemotherapy errors often reached the patient, potentially were harmful, and differed in quality between outpatient and inpatient areas. This study indicated which chemotherapeutic agents most often were involved in errors and that administering errors were common. Investigation is needed regarding targeted medication administration safeguards for these high-risk medications. Copyright (c) 2007 American Cancer Society.

  1. The probability and the management of human error

    International Nuclear Information System (INIS)

    Dufey, R.B.; Saull, J.W.

    2004-01-01

    Embedded within modern technological systems, human error is the largest, and indeed dominant contributor to accident cause. The consequences dominate the risk profiles for nuclear power and for many other technologies. We need to quantify the probability of human error for the system as an integral contribution within the overall system failure, as it is generally not separable or predictable for actual events. We also need to provide a means to manage and effectively reduce the failure (error) rate. The fact that humans learn from their mistakes allows a new determination of the dynamic probability and human failure (error) rate in technological systems. The result is consistent with and derived from the available world data for modern technological systems. Comparisons are made to actual data from large technological systems and recent catastrophes. Best estimate values and relationships can be derived for both the human error rate, and for the probability. We describe the potential for new approaches to the management of human error and safety indicators, based on the principles of error state exclusion and of the systematic effect of learning. A new equation is given for the probability of human error (λ) that combines the influences of early inexperience, learning from experience (ε) and stochastic occurrences with having a finite minimum rate, this equation is λ 5.10 -5 + ((1/ε) - 5.10 -5 ) exp(-3*ε). The future failure rate is entirely determined by the experience: thus the past defines the future

  2. The dynamic effect of exchange-rate volatility on Turkish exports: Parsimonious error-correction model approach

    Directory of Open Access Journals (Sweden)

    Demirhan Erdal

    2015-01-01

    Full Text Available This paper aims to investigate the effect of exchange-rate stability on real export volume in Turkey, using monthly data for the period February 2001 to January 2010. The Johansen multivariate cointegration method and the parsimonious error-correction model are applied to determine long-run and short-run relationships between real export volume and its determinants. In this study, the conditional variance of the GARCH (1, 1 model is taken as a proxy for exchange-rate stability, and generalized impulse-response functions and variance-decomposition analyses are applied to analyze the dynamic effects of variables on real export volume. The empirical findings suggest that exchangerate stability has a significant positive effect on real export volume, both in the short and the long run.

  3. Throughput Estimation Method in Burst ACK Scheme for Optimizing Frame Size and Burst Frame Number Appropriate to SNR-Related Error Rate

    Science.gov (United States)

    Ohteru, Shoko; Kishine, Keiji

    The Burst ACK scheme enhances effective throughput by reducing ACK overhead when a transmitter sends sequentially multiple data frames to a destination. IEEE 802.11e is one such example. The size of the data frame body and the number of burst data frames are important burst transmission parameters that affect throughput. The larger the burst transmission parameters are, the better the throughput under error-free conditions becomes. However, large data frame could reduce throughput under error-prone conditions caused by signal-to-noise ratio (SNR) deterioration. If the throughput can be calculated from the burst transmission parameters and error rate, the appropriate ranges of the burst transmission parameters could be narrowed down, and the necessary buffer size for storing transmit data or received data temporarily could be estimated. In this paper, we present a method that features a simple algorithm for estimating the effective throughput from the burst transmission parameters and error rate. The calculated throughput values agree well with the measured ones for actual wireless boards based on the IEEE 802.11-based original MAC protocol. We also calculate throughput values for larger values of the burst transmission parameters outside the assignable values of the wireless boards and find the appropriate values of the burst transmission parameters.

  4. Error-related anterior cingulate cortex activity and the prediction of conscious error awareness

    Directory of Open Access Journals (Sweden)

    Catherine eOrr

    2012-06-01

    Full Text Available Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate activity (ACC as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al. 2011 have found a contrary pattern of greater dorsal ACC activity (in the form of the error-related negativity during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability and or individual variability (e.g., statistical power. We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task, a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors, or unaware (Unaware errors. Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however in contrast to previous studies, including our own smaller sample studies using the same task, error-related dorsal ACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dorsal ACC activity and the error RT difference. The data suggests that individual variability in error awareness is associated with error-related dorsal ACC activity, and therefore this region may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.

  5. Investigation on coupling error characteristics in angular rate matching based ship deformation measurement approach

    Science.gov (United States)

    Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang

    2018-01-01

    The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.

  6. Minimizing the symbol-error-rate for amplify-and-forward relaying systems using evolutionary algorithms

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2015-02-01

    In this paper, a new detector is proposed for an amplify-and-forward (AF) relaying system. The detector is designed to minimize the symbol-error-rate (SER) of the system. The SER surface is non-linear and may have multiple minimas, therefore, designing an SER detector for cooperative communications becomes an optimization problem. Evolutionary based algorithms have the capability to find the global minima, therefore, evolutionary algorithms such as particle swarm optimization (PSO) and differential evolution (DE) are exploited to solve this optimization problem. The performance of proposed detectors is compared with the conventional detectors such as maximum likelihood (ML) and minimum mean square error (MMSE) detector. In the simulation results, it can be observed that the SER performance of the proposed detectors is less than 2 dB away from the ML detector. Significant improvement in SER performance is also observed when comparing with the MMSE detector. The computational complexity of the proposed detector is much less than the ML and MMSE algorithms. Moreover, in contrast to ML and MMSE detectors, the computational complexity of the proposed detectors increases linearly with respect to the number of relays.

  7. Research trend on human error reduction

    International Nuclear Information System (INIS)

    Miyaoka, Sadaoki

    1990-01-01

    Human error has been the problem in all industries. In 1988, the Bureau of Mines, Department of the Interior, USA, carried out the worldwide survey on the human error in all industries in relation to the fatal accidents in mines. There was difference in the results according to the methods of collecting data, but the proportion that human error took in the total accidents distributed in the wide range of 20∼85%, and was 35% on the average. The rate of occurrence of accidents and troubles in Japanese nuclear power stations is shown, and the rate of occurrence of human error is 0∼0.5 cases/reactor-year, which did not much vary. Therefore, the proportion that human error took in the total tended to increase, and it has become important to reduce human error for lowering the rate of occurrence of accidents and troubles hereafter. After the TMI accident in 1979 in USA, the research on man-machine interface became active, and after the Chernobyl accident in 1986 in USSR, the problem of organization and management has been studied. In Japan, 'Safety 21' was drawn up by the Advisory Committee for Energy, and also the annual reports on nuclear safety pointed out the importance of human factors. The state of the research on human factors in Japan and abroad and three targets to reduce human error are reported. (K.I.)

  8. Error monitoring issues for common channel signaling

    Science.gov (United States)

    Hou, Victor T.; Kant, Krishna; Ramaswami, V.; Wang, Jonathan L.

    1994-04-01

    Motivated by field data which showed a large number of link changeovers and incidences of link oscillations between in-service and out-of-service states in common channel signaling (CCS) networks, a number of analyses of the link error monitoring procedures in the SS7 protocol were performed by the authors. This paper summarizes the results obtained thus far and include the following: (1) results of an exact analysis of the performance of the error monitoring procedures under both random and bursty errors; (2) a demonstration that there exists a range of error rates within which the error monitoring procedures of SS7 may induce frequent changeovers and changebacks; (3) an analysis of the performance ofthe SS7 level-2 transmission protocol to determine the tolerable error rates within which the delay requirements can be met; (4) a demonstration that the tolerable error rate depends strongly on various link and traffic characteristics, thereby implying that a single set of error monitor parameters will not work well in all situations; (5) some recommendations on a customizable/adaptable scheme of error monitoring with a discussion on their implementability. These issues may be particularly relevant in the presence of anticipated increases in SS7 traffic due to widespread deployment of Advanced Intelligent Network (AIN) and Personal Communications Service (PCS) as well as for developing procedures for high-speed SS7 links currently under consideration by standards bodies.

  9. Bit Error Rate Analysis for MC-CDMA Systems in Nakagami- Fading Channels

    Directory of Open Access Journals (Sweden)

    Li Zexian

    2004-01-01

    Full Text Available Multicarrier code division multiple access (MC-CDMA is a promising technique that combines orthogonal frequency division multiplexing (OFDM with CDMA. In this paper, based on an alternative expression for the -function, characteristic function and Gaussian approximation, we present a new practical technique for determining the bit error rate (BER of multiuser MC-CDMA systems in frequency-selective Nakagami- fading channels. The results are applicable to systems employing coherent demodulation with maximal ratio combining (MRC or equal gain combining (EGC. The analysis assumes that different subcarriers experience independent fading channels, which are not necessarily identically distributed. The final average BER is expressed in the form of a single finite range integral and an integrand composed of tabulated functions which can be easily computed numerically. The accuracy of the proposed approach is demonstrated with computer simulations.

  10. Practical error estimates for Reynolds' lubrication approximation and its higher order corrections

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, Jon

    2008-12-10

    Reynolds lubrication approximation is used extensively to study flows between moving machine parts, in narrow channels, and in thin films. The solution of Reynolds equation may be thought of as the zeroth order term in an expansion of the solution of the Stokes equations in powers of the aspect ratio {var_epsilon} of the domain. In this paper, we show how to compute the terms in this expansion to arbitrary order on a two-dimensional, x-periodic domain and derive rigorous, a-priori error bounds for the difference between the exact solution and the truncated expansion solution. Unlike previous studies of this sort, the constants in our error bounds are either independent of the function h(x) describing the geometry, or depend on h and its derivatives in an explicit, intuitive way. Specifically, if the expansion is truncated at order 2k, the error is O({var_epsilon}{sup 2k+2}) and h enters into the error bound only through its first and third inverse moments {integral}{sub 0}{sup 1} h(x){sup -m} dx, m = 1,3 and via the max norms {parallel} 1/{ell}! h{sup {ell}-1}{partial_derivative}{sub x}{sup {ell}}h{parallel}{sub {infinity}}, 1 {le} {ell} {le} 2k + 2. We validate our estimates by comparing with finite element solutions and present numerical evidence that suggests that even when h is real analytic and periodic, the expansion solution forms an asymptotic series rather than a convergent series.

  11. Higher rates of sex evolve in spatially heterogeneous environments.

    Science.gov (United States)

    Becks, Lutz; Agrawal, Aneil F

    2010-11-04

    The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.

  12. Error-rate performance analysis of cooperative OFDMA system with decode-and-forward relaying

    KAUST Repository

    Fareed, Muhammad Mehboob; Uysal, Murat; Tsiftsis, Theodoros A.

    2014-01-01

    In this paper, we investigate the performance of a cooperative orthogonal frequency-division multiple-access (OFDMA) system with decode-and-forward (DaF) relaying. Specifically, we derive a closed-form approximate symbol-error-rate expression and analyze the achievable diversity orders. Depending on the relay location, a diversity order up to (LSkD + 1) + σ M m = 1 min(LSkRm + 1, LR mD + 1) is available, where M is the number of relays, and LS kD + 1, LSkRm + 1, and LRmD + 1 are the lengths of channel impulse responses of source-to-destination, source-to- mth relay, and mth relay-to-destination links, respectively. Monte Carlo simulation results are also presented to confirm the analytical findings. © 2013 IEEE.

  13. Error-rate performance analysis of cooperative OFDMA system with decode-and-forward relaying

    KAUST Repository

    Fareed, Muhammad Mehboob

    2014-06-01

    In this paper, we investigate the performance of a cooperative orthogonal frequency-division multiple-access (OFDMA) system with decode-and-forward (DaF) relaying. Specifically, we derive a closed-form approximate symbol-error-rate expression and analyze the achievable diversity orders. Depending on the relay location, a diversity order up to (LSkD + 1) + σ M m = 1 min(LSkRm + 1, LR mD + 1) is available, where M is the number of relays, and LS kD + 1, LSkRm + 1, and LRmD + 1 are the lengths of channel impulse responses of source-to-destination, source-to- mth relay, and mth relay-to-destination links, respectively. Monte Carlo simulation results are also presented to confirm the analytical findings. © 2013 IEEE.

  14. Improved read disturb and write error rates in voltage-control spintronics memory (VoCSM) by controlling energy barrier height

    Science.gov (United States)

    Inokuchi, T.; Yoda, H.; Kato, Y.; Shimizu, M.; Shirotori, S.; Shimomura, N.; Koi, K.; Kamiguchi, Y.; Sugiyama, H.; Oikawa, S.; Ikegami, K.; Ishikawa, M.; Altansargai, B.; Tiwari, A.; Ohsawa, Y.; Saito, Y.; Kurobe, A.

    2017-06-01

    A hybrid writing scheme that combines the spin Hall effect and voltage-controlled magnetic-anisotropy effect is investigated in Ta/CoFeB/MgO/CoFeB/Ru/CoFe/IrMn junctions. The write current and control voltage are applied to Ta and CoFeB/MgO/CoFeB junctions, respectively. The critical current density required for switching the magnetization in CoFeB was modulated 3.6-fold by changing the control voltage from -1.0 V to +1.0 V. This modulation of the write current density is explained by the change in the surface anisotropy of the free layer from 1.7 mJ/m2 to 1.6 mJ/m2, which is caused by the electric field applied to the junction. The read disturb rate and write error rate, which are important performance parameters for memory applications, are drastically improved, and no error was detected in 5 × 108 cycles by controlling read and write sequences.

  15. DNA replication error-induced extinction of diploid yeast.

    Science.gov (United States)

    Herr, Alan J; Kennedy, Scott R; Knowels, Gary M; Schultz, Eric M; Preston, Bradley D

    2014-03-01

    Genetic defects in DNA polymerase accuracy, proofreading, or mismatch repair (MMR) induce mutator phenotypes that accelerate adaptation of microbes and tumor cells. Certain combinations of mutator alleles synergistically increase mutation rates to levels that drive extinction of haploid cells. The maximum tolerated mutation rate of diploid cells is unknown. Here, we define the threshold for replication error-induced extinction (EEX) of diploid Saccharomyces cerevisiae. Double-mutant pol3 alleles that carry mutations for defective DNA polymerase-δ proofreading (pol3-01) and accuracy (pol3-L612M or pol3-L612G) induce strong mutator phenotypes in heterozygous diploids (POL3/pol3-01,L612M or POL3/pol3-01,L612G). Both pol3-01,L612M and pol3-01,L612G alleles are lethal in the homozygous state; cells with pol3-01,L612M divide up to 10 times before arresting at random stages in the cell cycle. Antimutator eex mutations in the pol3 alleles suppress this lethality (pol3-01,L612M,eex or pol3-01,L612G,eex). MMR defects synergize with pol3-01,L612M,eex and pol3-01,L612G,eex alleles, increasing mutation rates and impairing growth. Conversely, inactivation of the Dun1 S-phase checkpoint kinase suppresses strong pol3-01,L612M,eex and pol3-01,L612G,eex mutator phenotypes as well as the lethal pol3-01,L612M phenotype. Our results reveal that the lethal error threshold in diploids is 10 times higher than in haploids and likely determined by homozygous inactivation of essential genes. Pronounced loss of fitness occurs at mutation rates well below the lethal threshold, suggesting that mutator-driven cancers may be susceptible to drugs that exacerbate replication errors.

  16. On the Performance of Free-Space Optical Systems over Generalized Atmospheric Turbulence Channels with Pointing Errors

    KAUST Repository

    Ansari, Imran Shafique

    2015-01-01

    . Then capitalizing on these unified results, unified exact closed-form expressions for various performance metrics of FSO link transmission systems are offered, such as, the outage probability (OP), the higher-order amount of fading (AF), the average error rate

  17. Decreasing patient identification band errors by standardizing processes.

    Science.gov (United States)

    Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie

    2013-04-01

    Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.

  18. Error Resilient Video Compression Using Behavior Models

    Directory of Open Access Journals (Sweden)

    Jacco R. Taal

    2004-03-01

    Full Text Available Wireless and Internet video applications are inherently subjected to bit errors and packet errors, respectively. This is especially so if constraints on the end-to-end compression and transmission latencies are imposed. Therefore, it is necessary to develop methods to optimize the video compression parameters and the rate allocation of these applications that take into account residual channel bit errors. In this paper, we study the behavior of a predictive (interframe video encoder and model the encoders behavior using only the statistics of the original input data and of the underlying channel prone to bit errors. The resulting data-driven behavior models are then used to carry out group-of-pictures partitioning and to control the rate of the video encoder in such a way that the overall quality of the decoded video with compression and channel errors is optimized.

  19. Magnetic Nanoparticle Thermometer: An Investigation of Minimum Error Transmission Path and AC Bias Error

    Directory of Open Access Journals (Sweden)

    Zhongzhou Du

    2015-04-01

    Full Text Available The signal transmission module of a magnetic nanoparticle thermometer (MNPT was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias, was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA when the hardware system of the MNPT was designed with the aforementioned method.

  20. Error analysis in predictive modelling demonstrated on mould data.

    Science.gov (United States)

    Baranyi, József; Csernus, Olívia; Beczner, Judit

    2014-01-17

    The purpose of this paper was to develop a predictive model for the effect of temperature and water activity on the growth rate of Aspergillus niger and to determine the sources of the error when the model is used for prediction. Parallel mould growth curves, derived from the same spore batch, were generated and fitted to determine their growth rate. The variances of replicate ln(growth-rate) estimates were used to quantify the experimental variability, inherent to the method of determining the growth rate. The environmental variability was quantified by the variance of the respective means of replicates. The idea is analogous to the "within group" and "between groups" variability concepts of ANOVA procedures. A (secondary) model, with temperature and water activity as explanatory variables, was fitted to the natural logarithm of the growth rates determined by the primary model. The model error and the experimental and environmental errors were ranked according to their contribution to the total error of prediction. Our method can readily be applied to analysing the error structure of predictive models of bacterial growth models, too. © 2013.

  1. Enabling Higher Data Rates for Planetary Science Missions

    Science.gov (United States)

    Deutsch, L. J.; Townes, S. A.; Lazio, J.; Bell, D. J.; Chahat, N. E.; Kovalik, J. M.; Kuperman, I.; Sauder, J.; Liebrecht, P. E.

    2017-12-01

    The data rate from deep space spacecraft has increased by more than 10 orders of magnitude since the first lunar missions in the 1960s. The demand for increased data rates has stemmed from the increasing sophistication of the science questions being addressed and the concomitant increase in the complexity of the missions themselves (from fly-by to orbit to land and rove). Projections for the next few decades suggest the demand for data rates for deep space missions will continue to increase by approximately one order of magnitude every decade, driven by these same factors. Achieving higher data rates requires a partnership between the spacecraft and the ground system. We describe a series of technology developments for flight telecommunications systems, both at radio frequency (RF) and optical, to enable spacecraft to transmit and receive larger data volumes. These technology developments include deployable high gain antennas for small spacecraft, re-programmable software-defined radios, and optical communication packages designed for CubeSat form factors. The intent is that these developments would provide enhancements in capability for both spacecraft-Earth and spacecraft-spacecraft telecommunications. We also describe the future planning for NASA's Deep Space Network (DSN), which remains the prime conduit for data from all planetary science missions. Through a combination of new antennas and backends being installed over the next five years and incorporation of optical communications, the DSN aims to ensure that the historical improvements in data rates and volumes will continue for many decades. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  2. An intervention to decrease patient identification band errors in a children's hospital.

    Science.gov (United States)

    Hain, Paul D; Joers, B; Rush, M; Slayton, J; Throop, P; Hoagg, S; Allen, L; Grantham, J; Deshpande, J K

    2010-06-01

    Patient misidentification continues to be a quality and safety issue. There is a paucity of US data describing interventions to reduce identification band error rates. Monroe Carell Jr Children's Hospital at Vanderbilt. Percentage of patients with defective identification bands. Web-based surveys were sent, asking hospital personnel to anonymously identify perceived barriers to reaching zero defects with identification bands. Corrective action plans were created and implemented with ideas from leadership, front-line staff and the online survey. Data from unannounced audits of patient identification bands were plotted on statistical process control charts and shared monthly with staff. All hospital personnel were expected to "stop the line" if there were any patient identification questions. The first audit showed a defect rate of 20.4%. The original mean defect rate was 6.5%. After interventions and education, the new mean defect rate was 2.6%. (a) The initial rate of patient identification band errors in the hospital was higher than expected. (b) The action resulting in most significant improvement was staff awareness of the problem, with clear expectations to immediately stop the line if a patient identification error was present. (c) Staff surveys are an excellent source of suggestions for combating patient identification issues. (d) Continued audit and data collection is necessary for sustainable staff focus and continued improvement. (e) Statistical process control charts are both an effective method to track results and an easily understood tool for sharing data with staff.

  3. Analysis of family-wise error rates in statistical parametric mapping using random field theory.

    Science.gov (United States)

    Flandin, Guillaume; Friston, Karl J

    2017-11-01

    This technical report revisits the analysis of family-wise error rates in statistical parametric mapping-using random field theory-reported in (Eklund et al. []: arXiv 1511.01863). Contrary to the understandable spin that these sorts of analyses attract, a review of their results suggests that they endorse the use of parametric assumptions-and random field theory-in the analysis of functional neuroimaging data. We briefly rehearse the advantages parametric analyses offer over nonparametric alternatives and then unpack the implications of (Eklund et al. []: arXiv 1511.01863) for parametric procedures. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Error and its meaning in forensic science.

    Science.gov (United States)

    Christensen, Angi M; Crowder, Christian M; Ousley, Stephen D; Houck, Max M

    2014-01-01

    The discussion of "error" has gained momentum in forensic science in the wake of the Daubert guidelines and has intensified with the National Academy of Sciences' Report. Error has many different meanings, and too often, forensic practitioners themselves as well as the courts misunderstand scientific error and statistical error rates, often confusing them with practitioner error (or mistakes). Here, we present an overview of these concepts as they pertain to forensic science applications, discussing the difference between practitioner error (including mistakes), instrument error, statistical error, and method error. We urge forensic practitioners to ensure that potential sources of error and method limitations are understood and clearly communicated and advocate that the legal community be informed regarding the differences between interobserver errors, uncertainty, variation, and mistakes. © 2013 American Academy of Forensic Sciences.

  5. Improved Landau gauge fixing and discretisation errors

    International Nuclear Information System (INIS)

    Bonnet, F.D.R.; Bowman, P.O.; Leinweber, D.B.; Richards, D.G.; Williams, A.G.

    2000-01-01

    Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition displays the secondary benefit of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition

  6. Prescribing errors in a Brazilian neonatal intensive care unit

    Directory of Open Access Journals (Sweden)

    Ana Paula Cezar Machado

    2015-12-01

    Full Text Available Abstract Pediatric patients, especially those admitted to the neonatal intensive care unit (ICU, are highly vulnerable to medication errors. This study aimed to measure the prescription error rate in a university hospital neonatal ICU and to identify susceptible patients, types of errors, and the medicines involved. The variables related to medicines prescribed were compared to the Neofax prescription protocol. The study enrolled 150 newborns and analyzed 489 prescription order forms, with 1,491 medication items, corresponding to 46 drugs. Prescription error rate was 43.5%. Errors were found in dosage, intervals, diluents, and infusion time, distributed across 7 therapeutic classes. Errors were more frequent in preterm newborns. Diluent and dosing were the most frequent sources of errors. The therapeutic classes most involved in errors were antimicrobial agents and drugs that act on the nervous and cardiovascular systems.

  7. Effects of categorization method, regression type, and variable distribution on the inflation of Type-I error rate when categorizing a confounding variable.

    Science.gov (United States)

    Barnwell-Ménard, Jean-Louis; Li, Qing; Cohen, Alan A

    2015-03-15

    The loss of signal associated with categorizing a continuous variable is well known, and previous studies have demonstrated that this can lead to an inflation of Type-I error when the categorized variable is a confounder in a regression analysis estimating the effect of an exposure on an outcome. However, it is not known how the Type-I error may vary under different circumstances, including logistic versus linear regression, different distributions of the confounder, and different categorization methods. Here, we analytically quantified the effect of categorization and then performed a series of 9600 Monte Carlo simulations to estimate the Type-I error inflation associated with categorization of a confounder under different regression scenarios. We show that Type-I error is unacceptably high (>10% in most scenarios and often 100%). The only exception was when the variable categorized was a continuous mixture proxy for a genuinely dichotomous latent variable, where both the continuous proxy and the categorized variable are error-ridden proxies for the dichotomous latent variable. As expected, error inflation was also higher with larger sample size, fewer categories, and stronger associations between the confounder and the exposure or outcome. We provide online tools that can help researchers estimate the potential error inflation and understand how serious a problem this is. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Internal consistency, test-retest reliability and measurement error of the self-report version of the social skills rating system in a sample of Australian adolescents.

    Directory of Open Access Journals (Sweden)

    Sharmila Vaz

    Full Text Available The social skills rating system (SSRS is used to assess social skills and competence in children and adolescents. While its characteristics based on United States samples (US are published, corresponding Australian figures are unavailable. Using a 4-week retest design, we examined the internal consistency, retest reliability and measurement error (ME of the SSRS secondary student form (SSF in a sample of Year 7 students (N = 187, from five randomly selected public schools in Perth, western Australia. Internal consistency (IC of the total scale and most subscale scores (except empathy on the frequency rating scale was adequate to permit independent use. On the importance rating scale, most IC estimates for girls fell below the benchmark. Test-retest estimates of the total scale and subscales were insufficient to permit reliable use. ME of the total scale score (frequency rating for boys was equivalent to the US estimate, while that for girls was lower than the US error. ME of the total scale score (importance rating was larger than the error using the frequency rating scale. The study finding supports the idea of using multiple informants (e.g. teacher and parent reports, not just student as recommended in the manual. Future research needs to substantiate the clinical meaningfulness of the MEs calculated in this study by corroborating them against the respective Minimum Clinically Important Difference (MCID.

  9. Internal consistency, test-retest reliability and measurement error of the self-report version of the social skills rating system in a sample of Australian adolescents.

    Science.gov (United States)

    Vaz, Sharmila; Parsons, Richard; Passmore, Anne Elizabeth; Andreou, Pantelis; Falkmer, Torbjörn

    2013-01-01

    The social skills rating system (SSRS) is used to assess social skills and competence in children and adolescents. While its characteristics based on United States samples (US) are published, corresponding Australian figures are unavailable. Using a 4-week retest design, we examined the internal consistency, retest reliability and measurement error (ME) of the SSRS secondary student form (SSF) in a sample of Year 7 students (N = 187), from five randomly selected public schools in Perth, western Australia. Internal consistency (IC) of the total scale and most subscale scores (except empathy) on the frequency rating scale was adequate to permit independent use. On the importance rating scale, most IC estimates for girls fell below the benchmark. Test-retest estimates of the total scale and subscales were insufficient to permit reliable use. ME of the total scale score (frequency rating) for boys was equivalent to the US estimate, while that for girls was lower than the US error. ME of the total scale score (importance rating) was larger than the error using the frequency rating scale. The study finding supports the idea of using multiple informants (e.g. teacher and parent reports), not just student as recommended in the manual. Future research needs to substantiate the clinical meaningfulness of the MEs calculated in this study by corroborating them against the respective Minimum Clinically Important Difference (MCID).

  10. SIMulation of Medication Error induced by Clinical Trial drug labeling: the SIMME-CT study.

    Science.gov (United States)

    Dollinger, Cecile; Schwiertz, Vérane; Sarfati, Laura; Gourc-Berthod, Chloé; Guédat, Marie-Gabrielle; Alloux, Céline; Vantard, Nicolas; Gauthier, Noémie; He, Sophie; Kiouris, Elena; Caffin, Anne-Gaelle; Bernard, Delphine; Ranchon, Florence; Rioufol, Catherine

    2016-06-01

    To assess the impact of investigational drug labels on the risk of medication error in drug dispensing. A simulation-based learning program focusing on investigational drug dispensing was conducted. The study was undertaken in an Investigational Drugs Dispensing Unit of a University Hospital of Lyon, France. Sixty-three pharmacy workers (pharmacists, residents, technicians or students) were enrolled. Ten risk factors were selected concerning label information or the risk of confusion with another clinical trial. Each risk factor was scored independently out of 5: the higher the score, the greater the risk of error. From 400 labels analyzed, two groups were selected for the dispensing simulation: 27 labels with high risk (score ≥3) and 27 with low risk (score ≤2). Each question in the learning program was displayed as a simulated clinical trial prescription. Medication error was defined as at least one erroneous answer (i.e. error in drug dispensing). For each question, response times were collected. High-risk investigational drug labels correlated with medication error and slower response time. Error rates were significantly 5.5-fold higher for high-risk series. Error frequency was not significantly affected by occupational category or experience in clinical trials. SIMME-CT is the first simulation-based learning tool to focus on investigational drug labels as a risk factor for medication error. SIMME-CT was also used as a training tool for staff involved in clinical research, to develop medication error risk awareness and to validate competence in continuing medical education. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  11. Continuous quantum error correction for non-Markovian decoherence

    International Nuclear Information System (INIS)

    Oreshkov, Ognyan; Brun, Todd A.

    2007-01-01

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximately follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics

  12. United States private schools have higher rates of exemptions to school immunization requirements than public schools.

    Science.gov (United States)

    Shaw, Jana; Tserenpuntsag, Boldtsetseg; McNutt, Louise-Anne; Halsey, Neal

    2014-07-01

    To compare medical, religious, and personal belief immunization exemption rates between private and public schools in US. Exemption rates were calculated using the Centers for Disease Control and Prevention School Immunization Assessment Surveys for the 2009-2010 school year excluding states with incomplete survey data. Standardized exemption rates weighted on enrollments in public and private schools were calculated. Differences in exemption rates between public and private schools were tested using Wilcoxon signed rank test. The overall state exemption rate was higher in US private than public schools, 4.25% (SD 4.27) vs 1.91% (1.67), P = .0001 and private schools had higher exemption rates for all types of exemptions; medical 0.58% (0.71) vs 0.34% (0.34) respectively (P = .0004), religious 2.09% (3.14) vs 0.83% (1.05) respectively (P = .0001), and personal belief 6.10% (4.12) vs 2.79% (1.57), respectively (P = .006). Overall exemption rates were significantly higher in states that allowed personal belief exemptions. Exemption rates were significantly higher in US private than in public schools. Children attending private schools may be at higher risk of vaccine-preventable diseases than public school children. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Error analysis to improve the speech recognition accuracy on ...

    Indian Academy of Sciences (India)

    dictionary plays a key role in the speech recognition accuracy. .... Sophisticated microphone is used for the recording speech corpus in a noise free environment. .... values, word error rate (WER) and error-rate will be calculated as follows:.

  14. English word frequency and recognition in bilinguals: Inter-corpus comparison and error analysis.

    Science.gov (United States)

    Shi, Lu-Feng

    2015-01-01

    This study is the second of a two-part investigation on lexical effects on bilinguals' performance on a clinical English word recognition test. Focus is on word-frequency effects using counts provided by four corpora. Frequency of occurrence was obtained for 200 NU-6 words from the Hoosier mental lexicon (HML) and three contemporary corpora, American National Corpora, Hyperspace analogue to language (HAL), and SUBTLEX(US). Correlation analysis was performed between word frequency and error rate. Ten monolinguals and 30 bilinguals participated. Bilinguals were further grouped according to their age of English acquisition and length of schooling/working in English. Word frequency significantly affected word recognition in bilinguals who acquired English late and had limited schooling/working in English. When making errors, bilinguals tended to replace the target word with a word of a higher frequency. Overall, the newer corpora outperformed the HML in predicting error rate. Frequency counts provided by contemporary corpora predict bilinguals' recognition of English monosyllabic words. Word frequency also helps explain top replacement words for misrecognized targets. Word-frequency effects are especially prominent for bilinguals foreign born and educated.

  15. Downlink Error Rates of Half-duplex Users in Full-duplex Networks over a Laplacian Inter-User Interference Limited and EGK fading

    KAUST Repository

    Soury, Hamza; Elsawy, Hesham; Alouini, Mohamed-Slim

    2017-01-01

    This paper develops a mathematical framework to study downlink error rates and throughput for half-duplex (HD) terminals served by a full-duplex (FD) base station (BS). The developed model is used to motivate long term pairing for users that have

  16. Naming game with learning errors in communications

    OpenAIRE

    Lou, Yang; Chen, Guanrong

    2014-01-01

    Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network topology. By pair-wise iterative interactions, the population reaches a consensus state asymptotically. In this paper, we study naming game with communication errors during pair-wise conversations, where errors are represented by error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed....

  17. Vastus Lateralis Motor Unit Firing Rate Is Higher in Women With Patellofemoral Pain.

    Science.gov (United States)

    Gallina, Alessio; Hunt, Michael A; Hodges, Paul W; Garland, S Jayne

    2018-05-01

    To compare neural drive, determined from motor unit firing rate, in the vastus medialis and lateralis in women with and without patellofemoral pain. Cross-sectional study. University research laboratory. Women (N=56) 19 to 35 years of age, including 36 with patellofemoral pain and 20 controls. Not applicable. Participants sustained an isometric knee extension contraction at 10% of their maximal voluntary effort for 70 seconds. Motor units (N=414) were identified using high-density surface electromyography. Average firing rate was calculated between 5 and 35 seconds after recruitment for each motor unit. Initial firing rate was the inverse of the first 3 motor unit interspike intervals. In control participants, vastus medialis motor units discharged at higher rates than vastus lateralis motor units (P=.001). This was not observed in women with patellofemoral pain (P=.78) because of a higher discharge rate of vastus lateralis compared with control participants (P=.002). No between-group differences were observed for vastus medialis (P=.93). Similar results were obtained for the initial motor unit firing rate. These findings suggest that women with patellofemoral pain have a higher neural drive to vastus lateralis but not vastus medialis, which may be a contributor of the altered patellar kinematics observed in some studies. The different neural drive may be an adaptation to patellofemoral pain, possibly to compensate for decreased quadriceps force production, or a precursor of patellofemoral pain. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes

    Science.gov (United States)

    Jing, Lin; Brun, Todd; Quantum Research Team

    Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.

  19. Haplotype reconstruction error as a classical misclassification problem: introducing sensitivity and specificity as error measures.

    Directory of Open Access Journals (Sweden)

    Claudia Lamina

    Full Text Available BACKGROUND: Statistically reconstructing haplotypes from single nucleotide polymorphism (SNP genotypes, can lead to falsely classified haplotypes. This can be an issue when interpreting haplotype association results or when selecting subjects with certain haplotypes for subsequent functional studies. It was our aim to quantify haplotype reconstruction error and to provide tools for it. METHODS AND RESULTS: By numerous simulation scenarios, we systematically investigated several error measures, including discrepancy, error rate, and R(2, and introduced the sensitivity and specificity to this context. We exemplified several measures in the KORA study, a large population-based study from Southern Germany. We find that the specificity is slightly reduced only for common haplotypes, while the sensitivity was decreased for some, but not all rare haplotypes. The overall error rate was generally increasing with increasing number of loci, increasing minor allele frequency of SNPs, decreasing correlation between the alleles and increasing ambiguity. CONCLUSIONS: We conclude that, with the analytical approach presented here, haplotype-specific error measures can be computed to gain insight into the haplotype uncertainty. This method provides the information, if a specific risk haplotype can be expected to be reconstructed with rather no or high misclassification and thus on the magnitude of expected bias in association estimates. We also illustrate that sensitivity and specificity separate two dimensions of the haplotype reconstruction error, which completely describe the misclassification matrix and thus provide the prerequisite for methods accounting for misclassification.

  20. Advancing the research agenda for diagnostic error reduction.

    Science.gov (United States)

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  1. Energy efficiency of error correction on wireless systems

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    1999-01-01

    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software.

  2. A web-based team-oriented medical error communication assessment tool: development, preliminary reliability, validity, and user ratings.

    Science.gov (United States)

    Kim, Sara; Brock, Doug; Prouty, Carolyn D; Odegard, Peggy Soule; Shannon, Sarah E; Robins, Lynne; Boggs, Jim G; Clark, Fiona J; Gallagher, Thomas

    2011-01-01

    Multiple-choice exams are not well suited for assessing communication skills. Standardized patient assessments are costly and patient and peer assessments are often biased. Web-based assessment using video content offers the possibility of reliable, valid, and cost-efficient means for measuring complex communication skills, including interprofessional communication. We report development of the Web-based Team-Oriented Medical Error Communication Assessment Tool, which uses videotaped cases for assessing skills in error disclosure and team communication. Steps in development included (a) defining communication behaviors, (b) creating scenarios, (c) developing scripts, (d) filming video with professional actors, and (e) writing assessment questions targeting team communication during planning and error disclosure. Using valid data from 78 participants in the intervention group, coefficient alpha estimates of internal consistency were calculated based on the Likert-scale questions and ranged from α=.79 to α=.89 for each set of 7 Likert-type discussion/planning items and from α=.70 to α=.86 for each set of 8 Likert-type disclosure items. The preliminary test-retest Pearson correlation based on the scores of the intervention group was r=.59 for discussion/planning and r=.25 for error disclosure sections, respectively. Content validity was established through reliance on empirically driven published principles of effective disclosure as well as integration of expert views across all aspects of the development process. In addition, data from 122 medicine and surgical physicians and nurses showed high ratings for video quality (4.3 of 5.0), acting (4.3), and case content (4.5). Web assessment of communication skills appears promising. Physicians and nurses across specialties respond favorably to the tool.

  3. Prevalence, Nature, Severity and Risk Factors for Prescribing Errors in Hospital Inpatients: Prospective Study in 20 UK Hospitals.

    Science.gov (United States)

    Ashcroft, Darren M; Lewis, Penny J; Tully, Mary P; Farragher, Tracey M; Taylor, David; Wass, Valerie; Williams, Steven D; Dornan, Tim

    2015-09-01

    It has been suggested that doctors in their first year of post-graduate training make a disproportionate number of prescribing errors. This study aimed to compare the prevalence of prescribing errors made by first-year post-graduate doctors with that of errors by senior doctors and non-medical prescribers and to investigate the predictors of potentially serious prescribing errors. Pharmacists in 20 hospitals over 7 prospectively selected days collected data on the number of medication orders checked, the grade of prescriber and details of any prescribing errors. Logistic regression models (adjusted for clustering by hospital) identified factors predicting the likelihood of prescribing erroneously and the severity of prescribing errors. Pharmacists reviewed 26,019 patients and 124,260 medication orders; 11,235 prescribing errors were detected in 10,986 orders. The mean error rate was 8.8 % (95 % confidence interval [CI] 8.6-9.1) errors per 100 medication orders. Rates of errors for all doctors in training were significantly higher than rates for medical consultants. Doctors who were 1 year (odds ratio [OR] 2.13; 95 % CI 1.80-2.52) or 2 years in training (OR 2.23; 95 % CI 1.89-2.65) were more than twice as likely to prescribe erroneously. Prescribing errors were 70 % (OR 1.70; 95 % CI 1.61-1.80) more likely to occur at the time of hospital admission than when medication orders were issued during the hospital stay. No significant differences in severity of error were observed between grades of prescriber. Potentially serious errors were more likely to be associated with prescriptions for parenteral administration, especially for cardiovascular or endocrine disorders. The problem of prescribing errors in hospitals is substantial and not solely a problem of the most junior medical prescribers, particularly for those errors most likely to cause significant patient harm. Interventions are needed to target these high-risk errors by all grades of staff and hence

  4. Electronic prescribing reduces prescribing error in public hospitals.

    Science.gov (United States)

    Shawahna, Ramzi; Rahman, Nisar-Ur; Ahmad, Mahmood; Debray, Marcel; Yliperttula, Marjo; Declèves, Xavier

    2011-11-01

    To examine the incidence of prescribing errors in a main public hospital in Pakistan and to assess the impact of introducing electronic prescribing system on the reduction of their incidence. Medication errors are persistent in today's healthcare system. The impact of electronic prescribing on reducing errors has not been tested in developing world. Prospective review of medication and discharge medication charts before and after the introduction of an electronic inpatient record and prescribing system. Inpatient records (n = 3300) and 1100 discharge medication sheets were reviewed for prescribing errors before and after the installation of electronic prescribing system in 11 wards. Medications (13,328 and 14,064) were prescribed for inpatients, among which 3008 and 1147 prescribing errors were identified, giving an overall error rate of 22·6% and 8·2% throughout paper-based and electronic prescribing, respectively. Medications (2480 and 2790) were prescribed for discharge patients, among which 418 and 123 errors were detected, giving an overall error rate of 16·9% and 4·4% during paper-based and electronic prescribing, respectively. Electronic prescribing has a significant effect on the reduction of prescribing errors. Prescribing errors are commonplace in Pakistan public hospitals. The study evaluated the impact of introducing electronic inpatient records and electronic prescribing in the reduction of prescribing errors in a public hospital in Pakistan. © 2011 Blackwell Publishing Ltd.

  5. Social deviance activates the brain's error-monitoring system.

    Science.gov (United States)

    Kim, Bo-Rin; Liss, Alison; Rao, Monica; Singer, Zachary; Compton, Rebecca J

    2012-03-01

    Social psychologists have long noted the tendency for human behavior to conform to social group norms. This study examined whether feedback indicating that participants had deviated from group norms would elicit a neural signal previously shown to be elicited by errors and monetary losses. While electroencephalograms were recorded, participants (N = 30) rated the attractiveness of 120 faces and received feedback giving the purported average rating made by a group of peers. The feedback was manipulated so that group ratings either were the same as a participant's rating or deviated by 1, 2, or 3 points. Feedback indicating deviance from the group norm elicited a feedback-related negativity, a brainwave signal known to be elicited by objective performance errors and losses. The results imply that the brain treats deviance from social norms as an error.

  6. An information-guided channel-hopping scheme for block-fading channels with estimation errors

    KAUST Repository

    Yang, Yuli

    2010-12-01

    Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.

  7. Measuring Error Identification and Recovery Skills in Surgical Residents.

    Science.gov (United States)

    Sternbach, Joel M; Wang, Kevin; El Khoury, Rym; Teitelbaum, Ezra N; Meyerson, Shari L

    2017-02-01

    Although error identification and recovery skills are essential for the safe practice of surgery, they have not traditionally been taught or evaluated in residency training. This study validates a method for assessing error identification and recovery skills in surgical residents using a thoracoscopic lobectomy simulator. We developed a 5-station, simulator-based examination containing the most commonly encountered cognitive and technical errors occurring during division of the superior pulmonary vein for left upper lobectomy. Successful completion of each station requires identification and correction of these errors. Examinations were video recorded and scored in a blinded fashion using an examination-specific rating instrument evaluating task performance as well as error identification and recovery skills. Evidence of validity was collected in the categories of content, response process, internal structure, and relationship to other variables. Fifteen general surgical residents (9 interns and 6 third-year residents) completed the examination. Interrater reliability was high, with an intraclass correlation coefficient of 0.78 between 4 trained raters. Station scores ranged from 64% to 84% correct. All stations adequately discriminated between high- and low-performing residents, with discrimination ranging from 0.35 to 0.65. The overall examination score was significantly higher for intermediate residents than for interns (mean, 74 versus 64 of 90 possible; p = 0.03). The described simulator-based examination with embedded errors and its accompanying assessment tool can be used to measure error identification and recovery skills in surgical residents. This examination provides a valid method for comparing teaching strategies designed to improve error recognition and recovery to enhance patient safety. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. [Prospective assessment of medication errors in critically ill patients in a university hospital].

    Science.gov (United States)

    Salazar L, Nicole; Jirón A, Marcela; Escobar O, Leslie; Tobar, Eduardo; Romero, Carlos

    2011-11-01

    Critically ill patients are especially vulnerable to medication errors (ME) due to their severe clinical situation and the complexities of their management. To determine the frequency and characteristics of ME and identify shortcomings in the processes of medication management in an Intensive Care Unit. During a 3 months period, an observational prospective and randomized study was carried out in the ICU of a university hospital. Every step of patient's medication management (prescription, transcription, dispensation, preparation and administration) was evaluated by an external trained professional. Steps with higher frequency of ME and their therapeutic groups involved were identified. Medications errors were classified according to the National Coordinating Council for Medication Error Reporting and Prevention. In 52 of 124 patients evaluated, 66 ME were found in 194 drugs prescribed. In 34% of prescribed drugs, there was at least 1 ME during its use. Half of ME occurred during medication administration, mainly due to problems in infusion rates and schedule times. Antibacterial drugs had the highest rate of ME. We found a 34% rate of ME per drug prescribed, which is in concordance with international reports. The identification of those steps more prone to ME in the ICU, will allow the implementation of an intervention program to improve the quality and security of medication management.

  9. Reverse Transcription Errors and RNA-DNA Differences at Short Tandem Repeats.

    Science.gov (United States)

    Fungtammasan, Arkarachai; Tomaszkiewicz, Marta; Campos-Sánchez, Rebeca; Eckert, Kristin A; DeGiorgio, Michael; Makova, Kateryna D

    2016-10-01

    Transcript variation has important implications for organismal function in health and disease. Most transcriptome studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript variants, or RNA-DNA differences (RDDs). Such variation has been understudied, in part because its detection is obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base substitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have important implications for medical genomics, as STR allelic variation is associated with >40 diseases. STR nonallelic transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to evaluate the probability of disease-associated transcripts arising due to RDD. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Optimization of intelligent infusion pump technology to minimize vasopressor pump programming errors.

    Science.gov (United States)

    Vadiei, Nina; Shuman, Carrie A; Murthy, Manasa S; Daley, Mitchell J

    2017-08-01

    There is a lack of data evaluating the impact of hard limit implementation into intelligent infusion pump technology (IIPT). The purpose of this study was to determine if incorporation of vasopressor upper hard limits (UHL) into IIPT increases efficacy of alerts by preventing pump programming errors. Retrospective review from five hospitals within a single healthcare network between April 1, 2013 and May 31, 2014. A total of 65,680 vasopressor data entries were evaluated; 19,377 prior to hard limit implementation and 46,303 after hard limit implementation. The primary outcome was the percent of effective alerts. The secondary outcome was the proportional dose increase from the soft limit provided. A reduction in alert rate occurred after incorporation of hard limits to the IIPT drug library (pre-UHL 4.7% vs. post-UHL 4.0%) with a subsequent increase in the number of errors prevented as represented by a higher effective alert rate (pre-UHL 23.0% vs. post-UHL 37.3%; p < 0.001). The proportional dose increase was significantly reduced (pre-UHL 188% ± 380%] vs. post-UHL 95% ± 128%; p < 0.001). Incorporation of UHLs into IIPT in a multi-site health system with varying intensive care unit and emergency department acuity increases alert effectiveness, reduces dosing errors, and reduces the magnitude of dosing errors that reach the patient.

  11. Prescribing errors during hospital inpatient care: factors influencing identification by pharmacists.

    Science.gov (United States)

    Tully, Mary P; Buchan, Iain E

    2009-12-01

    To investigate the prevalence of prescribing errors identified by pharmacists in hospital inpatients and the factors influencing error identification rates by pharmacists throughout hospital admission. 880-bed university teaching hospital in North-west England. Data about prescribing errors identified by pharmacists (median: 9 (range 4-17) collecting data per day) when conducting routine work were prospectively recorded on 38 randomly selected days over 18 months. Proportion of new medication orders in which an error was identified; predictors of error identification rate, adjusted for workload and seniority of pharmacist, day of week, type of ward or stage of patient admission. 33,012 new medication orders were reviewed for 5,199 patients; 3,455 errors (in 10.5% of orders) were identified for 2,040 patients (39.2%; median 1, range 1-12). Most were problem orders (1,456, 42.1%) or potentially significant errors (1,748, 50.6%); 197 (5.7%) were potentially serious; 1.6% (n = 54) were potentially severe or fatal. Errors were 41% (CI: 28-56%) more likely to be identified at patient's admission than at other times, independent of confounders. Workload was the strongest predictor of error identification rates, with 40% (33-46%) less errors identified on the busiest days than at other times. Errors identified fell by 1.9% (1.5-2.3%) for every additional chart checked, independent of confounders. Pharmacists routinely identify errors but increasing workload may reduce identification rates. Where resources are limited, they may be better spent on identifying and addressing errors immediately after admission to hospital.

  12. Organizational safety culture and medical error reporting by Israeli nurses.

    Science.gov (United States)

    Kagan, Ilya; Barnoy, Sivia

    2013-09-01

    To investigate the association between patient safety culture (PSC) and the incidence and reporting rate of medical errors by Israeli nurses. Self-administered structured questionnaires were distributed to a convenience sample of 247 registered nurses enrolled in training programs at Tel Aviv University (response rate = 91%). The questionnaire's three sections examined the incidence of medication mistakes in clinical practice, the reporting rate for these errors, and the participants' views and perceptions of the safety culture in their workplace at three levels (organizational, departmental, and individual performance). Pearson correlation coefficients, t tests, and multiple regression analysis were used to analyze the data. Most nurses encountered medical errors from a daily to a weekly basis. Six percent of the sample never reported their own errors, while half reported their own errors "rarely or sometimes." The level of PSC was positively and significantly correlated with the error reporting rate. PSC, place of birth, error incidence, and not having an academic nursing degree were significant predictors of error reporting, together explaining 28% of variance. This study confirms the influence of an organizational safety climate on readiness to report errors. Senior healthcare executives and managers can make a major impact on safety culture development by creating and promoting a vision and strategy for quality and safety and fostering their employees' motivation to implement improvement programs at the departmental and individual level. A positive, carefully designed organizational safety culture can encourage error reporting by staff and so improve patient safety. © 2013 Sigma Theta Tau International.

  13. The impact of treatment complexity and computer-control delivery technology on treatment delivery errors

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; Lash, Kathy L.; Matrone, Gwynne M.; Volkman, Susan K.; McShan, Daniel L.; Kessler, Marc L.; Lichter, Allen S.

    1998-01-01

    machines. Results: The overall reported error rate (all treatments, machines) was 0.13% per segment, or 0.44% per treatment session. The rate (per machine) depended on automation and plan complexity. The error rates per segment for machines M1 through M4 were 0.16%, 0.27%, 0.12%, 0.05%, respectively, while plan complexity increased from M1 up to machine M4. Machine M4 (the most complex plans and automation) had the lowest error rate. The error rate decreased with increasing automation in spite of increasing plan complexity, while for the manual machines, the error rate increased with complexity. Note that the real error rates on the two manual machines are likely to be higher than shown here (due to unnoticed and/or unreported errors), while (particularly on M4) virtually all random treatment delivery errors were noted by the CCRS system and related QA checks (including routine checks of machine and table readouts for each treatment). Treatment delivery times averaged from 14 min to 23 min per plan, and depended on the number of segments/plan, although this analysis is complicated by other factors. Conclusion: Use of a sophisticated computer-controlled delivery system for routine patient treatments with complex 3D conformal plans has led to a decrease in treatment delivery errors, while at the same time allowing delivery of increasingly complex and sophisticated conformal plans with little increase in treatment time. With renewed vigilance for the possibility of systematic problems, it is clear that use of complete and integrated computer-controlled delivery systems can provide improvements in treatment delivery, since more complex plans can be delivered with fewer errors, and without increasing treatment time

  14. System care improves trauma outcome: patient care errors dominate reduced preventable death rate.

    Science.gov (United States)

    Thoburn, E; Norris, P; Flores, R; Goode, S; Rodriguez, E; Adams, V; Campbell, S; Albrink, M; Rosemurgy, A

    1993-01-01

    A review of 452 trauma deaths in Hillsborough County, Florida, in 1984 documented that 23% of non-CNS trauma deaths were preventable and occurred because of inadequate resuscitation or delay in proper surgical care. In late 1988 Hillsborough County organized a County Trauma Agency (HCTA) to coordinate trauma care among prehospital providers and state-designated trauma centers. The purpose of this study was to review county trauma deaths after the inception of the HCTA to determine the frequency of preventable deaths. 504 trauma deaths occurring between October 1989 and April 1991 were reviewed. Through committee review, 10 deaths were deemed preventable; 2 occurred outside the trauma system. Of the 10 deaths, 5 preventable deaths occurred late in severely injured patients. The preventable death rate has decreased to 7.0% with system care. The causes of preventable deaths have changed from delayed or inadequate intervention to postoperative care errors.

  15. Error-related brain activity and error awareness in an error classification paradigm.

    Science.gov (United States)

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A higher chest compression rate may be necessary for metronome-guided cardiopulmonary resuscitation.

    Science.gov (United States)

    Chung, Tae Nyoung; Kim, Sun Wook; You, Je Sung; Cho, Young Soon; Chung, Sung Phil; Park, Incheol

    2012-01-01

    Metronome guidance is a simple and economical feedback system for guiding cardiopulmonary resuscitation (CPR). However, a recent study showed that metronome guidance reduced the depth of chest compression. The results of previous studies suggest that a higher chest compression rate is associated with a better CPR outcome as compared with a lower chest compression rate, irrespective of metronome use. Based on this finding, we hypothesized that a lower chest compression rate promotes a reduction in chest compression depth in the recent study rather than metronome use itself. One minute of chest compression-only CPR was performed following the metronome sound played at 1 of 4 different rates: 80, 100, 120, and 140 ticks/min. Average compression depths (ACDs) and duty cycles were compared using repeated measures analysis of variance, and the values in the absence and presence of metronome guidance were compared. Both the ACD and duty cycle increased when the metronome rate increased (P = .017, metronome rates of 80 and 100 ticks/min were significantly lower than those for the procedures without metronome guidance. The ACD and duty cyle for chest compression increase as the metronome rate increases during metronome-guided CPR. A higher rate of chest compression is necessary for metronome-guided CPR to prevent suboptimal quality of chest compression. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Selection of anchor values for human error probability estimation

    International Nuclear Information System (INIS)

    Buffardi, L.C.; Fleishman, E.A.; Allen, J.A.

    1989-01-01

    There is a need for more dependable information to assist in the prediction of human errors in nuclear power environments. The major objective of the current project is to establish guidelines for using error probabilities from other task settings to estimate errors in the nuclear environment. This involves: (1) identifying critical nuclear tasks, (2) discovering similar tasks in non-nuclear environments, (3) finding error data for non-nuclear tasks, and (4) establishing error-rate values for the nuclear tasks based on the non-nuclear data. A key feature is the application of a classification system to nuclear and non-nuclear tasks to evaluate their similarities and differences in order to provide a basis for generalizing human error estimates across tasks. During the first eight months of the project, several classification systems have been applied to a sample of nuclear tasks. They are discussed in terms of their potential for establishing task equivalence and transferability of human error rates across situations

  18. Rates of medical errors and preventable adverse events among hospitalized children following implementation of a resident handoff bundle.

    Science.gov (United States)

    Starmer, Amy J; Sectish, Theodore C; Simon, Dennis W; Keohane, Carol; McSweeney, Maireade E; Chung, Erica Y; Yoon, Catherine S; Lipsitz, Stuart R; Wassner, Ari J; Harper, Marvin B; Landrigan, Christopher P

    2013-12-04

    Handoff miscommunications are a leading cause of medical errors. Studies comprehensively assessing handoff improvement programs are lacking. To determine whether introduction of a multifaceted handoff program was associated with reduced rates of medical errors and preventable adverse events, fewer omissions of key data in written handoffs, improved verbal handoffs, and changes in resident-physician workflow. Prospective intervention study of 1255 patient admissions (642 before and 613 after the intervention) involving 84 resident physicians (42 before and 42 after the intervention) from July-September 2009 and November 2009-January 2010 on 2 inpatient units at Boston Children's Hospital. Resident handoff bundle, consisting of standardized communication and handoff training, a verbal mnemonic, and a new team handoff structure. On one unit, a computerized handoff tool linked to the electronic medical record was introduced. The primary outcomes were the rates of medical errors and preventable adverse events measured by daily systematic surveillance. The secondary outcomes were omissions in the printed handoff document and resident time-motion activity. Medical errors decreased from 33.8 per 100 admissions (95% CI, 27.3-40.3) to 18.3 per 100 admissions (95% CI, 14.7-21.9; P < .001), and preventable adverse events decreased from 3.3 per 100 admissions (95% CI, 1.7-4.8) to 1.5 (95% CI, 0.51-2.4) per 100 admissions (P = .04) following the intervention. There were fewer omissions of key handoff elements on printed handoff documents, especially on the unit that received the computerized handoff tool (significant reductions of omissions in 11 of 14 categories with computerized tool; significant reductions in 2 of 14 categories without computerized tool). Physicians spent a greater percentage of time in a 24-hour period at the patient bedside after the intervention (8.3%; 95% CI 7.1%-9.8%) vs 10.6% (95% CI, 9.2%-12.2%; P = .03). The average duration of verbal

  19. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun

    2013-01-01

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta power ratio is

  20. Quantification of human errors in level-1 PSA studies in NUPEC/JINS

    International Nuclear Information System (INIS)

    Hirano, M.; Hirose, M.; Sugawara, M.; Hashiba, T.

    1991-01-01

    THERP (Technique for Human Error Rate Prediction) method is mainly adopted to evaluate the pre-accident and post-accident human error rates. Performance shaping factors are derived by taking Japanese operational practice into account. Several examples of human error rates with calculational procedures are presented. The important human interventions of typical Japanese NPPs are also presented. (orig./HP)

  1. Tropical systematic and random error energetics based on NCEP ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Systematic error growth rate peak is observed at wavenumber 2 up to 4-day forecast then .... the influence of summer systematic error and ran- ... total exchange. When the error energy budgets are examined in spectral domain, one may ask ques- tions on the error growth at a certain wavenum- ber from its interaction with ...

  2. Discretisation errors in Landau gauge on the lattice

    International Nuclear Information System (INIS)

    Bonnet DR, Frederic; Bowman O, Patrick; Leinweber B, Derek; Williams G, Anthony; Richards G, David G.

    1999-01-01

    Lattice discretization errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasize the importance of implementing an improved gauge fixing condition

  3. Retinal dysfunction and refractive errors: an electrophysiological study of children

    Science.gov (United States)

    Flitcroft, D I; Adams, G G W; Robson, A G; Holder, G E

    2005-01-01

    Aims: To evaluate the relation between refractive error and electrophysiological retinal abnormalities in children referred for investigation of reduced vision. Methods: The study group comprised 123 consecutive patients referred over a 14 month period from the paediatric service of Moorfields Eye Hospital for electrophysiological investigation of reduced vision. Subjects were divided into five refractive categories according to their spectacle correction: high myopia (⩽−6D), low myopia (>−6D and ⩽−0.75D), emmetropia (>−0.75 and 1.5D) and ERG abnormalities (18/35 with high astigmatism v 20/88 without, χ2 test, p = 0.002). There was no significant variation in frequency of abnormalities between low myopes, emmetropes, and low hyperopes. The rate of abnormalities was very similar in both high myopes (8/15) and high hyperopes (5/10). Conclusions: High ametropia and astigmatism in children being investigated for poor vision are associated with a higher rate of retinal electrophysiological abnormalities. An increased rate of refractive errors in the presence of retinal pathology is consistent with the hypothesis that the retina is involved in the process of emmetropisation. Electrophysiological testing should be considered in cases of high ametropia in childhood to rule out associated retinal pathology. PMID:15774929

  4. Energy efficiency of error correcting mechanisms for wireless communications

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    We consider the energy efficiency of error control mechanisms for wireless communication. Since high error rates are inevitable to the wireless environment, energy efficient error control is an important issue for mobile computing systems. Although good designed retransmission schemes can be optimal

  5. Compact disk error measurements

    Science.gov (United States)

    Howe, D.; Harriman, K.; Tehranchi, B.

    1993-01-01

    The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.

  6. Forward error correction based on algebraic-geometric theory

    CERN Document Server

    A Alzubi, Jafar; M Chen, Thomas

    2014-01-01

    This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

  7. Analysis of errors in forensic science

    Directory of Open Access Journals (Sweden)

    Mingxiao Du

    2017-01-01

    Full Text Available Reliability of expert testimony is one of the foundations of judicial justice. Both expert bias and scientific errors affect the reliability of expert opinion, which in turn affects the trustworthiness of the findings of fact in legal proceedings. Expert bias can be eliminated by replacing experts; however, it may be more difficult to eliminate scientific errors. From the perspective of statistics, errors in operation of forensic science include systematic errors, random errors, and gross errors. In general, process repetition and abiding by the standard ISO/IEC:17025: 2005, general requirements for the competence of testing and calibration laboratories, during operation are common measures used to reduce errors that originate from experts and equipment, respectively. For example, to reduce gross errors, the laboratory can ensure that a test is repeated several times by different experts. In applying for forensic principles and methods, the Federal Rules of Evidence 702 mandate that judges consider factors such as peer review, to ensure the reliability of the expert testimony. As the scientific principles and methods may not undergo professional review by specialists in a certain field, peer review serves as an exclusive standard. This study also examines two types of statistical errors. As false-positive errors involve a higher possibility of an unfair decision-making, they should receive more attention than false-negative errors.

  8. The Nature of Error in Adolescent Student Writing

    Science.gov (United States)

    Wilcox, Kristen Campbell; Yagelski, Robert; Yu, Fang

    2014-01-01

    This study examined the nature and frequency of error in high school native English speaker (L1) and English learner (L2) writing. Four main research questions were addressed: Are there significant differences in students' error rates in English language arts (ELA) and social studies? Do the most common errors made by students differ in ELA…

  9. Discretisation errors in Landau gauge on the lattice

    International Nuclear Information System (INIS)

    Bonnet, F.D.R.; Bowmen, P.O.; Leinweber, D.B.

    1999-01-01

    Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with the continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition. Copyright (1999) CSIRO Australia

  10. Reduction in specimen labeling errors after implementation of a positive patient identification system in phlebotomy.

    Science.gov (United States)

    Morrison, Aileen P; Tanasijevic, Milenko J; Goonan, Ellen M; Lobo, Margaret M; Bates, Michael M; Lipsitz, Stuart R; Bates, David W; Melanson, Stacy E F

    2010-06-01

    Ensuring accurate patient identification is central to preventing medical errors, but it can be challenging. We implemented a bar code-based positive patient identification system for use in inpatient phlebotomy. A before-after design was used to evaluate the impact of the identification system on the frequency of mislabeled and unlabeled samples reported in our laboratory. Labeling errors fell from 5.45 in 10,000 before implementation to 3.2 in 10,000 afterward (P = .0013). An estimated 108 mislabeling events were prevented by the identification system in 1 year. Furthermore, a workflow step requiring manual preprinting of labels, which was accompanied by potential labeling errors in about one quarter of blood "draws," was removed as a result of the new system. After implementation, a higher percentage of patients reported having their wristband checked before phlebotomy. Bar code technology significantly reduced the rate of specimen identification errors.

  11. Emotion perception and overconfidence in errors under stress in psychosis.

    Science.gov (United States)

    Köther, Ulf; Lincoln, Tania M; Moritz, Steffen

    2018-03-21

    Vulnerability stress models are well-accepted in psychosis research, but the mechanisms that link stress to psychotic symptoms remain vague. Little is known about how social cognition and overconfidence in errors, two putative mechanisms for the pathogenesis of delusions, relate to stress. Using a repeated measures design, we tested four groups (N=120) with different liability to psychosis (schizophrenia patients [n=35], first-degree relatives [n=24], participants with attenuated positive symptoms [n=19] and healthy controls [n=28]) and depression patients (n=14) as a clinical control group under three randomized experimental conditions (no stress, noise and social stress). Parallel versions of the Emotion Perception and Confidence Task, which taps both emotion perception and confidence, were used in each condition. We recorded subjective stress, heart rate, skin conductance level and salivary cortisol to assess the stress response across different dimensions. Independent of the stress condition, patients with schizophrenia showed poorer emotion perception performance and higher confidence in emotion perception errors than participants with attenuated positive symptoms and healthy controls. However, they did not differ from patients with depression or first-degree relatives. Stress did not influence emotion perception or the extent of high-confident errors, but patients with schizophrenia showed an increase in high-confident emotion perception errors conditional on higher arousal. A possible clinical implication of our findings is the necessity to provide stress management programs that aim to reduce arousal. Moreover, patients with schizophrenia might benefit from interventions that help them to reduce overconfidence in their social cognition judgements in times in which they feel being under pressure. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Errors in radiographic recognition in the emergency room

    International Nuclear Information System (INIS)

    Britton, C.A.; Cooperstein, L.A.

    1986-01-01

    For 6 months we monitored the frequency and type of errors in radiographic recognition made by radiology residents on call in our emergency room. A relatively low error rate was observed, probably because the authors evaluated cognitive errors only, rather than include those of interpretation. The most common missed finding was a small fracture, particularly on the hands or feet. First-year residents were most likely to make an error, but, interestingly, our survey revealed a small subset of upper-level residents who made a disproportionate number of errors

  13. Customization of user interfaces to reduce errors and enhance user acceptance.

    Science.gov (United States)

    Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram

    2014-03-01

    Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Radiodiagnostic errors by X-ray pictures of the chest taken at bed resting patients

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.; Deininger, H.K.

    1981-03-01

    The roentgenological findings of 383 cases have been compared with the anatomical and pathological diagnosis of the autopsy report. In 29% the radiodiagnosis was incorrect. About 70% of the X-ray examinations had to be carried out succenturiately at bed side in bedridden patients. The error rate of the interpretation of these examinations was higher than in examinations under standardized conditions. Especially, carcinomatous lymphangiosis, miliary tuberculosis and pulmonary embolism can be diagnosed badly in those incomplete X-ray pictures caused by the clinical situation of the bed resting patients. The publication analyses the most common errors in the diagnosis of cardiac and pulmonary diseases, and they will be demonstrated in examples.

  15. Simulator data on human error probabilities

    International Nuclear Information System (INIS)

    Kozinsky, E.J.; Guttmann, H.E.

    1982-01-01

    Analysis of operator errors on NPP simulators is being used to determine Human Error Probabilities (HEP) for task elements defined in NUREG/CR 1278. Simulator data tapes from research conducted by EPRI and ORNL are being analyzed for operator error rates. The tapes collected, using Performance Measurement System software developed for EPRI, contain a history of all operator manipulations during simulated casualties. Analysis yields a time history or Operational Sequence Diagram and a manipulation summary, both stored in computer data files. Data searches yield information on operator errors of omission and commission. This work experimentally determines HEPs for Probabilistic Risk Assessment calculations. It is the only practical experimental source of this data to date

  16. Simulator data on human error probabilities

    International Nuclear Information System (INIS)

    Kozinsky, E.J.; Guttmann, H.E.

    1981-01-01

    Analysis of operator errors on NPP simulators is being used to determine Human Error Probabilities (HEP) for task elements defined in NUREG/CR-1278. Simulator data tapes from research conducted by EPRI and ORNL are being analyzed for operator error rates. The tapes collected, using Performance Measurement System software developed for EPRI, contain a history of all operator manipulations during simulated casualties. Analysis yields a time history or Operational Sequence Diagram and a manipulation summary, both stored in computer data files. Data searches yield information on operator errors of omission and commission. This work experimentally determined HEP's for Probabilistic Risk Assessment calculations. It is the only practical experimental source of this data to date

  17. Neutron-induced soft errors in CMOS circuits

    International Nuclear Information System (INIS)

    Hazucha, P.

    1999-01-01

    The subject of this thesis is a systematic study of soft errors occurring in CMOS integrated circuits when being exposed to radiation. The vast majority of commercial circuits operate in the natural environment ranging from the sea level to aircraft flight altitudes (less than 20 km), where the errors are caused mainly by interaction of atmospheric neutrons with silicon. Initially, the soft error rate (SER) of a static memory was measured for supply voltages from 2V to 5V when irradiated by 14 MeV and 100 MeV neutrons. Increased error rate due to the decreased supply voltage has been identified as a potential hazard for operation of future low-voltage circuits. A novel methodology was proposed for accurate SER characterization of a manufacturing process and it was validated by measurements on a 0.6 μm process and 100 MeV neutrons. The methodology can be applied to the prediction of SER in the natural environment

  18. Thermodynamics of Error Correction

    Directory of Open Access Journals (Sweden)

    Pablo Sartori

    2015-12-01

    Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  19. A Simulation Analysis of Errors in the Measurement of Standard Electrochemical Rate Constants from Phase-Selective Impedance Data.

    Science.gov (United States)

    1987-09-30

    RESTRICTIVE MARKINGSC Unclassif ied 2a SECURIly CLASSIFICATION ALIIMOA4TY 3 DIS1RSBj~jiOAVAILAB.I1Y OF RkPORI _________________________________ Approved...of the AC current, including the time dependence at a growing DME, at a given fixed potential either in the presence or the absence of an...the relative error in k b(app) is ob relatively small for ks (true) : 0.5 cm s-, and increases rapidly for ob larger rate constants as kob reaches the

  20. Savannah River Site human error data base development for nonreactor nuclear facilities

    International Nuclear Information System (INIS)

    Benhardt, H.C.; Held, J.E.; Olsen, L.M.; Vail, R.E.; Eide, S.A.

    1994-01-01

    As part of an overall effort to upgrade and streamline methodologies for safety analyses of nonreactor nuclear facilities at the Savannah River Site (SRS), a human error data base has been developed and is presented in this report. The data base fulfills several needs of risk analysts supporting safety analysis report (SAR) development. First, it provides a single source for probabilities or rates for a wide variety of human errors associated with the SRS nonreactor nuclear facilities. Second, it provides a documented basis for human error probabilities or rates. And finally, it provides actual SRS-specific human error data to support many of the error probabilities or rates. Use of a single, documented reference source for human errors, supported by SRS-specific human error data, will improve the consistency and accuracy of human error modeling by SRS risk analysts. It is envisioned that SRS risk analysts will use this report as both a guide to identifying the types of human errors that may need to be included in risk models such as fault and event trees, and as a source for human error probabilities or rates. For each human error in this report, ffime different mean probabilities or rates are presented to cover a wide range of conditions and influencing factors. The ask analysts must decide which mean value is most appropriate for each particular application. If other types of human errors are needed for the risk models, the analyst must use other sources. Finally, if human enors are dominant in the quantified risk models (based on the values obtained fmm this report), then it may be appropriate to perform detailed human reliability analyses (HRAS) for the dominant events. This document does not provide guidance for such refined HRAS; in such cases experienced human reliability analysts should be involved

  1. Comparing Absolute Error with Squared Error for Evaluating Empirical Models of Continuous Variables: Compositions, Implications, and Consequences

    Science.gov (United States)

    Gao, J.

    2014-12-01

    model with higher bias but more stability. Further, my experiments showed that the two metrics can and will lead to different conclusions about the impacts of certain operations and may suggest different strategies for model improvement. Therefore, SQ error is a poor substitute for ABS error, and the use of the two metrics should be clearly differentiated.

  2. Evaluation of drug administration errors in a teaching hospital

    Directory of Open Access Journals (Sweden)

    Berdot Sarah

    2012-03-01

    Full Text Available Abstract Background Medication errors can occur at any of the three steps of the medication use process: prescribing, dispensing and administration. We aimed to determine the incidence, type and clinical importance of drug administration errors and to identify risk factors. Methods Prospective study based on disguised observation technique in four wards in a teaching hospital in Paris, France (800 beds. A pharmacist accompanied nurses and witnessed the preparation and administration of drugs to all patients during the three drug rounds on each of six days per ward. Main outcomes were number, type and clinical importance of errors and associated risk factors. Drug administration error rate was calculated with and without wrong time errors. Relationship between the occurrence of errors and potential risk factors were investigated using logistic regression models with random effects. Results Twenty-eight nurses caring for 108 patients were observed. Among 1501 opportunities for error, 415 administrations (430 errors with one or more errors were detected (27.6%. There were 312 wrong time errors, ten simultaneously with another type of error, resulting in an error rate without wrong time error of 7.5% (113/1501. The most frequently administered drugs were the cardiovascular drugs (425/1501, 28.3%. The highest risks of error in a drug administration were for dermatological drugs. No potentially life-threatening errors were witnessed and 6% of errors were classified as having a serious or significant impact on patients (mainly omission. In multivariate analysis, the occurrence of errors was associated with drug administration route, drug classification (ATC and the number of patient under the nurse's care. Conclusion Medication administration errors are frequent. The identification of its determinants helps to undertake designed interventions.

  3. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta

  4. Error Estimation for Indoor 802.11 Location Fingerprinting

    DEFF Research Database (Denmark)

    Lemelson, Hendrik; Kjærgaard, Mikkel Baun; Hansen, Rene

    2009-01-01

    providers could adapt their delivered services based on the estimated position error to achieve a higher service quality. Finally, system operators could use the information to inspect whether a location system provides satisfactory positioning accuracy throughout the covered area. For position error...

  5. Time Domain Equalizer Design Using Bit Error Rate Minimization for UWB Systems

    Directory of Open Access Journals (Sweden)

    Syed Imtiaz Husain

    2009-01-01

    Full Text Available Ultra-wideband (UWB communication systems occupy huge bandwidths with very low power spectral densities. This feature makes the UWB channels highly rich in resolvable multipaths. To exploit the temporal diversity, the receiver is commonly implemented through a Rake. The aim to capture enough signal energy to maintain an acceptable output signal-to-noise ratio (SNR dictates a very complicated Rake structure with a large number of fingers. Channel shortening or time domain equalizer (TEQ can simplify the Rake receiver design by reducing the number of significant taps in the effective channel. In this paper, we first derive the bit error rate (BER of a multiuser and multipath UWB system in the presence of a TEQ at the receiver front end. This BER is then written in a form suitable for traditional optimization. We then present a TEQ design which minimizes the BER of the system to perform efficient channel shortening. The performance of the proposed algorithm is compared with some generic TEQ designs and other Rake structures in UWB channels. It is shown that the proposed algorithm maintains a lower BER along with efficiently shortening the channel.

  6. Alpha-particle-induced soft errors in high speed bipolar RAM

    International Nuclear Information System (INIS)

    Mitsusada, Kazumichi; Kato, Yukio; Yamaguchi, Kunihiko; Inadachi, Masaaki

    1980-01-01

    As bipolar RAM (Random Access Memory) has been improved to a fast acting and highly integrated device, the problems negligible in the past have become the ones that can not be ignored. The problem of a-particles emitted from the radioactive substances in semiconductor package materials should be specifically noticed, which cause soft errors. The authors have produced experimentally the special 1 kbit bipolar RAM to investigate its soft errors. The package used was the standard 16 pin dual in-line type, with which the practical system mounting test and a-particle irradiation test have been performed. The results showed the occurrence of soft errors at the average rate of about 1 bit/700 device hour. It is concluded that the cause was due to the a-particles emitted from the package materials, and at the same time, it was found that the rate of soft error occurrence was able to be greatly reduced by shielding a-particles. The error rate significantly increased with the decrease of the stand-by current of memory cells and with the accumulated charge determined by time constant. The mechanism of soft error was also investigated, for which an approximate model to estimate the error rate by means of the effective noise charge due to a-particles and of the amount of reversible charges of memory cells is shown to compare it with the experimental results. (Wakatsuki, Y.)

  7. Analysis of the "naming game" with learning errors in communications.

    Science.gov (United States)

    Lou, Yang; Chen, Guanrong

    2015-07-16

    Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.

  8. Action errors, error management, and learning in organizations.

    Science.gov (United States)

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  9. Analysis of Medication Errors in Simulated Pediatric Resuscitation by Residents

    Directory of Open Access Journals (Sweden)

    Evelyn Porter

    2014-07-01

    Full Text Available Introduction: The objective of our study was to estimate the incidence of prescribing medication errors specifically made by a trainee and identify factors associated with these errors during the simulated resuscitation of a critically ill child. Methods: The results of the simulated resuscitation are described. We analyzed data from the simulated resuscitation for the occurrence of a prescribing medication error. We compared univariate analysis of each variable to medication error rate and performed a separate multiple logistic regression analysis on the significant univariate variables to assess the association between the selected variables. Results: We reviewed 49 simulated resuscitations . The final medication error rate for the simulation was 26.5% (95% CI 13.7% - 39.3%. On univariate analysis, statistically significant findings for decreased prescribing medication error rates included senior residents in charge, presence of a pharmacist, sleeping greater than 8 hours prior to the simulation, and a visual analog scale score showing more confidence in caring for critically ill children. Multiple logistic regression analysis using the above significant variables showed only the presence of a pharmacist to remain significantly associated with decreased medication error, odds ratio of 0.09 (95% CI 0.01 - 0.64. Conclusion: Our results indicate that the presence of a clinical pharmacist during the resuscitation of a critically ill child reduces the medication errors made by resident physician trainees.

  10. Assessment of Aliasing Errors in Low-Degree Coefficients Inferred from GPS Data

    Directory of Open Access Journals (Sweden)

    Na Wei

    2016-05-01

    Full Text Available With sparse and uneven site distribution, Global Positioning System (GPS data is just barely able to infer low-degree coefficients in the surface mass field. The unresolved higher-degree coefficients turn out to introduce aliasing errors into the estimates of low-degree coefficients. To reduce the aliasing errors, the optimal truncation degree should be employed. Using surface displacements simulated from loading models, we theoretically prove that the optimal truncation degree should be degree 6–7 for a GPS inversion and degree 20 for combing GPS and Ocean Bottom Pressure (OBP with no additional regularization. The optimal truncation degree should be decreased to degree 4–5 for real GPS data. Additionally, we prove that a Scaled Sensitivity Matrix (SSM approach can be used to quantify the aliasing errors due to any one or any combination of unresolved higher degrees, which is beneficial to identify the major error source from among all the unresolved higher degrees. Results show that the unresolved higher degrees lower than degree 20 are the major error source for global inversion. We also theoretically prove that the SSM approach can be used to mitigate the aliasing errors in a GPS inversion, if the neglected higher degrees are well known from other sources.

  11. Errors in causal inference: an organizational schema for systematic error and random error.

    Science.gov (United States)

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Correcting for binomial measurement error in predictors in regression with application to analysis of DNA methylation rates by bisulfite sequencing.

    Science.gov (United States)

    Buonaccorsi, John; Prochenka, Agnieszka; Thoresen, Magne; Ploski, Rafal

    2016-09-30

    Motivated by a genetic application, this paper addresses the problem of fitting regression models when the predictor is a proportion measured with error. While the problem of dealing with additive measurement error in fitting regression models has been extensively studied, the problem where the additive error is of a binomial nature has not been addressed. The measurement errors here are heteroscedastic for two reasons; dependence on the underlying true value and changing sampling effort over observations. While some of the previously developed methods for treating additive measurement error with heteroscedasticity can be used in this setting, other methods need modification. A new version of simulation extrapolation is developed, and we also explore a variation on the standard regression calibration method that uses a beta-binomial model based on the fact that the true value is a proportion. Although most of the methods introduced here can be used for fitting non-linear models, this paper will focus primarily on their use in fitting a linear model. While previous work has focused mainly on estimation of the coefficients, we will, with motivation from our example, also examine estimation of the variance around the regression line. In addressing these problems, we also discuss the appropriate manner in which to bootstrap for both inferences and bias assessment. The various methods are compared via simulation, and the results are illustrated using our motivating data, for which the goal is to relate the methylation rate of a blood sample to the age of the individual providing the sample. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. [Medication errors in Spanish intensive care units].

    Science.gov (United States)

    Merino, P; Martín, M C; Alonso, A; Gutiérrez, I; Alvarez, J; Becerril, F

    2013-01-01

    To estimate the incidence of medication errors in Spanish intensive care units. Post hoc study of the SYREC trial. A longitudinal observational study carried out during 24 hours in patients admitted to the ICU. Spanish intensive care units. Patients admitted to the intensive care unit participating in the SYREC during the period of study. Risk, individual risk, and rate of medication errors. The final study sample consisted of 1017 patients from 79 intensive care units; 591 (58%) were affected by one or more incidents. Of these, 253 (43%) had at least one medication-related incident. The total number of incidents reported was 1424, of which 350 (25%) were medication errors. The risk of suffering at least one incident was 22% (IQR: 8-50%) while the individual risk was 21% (IQR: 8-42%). The medication error rate was 1.13 medication errors per 100 patient-days of stay. Most incidents occurred in the prescription (34%) and administration (28%) phases, 16% resulted in patient harm, and 82% were considered "totally avoidable". Medication errors are among the most frequent types of incidents in critically ill patients, and are more common in the prescription and administration stages. Although most such incidents have no clinical consequences, a significant percentage prove harmful for the patient, and a large proportion are avoidable. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  14. Associations between communication climate and the frequency of medical error reporting among pharmacists within an inpatient setting.

    Science.gov (United States)

    Patterson, Mark E; Pace, Heather A; Fincham, Jack E

    2013-09-01

    Although error-reporting systems enable hospitals to accurately track safety climate through the identification of adverse events, these systems may be underused within a work climate of poor communication. The objective of this analysis is to identify the extent to which perceived communication climate among hospital pharmacists impacts medical error reporting rates. This cross-sectional study used survey responses from more than 5000 pharmacists responding to the 2010 Hospital Survey on Patient Safety Culture (HSOPSC). Two composite scores were constructed for "communication openness" and "feedback and about error," respectively. Error reporting frequency was defined from the survey question, "In the past 12 months, how many event reports have you filled out and submitted?" Multivariable logistic regressions were used to estimate the likelihood of medical error reporting conditional upon communication openness or feedback levels, controlling for pharmacist years of experience, hospital geographic region, and ownership status. Pharmacists with higher communication openness scores compared with lower scores were 40% more likely to have filed or submitted a medical error report in the past 12 months (OR, 1.4; 95% CI, 1.1-1.7; P = 0.004). In contrast, pharmacists with higher communication feedback scores were not any more likely than those with lower scores to have filed or submitted a medical report in the past 12 months (OR, 1.0; 95% CI, 0.8-1.3; P = 0.97). Hospital work climates that encourage pharmacists to freely communicate about problems related to patient safety is conducive to medical error reporting. The presence of feedback infrastructures about error may not be sufficient to induce error-reporting behavior.

  15. SHEAN (Simplified Human Error Analysis code) and automated THERP

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1993-01-01

    One of the most widely used human error analysis tools is THERP (Technique for Human Error Rate Prediction). Unfortunately, this tool has disadvantages. The Nuclear Regulatory Commission, realizing these drawbacks, commissioned Dr. Swain, the author of THERP, to create a simpler, more consistent tool for deriving human error rates. That effort produced the Accident Sequence Evaluation Program Human Reliability Analysis Procedure (ASEP), which is more conservative than THERP, but a valuable screening tool. ASEP involves answering simple questions about the scenario in question, and then looking up the appropriate human error rate in the indicated table (THERP also uses look-up tables, but four times as many). The advantages of ASEP are that human factors expertise is not required, and the training to use the method is minimal. Although not originally envisioned by Dr. Swain, the ASEP approach actually begs to be computerized. That WINCO did, calling the code SHEAN, for Simplified Human Error ANalysis. The code was done in TURBO Basic for IBM or IBM-compatible MS-DOS, for fast execution. WINCO is now in the process of comparing this code against THERP for various scenarios. This report provides a discussion of SHEAN

  16. A Simulation-Based Soft Error Estimation Methodology for Computer Systems

    OpenAIRE

    Sugihara, Makoto; Ishihara, Tohru; Hashimoto, Koji; Muroyama, Masanori

    2006-01-01

    This paper proposes a simulation-based soft error estimation methodology for computer systems. Accumulating soft error rates (SERs) of all memories in a computer system results in pessimistic soft error estimation. This is because memory cells are used spatially and temporally and not all soft errors in them make the computer system faulty. Our soft-error estimation methodology considers the locations and the timings of soft errors occurring at every level of memory hierarchy and estimates th...

  17. Effects of systematic phase errors on optimized quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun

    2015-01-01

    This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover’s algorithm. (paper)

  18. Failures without errors: quantification of context in HRA

    International Nuclear Information System (INIS)

    Fujita, Yushi; Hollnagel, Erik

    2004-01-01

    PSA-cum-human reliability analysis (HRA) has traditionally used individual human actions, hence individual 'human errors', as a meaningful unit of analysis. This is inconsistent with the current understanding of accidents, which points out that the notion of 'human error' is ill defined and that adverse events more often are the due to the working conditions than to people. Several HRA approaches, such as ATHEANA and CREAM have recognised this conflict and proposed ways to deal with it. This paper describes an improvement of the basic screening method in CREAM, whereby a rating of the performance conditions can be used to calculate a Mean Failure Rate directly without invoking the notion of human error

  19. What are incident reports telling us? A comparative study at two Australian hospitals of medication errors identified at audit, detected by staff and reported to an incident system.

    Science.gov (United States)

    Westbrook, Johanna I; Li, Ling; Lehnbom, Elin C; Baysari, Melissa T; Braithwaite, Jeffrey; Burke, Rosemary; Conn, Chris; Day, Richard O

    2015-02-01

    To (i) compare medication errors identified at audit and observation with medication incident reports; (ii) identify differences between two hospitals in incident report frequency and medication error rates; (iii) identify prescribing error detection rates by staff. Audit of 3291 patient records at two hospitals to identify prescribing errors and evidence of their detection by staff. Medication administration errors were identified from a direct observational study of 180 nurses administering 7451 medications. Severity of errors was classified. Those likely to lead to patient harm were categorized as 'clinically important'. Two major academic teaching hospitals in Sydney, Australia. Rates of medication errors identified from audit and from direct observation were compared with reported medication incident reports. A total of 12 567 prescribing errors were identified at audit. Of these 1.2/1000 errors (95% CI: 0.6-1.8) had incident reports. Clinically important prescribing errors (n = 539) were detected by staff at a rate of 218.9/1000 (95% CI: 184.0-253.8), but only 13.0/1000 (95% CI: 3.4-22.5) were reported. 78.1% (n = 421) of clinically important prescribing errors were not detected. A total of 2043 drug administrations (27.4%; 95% CI: 26.4-28.4%) contained ≥ 1 errors; none had an incident report. Hospital A had a higher frequency of incident reports than Hospital B, but a lower rate of errors at audit. Prescribing errors with the potential to cause harm frequently go undetected. Reported incidents do not reflect the profile of medication errors which occur in hospitals or the underlying rates. This demonstrates the inaccuracy of using incident frequency to compare patient risk or quality performance within or across hospitals. New approaches including data mining of electronic clinical information systems are required to support more effective medication error detection and mitigation. © The Author 2015. Published by Oxford University Press in association

  20. Human errors, countermeasures for their prevention and evaluation

    International Nuclear Information System (INIS)

    Kohda, Takehisa; Inoue, Koichi

    1992-01-01

    The accidents originated in human errors have occurred as ever in recent large accidents such as the TMI accident and the Chernobyl accident. The proportion of the accidents originated in human errors is unexpectedly high, therefore, the reliability and safety of hardware are improved hereafter, but the improvement of human reliability cannot be expected. Human errors arise by the difference between the function required for men and the function actually accomplished by men, and the results exert some adverse effect to systems. Human errors are classified into design error, manufacture error, operation error, maintenance error, checkup error and general handling error. In terms of behavior, human errors are classified into forget to do, fail to do, do that must not be done, mistake in order and do at improper time. The factors in human error occurrence are circumstantial factor, personal factor and stress factor. As the method of analyzing and evaluating human errors, system engineering method such as probabilistic risk assessment is used. The technique for human error rate prediction, the method for human cognitive reliability, confusion matrix and SLIM-MAUD are also used. (K.I.)

  1. The "Measuring Outcomes of Clinical Connectivity" (MOCC) trial: investigating data entry errors in the Electronic Primary Care Research Network (ePCRN).

    Science.gov (United States)

    Fontaine, Patricia; Mendenhall, Tai J; Peterson, Kevin; Speedie, Stuart M

    2007-01-01

    The electronic Primary Care Research Network (ePCRN) enrolled PBRN researchers in a feasibility trial to test the functionality of the network's electronic architecture and investigate error rates associated with two data entry strategies used in clinical trials. PBRN physicians and research assistants who registered with the ePCRN were eligible to participate. After online consent and randomization, participants viewed simulated patient records, presented as either abstracted data (short form) or progress notes (long form). Participants transcribed 50 data elements onto electronic case report forms (CRFs) without integrated field restrictions. Data errors were analyzed. Ten geographically dispersed PBRNs enrolled 100 members and completed the study in less than 7 weeks. The estimated overall error rate if field restrictions had been applied was 2.3%. Participants entering data from the short form had a higher rate of correctly entered data fields (94.5% vs 90.8%, P = .004) and significantly more error-free records (P = .003). Feasibility outcomes integral to completion of an Internet-based, multisite study were successfully achieved. Further development of programmable electronic safeguards is indicated. The error analysis conducted in this study will aid design of specific field restrictions for electronic CRFs, an important component of clinical trial management systems.

  2. Strain rate effects in nuclear steels at room and higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, G. E-mail: george.solomos@jrc.it; Albertini, C.; Labibes, K.; Pizzinato, V.; Viaccoz, B

    2004-04-01

    An investigation of strain rate, temperature and size effects in three nuclear steels has been conducted. The materials are: ferritic steel 20MnMoNi55 (vessel head), austenitic steel X6CrNiNb1810 (upper internal structure), and ferritic steel 26NiCrMo146 (bolting). Smooth cylindrical tensile specimens of three sizes have been tested at strain rates from 0.001 to 300 s{sup -1}, at room and elevated temperatures (400-600 deg. C). Full stress-strain diagrams have been obtained, and additional parameters have been calculated based on them. The results demonstrate a clear influence of temperature, which amounts into reducing substantially mechanical strengths with respect to RT conditions. The effect of strain rate is also shown. It is observed that at RT the strain rate effect causes up shifting of the flow stress curves, whereas at the higher temperatures a mild downshifting of the flow curves is manifested. Size effect tendencies have also been observed. Some implications when assessing the pressure vessel structural integrity under severe accident conditions are considered.

  3. An Investigation into Soft Error Detection Efficiency at Operating System Level

    OpenAIRE

    Asghari, Seyyed Amir; Kaynak, Okyay; Taheri, Hassan

    2014-01-01

    Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs) and data errors. Valuable research results have already appeared in literature at hardware and soft...

  4. Radiodiagnostic errors by X-ray pictures of the chest taken at bed resting patients

    International Nuclear Information System (INIS)

    Ross, D.; Deininger, H.K.

    1981-01-01

    The roentgenological findings of 383 cases have been compared with the anatomical and pathological diagnosis of the autopsy report. In 29% the radiodiagnosis was incorrect. About 70% of the X-ray examinations had to be carried out succenturiately at bed side in bedridden patients. The error rate of the interpretation of these examinations was higher than in examinations under standardized conditions. Especially, carcinomatous lymphangiosis, miliary tuberculosis and pulmonary embolism can be diagnosed badly in those incomplete X-ray pictures caused by the clinical situation of the bed resting patients. The publication analyses the most common errors in the diagnosis of cardiac and pulmonary diseases, and they will be demonstrated in examples. (orig.) [de

  5. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    In d-MLC based IMRT, leaves move along a trajectory that lies within a user-defined tolerance (TOL) about the ideal trajectory specified in a d-MLC sequence file. The MLC controller measures leaf positions multiple times per second and corrects them if they deviate from ideal positions by a value greater than TOL. The magnitude of leaf-positional errors resulting from finite mechanical precision depends on the performance of the MLC motors executing leaf motions and is generally larger if leaves are forced to move at higher speeds. The maximum value of leaf-positional errors can be limited by decreasing TOL. However, due to the inherent time delay in the MLC controller, this may not happen at all times. Furthermore, decreasing the leaf tolerance results in a larger number of beam hold-offs, which, in turn leads, to a longer delivery time and, paradoxically, to higher chances of leaf-positional errors (≤TOL). On the other end, the magnitude of leaf-positional errors depends on the complexity of the fluence map to be delivered. Recently, it has been shown that it is possible to determine the actual distribution of leaf-positional errors either by the imaging of moving MLC apertures with a digital imager or by analysis of a MLC log file saved by a MLC controller. This leads next to an important question: What is the relation between the distribution of leaf-positional errors and fluence errors. In this work, we introduce an analytical method to determine this relation in dynamic IMRT delivery. We model MLC errors as Random-Leaf Positional (RLP) errors described by a truncated normal distribution defined by two characteristic parameters: a standard deviation σ and a cut-off value Δx 0 (Δx 0 ∼TOL). We quantify fluence errors for two cases: (i) Δx 0 >>σ (unrestricted normal distribution) and (ii) Δx 0 0 --limited normal distribution). We show that an average fluence error of an IMRT field is proportional to (i) σ/ALPO and (ii) Δx 0 /ALPO, respectively, where

  6. Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams

    Science.gov (United States)

    Cai, Hua; Zeng, Bing; Shen, Guobin; Xiong, Zixiang; Li, Shipeng

    2006-12-01

    This paper deals with the optimal packet loss protection issue for streaming the fine granularity scalable (FGS) video bitstreams over IP networks. Unlike many other existing protection schemes, we develop an error-resilient unequal error protection (ER-UEP) method that adds redundant information optimally for loss protection and, at the same time, cancels completely the dependency among bitstream after loss recovery. In our ER-UEP method, the FGS enhancement-layer bitstream is first packetized into a group of independent and scalable data packets. Parity packets, which are also scalable, are then generated. Unequal protection is finally achieved by properly shaping the data packets and the parity packets. We present an algorithm that can optimally allocate the rate budget between data packets and parity packets, together with several simplified versions that have lower complexity. Compared with conventional UEP schemes that suffer from bit contamination (caused by the bit dependency within a bitstream), our method guarantees successful decoding of all received bits, thus leading to strong error-resilience (at any fixed channel bandwidth) and high robustness (under varying and/or unclean channel conditions).

  7. Why do younger women have higher breast cancer recurrence rates after breast-conserving surgery?

    International Nuclear Information System (INIS)

    Nishimura, Reiki; Matsuda, Masakazu; Miyayama, Haruhiko; Okazaki, Shinji; Kai, Chiharu; Ozaki, N.

    2003-01-01

    Preventing breast cancer recurrence after breast-conserving surgery is an important issue. The main factors contributing to such recurrence are positive margins, absence of radiotherapy and young age. To investigate the clinical significance of age in breast-conserving surgery, we examined the relationship between clinicopathological findings or outcome and age, especially young age. The cases were divided into three groups by age; 35 years old or less, 36-50y.o. and 51y.o. or higher. Between April 1989 and March 2003, 743 patients were treated with breast-conserving surgery. There were 49 patients aged 35 years old or less (6.6%). Younger age significantly correlated with positive surgical margin, lymph node metastases, higher proliferative activity, negative estrogen receptor (ER) or progesterone receptor (PgR), larger tumor size, and shorter nipple-tumor distances. Although younger patients had a higher recurrence rate irrespective of radiotherapy, margin status had an impact on recurrence rate. Thus, the reason young age was a significant factor for breast recurrence after breast-conserving surgery was that young patients frequently had numerous risk factors such as positive margin, higher proliferative activity, positive nodes, negative ER/PgR and larger tumor. However, negative surgical margins could reduce recurrence rates even in young women. These results suggest that more suitable criteria and strategies may be needed for young patients with breast cancer. (author)

  8. Optimizer convergence and local minima errors and their clinical importance

    International Nuclear Information System (INIS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-01-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization

  9. Dual processing and diagnostic errors.

    Science.gov (United States)

    Norman, Geoff

    2009-09-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical, conscious, and conceptual process, called System 2. Exemplar theories of categorization propose that many category decisions in everyday life are made by unconscious matching to a particular example in memory, and these remain available and retrievable individually. I then review studies of clinical reasoning based on these theories, and show that the two processes are equally effective; System 1, despite its reliance in idiosyncratic, individual experience, is no more prone to cognitive bias or diagnostic error than System 2. Further, I review evidence that instructions directed at encouraging the clinician to explicitly use both strategies can lead to consistent reduction in error rates.

  10. Water flux in animals: analysis of potential errors in the tritiated water method

    International Nuclear Information System (INIS)

    Nagy, K.A.; Costa, D.

    1979-03-01

    Laboratory studies indicate that tritiated water measurements of water flux are accurate to within -7 to +4% in mammals, but errors are larger in some reptiles. However, under conditions that can occur in field studies, errors may be much greater. Influx of environmental water vapor via lungs and skin can cause errors exceeding +-50% in some circumstances. If water flux rates in an animal vary through time, errors approach +-15% in extreme situations, but are near +-3% in more typical circumstances. Errors due to fractional evaporation of tritiated water may approach -9%. This error probably varies between species. Use of an inappropriate equation for calculating water flux from isotope data can cause errors exceeding +-100%. The following sources of error are either negligible or avoidable: use of isotope dilution space as a measure of body water volume, loss of nonaqueous tritium bound to excreta, binding of tritium with nonaqueous substances in the body, radiation toxicity effects, and small analytical errors in isotope measurements. Water flux rates measured with tritiated water should be within +-10% of actual flux rates in most situations

  11. Water flux in animals: analysis of potential errors in the tritiated water method

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, K.A.; Costa, D.

    1979-03-01

    Laboratory studies indicate that tritiated water measurements of water flux are accurate to within -7 to +4% in mammals, but errors are larger in some reptiles. However, under conditions that can occur in field studies, errors may be much greater. Influx of environmental water vapor via lungs and skin can cause errors exceeding +-50% in some circumstances. If water flux rates in an animal vary through time, errors approach +-15% in extreme situations, but are near +-3% in more typical circumstances. Errors due to fractional evaporation of tritiated water may approach -9%. This error probably varies between species. Use of an inappropriate equation for calculating water flux from isotope data can cause errors exceeding +-100%. The following sources of error are either negligible or avoidable: use of isotope dilution space as a measure of body water volume, loss of nonaqueous tritium bound to excreta, binding of tritium with nonaqueous substances in the body, radiation toxicity effects, and small analytical errors in isotope measurements. Water flux rates measured with tritiated water should be within +-10% of actual flux rates in most situations.

  12. Will ageing lead to a higher real exchange rate for the Netherlands?

    NARCIS (Netherlands)

    van Ewijk, C.; Volkerink, M.

    2012-01-01

    Long term projections for the Netherlands indicate that demand for nontradables—e.g. health care services—will increase relative to supply due to population ageing. If this leads to higher future real exchanges rates this will erode the return of the savings currently made to prepare for ageing.

  13. Will ageing lead to a higher real exchange rate for the Netherlands?

    NARCIS (Netherlands)

    van Ewijk, C.; Volkerink, M.

    2011-01-01

    Long-term projections for the Netherlands indicate that demand for nontradables - e.g. health care services - will increase relative to supply due to population ageing. If this leads to higher future real exchanges rates this will erode the return of the savings currently made to prepare for ageing.

  14. Sensitivity of risk parameters to human errors in reactor safety study for a PWR

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hall, R.E.; Swoboda, A.L.

    1981-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study (RSS) for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study. The code employed point estimate approach and ignored the smoothing technique applied in RSS. It computed the point estimates for the system unavailabilities from the median values of the component failure rates and proceeded in terms of point values to obtain the point estimates for the accident sequence probabilities, core melt probability, and release category probabilities. The sensitivity measure used was the ratio of the top event probability before and after the perturbation of the constituent events. Core melt probability per reactor year showed significant increase with the increase in the human error rates, but did not show similar decrease with the decrease in the human error rates due to the dominance of the hardware failures. When the Minimum Human Error Rate (M.H.E.R.) used is increased to 10 -3 , the base case human error rates start sensitivity to human errors. This effort now allows the evaluation of new error rate data along with proposed changes in the man machine interface

  15. Single Versus Multiple Events Error Potential Detection in a BCI-Controlled Car Game With Continuous and Discrete Feedback.

    Science.gov (United States)

    Kreilinger, Alex; Hiebel, Hannah; Müller-Putz, Gernot R

    2016-03-01

    This work aimed to find and evaluate a new method for detecting errors in continuous brain-computer interface (BCI) applications. Instead of classifying errors on a single-trial basis, the new method was based on multiple events (MEs) analysis to increase the accuracy of error detection. In a BCI-driven car game, based on motor imagery (MI), discrete events were triggered whenever subjects collided with coins and/or barriers. Coins counted as correct events, whereas barriers were errors. This new method, termed ME method, combined and averaged the classification results of single events (SEs) and determined the correctness of MI trials, which consisted of event sequences instead of SEs. The benefit of this method was evaluated in an offline simulation. In an online experiment, the new method was used to detect erroneous MI trials. Such MI trials were discarded and could be repeated by the users. We found that, even with low SE error potential (ErrP) detection rates, feasible accuracies can be achieved when combining MEs to distinguish erroneous from correct MI trials. Online, all subjects reached higher scores with error detection than without, at the cost of longer times needed for completing the game. Findings suggest that ErrP detection may become a reliable tool for monitoring continuous states in BCI applications when combining MEs. This paper demonstrates a novel technique for detecting errors in online continuous BCI applications, which yields promising results even with low single-trial detection rates.

  16. Collection of offshore human error probability data

    International Nuclear Information System (INIS)

    Basra, Gurpreet; Kirwan, Barry

    1998-01-01

    Accidents such as Piper Alpha have increased concern about the effects of human errors in complex systems. Such accidents can in theory be predicted and prevented by risk assessment, and in particular human reliability assessment (HRA), but HRA ideally requires qualitative and quantitative human error data. A research initiative at the University of Birmingham led to the development of CORE-DATA, a Computerised Human Error Data Base. This system currently contains a reasonably large number of human error data points, collected from a variety of mainly nuclear-power related sources. This article outlines a recent offshore data collection study, concerned with collecting lifeboat evacuation data. Data collection methods are outlined and a selection of human error probabilities generated as a result of the study are provided. These data give insights into the type of errors and human failure rates that could be utilised to support offshore risk analyses

  17. Digital Intraoral Imaging Re-Exposure Rates of Dental Students.

    Science.gov (United States)

    Senior, Anthea; Winand, Curtis; Ganatra, Seema; Lai, Hollis; Alsulfyani, Noura; Pachêco-Pereira, Camila

    2018-01-01

    A guiding principle of radiation safety is ensuring that radiation dosage is as low as possible while yielding the necessary diagnostic information. Intraoral images taken with conventional dental film have a higher re-exposure rate when taken by dental students compared to experienced staff. The aim of this study was to examine the prevalence of and reasons for re-exposure of digital intraoral images taken by third- and fourth-year dental students in a dental school clinic. At one dental school in Canada, the total number of intraoral images taken by third- and fourth-year dental students, re-exposures, and error descriptions were extracted from patient clinical records for an eight-month period (September 2015 to April 2016). The data were categorized to distinguish between digital images taken with solid-state sensors or photostimulable phosphor plates (PSP). The results showed that 9,397 intraoral images were made, and 1,064 required re-exposure. The most common error requiring re-exposure for bitewing images was an error in placement of the receptor too far mesially or distally (29% for sensors and 18% for PSP). The most common error requiring re-exposure for periapical images was inadequate capture of the periapical area (37% for sensors and 6% for PSP). A retake rate of 11% was calculated, and the common technique errors causing image deficiencies were identified. Educational intervention can now be specifically designed to reduce the retake rate and radiation dose for future patients.

  18. Nursing Errors in Intensive Care Unit by Human Error Identification in Systems Tool: A Case Study

    Directory of Open Access Journals (Sweden)

    Nezamodini

    2016-03-01

    Full Text Available Background Although health services are designed and implemented to improve human health, the errors in health services are a very common phenomenon and even sometimes fatal in this field. Medical errors and their cost are global issues with serious consequences for the patients’ community that are preventable and require serious attention. Objectives The current study aimed to identify possible nursing errors applying human error identification in systems tool (HEIST in the intensive care units (ICUs of hospitals. Patients and Methods This descriptive research was conducted in the intensive care unit of a hospital in Khuzestan province in 2013. Data were collected through observation and interview by nine nurses in this section in a period of four months. Human error classification was based on Rose and Rose and Swain and Guttmann models. According to HEIST work sheets the guide questions were answered and error causes were identified after the determination of the type of errors. Results In total 527 errors were detected. The performing operation on the wrong path had the highest frequency which was 150, and the second rate with a frequency of 136 was doing the tasks later than the deadline. Management causes with a frequency of 451 were the first rank among identified errors. Errors mostly occurred in the system observation stage and among the performance shaping factors (PSFs, time was the most influencing factor in occurrence of human errors. Conclusions Finally, in order to prevent the occurrence and reduce the consequences of identified errors the following suggestions were proposed : appropriate training courses, applying work guidelines and monitoring their implementation, increasing the number of work shifts, hiring professional workforce, equipping work space with appropriate facilities and equipment.

  19. The influence of death-certificate errors on cancer mortality trends

    International Nuclear Information System (INIS)

    Ron, E.; Hoel, D.G.; Carter, R.L.; Mabuchi, Kiyohiko.

    1993-06-01

    Over the past few years, several reports have suggested a recent increase in cancer mortality based on death-certificate diagnoses. To explore the effect of death-certificate errors on temporal trends in cancer mortality rates, we analyzed the data from the Atomic Bomb Casualty Commission/Radiation Effects Research Foundation's autopsy program in Hiroshima and Nagasaki. This series includes 5886 autopsies conducted between 1961 and 1987. Our analyses were focused on lymphoma, cancer of the breast, neoplasms of the brain, multiple myeloma, and melanoma (172 cases, total) because of concern over reports of their increased mortality. These 172 autopsy cases were referred to as Cancers of Interest. A significant increase in detection rates was observed for these Cancers of Interest primarily due to a large rise in mortality between 1976 and 1987. For the remaining cancers excluding stomach and lung (defined as Other), the pattern was similar to that seen for Cancers of Interest, but the fluctuation over time was not statistically significant. Confirmation rates generally increased with time except for Cancers of Interest. As a measure of bias in mortality rates due to death-certification errors and as a method to quantify under- or overestimation of death-certificate-based mortality rates,an adjustment factor (confirmation rate divided by detection rate) was calculated. The higher the adjustment factor, the greater the need to compensate for underreporting. For Cancers of Interest the adjustment factor decreased dramatically over time, but it did not change significantly for Other cancers. When the adjustment factors for Cancers of Interest and Other were compared, a statistically significant difference was found. For Cancers of Interest, a significant interaction between type of cancer and period was seen. Our findings indicate that considerable care must be shown when interpreting temporal trends in cancer vital statistics. (author)

  20. Errors in the administration of intravenous medication in Brazilian hospitals.

    Science.gov (United States)

    Anselmi, Maria Luiza; Peduzzi, Marina; Dos Santos, Claudia Benedita

    2007-10-01

    To verify the frequency of errors in the preparation and administration of intravenous medication in three Brazilian hospitals in the State of Bahia. The administration of intravenous medications constitutes a central activity in Brazilian nursing. Errors in performing this activity may result in irreparable damage to patients and may compromise the quality of care. Cross-sectional study, conducted in three hospitals in the State of Bahia, Brazil. Direct observation of the nursing staff (nurse technicians, auxiliary nurses and nurse attendants), preparing and administering intravenous medication. When preparing medication, wrong patient error did not occur in any of the three hospitals, whereas omission dose was the most frequent error in all study sites. When administering medication, the most frequent errors in the three hospitals were wrong dose and omission dose. The rates of error found are considered low compared with similar studies. The most frequent types of errors were wrong dose and omission dose. The hospitals studied showed different results with the smallest rates of errors occurring in hospital 1 that presented the best working conditions. Relevance to clinical practice. Studies such as this one have the potential to improve the quality of care.

  1. Pathological rate matrices: from primates to pathogens

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Continuous-time Markov models allow flexible, parametrically succinct descriptions of sequence divergence. Non-reversible forms of these models are more biologically realistic but are challenging to develop. The instantaneous rate matrices defined for these models are typically transformed into substitution probability matrices using a matrix exponentiation algorithm that employs eigendecomposition, but this algorithm has characteristic vulnerabilities that lead to significant errors when a rate matrix possesses certain 'pathological' properties. Here we tested whether pathological rate matrices exist in nature, and consider the suitability of different algorithms to their computation. Results We used concatenated protein coding gene alignments from microbial genomes, primate genomes and independent intron alignments from primate genomes. The Taylor series expansion and eigendecomposition matrix exponentiation algorithms were compared to the less widely employed, but more robust, Padé with scaling and squaring algorithm for nucleotide, dinucleotide, codon and trinucleotide rate matrices. Pathological dinucleotide and trinucleotide matrices were evident in the microbial data set, affecting the eigendecomposition and Taylor algorithms respectively. Even using a conservative estimate of matrix error (occurrence of an invalid probability, both Taylor and eigendecomposition algorithms exhibited substantial error rates: ~100% of all exonic trinucleotide matrices were pathological to the Taylor algorithm while ~10% of codon positions 1 and 2 dinucleotide matrices and intronic trinucleotide matrices, and ~30% of codon matrices were pathological to eigendecomposition. The majority of Taylor algorithm errors derived from occurrence of multiple unobserved states. A small number of negative probabilities were detected from the Pad�� algorithm on trinucleotide matrices that were attributable to machine precision. Although the Pad

  2. Error begat error: design error analysis and prevention in social infrastructure projects.

    Science.gov (United States)

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  3. Decrease in medical command errors with use of a "standing orders" protocol system.

    Science.gov (United States)

    Holliman, C J; Wuerz, R C; Meador, S A

    1994-05-01

    The purpose of this study was to determine the physician medical command error rates and paramedic error rates after implementation of a "standing orders" protocol system for medical command. These patient-care error rates were compared with the previously reported rates for a "required call-in" medical command system (Ann Emerg Med 1992; 21(4):347-350). A secondary aim of the study was to determine if the on-scene time interval was increased by the standing orders system. Prospectively conducted audit of prehospital advanced life support (ALS) trip sheets was made at an urban ALS paramedic service with on-line physician medical command from three local hospitals. All ALS run sheets from the start time of the standing orders system (April 1, 1991) for a 1-year period ending on March 30, 1992 were reviewed as part of an ongoing quality assurance program. Cases were identified as nonjustifiably deviating from regional emergency medical services (EMS) protocols as judged by agreement of three physician reviewers (the same methodology as a previously reported command error study in the same ALS system). Medical command and paramedic errors were identified from the prehospital ALS run sheets and categorized. Two thousand one ALS runs were reviewed; 24 physician errors (1.2% of the 1,928 "command" runs) and eight paramedic errors (0.4% of runs) were identified. The physician error rate was decreased from the 2.6% rate in the previous study (P < .0001 by chi 2 analysis). The on-scene time interval did not increase with the "standing orders" system.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    Science.gov (United States)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  5. A national physician survey of diagnostic error in paediatrics.

    Science.gov (United States)

    Perrem, Lucy M; Fanshawe, Thomas R; Sharif, Farhana; Plüddemann, Annette; O'Neill, Michael B

    2016-10-01

    This cross-sectional survey explored paediatric physician perspectives regarding diagnostic errors. All paediatric consultants and specialist registrars in Ireland were invited to participate in this anonymous online survey. The response rate for the study was 54 % (n = 127). Respondents had a median of 9-year clinical experience (interquartile range (IQR) 4-20 years). A diagnostic error was reported at least monthly by 19 (15.0 %) respondents. Consultants reported significantly less diagnostic errors compared to trainees (p value = 0.01). Cognitive error was the top-ranked contributing factor to diagnostic error, with incomplete history and examination considered to be the principal cognitive error. Seeking a second opinion and close follow-up of patients to ensure that the diagnosis is correct were the highest-ranked, clinician-based solutions to diagnostic error. Inadequate staffing levels and excessive workload were the most highly ranked system-related and situational factors. Increased access to and availability of consultants and experts was the most highly ranked system-based solution to diagnostic error. We found a low level of self-perceived diagnostic error in an experienced group of paediatricians, at variance with the literature and warranting further clarification. The results identify perceptions on the major cognitive, system-related and situational factors contributing to diagnostic error and also key preventative strategies. • Diagnostic errors are an important source of preventable patient harm and have an estimated incidence of 10-15 %. • They are multifactorial in origin and include cognitive, system-related and situational factors. What is New: • We identified a low rate of self-perceived diagnostic error in contrast to the existing literature. • Incomplete history and examination, inadequate staffing levels and excessive workload are cited as the principal contributing factors to diagnostic error in this study.

  6. Downlink Error Rates of Half-duplex Users in Full-duplex Networks over a Laplacian Inter-User Interference Limited and EGK fading

    KAUST Repository

    Soury, Hamza

    2017-03-14

    This paper develops a mathematical framework to study downlink error rates and throughput for half-duplex (HD) terminals served by a full-duplex (FD) base station (BS). The developed model is used to motivate long term pairing for users that have non-line of sight (NLOS) interfering link. Consequently, we study the interferer limited problem that appears between NLOS HD users-pair that are scheduled on the same FD channel. The distribution of the interference is first characterized via its distribution function, which is derived in closed form. Then, a comprehensive performance assessment for the proposed pairing scheme is provided by assuming Extended Generalized- $cal{K}$ (EGK) fading for the downlink and studying different modulation schemes. To this end, a unified closed form expression for the average symbol error rate is derived. Furthermore, we show the effective downlink throughput gain harvested by the pairing NLOS users as a function of the average signal-to-interferenceratio when compared to an idealized HD scenario with neither interference nor noise. Finally, we show the minimum required channel gain pairing threshold to harvest downlink throughput via the FD operation when compared to the HD case for each modulation scheme.

  7. Personnel selection and emotional stability certification: establishing a false negative error rate when clinical interviews

    International Nuclear Information System (INIS)

    Berghausen, P.E. Jr.

    1987-01-01

    The security plans of nuclear plants generally require that all personnel who are to have unescorted access to protected areas or vital islands be screened for emotional instability. Screening typically consists of first administering the MMPI and then conducting a clinical interview. Interviews-by-exception protocols provide for only those employees to be interviewed who have some indications of psychopathology in their MMPI results. A problem arises when the indications are not readily apparent: False negatives are likely to occur, resulting in employees being erroneously granted unescorted access. The present paper describes the development of a predictive equation which permits accurate identification, via analysis of MMPI results, of those employees who are most in need of being interviewed. The predictive equation also permits knowing probably maximum false negative error rates when a given percentage of employees is interviewed

  8. Antiretroviral medication prescribing errors are common with hospitalization of HIV-infected patients.

    Science.gov (United States)

    Commers, Tessa; Swindells, Susan; Sayles, Harlan; Gross, Alan E; Devetten, Marcel; Sandkovsky, Uriel

    2014-01-01

    Errors in prescribing antiretroviral therapy (ART) often occur with the hospitalization of HIV-infected patients. The rapid identification and prevention of errors may reduce patient harm and healthcare-associated costs. A retrospective review of hospitalized HIV-infected patients was carried out between 1 January 2009 and 31 December 2011. Errors were documented as omission, underdose, overdose, duplicate therapy, incorrect scheduling and/or incorrect therapy. The time to error correction was recorded. Relative risks (RRs) were computed to evaluate patient characteristics and error rates. A total of 289 medication errors were identified in 146/416 admissions (35%). The most common was drug omission (69%). At an error rate of 31%, nucleoside reverse transcriptase inhibitors were associated with an increased risk of error when compared with protease inhibitors (RR 1.32; 95% CI 1.04-1.69) and co-formulated drugs (RR 1.59; 95% CI 1.19-2.09). Of the errors, 31% were corrected within the first 24 h, but over half (55%) were never remedied. Admissions with an omission error were 7.4 times more likely to have all errors corrected within 24 h than were admissions without an omission. Drug interactions with ART were detected on 51 occasions. For the study population (n = 177), an increased risk of admission error was observed for black (43%) compared with white (28%) individuals (RR 1.53; 95% CI 1.16-2.03) but no significant differences were observed between white patients and other minorities or between men and women. Errors in inpatient ART were common, and the majority were never detected. The most common errors involved omission of medication, and nucleoside reverse transcriptase inhibitors had the highest rate of prescribing error. Interventions to prevent and correct errors are urgently needed.

  9. Controlling type I error rate for fast track drug development programmes.

    Science.gov (United States)

    Shih, Weichung J; Ouyang, Peter; Quan, Hui; Lin, Yong; Michiels, Bart; Bijnens, Luc

    2003-03-15

    The U.S. Food and Drug Administration (FDA) Modernization Act of 1997 has a Section (No. 112) entitled 'Expediting Study and Approval of Fast Track Drugs' (the Act). In 1998, the FDA issued a 'Guidance for Industry: the Fast Track Drug Development Programs' (the FTDD programmes) to meet the requirement of the Act. The purpose of FTDD programmes is to 'facilitate the development and expedite the review of new drugs that are intended to treat serious or life-threatening conditions and that demonstrate the potential to address unmet medical needs'. Since then many health products have reached patients who suffered from AIDS, cancer, osteoporosis, and many other diseases, sooner by utilizing the Fast Track Act and the FTDD programmes. In the meantime several scientific issues have also surfaced when following the FTDD programmes. In this paper we will discuss the concept of two kinds of type I errors, namely, the 'conditional approval' and the 'final approval' type I errors, and propose statistical methods for controlling them in a new drug submission process. Copyright 2003 John Wiley & Sons, Ltd.

  10. Controlling qubit drift by recycling error correction syndromes

    Science.gov (United States)

    Blume-Kohout, Robin

    2015-03-01

    Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  11. Prevalence and risk factors of undercorrected refractive errors among Singaporean Malay adults: the Singapore Malay Eye Study.

    Science.gov (United States)

    Rosman, Mohamad; Wong, Tien Y; Tay, Wan-Ting; Tong, Louis; Saw, Seang-Mei

    2009-08-01

    To describe the prevalence and the risk factors of undercorrected refractive error in an adult urban Malay population. This population-based, cross-sectional study was conducted in Singapore in 3280 Malay adults, aged 40 to 80 years. All individuals were examined at a centralized clinic and underwent standardized interviews and assessment of refractive errors and presenting and best corrected visual acuities. Distance presenting visual acuity was monocularly measured by using a logarithm of the minimum angle of resolution (logMAR) number chart at a distance of 4 m, with the participants wearing their "walk-in" optical corrections (spectacles or contact lenses), if any. Refraction was determined by subjective refraction by trained, certified study optometrists. Best corrected visual acuity was monocularly assessed and recorded in logMAR scores using the same test protocol as was used for presenting visual acuity. Undercorrected refractive error was defined as an improvement of at least 0.2 logMAR (2 lines equivalent) in the best corrected visual acuity compared with the presenting visual acuity in the better eye. The mean age of the subjects included in our study was 58 +/- 11 years, and 52% of the subjects were women. The prevalence rate of undercorrected refractive error among Singaporean Malay adults in our study (n = 3115) was 20.4% (age-standardized prevalence rate, 18.3%). More of the women had undercorrected refractive error than the men (21.8% vs. 18.8%, P = 0.04). Undercorrected refractive error was also more common in subjects older than 50 years than in subjects aged 40 to 49 years (22.6% vs. 14.3%, P Malay adults with refractive errors was higher than that of the Singaporean Chinese adults with refractive errors. Undercorrected refractive error is a significant cause of correctable visual impairment among Singaporean Malay adults, affecting one in five persons.

  12. Linear transceiver design for nonorthogonal amplify-and-forward protocol using a bit error rate criterion

    KAUST Repository

    Ahmed, Qasim Zeeshan; Park, Kihong; Alouini, Mohamed-Slim; Aï ssa, Sonia

    2014-01-01

    The ever growing demand of higher data rates can now be addressed by exploiting cooperative diversity. This form of diversity has become a fundamental technique for achieving spatial diversity by exploiting the presence of idle users in the network

  13. The Relation Between Inflation in Type-I and Type-II Error Rate and Population Divergence in Genome-Wide Association Analysis of Multi-Ethnic Populations

    NARCIS (Netherlands)

    Derks, E. M.; Zwinderman, A. H.; Gamazon, E. R.

    2017-01-01

    Population divergence impacts the degree of population stratification in Genome Wide Association Studies. We aim to: (i) investigate type-I error rate as a function of population divergence (FST) in multi-ethnic (admixed) populations; (ii) evaluate the statistical power and effect size estimates;

  14. Prevalence of refractive error in malay primary school children in suburban area of Kota Bharu, Kelantan, Malaysia.

    Science.gov (United States)

    Hashim, Syaratul-Emma; Tan, Hui-Ken; Wan-Hazabbah, W H; Ibrahim, Mohtar

    2008-11-01

    Refractive error remains one of the primary causes of visual impairment in children worldwide, and the prevalence of refractive error varies widely. The objective of this study was to determine the prevalence of refractive error and study the possible associated factors inducing refractive error among primary school children of Malay ethnicity in the suburban area of Kota Bharu, Kelantan, Malaysia. A school-based cross-sectional study was performed from January to July 2006 by random selection on Standard 1 to Standard 6 students of 10 primary schools in the Kota Bharu district. Visual acuity assessment was measured using logMAR ETDRS chart. Positive predictive value of uncorrected visual acuity equal or worse than 20/40, was used as a cut-off point for further evaluation by automated refraction and retinoscopic refraction. A total of 840 students were enumerated but only 705 were examined. The prevalence of uncorrected visual impairment was seen in 54 (7.7%) children. The main cause of the uncorrected visual impairment was refractive error which contributed to 90.7% of the total, and with 7.0% prevalence for the studied population. Myopia is the most common type of refractive error among children aged 6 to 12 years with prevalence of 5.4%, followed by hyperopia at 1.0% and astigmatism at 0.6%. A significant positive correlation was noted between myopia development with increasing age (P <0.005), more hours spent on reading books (P <0.005) and background history of siblings with glasses (P <0.005) and whose parents are of higher educational level (P <0.005). Malays in suburban Kelantan (5.4%) have the lowest prevalence of myopia compared with Malays in the metropolitan cities of Kuala Lumpur (9.2%) and Singapore (22.1%). The ethnicity-specific prevalence rate of myopia was the lowest among Malays in Kota Bharu, followed by Kuala Lumpur, and is the highest among Singaporean Malays. Better socio-economic factors could have contributed to higher myopia rates in the

  15. Renal contrast-enhanced MR angiography: timing errors and accurate depiction of renal artery origins.

    Science.gov (United States)

    Schmidt, Maria A; Morgan, Robert

    2008-10-01

    To investigate bolus timing artifacts that impair depiction of renal arteries at contrast material-enhanced magnetic resonance (MR) angiography and to determine the effect of contrast agent infusion rates on artifact generation. Renal contrast-enhanced MR angiography was simulated for a variety of infusion schemes, assuming both correct and incorrect timing between data acquisition and contrast agent injection. In addition, the ethics committee approved the retrospective evaluation of clinical breath-hold renal contrast-enhanced MR angiographic studies obtained with automated detection of contrast agent arrival. Twenty-two studies were evaluated for their ability to depict the origin of renal arteries in patent vessels and for any signs of timing errors. Simulations showed that a completely artifactual stenosis or an artifactual overestimation of an existing stenosis at the renal artery origin can be caused by timing errors of the order of 5 seconds in examinations performed with contrast agent infusion rates compatible with or higher than those of hand injections. Lower infusion rates make the studies more likely to accurately depict the origin of the renal arteries. In approximately one-third of all clinical examinations, different contrast agent uptake rates were detected on the left and right sides of the body, and thus allowed us to confirm that it is often impossible to optimize depiction of both renal arteries. In three renal arteries, a signal void was found at the origin in a patent vessel, and delayed contrast agent arrival was confirmed. Computer simulations and clinical examinations showed that timing errors impair the accurate depiction of renal artery origins. (c) RSNA, 2008.

  16. Sporadic error probability due to alpha particles in dynamic memories of various technologies

    International Nuclear Information System (INIS)

    Edwards, D.G.

    1980-01-01

    The sensitivity of MOS memory components to errors induced by alpha particles is expected to increase with integration level. The soft error rate of a 65-kbit VMOS memory has been compared experimentally with that of three field-proven 16-kbit designs. The technological and design advantages of the VMOS RAM ensure an error rate which is lower than those of the 16-kbit memories. Calculation of the error probability for the 65-kbit RAM and comparison with the measurements show that for large duty cycles single particle hits lead to sensing errors and for small duty cycles cell errors caused by multiple hits predominate. (Auth.)

  17. Critical mutation rate has an exponential dependence on population size in haploid and diploid populations.

    Directory of Open Access Journals (Sweden)

    Elizabeth Aston

    Full Text Available Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the

  18. Study of the Switching Errors in an RSFQ Switch by Using a Computerized Test Setup

    International Nuclear Information System (INIS)

    Kim, Se Hoon; Baek, Seung Hun; Yang, Jung Kuk; Kim, Jun Ho; Kang, Joon Hee

    2005-01-01

    The problem of fluctuation-induced digital errors in a rapid single flux quantum (RSFQ) circuit has been a very important issue. In this work, we calculated the bit error rate of an RSFQ switch used in superconductive arithmetic logic unit (ALU). RSFQ switch should have a very low error rate in the optimal bias. Theoretical estimates of the RSFQ error rate are on the order of 10 -50 per bit operation. In this experiment, we prepared two identical circuits placed in parallel. Each circuit was composed of 10 Josephson transmission lines (JTLs) connected in series with an RSFQ switch placed in the middle of the 10 JTLs. We used a splitter to feed the same input signal to both circuits. The outputs of the two circuits were compared with an RSFQ exclusive OR (XOR) to measure the bit error rate of the RSFQ switch. By using a computerized bit-error-rate test setup, we measured the bit error rate of 2.18 x 10 -12 when the bias to the RSFQ switch was 0.398 mA that was quite off from the optimum bias of 0.6 mA.

  19. Sleep quality, posttraumatic stress, depression, and human errors in train drivers: a population-based nationwide study in South Korea.

    Science.gov (United States)

    Jeon, Hong Jin; Kim, Ji-Hae; Kim, Bin-Na; Park, Seung Jin; Fava, Maurizio; Mischoulon, David; Kang, Eun-Ho; Roh, Sungwon; Lee, Dongsoo

    2014-12-01

    Human error is defined as an unintended error that is attributable to humans rather than machines, and that is important to avoid to prevent accidents. We aimed to investigate the association between sleep quality and human errors among train drivers. Cross-sectional. Population-based. A sample of 5,480 subjects who were actively working as train drivers were recruited in South Korea. The participants were 4,634 drivers who completed all questionnaires (response rate 84.6%). None. The Pittsburgh Sleep Quality Index (PSQI), the Center for Epidemiologic Studies Depression Scale (CES-D), the Impact of Event Scale-Revised (IES-R), the State-Trait Anxiety Inventory (STAI), and the Korean Occupational Stress Scale (KOSS). Of 4,634 train drivers, 349 (7.5%) showed more than one human error per 5 y. Human errors were associated with poor sleep quality, higher PSQI total scores, short sleep duration at night, and longer sleep latency. Among train drivers with poor sleep quality, those who experienced severe posttraumatic stress showed a significantly higher number of human errors than those without. Multiple logistic regression analysis showed that human errors were significantly associated with poor sleep quality and posttraumatic stress, whereas there were no significant associations with depression, trait and state anxiety, and work stress after adjusting for age, sex, education years, marital status, and career duration. Poor sleep quality was found to be associated with more human errors in train drivers, especially in those who experienced severe posttraumatic stress. © 2014 Associated Professional Sleep Societies, LLC.

  20. Quantum mean-field decoding algorithm for error-correcting codes

    International Nuclear Information System (INIS)

    Inoue, Jun-ichi; Saika, Yohei; Okada, Masato

    2009-01-01

    We numerically examine a quantum version of TAP (Thouless-Anderson-Palmer)-like mean-field algorithm for the problem of error-correcting codes. For a class of the so-called Sourlas error-correcting codes, we check the usefulness to retrieve the original bit-sequence (message) with a finite length. The decoding dynamics is derived explicitly and we evaluate the average-case performance through the bit-error rate (BER).

  1. Why are autopsy rates low in Japan? Views of ordinary citizens and doctors in the case of unexpected patient death and medical error.

    Science.gov (United States)

    Maeda, Shoichi; Kamishiraki, Etsuko; Starkey, Jay; Ikeda, Noriaki

    2013-01-01

    This article examines what could account for the low autopsy rate in Japan based on the findings from an anonymous, self-administered, structured questionnaire that was given to a sample population of the general public and physicians in Japan. The general public and physicians indicated that autopsy may not be carried out because: (1) conducting an autopsy might result in the accusation that patient death was caused by a medical error even when there was no error (50.4% vs. 13.1%, respectively), (2) suggesting an autopsy makes the families suspicious of a medical error even when there was none (61.0% vs. 19.1%, respectively), (3) families do not want the body to be damaged by autopsy (81.6% vs. 87.3%, respectively), and (4) families do not want to make the patient suffer any more in addition to what he/she has already endured (61.8% vs. 87.1%, respectively). © 2013 American Society for Healthcare Risk Management of the American Hospital Association.

  2. Changes in medical errors after implementation of a handoff program.

    Science.gov (United States)

    Starmer, Amy J; Spector, Nancy D; Srivastava, Rajendu; West, Daniel C; Rosenbluth, Glenn; Allen, April D; Noble, Elizabeth L; Tse, Lisa L; Dalal, Anuj K; Keohane, Carol A; Lipsitz, Stuart R; Rothschild, Jeffrey M; Wien, Matthew F; Yoon, Catherine S; Zigmont, Katherine R; Wilson, Karen M; O'Toole, Jennifer K; Solan, Lauren G; Aylor, Megan; Bismilla, Zia; Coffey, Maitreya; Mahant, Sanjay; Blankenburg, Rebecca L; Destino, Lauren A; Everhart, Jennifer L; Patel, Shilpa J; Bale, James F; Spackman, Jaime B; Stevenson, Adam T; Calaman, Sharon; Cole, F Sessions; Balmer, Dorene F; Hepps, Jennifer H; Lopreiato, Joseph O; Yu, Clifton E; Sectish, Theodore C; Landrigan, Christopher P

    2014-11-06

    Miscommunications are a leading cause of serious medical errors. Data from multicenter studies assessing programs designed to improve handoff of information about patient care are lacking. We conducted a prospective intervention study of a resident handoff-improvement program in nine hospitals, measuring rates of medical errors, preventable adverse events, and miscommunications, as well as resident workflow. The intervention included a mnemonic to standardize oral and written handoffs, handoff and communication training, a faculty development and observation program, and a sustainability campaign. Error rates were measured through active surveillance. Handoffs were assessed by means of evaluation of printed handoff documents and audio recordings. Workflow was assessed through time-motion observations. The primary outcome had two components: medical errors and preventable adverse events. In 10,740 patient admissions, the medical-error rate decreased by 23% from the preintervention period to the postintervention period (24.5 vs. 18.8 per 100 admissions, P<0.001), and the rate of preventable adverse events decreased by 30% (4.7 vs. 3.3 events per 100 admissions, P<0.001). The rate of nonpreventable adverse events did not change significantly (3.0 and 2.8 events per 100 admissions, P=0.79). Site-level analyses showed significant error reductions at six of nine sites. Across sites, significant increases were observed in the inclusion of all prespecified key elements in written documents and oral communication during handoff (nine written and five oral elements; P<0.001 for all 14 comparisons). There were no significant changes from the preintervention period to the postintervention period in the duration of oral handoffs (2.4 and 2.5 minutes per patient, respectively; P=0.55) or in resident workflow, including patient-family contact and computer time. Implementation of the handoff program was associated with reductions in medical errors and in preventable adverse events

  3. Triple-Error-Correcting Codec ASIC

    Science.gov (United States)

    Jones, Robert E.; Segallis, Greg P.; Boyd, Robert

    1994-01-01

    Coder/decoder constructed on single integrated-circuit chip. Handles data in variety of formats at rates up to 300 Mbps, correcting up to 3 errors per data block of 256 to 512 bits. Helps reduce cost of transmitting data. Useful in many high-data-rate, bandwidth-limited communication systems such as; personal communication networks, cellular telephone networks, satellite communication systems, high-speed computing networks, broadcasting, and high-reliability data-communication links.

  4. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    Science.gov (United States)

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Videopanorama Frame Rate Requirements Derived from Visual Discrimination of Deceleration During Simulated Aircraft Landing

    Science.gov (United States)

    Furnstenau, Norbert; Ellis, Stephen R.

    2015-01-01

    In order to determine the required visual frame rate (FR) for minimizing prediction errors with out-the-window video displays at remote/virtual airport towers, thirteen active air traffic controllers viewed high dynamic fidelity simulations of landing aircraft and decided whether aircraft would stop as if to be able to make a turnoff or whether a runway excursion would be expected. The viewing conditions and simulation dynamics replicated visual rates and environments of transport aircraft landing at small commercial airports. The required frame rate was estimated using Bayes inference on prediction errors by linear FRextrapolation of event probabilities conditional on predictions (stop, no-stop). Furthermore estimates were obtained from exponential model fits to the parametric and non-parametric perceptual discriminabilities d' and A (average area under ROC-curves) as dependent on FR. Decision errors are biased towards preference of overshoot and appear due to illusionary increase in speed at low frames rates. Both Bayes and A - extrapolations yield a framerate requirement of 35 game scores the model based d'(FR)-extrapolation exhibits the best agreement and indicates even higher FRmin > 40 Hz for minimizing decision errors. Definitive recommendations require further experiments with FR > 30 Hz.

  6. FMLRC: Hybrid long read error correction using an FM-index.

    Science.gov (United States)

    Wang, Jeremy R; Holt, James; McMillan, Leonard; Jones, Corbin D

    2018-02-09

    Long read sequencing is changing the landscape of genomic research, especially de novo assembly. Despite the high error rate inherent to long read technologies, increased read lengths dramatically improve the continuity and accuracy of genome assemblies. However, the cost and throughput of these technologies limits their application to complex genomes. One solution is to decrease the cost and time to assemble novel genomes by leveraging "hybrid" assemblies that use long reads for scaffolding and short reads for accuracy. We describe a novel method leveraging a multi-string Burrows-Wheeler Transform with auxiliary FM-index to correct errors in long read sequences using a set of complementary short reads. We demonstrate that our method efficiently produces significantly more high quality corrected sequence than existing hybrid error-correction methods. We also show that our method produces more contiguous assemblies, in many cases, than existing state-of-the-art hybrid and long-read only de novo assembly methods. Our method accurately corrects long read sequence data using complementary short reads. We demonstrate higher total throughput of corrected long reads and a corresponding increase in contiguity of the resulting de novo assemblies. Improved throughput and computational efficiency than existing methods will help better economically utilize emerging long read sequencing technologies.

  7. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    Science.gov (United States)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  8. 26 CFR 301.6621-3 - Higher interest rate payable on large corporate underpayments.

    Science.gov (United States)

    2010-04-01

    ... level) are not treated as letters of proposed deficiency that allow the taxpayer an opportunity for... resulting from a math error on Y's return. Y did not request an abatement of the assessment pursuant to...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...

  9. Iatrogenic medication errors in a paediatric intensive care unit in ...

    African Journals Online (AJOL)

    Errors most frequently encountered included failure to calculate rates of infusion and the conversion of mL to mEq or mL to mg for potassium, phenobarbitone and digoxin. Of the 117 children admitted, 111 (94.9%) were exposed to at least one medication error. Two or more medication errors occurred in 34.1% of cases.

  10. Terrestrial neutron-induced soft errors in advanced memory devices

    CERN Document Server

    Nakamura, Takashi; Ibe, Eishi; Yahagi, Yasuo; Kameyama, Hideaki

    2008-01-01

    Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices. This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features. Sample Chapter(s). Chapter 1: Introduction (238 KB). Table A.30 mentioned in Appendix A.6 on

  11. The Human Bathtub: Safety and Risk Predictions Including the Dynamic Probability of Operator Errors

    International Nuclear Information System (INIS)

    Duffey, Romney B.; Saull, John W.

    2006-01-01

    Reactor safety and risk are dominated by the potential and major contribution for human error in the design, operation, control, management, regulation and maintenance of the plant, and hence to all accidents. Given the possibility of accidents and errors, now we need to determine the outcome (error) probability, or the chance of failure. Conventionally, reliability engineering is associated with the failure rate of components, or systems, or mechanisms, not of human beings in and interacting with a technological system. The probability of failure requires a prior knowledge of the total number of outcomes, which for any predictive purposes we do not know or have. Analysis of failure rates due to human error and the rate of learning allow a new determination of the dynamic human error rate in technological systems, consistent with and derived from the available world data. The basis for the analysis is the 'learning hypothesis' that humans learn from experience, and consequently the accumulated experience defines the failure rate. A new 'best' equation has been derived for the human error, outcome or failure rate, which allows for calculation and prediction of the probability of human error. We also provide comparisons to the empirical Weibull parameter fitting used in and by conventional reliability engineering and probabilistic safety analysis methods. These new analyses show that arbitrary Weibull fitting parameters and typical empirical hazard function techniques cannot be used to predict the dynamics of human errors and outcomes in the presence of learning. Comparisons of these new insights show agreement with human error data from the world's commercial airlines, the two shuttle failures, and from nuclear plant operator actions and transient control behavior observed in transients in both plants and simulators. The results demonstrate that the human error probability (HEP) is dynamic, and that it may be predicted using the learning hypothesis and the minimum

  12. Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes

    International Nuclear Information System (INIS)

    Myint Wazo; Cai Yufeng; Schiffer, Celia A.; Ishima, Rieko

    2012-01-01

    Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R 2 , is needed for accurate characterization of dynamics, the uncertainty in the R 2 value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase alternation on the accuracy of the 15 N CPMG R 2 . Our simulations show that R 2 can be obtained accurately for a relatively wide spectral width, either using the conventional phase cycle or using phase alternation when the r.f. pulse power is accurately calibrated. However, when the r.f. pulse is miscalibrated, the conventional CPMG experiment exhibits more significant uncertainties in R 2 caused by the off-resonance effect than does the phase alternation experiment. Our experiments show that this effect becomes manifest under the circumstance that the systematic error exceeds that arising from experimental noise. Furthermore, our results provide the means to estimate practical parameter settings that yield accurate values of 15 N transverse relaxation rates in the both CPMG experiments.

  13. Influence of the statistical distribution of bioassay measurement errors on the intake estimation

    International Nuclear Information System (INIS)

    Lee, T. Y; Kim, J. K

    2006-01-01

    The purpose of this study is to provide the guidance necessary for making a selection of error distributions by analyzing influence of statistical distribution for a type of bioassay measurement error on the intake estimation. For this purpose, intakes were estimated using maximum likelihood method for cases that error distributions are normal and lognormal, and comparisons between two distributions for the estimated intakes were made. According to the results of this study, in case that measurement results for lung retention are somewhat greater than the limit of detection it appeared that distribution types have negligible influence on the results. Whereas in case of measurement results for the daily excretion rate, the results obtained from assumption of a lognormal distribution were 10% higher than those obtained from assumption of a normal distribution. In view of these facts, in case where uncertainty component is governed by counting statistics it is considered that distribution type have no influence on intake estimation. Whereas in case where the others are predominant, it is concluded that it is clearly desirable to estimate the intake assuming a lognormal distribution

  14. Using snowball sampling method with nurses to understand medication administration errors.

    Science.gov (United States)

    Sheu, Shuh-Jen; Wei, Ien-Lan; Chen, Ching-Huey; Yu, Shu; Tang, Fu-In

    2009-02-01

    We aimed to encourage nurses to release information about drug administration errors to increase understanding of error-related circumstances and to identify high-alert situations. Drug administration errors represent the majority of medication errors, but errors are underreported. Effective ways are lacking to encourage nurses to actively report errors. Snowball sampling was conducted to recruit participants. A semi-structured questionnaire was used to record types of error, hospital and nurse backgrounds, patient consequences, error discovery mechanisms and reporting rates. Eighty-five nurses participated, reporting 328 administration errors (259 actual, 69 near misses). Most errors occurred in medical surgical wards of teaching hospitals, during day shifts, committed by nurses working fewer than two years. Leading errors were wrong drugs and doses, each accounting for about one-third of total errors. Among 259 actual errors, 83.8% resulted in no adverse effects; among remaining 16.2%, 6.6% had mild consequences and 9.6% had serious consequences (severe reaction, coma, death). Actual errors and near misses were discovered mainly through double-check procedures by colleagues and nurses responsible for errors; reporting rates were 62.5% (162/259) vs. 50.7% (35/69) and only 3.5% (9/259) vs. 0% (0/69) were disclosed to patients and families. High-alert situations included administration of 15% KCl, insulin and Pitocin; using intravenous pumps; and implementation of cardiopulmonary resuscitation (CPR). Snowball sampling proved to be an effective way to encourage nurses to release details concerning medication errors. Using empirical data, we identified high-alert situations. Strategies for reducing drug administration errors by nurses are suggested. Survey results suggest that nurses should double check medication administration in known high-alert situations. Nursing management can use snowball sampling to gather error details from nurses in a non

  15. Efficient decoding of random errors for quantum expander codes

    OpenAIRE

    Fawzi , Omar; Grospellier , Antoine; Leverrier , Anthony

    2017-01-01

    We show that quantum expander codes, a constant-rate family of quantum LDPC codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Z\\'emor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottes...

  16. Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach

    Science.gov (United States)

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732

  17. Cooperative MIMO communication at wireless sensor network: an error correcting code approach.

    Science.gov (United States)

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.

  18. Semiparametric Bernstein–von Mises for the error standard deviation

    OpenAIRE

    Jonge, de, R.; Zanten, van, J.H.

    2013-01-01

    We study Bayes procedures for nonparametric regression problems with Gaussian errors, giving conditions under which a Bernstein–von Mises result holds for the marginal posterior distribution of the error standard deviation. We apply our general results to show that a single Bayes procedure using a hierarchical spline-based prior on the regression function and an independent prior on the error variance, can simultaneously achieve adaptive, rate-optimal estimation of a smooth, multivariate regr...

  19. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Science.gov (United States)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  20. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brantjes, N.P.M. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Dzordzhadze, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Gebel, R. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Gonnella, F. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hoek, D.J. van der [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Imig, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kruithof, W.L. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Lazarus, D.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lehrach, A.; Lorentz, B. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Messi, R. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Moricciani, D. [INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Morse, W.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Noid, G.A. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); and others

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Juelich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10{sup -5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10{sup -6} in a search for an electric dipole moment using a storage ring.

  1. FRamework Assessing Notorious Contributing Influences for Error (FRANCIE): Perspective on Taxonomy Development to Support Error Reporting and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lon N. Haney; David I. Gertman

    2003-04-01

    Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human error analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.

  2. SU-G-BRB-03: Assessing the Sensitivity and False Positive Rate of the Integrated Quality Monitor (IQM) Large Area Ion Chamber to MLC Positioning Errors

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, E McKenzie; DeMarco, J; Steers, J; Fraass, B [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To examine both the IQM’s sensitivity and false positive rate to varying MLC errors. By balancing these two characteristics, an optimal tolerance value can be derived. Methods: An un-modified SBRT Liver IMRT plan containing 7 fields was randomly selected as a representative clinical case. The active MLC positions for all fields were perturbed randomly from a square distribution of varying width (±1mm to ±5mm). These unmodified and modified plans were measured multiple times each by the IQM (a large area ion chamber mounted to a TrueBeam linac head). Measurements were analyzed relative to the initial, unmodified measurement. IQM readings are analyzed as a function of control points. In order to examine sensitivity to errors along a field’s delivery, each measured field was divided into 5 groups of control points, and the maximum error in each group was recorded. Since the plans have known errors, we compared how well the IQM is able to differentiate between unmodified and error plans. ROC curves and logistic regression were used to analyze this, independent of thresholds. Results: A likelihood-ratio Chi-square test showed that the IQM could significantly predict whether a plan had MLC errors, with the exception of the beginning and ending control points. Upon further examination, we determined there was ramp-up occurring at the beginning of delivery. Once the linac AFC was tuned, the subsequent measurements (relative to a new baseline) showed significant (p <0.005) abilities to predict MLC errors. Using the area under the curve, we show the IQM’s ability to detect errors increases with increasing MLC error (Spearman’s Rho=0.8056, p<0.0001). The optimal IQM count thresholds from the ROC curves are ±3%, ±2%, and ±7% for the beginning, middle 3, and end segments, respectively. Conclusion: The IQM has proven to be able to detect not only MLC errors, but also differences in beam tuning (ramp-up). Partially supported by the Susan Scott Foundation.

  3. SNP discovery in nonmodel organisms: strand bias and base-substitution errors reduce conversion rates.

    Science.gov (United States)

    Gonçalves da Silva, Anders; Barendse, William; Kijas, James W; Barris, Wes C; McWilliam, Sean; Bunch, Rowan J; McCullough, Russell; Harrison, Blair; Hoelzel, A Rus; England, Phillip R

    2015-07-01

    Single nucleotide polymorphisms (SNPs) have become the marker of choice for genetic studies in organisms of conservation, commercial or biological interest. Most SNP discovery projects in nonmodel organisms apply a strategy for identifying putative SNPs based on filtering rules that account for random sequencing errors. Here, we analyse data used to develop 4723 novel SNPs for the commercially important deep-sea fish, orange roughy (Hoplostethus atlanticus), to assess the impact of not accounting for systematic sequencing errors when filtering identified polymorphisms when discovering SNPs. We used SAMtools to identify polymorphisms in a velvet assembly of genomic DNA sequence data from seven individuals. The resulting set of polymorphisms were filtered to minimize 'bycatch'-polymorphisms caused by sequencing or assembly error. An Illumina Infinium SNP chip was used to genotype a final set of 7714 polymorphisms across 1734 individuals. Five predictors were examined for their effect on the probability of obtaining an assayable SNP: depth of coverage, number of reads that support a variant, polymorphism type (e.g. A/C), strand-bias and Illumina SNP probe design score. Our results indicate that filtering out systematic sequencing errors could substantially improve the efficiency of SNP discovery. We show that BLASTX can be used as an efficient tool to identify single-copy genomic regions in the absence of a reference genome. The results have implications for research aiming to identify assayable SNPs and build SNP genotyping assays for nonmodel organisms. © 2014 John Wiley & Sons Ltd.

  4. Spacecraft and propulsion technician error

    Science.gov (United States)

    Schultz, Daniel Clyde

    Commercial aviation and commercial space similarly launch, fly, and land passenger vehicles. Unlike aviation, the U.S. government has not established maintenance policies for commercial space. This study conducted a mixed methods review of 610 U.S. space launches from 1984 through 2011, which included 31 failures. An analysis of the failure causal factors showed that human error accounted for 76% of those failures, which included workmanship error accounting for 29% of the failures. With the imminent future of commercial space travel, the increased potential for the loss of human life demands that changes be made to the standardized procedures, training, and certification to reduce human error and failure rates. Several recommendations were made by this study to the FAA's Office of Commercial Space Transportation, space launch vehicle operators, and maintenance technician schools in an effort to increase the safety of the space transportation passengers.

  5. The Differences in Error Rate and Type between IELTS Writing Bands and Their Impact on Academic Workload

    Science.gov (United States)

    Müller, Amanda

    2015-01-01

    This paper attempts to demonstrate the differences in writing between International English Language Testing System (IELTS) bands 6.0, 6.5 and 7.0. An analysis of exemplars provided from the IELTS test makers reveals that IELTS 6.0, 6.5 and 7.0 writers can make a minimum of 206 errors, 96 errors and 35 errors per 1000 words. The following section…

  6. Efficient error correction for next-generation sequencing of viral amplicons.

    Science.gov (United States)

    Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury

    2012-06-25

    Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.

  7. Comparison of the effect of paper and computerized procedures on operator error rate and speed of performance

    International Nuclear Information System (INIS)

    Converse, S.A.; Perez, P.B.; Meyer, S.; Crabtree, W.

    1994-01-01

    The Computerized Procedures Manual (COPMA-II) is an advanced procedure manual that can be used to select and execute procedures, to monitor the state of plant parameters, and to help operators track their progress through plant procedures. COPMA-II was evaluated in a study that compared the speed and accuracy of operators' performance when they performed with COPMA-II and traditional paper procedures. Sixteen licensed reactor operators worked in teams of two to operate the Scales Pressurized Water Reactor Facility at North Carolina State University. Each team performed one change of power with each type of procedure to simulate performance under normal operating conditions. Teams then performed one accident scenario with COPMA-II and one with paper procedures. Error rates, performance times, and subjective estimates of workload were collected, and were evaluated for each combination of procedure type and scenario type. For the change of power task, accuracy and response time were not different for COPMA-II and paper procedures. Operators did initiate responses to both accident scenarios fastest with paper procedures. However, procedure type did not moderate response completion time for either accident scenario. For accuracy, performance with paper procedures resulted in twice as many errors as did performance with COPMA-II. Subjective measures of mental workload for the accident scenarios were not affected by procedure type

  8. Inflation of type I error rates by unequal variances associated with parametric, nonparametric, and Rank-Transformation Tests

    Directory of Open Access Journals (Sweden)

    Donald W. Zimmerman

    2004-01-01

    Full Text Available It is well known that the two-sample Student t test fails to maintain its significance level when the variances of treatment groups are unequal, and, at the same time, sample sizes are unequal. However, introductory textbooks in psychology and education often maintain that the test is robust to variance heterogeneity when sample sizes are equal. The present study discloses that, for a wide variety of non-normal distributions, especially skewed distributions, the Type I error probabilities of both the t test and the Wilcoxon-Mann-Whitney test are substantially inflated by heterogeneous variances, even when sample sizes are equal. The Type I error rate of the t test performed on ranks replacing the scores (rank-transformed data is inflated in the same way and always corresponds closely to that of the Wilcoxon-Mann-Whitney test. For many probability densities, the distortion of the significance level is far greater after transformation to ranks and, contrary to known asymptotic properties, the magnitude of the inflation is an increasing function of sample size. Although nonparametric tests of location also can be sensitive to differences in the shape of distributions apart from location, the Wilcoxon-Mann-Whitney test and rank-transformation tests apparently are influenced mainly by skewness that is accompanied by specious differences in the means of ranks.

  9. Medication errors: prescribing faults and prescription errors.

    Science.gov (United States)

    Velo, Giampaolo P; Minuz, Pietro

    2009-06-01

    1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.

  10. HUMAN ERROR QUANTIFICATION USING PERFORMANCE SHAPING FACTORS IN THE SPAR-H METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Harold S. Blackman; David I. Gertman; Ronald L. Boring

    2008-09-01

    This paper describes a cognitively based human reliability analysis (HRA) quantification technique for estimating the human error probabilities (HEPs) associated with operator and crew actions at nuclear power plants. The method described here, Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method, was developed to aid in characterizing and quantifying human performance at nuclear power plants. The intent was to develop a defensible method that would consider all factors that may influence performance. In the SPAR-H approach, calculation of HEP rates is especially straightforward, starting with pre-defined nominal error rates for cognitive vs. action-oriented tasks, and incorporating performance shaping factor multipliers upon those nominal error rates.

  11. Does the Economic Crisis Have an Influence on the Higher Education Dropout Rate?

    Science.gov (United States)

    Leão Fernandes, Graça; Chagas Lopes, Margarida

    2016-01-01

    This research aims to identify the effects of the economic crisis on higher education (HE) dropout rates at Lisbon School of Economics and Management (ISEG)--Universidade de Lisboa, after having controlled for individual characteristics, family background, High School and HE trajectories. Our main hypothesis is that the economic crisis induces…

  12. Two-component model application for error calculus in the environmental monitoring data analysis

    International Nuclear Information System (INIS)

    Carvalho, Maria Angelica G.; Hiromoto, Goro

    2002-01-01

    Analysis and interpretation of results of an environmental monitoring program is often based on the evaluation of the mean value of a particular set of data, which is strongly affected by the analytical errors associated with each measurement. A model proposed by Rocke and Lorenzato assumes two error components, one additive and one multiplicative, to deal with lower and higher concentration values in a single model. In this communication, an application of this method for re-evaluation of the errors reported in a large set of results of total alpha measurements in a environmental sample is presented. The results show that the mean values calculated taking into account the new errors is higher than as obtained with the original errors, being an indicative that the analytical errors reported before were underestimated in the region of lower concentrations. (author)

  13. Calm Merino ewes have a higher ovulation rate and more multiple pregnancies than nervous ewes.

    Science.gov (United States)

    van Lier, E; Hart, K W; Viñoles, C; Paganoni, B; Blache, D

    2017-07-01

    In 1990, two selection lines of Merino sheep were established for low and high behavioural reactivity (calm and nervous temperament) at the University of Western Australia. Breeding records consistently showed that calm ewes weaned 10% to 19% more lambs than the nervous ewes. We hypothesise that calm ewes could have a higher ovulation rate than nervous ewes and/or calm ewes could have a lower rate of embryo mortality than nervous ewes. We tested these hypotheses by comparing the ovulation rate and the rate of embryo mortality between the calm and nervous lines before and after synchronisation and artificial insemination. Merino ewes from the temperament selection lines (calm, n=100; nervous, n=100) were synchronised (early breeding season) for artificial insemination (day 0) (intravaginal sponges containing fluogestone acetate and eCG immediately after sponge withdrawal). On day-17 and 11 ovarian cyclicity and corpora lutea, and on days 30 and 74 pregnancies and embryos/foetuses were determined by ultrasound. Progesterone, insulin and leptin concentrations were determined in blood plasma samples from days 5, 12 and 17. Ovarian cyclicity before and after oestrus synchronisation did not differ between the lines, but ovulation rate did (day-17: calm 1.63; nervous 1.26; Pewes was higher than on day-17. Loss of embryos by day 30 was high (calm: 71/150; nervous: 68/130); but nervous ewes had a lower proportion (15/47) of multiple pregnancies compared with calm ewes (30/46; Pewes had higher insulin (32.0 pmol/l±1.17 SEM; P=0.013) and lower leptin (1.18 μg/l±0.04 SEM; P=0.002) concentrations than calm ewes (insulin: 27.8 pmol/l±1.17 SEM; leptin: 1.35 μg/l±0.04 SEM). The differences in reproductive outcomes between the calm and nervous ewes were mainly due to a higher ovulation rate in calm ewes. We suggest that reproduction in nervous ewes is compromised by factors leading up to ovulation and conception, or the uterine environment during early pregnancy, that reflect

  14. The error performance analysis over cyclic redundancy check codes

    Science.gov (United States)

    Yoon, Hee B.

    1991-06-01

    The burst error is generated in digital communication networks by various unpredictable conditions, which occur at high error rates, for short durations, and can impact services. To completely describe a burst error one has to know the bit pattern. This is impossible in practice on working systems. Therefore, under the memoryless binary symmetric channel (MBSC) assumptions, the performance evaluation or estimation schemes for digital signal 1 (DS1) transmission systems carrying live traffic is an interesting and important problem. This study will present some analytical methods, leading to efficient detecting algorithms of burst error using cyclic redundancy check (CRC) code. The definition of burst error is introduced using three different models. Among the three burst error models, the mathematical model is used in this study. The probability density function, function(b) of burst error of length b is proposed. The performance of CRC-n codes is evaluated and analyzed using function(b) through the use of a computer simulation model within CRC block burst error. The simulation result shows that the mean block burst error tends to approach the pattern of the burst error which random bit errors generate.

  15. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    Science.gov (United States)

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  16. Approaching Error-Free Customer Satisfaction through Process Change and Feedback Systems

    Science.gov (United States)

    Berglund, Kristin M.; Ludwig, Timothy D.

    2009-01-01

    Employee-based errors result in quality defects that can often impact customer satisfaction. This study examined the effects of a process change and feedback system intervention on error rates of 3 teams of retail furniture distribution warehouse workers. Archival records of error codes were analyzed and aggregated as the measure of quality. The…

  17. Assessing the accuracy and feasibility of a refractive error screening program conducted by school teachers in pre-primary and primary schools in Thailand.

    Science.gov (United States)

    Teerawattananon, Kanlaya; Myint, Chaw-Yin; Wongkittirux, Kwanjai; Teerawattananon, Yot; Chinkulkitnivat, Bunyong; Orprayoon, Surapong; Kusakul, Suwat; Tengtrisorn, Supaporn; Jenchitr, Watanee

    2014-01-01

    As part of the development of a system for the screening of refractive error in Thai children, this study describes the accuracy and feasibility of establishing a program conducted by teachers. To assess the accuracy and feasibility of screening by teachers. A cross-sectional descriptive and analytical study was conducted in 17 schools in four provinces representing four geographic regions in Thailand. A two-staged cluster sampling was employed to compare the detection rate of refractive error among eligible students between trained teachers and health professionals. Serial focus group discussions were held for teachers and parents in order to understand their attitude towards refractive error screening at schools and the potential success factors and barriers. The detection rate of refractive error screening by teachers among pre-primary school children is relatively low (21%) for mild visual impairment but higher for moderate visual impairment (44%). The detection rate for primary school children is high for both levels of visual impairment (52% for mild and 74% for moderate). The focus group discussions reveal that both teachers and parents would benefit from further education regarding refractive errors and that the vast majority of teachers are willing to conduct a school-based screening program. Refractive error screening by health professionals in pre-primary and primary school children is not currently implemented in Thailand due to resource limitations. However, evidence suggests that a refractive error screening program conducted in schools by teachers in the country is reasonable and feasible because the detection and treatment of refractive error in very young generations is important and the screening program can be implemented and conducted with relatively low costs.

  18. Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

    Science.gov (United States)

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  19. Teamwork and Clinical Error Reporting among Nurses in Korean Hospitals

    Directory of Open Access Journals (Sweden)

    Jee-In Hwang, PhD

    2015-03-01

    Conclusions: Teamwork was rated as moderate and was positively associated with nurses' error reporting performance. Hospital executives and nurse managers should make substantial efforts to enhance teamwork, which will contribute to encouraging the reporting of errors and improving patient safety.

  20. Reply: Birnbaum's (2012 statistical tests of independence have unknown Type-I error rates and do not replicate within participant

    Directory of Open Access Journals (Sweden)

    Yun-shil Cha

    2013-01-01

    Full Text Available Birnbaum (2011, 2012 questioned the iid (independent and identically distributed sampling assumptions used by state-of-the-art statistical tests in Regenwetter, Dana and Davis-Stober's (2010, 2011 analysis of the ``linear order model''. Birnbaum (2012 cited, but did not use, a test of iid by Smith and Batchelder (2008 with analytically known properties. Instead, he created two new test statistics with unknown sampling distributions. Our rebuttal has five components: 1 We demonstrate that the Regenwetter et al. data pass Smith and Batchelder's test of iid with flying colors. 2 We provide evidence from Monte Carlo simulations that Birnbaum's (2012 proposed tests have unknown Type-I error rates, which depend on the actual choice probabilities and on how data are coded as well as on the null hypothesis of iid sampling. 3 Birnbaum analyzed only a third of Regenwetter et al.'s data. We show that his two new tests fail to replicate on the other two-thirds of the data, within participants. 4 Birnbaum selectively picked data of one respondent to suggest that choice probabilities may have changed partway into the experiment. Such nonstationarity could potentially cause a seemingly good fit to be a Type-II error. We show that the linear order model fits equally well if we allow for warm-up effects. 5 Using hypothetical data, Birnbaum (2012 claimed to show that ``true-and-error'' models for binary pattern probabilities overcome the alleged short-comings of Regenwetter et al.'s approach. We disprove this claim on the same data.

  1. Analysis of the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery☆

    Science.gov (United States)

    Arba-Mosquera, Samuel; Aslanides, Ioannis M.

    2012-01-01

    Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.

  2. Student laboratory experiments exploring optical fibre communication systems, eye diagrams, and bit error rates

    Science.gov (United States)

    Walsh, Douglas; Moodie, David; Mauchline, Iain; Conner, Steve; Johnstone, Walter; Culshaw, Brian

    2005-06-01

    Optical fibre communications has proved to be one of the key application areas, which created, and ultimately propelled the global growth of the photonics industry over the last twenty years. Consequently the teaching of the principles of optical fibre communications has become integral to many university courses covering photonics technology. However to reinforce the fundamental principles and key technical issues students examine in their lecture courses and to develop their experimental skills, it is critical that the students also obtain hands-on practical experience of photonics components, instruments and systems in an associated teaching laboratory. In recognition of this need OptoSci, in collaboration with university academics, commercially developed a fibre optic communications based educational package (ED-COM). This educator kit enables students to; investigate the characteristics of the individual communications system components (sources, transmitters, fibre, receiver), examine and interpret the overall system performance limitations imposed by attenuation and dispersion, conduct system design and performance analysis. To further enhance the experimental programme examined in the fibre optic communications kit, an extension module to ED-COM has recently been introduced examining one of the most significant performance parameters of digital communications systems, the bit error rate (BER). This add-on module, BER(COM), enables students to generate, evaluate and investigate signal quality trends by examining eye patterns, and explore the bit-rate limitations imposed on communication systems by noise, attenuation and dispersion. This paper will examine the educational objectives, background theory, and typical results for these educator kits, with particular emphasis on BER(COM).

  3. The surveillance error grid.

    Science.gov (United States)

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  4. Prevalence and risk factors for refractive errors in the South Indian adult population: The Andhra Pradesh Eye disease study

    Directory of Open Access Journals (Sweden)

    Sannapaneni Krishnaiah

    2008-12-01

    Full Text Available Sannapaneni Krishnaiah1,2,3, Marmamula Srinivas1,2,3, Rohit C Khanna1,2, Gullapalli N Rao1,2,31L V Prasad Eye Institute, Banjara Hills, Hyderabad, India; 2International Center for Advancement of Rural Eye Care, L V Prasad Eye Institute, Banjara Hills, Hyderabad, India; 3Vision CRC, University of New South Wales, Sydney, NSW, AustraliaAim: To report the prevalence, risk factors and associated population attributable risk percentage (PAR for refractive errors in the South Indian adult population.Methods: A population-based cross-sectional epidemiologic study was conducted in the Indian state of Andhra Pradesh. A multistage cluster, systematic, stratified random sampling method was used to obtain participants (n = 10293 for this study.Results: The age-gender-area-adjusted prevalence rates in those ≥40 years of age were determined for myopia (spherical equivalent [SE] < −0.5 D 34.6% (95% confidence interval [CI]: 33.1–36.1, high-myopia (SE < −5.0 D 4.5% (95% CI: 3.8–5.2, hyperopia (SE > +0.5 D 18.4% (95% CI: 17.1–19.7, astigmatism (cylinder < −0.5 D 37.6% (95% CI: 36–39.2, and anisometropia (SE difference between right and left eyes >0.5 D 13.0% (95% CI: 11.9–14.1. The prevalence of myopia, astigmatism, high-myopia, and anisometropia significantly increased with increasing age (all p < 0.0001. There was no gender difference in prevalence rates in any type of refractive error, though women had a significantly higher rate of hyperopia than men (p < 0.0001. Hyperopia was significantly higher among those with a higher educational level (odds ratio [OR] 2.49; 95% CI: 1.51–3.95 and significantly higher among the hypertensive group (OR 1.24; 95% CI: 1.03–1.49. The severity of lens nuclear opacity was positively associated with myopia and negatively associated with hyperopia.Conclusions: The prevalence of myopia in this adult Indian population is much higher than in similarly aged white populations. These results confirm the previously

  5. Analysis of the “naming game” with learning errors in communications

    OpenAIRE

    Yang Lou; Guanrong Chen

    2015-01-01

    Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is ...

  6. Utilising identifier error variation in linkage of large administrative data sources

    Directory of Open Access Journals (Sweden)

    Katie Harron

    2017-02-01

    Full Text Available Abstract Background Linkage of administrative data sources often relies on probabilistic methods using a set of common identifiers (e.g. sex, date of birth, postcode. Variation in data quality on an individual or organisational level (e.g. by hospital can result in clustering of identifier errors, violating the assumption of independence between identifiers required for traditional probabilistic match weight estimation. This potentially introduces selection bias to the resulting linked dataset. We aimed to measure variation in identifier error rates in a large English administrative data source (Hospital Episode Statistics; HES and to incorporate this information into match weight calculation. Methods We used 30,000 randomly selected HES hospital admissions records of patients aged 0–1, 5–6 and 18–19 years, for 2011/2012, linked via NHS number with data from the Personal Demographic Service (PDS; our gold-standard. We calculated identifier error rates for sex, date of birth and postcode and used multi-level logistic regression to investigate associations with individual-level attributes (age, ethnicity, and gender and organisational variation. We then derived: i weights incorporating dependence between identifiers; ii attribute-specific weights (varying by age, ethnicity and gender; and iii organisation-specific weights (by hospital. Results were compared with traditional match weights using a simulation study. Results Identifier errors (where values disagreed in linked HES-PDS records or missing values were found in 0.11% of records for sex and date of birth and in 53% of records for postcode. Identifier error rates differed significantly by age, ethnicity and sex (p < 0.0005. Errors were less frequent in males, in 5–6 year olds and 18–19 year olds compared with infants, and were lowest for the Asian ethic group. A simulation study demonstrated that substantial bias was introduced into estimated readmission rates in the presence

  7. Applying Intelligent Algorithms to Automate the Identification of Error Factors.

    Science.gov (United States)

    Jin, Haizhe; Qu, Qingxing; Munechika, Masahiko; Sano, Masataka; Kajihara, Chisato; Duffy, Vincent G; Chen, Han

    2018-05-03

    Medical errors are the manifestation of the defects occurring in medical processes. Extracting and identifying defects as medical error factors from these processes are an effective approach to prevent medical errors. However, it is a difficult and time-consuming task and requires an analyst with a professional medical background. The issues of identifying a method to extract medical error factors and reduce the extraction difficulty need to be resolved. In this research, a systematic methodology to extract and identify error factors in the medical administration process was proposed. The design of the error report, extraction of the error factors, and identification of the error factors were analyzed. Based on 624 medical error cases across four medical institutes in both Japan and China, 19 error-related items and their levels were extracted. After which, they were closely related to 12 error factors. The relational model between the error-related items and error factors was established based on a genetic algorithm (GA)-back-propagation neural network (BPNN) model. Additionally, compared to GA-BPNN, BPNN, partial least squares regression and support vector regression, GA-BPNN exhibited a higher overall prediction accuracy, being able to promptly identify the error factors from the error-related items. The combination of "error-related items, their different levels, and the GA-BPNN model" was proposed as an error-factor identification technology, which could automatically identify medical error factors.

  8. Large-scale simulations of error-prone quantum computation devices

    International Nuclear Information System (INIS)

    Trieu, Doan Binh

    2009-01-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2±0.2) x 10 -6 . For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced technology, i

  9. The impact of measurement errors in the identification of regulatory networks

    Directory of Open Access Journals (Sweden)

    Sato João R

    2009-12-01

    Full Text Available Abstract Background There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent and non-time series (independent data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models and dependent (autoregressive models data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error. The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.

  10. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    that disconnection of the REED system resulted to much lower (48 and 83% for glucose and xylose, respectively) sugars consumption rates and consequently lower butyric acid production rates. It was also noticeable that continuous operation, even without the REED system, resulted to higher glucose consumption rates...

  11. Method for decoupling error correction from privacy amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Hoi-Kwong [Department of Electrical and Computer Engineering and Department of Physics, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada, M5S 3G4 (Canada)

    2003-04-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof.

  12. Method for decoupling error correction from privacy amplification

    International Nuclear Information System (INIS)

    Lo, Hoi-Kwong

    2003-01-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof

  13. Beyond hypercorrection: remembering corrective feedback for low-confidence errors.

    Science.gov (United States)

    Griffiths, Lauren; Higham, Philip A

    2018-02-01

    Correcting errors based on corrective feedback is essential to successful learning. Previous studies have found that corrections to high-confidence errors are better remembered than low-confidence errors (the hypercorrection effect). The aim of this study was to investigate whether corrections to low-confidence errors can also be successfully retained in some cases. Participants completed an initial multiple-choice test consisting of control, trick and easy general-knowledge questions, rated their confidence after answering each question, and then received immediate corrective feedback. After a short delay, they were given a cued-recall test consisting of the same questions. In two experiments, we found high-confidence errors to control questions were better corrected on the second test compared to low-confidence errors - the typical hypercorrection effect. However, low-confidence errors to trick questions were just as likely to be corrected as high-confidence errors. Most surprisingly, we found that memory for the feedback and original responses, not confidence or surprise, were significant predictors of error correction. We conclude that for some types of material, there is an effortful process of elaboration and problem solving prior to making low-confidence errors that facilitates memory of corrective feedback.

  14. Smart photodetector arrays for error control in page-oriented optical memory

    Science.gov (United States)

    Schaffer, Maureen Elizabeth

    1998-12-01

    Page-oriented optical memories (POMs) have been proposed to meet high speed, high capacity storage requirements for input/output intensive computer applications. This technology offers the capability for storage and retrieval of optical data in two-dimensional pages resulting in high throughput data rates. Since currently measured raw bit error rates for these systems fall several orders of magnitude short of industry requirements for binary data storage, powerful error control codes must be adopted. These codes must be designed to take advantage of the two-dimensional memory output. In addition, POMs require an optoelectronic interface to transfer the optical data pages to one or more electronic host systems. Conventional charge coupled device (CCD) arrays can receive optical data in parallel, but the relatively slow serial electronic output of these devices creates a system bottleneck thereby eliminating the POM advantage of high transfer rates. Also, CCD arrays are "unintelligent" interfaces in that they offer little data processing capabilities. The optical data page can be received by two-dimensional arrays of "smart" photo-detector elements that replace conventional CCD arrays. These smart photodetector arrays (SPAs) can perform fast parallel data decoding and error control, thereby providing an efficient optoelectronic interface between the memory and the electronic computer. This approach optimizes the computer memory system by combining the massive parallelism and high speed of optics with the diverse functionality, low cost, and local interconnection efficiency of electronics. In this dissertation we examine the design of smart photodetector arrays for use as the optoelectronic interface for page-oriented optical memory. We review options and technologies for SPA fabrication, develop SPA requirements, and determine SPA scalability constraints with respect to pixel complexity, electrical power dissipation, and optical power limits. Next, we examine data

  15. Splenectomy is associated with higher infection and pneumonia rates among trauma laparotomy patients.

    Science.gov (United States)

    Fair, Kelly A; Connelly, Christopher R; Hart, Kyle D; Schreiber, Martin A; Watters, Jennifer M

    2017-05-01

    Splenectomy increases lifetime risk of thromboembolism (VTE) and is associated with long-term infectious complications, primarily, overwhelming post-splenectomy infection (OPSI). Our objective was to evaluate risk of VTE and infection at index hospitalization post-splenectomy. Retrospective review of all patients who received a laparotomy in the NTDB. Propensity score matching for splenectomy was performed, based on ISS, abdominal abbreviated injury score >3, GCS, sex and mechanism. Major complications, VTE, and infection rates were compared. Multiple logistic regression models were utilized to evaluate splenectomy-associated complications. 93,221 laparotomies were performed and 17% underwent splenectomy. Multiple logistic regression models did not demonstrate an association between splenectomy and major complications (OR 0.96, 95% CI 0.91-1.03, p = 0.25) or VTE (OR 1.05, 95% CI 0.96-1.14, p = 0.33). Splenectomy was independently associated with infection (OR 1.07, 95% CI 1.00-1.14, p = 0.045). Subgroup analysis of patients with infection demonstrated that splenectomy was most strongly associated with pneumonia (OR 1.41, 95% CI 1.26-1.57, p Splenectomy is not associated with higher overall complication or VTE rates during index hospitalization. However, splenectomy is associated with a higher rate of pneumonia. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Experimental quantum error correction with high fidelity

    International Nuclear Information System (INIS)

    Zhang Jingfu; Gangloff, Dorian; Moussa, Osama; Laflamme, Raymond

    2011-01-01

    More than ten years ago a first step toward quantum error correction (QEC) was implemented [Phys. Rev. Lett. 81, 2152 (1998)]. The work showed there was sufficient control in nuclear magnetic resonance to implement QEC, and demonstrated that the error rate changed from ε to ∼ε 2 . In the current work we reproduce a similar experiment using control techniques that have been since developed, such as the pulses generated by gradient ascent pulse engineering algorithm. We show that the fidelity of the QEC gate sequence and the comparative advantage of QEC are appreciably improved. This advantage is maintained despite the errors introduced by the additional operations needed to protect the quantum states.

  17. Characteristics and evidence of nursing scientific production for medication errors at the hospital environment

    Directory of Open Access Journals (Sweden)

    Lolita Dopico da Silva

    2012-06-01

    Full Text Available This study aimed to identify the characteristics of nurses’ publications about medication errors. It was used an Integrative methodology review covering January 2005 to October 2010 with "medication errors" and "nursing" descriptors and it was also collected data from electronic databases via “Capes Portal”. Results show four categories, the conduct of health professionals in medication errors, types and rates of errors, medication system weaknesses, and barriers to error. Discussion of the prevalent practice was not to notify the error. The prevalent error type was administration and error rates which ranged from 14.8 to 56.7%. Ilegible handwriting, communication failures among professionals, and lack of technical knowledge were weaknesses. Among the barriers, the civility from patient, nurses and technology were evident. Advances in researches for testing barriers were found and some gaps were apparent concerning lack of study that address pharmacodynamics or pharmacokinetic aspects of drugs involved in errors.

  18. Radiologic errors, past, present and future.

    Science.gov (United States)

    Berlin, Leonard

    2014-01-01

    During the 10-year period beginning in 1949 with publication of five articles in two radiology journals and UKs The Lancet, a California radiologist named L.H. Garland almost single-handedly shocked the entire medical and especially the radiologic community. He focused their attention on the fact now known and accepted by all, but at that time not previously recognized and acknowledged only with great reluctance, that a substantial degree of observer error was prevalent in radiologic interpretation. In the more than half-century that followed, Garland's pioneering work has been affirmed and reaffirmed by numerous researchers. Retrospective studies disclosed then and still disclose today that diagnostic errors in radiologic interpretations of plain radiographic (as well as CT, MR, ultrasound, and radionuclide) images hover in the 30% range, not too dissimilar to the error rates in clinical medicine. Seventy percent of these errors are perceptual in nature, i.e., the radiologist does not "see" the abnormality on the imaging exam, perhaps due to poor conspicuity, satisfaction of search, or simply the "inexplicable psycho-visual phenomena of human perception." The remainder are cognitive errors: the radiologist sees an abnormality but fails to render a correct diagnoses by attaching the wrong significance to what is seen, perhaps due to inadequate knowledge, or an alliterative or judgmental error. Computer-assisted detection (CAD), a technology that for the past two decades has been utilized primarily in mammographic interpretation, increases sensitivity but at the same time decreases specificity; whether it reduces errors is debatable. Efforts to reduce diagnostic radiological errors continue, but the degree to which they will be successful remains to be determined.

  19. Application of Fermat's Principle to Calculation of the Errors of Acoustic Flow-Rate Measurements for a Three-Dimensional Fluid Flow or Gas

    Science.gov (United States)

    Petrov, A. G.; Shkundin, S. Z.

    2018-01-01

    Fermat's variational principle is used for derivation of the formula for the time of propagation of a sonic signal between two set points A and B in a steady three-dimensional flow of a fluid or gas. It is shown that the fluid flow changes the time of signal reception by a value proportional to the flow rate independently of the velocity profile. The time difference in the reception of the signals from point B to point A and vice versa is proportional with a high accuracy to the flow rate. It is shown that the relative error of the formula does not exceed the square of the largest Mach number. This makes it possible to measure the flow rate of a fluid or gas with an arbitrary steady subsonic velocity field.

  20. Syntactic and semantic errors in radiology reports associated with speech recognition software.

    Science.gov (United States)

    Ringler, Michael D; Goss, Brian C; Bartholmai, Brian J

    2017-03-01

    Speech recognition software can increase the frequency of errors in radiology reports, which may affect patient care. We retrieved 213,977 speech recognition software-generated reports from 147 different radiologists and proofread them for errors. Errors were classified as "material" if they were believed to alter interpretation of the report. "Immaterial" errors were subclassified as intrusion/omission or spelling errors. The proportion of errors and error type were compared among individual radiologists, imaging subspecialty, and time periods. In all, 20,759 reports (9.7%) contained errors, of which 3992 (1.9%) were material errors. Among immaterial errors, spelling errors were more common than intrusion/omission errors ( p reports, reports reinterpreting results of outside examinations, and procedural studies (all p < .001). Error rate decreased over time ( p < .001), which suggests that a quality control program with regular feedback may reduce errors.

  1. Nonresponse Error in Mail Surveys: Top Ten Problems

    Directory of Open Access Journals (Sweden)

    Jeanette M. Daly

    2011-01-01

    Full Text Available Conducting mail surveys can result in nonresponse error, which occurs when the potential participant is unwilling to participate or impossible to contact. Nonresponse can result in a reduction in precision of the study and may bias results. The purpose of this paper is to describe and make readers aware of a top ten list of mailed survey problems affecting the response rate encountered over time with different research projects, while utilizing the Dillman Total Design Method. Ten nonresponse error problems were identified, such as inserter machine gets sequence out of order, capitalization in databases, and mailing discarded by postal service. These ten mishaps can potentiate nonresponse errors, but there are ways to minimize their frequency. Suggestions offered stem from our own experiences during research projects. Our goal is to increase researchers' knowledge of nonresponse error problems and to offer solutions which can decrease nonresponse error in future projects.

  2. Radiological error: analysis, standard setting, targeted instruction and teamworking

    International Nuclear Information System (INIS)

    FitzGerald, Richard

    2005-01-01

    Diagnostic radiology does not have objective benchmarks for acceptable levels of missed diagnoses [1]. Until now, data collection of radiological discrepancies has been very time consuming. The culture within the specialty did not encourage it. However, public concern about patient safety is increasing. There have been recent innovations in compiling radiological interpretive discrepancy rates which may facilitate radiological standard setting. However standard setting alone will not optimise radiologists' performance or patient safety. We must use these new techniques in radiological discrepancy detection to stimulate greater knowledge sharing, targeted instruction and teamworking among radiologists. Not all radiological discrepancies are errors. Radiological discrepancy programmes must not be abused as an instrument for discrediting individual radiologists. Discrepancy rates must not be distorted as a weapon in turf battles. Radiological errors may be due to many causes and are often multifactorial. A systems approach to radiological error is required. Meaningful analysis of radiological discrepancies and errors is challenging. Valid standard setting will take time. Meanwhile, we need to develop top-up training, mentoring and rehabilitation programmes. (orig.)

  3. Reduced phase error through optimized control of a superconducting qubit

    International Nuclear Information System (INIS)

    Lucero, Erik; Kelly, Julian; Bialczak, Radoslaw C.; Lenander, Mike; Mariantoni, Matteo; Neeley, Matthew; O'Connell, A. D.; Sank, Daniel; Wang, H.; Weides, Martin; Wenner, James; Cleland, A. N.; Martinis, John M.; Yamamoto, Tsuyoshi

    2010-01-01

    Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors, in particular, we have developed an experimental metrology - amplified phase error (APE) pulses - that amplifies and helps identify phase errors in general multilevel qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement 'half derivative', an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to ∼1.6 deg. per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit |2> state, is also reduced to ∼10 -4 for 20% faster gates.

  4. Measurement errors in voice-key naming latency for Hiragana.

    Science.gov (United States)

    Yamada, Jun; Tamaoka, Katsuo

    2003-12-01

    This study makes explicit the limitations and possibilities of voice-key naming latency research on single hiragana symbols (a Japanese syllabic script) by examining three sets of voice-key naming data against Sakuma, Fushimi, and Tatsumi's 1997 speech-analyzer voice-waveform data. Analysis showed that voice-key measurement errors can be substantial in standard procedures as they may conceal the true effects of significant variables involved in hiragana-naming behavior. While one can avoid voice-key measurement errors to some extent by applying Sakuma, et al.'s deltas and by excluding initial phonemes which induce measurement errors, such errors may be ignored when test items are words and other higher-level linguistic materials.

  5. Challenge and Error: Critical Events and Attention-Related Errors

    Science.gov (United States)

    Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel

    2011-01-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…

  6. Error Mitigation for Short-Depth Quantum Circuits

    Science.gov (United States)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  7. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response

    Directory of Open Access Journals (Sweden)

    Takahiro eSoshi

    2015-01-01

    Full Text Available Post-error slowing is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms. Neural correlates of post-error processing were examined using event-related potentials (ERPs. Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS. Behavioral results demonstrated that the commission error for No-go trials was 15%, but post-error slowing did not take place immediately. Delayed post-error slowing was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to post-error slowing. Stimulus-locked N2 was negatively correlated with post-error slowing and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater post-error slowing and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and post-error slowing did not occur quickly. Furthermore, post-error slowing and its neural correlate (N2 were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke

  8. Error estimation and adaptivity for incompressible hyperelasticity

    KAUST Repository

    Whiteley, J.P.

    2014-04-30

    SUMMARY: A Galerkin FEM is developed for nonlinear, incompressible (hyper) elasticity that takes account of nonlinearities in both the strain tensor and the relationship between the strain tensor and the stress tensor. By using suitably defined linearised dual problems with appropriate boundary conditions, a posteriori error estimates are then derived for both linear functionals of the solution and linear functionals of the stress on a boundary, where Dirichlet boundary conditions are applied. A second, higher order method for calculating a linear functional of the stress on a Dirichlet boundary is also presented together with an a posteriori error estimator for this approach. An implementation for a 2D model problem with known solution, where the entries of the strain tensor exhibit large, rapid variations, demonstrates the accuracy and sharpness of the error estimators. Finally, using a selection of model problems, the a posteriori error estimate is shown to provide a basis for effective mesh adaptivity. © 2014 John Wiley & Sons, Ltd.

  9. The Relationships Among Perceived Patients' Safety Culture, Intention to Report Errors, and Leader Coaching Behavior of Nurses in Korea: A Pilot Study.

    Science.gov (United States)

    Ko, YuKyung; Yu, Soyoung

    2017-09-01

    This study was undertaken to explore the correlations among nurses' perceptions of patient safety culture, their intention to report errors, and leader coaching behaviors. The participants (N = 289) were nurses from 5 Korean hospitals with approximately 300 to 500 beds each. Sociodemographic variables, patient safety culture, intention to report errors, and coaching behavior were measured using self-report instruments. Data were analyzed using descriptive statistics, Pearson correlation coefficient, the t test, and the Mann-Whitney U test. Nurses' perceptions of patient safety culture and their intention to report errors showed significant differences between groups of nurses who rated their leaders as high-performing or low-performing coaches. Perceived coaching behavior showed a significant, positive correlation with patient safety culture and intention to report errors, i.e., as nurses' perceptions of coaching behaviors increased, so did their ratings of patient safety culture and error reporting. There is a need in health care settings for coaching by nurse managers to provide quality nursing care and thus improve patient safety. Programs that are systematically developed and implemented to enhance the coaching behaviors of nurse managers are crucial to the improvement of patient safety and nursing care. Moreover, a systematic analysis of the causes of malpractice, as opposed to a focus on the punitive consequences of errors, could increase error reporting and therefore promote a culture in which a higher level of patient safety can thrive.

  10. Impact of Pointing Errors on the Performance of Mixed RF/FSO Dual-Hop Transmission Systems

    KAUST Repository

    Ansari, Imran Shafique; Alouini, Mohamed-Slim; Yilmaz, Ferkan

    2013-01-01

    In this work, the performance analysis of a dual-hop relay transmission system composed of asymmetric radio-frequency (RF)/free-space optical (FSO) links with pointing errors is presented. More specifically, we build on the system model presented in [1] to derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio in terms of the Meijer's G function. We then capitalize on these results to offer new exact closed-form expressions for the higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and the ergodic capacity, all in terms of Meijer's G functions. Our new analytical results were also verified via computer-based Monte-Carlo simulation results.

  11. Impact of Pointing Errors on the Performance of Mixed RF/FSO Dual-Hop Transmission Systems

    KAUST Repository

    Ansari, Imran Shafique

    2013-02-20

    In this work, the performance analysis of a dual-hop relay transmission system composed of asymmetric radio-frequency (RF)/free-space optical (FSO) links with pointing errors is presented. More specifically, we build on the system model presented in [1] to derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio in terms of the Meijer\\'s G function. We then capitalize on these results to offer new exact closed-form expressions for the higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and the ergodic capacity, all in terms of Meijer\\'s G functions. Our new analytical results were also verified via computer-based Monte-Carlo simulation results.

  12. Operator errors

    International Nuclear Information System (INIS)

    Knuefer; Lindauer

    1980-01-01

    Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)

  13. Statistical mechanics of error-correcting codes

    Science.gov (United States)

    Kabashima, Y.; Saad, D.

    1999-01-01

    We investigate the performance of error-correcting codes, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability is obtained for finite K and C. We examine the finite-temperature case to assess the use of simulated annealing for decoding and extend the analysis to accommodate other types of noisy channels.

  14. Joint adaptive modulation and diversity combining with feedback error compensation

    KAUST Repository

    Choi, Seyeong; Hong-Chuan, Yang; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2009-01-01

    This letter investigates the effect of feedback error on the performance of the joint adaptive modulation and diversity combining (AMDC) scheme which was previously studied with an assumption of error-free feedback channels. We also propose to utilize adaptive diversity to compensate for the performance degradation due to feedback error. We accurately quantify the performance of the joint AMDC scheme in the presence of feedback error, in terms of the average number of combined paths, the average spectral efficiency, and the average bit error rate. Selected numerical examples are presented and discussed to illustrate the effectiveness of the proposed feedback error compensation strategy with adaptive combining. It is observed that the proposed compensation strategy can offer considerable error performance improvement with little loss in processing power and spectral efficiency in comparison with the no compensation case. Copyright © 2009 IEEE.

  15. Joint adaptive modulation and diversity combining with feedback error compensation

    KAUST Repository

    Choi, Seyeong

    2009-11-01

    This letter investigates the effect of feedback error on the performance of the joint adaptive modulation and diversity combining (AMDC) scheme which was previously studied with an assumption of error-free feedback channels. We also propose to utilize adaptive diversity to compensate for the performance degradation due to feedback error. We accurately quantify the performance of the joint AMDC scheme in the presence of feedback error, in terms of the average number of combined paths, the average spectral efficiency, and the average bit error rate. Selected numerical examples are presented and discussed to illustrate the effectiveness of the proposed feedback error compensation strategy with adaptive combining. It is observed that the proposed compensation strategy can offer considerable error performance improvement with little loss in processing power and spectral efficiency in comparison with the no compensation case. Copyright © 2009 IEEE.

  16. Calculation error of collective effective dose of external exposure during works at 'Shelter' object

    International Nuclear Information System (INIS)

    Batij, V.G.; Derengovskij, V.V.; Kochnev, N.A.; Sizov, A.A.

    2001-01-01

    Collective effective dose (CED) error assessment is the most important task for optimal planning of works in the 'Shelter' object conditions. The main components of CED error are as follows: error in transient factor determination from exposition dose to equivalent dose; error in working hours determination in 'Shelter' object conditions; error in determination of dose rate at workplaces; additional CED error introduced by shielding of workplaces

  17. Reduction in pediatric identification band errors: a quality collaborative.

    Science.gov (United States)

    Phillips, Shannon Connor; Saysana, Michele; Worley, Sarah; Hain, Paul D

    2012-06-01

    Accurate and consistent placement of a patient identification (ID) band is used in health care to reduce errors associated with patient misidentification. Multiple safety organizations have devoted time and energy to improving patient ID, but no multicenter improvement collaboratives have shown scalability of previously successful interventions. We hoped to reduce by half the pediatric patient ID band error rate, defined as absent, illegible, or inaccurate ID band, across a quality improvement learning collaborative of hospitals in 1 year. On the basis of a previously successful single-site intervention, we conducted a self-selected 6-site collaborative to reduce ID band errors in heterogeneous pediatric hospital settings. The collaborative had 3 phases: preparatory work and employee survey of current practice and barriers, data collection (ID band failure rate), and intervention driven by data and collaborative learning to accelerate change. The collaborative audited 11377 patients for ID band errors between September 2009 and September 2010. The ID band failure rate decreased from 17% to 4.1% (77% relative reduction). Interventions including education of frontline staff regarding correct ID bands as a safety strategy; a change to softer ID bands, including "luggage tag" type ID bands for some patients; and partnering with families and patients through education were applied at all institutions. Over 13 months, a collaborative of pediatric institutions significantly reduced the ID band failure rate. This quality improvement learning collaborative demonstrates that safety improvements tested in a single institution can be disseminated to improve quality of care across large populations of children.

  18. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    Directory of Open Access Journals (Sweden)

    Qing-Hui WANG

    2014-02-01

    Full Text Available This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or concentration, the proposed detection system with lower cost and higher accuracy can be applied in the occasion which needs simultaneous monitoring of gas concentration and flow rate.

  19. Higher Magnitude Cash Payments Improve Research Follow-up Rates Without Increasing Drug Use or Perceived Coercion

    Science.gov (United States)

    Festinger, David S.; Marlowe, Douglas B.; Dugosh, Karen L.; Croft, Jason R.; Arabia, Patricia L.

    2008-01-01

    In a prior study (Festinger et al., 2005) we found that neither the mode (cash vs. gift card) nor magnitude ($10, $40, or $70) of research follow-up payments increased rates of new drug use or perceptions of coercion. However, higher payments and payments in cash were associated with better follow-up attendance, reduced tracking efforts, and improved participant satisfaction with the study. The present study extended those findings to higher payment magnitudes. Participants from an urban outpatient substance abuse treatment program were randomly assigned to receive $70, $100, $130, or $160 in either cash or a gift card for completing a follow-up assessment at 6 months post-admission (n ≅ 50 per cell). Apart from the payment incentives, all participants received a standardized, minimal platform of follow-up efforts. Findings revealed that neither the magnitude nor mode of payment had a significant effect on new drug use or perceived coercion. Consistent with our previous findings, higher payments and cash payments resulted in significantly higher follow-up rates and fewer tracking calls. In addition participants receiving cash vs. gift cards were more likely to use their payments for essential, non-luxury purchases. Follow-up rates for participants receiving cash payments of $100, $130, and $160 approached or exceeded the FDA required minimum of 70% for studies to be considered in evaluations of new medications. This suggests that the use of higher magnitude payments and cash payments may be effective strategies for obtaining more representative follow-up samples without increasing new drug use or perceptions of coercion. PMID:18395365

  20. Bit Error Rate Performance of a MIMO-CDMA System Employing Parity-Bit-Selected Spreading in Frequency Nonselective Rayleigh Fading

    Directory of Open Access Journals (Sweden)

    Claude D'Amours

    2011-01-01

    Full Text Available We analytically derive the upper bound for the bit error rate (BER performance of a single user multiple input multiple output code division multiple access (MIMO-CDMA system employing parity-bit-selected spreading in slowly varying, flat Rayleigh fading. The analysis is done for spatially uncorrelated links. The analysis presented demonstrates that parity-bit-selected spreading provides an asymptotic gain of 10log(Nt dB over conventional MIMO-CDMA when the receiver has perfect channel estimates. This analytical result concurs with previous works where the (BER is determined by simulation methods and provides insight into why the different techniques provide improvement over conventional MIMO-CDMA systems.

  1. Frequency of medication errors in an emergency department of a large teaching hospital in southern Iran

    Directory of Open Access Journals (Sweden)

    Vazin A

    2014-12-01

    Full Text Available Afsaneh Vazin,1 Zahra Zamani,1 Nahid Hatam2 1Department of Clinical Pharmacy, Faculty of Pharmacy, 2School of Management and Medical Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran Abstract: This study was conducted with the purpose of determining the frequency of medication errors (MEs occurring in tertiary care emergency department (ED of a large academic hospital in Iran. The incidence of MEs was determined through the disguised direct observation method conducted by a trained observer. A total of 1,031 medication doses administered to 202 patients admitted to the tertiary care ED were observed over a course of 54 6-hour shifts. Following collection of the data and analysis of the errors with the assistance of a clinical pharmacist, frequency of errors in the different stages was reported and analyzed in SPSS-21 software. For the 202 patients and the 1,031 medication doses evaluated in the present study, 707 (68.5% MEs were recorded in total. In other words, 3.5 errors per patient and almost 0.69 errors per medication are reported to have occurred, with the highest frequency of errors pertaining to cardiovascular (27.2% and antimicrobial (23.6% medications. The highest rate of errors occurred during the administration phase of the medication use process with a share of 37.6%, followed by errors of prescription and transcription with a share of 21.1% and 10% of errors, respectively. Omission (7.6% and wrong time error (4.4% were the most frequent administration errors. The less-experienced nurses (P=0.04, higher patient-to-nurse ratio (P=0.017, and the morning shifts (P=0.035 were positively related to administration errors. Administration errors marked the highest share of MEs occurring in the different medication use processes. Increasing the number of nurses and employing the more experienced of them in EDs can help reduce nursing errors. Addressing the shortcomings with further research should result in reduction

  2. Opportunistic error correction for mimo-ofdm: from theory to practice

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    Opportunistic error correction based on fountain codes is especially designed for the MIMOOFDM system. The key point of this new method is the tradeoff between the code rate of error correcting codes and the number of sub-carriers in the channel vector to be discarded. By transmitting one

  3. Soft errors in dynamic random access memories - a basis for dosimetry

    International Nuclear Information System (INIS)

    Haque, A.K.M.M.; Yates, J.; Stevens, D.

    1986-01-01

    The soft error rates of a number of 64k and 256k dRAMs from several manufacturers have been measured, employing a MC 68000 microprocessor. For this 'accelerated test' procedure, a 37 kBq (1 μCi) 241 Am alpha emitting source was used. Both 64k and 256k devices exhibited widely differing error rates. It was generally observed that the spread of errors over a particular device/manufacturer was much smaller than the differences between device families and manufacturers. Bit line errors formed a significant part of the total for 64k dRAMs, whereas in 256k dRAMs cell errors dominated; the latter also showed an enhanced sensitivity to integrated dose leading to total failure, and a time-dependent recovery. Although several theoretical models explain soft error mechanisms and predict responses which are compatible with our experimental results, it is considered that microdosimetric and track structure methods should be applied to the problem for its better appreciation. Finally, attention is drawn to the need for further studies of dRAMs, with a view to their use as digital dosemeters. (author)

  4. Key rate of quantum key distribution with hashed two-way classical communication

    International Nuclear Information System (INIS)

    Watanabe, Shun; Matsumoto, Ryutaroh; Uyematsu, Tomohiko; Kawano, Yasuhito

    2007-01-01

    We propose an information reconciliation protocol that uses two-way classical communication. The key rates of quantum key distribution (QKD) protocols that use our protocol are higher than those using previously known protocols for a wide range of error rates for the Bennett-Brassard 1984 and six-state protocols. We also clarify the relation between the proposed and known QKD protocols, and the relation between the proposed protocol and entanglement distillation protocols

  5. Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN

    Science.gov (United States)

    Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.

    2016-12-01

    In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of

  6. Upper bounds on the number of errors corrected by a convolutional code

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2004-01-01

    We derive upper bounds on the weights of error patterns that can be corrected by a convolutional code with given parameters, or equivalently we give bounds on the code rate for a given set of error patterns. The bounds parallel the Hamming bound for block codes by relating the number of error...

  7. ERROR HANDLING IN INTEGRATION WORKFLOWS

    Directory of Open Access Journals (Sweden)

    Alexey M. Nazarenko

    2017-01-01

    Full Text Available Simulation experiments performed while solving multidisciplinary engineering and scientific problems require joint usage of multiple software tools. Further, when following a preset plan of experiment or searching for optimum solu- tions, the same sequence of calculations is run multiple times with various simulation parameters, input data, or conditions while overall workflow does not change. Automation of simulations like these requires implementing of a workflow where tool execution and data exchange is usually controlled by a special type of software, an integration environment or plat- form. The result is an integration workflow (a platform-dependent implementation of some computing workflow which, in the context of automation, is a composition of weakly coupled (in terms of communication intensity typical subtasks. These compositions can then be decomposed back into a few workflow patterns (types of subtasks interaction. The pat- terns, in their turn, can be interpreted as higher level subtasks.This paper considers execution control and data exchange rules that should be imposed by the integration envi- ronment in the case of an error encountered by some integrated software tool. An error is defined as any abnormal behavior of a tool that invalidates its result data thus disrupting the data flow within the integration workflow. The main requirementto the error handling mechanism implemented by the integration environment is to prevent abnormal termination of theentire workflow in case of missing intermediate results data. Error handling rules are formulated on the basic pattern level and on the level of a composite task that can combine several basic patterns as next level subtasks. The cases where workflow behavior may be different, depending on user's purposes, when an error takes place, and possible error handling op- tions that can be specified by the user are also noted in the work.

  8. Routine cognitive errors: a trait-like predictor of individual differences in anxiety and distress.

    Science.gov (United States)

    Fetterman, Adam K; Robinson, Michael D

    2011-02-01

    Five studies (N=361) sought to model a class of errors--namely, those in routine tasks--that several literatures have suggested may predispose individuals to higher levels of emotional distress. Individual differences in error frequency were assessed in choice reaction-time tasks of a routine cognitive type. In Study 1, it was found that tendencies toward error in such tasks exhibit trait-like stability over time. In Study 3, it was found that tendencies toward error exhibit trait-like consistency across different tasks. Higher error frequency, in turn, predicted higher levels of negative affect, general distress symptoms, displayed levels of negative emotion during an interview, and momentary experiences of negative emotion in daily life (Studies 2-5). In all cases, such predictive relations remained significant with individual differences in neuroticism controlled. The results thus converge on the idea that error frequency in simple cognitive tasks is a significant and consequential predictor of emotional distress in everyday life. The results are novel, but discussed within the context of the wider literatures that informed them. © 2010 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business

  9. The refractive index in electron microscopy and the errors of its approximations

    Energy Technology Data Exchange (ETDEWEB)

    Lentzen, M.

    2017-05-15

    In numerical calculations for electron diffraction often a simplified form of the electron-optical refractive index, linear in the electric potential, is used. In recent years improved calculation schemes have been proposed, aiming at higher accuracy by including higher-order terms of the electric potential. These schemes start from the relativistically corrected Schrödinger equation, and use a second simplified form, now for the refractive index squared, being linear in the electric potential. The second and higher-order corrections thus determined have, however, a large error, compared to those derived from the relativistically correct refractive index. The impact of the two simplifications on electron diffraction calculations is assessed through numerical comparison of the refractive index at high-angle Coulomb scattering and of cross-sections for a wide range of scattering angles, kinetic energies, and atomic numbers. - Highlights: • The standard model for the refractive index in electron microscopy is investigated. • The error of the standard model is proportional to the electric potential squared. • Relativistically correct error terms are derived from the energy-momentum relation. • The errors are assessed for Coulomb scattering varying energy and atomic number. • Errors of scattering cross-sections are pronounced at large angles and attain 10%.

  10. The refractive index in electron microscopy and the errors of its approximations

    International Nuclear Information System (INIS)

    Lentzen, M.

    2017-01-01

    In numerical calculations for electron diffraction often a simplified form of the electron-optical refractive index, linear in the electric potential, is used. In recent years improved calculation schemes have been proposed, aiming at higher accuracy by including higher-order terms of the electric potential. These schemes start from the relativistically corrected Schrödinger equation, and use a second simplified form, now for the refractive index squared, being linear in the electric potential. The second and higher-order corrections thus determined have, however, a large error, compared to those derived from the relativistically correct refractive index. The impact of the two simplifications on electron diffraction calculations is assessed through numerical comparison of the refractive index at high-angle Coulomb scattering and of cross-sections for a wide range of scattering angles, kinetic energies, and atomic numbers. - Highlights: • The standard model for the refractive index in electron microscopy is investigated. • The error of the standard model is proportional to the electric potential squared. • Relativistically correct error terms are derived from the energy-momentum relation. • The errors are assessed for Coulomb scattering varying energy and atomic number. • Errors of scattering cross-sections are pronounced at large angles and attain 10%.

  11. Latency and mode of error detection as reflected in Swedish licensee event reports

    Energy Technology Data Exchange (ETDEWEB)

    Svenson, Ola; Salo, Ilkka [Stockholm Univ., (Sweden). Dept. of Psychology

    2002-03-01

    Licensee event reports (LERs) from an industry provide important information feedback about safety to the industry itself, the regulators and to the public. LERs from four nuclear power reactors were analyzed to find out about detection times, mode of detection and qualitative differences in reports from different reactors. The reliability of the coding was satisfactory and measured as the covariance between the ratings from two independent judges. The results showed differences in detection time across the reactors. On the average about ten percent of the errors remained undetected for 100 weeks or more, but the great majority of errors were detected soon after their first appearance in the plant. On the average 40 percent of the errors were detected in regular tests and 40 per cent through alarms. Operators found about 10 per cent of the errors through noticing something abnormal in the plant. The remaining errors were detected in various other ways. There were qualitative differences between the LERs from the different reactors reflecting the different conditions in the plants. The number of reports differed by a magnitude 1:2 between the different plants. However, a greater number of LERs can indicate both higher safety standards (e.g., a greater willingness to report all possible events to be able to learn from them) and lower safety standards (e.g., reporting as few events as possible to make a good impression). It was pointed out that LERs are indispensable in order to maintain safety of an industry and that the differences between plants found in the analyses of this study indicate how error reports can be used to initiate further investigations for improved safety.

  12. Latency and mode of error detection as reflected in Swedish licensee event reports

    International Nuclear Information System (INIS)

    Svenson, Ola; Salo, Ilkka

    2002-03-01

    Licensee event reports (LERs) from an industry provide important information feedback about safety to the industry itself, the regulators and to the public. LERs from four nuclear power reactors were analyzed to find out about detection times, mode of detection and qualitative differences in reports from different reactors. The reliability of the coding was satisfactory and measured as the covariance between the ratings from two independent judges. The results showed differences in detection time across the reactors. On the average about ten percent of the errors remained undetected for 100 weeks or more, but the great majority of errors were detected soon after their first appearance in the plant. On the average 40 percent of the errors were detected in regular tests and 40 per cent through alarms. Operators found about 10 per cent of the errors through noticing something abnormal in the plant. The remaining errors were detected in various other ways. There were qualitative differences between the LERs from the different reactors reflecting the different conditions in the plants. The number of reports differed by a magnitude 1:2 between the different plants. However, a greater number of LERs can indicate both higher safety standards (e.g., a greater willingness to report all possible events to be able to learn from them) and lower safety standards (e.g., reporting as few events as possible to make a good impression). It was pointed out that LERs are indispensable in order to maintain safety of an industry and that the differences between plants found in the analyses of this study indicate how error reports can be used to initiate further investigations for improved safety

  13. Large-scale simulations of error-prone quantum computation devices

    Energy Technology Data Exchange (ETDEWEB)

    Trieu, Doan Binh

    2009-07-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2{+-}0.2) x 10{sup -6}. For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431{+-}0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced

  14. Statistical errors in Monte Carlo estimates of systematic errors

    Energy Technology Data Exchange (ETDEWEB)

    Roe, Byron P. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: byronroe@umich.edu

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k{sup 2}.

  15. Statistical errors in Monte Carlo estimates of systematic errors

    International Nuclear Information System (INIS)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k 2

  16. Error resilient H.264/AVC Video over Satellite for low Packet Loss Rates

    DEFF Research Database (Denmark)

    Aghito, Shankar Manuel; Forchhammer, Søren; Andersen, Jakob Dahl

    2007-01-01

    The performance of video over satellite is simulated. The error resilience tools of intra macroblock refresh and slicing are optimized for live broadcast video over satellite. The improved performance using feedback, using a cross- layer approach, over the satellite link is also simulated. The ne...

  17. Higher resting heart rate variability predicts skill in expressing some emotions.

    Science.gov (United States)

    Tuck, Natalie L; Grant, Rosemary C I; Sollers, John J; Booth, Roger J; Consedine, Nathan S

    2016-12-01

    Vagally mediated heart rate variability (vmHRV) is a measure of cardiac vagal tone, and is widely viewed as a physiological index of the capacity to regulate emotions. However, studies have not directly tested whether vmHRV is associated with the ability to facially express emotions. In extending prior work, the current report tested links between resting vmHRV and the objectively assessed ability to facially express emotions, hypothesizing that higher vmHRV would predict greater expressive skill. Eighty healthy women completed self-reported measures, before attending a laboratory session in which vmHRV and the ability to express six emotions in the face were assessed. A repeated measures analysis of variance revealed a marginal main effect for vmHRV on skill overall; individuals with higher resting vmHRV were only better able to deliberately facially express anger and interest. Findings suggest that differences in resting vmHRV are associated with the objectively assessed ability to facially express some, but not all, emotions, with potential implications for health and well-being. © 2016 Society for Psychophysiological Research.

  18. An investigation into soft error detection efficiency at operating system level.

    Science.gov (United States)

    Asghari, Seyyed Amir; Kaynak, Okyay; Taheri, Hassan

    2014-01-01

    Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs) and data errors. Valuable research results have already appeared in literature at hardware and software levels for their alleviation. However, there is the basic assumption behind these works that the operating system is reliable and the focus is on other system levels. In this paper, we investigate the effects of soft errors on the operating system components and compare their vulnerability with that of application level components. Results show that soft errors in operating system components affect both operating system and application level components. Therefore, by providing endurance to operating system level components against soft errors, both operating system and application level components gain tolerance.

  19. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response.

    Science.gov (United States)

    Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki

    2014-01-01

    Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors.

  20. Diagnostic errors in interpretation of pediatric musculoskeletal radiographs at common injury sites

    International Nuclear Information System (INIS)

    Bisset, George S.; Crowe, James

    2014-01-01

    Extremity pain represents one of the most common reasons for obtaining conventional radiographs in childhood. Despite the frequency of these examinations little is known about the incidence of diagnostic errors by interpreting pediatric radiologists. The purpose of this study was to develop a standard error rate of pediatric radiologists by double-reading of extremity radiographs (elbow, wrists, knees and ankles) in children presenting with a history of trauma or pain. During a 6-month period all major extremity radiographs (excluding digits) obtained at a large pediatric referral hospital for evaluation of pain or trauma were reviewed by two senior pediatric radiologists and compared to the official interpretation. All radiographs were interpreted initially by a board-certified pediatric radiologist with a Certificate of Added Qualification (CAQ). We reviewed 3,865 radiographic series in children and young adults 2-20 years of age. We tabulated misses and overcalls. We did not assess the clinical significance of the errors. There were 61 miss errors and 44 overcalls in 1,235 abnormal cases and 2,630 normal cases, for a 1.6% miss rate and a 1.1% overcall rate. Misses and overcalls were most common in the ankle. Interpretive errors by pediatric radiologists reviewing certain musculoskeletal radiographs are relatively infrequent. Diagnostic errors in the form of a miss or overcall occurred in 2.7% of the radiographs. (orig.)

  1. Optimal JPWL Forward Error Correction Rate Allocation for Robust JPEG 2000 Images and Video Streaming over Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Benoit Macq

    2008-07-01

    Full Text Available Based on the analysis of real mobile ad hoc network (MANET traces, we derive in this paper an optimal wireless JPEG 2000 compliant forward error correction (FEC rate allocation scheme for a robust streaming of images and videos over MANET. The packet-based proposed scheme has a low complexity and is compliant to JPWL, the 11th part of the JPEG 2000 standard. The effectiveness of the proposed method is evaluated using a wireless Motion JPEG 2000 client/server application; and the ability of the optimal scheme to guarantee quality of service (QoS to wireless clients is demonstrated.

  2. Structure analysis of tax revenue and inflation rate in Banda Aceh using vector error correction model with multiple alpha

    Science.gov (United States)

    Sofyan, Hizir; Maulia, Eva; Miftahuddin

    2017-11-01

    A country has several important parameters to achieve economic prosperity, such as tax revenue and inflation rate. One of the largest revenues of the State Budget in Indonesia comes from the tax sector. Meanwhile, the rate of inflation occurring in a country can be used as an indicator, to measure the good and bad economic problems faced by the country. Given the importance of tax revenue and inflation rate control in achieving economic prosperity, it is necessary to analyze the structure of tax revenue relations and inflation rate. This study aims to produce the best VECM (Vector Error Correction Model) with optimal lag using various alpha and perform structural analysis using the Impulse Response Function (IRF) of the VECM models to examine the relationship of tax revenue, and inflation in Banda Aceh. The results showed that the best model for the data of tax revenue and inflation rate in Banda Aceh City using alpha 0.01 is VECM with optimal lag 2, while the best model for data of tax revenue and inflation rate in Banda Aceh City using alpha 0.05 and 0,1 VECM with optimal lag 3. However, the VECM model with alpha 0.01 yielded four significant models of income tax model, inflation rate of Banda Aceh, inflation rate of health and inflation rate of education in Banda Aceh. While the VECM model with alpha 0.05 and 0.1 yielded one significant model that is income tax model. Based on the VECM models, then there are two structural analysis IRF which is formed to look at the relationship of tax revenue, and inflation in Banda Aceh, the IRF with VECM (2) and IRF with VECM (3).

  3. (How) do we learn from errors? A prospective study of the link between the ward's learning practices and medication administration errors.

    Science.gov (United States)

    Drach-Zahavy, A; Somech, A; Admi, H; Peterfreund, I; Peker, H; Priente, O

    2014-03-01

    Attention in the ward should shift from preventing medication administration errors to managing them. Nevertheless, little is known in regard with the practices nursing wards apply to learn from medication administration errors as a means of limiting them. To test the effectiveness of four types of learning practices, namely, non-integrated, integrated, supervisory and patchy learning practices in limiting medication administration errors. Data were collected from a convenient sample of 4 hospitals in Israel by multiple methods (observations and self-report questionnaires) at two time points. The sample included 76 wards (360 nurses). Medication administration error was defined as any deviation from prescribed medication processes and measured by a validated structured observation sheet. Wards' use of medication administration technologies, location of the medication station, and workload were observed; learning practices and demographics were measured by validated questionnaires. Results of the mixed linear model analysis indicated that the use of technology and quiet location of the medication cabinet were significantly associated with reduced medication administration errors (estimate=.03, perrors (estimate=.04, plearning practices, supervisory learning was the only practice significantly linked to reduced medication administration errors (estimate=-.04, plearning were significantly linked to higher levels of medication administration errors (estimate=-.03, plearning was not associated with it (p>.05). How wards manage errors might have implications for medication administration errors beyond the effects of typical individual, organizational and technology risk factors. Head nurse can facilitate learning from errors by "management by walking around" and monitoring nurses' medication administration behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Processing graded feedback: electrophysiological correlates of learning from small and large errors.

    Science.gov (United States)

    Luft, Caroline Di Bernardi; Takase, Emilio; Bhattacharya, Joydeep

    2014-05-01

    Feedback processing is important for learning and therefore may affect the consolidation of skills. Considerable research demonstrates electrophysiological differences between correct and incorrect feedback, but how we learn from small versus large errors is usually overlooked. This study investigated electrophysiological differences when processing small or large error feedback during a time estimation task. Data from high-learners and low-learners were analyzed separately. In both high- and low-learners, large error feedback was associated with higher feedback-related negativity (FRN) and small error feedback was associated with a larger P300 and increased amplitude over the motor related areas of the left hemisphere. In addition, small error feedback induced larger desynchronization in the alpha and beta bands with distinctly different topographies between the two learning groups: The high-learners showed a more localized decrease in beta power over the left frontocentral areas, and the low-learners showed a widespread reduction in the alpha power following small error feedback. Furthermore, only the high-learners showed an increase in phase synchronization between the midfrontal and left central areas. Importantly, this synchronization was correlated to how well the participants consolidated the estimation of the time interval. Thus, although large errors were associated with higher FRN, small errors were associated with larger oscillatory responses, which was more evident in the high-learners. Altogether, our results suggest an important role of the motor areas in the processing of error feedback for skill consolidation.

  5. Field error lottery

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))

    1990-01-01

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.

  6. Effectiveness of Toyota process redesign in reducing thyroid gland fine-needle aspiration error.

    Science.gov (United States)

    Raab, Stephen S; Grzybicki, Dana Marie; Sudilovsky, Daniel; Balassanian, Ronald; Janosky, Janine E; Vrbin, Colleen M

    2006-10-01

    Our objective was to determine whether the Toyota Production System process redesign resulted in diagnostic error reduction for patients who underwent cytologic evaluation of thyroid nodules. In this longitudinal, nonconcurrent cohort study, we compared the diagnostic error frequency of a thyroid aspiration service before and after implementation of error reduction initiatives consisting of adoption of a standardized diagnostic terminology scheme and an immediate interpretation service. A total of 2,424 patients underwent aspiration. Following terminology standardization, the false-negative rate decreased from 41.8% to 19.1% (P = .006), the specimen nondiagnostic rate increased from 5.8% to 19.8% (P Toyota process change led to significantly fewer diagnostic errors for patients who underwent thyroid fine-needle aspiration.

  7. Clinical significance of multi-leaf collimator calibration errors

    International Nuclear Information System (INIS)

    Norvill, Craig; Jenetsky, Guy

    2016-01-01

    This planning study investigates the clinical impact of multi-leaf collimator (MLC) calibration errors on three common treatment sites; head and neck (H&N), prostate and stereotactic body radiotherapy (SBRT) for lung. All plans used using either volumetric modulated adaptive therapy or dynamic MLC techniques. Five patient plans were retrospectively selected from each treatment site, and MLC errors intentionally introduced. MLC errors of 0.7, 0.4 and 0.2 mm were sufficient to cause major violations in the PTV planning criteria for the H&N, prostate and SBRT lung plans. Mean PTV dose followed a linear trend with MLC error, increasing at rates of 3.2–5.9 % per millimeter depending on treatment site. The results indicate that an MLC quality assurance program that provides sub-millimeter accuracy is an important component of intensity modulated radiotherapy delivery techniques.

  8. Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.

    Science.gov (United States)

    Tejero, Héctor; Montero, Francisco; Nuño, Juan Carlos

    2016-01-01

    RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal

  9. Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.

    Science.gov (United States)

    Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei

    2017-07-20

    This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.

  10. On the feedback error compensation for adaptive modulation and coding scheme

    KAUST Repository

    Choi, Seyeong

    2011-11-25

    In this paper, we consider the effect of feedback error on the performance of the joint adaptive modulation and diversity combining (AMDC) scheme which was previously studied with an assumption of perfect feedback channels. We quantify the performance of two joint AMDC schemes in the presence of feedback error, in terms of the average spectral efficiency, the average number of combined paths, and the average bit error rate. The benefit of feedback error compensation with adaptive combining is also quantified. Selected numerical examples are presented and discussed to illustrate the effectiveness of the proposed feedback error compensation strategy with adaptive combining. Copyright (c) 2011 John Wiley & Sons, Ltd.

  11. Prevalence and cost of hospital medical errors in the general and elderly United States populations.

    Science.gov (United States)

    Mallow, Peter J; Pandya, Bhavik; Horblyuk, Ruslan; Kaplan, Harold S

    2013-12-01

    The primary objective of this study was to quantify the differences in the prevalence rate and costs of hospital medical errors between the general population and an elderly population aged ≥65 years. Methods from an actuarial study of medical errors were modified to identify medical errors in the Premier Hospital Database using data from 2009. Visits with more than four medical errors were removed from the population to avoid over-estimation of cost. Prevalence rates were calculated based on the total number of inpatient visits. There were 3,466,596 total inpatient visits in 2009. Of these, 1,230,836 (36%) occurred in people aged ≥ 65. The prevalence rate was 49 medical errors per 1000 inpatient visits in the general cohort and 79 medical errors per 1000 inpatient visits for the elderly cohort. The top 10 medical errors accounted for more than 80% of the total in the general cohort and the 65+ cohort. The most costly medical error for the general population was postoperative infection ($569,287,000). Pressure ulcers were most costly ($347,166,257) in the elderly population. This study was conducted with a hospital administrative database, and assumptions were necessary to identify medical errors in the database. Further, there was no method to identify errors of omission or misdiagnoses within the database. This study indicates that prevalence of hospital medical errors for the elderly is greater than the general population and the associated cost of medical errors in the elderly population is quite substantial. Hospitals which further focus their attention on medical errors in the elderly population may see a significant reduction in costs due to medical errors as a disproportionate percentage of medical errors occur in this age group.

  12. Modern Palliative Radiation Treatment: Do Complexity and Workload Contribute to Medical Errors?

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, Neil, E-mail: neil.dsouza@sunnybrook.ca [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Holden, Lori [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Robson, Sheila [Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Mah, Kathy; Di Prospero, Lisa; Wong, C. Shun; Chow, Edward; Spayne, Jacqueline [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)

    2012-09-01

    Purpose: To examine whether treatment workload and complexity associated with palliative radiation therapy contribute to medical errors. Methods and Materials: In the setting of a large academic health sciences center, patient scheduling and record and verification systems were used to identify patients starting radiation therapy. All records of radiation treatment courses delivered during a 3-month period were retrieved and divided into radical and palliative intent. 'Same day consultation, planning and treatment' was used as a proxy for workload and 'previous treatment' and 'multiple sites' as surrogates for complexity. In addition, all planning and treatment discrepancies (errors and 'near-misses') recorded during the same time frame were reviewed and analyzed. Results: There were 365 new patients treated with 485 courses of palliative radiation therapy. Of those patients, 128 (35%) were same-day consultation, simulation, and treatment patients; 166 (45%) patients had previous treatment; and 94 (26%) patients had treatment to multiple sites. Four near-misses and 4 errors occurred during the audit period, giving an error per course rate of 0.82%. In comparison, there were 10 near-misses and 5 errors associated with 1100 courses of radical treatment during the audit period. This translated into an error rate of 0.45% per course. An association was found between workload and complexity and increased palliative therapy error rates. Conclusions: Increased complexity and workload may have an impact on palliative radiation treatment discrepancies. This information may help guide the necessary recommendations for process improvement for patients who require palliative radiation therapy.

  13. ERF/ERFC, Calculation of Error Function, Complementary Error Function, Probability Integrals

    International Nuclear Information System (INIS)

    Vogel, J.E.

    1983-01-01

    1 - Description of problem or function: ERF and ERFC are used to compute values of the error function and complementary error function for any real number. They may be used to compute other related functions such as the normal probability integrals. 4. Method of solution: The error function and complementary error function are approximated by rational functions. Three such rational approximations are used depending on whether - x .GE.4.0. In the first region the error function is computed directly and the complementary error function is computed via the identity erfc(x)=1.0-erf(x). In the other two regions the complementary error function is computed directly and the error function is computed from the identity erf(x)=1.0-erfc(x). The error function and complementary error function are real-valued functions of any real argument. The range of the error function is (-1,1). The range of the complementary error function is (0,2). 5. Restrictions on the complexity of the problem: The user is cautioned against using ERF to compute the complementary error function by using the identity erfc(x)=1.0-erf(x). This subtraction may cause partial or total loss of significance for certain values of x

  14. Particle-induced bit errors in high performance fiber optic data links for satellite data management

    International Nuclear Information System (INIS)

    Marshall, P.W.; Carts, M.A.; Dale, C.J.; LaBel, K.A.

    1994-01-01

    Experimental test methods and analysis tools are demonstrated to assess particle-induced bit errors on fiber optic link receivers for satellites. Susceptibility to direct ionization from low LET particles is quantified by analyzing proton and helium ion data as a function of particle LET. Existing single event analysis approaches are shown to apply, with appropriate modifications, to the regime of temporally (rather than spatially) distributed bits, even though the sensitivity to single events exceeds conventional memory technologies by orders of magnitude. The cross-section LET dependence follows a Weibull distribution at data rates from 200 to 1,000 Mbps and at various incident optical power levels. The LET threshold for errors is shown, through both experiment and modeling, to be 0 in all cases. The error cross-section exhibits a strong inverse dependence on received optical power in the LET range where most orbital single events would occur, thus indicating that errors can be minimized by operating links with higher incident optical power. Also, an analytic model is described which incorporates the appropriate physical characteristics of the link as well as the optical and receiver electrical characteristics. Results indicate appropriate steps to assure suitable link performance even in severe particle orbits

  15. An Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

    KAUST Repository

    Karlsson, Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2015-01-01

    This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading-order term consisting of an error density that is computable from symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading-error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations. The performance is illustrated by numerical tests.

  16. Basic considerations in predicting error probabilities in human task performance

    International Nuclear Information System (INIS)

    Fleishman, E.A.; Buffardi, L.C.; Allen, J.A.; Gaskins, R.C. III

    1990-04-01

    It is well established that human error plays a major role in the malfunctioning of complex systems. This report takes a broad look at the study of human error and addresses the conceptual, methodological, and measurement issues involved in defining and describing errors in complex systems. In addition, a review of existing sources of human reliability data and approaches to human performance data base development is presented. Alternative task taxonomies, which are promising for establishing the comparability on nuclear and non-nuclear tasks, are also identified. Based on such taxonomic schemes, various data base prototypes for generalizing human error rates across settings are proposed. 60 refs., 3 figs., 7 tabs

  17. A methodology for translating positional error into measures of attribute error, and combining the two error sources

    Science.gov (United States)

    Yohay Carmel; Curtis Flather; Denis Dean

    2006-01-01

    This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...

  18. Concerns and perceptions immediately following Superstorm Sandy: ratings for property damage were higher than for health issues.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    Governmental officials, health and safety professionals, early responders, and the public are interested in the perceptions and concerns of people faced with a crisis, especially during and immediately after a disaster strikes. Reliable information can lead to increased individual and community preparedness for upcoming crises. The objective of this research was to evaluate concerns of coastal and central New Jersey residents within the first 100 days of Superstorm Sandy's landfall. Respondents living in central New Jersey and Jersey shore communities were differentially impacted by the storm, with shore residents having higher evacuation rates (47% vs. 13%), more flood waters in their homes, longer power outages (average 23 vs. 6 days), and longer periods without Internet (29 vs. 6 days). Ratings of concerns varied both among and within categories as a function of location (central vs. coastal New Jersey), stressor level (ranging from 1 to 3 for combinations of power outages, high winds, and flooding), and demographics. Respondents were most concerned about property damage, health, inconveniences, ecological services, and nuclear power plants in that order. Respondents from the shore gave higher ratings to the concerns within each major category, compared to those from central Jersey. Four findings have implications for understanding future risk, recovery, and resiliency: (1) respondents with the highest stressor level (level 3) were more concerned about water damage than others, (2) respondents with flood damage were more concerned about water drainage and mold than others, (3) respondents with the highest stressor levels rated all ecological services higher than others, and (4) shore respondents rated all ecological services higher than central Jersey residents. These data provide information to design future preparedness plans, improve resiliency for future severe weather events, and reduce public health risk.

  19. Sharp Threshold Detection Based on Sup-norm Error rates in High-dimensional Models

    DEFF Research Database (Denmark)

    Callot, Laurent; Caner, Mehmet; Kock, Anders Bredahl

    focused almost exclusively on estimation errors in stronger norms. We show that this sup-norm bound can be used to distinguish between zero and non-zero coefficients at a much finer scale than would have been possible using classical oracle inequalities. Thus, our sup-norm bound is tailored to consistent...

  20. Estimation of the measurement error of eccentrically installed orifice plates

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Neil; Hodgkinson, Edwin; Reader-Harris, Michael

    2005-07-01

    The presentation discusses methods for simulation and estimation of flow measurement errors. The main conclusions are: Computational Fluid Dynamics (CFD) simulation methods and published test measurements have been used to estimate the error of a metering system over a period when its orifice plates were eccentric and when leaking O-rings allowed some gas to bypass the meter. It was found that plate eccentricity effects would result in errors of between -2% and -3% for individual meters. Validation against test data suggests that these estimates of error should be within 1% of the actual error, but it is unclear whether the simulations over-estimate or under-estimate the error. Simulations were also run to assess how leakage at the periphery affects the metering error. Various alternative leakage scenarios were modelled and it was found that the leakage rate has an effect on the error, but that the leakage distribution does not. Correction factors, based on the CFD results, were then used to predict the system's mis-measurement over a three-year period (tk)

  1. Death Certification Errors and the Effect on Mortality Statistics.

    Science.gov (United States)

    McGivern, Lauri; Shulman, Leanne; Carney, Jan K; Shapiro, Steven; Bundock, Elizabeth

    Errors in cause and manner of death on death certificates are common and affect families, mortality statistics, and public health research. The primary objective of this study was to characterize errors in the cause and manner of death on death certificates completed by non-Medical Examiners. A secondary objective was to determine the effects of errors on national mortality statistics. We retrospectively compared 601 death certificates completed between July 1, 2015, and January 31, 2016, from the Vermont Electronic Death Registration System with clinical summaries from medical records. Medical Examiners, blinded to original certificates, reviewed summaries, generated mock certificates, and compared mock certificates with original certificates. They then graded errors using a scale from 1 to 4 (higher numbers indicated increased impact on interpretation of the cause) to determine the prevalence of minor and major errors. They also compared International Classification of Diseases, 10th Revision (ICD-10) codes on original certificates with those on mock certificates. Of 601 original death certificates, 319 (53%) had errors; 305 (51%) had major errors; and 59 (10%) had minor errors. We found no significant differences by certifier type (physician vs nonphysician). We did find significant differences in major errors in place of death ( P statistics. Surveillance and certifier education must expand beyond local and state efforts. Simplifying and standardizing underlying literal text for cause of death may improve accuracy, decrease coding errors, and improve national mortality statistics.

  2. Statistical errors in Monte Carlo estimates of systematic errors

    Science.gov (United States)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.

  3. Formal Analysis of Soft Errors using Theorem Proving

    Directory of Open Access Journals (Sweden)

    Sofiène Tahar

    2013-07-01

    Full Text Available Modeling and analysis of soft errors in electronic circuits has traditionally been done using computer simulations. Computer simulations cannot guarantee correctness of analysis because they utilize approximate real number representations and pseudo random numbers in the analysis and thus are not well suited for analyzing safety-critical applications. In this paper, we present a higher-order logic theorem proving based method for modeling and analysis of soft errors in electronic circuits. Our developed infrastructure includes formalized continuous random variable pairs, their Cumulative Distribution Function (CDF properties and independent standard uniform and Gaussian random variables. We illustrate the usefulness of our approach by modeling and analyzing soft errors in commonly used dynamic random access memory sense amplifier circuits.

  4. Sensitivity of risk parameters to human errors for a PWR

    International Nuclear Information System (INIS)

    Samanta, P.; Hall, R.E.; Kerr, W.

    1980-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study

  5. Making Residents Part of the Safety Culture: Improving Error Reporting and Reducing Harms.

    Science.gov (United States)

    Fox, Michael D; Bump, Gregory M; Butler, Gabriella A; Chen, Ling-Wan; Buchert, Andrew R

    2017-01-30

    Reporting medical errors is a focus of the patient safety movement. As frontline physicians, residents are optimally positioned to recognize errors and flaws in systems of care. Previous work highlights the difficulty of engaging residents in identification and/or reduction of medical errors and in integrating these trainees into their institutions' cultures of safety. The authors describe the implementation of a longitudinal, discipline-based, multifaceted curriculum to enhance the reporting of errors by pediatric residents at Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center. The key elements of this curriculum included providing the necessary education to identify medical errors with an emphasis on systems-based causes, modeling of error reporting by faculty, and integrating error reporting and discussion into the residents' daily activities. The authors tracked monthly error reporting rates by residents and other health care professionals, in addition to serious harm event rates at the institution. The interventions resulted in significant increases in error reports filed by residents, from 3.6 to 37.8 per month over 4 years (P error reporting correlated with a decline in serious harm events, from 15.0 to 8.1 per month over 4 years (P = 0.01). Integrating patient safety into the everyday resident responsibilities encourages frequent reporting and discussion of medical errors and leads to improvements in patient care. Multiple simultaneous interventions are essential to making residents part of the safety culture of their training hospitals.

  6. Learning a locomotor task: with or without errors?

    Science.gov (United States)

    Marchal-Crespo, Laura; Schneider, Jasmin; Jaeger, Lukas; Riener, Robert

    2014-03-04

    . Error strategies have a great potential to evoke higher muscle activation and provoke better motor learning of simple tasks. Neuroimaging evaluation of brain regions involved in learning can provide valuable information on observed behavioral outcomes related to learning processes. The impacts of these strategies on neurological patients need further investigations.

  7. Error Resilience in Current Distributed Video Coding Architectures

    Directory of Open Access Journals (Sweden)

    Tonoli Claudia

    2009-01-01

    Full Text Available In distributed video coding the signal prediction is shifted at the decoder side, giving therefore most of the computational complexity burden at the receiver. Moreover, since no prediction loop exists before transmission, an intrinsic robustness to transmission errors has been claimed. This work evaluates and compares the error resilience performance of two distributed video coding architectures. In particular, we have considered a video codec based on the Stanford architecture (DISCOVER codec and a video codec based on the PRISM architecture. Specifically, an accurate temporal and rate/distortion based evaluation of the effects of the transmission errors for both the considered DVC architectures has been performed and discussed. These approaches have been also compared with H.264/AVC, in both cases of no error protection, and simple FEC error protection. Our evaluations have highlighted in all cases a strong dependence of the behavior of the various codecs to the content of the considered video sequence. In particular, PRISM seems to be particularly well suited for low-motion sequences, whereas DISCOVER provides better performance in the other cases.

  8. Medication errors in the Middle East countries: a systematic review of the literature.

    Science.gov (United States)

    Alsulami, Zayed; Conroy, Sharon; Choonara, Imti

    2013-04-01

    Medication errors are a significant global concern and can cause serious medical consequences for patients. Little is known about medication errors in Middle Eastern countries. The objectives of this systematic review were to review studies of the incidence and types of medication errors in Middle Eastern countries and to identify the main contributory factors involved. A systematic review of the literature related to medication errors in Middle Eastern countries was conducted in October 2011 using the following databases: Embase, Medline, Pubmed, the British Nursing Index and the Cumulative Index to Nursing & Allied Health Literature. The search strategy included all ages and languages. Inclusion criteria were that the studies assessed or discussed the incidence of medication errors and contributory factors to medication errors during the medication treatment process in adults or in children. Forty-five studies from 10 of the 15 Middle Eastern countries met the inclusion criteria. Nine (20 %) studies focused on medication errors in paediatric patients. Twenty-one focused on prescribing errors, 11 measured administration errors, 12 were interventional studies and one assessed transcribing errors. Dispensing and documentation errors were inadequately evaluated. Error rates varied from 7.1 % to 90.5 % for prescribing and from 9.4 % to 80 % for administration. The most common types of prescribing errors reported were incorrect dose (with an incidence rate from 0.15 % to 34.8 % of prescriptions), wrong frequency and wrong strength. Computerised physician rder entry and clinical pharmacist input were the main interventions evaluated. Poor knowledge of medicines was identified as a contributory factor for errors by both doctors (prescribers) and nurses (when administering drugs). Most studies did not assess the clinical severity of the medication errors. Studies related to medication errors in the Middle Eastern countries were relatively few in number and of poor quality

  9. An Investigation into Soft Error Detection Efficiency at Operating System Level

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Asghari

    2014-01-01

    Full Text Available Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs and data errors. Valuable research results have already appeared in literature at hardware and software levels for their alleviation. However, there is the basic assumption behind these works that the operating system is reliable and the focus is on other system levels. In this paper, we investigate the effects of soft errors on the operating system components and compare their vulnerability with that of application level components. Results show that soft errors in operating system components affect both operating system and application level components. Therefore, by providing endurance to operating system level components against soft errors, both operating system and application level components gain tolerance.

  10. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmitt, Nicholas C [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  11. The Effect of Exposure to High Noise Levels on the Performance and Rate of Error in Manual Activities.

    Science.gov (United States)

    Khajenasiri, Farahnaz; Zamanian, Alireza; Zamanian, Zahra

    2016-03-01

    Sound is among the significant environmental factors for people's health, and it has an important role in both physical and psychological injuries, and it also affects individuals' performance and productivity. The aim of this study was to determine the effect of exposure to high noise levels on the performance and rate of error in manual activities. This was an interventional study conducted on 50 students at Shiraz University of Medical Sciences (25 males and 25 females) in which each person was considered as its own control to assess the effect of noise on her or his performance at the sound levels of 70, 90, and 110 dB by using two factors of physical features and the creation of different conditions of sound source as well as applying the Two-Arm coordination Test. The data were analyzed using SPSS version 16. Repeated measurements were used to compare the length of performance as well as the errors measured in the test. Based on the results, we found a direct and significant association between the levels of sound and the length of performance. Moreover, the participant's performance was significantly different for different sound levels (at 110 dB as opposed to 70 and 90 dB, p < 0.05 and p < 0.001, respectively). This study found that a sound level of 110 dB had an important effect on the individuals' performances, i.e., the performances were decreased.

  12. Medication administration errors in assisted living: scope, characteristics, and the importance of staff training.

    Science.gov (United States)

    Zimmerman, Sheryl; Love, Karen; Sloane, Philip D; Cohen, Lauren W; Reed, David; Carder, Paula C

    2011-06-01

    To compare rates of medication errors committed by assisted living staff with different training and to examine characteristics of errors. Observation of medication preparation and passes, chart review, interviews, and questionnaires. Stratified random sample of 11 assisted living communities in South Carolina (which permits nonnurses to administer medications) and Tennessee (which does not). All staff who prepared or passed medications: nurses (one registered nurse and six licensed practical nurses (LPNs)); medication aides (n=10); and others (n=19), including those with more and less training. Rates of errors related to medication, dose and form, preparation, route, and timing. Medication preparation and administration were observed for 4,957 administrations during 83 passes for 301 residents. The error rate was 42% (20% when omitting timing errors). Of all administrations, 7% were errors with moderate or high potential for harm. The odds of such an error by a medication aide were no more likely than by a LPN, but the odds of one by staff with less training was more than two times as great (odds ratio=2.10, 95% confidence interval=1.27-3.49). A review of state regulations found that 20 states restrict nonnurses to assisting with self-administration of medications. Medication aides do not commit more errors than LPNs, but other nonnurses who administered a significant number of medications and assisted with self-administration committed more errors. Consequently, all staff who handle medications should be trained to the level of a medication aide. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  13. Relationship Between Technical Errors and Decision-Making Skills in the Junior Resident.

    Science.gov (United States)

    Nathwani, Jay N; Fiers, Rebekah M; Ray, Rebecca D; Witt, Anna K; Law, Katherine E; DiMarco, ShannonM; Pugh, Carla M

    The purpose of this study is to coevaluate resident technical errors and decision-making capabilities during placement of a subclavian central venous catheter (CVC). We hypothesize that there would be significant correlations between scenario-based decision-making skills and technical proficiency in central line insertion. We also predict residents would face problems in anticipating common difficulties and generating solutions associated with line placement. Participants were asked to insert a subclavian central line on a simulator. After completion, residents were presented with a real-life patient photograph depicting CVC placement and asked to anticipate difficulties and generate solutions. Error rates were analyzed using chi-square tests and a 5% expected error rate. Correlations were sought by comparing technical errors and scenario-based decision-making skills. This study was performed at 7 tertiary care centers. Study participants (N = 46) largely consisted of first-year research residents who could be followed longitudinally. Second-year research and clinical residents were not excluded. In total, 6 checklist errors were committed more often than anticipated. Residents committed an average of 1.9 errors, significantly more than the 1 error, at most, per person expected (t(44) = 3.82, p technical errors committed negatively correlated with the total number of commonly identified difficulties and generated solutions (r (33) = -0.429, p = 0.021, r (33) = -0.383, p = 0.044, respectively). Almost half of the surgical residents committed multiple errors while performing subclavian CVC placement. The correlation between technical errors and decision-making skills suggests a critical need to train residents in both technique and error management. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  14. Medication Errors - A Review

    OpenAIRE

    Vinay BC; Nikhitha MK; Patel Sunil B

    2015-01-01

    In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.

  15. Global minimum profile error (GMPE) - a least-squares-based approach for extracting macroscopic rate coefficients for complex gas-phase chemical reactions.

    Science.gov (United States)

    Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K

    2018-01-03

    Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.

  16. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  17. Error Patterns

    NARCIS (Netherlands)

    Hoede, C.; Li, Z.

    2001-01-01

    In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,

  18. Violation of the Sphericity Assumption and Its Effect on Type-I Error Rates in Repeated Measures ANOVA and Multi-Level Linear Models (MLM).

    Science.gov (United States)

    Haverkamp, Nicolas; Beauducel, André

    2017-01-01

    We investigated the effects of violations of the sphericity assumption on Type I error rates for different methodical approaches of repeated measures analysis using a simulation approach. In contrast to previous simulation studies on this topic, up to nine measurement occasions were considered. Effects of the level of inter-correlations between measurement occasions on Type I error rates were considered for the first time. Two populations with non-violation of the sphericity assumption, one with uncorrelated measurement occasions and one with moderately correlated measurement occasions, were generated. One population with violation of the sphericity assumption combines uncorrelated with highly correlated measurement occasions. A second population with violation of the sphericity assumption combines moderately correlated and highly correlated measurement occasions. From these four populations without any between-group effect or within-subject effect 5,000 random samples were drawn. Finally, the mean Type I error rates for Multilevel linear models (MLM) with an unstructured covariance matrix (MLM-UN), MLM with compound-symmetry (MLM-CS) and for repeated measures analysis of variance (rANOVA) models (without correction, with Greenhouse-Geisser-correction, and Huynh-Feldt-correction) were computed. To examine the effect of both the sample size and the number of measurement occasions, sample sizes of n = 20, 40, 60, 80, and 100 were considered as well as measurement occasions of m = 3, 6, and 9. With respect to rANOVA, the results plead for a use of rANOVA with Huynh-Feldt-correction, especially when the sphericity assumption is violated, the sample size is rather small and the number of measurement occasions is large. For MLM-UN, the results illustrate a massive progressive bias for small sample sizes ( n = 20) and m = 6 or more measurement occasions. This effect could not be found in previous simulation studies with a smaller number of measurement occasions. The

  19. With age a lower individual breathing reserve is associated with a higher maximal heart rate.

    Science.gov (United States)

    Burtscher, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Johannes

    2018-01-01

    Maximal heart rate (HRmax) is linearly declining with increasing age. Regular exercise training is supposed to partly prevent this decline, whereas sex and habitual physical activity do not. High exercise capacity is associated with a high cardiac output (HR x stroke volume) and high ventilatory requirements. Due to the close cardiorespiratory coupling, we hypothesized that the individual ventilatory response to maximal exercise might be associated with the age-related HRmax. Retrospective analyses have been conducted on the results of 129 consecutively performed routine cardiopulmonary exercise tests. The study sample comprised healthy subjects of both sexes of a broad range of age (20-86 years). Maximal values of power output, minute ventilation, oxygen uptake and heart rate were assessed by the use of incremental cycle spiroergometry. Linear multivariate regression analysis revealed that in addition to age the individual breathing reserve at maximal exercise was independently predictive for HRmax. A lower breathing reserve due to a high ventilatory demand and/or a low ventilatory capacity, which is more pronounced at a higher age, was associated with higher HRmax. Age explained the observed variance in HRmax by 72% and was improved to 83% when the variable "breathing reserve" was entered. The presented findings indicate an independent association between the breathing reserve at maximal exercise and maximal heart rate, i.e. a low individual breathing reserve is associated with a higher age-related HRmax. A deeper understanding of this association has to be investigated in a more physiological scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Burnout, engagement and resident physicians' self-reported errors.

    Science.gov (United States)

    Prins, J T; van der Heijden, F M M A; Hoekstra-Weebers, J E H M; Bakker, A B; van de Wiel, H B M; Jacobs, B; Gazendam-Donofrio, S M

    2009-12-01

    Burnout is a work-related syndrome that may negatively affect more than just the resident physician. On the other hand, engagement has been shown to protect employees; it may also positively affect the patient care that the residents provide. Little is known about the relationship between residents' self-reported errors and burnout and engagement. In our national study that included all residents and physicians in The Netherlands, 2115 questionnaires were returned (response rate 41.1%). The residents reported on burnout (Maslach Burnout Inventory-Health and Social Services), engagement (Utrecht Work Engagement Scale) and self-assessed patient care practices (six items, two factors: errors in action/judgment, errors due to lack of time). Ninety-four percent of the residents reported making one or more mistake without negative consequences for the patient during their training. Seventy-one percent reported performing procedures for which they did not feel properly trained. More than half (56%) of the residents stated they had made a mistake with a negative consequence. Seventy-six percent felt they had fallen short in the quality of care they provided on at least one occasion. Men reported more errors in action/judgment than women. Significant effects of specialty and clinical setting were found on both types of errors. Residents with burnout reported significantly more errors (p engaged residents reported fewer errors (p burnout and to keep residents engaged in their work.