WorldWideScience

Sample records for higher effective doses

  1. Utilization of the higher plants in a study on hereditary effect of low-dose irradiation

    International Nuclear Information System (INIS)

    Yamashita, Jun

    1976-01-01

    Some problems in a study of hereditary effect of low-dose irradiation, which used the higher plants (tradescantia, peas, etc.) as materials, were mentioned. Conditions to be used as materials were mentioned as follows: 1) the materials must have high radio-sensitivity, 2) the natural mutation of the materials must be low, 3) hereditary uniformity and stability of genes in the materials were important, and 4) in case of considering the materials as environmental radiation monitors, the observation period must be long and the duration from exposure to detection of mutation must be short. Tradescantia has most of these conditions, but the greatest fault is that the object of its observation is mutation of somatic cells, and hereditary study is impossible. Therefore, it is necessary to find out other materials in order to solve the problem whether there is a difference in relative frequency of chromosomal abnormalities, which occurrs in germinal cells and is transmitted to posterity, between low and high doses or not. (Serizawa, K.)

  2. Which dose of bevacizumab is more effective for the treatment of aggressive posterior retinopathy of prematurity: lower or higher dose?

    Directory of Open Access Journals (Sweden)

    Seyhan Dikci

    Full Text Available ABSTRACT Purpose: To compare 0.5 mg and 0.625 mg of bevacizumab for treating aggressive posterior retinopathy of prematurity (AP-ROP. Methods: The medical records of patients with AP-ROP who were administered intravitreal bevacizumab (IVB as a primary treatment at a university clinic were evaluated retrospectively. Five eyes of three patients (Group 1 who received 0.625 mg/0.025 ml IVB and 10 eyes of another five patients (Group 2 who received 0.5 mg/0.02 ml IVB were evaluated. Laser photocoagulation was used as additional treatment after relapses. Anatomic results and complications were evaluated in both groups. Results: We evaluated 15 eyes of eight patients (four girls and four boys with a flat demarcation line at posterior zone 2 and plus disease or stage-3 disease in this study. The mean gestational age of the three babies in Group 1 was 26 ± 1 weeks and the mean birth weight was 835.33 ± 48.01 g. The corresponding values were 25.2 ± 1.6 weeks and 724 ± 139.03 g, respectively, for the five babies in Group 2. Retinal vascularization was completed at a mean postmenstrual duration of 53.6 ± 1.5 weeks without additional treatment in the five eyes in Group 1. Laser photocoagulation for relapse was administered to five of the 10 eyes in Group 2. Retinal vascularization was completed at a mean postmenstrual duration of 47.6 ± 1.5 weeks in the remaining five eyes. None of the patients developed complications such as cataract, glaucoma, retinal tear, retinal or vitreous hemorrhage, or retinal detachment. Conclusion: Although lower IVB doses in the treatment of AP-ROP are expected to be safer in terms of local and systemic side effects in premature infants, these patients may require additional treatment with IVB or laser photocoagulation.

  3. Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers.

    Science.gov (United States)

    Smit, H J; Rogers, P J

    2000-10-01

    Caffeine is present in many widely consumed drinks and some foods. In the fairly extensive literature on the psychostimulant effects of caffeine, there are few dose-response studies and even fewer studies of the effects of doses of caffeine lower than 50 mg (the range of the amounts of caffeine contained in, for example, a typical serving of tea or cola). This study measured the effects of 0, 12.5, 25, 50 and 100 mg caffeine on cognitive performance, mood and thirst in adults with low and moderate to high habitual caffeine intakes. This was a double-blind, within-subjects study. Following overnight caffeine abstinence, participants (n=23) completed a test battery once before and three times after placebo or caffeine administration. The test battery consisted of two performance tests, a long duration simple reaction time task and a rapid visual information processing task, and a mood questionnaire (including also an item on thirst). Effects on performance and mood confirmed a psychostimulant action of caffeine. All doses of caffeine significantly affected cognitive performance, and the dose-response relationships for these effects were rather flat. The effects on performance were more marked in individuals with a higher level of habitual caffeine intake, whereas caffeine increased thirst only in low caffeine consumers. After overnight caffeine abstinence, caffeine can significantly affect cognitive performance, mood and thirst at doses within and even lower than the range of amounts of caffeine contained in a single serving of popular caffeine-containing drinks. Regular caffeine consumers appear to show substantial tolerance to the thirst-increasing but not to the performance and mood effects of caffeine.

  4. Is It All about the Higher Dose? Why Psychoanalytic Therapy Is an Effective Treatment for Major Depression.

    Science.gov (United States)

    Zimmermann, Johannes; Löffler-Stastka, Henriette; Huber, Dorothea; Klug, Günther; Alhabbo, Sarah; Bock, Astrid; Benecke, Cord

    2015-01-01

    Empirical evidence for the effectiveness of long-term psychodynamic psychotherapy (LTPP) in patients with mood disorders is growing. However, it is unclear whether the effectiveness of LTPP is due to distinctive features of psychodynamic/psychoanalytic techniques or to a higher number of sessions. We tested these rival hypotheses in a quasi-experimental study comparing psychoanalytic therapy (i.e., high-dose LTPP) with psychodynamic therapy (i.e., low-dose LTPP) and cognitive-behavioural therapy (CBT) for depression. Analyses were based on a subsample of 77 subjects, with 27 receiving psychoanalytic therapy, 26 receiving psychodynamic therapy and 24 receiving CBT. Depressive symptoms, interpersonal problems and introject affiliation were assessed prior to treatment, after treatment and at the 1-, 2- and 3-year follow-ups. Psychoanalytic techniques were assessed from three audiotaped middle sessions per treatment using the Psychotherapy Process Q-Set. Subjects receiving psychoanalytic therapy reported having fewer interpersonal problems, treated themselves in a more affiliative way directly after treatment and tended to improve in depressive symptoms and interpersonal problems during follow-up as compared with patients receiving psychodynamic therapy and/or CBT. Multilevel mediation analyses suggested that post-treatment differences in interpersonal problems and introject affiliation were mediated by the higher number of sessions, and follow-up differences in depressive symptoms were mediated by the more pronounced application of psychoanalytic techniques. We also found some evidence for indirect treatment effects via psychoanalytic techniques on changes in introject affiliation during follow-up. These results provide support for the prediction that both a high dose and the application of psychoanalytic techniques facilitate therapeutic change in patients with major depression. Psychoanalytic therapy is an effective treatment for major depression, especially in the

  5. Effects of a higher dose of near-infrared light on clinical signs and neuroprotection in a monkey model of Parkinson's disease.

    Science.gov (United States)

    Moro, Cécile; El Massri, Nabil; Darlot, Fannie; Torres, Napoleon; Chabrol, Claude; Agay, Diane; Auboiroux, Vincent; Johnstone, Daniel M; Stone, Jonathan; Mitrofanis, John; Benabid, Alim-Louis

    2016-10-01

    We have reported previously that intracranial application of near-infrared light (NIr) - when delivered at the lower doses of 25J and 35J - reduces clinical signs and offers neuroprotection in a subacute MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey model of Parkinson's disease. In this study, we explored whether a higher NIr dose (125J) generated beneficial effects in the same MPTP monkey model (n=15). We implanted an NIr (670nm) optical fibre device within a midline region of the midbrain in macaque monkeys, close to the substantia nigra of both sides. MPTP injections (1.8-2.1mg/kg) were made over a five day period, during which time the NIr device was turned on and left on continuously throughout the ensuing three week survival period. Monkeys were evaluated clinically and their brains processed for immunohistochemistry and stereology. Our results showed that the higher NIr dose did not have any toxic impact on cells at the midbrain implant site. Further, this NIr dose resulted in a higher number of nigral tyrosine hydroxylase immunoreactive cells when compared to the MPTP group. However, the higher NIr dose monkeys showed little evidence for an increase in mean clinical score, number of nigral Nissl-stained cells and density of striatal tyrosine hydroxylase terminations. In summary, the higher NIr dose of 125J was not as beneficial to MPTP-treated monkeys as compared to the lower doses of 25J and 35J, boding well for strategies of NIr dose delivery and device energy consumption in a future clinical trial. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effective dose equivalent

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Passchier, W.F.

    1988-01-01

    The effective dose equivalent is a quantity which is used in the daily practice of radiation protection as well as in the radiation hygienic rules as measure for the health risks. In this contribution it is worked out upon which assumptions this quantity is based and in which cases the effective dose equivalent can be used more or less well. (H.W.)

  7. Starting with a higher dose of inhaled corticosteroids in primary care asthma treatment

    NARCIS (Netherlands)

    van der Molen, T; Meyboom-de Jong, B; Mulder, HH; Postma, DS

    New British guidelines on the treatment of asthma (9) advocate starting with a higher dose of inhaled corticosteroids in newly detected asthma patients. We investigated whether initiating inhaled steroid treatment with a higher dose is clinically more effective than a lower dose in steroid naive

  8. Low doses effects

    International Nuclear Information System (INIS)

    Tubiana, M.

    1997-01-01

    In this article is asked the question about a possible carcinogens effect of low dose irradiation. With epidemiological data, knowledge about the carcinogenesis, the professor Tubiana explains that in spite of experiments made on thousand or hundred of thousands animals it has not been possible to bring to the fore a carcinogens effect for low doses and then it is not reasonable to believe and let the population believe that low dose irradiation could lead to an increase of neoplasms and from this point of view any hardening of radiation protection standards could in fact, increase anguish about ionizing radiations. (N.C.)

  9. Effects of low doses

    International Nuclear Information System (INIS)

    Le Guen, B.

    2001-01-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  10. Effect of low-dose versus higher-dose antenatal iron supplementation on child health outcomes at 36 months of age in Viet Nam: longitudinal follow-up of a cluster randomised controlled trial.

    Science.gov (United States)

    Hanieh, Sarah; Ha, Tran T; Simpson, Julie A; Braat, Sabine; Thuy, Tran T; Tran, Thach D; King, Janet; Tuan, Tran; Fisher, Jane; Biggs, Beverley-Ann

    2017-01-01

    Intermittent iron-folic acid supplementation (IFA) is currently recommended for pregnant women in populations where anaemia prevalence among pregnant women is Viet Nam among children of 36 months of age, born to women previously enrolled in a cluster randomised controlled trial of antenatal micronutrient supplementation (daily IFA (60 mg elemental iron) vs twice-weekly IFA (60 mg elemental iron) vs twice-weekly multiple micronutrient (MMN) supplementation (60 mg elemental iron)). Primary outcomes were height-for-age z-scores (HAZ), according to WHO growth standards and cognitive composite scores (Bayley Scales of Infant and Toddler Development, third edition) at 36 months of age. A total of 1017 children born to mothers enrolled in the cluster randomised trial were assessed at 36 months of age. Adjusted mean differences (MDs) in HAZ were -0.14 (95% CI -0.28 to -0.01) and -0.15 (95% CI -0.29 to -0.01) in children born to mothers who received twice-weekly IFA or MMN compared with those who received daily IFA. Children born to mothers who received twice-weekly MMN had lower composite motor scores compared with those who received daily IFA (MD -2.07, 95% CI -4.11 to -0.03). There were no differences in composite cognitive scores in the twice-weekly compared with daily regimens. Low-dose antenatal IFA supplementation (120 mg elemental iron per week) resulted in lower HAZ and motor composite scores in children compared with higher-dose antenatal IFA supplementation (420 mg elemental iron per week). This highlights the importance of adequate iron stores during pregnancy and the need for careful monitoring when lower-dose antenatal iron regimens are used. Australia New Zealand Clinical Trials Registry: 12610000944033.

  11. Plutonium dose-effect relationship

    International Nuclear Information System (INIS)

    Matsuoka, Osamu

    1976-01-01

    Dose in internal exposure to Pu was investigated, and dose-effect relationship was discussed. Dose-effect relationship in internal exposure was investigated by means of two methods, which were relationship between dose and its effect (relationship between μ Ci/Kg and its effect), and exposure dose and its effects (rad-effect), and merits and demerits of two methods were mentioned. Problems in a indication method such as mean dose were discussed with respect to the dose in skeleton, the liver and the lung. Pu-induced osteosarcoma in mice rats, and beagles was described, and differences in its induction between animals were discussed. Pulmonary neoplasma induced by 239 PuO 2 inhalation in beagles was reported, and description was made as to differences in induction of lung cancer between animals when Pu was inhaled and was taken into the lung. A theoretical and experimental study of a extrapolation of the results of the animal experiment using Pu to human cases is necessary. (Serizawa, K.)

  12. Effective doses in paediatric radiology

    International Nuclear Information System (INIS)

    Iacob, Olga; Diaconescu, Cornelia; Roca, Antoaneta

    2001-01-01

    Because of their longer life expectancy, the risk of late manifestations of detrimental radiation effects is greater in children than in adults and, consequently, paediatric radiology gives ground for more concern regarding radiation protection than radiology of adults. The purpose of our study is to assess in terms of effective doses the magnitude of paediatric patient exposure during conventional X-ray examinations, selected for their high frequency or their relatively high doses to the patient. Effective doses have been derived from measurements of dose-area product (DAP) carried out on over 900 patients undergoing X-ray examinations, in five paediatric units. The conversion coefficients for estimating effective doses are those calculated by the NRPB using Monte-Carlo technique on a series of 5 mathematical phantoms representing 0, 1, 5, 10 and 15 year old children. The annual frequency of X-ray examinations necessary for collective dose calculation are those reported in our last national study on medical exposure, conducted in 1995. The annual effective doses from all medical examinations for the average paediatric patient are as follows: 1.05 mSv for 0 year old, 0.98 mSv for 1 year old, 0.53 mSv for 5 year old, 0.65 mSv for 10 year old and 0.70 mSv for 15 year old. The resulting annual collective effective dose was evaluated at 625 man Sv with the largest contribution of pelvis and hip examinations (34%). The annual collective effective associated with paediatric radiology in Romania represent 5% of the annual value resulting from all diagnostic radiology. Examination of the chest is by far the most frequent procedure for children, accounting for about 60 per cent of all annually performed X-ray conventional examinations. Knowledge of real level of patient dose is an essential component of quality assurance programs in paediatric radiology. (authors)

  13. Radiation. Doses, effect, risk

    International Nuclear Information System (INIS)

    Vapirev, E.; Todorov, P.

    1994-12-01

    This book outlines in a popular form the topic of ionizing radiation impacts on living organisms. It contains data gathered by ICRP for a period of 35 years. The essential dosimetry terms and units are presented. Natural and artificial sources of ionizing radiation are described. Possible biological radiation effects and diseases as a consequence of external and internal irradiation at normal and accidental conditions are considered. An assessment of genetic risk for human populations is presented and the concept of 'acceptable risk' is discussed

  14. Higher hydrocortisone dose increases bilirubin in hypopituitary patients- results from an RCT.

    Science.gov (United States)

    Werumeus Buning, Jorien; Kootstra-Ros, Jenny E; Brummelman, Pauline; van den Berg, Gerrit; van der Klauw, Melanie; Wolffenbuttel, Bruce H R; van Beek, André P; Dullaart, Robin P F

    2016-05-01

    Bilirubin has anti-oxidative and anti-inflammatory properties, which may explain its proposed protective effects on the development of cardiometabolic disorders. Glucocorticoids affect heme oxygenase regulation in vitro, which plays a key role in bilirubin production. Effects of variations in glucocorticoid exposure on circulating bilirubin levels in humans are unknown. Here we tested whether a higher hydrocortisone replacement dose affects circulating bilirubin in hypopituitary patients. A randomized double-blind cross-over study (ClinicalTrials.gov, number NCT01546992) was performed in 47 patients with secondary adrenal failure [10-week exposure to a higher hydrocortisone dose (0·4-0·6 mg/kg body weight) vs. 10 weeks of a lower hydrocortisone dose (0·2-0·3 mg/kg body weight)]. Plasma total bilirubin was increased by 10% from 7 to 8 μM in response to the higher hydrocortisone dose (P = 0·033). This effect was inversely related to age (P = 0·042), but was unaffected by sex, obesity and (replacement for) other hormonal insufficiencies. The higher hydrocortisone dose also resulted in lower alkaline phosphatase (P = 0·006) and aspartate aminotransferase activities (P = 0·001). Bilirubin is modestly increased in response to higher glucocorticoid exposure in humans, in conjunction with lower alkaline phosphatase and aspartate aminotransferase activities, which are supposed to represent biomarkers of a pro-inflammatory state and enhanced liver fat accumulation. © 2016 The Authors. European Journal of Clinical Investigation published by John Wiley & Sons Ltd on behalf of Stichting European Society for Clinical Investigation Journal Foundation.

  15. Higher Biologically Effective Dose of Radiotherapy Is Associated With Improved Outcomes for Locally Advanced Non–Small Cell Lung Carcinoma Treated With Chemoradiation: An Analysis of the Radiation Therapy Oncology Group

    International Nuclear Information System (INIS)

    Machtay, Mitchell; Bae, Kyounghwa; Movsas, Benjamin; Paulus, Rebecca; Gore, Elizabeth M.; Komaki, Ritsuko; Albain, Kathy; Sause, William T.; Curran, Walter J.

    2012-01-01

    Purpose: Patients treated with chemoradiotherapy for locally advanced non–small-cell lung carcinoma (LA-NSCLC) were analyzed for local-regional failure (LRF) and overall survival (OS) with respect to radiotherapy dose intensity. Methods and Materials: This study combined data from seven Radiation Therapy Oncology Group (RTOG) trials in which chemoradiotherapy was used for LA-NSCLC: RTOG 88-08 (chemoradiation arm only), 90-15, 91-06, 92-04, 93-09 (nonoperative arm only), 94-10, and 98-01. The radiotherapeutic biologically effective dose (BED) received by each individual patient was calculated, as was the overall treatment time-adjusted BED (tBED) using standard formulae. Heterogeneity testing was done with chi-squared statistics, and weighted pooled hazard ratio estimates were used. Cox and Fine and Gray’s proportional hazard models were used for OS and LRF, respectively, to test the associations between BED and tBED adjusted for other covariates. Results: A total of 1,356 patients were analyzed for BED (1,348 for tBED). The 2-year and 5-year OS rates were 38% and 15%, respectively. The 2-year and 5-year LRF rates were 46% and 52%, respectively. The BED (and tBED) were highly significantly associated with both OS and LRF, with or without adjustment for other covariates on multivariate analysis (p < 0.0001). A 1-Gy BED increase in radiotherapy dose intensity was statistically significantly associated with approximately 4% relative improvement in survival; this is another way of expressing the finding that the pool-adjusted hazard ratio for survival as a function of BED was 0.96. Similarly, a 1-Gy tBED increase in radiotherapy dose intensity was statistically significantly associated with approximately 3% relative improvement in local-regional control; this is another way of expressing the finding that the pool-adjusted hazard ratio as a function of tBED was 0.97. Conclusions: Higher radiotherapy dose intensity is associated with improved local-regional control

  16. Determination of organ doses and effective doses in radiooncology

    International Nuclear Information System (INIS)

    Roth, J.; Martinez, A.E.

    2007-01-01

    Background and Purpose: With an increasing chance of success in radiooncology, it is necessary to estimate the risk from radiation scatter to areas outside the target volume. The cancer risk from a radiation treatment can be estimated from the organ doses, allowing a somewhat limited effective dose to be estimated and compared. Material and Methods: The doses of the radiation-sensitive organs outside the target volume can be estimated with the aid of the PC program PERIDOSE developed by van der Giessen. The effective doses are determined according to the concept of ICRP, whereby the target volume and the associated organs related to it are not taken into consideration. Results: Organ doses outside the target volume are generally < 1% of the dose in the target volume. In some cases, however, they can be as high as 3%. The effective doses during radiotherapy are between 60 and 900 mSv, depending upon the specific target volume, the applied treatment technique, and the given dose in the ICRU point. Conclusion: For the estimation of the radiation risk, organ doses in radiooncology can be calculated with the aid of the PC program PERIDOSE. While evaluating the radiation risk after ICRP, for the calculation of the effective dose, the advanced age of many patients has to be considered to prevent that, e.g., the high gonad doses do not overestimate the effective dose. (orig.)

  17. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  18. Normal tissue dose-effect models in biological dose optimisation

    International Nuclear Information System (INIS)

    Alber, M.

    2008-01-01

    Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)

  19. Effective dose and dose to crystalline lens during angiographic procedures

    International Nuclear Information System (INIS)

    Pages, J.

    1998-01-01

    The highest radiation doses levels received by radiologists are observed during interventional procedures. Doses to forehead and neck received by a radiologist executing angiographic examinations at the department of radiology at the academic hospital (AZ-VUB) have been measured for a group of 34 examinations. The doses to crystalline lens and the effective doses for a period of one year have been estimated. For the crystalline lens the maximum dose approaches the ICRP limit, that indicates the necessity for the radiologist to use leaded glasses. (N.C.)

  20. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients.

    NARCIS (Netherlands)

    Ruslami, R.; Nijland, H.M.J.; Alisjahbana, B.; Parwati, I.; Crevel, R. van; Aarnoutse, R.E.

    2007-01-01

    Rifampin is a key drug for tuberculosis (TB) treatment. The available data suggest that the currently applied 10-mg/kg of body weight dose of rifampin may be too low and that increasing the dose may shorten the treatment duration. A double-blind randomized phase II clinical trial was performed to

  1. Effective Communication in Higher Education

    Science.gov (United States)

    Howard, Melissa

    2014-01-01

    The intent for this paper is to show that communication within the higher education field is a current problem. By looking first at the different styles, forms, and audiences for communication, the reader will hopefully gain perspective as to why this is such a problem in higher education today. Since the Millennial generation is the newest set of…

  2. Determination of effective dose of antimalarial from Cassia ...

    African Journals Online (AJOL)

    However, further investigation is required to determine an effective dose of the administered extract for a higher inhibitory effect and increasing effectiveness of the extract. Material and Methods: To determine the effective dose of ethanol extract of C. spectabilis leaves, a "4-day suppressive test"of Peter was performed with ...

  3. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  4. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  5. Notes on the effect of dose uncertainty

    International Nuclear Information System (INIS)

    Morris, M.D.

    1987-01-01

    The apparent dose-response relationship between amount of exposure to acute radiation and level of mortality in humans is affected by uncertainties in the dose values. It is apparent that one of the greatest concerns regarding the human data from Hiroshima and Nagasaki is the unexpectedly shallow slope of the dose response curve. This may be partially explained by uncertainty in the dose estimates. Some potential effects of dose uncertainty on the apparent dose-response relationship are demonstrated

  6. Warfarin maintenance dose in older patients: higher average dose and wider dose frequency distribution in patients of African ancestry than those of European ancestry.

    Science.gov (United States)

    Garwood, Candice L; Clemente, Jennifer L; Ibe, George N; Kandula, Vijay A; Curtis, Kristy D; Whittaker, Peter

    2010-06-15

    Studies report that warfarin doses required to maintain therapeutic anticoagulation decrease with age; however, these studies almost exclusively enrolled patients of European ancestry. Consequently, universal application of dosing paradigms based on such evidence may be confounded because ethnicity also influences dose. Therefore, we determined if warfarin dose decreased with age in Americans of African ancestry, if older African and European ancestry patients required different doses, and if their daily dose frequency distributions differed. Our chart review examined 170 patients of African ancestry and 49 patients of European ancestry cared for in our anticoagulation clinic. We calculated the average weekly dose required for each stable, anticoagulated patient to maintain an international normalized ratio of 2.0 to 3.0, determined dose averages for groups 80 years of age and plotted dose as a function of age. The maintenance dose in patients of African ancestry decreased with age (PAfrican ancestry required higher average weekly doses than patients of European ancestry: 33% higher in the 70- to 79-year-old group (38.2+/-1.9 vs. 28.8+/-1.7 mg; P=0.006) and 52% in the >80-year-old group (33.2+/-1.7 vs. 21.8+/-3.8 mg; P=0.011). Therefore, 43% of older patients of African ancestry required daily doses >5mg and hence would have been under-dosed using current starting-dose guidelines. The dose frequency distribution was wider for older patients of African ancestry compared to those of European ancestry (PAfrican ancestry indicate that strategies for initiating warfarin therapy based on studies of patients of European ancestry could result in insufficient anticoagulation and thereby potentially increase their thromboembolism risk. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  8. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  9. The true bladder dose: on average thrice higher than the ICRU reference

    International Nuclear Information System (INIS)

    Barillot, I.; Horiot, J.C.; Maingon, P.; Bone-Lepinoy, M.C.; D'Hombres, A.; Comte, J.; Delignette, A.; Feutray, S.; Vaillant, D.

    1996-01-01

    The aim of this study is to compare ICRU dose to doses at the bladder base located from ultrasonography measurements. Since 1990, the dose delivered to the bladder during utero-vaginal brachytherapy was systematically calculated at 3 or 4 points representative of bladder base determined with ultrasonography. The ICRU Reference Dose (IRD) from films, the Maximum Dose (Dmax), the Mean Dose (Dmean) representative of the dose received by a large area of bladder mucosa, the Reference Dose Rate (RDR) and the Mean Dose Rate (MDR) were recorded. Material: from 1990 to 1994, 198 measurements were performed in 152 patients. 98 patients were treated for cervix carcinomas, 54 for endometrial carcinomas. Methods: Bladder complications were classified using French Italian Syllabus. The influence of doses and dose rates on complications were tested using non parametric t test. Results: On average IRD is 21 Gy +/- 12 Gy, Dmax is 51Gy +/- 21Gy, Dmean is 40 Gy +/16 Gy. On average Dmax is thrice higher than IRD and Dmean twice higher than IRD. The same results are obtained for cervix and endometrium. Comparisons on dose rates were also performed: MDR is on average twice higher than RDR (RDR 48 cGy/h vs MDR 88 cGy/h). The five observed complications consist of incontinence only (3 G1, 1G2, 1G3). They are only statistically correlated with RDR p=0.01 (46 cGy/h in patients without complications vs 74 cGy/h in patients with complications). However the full responsibility of RT remains doubtful and should be shared with surgery in all cases. In summary: Bladder mucosa seems to tolerate well much higher doses than previous recorded without increased risk of severe sequelae. However this finding is probably explained by our efforts to spare most of bladder mucosa by 1 deg. ) customised external irradiation therapy (4 fields, full bladder) 2 deg. ) reproduction of physiologic bladder filling during brachytherapy by intermittent clamping of the Foley catheter

  10. Gamma dose rate effect on JFET transistors

    International Nuclear Information System (INIS)

    Assaf, J.

    2011-04-01

    The effect of Gamma dose rate on JFET transistors is presented. The irradiation was accomplished at the following available dose rates: 1, 2.38, 5, 10 , 17 and 19 kGy/h at a constant dose of 600 kGy. A non proportional relationship between the noise and dose rate in the medium range (between 2.38 and 5 kGy/h) was observed. While in the low and high ranges, the noise was proportional to the dose rate as the case of the dose effect. This may be explained as follows: the obtained result is considered as the yield of a competition between many reactions and events which are dependent on the dose rate. At a given values of that events parameters, a proportional or a non proportional dose rate effects are generated. No dependence effects between the dose rate and thermal annealing recovery after irradiation was observed . (author)

  11. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  12. Late effects of low doses and dose rates

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    This paper outlines the spectrum of problems and approaches used in work on the derivation of quantitative prognoses of late effects in man of low doses and dose rates. The origins of principal problems encountered in radiation risks assessments, definitions and explanations of useful quantities, methods of deriving risk factors from biological and epidemiological data, and concepts of risk evaluation and problems of acceptance are individually discussed

  13. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  14. Bioavailability of higher dose methotrexate comparing oral and subcutaneous administration in patients with rheumatoid arthritis

    NARCIS (Netherlands)

    Hoekstra, Monique; Haagsma, C.; Neef, C; Proost, Johannes H; Knuif, A.; van der Laar, M.

    Objective. To determine the bioavailability of higher oral doses of methotrexate (MTX) in adult patients with rheumatoid arthritis (RA). Methods. A pharmacokinetic analysis was performed in 15 patients with RA taking a stable dose of MTX (greater than or equal to25 mg weekly). Separated by 2 weeks,

  15. A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia.

    Science.gov (United States)

    Guastella, Adam J; Ward, Philip B; Hickie, Ian B; Shahrestani, Sara; Hodge, Marie Antoinette Redoblado; Scott, Elizabeth M; Langdon, Robyn

    2015-11-01

    Schizophrenia is associated with significant impairments in both higher and lower order social cognitive performance and these impairments contribute to poor social functioning. People with schizophrenia report poor social functioning to be one of their greatest unmet treatment needs. Recent studies have suggested the potential of oxytocin as such a treatment, but mixed results render it uncertain what aspects of social cognition are improved by oxytocin and, subsequently, how oxytocin might best be applied as a therapeutic. The aim of this study was to determine whether a single dose of oxytocin improved higher-order and lower-order social cognition performance for patients with schizophrenia across a well-established battery of social cognition tests. Twenty-one male patients received both a single dose of oxytocin nasal spray (24IU) and a placebo, two weeks apart in a randomized within-subjects placebo controlled design. Following each administration, participants completed the social cognition tasks, as well as a test of general neurocognition. Results revealed that oxytocin particularly enhanced performance on higher order social cognition tasks, with no effects on general neurocognition. Results for individual tasks showed most improvement on tests measuring appreciation of indirect hints and recognition of social faux pas. These results suggest that oxytocin, if combined to enhance social cognition learning, may be beneficial when targeted at higher order social cognition domains. This study also suggests that these higher order tasks, which assess social cognitive processing in a social communication context, may provide useful markers of response to oxytocin in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effect of a therapeutic dose of pseudoephedrine on swimmers ...

    African Journals Online (AJOL)

    is thought to result from direct stimulation of post-synaptic receptors and inhibition ..... optimal effect could be extensive with the use of nutritional supplements; therefore ... These studies support the theory that higher doses of PSE may result in.

  17. Standard effective doses for proliferative tumours

    International Nuclear Information System (INIS)

    Jones, L.C.; Hoban, P.

    1999-01-01

    This study was undertaken to investigate the treatment schedules used clinically for highly proliferative tumours, particularly with reference to the effects of fraction size, fraction number and treatment duration. The linear quadratic model (with time component) is used here to compare non-standard treatment regimens (e.g. accelerated and hyperfractionated schedules), currently the focus of randomized trials, with each other and some common 'standard regimens'. To ensure easy interpretation of results, two parameters known as proliferative standard effective dose one (PSED 1 ) and proliferative standard effective dose two (PSED 2 ) have been calculated for each regimen. Graphs of PSED 1 and PSED 2 versus potential doubling time (T p ) have been generated for a range of fractionation regimens which are currently under trial in various randomized studies. From these graphs it can be seen that the highly accelerated schedules (such as CHART) only show advantages for tumours with very short potential doubling times. Calculations for most of the schedules considered showed at least equivalent tumour control expected for the trial schedule compared with the control arm used and these values agree quite well with clinical results. These calculations are in good agreement with clinical results available at present. The greater the PSED 1 or PSED 2 for the schedule considered the greater the tumour control, which can be expected. However, as has been seen with clinical trials, this higher cell kill also results in higher acute effects which have proved too great for some accelerated schedules to continue. (author)

  18. Bayesian estimation of dose rate effectiveness

    International Nuclear Information System (INIS)

    Arnish, J.J.; Groer, P.G.

    2000-01-01

    A Bayesian statistical method was used to quantify the effectiveness of high dose rate 137 Cs gamma radiation at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice. The Bayesian approach considers both the temporal and dose dependence of radiation carcinogenesis and total mortality. This paper provides the first direct estimation of dose rate effectiveness using Bayesian statistics. This statistical approach provides a quantitative description of the uncertainty of the factor characterising the dose rate in terms of a probability density function. The results show that a fixed dose from 137 Cs gamma radiation delivered at a high dose rate is more effective at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice than the same dose delivered at a low dose rate. (author)

  19. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  20. Effects of small radiation doses

    International Nuclear Information System (INIS)

    Fuchs, G.

    1986-01-01

    The term 'small radiation dosis' means doses of about (1 rem), fractions of one rem as well as doses of a few rem. Doses like these are encountered in various practical fields, e.g. in X-ray diagnosis, in the environment and in radiation protection rules. The knowledge about small doses is derived from the same two forces, on which the radiobiology of human beings nearly is based: interpretation of the Hiroshima and Nagasaki data, as well as the experience from radiotherapy. Careful interpretation of Hiroshima dates do not provide any evidence that small doses can induce cancer, fetal malformations or genetic damage. Yet in radiotherapy of various diseases, e.g. inflammations, doses of about 1 Gy (100 rad) do no harm to the patients. According to a widespread hypothesis even very small doses may induce some types of radiation damage ('no threshold'). Nevertheless an alternative view is justified. At present no decision can be made between these two alternatives, but the usefullness of radiology is definitely better established than any damage calculated by theories or extrapolations. Based on experience any exaggerated fear of radiations can be met. (author)

  1. Organ or tissue doses, effective dose and collective effective dose from X-ray diagnosis, in Japan

    International Nuclear Information System (INIS)

    Murayama, Takashi; Nishizawa, Kanae; Noda, Yutaka; Kumamoto, Yoshikazu; Iwai, Kazuo.

    1996-01-01

    Effective doses and collective effective doses from X-ray diagnostic examinations were calculated on the basis of the frequency of examinations estimated by a nationwide survey and the organ or tissue doses experimentally determined. The average organ or tissue doses were determined with thermoluminescence dosimeters put at various sites of organs or tissues in an adult and a child phantom. Effective doses (effective dose equivalents) were calculated as the sum of the weighted equivalent doses in all the organs or tissues of the body. As the examples of results, the effective doses per radiographic examination were approximately 7 mGy for male, and 9 mGy for female angiocardiography, and about 3 mGy for barium meal. Annual collective effective dose from X-ray diagnostic examinations in 1986 were about 104 x 10 3 person Sv from radiography and 118 x 10 3 person Sv from fluoroscopy, with the total of 222 x 10 3 person Sv. (author)

  2. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  3. The concept of the effective dose

    International Nuclear Information System (INIS)

    Jacobi, W.

    1975-01-01

    Irradiation of the human body by external or internal sources leads mostly to a simultaneous exposure of several organs. However, so far no clear and consistent recommendations for the combination of organ doses and the assessment of an exposure limit under such irradiation conditions are available. Following a proposal described in ICRP-publication 14 one possible concept for the combination of organ doses is discussed in this paper. This concept is based on the assumption that at low doses the total radiation detriment to the exposed person is given by the sum of radiation detriments to the single organs. Taking into account a linear dose-risk relationship, the sum of weighted organ doses leads to the definition of an 'Effective Dose'. The applicability and consequences of this 'Effective Dose Concept' are discussed especially with regard to the assessment of the maximum permissible intake of radionuclides into the human body and the combination of external and internal exposure. (orig.) [de

  4. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  5. The dose-rate effect

    International Nuclear Information System (INIS)

    Steel, G.G.

    1989-01-01

    This paper presents calculations that illustrate two conclusions; for any particular cell type there will be a critical radius at which tumor control breaks down, and the radius at which this occurs is strongly dependent upon the low-dose-rate radiosensitivity of the cells

  6. Effects of low dose mitomycin C on experimental tumor radiotherapy

    International Nuclear Information System (INIS)

    Yang Jianzheng; Liang Shuo; Qu Yaqin; Pu Chunji; Zhang Haiying; Wu Zhenfeng; Wang Xianli

    2001-01-01

    Objective: To evaluate the possibility of low dose mitomycin C(MMC) as an adjunct therapy for radiotherapy. Methods: Change in tumor size tumor-bearing mice was measured. Radioimmunoassay was used to determine immune function of mice. Results: Low dose Mac's pretreatment reduced tumor size more markedly than did radiotherapy only. The immune function in mice given with low dose MMC 12h before radiotherapy was obviously higher than that in mice subjected to radiotherapy only (P<0.05), and was close to that in the tumor-bearing mice before radiotherapy. Conclusion: Low dose MMC could improve the radiotherapy effect. Pretreatment with low dose MMC could obviously improve the immune suppression state in mice caused by radiotherapy. The mechanism of its improvement of radiotherapeutic effect by low dose of MMC might be due to its enhancement of immune function and induction of adaptive response in tumor-bearing mice

  7. Assessment of low-dose radiotoxicity in microorganisms and higher organisms

    International Nuclear Information System (INIS)

    Obeid, Muhammad Hassan

    2016-01-01

    This work was dedicated to quantify and distinguish the radio- and chemitoxic effects of environmentally relevant low doses of uranium on the metabolism of microorganisms and multicellular organisms by a modern and highly sensitive microcalorimetry. In such low-dose regime, lethality is low or absent. Therefore, quantitative assays based on survival curves cannot be employed, particularly for multicellular organisms. Even in the case of microbial growth, where individual cells may be killed by particle radiation, classical toxicity assessments based on colony counting are not only extremely time-consuming but also highly error-prone. Therefore, measuring the metabolic activity of the organism under such kinds of conditions would give an extremely valuable quantitative measure of viability that is based on life cell monitoring, rather than determining lethality at higher doses and extrapolating it to the low dose regime. The basic concept is simple as it relies on the metabolic heat produced by an organism during development, growth or replication as an inevitable byproduct of all biochemical processes. A metabolic effect in this concept is defined as a change in heat production over time in the presence of a stressor, such as a heavy metal. This approach appeared to be particular versatile for the low dose regime. Thus, the thesis attempted in this case to measure the enthalpy production of a bacterial population as a whole to derive novel toxicity concepts. In the following chapters, an introduction about the properties of ionizing radiation will be briefly presented, in addition to a review about the isothermal calorimetry and its application in studying the bacterial growth. Later in chapter 2, the effect of uranium on the metabolic activity of three different bacterial strains isolated form a uranium mining waste pile together with a reference strain that is genetically related to them will be investigated. Due to the lack of published dedicated calibration

  8. Assessment of low-dose radiotoxicity in microorganisms and higher organisms

    Energy Technology Data Exchange (ETDEWEB)

    Obeid, Muhammad Hassan

    2016-01-11

    This work was dedicated to quantify and distinguish the radio- and chemitoxic effects of environmentally relevant low doses of uranium on the metabolism of microorganisms and multicellular organisms by a modern and highly sensitive microcalorimetry. In such low-dose regime, lethality is low or absent. Therefore, quantitative assays based on survival curves cannot be employed, particularly for multicellular organisms. Even in the case of microbial growth, where individual cells may be killed by particle radiation, classical toxicity assessments based on colony counting are not only extremely time-consuming but also highly error-prone. Therefore, measuring the metabolic activity of the organism under such kinds of conditions would give an extremely valuable quantitative measure of viability that is based on life cell monitoring, rather than determining lethality at higher doses and extrapolating it to the low dose regime. The basic concept is simple as it relies on the metabolic heat produced by an organism during development, growth or replication as an inevitable byproduct of all biochemical processes. A metabolic effect in this concept is defined as a change in heat production over time in the presence of a stressor, such as a heavy metal. This approach appeared to be particular versatile for the low dose regime. Thus, the thesis attempted in this case to measure the enthalpy production of a bacterial population as a whole to derive novel toxicity concepts. In the following chapters, an introduction about the properties of ionizing radiation will be briefly presented, in addition to a review about the isothermal calorimetry and its application in studying the bacterial growth. Later in chapter 2, the effect of uranium on the metabolic activity of three different bacterial strains isolated form a uranium mining waste pile together with a reference strain that is genetically related to them will be investigated. Due to the lack of published dedicated calibration

  9. Women Administered Standard Dose Imatinib for Chronic Myeloid Leukemia Have Higher Dose-Adjusted Plasma Imatinib and Norimatinib Concentrations Than Men.

    Science.gov (United States)

    Belsey, Sarah L; Ireland, Robin; Lang, Kathryn; Kizilors, Aytug; Ho, Aloysius; Mufti, Ghulam J; Bisquera, Alessandra; De Lavallade, Hugues; Flanagan, Robert J

    2017-10-01

    The standard dose of imatinib for the treatment of chronic-phase chronic myeloid leukemia (CML) is 400 mg·d. A predose plasma imatinib concentration of >1 mg·L is associated with improved clinical response. This study aimed to assess the plasma imatinib and norimatinib concentrations attained in patients with chronic myeloid leukemia administered standard doses of imatinib adjusted for dose, age, sex, body weight, and response. We evaluated data from a cohort of patients treated between 2008 and 2014 with respect to dose, age, sex, body weight, and response. The study comprised 438 samples from 93 patients (54 male, 39 female). The median imatinib dose was 400 mg·d in men and in women. The plasma imatinib concentration ranged 0.1-5.0 mg·L and was below 1 mg·L in 20% and 16% of samples from men and women, respectively. The mean dose normalized plasma imatinib and norimatinib concentrations were significantly higher in women in comparison with men. This was partially related to body weight. Mixed effects ordinal logistic regression showed no evidence of an association between sex and plasma imatinib (P = 0.13). However, there was evidence of an association between sex and plasma norimatinib, with higher norimatinib concentrations more likely in women than in men (P = 0.02). Imatinib therapeutic drug monitoring only provides information on dosage adequacy and on short-term adherence; longer-term adherence cannot be assessed. However, this analysis revealed that approximately 1 in 5 samples had a plasma imatinib concentration <1 mg·L, which was suggestive of inadequate dosage and/or poor adherence and posed a risk of treatment failure. Higher imatinib exposure in women may be a factor in the increased rate of long-term, stable, deep molecular response (undetectable breakpoint cluster-Abelson (BCR-ABL) transcript levels with a PCR sensitivity of 4.5 log, MR4.5) reported in women.

  10. Effective dose from direct and indirect digital panoramic units

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Sun; Kim, Jin Soo; Seo, Yo Seob; Kim, Jae Duk [School of Dentistry, Oral Biology Research Institute, Chosun University, Gwangju (Korea, Republic of)

    2013-06-15

    This study aimed to provide comparative measurements of the effective dose from direct and indirect digital panoramic units according to phantoms and exposure parameters. Dose measurements were carried out using a head phantom representing an average man (175 cm tall, 73.5 kg male) and a limbless whole body phantom representing an average woman (155 cm tall, 50 kg female). Lithium fluoride thermoluminescent dosimeter (TLD) chips were used for the dosimeter. Two direct and 2 indirect digital panoramic units were evaluated in this study. Effective doses were derived using 2007 International Commission on Radiological Protection (ICRP) recommendations. The effective doses of the 4 digital panoramic units ranged between 8.9 {mu}Sv and 37.8 {mu}Sv. By using the head phantom, the effective doses from the direct digital panoramic units (37.8 {mu}Sv, 27.6 {mu}Sv) were higher than those from the indirect units (8.9 {mu}Sv, 15.9 {mu}Sv). The same panoramic unit showed the difference in effective doses according to the gender of the phantom, numbers and locations of TLDs, and kVp. To reasonably assess the radiation risk from various dental radiographic units, the effective doses should be obtained with the same numbers and locations of TLDs, and with standard hospital exposure. After that, it is necessary to survey the effective doses from various dental radiographic units according to the gender with the corresponding phantom.

  11. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  12. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  13. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: A randomized clinical trial.

    Science.gov (United States)

    Smith, Lynette M; Gallagher, J Christopher; Suiter, Corinna

    2017-10-01

    Falls are a serious health problem in the aging population. Because low levels of vitamin D have been associated with increased fall rates, many trials have been performed with vitamin D; two meta-analyses showed either a small effect or no effect of vitamin D on falls. We conducted a study of the effect of vitamin D on serum 25 hydroxyvitamin D (25OHD) and data on falls was collected as a secondary outcome. In a 12-month double blind randomized placebo trial, elderly women, mean age 66 years, were randomized to one of seven daily oral doses of vitamin D or placebo. The main inclusion criterion for study was a baseline serum 25OHDvitamin D on falls followed a U-shaped curve whether analyzed by dose or serum 25OHD levels. There was no decrease in falls on low vitamin D doses 400, 800 IU, a significant decrease on medium doses 1600, 2400,3200 IU (p=0.020) and no decrease on high doses 4000, 4800 IU compared to placebo (p=0.55). When compared to 12-month serum 25OHD quintiles, the faller rate was 60% in the lowest quintile <25ng/ml (<50nmol/L), 21% in the low middle quintile 32-38ng/ml (80-95nmo/L), 72% in the high middle quintile 38-46ng/ml (95-115nmo/L) and 45% in the highest quintile 46-66ng/ml (115-165nmol/L). In the subgroup with a fall history, fall rates were 68% on low dose, 27% on medium doses and 100% on higher doses. Fall rates on high doses were increased compared to medium doses (Odds Ratio 5.6.95% CI: 2.1-14.8). In summary, the maximum decrease in falls corresponds to a 12- month serum 25OHD of 32-38ng/ml (80-95nmol/L) and faller rates increase as serum 25OHD exceed 40-45ng/ml (100-112.5nmol/L). The Tolerable upper limit (TUL) recently increased in 2010 from 2000 to 4000 IU/day may need to be reduced in elderly women especially in those with a fall history. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Broader Considerations of Higher Doses of Donepezil in the Treatment of Mild, Moderate, and Severe Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Camryn Berk

    2012-01-01

    Full Text Available Donepezil, a highly selective acetylcholinesterase inhibitor (AChEI, is approved as a symptomatic treatment mild, moderate, and severe Alzheimer's disease (AD. Donepezil exerts its treatment effect through multiple mechanisms of action including nicotinic receptor stimulation, mitigation of excitotoxicity, and influencing APP processing. The use of donepezil at higher doses is justified given the worsening cholinergic deficit as the disease advances. Donepezil has been investigated in several clinical trials of subjects with moderate-to-severe AD. While the side effects are class specific (cholinergically driven, demonstrable benefit has been shown at the 10 mg dose and the 23 mg doses. Here, we review the clinical justification, efficacy, safety, and tolerability of use of donepezil in the treatment of moderate-to-severe AD.

  15. Effects of small doses of ionising radiation

    International Nuclear Information System (INIS)

    Doll, R.

    1998-01-01

    Uncertainty remains about the quantitative effects of doses of ionising radiation less than 0.2 Sv. Estimates of hereditary effects, based on the atomic bomb survivors, suggest that the mutation doubling dose is about 2 Sv for acute low LET radiation, but the confidence limits are wide. The idea that paternal gonadal irradiation might explain the Seascale cluster of childhood leukaemia has been disproved. Fetal irradiation may lead to a reduction in IQ and an increase in seizures in childhood proportional to dose. Estimates that doses to a whole population cause a risk of cancer proportional to dose, with 0.1 Sv given acutely causing a risk of 1%, will need to be modified as more information is obtained, but the idea that there is a threshold for risk above this level is not supported by observations on the irradiated fetus or the effect of fallout. The idea, based on ecological observations, that small doses protect against the development of cancer is refuted by the effect of radon in houses. New observations on the atomic bomb survivors have raised afresh the possibility that small doses may also have other somatic effects. (author)

  16. Low-dose effect on blood chromosomes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Linear dose response relationships of biological effects at low doses are experimentally and theoretically disputed. Structural chromosome aberration rates at doses ranging from normal background exposures up to about 30 mGy/yr in vivo and up to 50 mGy in vitro were investigated by the author and other scientists. Results are comparable and dose effect curves reveal following shapes; within the normal burden and up to 2-10 mGy/yr in vivo rates they increase sharply to about 3-6 times the lowest values; subsequent doses either from natural, occupational or accidental exposures up to about 30 mGy/yr yield either constant aberration rates, assuming a plateau, or perhaps even a decrease. In vitro experiments show comparable results up to 50 mGy. Other biological effects seem to have similar dose dependencies. The non-linearity of low-dose effects can be explained by induction of repair enzymes at certain damage to the DNA. This hypothesis is sustained experimentally and theoretically by several papers in literature. (author). 14 refs., 5 figs

  17. Higher dose rate Gamma Knife radiosurgery may provide earlier and longer-lasting pain relief for patients with trigeminal neuralgia.

    Science.gov (United States)

    Lee, John Y K; Sandhu, Sukhmeet; Miller, Denise; Solberg, Timothy; Dorsey, Jay F; Alonso-Basanta, Michelle

    2015-10-01

    Gamma Knife radiosurgery (GKRS) utilizes cobalt-60 as its radiation source, and thus dose rate varies as the fixed source decays over its half-life of approximately 5.26 years. This natural decay results in increasing treatment times when delivering the same cumulative dose. It is also possible, however, that the biological effective dose may change based on this dose rate even if the total dose is kept constant. Because patients are generally treated in a uniform manner, radiosurgery for trigeminal neuralgia (TN) represents a clinical model whereby biological efficacy can be tested. The authors hypothesized that higher dose rates would result in earlier and more complete pain relief but only if measured with a sensitive pain assessment tool. One hundred thirty-three patients were treated with the Gamma Knife Model 4C unit at a single center by a single neurosurgeon during a single cobalt life cycle from January 2006 to May 2012. All patients were treated with 80 Gy with a single 4-mm isocenter without blocking. Using an output factor of 0.87, dose rates ranged from 1.28 to 2.95 Gy/min. The Brief Pain Inventory (BPI)-Facial was administered before the procedure and at the first follow-up office visit 1 month from the procedure (mean 1.3 months). Phone calls were made to evaluate patients after their procedures as part of a retrospective study. Univariate and multivariate linear regression was performed on several independent variables, including sex, age in deciles, diagnosis, follow-up duration, prior surgery, and dose rate. In the short-term analysis (mean 1.3 months), patients' self-reported pain intensity at its worst was significantly correlated with dose rate on multivariate analysis (p = 0.028). Similarly, patients' self-reported interference with activities of daily living was closely correlated with dose rate on multivariate analysis (p = 0.067). A 1 Gy/min decrease in dose rate resulted in a 17% decrease in pain intensity at its worst and a 22% decrease

  18. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  19. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  20. Model-Based Evaluation of Higher Doses of Rifampin Using a Semimechanistic Model Incorporating Autoinduction and Saturation of Hepatic Extraction.

    Science.gov (United States)

    Chirehwa, Maxwell T; Rustomjee, Roxana; Mthiyane, Thuli; Onyebujoh, Philip; Smith, Peter; McIlleron, Helen; Denti, Paolo

    2016-01-01

    Rifampin is a key sterilizing drug in the treatment of tuberculosis (TB). It induces its own metabolism, but neither the onset nor the extent of autoinduction has been adequately described. Currently, the World Health Organization recommends a rifampin dose of 8 to 12 mg/kg of body weight, which is believed to be suboptimal, and higher doses may potentially improve treatment outcomes. However, a nonlinear increase in exposure may be observed because of saturation of hepatic extraction and hence this should be taken into consideration when a dose increase is implemented. Intensive pharmacokinetic (PK) data from 61 HIV-TB-coinfected patients in South Africa were collected at four visits, on days 1, 8, 15, and 29, after initiation of treatment. Data were analyzed by population nonlinear mixed-effects modeling. Rifampin PKs were best described by using a transit compartment absorption and a well-stirred liver model with saturation of hepatic extraction, including a first-pass effect. Autoinduction was characterized by using an exponential-maturation model: hepatic clearance almost doubled from the baseline to steady state, with a half-life of around 4.5 days. The model predicts that increases in the dose of rifampin result in more-than-linear drug exposure increases as measured by the 24-h area under the concentration-time curve. Simulations with doses of up to 35 mg/kg produced results closely in line with those of clinical trials. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Effective dose for patient in multimode panoramic radiography

    International Nuclear Information System (INIS)

    Yasaki, Shiro; Daibo, Motoji

    1999-01-01

    In recent years, multimode panoramic radiography has had various functions, such as the auto exposure function, auto focus function (auto function), TMJ radiography and tomogram radiography functions. The purpose of this study was to estimate the effective dose for patients in each mode of the new multimode panoramic radiography (J. MORITA MFG. CORP. Dental Panorama X-ray Apparatus: Veraview Scope X 600). The absorbed doses in important organs involved in the causation of stochastic effects were measured by a thermoluminescent dosimeter using RANDO phantom. The effective doses were calculated using modified tissue weighting factors recommended by the International Commission on Radiological Protection (ICRP) in 1999. The mean field size over skin in typical panoramic and tomographic examinations was about 3% and 0.4% of the total body surface area of 15000 cm 2 . Assuming that the incidence of skin cancer is proportional to the area of skin exposed to ionizing radiation, the tissue weighting factor of skin can be estimated to be about 0.0003 and 0.00004. The estimate in effective dose was lower (5.3 μSv) in the panoramic auto function mode (an average exposure condition of 69 kV 7 mA) than that (6.5-13.8 μSv) in the linear tomogram modes. Since the linear tomogram mode requires a scout view, such as standard panoramic radiography, the dose in the linear tomogram mode becomes higher than other modes. A percentage of gonad doses in effective doses was negligible. (author)

  2. Relation between dose of bendrofluazide, antihypertensive effect, and adverse biochemical effects

    DEFF Research Database (Denmark)

    Carlsen, J E; Køber, L; Torp-Pedersen, C

    1990-01-01

    OBJECTIVE--To determine the relevant dose of bendrofluazide for treating mild to moderate hypertension. DESIGN--Double blind parallel group trial of patients who were given placebo for six weeks and then randomly allocated to various doses of bendrofluazide (1.25, 2.5, 5, or 10 mg daily) or place...... of bendrofluazide to treat mild to moderate hypertension is 1.25-2.5 mg a day. Higher doses caused more pronounced adverse biochemical effects including adverse lipid effects. Previous trials with bendrofluazide have used too high doses....... relations between dose and effect were shown for potassium, urate, glucose, total cholesterol, and apolipoprotein B concentrations. The 1.25 mg dose increased only urate concentrations, whereas the 10 mg dose affected all the above biochemical variables. CONCLUSION--The relevant range of doses...

  3. The Effects of Accountability on Higher Education

    Science.gov (United States)

    Rezende, Marcelo

    2010-01-01

    This paper analyzes the effects of a higher education accountability system in Brazil. For each discipline, colleges were assigned a grade that depended on the scores of their students on the ENC, an annual mandatory exam. These grades were then disclosed to the public and colleges were rewarded or penalized based on them. I find that the ENC had…

  4. Higher fractions theory of fractional hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.; Popov, V.N.

    1985-07-01

    A theory of fractional quantum Hall effect is generalized to higher fractions. N-particle model interaction is used and the gap is expressed through n-particles wave function. The excitation spectrum in general and the mean field critical behaviour are determined. The Hall conductivity is calculated from first principles. (author)

  5. Conformal technique dose escalation in prostate cancer: improved cancer control with higher doses in patients with pretreatment PSA {>=} 10 ngm/ml

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, G E; Lee, W R; Hanlon, A L; Kaplan, E; Epstein, B; Schultheiss, T

    1995-07-01

    Purpose: Single institutions and an NCI supported group of institutions have been investigating the value of dose escalation in patients with prostate cancer treated by conformal treatment techniques. Improvement in morbidity has been previously established, while this report identifies the pretreatment PSA level subgroups of patients who benefitted in cancer control from higher dose. Materials and Methods: We report actuarial bNED survival rates for 375 consecutive patients with known pretreatment PSA levels treated with conformal technique between 5/89 and 12/93. The whole pelvis was treated to 45 Gy in 25 fractions in all T2C,3, all Gleason 8, 9, 10 and all patients with pretreatment PSA {>=}20. The prostate {+-} seminal vesicles was boosted at 2.1 Gy/day to the center of the prostate to 65-79 Gy (65-69 N=50), 70-72.49 N=94, 72.5-74.9 N=82, 75-77.49 N=129 and {>=}77.5 N=20). The median followup is 21 mos with a range of 3 to 67 mos. The highest dose patients have the least followup, reducing the impact of the highest dose levels at this time. Patients are analyzed for the entire group divided at 71 Gy and at 73 Gy calculated at the center of the prostate. Each dose group is then subdivided by pretreatment PSA levels <10, 10-19.9, and {>=}20 ngm/ml and dose levels are compared within pretreatment PSA level group. bNED failure is defined as PSA {>=}1.5 ngm/ml and rising on two consecutive values. Results: Table 1 shows the bNED survival rates at 24 and 36 mos for all patients and the three pretreatment PSA level groups. For all patients pooled, there is an overall advantage to using doses {>=}71 Gy (64% vs 85% at 36 mo, p=.006) and {>=}73 Gy (71% vs 86% at 36 mo, p=.07). The subgroup of PSA <10 ngm/ml, however, shows no benefit in bNED survival when using doses over 71 Gy (90% vs 93% at 36 mo) or 73 Gy (91 vs 94% at 36 mo). The subgroup PSA 10 ngm/ml to 19.9 ngm/ml shows improved cancer control when using doses over 71 Gy (61% vs 88% at 36 mo, p=.03) and over 73

  6. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  7. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    International Nuclear Information System (INIS)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-01-01

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  8. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions.

    Science.gov (United States)

    Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A; Trofimov, Alexei

    2013-05-01

    Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability

  9. Using higher doses to compensate for tubing residuals in extended-infusion piperacillin-tazobactam.

    Science.gov (United States)

    Lam, Wendy J; Bhowmick, Tanaya; Gross, Alan; Vanschooneveld, Trevor C; Weinstein, Melvin P

    2013-06-01

    To mathematically assess drug losses due to infusion line residuals and evaluate methods to compensate for drug loss due to residual volumes in intravenous pump tubing. Literature was accessed through Ovid MEDLINE (1996-February 2013), using combinations of the search terms tubing residuals, residual volume, residual medication, intravenous infusions, intravenous injections, piperacillin, piperacillin-tazobactam, β-lactams, equipment design, infusion pumps, extended infusion, extended administration, and prolonged infusion. In addition, select reference citations from publications identified were reviewed. All articles that involved extended-infusion piperacillin-tazobactam implementation strategies were included in the review. Infusion pump characteristics and tubing residuals can affect extended-infusion piperacillin-tazobactam dosing strategies. Two studies addressing tubing residuals were identified. Both studies recommended increasing infusion volumes to compensate for tubing residuals. One study also recommended decreasing infusion-line dead space by using alternative infusion pump systems. Study calculations suggest that higher doses of piperacillin-tazobactam may be used to account for medication left in tubing residuals if alternative infusion pump systems cannot be obtained, and increased infusion volumes are not an option. Extended-infusion piperacillin-tazobactam has been used as a method of maximizing pharmacodynamic target attainment. Use of higher doses of piperacillin-tazobactam may be a reasonable method to compensate for drug loss due to residual volumes in large-bore intravenous pump tubing.

  10. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  11. In vitro and in vivo effects of low dose HTO contamination modulated by dose rate

    International Nuclear Information System (INIS)

    Petcu, I.; Savu, D.; Moisoi, N.; Koeteles, G.J.

    1997-01-01

    The experiment performed in vitro intended to examine whether an adaptive response could be elicited on lymphocytes by low-level contamination of whole blood with tritiated water and if the modification of the dose rate has any influence on it. Lymphocytes pre-exposed to 3 HOH (0.2 - 6.6 MBq/ml) and subsequently irradiated with I Gy γ-rays showed micronuclei frequency significantly lower (40% - 45%) than the expected member (sum of the yields induced by 3 HOH and γ-rays separately). The degree of the radioresistance induced by HTO pre-treatments became higher with decreasing dose-rate for a rather similar total adapting dose. In vivo, the aim of the study was to investigate if different dose rates are inducing modulation of the lipid peroxidation level and of the thymidine uptake in different tissues of animals contaminated by HTO ingestion. The total doses varied between 5 and 20 cGy and were delivered as chronic (100 days) or acute contamination (5 days). It was observed that only doses about 20 cGy caused a dose-rate dependent increase of the lipid peroxidation level in the tissues of small intestine, kidney and spleen. Both chronic and acute contamination did produce reduced incorporation of thymidine in the cells of bone marrow. The most effective decrease of thymidine uptake was induced by the acute contamination in the lower dose domain (approx. 5 cGy). Our hypothesis is that in this dose domain the modification of thymidine uptake could be due to changes at the level of membrane transport. (author)

  12. Estimates of effective dose in adult CT examinations

    International Nuclear Information System (INIS)

    Mohamed, Mustafa Awad Elhaj.

    2015-12-01

    The goal of study was to estimate effective dose (E) in adult CT examinations for Toshiba X64 slice using CT. Exp version 2.5 software in Sudan. Using of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. lack of optimized protocols could be an additional source of increased dose in developing countries. In order to achieve these objectives, data of CT-scanner has been collected from three hospitals ( ANH, ZSH and MMH). Data collected included equipment information and scan parameters for individual patients, who were used to asses. 300 adult patients underwent head, chest, abdomen-pelvis and peivis CT examinations. The CT1_w , CTD1_vol, DLP, patient effective dos and organ doses were estimated, using CT exposure parameters and CT Exp version 2.5 software. A large variation of mean effective dose and organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scan length. The mean effective dose in this study in the Brain, PNS, Chest, pulmonary, Abdomen-pelvis, Pelvis, KUB and CTU were 3.2 mSv, 2.6 mSv, 18.9 mSv 17.6 mSv 27.1 mSv, 11.2 mSv, 9.6 mSv and 23.7 mSv respectively, and organ equivalent, doses presented in this study in this study for the eye lens (for head), lungs and thymus ( for chest) , liver, kidney and small intest ( for abdomen t-pelvis), bladder, uterus and gonads ( for pelvis), were 62.9 mSv, 39.5 mSv, 34.1 mSv, 53.9 mSv, 52.6 mSv, 58.1 mSv, 37 mSv, and 34.6 mSv, respectively. These values were mostly comparable to and slightly higher than the values of effective doses reported from similar studies the United Kingdom, Tanzania, Australia, Canada and Sudan. It was concluded that patient effective dose and organ doses could be substantially minimized through careful selection of scanning parameters based on clinical indications of study, patient size, and body

  13. Radiation dose effects, hardening of electronic components

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.

    1991-01-01

    This course reviews the mechanism of interaction between ionizing radiation and a silicon oxide type dielectric, in particular the effect of electron-hole pairs creation in the material. Then effects of cumulated dose on electronic components and especially in MOS technology are examined. Finally methods hardening of these components are exposed. 93 refs

  14. interactive effect of cowpea variety, dose and exposure time

    African Journals Online (AJOL)

    ACSS

    variety (V), exposure time (T) and dose (D) on the tolerance of C. maculatus to both plant materials. The effect ... laboratories and institutions of higher education in several West .... Each value is the mean±S.E of 20 cowpea seeds. Means ...

  15. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  16. Higher glucocorticoid replacement doses are associated with increased mortality in patients with pituitary adenoma.

    Science.gov (United States)

    Hammarstrand, Casper; Ragnarsson, Oskar; Hallén, Tobias; Andersson, Eva; Skoglund, Thomas; Nilsson, Anna G; Johannsson, Gudmundur; Olsson, Daniel S

    2017-09-01

    Patients with secondary adrenal insufficiency (AI) have an excess mortality. The objective was to investigate the impact of the daily glucocorticoid replacement dose on mortality in patients with hypopituitarism due to non-functioning pituitary adenoma (NFPA). Patients with NFPA were followed between years 1997 and 2014 and cross-referenced with the National Swedish Death Register. Standardized mortality ratio (SMR) was calculated with the general population as reference and Cox-regression was used to analyse the mortality. The analysis included 392 patients (140 women) with NFPA. Mean ± s.d. age at diagnosis was 58.7 ± 14.6 years and mean follow-up was 12.7 ± 7.2 years. AI was present in 193 patients, receiving a mean daily hydrocortisone equivalent (HCeq) dose of 20 ± 6 mg. SMR (95% confidence interval (CI)) for patients with AI was similar to that for patients without, 0.88 (0.68-1.12) and 0.87 (0.63-1.18) respectively. SMR was higher for patients with a daily HCeq dose of >20 mg (1.42 (0.88-2.17)) than that in patients with a daily HCeq dose of 20 mg (0.71 (0.49-0.99)), P  = 0.017. In a Cox-regression analysis, a daily HCeq dose of >20 mg was independently associated with a higher mortality (HR: 1.88 (1.06-3.33)). Patients with daily HCeq doses of ≤20 mg had a mortality risk comparable to patients without glucocorticoid replacement and to the general population. Patients with NFPA and AI receiving more than 20 mg HCeq per day have an increased mortality. Our data also show that mortality in patients substituted with 20 mg HCeq per day or less is not increased. © 2017 European Society of Endocrinology.

  17. On butterfly effect in higher derivative gravities

    Energy Technology Data Exchange (ETDEWEB)

    Alishahiha, Mohsen [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-11-07

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  18. On butterfly effect in higher derivative gravities

    International Nuclear Information System (INIS)

    Alishahiha, Mohsen; Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid

    2016-01-01

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  19. Stopping the greenhouse effect - recommendations submitted by the Bundestag Enquete Commission. - Why nuclear energy cannot solve the global-warming problem - on the urgency of a low-risk, efficient future energy economy. - The latest cancer statistics of the Hiroshima/Nagasaki A-bomb survivors - a higher radiation risk at dose rates below 50cGy (rad) - consequences for radiation protection

    International Nuclear Information System (INIS)

    Bach, W.; Kohler, S.; Koehnlein, W.

    1991-01-01

    The report compiles three contributions two of which discuss the issues of global warming, trace gases and ozone depletion. The measures proposed by a German enquete commision to stop the greenhouse effect, i.e. utilization of renewable energy sources, nuclear phaseout because nuclear power is not supposed to solve the global-warming problem, are described. The third contribution gives the latest cancer statistics of the Hiroshima/Nagasaki a-bomb survivors while taking into account the higher radiation risk due to low dose rates. (DG) [de

  20. Estimation of effective dose during hysterosalpingography procedures

    International Nuclear Information System (INIS)

    Alzimamil, K.; Babikir, E.; Alkhorayef, M.; Sulieman, A.; Alsafi, K.; Omer, H.

    2014-08-01

    Hysterosalpingography (HSG) is the most frequently used diagnostic tool to evaluate the endometrial cavity and fallopian tube by using conventional x-ray or fluoroscopy. Determination of the patient radiation doses values from x-ray examinations provides useful guidance on where best to concentrate efforts on patient dose reduction in order to optimize the protection of the patients. The aims of this study were to measure the patients entrance surface air kerma doses (ESA K), effective doses and to compare practices between different hospitals in Sudan. ESA K were measured for patient using calibrated thermo luminance dosimeters (TLDs, Gr-200A). Effective doses were estimated using National Radiological Protection Board (NRPB) software. This study was conducted in five radiological departments: Two Teaching Hospitals (A and D), two private hospitals (B and C) and one University Hospital (E). The mean ESD was 20.1 mGy, 28.9 mGy, 13.6 mGy, 58.65 mGy, 35.7, 22.4 and 19.6 mGy for hospitals A,B,C,D, and E), respectively. The mean effective dose was 2.4 mSv, 3.5 mSv, 1.6 mSv, 7.1 mSv and 4.3 mSv in the same order. The study showed wide variations in the ESDs with three of the hospitals having values above the internationally reported values. Number of x-ray images, fluoroscopy time, operator skills x-ray machine type and clinical complexity of the procedures were shown to be major contributors to the variations reported. Results demonstrated the need for standardization of technique throughout the hospital. The results also suggest that there is a need to optimize the procedures. Local DRLs were proposed for the entire procedures. (author)

  1. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  2. Low dose effects detected by micronucleus assay in lymphocytes

    International Nuclear Information System (INIS)

    Koeteles, G.J.; Bojtor, I.; Kubasova, T.; Horvath, G.

    1997-01-01

    The effects of low doses of X-rays between 0.01 and 1 Gy were studied on whole blood samples of various individuals using the cytokinesis-blocked lymphocyte micronucleus assay as an endpoint. The adaptive response could be induced in G 0 cells by 0.01 Gy followed by 1 Gy challenging dose within a time period of 8 hours, in vitro. The probability distribution of micronucleus increments in those samples which had received very low doses in the range 0.01-0.05 Gy proved to be of asymmetrical type (i.e. lognormal) -very likely to the same shape which has been verified for unirradiated (control) population - while the variable turned to be normally distributed at or above 1 Gy. Profound changes have been experienced in the main characteristics of the linear dose - response relationship and in regression parameters, as well, when successively lessened dose ranges were studied toward 0.01 Gy. In the range below ∼ 0.2 Gy the response were found to be unrelated to the absorbed dose. These findings suggest that in (very) low dose range a higher attention should be needed to biological parameters like repair, protective mechanisms and antioxidant capacities, rather than to the absorbed radiation energy only. (author)

  3. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  4. Committed effective dose from thoron daughters inhalation

    International Nuclear Information System (INIS)

    Campos, M.P.; Pecequilo, B.R.S.

    2000-01-01

    Mankind's interest in natural radiation exposure levels has increased over the past fifty years and it is now recognized that the most significant contributors to human irradiation by natural sources are the short-lived decay products of radon ( 222 Rn) and thoron ( 220 Rn). Despite the thoron short half-life of 55 s, effective dose from inhalation of thoron an its progeny ( 212 Pb and 212 Bi) must be considered, owing to the high thorium background in countries like Brazil, China and India, for example. The indoor committed effective dose was assessed by air sampling at the thorium purification plant and the nuclear materials storage site of the Instituto de Pesquisas Energeticas e Nucleares; Sao Paulo, Brazil. A total of 21 glass fiber filter samples was analyzed by high resolution gamma ray spectrometry in order to obtain the 212 Pb and 212 Bi activities. The equilibrium equivalent concentration (EEC) varied from 0.3 Bq/m 3 to 6.8 Bq/m 3 for the storage site air samples and from 9.9 Bq/m 3 to 249.8 Bq/m 3 for the thorium purification plant air samples. As retention studies indicate a biological half-life of a few hours inhaled thoron progeny in the human lungs, the main fraction of the potential alpha energy (PAEC) deposited is absorbed in the lungs, meaning negligible to the effective dose the contribution of the dose in other times. The committed effective dose due thoron progeny was performed by compartimental analysis following the ICRP 66 lung compartimental model and ICRP 67 lead compartimental model. The values obtained varied from 0.03 mSv/a to 0.67 mSv/a for the storage site air samples and from 0.12 mSv/a to 6.00 mSv/a for the thorium purification plant air samples. (author)

  5. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Masse, R.

    2006-01-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  6. The Effect of Low‑Dose Ketamine (Preemptive Dose) on ...

    African Journals Online (AJOL)

    Average dosage of diclofenac suppository and mean time for taking the first dosage of opioids have not statistical difference too (respectively; P = 0.76, P = 0.87). Average dose of pethidine was lesser than placebo statistically. It means, the case group did not take pethidine but this amount was 6 (20%) in the control one (P ...

  7. Higher order effects of pseudoparticles in QCD

    International Nuclear Information System (INIS)

    Hietarinta, J.; Palmer, W.F.

    1977-01-01

    Gauge invariant Green's functions of quark-antiquark bilinear densities in massless, two-color QCD are studied. Nonzero-energy fermion modes, pseudoparticle solutions with topological charge absolute value ν > 1, and n-point functions with n > 2. Some general properties of the O(Dirac constant) approximation are developed, enabling one to isolate and define the terms which contribute to a general n-point function. The higher effects it is found preserve the symmetry breakdown found earlier in the 2-point function (U(2) x U(2) → SU(2) x SU(2) x U(1)). It is shown that a previous 2-point function analysis is exact to order Dirac constant

  8. A comparison of the angular dependence of effective dose and effective dose equivalent

    International Nuclear Information System (INIS)

    Sitek, M.A.; Gierga, D.P.; Xu, X.G.

    1996-01-01

    In ICRP (International Commission on Radiological Protection) Publication 60, the set of critical organs and their weighing factors were changed, defining the quantity effective dose, E. This quantity replaced the effective dose equivalent, H E , as defined by ICRP 26. Most notably, the esophagus was added to the list of critical organs. The Monte Carlo neutron/photon transport code MCNP was used to determine the effective dose to sex-specific anthropomorphic phantoms. The phantoms, developed in previous research, were modified to include the esophagus. Monte Carlo simulations were performed for monoenergetic photon beams of energies 0.08 MeV, 0.3 MeV, and 1.0 MeV for various azimuthal and polar angles. Separate organ equivalent doses were determined for male and female phantoms. The resulting organ equivalent doses were calculated from arithmetic mean averages. The angular dependence of effective dose was compared with that of effective dose equivalent reported in previous research. The differences between the two definitions and possible implications to regulatory agencies were summarized

  9. Effectance, committed effective dose equivalent and annual limits on intake: what are the changes?

    International Nuclear Information System (INIS)

    Kendall, G.M.; Stather, J.W.; Phipps, A.W.

    1990-01-01

    This paper outlines the concept of effectance, compares committed effectance with the old committed effective dose equivalent and goes on to discuss changes in the annual limits on intakes and the maximum organ doses which would result from an intake of an ALI (Annual Limit of Intake). It is shown that committed effectance is usually, but not always, higher than committed effective dose equivalent. ALIS are usually well below those resulting from the ICRP Publication 30 scheme. However, if the ALI were based only on a limit on effectance it would imply a high dose to specific organs for certain nuclides. In order to control maximum organ doses an explicit limit could be introduced. However, this would destroy some of the attractive features of the new scheme. An alternative would be a slight modification to some of the weighting factors. (author)

  10. Higher than standard radiation doses (≥72 Gy) with or without androgen deprivation in the treatment of localized prostate cancer

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Mohan, Dasarahally S.; Lyons, Janice; Klein, Eric A.; Reddy, Chandana A.

    2000-01-01

    Purpose: To study the effect on biochemical relapse-free survival (bRFS) and clinical disease-free survival of radiation doses delivered to the prostate and periprostatic tissues for localized prostate cancer. Methods and Materials: A total of 1041 consecutive localized prostate cancer cases treated with external beam radiotherapy (RT) at our institution between 7/86 and 2/99 were reviewed. All cases had available pretreatment parameters including pretreatment prostate-specific antigen (iPSA), biopsy Gleason score (bGS), and clinical T stage. The median age was 69 years. Twenty-three percent of cases (n = 238) were African-American. The distribution by clinical T stage was as follows: T1 in 365 cases (35%), T2 in 562 cases (54%), and T3 in 114 cases (11%). The median iPSA level was 10.1 ng/ml (range: 0.4-692.9). The distribution by biopsy Gleason score (bGS) was as follows: ≤6 in 580 cases (56%) and ≥7 in 461 cases (44%). Androgen deprivation (AD) in the adjuvant or neoadjuvant setting was given in 303 cases (29%). The mean RT dose was 71.9 Gy (range: 57.6-78.0 Gy). The median RT dose was 70.2 Gy, with 458 cases (44%) receiving at least 72.0 Gy. The average dose in patients receiving <72 Gy was 68.3 Gy (median 68.4) versus 76.5 Gy (median 78.0) for patients receiving ≥72 Gy. The mean follow-up was 38 months (median 33 months). The number of follow-up prostate-specific antigen (PSA) levels available was 5998. Results: The 5- and 8-year bRFS rates were 61% (95% CI 55-65%) and 58% (95% CI 51-65%), respectively. The 5-year bRFS rates for patients receiving radiation doses ≥72 Gy versus <72 Gy were 87% (95% CI 82-92%) and 55% (95% CI 49-60%), respectively. The 8-year bRFS rates for patients receiving radiation doses ≥72 Gy versus <72 Gy were 87% (95% CI 82-92%) and 51% (95% CI 44-58%), respectively (p < 0.001). A multivariate analysis of factors affecting bRFS was performed using the following parameters: age (continuous variable), race, T-stage (T1-T2 vs. T3

  11. Changes in higher mental functions in persons with late sequels of exposure to small ionizing radiation doses

    International Nuclear Information System (INIS)

    Turuspekova, S.

    2002-01-01

    This is a report on the results of studies on the state of higher mental function in individuals with a previous history of exposure to small doses ionizing radiations. The disorders observed are assigned under several groups as follows: dyspraxia, gnostic, visual-spatial agnosia, mnestic, mental processes impairment, neurodynamic. Mnestic and acoustic-gnostical disturbances, and those of the mental processes are rather markedly expressed. Mnestic derangements play a major role in the general pattern of cognitive disorders, being characterized by both modal-specific, and modal-nonspecific features. The topical principle of the classification proposed enables to distinguish the syndrome of middle nonspecific brain structures involvement and the cortical syndromes among the higher mental function disorders, invariably encountered in combination and not isolated. The aforementioned points to the diffuse nature of the neuropsychological disorders, with involvement in the process of both nonspecific and specific structures, characterized by predomination of the frontal and temporal brain cortex sections. Impairment of the higher mental functions in young persons of active age with a past history of exposure to small doses ionizing radiations, necessitate to work out effective measures precluding occurrence and intensification of the cognitive defect. (author)

  12. Modifying effect of low dose irradiation

    International Nuclear Information System (INIS)

    Kalendo, G.S.

    1989-01-01

    It is shown that irradiation of Hela cells with stimulating doses of 0,1 Gy changes the cells' response to the subsequent radiation effect of greater value: instead of DNA synthesis inhibition stimulation takes place. Modifying effect of preliminary irradiation with 0,1 Gy manifests it self only in case if there is a certain time interval not less than 3 minutes and not more than 10 minutes (3-5 minutes is optimal interval). Data on modifying effect with 0,1 Gy at subcellular and cellular-population levels are presented. 21 refs.; 6 figs

  13. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  14. Effective dose to radon considering people's activities

    International Nuclear Information System (INIS)

    Shimo, M.; Seki, K.; Kikuchi, I.

    1992-01-01

    The tidal volume was estimated for evaluating the effective dose due to radon concentration in the atmosphere. In this study regional population was separated to vocation and non-vocation. The occupancy time and the breathing rate for both vocation and non-vocation groups were estimated, and the annual tidal volume for both groups were calculated. Human actions were separated to 18 activities in the process for estimating the breathing rate. It was clear that the breathing rate depended on human activity and that the human activity changed with its age, so the breathing rate varied with age. Finally the effective doses due to radon and radon progeny indoors and outdoors were evaluated. The maximum annual effective dose was estimated to be 1.2 mSv, minimum 0.2 mSv, and mean 0.51 mSv for vocation. For non-vocation, the male maximum value 0.43 mSv was obtained at the 16 age and the minimum 0.12 mSv at the 70 age, whereas female maximum 0.26 mSv was obtained at the 12 age and the minimum 0.11 mSv at the 70 age. In addition in this study objective areas are Aichi, Gifu, and Mie prefectures for vocation and only Aichi prefecture for non-vocation. (author)

  15. Bioavailibility of higher dose methotrexate comparing oral and subcutaneous route of administration in patients with rheumatoid arthritis

    NARCIS (Netherlands)

    Hoekstra, Monique; Hoekstra, M.; Haagsma, Cees; Neef, Cees; Proost, Johannes; van de Laar, Mart A F J; Knuif, Antonius

    2004-01-01

    OBJECTIVE: To determine the bioavailability of higher oral doses of methotrexate (MTX) in adult patients with rheumatoid arthritis (RA). METHODS: A pharmacokinetic analysis was performed in 15 patients with RA taking a stable dose of MTX (> or = 25 mg weekly). Separated by 2 weeks, a pharmacokinetic

  16. Estimation of effective dose for children in interventional cardiology

    Directory of Open Access Journals (Sweden)

    S. S. Sarycheva

    2017-01-01

    Full Text Available This study is devoted to the estimation of effective dose for children undergoing interventional cardiology examinations. The conversion coefficients (CC from directly measured dose area product (DAP value to effective dose (ED were calculated within the approved effective dose assessment methodology (Guidelines 2.6.1. 2944-11. The CC, Ed K , [mSv / (Gy • cm2] for newborn infants and children of 1, 5, 10 and 15 years old (main(range were calculated as 2.5 (1.8-3.2; 1.1 (0.8-1.3; 0.6 (0.4-0.7; 0.4 (0.3-0.5; and 0,22 (0,18-0,30 respectively. A special Finnish computer program PCXMC 2.0 was used for calculating the dose CC. The series of calculations were made for different values of the physical and geometrical parameters based on their real-existing range of values. The value of CC from DAP to ED were calculated for all pediatric age groups. This work included 153 pediatric interventional studies carried out in two hospitals of the city of St. Petersburg for the period of one year from the summer of 2015. The dose CC dependency from the patient’s age and parameters of the examinations were under the study. The dependence from the beam quality (filtration and tube voltage and age of the patient were found. The younger is the patient, stronger is the filtration and higher is the voltage, the higher is the CC value. The CC in the younger (newborn and older (15 years age groups are different by the factor of 10. It was shown that the changes of the geometric parameters (in the scope of their real existing range have small effect on the value of the effective dose, not exceed 30-50% allowable for radiation protection purpose. The real values of effective doses of children undergoing cardiac interventions were estimated. In severe cases, the values of ED can reach several tens of mSv.

  17. Effect of dose and dose rate of gamma radiation on catalytic activity of catalase

    International Nuclear Information System (INIS)

    Vaclav Cuba; Tereza Pavelkova; Viliam Mucka

    2010-01-01

    Catalytic activity of gamma irradiated catalase from bovine liver was studied for hydrogen peroxide decomposition at constant temperature and pressure. The measurement was performed at temperatures 27, 32, 37, 42 and 47 deg C. Solutions containing 1 and 0.01 g dm -3 of catalase in phosphate buffer were used for the study. Repeatability of both sample preparation and kinetics measurement was experimentally verified. Rate constants of the reaction were determined for all temperatures and the activation energy was evaluated from Arrhenius plot. Gamma irradiation was performed using 60 Co radionuclide source Gammacell 220 at two different dose rates 5.5 and 70 Gy h -1 , with doses ranging from 10 to 1000 Gy. The observed reaction of irradiated and non-irradiated catalase with hydrogen peroxide is of the first order. Irradiation significantly decreases catalytic activity of catalase, but the activation energy does not depend markedly on the dose. The effect of irradiation is more significant at higher dose rate. (author)

  18. SU-E-T-802: Verification of Implanted Cardiac Pacemaker Doses in Intensity-Modulated Radiation Therapy: Dose Prediction Accuracy and Reduction Effect of a Lead Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J [Dept. of Radiation Oncology, Konkuk University Medical Center, Seoul (Korea, Republic of); Chung, J [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-06-15

    Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designed for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.

  19. SU-E-T-802: Verification of Implanted Cardiac Pacemaker Doses in Intensity-Modulated Radiation Therapy: Dose Prediction Accuracy and Reduction Effect of a Lead Sheet

    International Nuclear Information System (INIS)

    Lee, J; Chung, J

    2015-01-01

    Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designed for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy

  20. Organ dose and effective dose with the EOS scanner in spine deformity surgery

    DEFF Research Database (Denmark)

    Heide Pedersen, Peter; Petersen, Asger Greval; Eiskjær, Søren Peter

    2016-01-01

    Organ dose and effective dose with the EOS scanner in spine deformity surgery. A study on anthropomorphic phantoms describing patient radiation exposure in full spine examinations. Authors: Peter Heide Pedersen, Asger Greval Petersen, Søren Peter Eiskjær. Background: Ionizing radiation potentially...... quality images while at the same time reducing radiation dose. At our institution we use the EOS for pre- and postoperative full spine examinations. Purpose: The purpose of the study is to make first time organ dose and effective dose evaluations with micro-dose settings in full spine examinations. Our...... hypothesis is that organ dose and effective doses can be reduced 5-10 times compared to standard settings, without too high image-quality trade off, resulting in a theoretical reduction of radiation induced cancer. Methods: Patient dosimetry is performed on anthropomorphic child phantoms, representing a 5...

  1. Age-dependent conversion coefficients for organ doses and effective doses for external neutron irradiation

    International Nuclear Information System (INIS)

    Nishizaki, Chihiro; Endo, Akira; Takahashi, Fumiaki

    2006-06-01

    To utilize dose assessment of the public for external neutron irradiation, conversion coefficients of absorbed doses of organs and effective doses were calculated using the numerical simulation technique for six different ages (adult, 15, 10, 5 and 1 years and newborn), which represent the member of the public. Calculations were performed using six age-specific anthropomorphic phantoms and a Monte Carlo radiation transport code for two irradiation geometries, anterior-posterior and rotational geometries, for 20 incident energies from thermal to 20 MeV. Effective doses defined by the 1990 Recommendation of ICRP were calculated from the absorbed doses in 21 organs. The calculated results were tabulated in the form of absorbed doses and effective doses per unit neutron fluence. The calculated conversion coefficients are used for dose assessment of the public around nuclear facilities and accelerator facilities. (author)

  2. Alternate day treatment and late effects: The concept of an effective dose per fraction

    International Nuclear Information System (INIS)

    Courdi, A.; Hery, M.; Gabillat, J.M.

    1990-01-01

    Although most institutions treat all fields each day, some radiotherapists continue to adopt an alternate day schedule. The resulting daily variations of the dose per fraction in laterally located targets have been analyzed using the linear-quadratic model. Patients with breast carcinoma treated with definitive radiotherapy in 1974-1975 with one field a day were studied. An effective dose per fraction was derived, with a value higher than the average dose per fraction received by the reference point. The greater the fluctuations between the doses per fraction on successive days, the higher the effective dose per fraction. The corresponding cell survival due to alternate treatment as compared to survival with daily treatment depends on the alpha/beta ratio. For a late effect with low alpha/beta ratio, an alternate treatment may lead to almost 10-fold increase in cell kill in these lateral targets such as those responsible for subcutaneous sclerosis as compared to daily treatment of all fields with the same total dose. Taking the average effective dose per fraction in our series, the increase in cell kill was 4-fold. Acute effects would suffer less damage due to alternate treatment because of a high alpha/beta ratio. Treatment on an alternate schedule should be restricted to palliative radiotherapy

  3. Dose-rate effects on mammalian cells exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Mitchell, J.B.

    1978-01-01

    The effect of irradiation on the life cycle and on cell survival was studied for a range of different dose rates. Log phase, plateau phase and synchronized cultures of different mammalian cells were used. Cell cycle redistribution during the radiation exposure was found to be a very important factor in determining the overall dose-rate effect for log phase and synchronized cells. In fact, cell cycle redistribution during the exposure, in some instances, resulted in a lower dose rate being more effective in cell killing per unit dose than a higher dose rate. For plateau phase cultures, where cell cycle times are greatly lengthened, the effects of redistribution in regard to cell killing was virtually eliminated. Both fed and unfed plateau phase cultures exhibited a dose-rate effect, but it was found that below dose rates of 154 rad/h there is no further loss in effectiveness

  4. We can do better than effective dose for estimating or comparing low-dose radiation risks

    International Nuclear Information System (INIS)

    Brenner, D.J.

    2012-01-01

    The effective dose concept was designed to compare the generic risks of exposure to different radiation fields. More commonly these days, it is used to estimate or compare radiation-induced cancer risks. For various reasons, effective dose represents flawed science: for instance, the tissue-specific weighting factors used to calculate effective dose are a subjective mix of different endpoints; and the marked and differing age and gender dependencies for different health detriment endpoints are not taken into account. This paper suggests that effective dose could be replaced with a new quantity, ‘effective risk’, which, like effective dose, is a weighted sum of equivalent doses to different tissues. Unlike effective dose, where the tissue-dependent weighting factors are a set of generic, subjective committee-defined numbers, the weighting factors for effective risk are simply evaluated tissue-specific lifetime cancer risks per unit equivalent dose. Effective risk, which has the potential to be age and gender specific if desired, would perform the same comparative role as effective dose, be just as easy to estimate, be less prone to misuse, be more directly understandable, and would be based on solid science. An added major advantage is that it gives the users some feel for the actual numerical values of the radiation risks they are trying to control.

  5. The effect of low changes in radiation dose on the hatching data of rainbow trout

    International Nuclear Information System (INIS)

    Buehringer, H.; Kellermann, H.J.

    1993-01-01

    Radiation hormesis hypothesis refers to the occurrence of a biphasic dose-respond relationship in which higher doses cause an inhibitory effect and lower doses cause a stimulatory effect. By extrapolation of this thesis there could be suggested a radiation damage effect below normal background radiation doses. Rainbow trout eggs, which are very radiation sensitive, were fertilized and incubated in environments with abient radiation (Hamburg), increased doses of radiation and decreased level of radiation doses (ASSE II). Hatching data (incubation time, hatching time, hatching success, number and kind of malformations, length of larvae) were examined for a hormesis effect. Only in hatching success a statistically significant effect of radiation dose was noticeable. (orig.) [de

  6. Low doses effects of ionizing radiation on Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Durand, J.; Broock, M. van; Gillette, V.H.

    2000-01-01

    The exposure of living cells to low doses of ionizing radiation induce in response the activation of cellular protection mechanisms against subsequent larger doses of radiation. This cellular adaptive response may vary depending on radiation intensity and time of exposure, and also on the testing probes used whether they were mammalian cells, yeast, bacteria and other organisms or cell types. The mechanisms involved are the genome activation, followed by DNA repair enzymes synthesis. Due to the prompt cell response, the cell cycle can be delayed, and the secondary detoxification of free radicals and/or activation of membrane bound receptors may proceed. All these phenomena are submitted to intense scientific research nowadays, and their elucidation will depend on the complexity of the organism under study. In the present work, the effects of low doses of ionizing radiation (gamma rays) over a suspension of the yeast Saccharomyces cerevisiae (Baker's yeast) was studied, mainly in respect to survival rate and radio-adaptive response. At first, the yeast surviving curve was assessed towards increasing doses, and an estimation of Lethal Dose 50 (LD50) was made. The irradiation tests were performed at LINAC (electrons Linear Accelerator) where electron energy reached approximately 2.65 MeV, and gamma-radiation was produced for bremsstrahlung process over an aluminium screen target. A series of experiments of conditioning doses was performed and an increment surviving fraction was observed when the dose was 2.3 Gy and a interval time between this and a higher dose (challenging dose) of 27 Gy was 90 minutes. A value of 58 ± 4 Gy was estimated for LD50, at a dose rate of 0.44 ± 0.03 Gy/min These quantities must be optimized. Besides data obtained over yeast survival, an unusual increasing amount of tiny yeast colonies appeared on the agar plates after incubation, and this number increased as increasing the time exposure. Preliminary results indicate these colonies as

  7. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites

    International Nuclear Information System (INIS)

    Henderson, R.F.; Sabourin, P.J.; Bechtold, W.E.; Griffith, W.C.; Medinsky, M.A.; Birnbaum, L.S.; Lucier, G.W.

    1989-01-01

    Studies were completed in F344/N rats and B6C3F 1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. At the highest exposure concentration, rats exhaled approximately half of the internal dose retained at the end of the 6-hr exposure as benzene; mice exhaled only 15% as benzene. Mice were able to convert more of the inhaled benzene to metabolites than were rats. In addition, mice metabolized more of the benzene by pathways leading to the putative toxic metabolites, benzoquinone and muconaldehyde, than did rats. In both rats and mice, the effect of increasing dose, administered orally or by inhalation, was to increase the proportion of the total metabolites that were the products of detoxification pathways relative to the products of pathways leading to putative toxic metabolites. This indicates low-affinity, high-capacity pathways for detoxification and high-affinity, low-capacity pathways leading to putative toxic metabolites. If the results of rodent studied performed at high doses were used to assess the health risk at low-dose exposures to benzene, the toxicity of benzene would be underestimated

  8. Estimating Effective Dose of Radiation From Pediatric Cardiac CT Angiography Using a 64-MDCT Scanner: New Conversion Factors Relating Dose-Length Product to Effective Dose.

    Science.gov (United States)

    Trattner, Sigal; Chelliah, Anjali; Prinsen, Peter; Ruzal-Shapiro, Carrie B; Xu, Yanping; Jambawalikar, Sachin; Amurao, Maxwell; Einstein, Andrew J

    2017-03-01

    The purpose of this study is to determine the conversion factors that enable accurate estimation of the effective dose (ED) used for cardiac 64-MDCT angiography performed for children. Anthropomorphic phantoms representative of 1- and 10-year-old children, with 50 metal oxide semiconductor field-effect transistor dosimeters placed in organs, underwent scanning performed using a 64-MDCT scanner with different routine clinical cardiac scan modes and x-ray tube potentials. Organ doses were used to calculate the ED on the basis of weighting factors published in 1991 in International Commission on Radiological Protection (ICRP) publication 60 and in 2007 in ICRP publication 103. The EDs and the scanner-reported dose-length products were used to determine conversion factors for each scan mode. The effect of infant heart rate on the ED and the conversion factors was also assessed. The mean conversion factors calculated using the current definition of ED that appeared in ICRP publication 103 were as follows: 0.099 mSv · mGy -1 · cm -1 , for the 1-year-old phantom, and 0.049 mSv · mGy -1 · cm -1 , for the 10-year-old phantom. These conversion factors were a mean of 37% higher than the corresponding conversion factors calculated using the older definition of ED that appeared in ICRP publication 60. Varying the heart rate did not influence the ED or the conversion factors. Conversion factors determined using the definition of ED in ICRP publication 103 and cardiac, rather than chest, scan coverage suggest that the radiation doses that children receive from cardiac CT performed using a contemporary 64-MDCT scanner are higher than the radiation doses previously reported when older chest conversion factors were used. Additional up-to-date pediatric cardiac CT conversion factors are required for use with other contemporary CT scanners and patients of different age ranges.

  9. Effect of low doses gamma irradiation of cotton seeds

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, Kh.

    1996-01-01

    Field experiments and then large scale application of irradiated cotton seeds (C.V. Aleppo-40) were carried out during three seasons (1986, 1987 and 1988) for field experiment at ACSAD Station in Dier-Ezzor and 1988, 1989 and 1990 for large scale application at Euphrate's Basin, Al-Ghab and Salamia, farmers farms. The above areas were selected as they represent major cotton production areas in Syria. The aims of the experiments were to study the effect of low doses of gamma irradiation 0, 5, 10, 20, 30, 40 and 50 Gy on cotton yield and to look for the optimum dose of gamma irradiation to obtain best results. The results show that, there were positive effect (P<0.95) for doses 5-30 Gy in increasing cotton yield. The highest increase was at dose of 10 Gy. which as 19.5% higher than control. For the large scale application using 10 Gy the increase in cotton yield varied from 10-39% compared to control. (author). 11 refs., 6 figs

  10. Effect of dose rate and exposure time on the stimulation effect of tube growth of Pinus sylvestris pollen

    International Nuclear Information System (INIS)

    Zelles, L.; Fendrik, I.; Technische Univ. Hannover

    1975-01-01

    The stimulating effect of ionizing radiation in respect to dose rate and exposure time was studied using the tube growth of Pinus silvestris pollen. Stimulation was registered with a small dose (50 rad) supplied at low dose rates (0.5; 1.0; 3.0 and 5.0 rad/sec) and with higher doses (300; 800 and 1,400 rad) supplied at higher dose rates (10; 40 and 50 rad/sec). This suggests that only the exposure time is of importance for radiation-induced stimulation provided that the exposure time does not exceed 100 sec. (orig.) [de

  11. Effective dose in abdominal digital radiography: Patient factor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Sung; Koo, Hyun Jung; Park, Jung Hoon; Cho, Young Chul; Do, Kyung Hyun [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul(Korea, Republic of); Yang, Hyung Jin [Dept. of Medical Physics, Korea University, Seoul (Korea, Republic of)

    2017-08-15

    To identify independent patient factors associated with an increased radiation dose, and to evaluate the effect of patient position on the effective dose in abdominal digital radiography. We retrospectively evaluated the effective dose for abdominal digital radiography in 222 patients. The patients were divided into two groups based on the cut-off dose value of 0.311 mSv (the upper third quartile of dose distribution): group A (n = 166) and group B (n = 56). Through logistic regression, independent factors associated with a larger effective dose were identified. The effect of patient position on the effective dose was evaluated using a paired t-test. High body mass index (BMI) (≥ 23 kg/m2), presence of ascites, and spinal metallic instrumentation were significantly associated with a larger effective dose. Multivariate logistic regression analysis revealed that high BMI [odds ratio (OR), 25.201; p < 0.001] and ascites (OR, 25.132; p < 0.001) were significantly associated with a larger effective dose. The effective dose was significantly lesser (22.6%) in the supine position than in the standing position (p < 0.001). High BMI and ascites were independent factors associated with a larger effective dose in abdominal digital radiography. Significant dose reduction in patients with these factors may be achieved by placing the patient in the supine position during abdominal digital radiography.

  12. Reparative processes in spleen of rats irradiated with higher daily dose rates of continuous irradiation

    International Nuclear Information System (INIS)

    Mackova, N.; Praslicka, M.; Misurova, E.

    1975-01-01

    Histological and DNA content values were used in evaluating repair processes in the spleen of rats at various intervals following continuous irradiation with daily doses of 50 R, 100 R, 200 R and 500 R (a total dose of 1000 R), and following a single exposure to 1000 R. Histological changes found immediately after irradiation indicated the induction of significant injuries, this mainly as a result of daily doses of 200 R and 500 R. The complete repair of the DNA content and of a number of erythroid elements and also a 70 to 80% regeneration of the white pulp took place within 25 days. The same period was found to be insufficient for the complete repair of megakaryocytes. No signs of repair were observed in spleen in the histological picture or DNA content after a single irradiation with a dose of 1000 R. (author)

  13. Reparative processes in spleen of rats irradiated with higher daily dose rates of continuous irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mackova, N; Praslicka, M; Misurova, E [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Histological and DNA content values were used in evaluating repair processes in the spleen of rats at various intervals following continuous irradiation with daily doses of 50 R, 100 R, 200 R and 500 R (a total dose of 1000 R), and following a single exposure to 1000 R. Histological changes found immediately after irradiation indicated the induction of significant injuries, this mainly as a result of daily doses of 200 R and 500 R. The complete repair of the DNA content and of a number of erythroid elements and also a 70 to 80% regeneration of the white pulp took place within 25 days. The same period was found to be insufficient for the complete repair of megakaryocytes. No signs of repair were observed in spleen in the histological picture or DNA content after a single irradiation with a dose of 1000 R.

  14. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  15. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    International Nuclear Information System (INIS)

    Abdollahi, Hamid; Shiri, Isaac; Salimi, Yazdan; Sarebani, Maghsoud; Mehdinia, Reza; Deevband, Mohammad Reza; Mahdavi, Seied Rabi; Sohrabi, Ahmad; Bitarafan-Rajabi, Ahmad

    2016-01-01

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  16. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, Hamid, E-mail: Hamid_rbp@yahoo.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shiri, Isaac [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Salimi, Yazdan [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sarebani, Maghsoud; Mehdinia, Reza [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Deevband, Mohammad Reza [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Radiation Biology Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sohrabi, Ahmad [Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bitarafan-Rajabi, Ahmad, E-mail: bitarafan@hotmail.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-15

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  17. Effective doses to family members of patients treated with radioiodine-131

    International Nuclear Information System (INIS)

    Kocovska, M Zdraveska; Vaskova, O; Majstorov, V; Kuzmanovska, S; Gjorceva, D Pop; Jokic, V Spasic

    2011-01-01

    The purpose of this study was to evaluate the effective dose to family members of thyroid cancer and hyperthyroid patients treated with radioiodine-131, and also to compare the results with dose constraints proposed by the International Commission of Radiological Protection (ICRP) and the Basic Safety Standards (BSS) of the International Atomic Energy Agency (IAEA). For the estimation of the effective doses, sixty family members of sixty patients, treated with radioiodine-131, and thermoluminiscent dosimeters (Model TLD 100) were used. Thyroid cancer patients were hospitalized for three days, while hyperthyroid patients were treated on out-patient basis. The family members wore TLD in front of the torso for seven days. The radiation doses to family members of thyroid cancer patients were well below the recommended dose constraint of 1 mSv. The mean value of effective dose was 0.21 mSv (min 0.02 - max 0.51 mSv). Effective doses, higher than 1 mSv, were detected for 11 family members of hyperthyroid patients. The mean value of effective dose of family members of hyperthyroid patients was 0.87 mSv (min 0.12 - max 6.79). The estimated effective doses to family members of hyperthyroid patients were higher than the effective doses to family members of thyroid carcinoma patients. These findings may be considered when establishing new national guidelines concerning radiation protection and release of patients after a treatment with radioiodine therapy.

  18. The effects of low dose radiation (LDR) on lymphocytes

    International Nuclear Information System (INIS)

    Su Liaoyuan; Du Zeji; Tian Hailin; Zhao Yujie; Zou Huawei; Zhou Jianhua; Kong Xiangrong; Zhang Jianhua; Shen Wei

    2001-01-01

    LDR could stimulate lymphocyte transformation for adults, children and infants. The effect of LDR on lymphocytes in malnourished children was lower, but higher on lymphocytes in cord blood. The effect of LDR on CD 4 + cells in adult persons was higher than that on CD + cells. NK cells were radioresistant. The stimulative effect of LDR on NK activity in tumor patients was lower than that in normal individuals. For the mice with tumors, LDR could increase the ratio of L 3 T 4 cells in blood, spleen and the number of cytotoxic T cells in the tumors. Extracellular fluid of the lymphocytes operated by LDR could also stimulate the lymphocyte transformation. The preliminary LDR could decrease the injuries to macromolecules, membrane antigens and chromosomes in lymphocytes which were induced by high dose radiation. The LDR- induced protein might be found from mouse spleen cells, and this protein could increase immune function in human and animals

  19. Individually dosed omalizumab: an effective treatment for severe peanut allergy.

    Science.gov (United States)

    Brandström, J; Vetander, M; Lilja, G; Johansson, S G O; Sundqvist, A-C; Kalm, F; Nilsson, C; Nopp, A

    2017-04-01

    Treatment with omalizumab has shown a positive effect on food allergies, but no dosages are established. Basophil allergen threshold sensitivity (CD-sens) can be used to objectively measure omalizumab treatment efficacy and correlates with the outcome of double-blind placebo-controlled food challenge to peanut. To evaluate whether individualized omalizumab treatment monitored by CD-sens could be an effective intervention for suppression of allergic reactions to peanut. Severely peanut allergic adolescents (n = 23) were treated with omalizumab for 8 weeks, and CD-sens was analysed before and after. Based on whether CD-sens was suppressed after 8 weeks, the patients either were subject to a peanut challenge or received eight more weeks with increased dose of omalizumab, followed by peanut challenge or another 8-week cycle of omalizumab. IgE and IgE-antibodies to peanut and its components were analysed before treatment. After individualized omalizumab treatment (8-24 weeks), all patients continued with an open peanut challenge with no (n = 18) or mild (n = 5) objective allergic symptoms. Patients (n = 15) needing an elevated omalizumab dose (ED) to suppress CD-sens had significantly higher CD-sens values at baseline 1.49 (0.44-20.5) compared to those (n = 8) who managed with normal dose (ND) 0.32 (0.24-5.5) (P omalizumab, monitored by CD-sens, is an effective and safe treatment for severe peanut allergy. The ratio of IgE-ab to storage protein Ara h 2/IgE as well as CD-sens to peanut may predict the need of a higher omalizumab dose. Clinical trials numbers: EudraCT; 2012-005625-78, ClinicalTrials.gov; NCT02402231. © 2016 John Wiley & Sons Ltd.

  20. Medical irradiation and the use of the ''effective dose equivalent'' concept

    International Nuclear Information System (INIS)

    Persson, B.R.R.

    1980-01-01

    The aim of this paper is to demonstrate the use of the effective dose for all kinds of medical irradiation. In order to estimate the 'somatic effective dose' the weighting factors recommended by ICRP 26 have been separated into those for somatic effects and for genetic effects. Calculation of the effective dose in diagnostic radiology procedures must consider the various technical parameters which determine the absorbed dose in the various organs, i.e. beam quality, typical entrance dose and the number of films of each view. Knowledge about these parameters is not always well established and therefore the effective dose estimates are very uncertain. The average dose absorbed by various organs in the case of administration of radionuclides to the body depends to a much higher degree on biological parameters than in the case of external irradiation. In contrast to the variability and lack of reliability of biological data, the physical methods for internal dose calculation are quite elaborate. However, these methods have to be extended to involve the target dose from the radioactivity distributed within the remaining parts of the body. An attempt was made to estimate the somatic effective dose for the most common diagnostic X-ray and nuclear medicine procedures. This would make it possible to compare the risk of X-ray and nuclear medicine techniques on a more equitable basis. The collective effective dose from medical irradiation is estimated for various countries on the basis of reported statistical data. (H.K.)

  1. Effect of Admission Oral Diuretic Dose on Response to Continuous versus Bolus Intravenous Diuretics in Acute Heart Failure: An Analysis from DOSE-AHF

    Science.gov (United States)

    Shah, Ravi V.; McNulty, Steven; O'Connor, Christopher M.; Felker, G. Michael; Braunwald, Eugene; Givertz, Michael M.

    2014-01-01

    Background Results from the Diuretic Optimization Strategies in Acute Heart Failure (DOSE-AHF) study suggest that an initial continuous infusion of loop diuretics is not superior to bolus dosing with regard to clinical endpoints in AHF. We hypothesized that outpatient furosemide dose was associated with congestion and poorer renal function, and explored the hypothesis that a continuous infusion may be more effective in patients on higher outpatient diuretic doses. Methods DOSE-AHF randomized 308 patients within 24 hours of admission to high vs. low initial intravenous diuretic dose given as either a continuous infusion or bolus. We compared baseline characteristics and assessed associations between mode of administration (bolus vs. continuous) and outcomes in patients receiving high-dose (≥120 mg furosemide equivalent, n=177) versus low-dose (diuretics. Results Patients on higher doses of furosemide were less frequently on renin-angiotensin system inhibitors (P=.01), and had worse renal function and more advanced symptoms. There was a significant interaction between outpatient dose and mode of therapy (P=0.01) with respect to net fluid loss at 72 hours after adjusting for creatinine and intensification strategy. Admission diuretic dose was associated with an increased risk of death or rehospitalization at 60 days (adjusted HR=1.08 per 20-mg increment in dose, 95% CI 1.01–1.16, P=.03). Conclusions In acute HF, patients on higher diuretic doses have greater disease severity, and may benefit from an initial bolus strategy. PMID:23194486

  2. Evaluation of effective dose and excess lifetime cancer risk from ...

    African Journals Online (AJOL)

    Evaluation of effective dose and excess lifetime cancer risk from indoor and outdoor gamma dose rate of university of Port Harcourt Teaching Hospital, Rivers State. ... Therefore, the management of University of Port Harcourt teaching hospital ...

  3. Characteristics of natural background external radiation and effective dose equivalent

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The two sources of natural radiation - cosmic rays and primordial radionuclides - are described. The factors affecting radiation doses received from natural radiation and the calculation of effective dose equivalent due to natural radiation are discussed. 10 figs., 3 tabs

  4. The effect of gamma dose on the PADC detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    The effect of irradiation by 6 0C O gamma rays in the range 0-60 K gray has been examined on CR-39 SSNTDs. The fission fragment tracks diameter were measured using an optical microscope, the bulk etching rate was calculated using the equation V B = D/2 t. The results indicate that, the track diameter is seen increase slowly in the range 0-60 K gray. The bulk etching rate increases almost linearly as the given gamma dose increases up to (22.5 K Gray), at higher doses the bulk etching rate increases exponentially. The exposure of the CR-39 to gamma rays could sensitize the CR-39 plastic and thus improve the Z/P threshold for track registration

  5. Effects of exposure imprecision on estimation of the benchmark dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    2004-01-01

    In regression analysis failure to adjust for imprecision in the exposure variable is likely to lead to underestimation of the exposure effect. However, the consequences of exposure error for determination of safe doses of toxic substances have so far not received much attention. The benchmark...... approach is one of the most widely used methods for development of exposure limits. An important advantage of this approach is that it can be applied to observational data. However, in this type of data, exposure markers are seldom measured without error. It is shown that, if the exposure error is ignored......, then the benchmark approach produces results that are biased toward higher and less protective levels. It is therefore important to take exposure measurement error into account when calculating benchmark doses. Methods that allow this adjustment are described and illustrated in data from an epidemiological study...

  6. gross behavioral effects of acute doses of artesunate in wistar rats

    African Journals Online (AJOL)

    sniffing, climbing and scratching activities and these later effects were also seen at the lower ... It was concluded that artesunate may have some clearly definable central nervous .... behavioral parameters at higher doses of the artesunate.

  7. The effects of low dose radiation (LDR) on mice of immune function

    International Nuclear Information System (INIS)

    Feng Li; Deng Daping

    2007-01-01

    Objective: To find out the Effects of Low Dose Radiation(LDR) on mice of immune function. Methods: Through flow cytometry to observe and analyse the effects of the leukomonocyte. Through immunohistochemistry to study IL-2, TNF-α. Results: At dose of 100mGy the stimulative effect on CD 4 + cells, CD 8 + cells and NK activity was higher than that at other doses. At dose of 500mGy leukomonocyte activity was lower. At dose of 100mGy, the colorations about IL-2, TNF-α deepen. Conclusion: LDR could stimulate immune function, especially at dose of 100mGy. while at dose of 500mGy, radiation could restrain the leukomonocyte activity. (authors)

  8. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    International Nuclear Information System (INIS)

    Lopez-Rendon, X.; Bosmans, H.; Zanca, F.; Oyen, R.

    2015-01-01

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  9. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rendon, X. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); Bosmans, H.; Zanca, F. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Oyen, R. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium)

    2015-07-15

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  10. Collective effective dose equivalent, population doses and risk estimates from occupational exposures in Japan

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Nishizawa, Kanae; Kumamoto, Yoshikazu; Iwai, Kazuo; Mase, Naomichi.

    1993-01-01

    Collective dose equivalent and population dose from occupational exposures in Japan, 1988 were estimated on the basis of a nationwide survey. The survey was conducted on annual collective dose equivalents by sex, age group and type of radiation work for about 0.21 million workers except for the workers in nuclear power stations. The data on the workers in nuclear power stations were obtained from the official report of the Japan Nuclear Safety Commission. The total number of workers including nuclear power stations was estimated to be about 0.26 million. Radiation works were subdivided as follows: medical works including dental; non-atomic energy industry; research and education; atomic energy industry and nuclear power station. For the determination of effective dose equivalent and population dose, organ or tissue doses were measured with a phantom experiment. The resultant doses were compared with the doses previously calculated using a chord length technique and with data from ICRP publications. The annual collective effective dose equivalent were estimated to be about 21.94 person·Sv for medical workers, 7.73 person·Sv for industrial workers, 0.75 person·Sv for research and educational workers, 2.48 person·Sv for atomic energy industry and 84.4 person ·Sv for workers in nuclear power station. The population doses were calculated to be about 1.07 Sv for genetically significant dose, 0.89 Sv for leukemia significant dose and 0.42 Sv for malignant significant dose. The population risks were estimated using these population doses. (author)

  11. Topics on study of low dose-effect relationship

    International Nuclear Information System (INIS)

    Yamada, Takeshi; Ohyama, Harumi

    1999-01-01

    It is not exceptional but usually observed that a dose-effect relationship in biosystem is not linear. Sometimes, the low dose-effect relationship appears entirely contrary to the expectation from high dose-effect. This is called a 'hormesis' phenomena. A high dose irradiation inflicts certainly an injury on biosystem. No matter how low the dose may be, an irradiation might inflict some injury on biosystem according to Linear Non-Threshold hypothesis(LNT). On the contrary to the expectation, a low dose irradiation stimulates immune system, and promotes cell proliferation. This is called 'radiation hormesis'. The studies of the radiation hormesis are made on from four points of view as follows: (1) radiation adaptive response, (2) revitalization caused by a low dose stimulation, (3) a low dose response unexpected from the LNT hypothesis, (4) negation of the LNT hypothesis. The various empirical proofs of radiation hormesis are introduced in the report. (M . Suetake)

  12. Dose rate effect models for biological reaction to ionizing radiation in human cell lines

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2008-01-01

    , suggesting that dose rate effect predicted by MOE model is dependent on DNA repair system. Dose rate effect in a resting normal fibroblast cultured in serum-depleted medium also followed MOE model. In contrast, dose-rate effect was observed in these cell lines deficient of DNA repair system, when they were cultured for more than several month. This dose rate effect did not fit MOE model, and followed a model based on elimination of damaged cells. In conclusion, dose rate effect in growth inhibition and micronucleus formation in cultured cell lines is dependent on dose rate and irradiation time: In higher range of dose rates and short irradiation time, biological effect is determined by dose but not dose rate, and dose rate effect is not observed. In middle range of dose rates and irradiation time, dose rate effect is dependent on DNA repair system, and follows MOE model. In low range of dose-rates and irradiation time longer than several months, dose rate effect is mainly dependent on elimination of damaged cells, and biological effect is determined by dose rate rather than total dose. Our results suggest that dose rate and irradiation time should be included in estimation of long-term radiation risk at low dose rates. (author)

  13. Low-dose effects of hormones and endocrine disruptors.

    Science.gov (United States)

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately. © 2014 Elsevier Inc. All rights reserved.

  14. Cumulative effective dose associated with radiography and CT of adolescents with spinal injuries.

    Science.gov (United States)

    Lemburg, Stefan P; Peters, Soeren A; Roggenland, Daniela; Nicolas, Volkmar; Heyer, Christoph M

    2010-12-01

    The purpose of this study was to analyze the quantity and distribution of cumulative effective doses in diagnostic imaging of adolescents with spinal injuries. At a level 1 trauma center from July 2003 through June 2009, imaging procedures during initial evaluation and hospitalization and after discharge of all patients 10-20 years old with spinal fractures were retrospectively analyzed. The cumulative effective doses for all imaging studies were calculated, and the doses to patients with spinal injuries who had multiple traumatic injuries were compared with the doses to patients with spinal injuries but without multiple injuries. The significance level was set at 5%. Imaging studies of 72 patients (32 with multiple injuries; average age, 17.5 years) entailed a median cumulative effective dose of 18.89 mSv. Patients with multiple injuries had a significantly higher total cumulative effective dose (29.70 versus 10.86 mSv, p cumulative effective dose to multiple injury patients during the initial evaluation (18.39 versus 2.83 mSv, p cumulative effective dose. Adolescents with spinal injuries receive a cumulative effective dose equal to that of adult trauma patients and nearly three times that of pediatric trauma patients. Areas of focus in lowering cumulative effective dose should be appropriate initial estimation of trauma severity and careful selection of CT scan parameters.

  15. The relative biological effectiveness of out-of-field dose

    International Nuclear Information System (INIS)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions. (paper)

  16. Comparison of fluorouracil with additional levamisole, higher-dose folinic acid, or both, as adjuvant chemotherapy for colorectal cancer: a randomised trial. QUASAR Collaborative Group.

    Science.gov (United States)

    2000-05-06

    Standard adjuvant chemotherapy for colorectal cancer consists of fluorouracil with folinic acid or levamisole. The large QUASAR randomised trial aimed to investigate (in a two x two design) whether use of a higher dose of folinic acid or addition of levamisole to fluorouracil and folinic acid improved survival. Patients with colorectal cancer, without evident residual disease, were randomly assigned fluorouracil (370 mg/m2) with high-dose (175 mg) or low-dose (25 mg) L-folinic acid and either active or placebo levamisole. The fluorouracil and folinic acid could be given either as six 5-day courses with 4 weeks between the start of the courses or as 30 once-weekly doses. Levamisole (50 mg) or placebo was given three times daily for 3 days repeated every 2 weeks for 12 courses. The primary endpoint was mortality from any cause. Analyses were by intention to treat. Between 1994 and 1997, 4,927 patients were enrolled. 1,776 had recurrences and 1,576 died. Survival was similar with high-dose and low-dose folinic acid (70.1% vs 71.0% at 3 years; p=0-43), as were 3-year recurrence rates (36.0% vs 35.8%; p=0.94). Survival was worse with levamisole than with placebo (69.4% vs 71.5% at 3 years; p=0.06), and there were more recurrences with the active drug (37.0% vs 34.9% at 3 years; p=0.16). The inclusion of levamisole in chemotherapy regimens for colorectal cancer does not delay recurrence or improve survival. Higher-dose folinic acid produced no extra benefit in these regimens over that from low-dose folinic acid. Trials of chemotherapy versus no chemotherapy will show whether these four treatments are equally effective or equally ineffective.

  17. Dose enhancement effects of X ray radiation in bipolar transistors

    International Nuclear Information System (INIS)

    Chen Panxun

    1997-01-01

    The author has presented behaviour degradation and dose enhancement effects of bipolar transistors in X ray irradiation environment. The relative dose enhancement factors of X ray radiation were measured in bipolar transistors by the experiment methods. The mechanism of bipolar device dose enhancement was investigated

  18. Biological effect of low-dose application beta-radiation on the gingival mucosa of dogs

    International Nuclear Information System (INIS)

    Ippolitov, Yu.A.; Kovtun, N.N.; Timofeev, L.V.

    1999-01-01

    Biological effect of low-dose application beta-radiation on the gingival mucosa of dogs is studied. Obtained data illustrate the interactions between tissues in local exposure of live tissue to beta-radiation and determine the threshold total dose as 400 sGy. Higher doses lead to secondary changes in the gingival mucosa after which the tissue barrier does not recover [ru

  19. Distinct Signaling Pathways After Higher or Lower Doses of Radiation in Three Closely Related Human Lymphoblast Cell Lines

    International Nuclear Information System (INIS)

    Lu, T.-P.; Lai, L.-C.; Lin, B.-I.; Chen, L.-H.; Hsiao, T.-H.; Liber, Howard L.; Cook, John A.; Mitchell, James B.; Tsai, M.-H.; Chuang, Eric Y.

    2010-01-01

    Purpose: The tumor suppressor p53 plays an essential role in cellular responses to DNA damage caused by ionizing radiation; therefore, this study aims to further explore the role that p53 plays at different doses of radiation. Materials and Methods: The global cellular responses to higher-dose (10 Gy) and lower dose (iso-survival dose, i.e., the respective D0 levels) radiation were analyzed using microarrays in three human lymphoblast cell lines with different p53 status: TK6 (wild-type p53), NH32 (p53-null), and WTK1 (mutant p53). Total RNAs were extracted from cells harvested at 0, 1, 3, 6, 9, and 24 h after higher and lower dose radiation exposures. Template-based clustering, hierarchical clustering, and principle component analysis were applied to examine the transcriptional profiles. Results: Differential expression profiles between 10 Gy and iso-survival radiation in cells with different p53 status were observed. Moreover, distinct gene expression patterns were exhibited among these three cells after 10 Gy radiation treatment, but similar transcriptional responses were observed in TK6 and NH32 cells treated with iso-survival radiation. Conclusions: After 10 Gy radiation exposure, the p53 signaling pathway played an important role in TK6, whereas the NFkB signaling pathway appeared to replace the role of p53 in WTK1. In contrast, after iso-survival radiation treatment, E2F4 seemed to play a dominant role independent of p53 status. This study dissected the impacts of p53, NFkB and E2F4 in response to higher or lower doses of γ-irradiation.

  20. Calculation of age-dependent effective doses for external exposure using the MCNP code

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2013-01-01

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  1. Calculation of age-dependent effective doses for external exposure using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Tran Van [Research and Development Center for Radiation Technology, ThuDuc, HoChiMinh City (VT)

    2013-07-15

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  2. Effective dose equivalents from external radiation due to Chernobyl accident

    International Nuclear Information System (INIS)

    Erkin, V.G.; Debedev, O.V.; Balonov, M.I.; Parkhomenko, V.I.

    1992-01-01

    Summarized data on measurements of individual dose of external γ-sources in 1987-1990 of population of western areas of Bryansk region were presented. Type of distribution of effective dose equivalent, its significance for various professional and social groups of population depending on the type of the house was discussed. Dependences connecting surface soil activity in the populated locality with average dose of external radiation sources were presented. Tendency of dose variation in 1987-1990 was shown

  3. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    International Nuclear Information System (INIS)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R.; Siwarungsun, N.; Mitchel, R.E.J.

    2000-01-01

    We have compared dose-rate effects for γ-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  4. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Siwarungsun, N. [Chulalongkorn Univ., Bangkok (Thailand); Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2000-07-01

    We have compared dose-rate effects for {gamma}-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  5. A PC program for estimating organ dose and effective dose values in computed tomography

    International Nuclear Information System (INIS)

    Kalender, W.A.; Schmidt, B.; Schmidt, M.; Zankl, M.

    1999-01-01

    Dose values in CT are specified by the manufacturers for all CT systems and operating conditions in phantoms. It is not trivial, however, to derive dose values in patients from this information. Therefore, we have developed a PC-based program which calculates organ dose and effective dose values for arbitrary scan parameters and anatomical ranges. Values for primary radiation are derived from measurements or manufacturer specifications; values for scattered radiation are derived from Monte Carlo calculations tabulated for standard anthropomorphic phantoms. Based on these values, organ doses can be computed by the program for arbitrary scan protocols in conventional and in spiral CT. Effective dose values are also provided, both with ICRP 26 and ICRP 60 tissue-weighting coefficients. Results for several standard CT protocols are presented in tabular form in this paper. In addition, potential for dose reduction is demonstrated, for example, in spiral CT and in quantitative CT. Providing realistic patient dose estimates for arbitrary CT protocols is relevant both for the physician and the patient, and it is particularly useful for educational and training purposes. The program, called WinDose, is now in use at the Erlangen University hospitals (Germany) as an information tool for radiologists and patients. Further extensions are planned. (orig.)

  6. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    Singh, H.

    1991-08-01

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60 Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  7. Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications

    International Nuclear Information System (INIS)

    Rosu, Mihaela; Chetty, Indrin J.; Balter, James M.; Kessler, Marc L.; McShan, Daniel L.; Ten Haken, Randall K.

    2005-01-01

    In this study we investigated the accumulation of dose to a deforming anatomy (such as lung) based on voxel tracking and by using time weighting factors derived from a breathing probability distribution function (p.d.f.). A mutual information registration scheme (using thin-plate spline warping) provided a transformation that allows the tracking of points between exhale and inhale treatment planning datasets (and/or intermediate state scans). The dose distributions were computed at the same resolution on each dataset using the Dose Planning Method (DPM) Monte Carlo code. Two accumulation/interpolation approaches were assessed. The first maps exhale dose grid points onto the inhale scan, estimates the doses at the 'tracked' locations by trilinear interpolation and scores the accumulated doses (via the p.d.f.) on the original exhale data set. In the second approach, the 'volume' associated with each exhale dose grid point (exhale dose voxel) is first subdivided into octants, the center of each octant is mapped to locations on the inhale dose grid and doses are estimated by trilinear interpolation. The octant doses are then averaged to form the inhale voxel dose and scored at the original exhale dose grid point location. Differences between the interpolation schemes are voxel size and tissue density dependent, but in general appear primarily only in regions with steep dose gradients (e.g., penumbra). Their magnitude (small regions of few percent differences) is less than the alterations in dose due to positional and shape changes from breathing in the first place. Thus, for sufficiently small dose grid point spacing, and relative to organ motion and deformation, differences due solely to the interpolation are unlikely to result in clinically significant differences to volume-based evaluation metrics such as mean lung dose (MLD) and tumor equivalent uniform dose (gEUD). The overall effects of deformation vary among patients. They depend on the tumor location, field

  8. Dose dependence on stochastic radiobiological effect in radiation risk estimation

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1999-01-01

    The analysis of the results in dose -- effect relationship observation has been carried out on the cell and organism levels, with the aim to obtain more precise data on the risk coefficients at low doses. The results are represented by two contrasting groups of dose dependence on effect: a downwards concave and a J-shaped curve. Both types of dependence are described by the equation solutions of an assumed unified protective mechanism, which comprises two components: constitutive and adaptive or inducible ones. The latest data analysis of the downwards concave dependence curves shows a considerable underestimation of radiation risk in all types of cancer, except leukemia, for a number of critical groups in a population, at low doses comparing to the ICRP recommendations. With the dose increase, the decrease of the effect value per dose unit is observed. It may be possibly related to the switching of the activity of the adaptive protective mechanism, with some threshold dose values being exceeded

  9. Estimating effective dose to pediatric patients undergoing interventional radiology procedures using anthropomorphic phantoms and MOSFET dosimeters.

    Science.gov (United States)

    Miksys, Nelson; Gordon, Christopher L; Thomas, Karen; Connolly, Bairbre L

    2010-05-01

    The purpose of this study was to estimate the effective doses received by pediatric patients during interventional radiology procedures and to present those doses in "look-up tables" standardized according to minute of fluoroscopy and frame of digital subtraction angiography (DSA). Organ doses were measured with metal oxide semiconductor field effect transistor (MOSFET) dosimeters inserted within three anthropomorphic phantoms, representing children at ages 1, 5, and 10 years, at locations corresponding to radiosensitive organs. The phantoms were exposed to mock interventional radiology procedures of the head, chest, and abdomen using posteroanterior and lateral geometries, varying magnification, and fluoroscopy or DSA exposures. Effective doses were calculated from organ doses recorded by the MOSFET dosimeters and are presented in look-up tables according to the different age groups. The largest effective dose burden for fluoroscopy was recorded for posteroanterior and lateral abdominal procedures (0.2-1.1 mSv/min of fluoroscopy), whereas procedures of the head resulted in the lowest effective doses (0.02-0.08 mSv/min of fluoroscopy). DSA exposures of the abdomen imparted higher doses (0.02-0.07 mSv/DSA frame) than did those involving the head and chest. Patient doses during interventional procedures vary significantly depending on the type of procedure. User-friendly look-up tables may provide a helpful tool for health care providers in estimating effective doses for an individual procedure.

  10. A new study on the effects of low doses

    International Nuclear Information System (INIS)

    Dousset, M.; Jammet, H.

    1986-01-01

    A study conducted by prof. Rose has investigated mortality among 39540 employees of the UKAEA, from 1946 to 1978. The three main points are: 1. General mortality and mortality from malignant diseases are lower than in the population of England and Wales (74 and 79 per cent respectively), thus showing no major difference between workers monitored for exposure to radiation and other workers. 2. For monitored workers, the only death cause for which there is a statistically significant correlation with radiation exposure is prostate cancer; there are many cases especially in workers with doses exceeding 0.05 Sv (5 rem) and monitored for tritium. Such a correlation has never been found in any other epidemiologic survey of workers exposed to low-level doses, Hanford (USA) workers especially; conversely, mortality from either multiple myeloma or pancreas cancer is not found here. These facts plead for a cautious interpretation of the results as a whole. 3. A linear representation of the variations of leukemia and cancer mortality vs exposure results in lines, the slopes of which are 3 times higher than those of the lines adopted by ICRP; however, the 95% confidence intervals (-2.7 + 12.4 and -22 + 52.5) are such that the results are compatible with a null effect (slope 0) and even with a benefic effect (negative slope). They are therefore compatible with ICRP estimations. A recent attempt to evaluate the two main investigations on low-dose occupational exposures (UKAEA and Hanford) suggests a dose-response relationship very near that of ICRP [fr

  11. Biochemical and cellular mechanisms of low-dose effects

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Booz, J.; Muehlensiepen, H.

    1988-01-01

    The question of health effects from small radiation doses remains open. Individual cells, when being hit by single elemental doses - in low-dose irradiation - react acutely and temporarily by altering control of enzyme activity, as is demonstrated for the case of thymidine kinase. This response is not constant in that it provides a temporary protection of enzyme activity against a second irradiation, by a mechanism likely to be via improved detoxification of intracellular radicals. It must be considered that in the low-dose region radiation may also exert protection against other challenges involving radicals, causing a net beneficial effect by temporarily shielding the hit cell against radicals produced by metabolism. Since molecular alterations leading to late effects are considered a consequence of the initial cellular response, late effects from small radiation doses do not necessarily adhere to a linear dose-effect relationship. The reality of the linear relationship between the risk of late effects from high doses to small doses is an assumption, for setting dose limits, but it must not be taken for predicting health detriment from low doses. (author)

  12. Effective dose efficiency: an application-specific metric of quality and dose for digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Samei, Ehsan; Ranger, Nicole T; Dobbins, James T III; Ravin, Carl E, E-mail: samei@duke.edu [Carl E Ravin Advanced Imaging Laboratories, Department of Radiology (United States)

    2011-08-21

    The detective quantum efficiency (DQE) and the effective DQE (eDQE) are relevant metrics of image quality for digital radiography detectors and systems, respectively. The current study further extends the eDQE methodology to technique optimization using a new metric of the effective dose efficiency (eDE), reflecting both the image quality as well as the effective dose (ED) attributes of the imaging system. Using phantoms representing pediatric, adult and large adult body habitus, image quality measurements were made at 80, 100, 120 and 140 kVp using the standard eDQE protocol and exposures. ED was computed using Monte Carlo methods. The eDE was then computed as a ratio of image quality to ED for each of the phantom/spectral conditions. The eDQE and eDE results showed the same trends across tube potential with 80 kVp yielding the highest values and 120 kVp yielding the lowest. The eDE results for the pediatric phantom were markedly lower than the results for the adult phantom at spatial frequencies lower than 1.2-1.7 mm{sup -1}, primarily due to a correspondingly higher value of ED per entrance exposure. The relative performance for the adult and large adult phantoms was generally comparable but affected by kVps. The eDE results for the large adult configuration were lower than the eDE results for the adult phantom, across all spatial frequencies (120 and 140 kVp) and at spatial frequencies greater than 1.0 mm{sup -1} (80 and 100 kVp). Demonstrated for chest radiography, the eDE shows promise as an application-specific metric of imaging performance, reflective of body habitus and radiographic technique, with utility for radiography protocol assessment and optimization.

  13. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    Science.gov (United States)

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.

  14. Dose effect relationships in cervical and thoracic radiation myelopathies

    International Nuclear Information System (INIS)

    Holdorff, B.

    1980-01-01

    The course and prognosis of radiation myelopathies are determined by 3 factors: the segmental (vertical) location of the lesion, the extent of the transverse syndrome (complete or incomplete) and the radiation dose. The median spinal dose in cervical radiation myelopathies with fatal outcome was higher than in survivals with an incomplete transverse syndrome. In thoracic radiation myelopathies a dose difference between complete and incomplete transverse syndromes could be found as well. Incomplete transverse syndromes as submaximum radiation injuries are more suitable for the determination of the spinal tolerance dose than complete transverse syndromes. The lowest threshold could be stated for cases following high-volume irradiation of the lymphatic system. (Auth.)

  15. Effective dose and cancer risk in PET/CT exams

    International Nuclear Information System (INIS)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de

    2013-01-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10 -4 . Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10 -3

  16. Equivalent dose, effective dose and risk assessment from cephalometric radiography to critical organs

    International Nuclear Information System (INIS)

    Kang, Seong Sook; Cho, Bon Hae; Kim, Hyun Ja

    1995-01-01

    In head and neck region, the critical organ and tissue doses were determined, and the risks were estimated from lateral, posteroanterial and basilar cephalometric radiography. For each cephalometric radiography, 31 TLDs were placed in selected sites (18 internal and 13 external sites) in a tissue-equivalent phantom and exposed, then read-out in the TLD reader. The following results were obtained; 1. From lateral cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (3.6 μSv) and the next highest dose was that received by the bone marrow (3 μSv). 2. From posteroanterial cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (2 μSv) and the next highest dose was that received by the bone marrow (1.8 μSv). 3. From basilar cephalometric radiography, the highest effective dose recorded was that delivered to the thyroid gland (31.4 μSv) and the next highest dose was that received by the salivary gland (13.3 μSv). 4. The probabilities of stochastic effect from lateral, posteroanterial and basilar cephalometric radiography were 0.72 X 10 -6 , 0.49 X 10 -6 and 3.51 X 10 -6 , respectively.

  17. Effect of low dose radiation on apoptosis in mouse spleen

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Chen Aijun; Liu Shuzheng

    1999-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-ray on apoptosis in mouse spleen. Methods: Time course changes and dose-effect relationship of apoptosis in mouse spleen induced by WBI were observed with transmission electron microscopy (TEM) qualitatively and TUNEL method semi-quantitatively. Results: Many typical apoptotic lymphocytes were found by TEM in mouse spleen after WBI with 2 Gy. No marked alterations of ultrastructure were found following WBI with 0.075 Gy. It was observed by TUNEL that the apoptosis of splenocytes increased after high dose radiation and decreased following low dose radiation (LDR). The dose-effect relationship of radiation-induced apoptosis showed a J-shaped curve. Conclusion: The effect of different doses of ionizing radiation on apoptosis in mouse spleen was distinct. And the decrease of apoptosis after LDR is considered a manifestation of radiation hormesis

  18. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, K.; Tsutsumi, M.; Moriuchi, S.; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)

  19. Dose and dose rate effects on coherent-to-incoherent transition of precipitates upon irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Zhengchao

    2006-01-01

    A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coherent precipitates is loss of coherency, and TEM cross-section observations show that the fraction of the incoherent precipitates is dependent on dose but not on dose rate during heavy ion irradiation.

  20. uv keratoconjunctivitis vs. established dose effect relationships

    International Nuclear Information System (INIS)

    Gulvady, N.U.

    1976-01-01

    A patient who received a uv dose to his eyes 11 times greater than the photokeratitic threshold of Pitts and 4 1 / 2 times the photokeratitic threshold as found by Leach. The patient had severe keratoconjunctivitis for 3 days and did not develop any keratitis

  1. Page 1 ~'----------------------------- Dose-dependent effects ...

    African Journals Online (AJOL)

    Abstract We cOInpared the serwn levels of oestrogen and progesterone and the endoInetrial Inorphology of. nOrInal pregnant rats at 5,5 days' gestation ~th those of pregnant rats given either low (10 IU) or high (20 IU) doses of two gonadotrophins: follicle-. stiInulating hOrInone (FSH) and hwnan chorionic gonadotrophin ...

  2. Committed effective dose from naturally occuring radionuclides in shellfish

    International Nuclear Information System (INIS)

    Khandaker, Mayeen Uddin; Wahib, Norfadira Binti; Amin, Yusoff Mohd.; Bradley, D.A.

    2013-01-01

    Recognizing their importance in the average Malaysian daily diet, the radioactivity concentrations in mollusc- and crustacean-based food have been determined for key naturally occuring radionuclides. Fresh samples collected from various maritime locations around peninsular Malaysia have been processed using standard procedures; the radionuclide concentrations being determined using an HPGe γ-ray spectrometer. For molluscs, assuming secular equilibrium, the range of activities of 238 U ( 226 Ra), 232 Th ( 228 Ra) and 40 K were found to be 3.28±0.35 to 5.34±0.52, 1.20±0.21 to 2.44±0.21 and 118±6 to 281±14 Bq kg −1 dry weight, respectively. The respective values for crustaceans were 3.02±0.57 to 4.70±0.52, 1.38±0.21 to 2.40±0.35 and 216±11 to 316±15 Bq kg −1 . The estimated average daily intake of radioactivity from consumption of molluscs are 0.37 Bq kg −1 for 238 U ( 226 Ra), 0.16 Bq kg −1 for 232 Th ( 228 Ra) and 18 Bq kg −1 for 40 K; the respective daily intake values from crustaceans are 0.36 Bq kg −1 , 0.16 Bq kg −1 and 23 Bq kg −1 . Associated annual committed effective doses from molluscs are estimated to be in the range 21.3 to 34.7 μSv for 226 Ra, 19.3 to 39.1 μSv for 228 Ra and 17.0 to 40.4 μSv for 40 K. For crustaceans, the respective dose ranges are 19.6 to 30.5 μSv, 22.0 to 38.4 μSv and 31.1 to 45.5 μSv, being some several times world average values. - Highlights: ► Activity concentrations of naturally occuring radionuclides were assessed for shellfish. ► 238 U, 232 Th, 40 K intake via shellfish showed several times higher than world averages. ► Committed effective doses due to the ingestions of 238 U, 232 Th, 40 K are the first report in Malaysia. ► Estimated committed effective dose also showed higher values than the world average

  3. Epidemiological methods for assessing dose-response and dose-effect relationships

    DEFF Research Database (Denmark)

    Kjellström, Tord; Grandjean, Philippe

    2007-01-01

    Selected Molecular Mechanisms of Metal Toxicity and Carcinogenicity General Considerations of Dose-Effect and Dose-Response Relationships Interactions in Metal Toxicology Epidemiological Methods for Assessing Dose-Response and Dose-Effect Relationships Essential Metals: Assessing Risks from Deficiency......Description Handbook of the Toxicology of Metals is the standard reference work for physicians, toxicologists and engineers in the field of environmental and occupational health. This new edition is a comprehensive review of the effects on biological systems from metallic elements...... access to a broad range of basic toxicological data and also gives a general introduction to the toxicology of metallic compounds. Audience Toxicologists, physicians, and engineers in the fields of environmental and occupational health as well as libraries in these disciplines. Will also be a useful...

  4. Effective doses to family members of patients treated with radioiodine 131

    International Nuclear Information System (INIS)

    Kocovska, Marina Zdravevska; Ristevska, Svetlana Micevska; Nikolovski, Sasho; Jokic, Vesna Spasic

    2010-01-01

    The purpose of this study was to evaluate the effective dose to family members of thyroid cancer and hyperthyroid patients treated with radioiodine 131; also to compare the results with dose constraints proposed by International Commission of Radiological Protection (ICRP) and Basic Safety Standards (BSS) of the International Atomic Energy Agency (IAEA). Material and methods: for estimation of effective doses at sixty family members of thirty thyroid cancer and thirty hyperthyroid patients treated with radioiodine 131, the thermoluminescent dosimeters, Model TLD 100, were used. Thyroid cancer patients were hospitalized for three days, while hyperthyroid patients were treated on out-patient basis. The family members wore thermoluminescent dosimeter in front of the torso for seven days. Results: The radiation doses to family members of thyroid cancer patients were well below recommended dose constraint of 1 mSv. The mean value of effective dose was 0.21 mSv (min 0.02 - max 0.51 mSv). Effective doses, higher than 1 mSv, were detected at 11 family members of hyperthyroid patients.. The mean value of effective dose at family members of hyperthyroid patients was 0.87 mSv (min 0.12 - max 6.79) Conclusion: After three days of hospitalization and detailed given oral and written instruction, thyroid carcinoma patients maintain not to exceed the proposed dose limits. Hyperthyroid patients present a greater radiation hazard than thyroid carcinoma patients. The estimated effective doses were higher than the effective doses at family members of thyroid carcinoma patients. These findings may be considered when establishing new national guidelines concerning radiation protection and release of patients after a treatment with radioiodine therapy.(Author)

  5. A simple method for estimating the effective dose in dental CT. Conversion factors and calculation for a clinical low-dose protocol

    International Nuclear Information System (INIS)

    Homolka, P.; Kudler, H.; Nowotny, R.; Gahleitner, A.; Wien Univ.

    2001-01-01

    An easily appliable method to estimate effective dose including in its definition the high radio-sensitivity of the salivary glands from dental computed tomography is presented. Effective doses were calculated for a markedly dose reduced dental CT protocol as well as for standard settings. Data are compared with effective doses from the literature obtained with other modalities frequently used in dental care. Methods: Conversion factors based on the weighted Computed Tomography Dose Index were derived from published data to calculate effective dose values for various CT exposure settings. Results: Conversion factors determined can be used for clinically used kVp settings and prefiltrations. With reduced tube current an effective dose for a CT examination of the maxilla of 22 μSv can be achieved, which compares to values typically obtained with panoramic radiography (26 μSv). A CT scan of the mandible, respectively, gives 123 μSv comparable to a full mouth survey with intraoral films (150 μSv). Conclusion: For standard CT scan protocols of the mandible, effective doses exceed 600 μSv. Hence, low dose protocols for dental CT should be considered whenever feasable, especially for paediatric patients. If hard tissue diagnoses is performed, the potential of dose reduction is significant despite the higher image noise levels as readability is still adequate. (orig.) [de

  6. Biological effective dose studies in carcinoma of uterine cervix

    International Nuclear Information System (INIS)

    Yadav, Poonam; Ramasubramanian, V.

    2008-01-01

    Cancer of cervix is the second most common cancer worldwide among women. Several treatments related protocols of radiotherapy have been followed over few decades in its treatment for evaluating the response. These physical doses varying on the basics of fractionation size, dose rate and total dose needed to be indicated as biological effective dose (BED) to rationalize these treatments. The curative potential of radiation therapy in the management of carcinoma of the cervix is greatly enhanced by the use of intracavitary brachytherapy. Successful brachytherapy requires the high radiation dose to be delivered to the tumor where as minimum radiation dose reach to surrounding normal tissue. Present study is aimed to evaluate biologically effective dose in patients receiving high dose-rate brachytherapy plus external beam radiotherapy based on tumor cell proliferation values in cancer of the cervix patients. The study includes 30 patients' data as a retrospective analysis. In addition determine extent of a dose-response relationship existing between the biological effective dose at Point A and the bladder and rectum and the clinical outcomes

  7. Effects of low priming dose irradiation on cell cycle arrest of HepG2 cells caused by high dose irradiation

    International Nuclear Information System (INIS)

    Xia Jingguang; Jin Xiaodong; Chinese Academy of Sciences, Beijing; Li Wenjian; Wang Jufang; Guo Chuanling; Gao Qingxiang

    2005-01-01

    Human hepatoma cells hepG2 were irradiated twice by 60 Co γ-rays with a priming dose of 5 cGy and a higher dose of 3 Gy performed 4h or 8h after the low dose irradiation. Effects of the priming dose irradiation on cell cycle arrest caused by high dose were examined with flow cytometry. Cells in G 2 /M phase accumulated temporarily after the 5 cGy irradiation, and proliferation of tumor cells was promoted significantly by the low dose irradiation. After the 3 Gy irradiation, G 2 phase arrest occurred, and S phase delayed temporally. In comparison with 3 kGy irradiation only, the priming dose delivered 4h prior to the high dose irradiation facilitated accumulation of hepG2 cells in G 2 /M phase, whereas the priming dose delivered 8h prior to the high dose irradiation helped the cells to overcome G 2 arrest. It was concluded that effects of the priming dose treatment on cell cycle arrest caused by high dose irradiation were dependent on time interval between the two irradiations. (authors)

  8. Determining effective radiation mutagen dose for garlic (Allium sativum L.)

    International Nuclear Information System (INIS)

    Taner, Y.; Kunter, B.

    2004-01-01

    This study was carried out to get database for future garlic mutation breeding studies. For this aim, 0, 5, 10, 15, 20, 25 and 30 Gy doses of Cs 137 (gamma-ray) were applied on garlic cloves as a physical mutagen. 50 cloves were used for each dose. Sixty days after treatment, germination rate and shoot development of cloves were determined. The Effective Mutagen Dose (ED 50 ) was calculated by regression analyses. According to the results, 4.455 Gy dose was found to be effective as ED 50 . (author)

  9. Effective dose to patients from thoracic spine examinations with tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus; Soederman, Christina

    2016-01-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm -2 was obtained. (authors)

  10. EFFECTIVE DOSE TO PATIENTS FROM THORACIC SPINE EXAMINATIONS WITH TOMOSYNTHESIS.

    Science.gov (United States)

    Svalkvist, Angelica; Söderman, Christina; Båth, Magnus

    2016-06-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm(-2) was obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Perfluorononanoic acid in combination with 14 chemicals exerts low-dose mixture effects in rats

    DEFF Research Database (Denmark)

    Hadrup, Niels; Pedersen, Mikael; Skov, Kasper

    2016-01-01

    Humans are simultaneously exposed to several chemicals that act jointly to induce mixture effects. At doses close to or higher than no-observed adverse effect levels, chemicals usually act additively in experimental studies. However, we are lacking knowledge on the importance of exposure to complex...... real-world mixtures at more relevant human exposure levels. We hypothesised that adverse mixture effects occur at doses approaching high-end human exposure levels. A mixture (Mix) of 14 chemicals at a combined dose of 2.5 mg/kg bw/day was tested in combination with perfluorononanoic acid (PFNA...... pituitary-adrenal axis. In conclusion, our data suggest that mixtures of environmental chemicals at doses approaching high-end human exposure levels can cause a hormonal imbalance and disturb steroid hormones and their regulation. These effects may be non-monotonic and were observed at low doses. Whether...

  12. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation

    Directory of Open Access Journals (Sweden)

    Bertrand P. Tseng

    2013-01-01

    Full Text Available Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs. We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS, reactive nitrogen species (RNS, nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  13. [Radon risk in healthcare facilities: environmental monitoring and effective dose].

    Science.gov (United States)

    Cammarota, B; Cascone, Maria Teresa; De Paola, L; Schillirò, F; Del Prete, U

    2009-01-01

    Radon, the second cause of lung cancer after smoking (WHO- IARC), is a natural, radioactive gas, which originates from the soil and pollutes indoor air, especially in closed or underground spaces. The purpose of this study was to determine the concentration of radon gas, its effective dose, and the measurement of microclimatic degrees C; U.R. % and air velocity in non-academic intensive care units of public hospitals in the Naples area. The annual average concentrations of radon gas were detected with EIC type ionization electret chambers, type LLT with exposure over four 3-month periods. The concentrations varied for all health facilities between 186 and 1191 Bq/m3. Overall, the effective dose of exposure to radon gas of 3mSv/a recommended by Italian legislation was never exceeded. The concentration of radon gas showed a decreasing trend starting from the areas below ground level to those on higher floors; such concentrations were also influenced by natural and artificial ventilation of the rooms, building materials used for walls, and by the state of maintenance and improvements of the building (insulation of floors and walls). The data obtained confirmed the increased concentration of radionuclides in the yellow tuff of volcanic origin in the Campania Region and the resulting rate of release of radon gas, whereas the reinforced concrete structure (a hospital located on the hillside), which had the lowest values, proved to provide good insulation against penetration and accumulation of radon gas.

  14. Gender-specific calculation of the effective dose: The example of thoracic computer tomography

    International Nuclear Information System (INIS)

    Boetticher, H. von; Lachmund, J.; Hoffmann, W.

    2003-01-01

    Systematic gender-specific differences in anatomy and physiology are mostly neglected in standard methodologies for the determination of effective doses. This paper presents and discusses three different concepts for the derivation of gender-specific effective doses. Based on the most convincing approach - especially through the influence of tissue weighting factors for the breast - the effective dose for a serial CT scan of the chest is higher for women (+11%) and lower (-11%) for men in comparison to the 'gender-neutral' average value. These differences amount to ±30% for coronary serial CT applications. (orig.) [de

  15. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  16. γ-ray dose rate effect in DNA double-strand break repair deficient murine cells

    International Nuclear Information System (INIS)

    Li Liya; Li Peiwen

    2002-01-01

    Objective: To analyze the dose rate effect and potentially lethal damage repair in DNA double-strand break repair deficient murine cells (SCID) irradiated by γ-ray. Methods: The wild type (CB.17+/+) and SCID cells were exposed to γ-ray at high and low dose rates. The high dose rate exposure was fractionated into two equal doses at 24 h intervals. The survival rates of irradiated cells were calculated by clone-forming analysis. Results: When γ-ray was given to wild type (CB.17+/+) cells in two fractions at 24 h intervals, the survival rate was significantly higher than that when the same total dose was given singly. In contrast, there was no difference in the survival rates between the single and fractionated exposure in SCID cells. SCID cells were more sensitive than CB.17+/+ cells to both low and high dose rates γ-ray exposure for cell killing. The survival rate by low dose rate exposure was significantly higher than that by high dose rate exposure, not only in CB.17+/+ cells but also in SCID cells. Conclusions: SCID cells are deficient in repairing γ-ray induced double-strand breaks. There is dose rate effect in both SCID and CB.17+/+ cells

  17. Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine

    Science.gov (United States)

    Peng, Shiwen; Lyford-Pike, Sofia; Akpeng, Belinda; Wu, Annie; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.

    2012-01-01

    Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8+ T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8+ T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8+ T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic anti-tumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8+ T cells, which led to higher ratios of CD8+/Treg and CD8+/CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8+ T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells. PMID:23011589

  18. Assessment of organ equivalent doses and effective doses from diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Park, Sang Hyun

    2003-02-01

    The MIRD-type adult male, female and age 10 phantoms were constructed to evaluate organ equivalent dose and effective dose of patient due to typical diagnostic X-ray examination. These phantoms were constructed with external and internal dimensions of Korean. The X-ray energy spectra were generated with SPEC78. MCNP4B ,the general-purposed Monte Carlo code, was used. Information of chest PA , chest LAT, and abdomen AP diagnostic X-ray procedures was collected on the protocol of domestic hospitals. The results showed that patients pick up approximate 0.02 to 0.18 mSv of effective dose from a single chest PA examination, and 0.01 to 0.19 mSv from a chest LAT examination depending on the ages. From an abdomen AP examination, patients pick up 0.17 to 1.40 mSv of effective dose. Exposure time, organ depth from the entrance surface and X-ray beam field coverage considerably affect the resulting doses. Deviation among medical institutions is somewhat high, and this indicated that medical institutions should interchange their information and the need of education for medical staff. The methodology and the established system can be applied, with some expansion, to dose assessment for other medical procedures accompanying radiation exposure of patients like nuclear medicine or therapeutic radiology

  19. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Abdalla, Esra Abdalrhman Dfaalla

    2013-06-01

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  20. Dose-rate effects in external beam radiotherapy redux

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Gerweck, Leo E.; Zaider, Marco; Yorke, Ellen

    2010-01-01

    Recent developments in external beam radiotherapy, both in technical advances and in clinical approaches, have prompted renewed discussions on the potential influence of dose-rate on radio-response in certain treatment scenarios. We consider the multiple factors that influence the dose-rate effect, e.g. radical recombination, the kinetics of sublethal damage repair for tumors and normal tissues, the difference in α/β ratio for early and late reacting tissues, and perform a comprehensive literature review. Based on radiobiological considerations and the linear-quadratic (LQ) model we estimate the influence of overall treatment time on radio-response for specific clinical situations. As the influence of dose-rate applies to both the tumor and normal tissues, in oligo-fractionated treatment using large doses per fraction, the influence of delivery prolongation is likely important, with late reacting normal tissues being generally more sensitive to the dose-rate effect than tumors and early reacting tissues. In conventional fractionated treatment using 1.8-2 Gy per fraction and treatment times of 2-10 min, the influence of dose-rate is relatively small. Lastly, the dose-rate effect in external beam radiotherapy is governed by the overall beam-on-time, not by the average linac dose-rate, nor by the instantaneous dose-rate within individual linac pulses which could be as high as 3 x 10 6 MU/min.

  1. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  2. Dose rate effect on material aging due to radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Shin-ichi (Radiation Center of Osaka Prefecture, Sakai (Japan)); Hayakawa, Chikara; Takeya, Chikashi

    1982-12-01

    Although many reports have been presented on the radiation aging of the organic materials for electric cables, those have been based on the experiments carried out at high dose rate near 1 x 10/sup 6/ rad/h, assuming that aging effect depends on only radiation dose. Therefore, to investigate the aging behaviour in low dose rate range is an important subject to predict their practical life time. In this report, the results of having investigated the aging behaviour of six types of materials are described, (polyethylene for general insulation purpose, chemically cross-linked polyethylene, fire-retardant chemically cross-linked polyethylene, fire-retardant ethylene-propylene rubber, fire-retardant chloro-sulfonated polyethylene for sheaths, and fire-retardant, low hydrochloric acid, special heat-resistant vinyl for insulation purpose or chloroclean). They were irradiated with /sup 60/Co ..gamma..-ray at the dose from 5 x 10/sup 3/ to 1 x 10/sup 6/ rad/h, and their deterioration was tested for the items of elongation, tensile strength, resistivity, dielectric tangent and gel fraction. The aging mechanism and dose rate effect were also considered. The dose rate effect appeared or did not appear depending on the types of materials and also their properties. The materials that showed the dose rate effect included the typical ones whose characteristics degraded with the decreasing dose rate, and the peculiar ones whose deterioration of characteristics did not appear constantly. Aging mechanism may vary in the case of high dose rate and low dose rate. Also, if the life time at respective dose rate in relatively higher dose rate region is clarified, the life time in low dose rate region may possibly be predicted.

  3. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    International Nuclear Information System (INIS)

    Braby, L. A.; Reece, W. D.; Hsu, W. H.

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation experiments. We have also developed 4.3 mm diameter ion chambers with both tissue equivalent and carbon walls for the purpose of measuring dose mean lineal energy due to all radiations and due to all radiations except neutrons, respectively. By adjusting the gas pressure in the ion chamber, it can be made to simulate tissue volumes from a few nanometers to a few millimeters in diameter. The charge is integrated for 0.1 seconds, and the resulting pulse height is recorded by a multi channel analyzer. The system has been used in a variety of photon and neutron radiation fields, and measured values of dose and dose mean lineal energy are consistent with values extrapolated from measurements made by other techniques at much lower dose rates. It is expected that this technique will prove to be much more reliable than extrapolations from measurements made at low dose rates because these low dose rate exposures generally do not accurately reproduce the attenuation and

  4. Cytogenetic biodosimetry and dose-rate effect after radioiodine therapy for thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khvostunov, Igor K. [Russian Ministry of Health Care, A.F. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Centre, Obninsk, Kaluga Region (Russian Federation); Nagasaki University, Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki (Japan); Saenko, Vladimir A.; Yamashita, Shunichi [Nagasaki University, Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki (Japan); Krylov, Valeri; Rodichev, Andrei [Russian Ministry of Health Care, A.F. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Centre, Obninsk, Kaluga Region (Russian Federation)

    2017-08-15

    This study set out to investigate chromosomal damage in peripheral blood lymphocytes of thyroid cancer patients receiving {sup 131}I for thyroid remnant ablation or treatment of metastatic disease. The observed chromosomal damage was further converted to the estimates of whole-body dose to project the adverse side effects. Chromosomal aberration analysis was performed in 24 patients treated for the first time or after multiple courses. Blood samples were collected before treatment and 3 or 4 days after administration of 2-4 GBq of {sup 131}I. Both conventional cytogenetic and chromosome 2, 4 and 12 painting assays were used. To account for dose-rate effect, a dose-protraction factor was applied to calculate the whole-body dose. The mean dose was 0.62 Gy (95% CI: 0.44-0.77 Gy) in the subgroup of patients treated one time and 0.67 Gy (95% CI: 0.03-1.00 Gy) in re-treated patients. These dose estimates are about 1.7-fold higher than those disregarding the effect of exposure duration. In re-treated patients, the neglected dose-rate effect can result in underestimation of the cumulative whole-body dose by the factor ranging from 2.6 to 6.8. Elevated frequency of chromosomal aberrations observed in re-treated patients before radioiodine therapy allows estimation of a cumulative dose received from all previous treatments. (orig.)

  5. Whole body effective dose measurements in a fan beam bone mineral densitometer, Lunar expert

    Energy Technology Data Exchange (ETDEWEB)

    Sathiakumar, C.; Griffiths, M.; Cross, P.; Pocock, N.; Freund, J. [St Vincents Hospital, Sydney, NSW (Australia) Department of Nuclear Medicine; Kron, T.; Duggan, L. [Newcastle Mater Misericordiae Hospital, Newcastle, NSW (Australia). Department of Radiation Oncology; Holley, L. [University of Technology, Sydney, NSW (Australia). Department of Health Services

    1998-06-01

    Full text: The most recent generation of DXA machines employ a fan beam geometry and high resolution imaging detector, resulting in decreased scanning time and increased image resolution compared to previous rectilinear scanners, but with higher radiation burden to the patient because of an increasing number of bone mineral density scans, it was felt that independent evaluation of the radiation dose was necessary. The whole body effective dose for an AP lumbar spine scan and femur scan using the EXPERT bone densitometer was calculated for the fast and turbo scanning modes, using thermoluminescence dosimetry (TLD). A method was developed to determine the absorbed dose of the irradiated volume of an organ by summing the dose for each of the coronal areas, which results in a volume dose. The Whole Body Effective dose for AP lumbar spine fast scanning mode is 84.1 {mu}Sv and turbo scanning mode is 56.4 {mu}Sv. The Whole Body Effective dose for femur fast scanning mode is 6.6 {mu}Sv and turbo scanning mode is 4.2 {mu}Sv, with no ovary exposure. A theoretical method has been developed to calculate the organ dose from which whole body effective dose was calculated

  6. Poster - 56: Preliminary comparison of FF- and FFF-VMAT for prostate plans with higher rectal dose

    International Nuclear Information System (INIS)

    Liu, Baochang; Darko, Johnson; Osei, Ernest

    2016-01-01

    Purpose: A recent retrospective study found 53 patients previously treated to 78Gy/39 using flattened filtered (FF) 6X-VMAT at GRRCC had rectal DVH more than one standard deviation higher than the average. This study was to investigate if using 6FFFor10FFF beams could reduce these DVHs without compromising target coverage. Methods: Twenty patients’ plans were re-planed with 2-arc 6X-VMAT, 6FFF-VMAT and 10FFF-VMAT using the Eclipse TPS following departmental protocol. All plans had the same optimization and normalization, and were evaluated against the acceptance criteria from the QUANTEC and Emami. Statistical differences in the mean dose to OARs (D m ) and PTV homogeneity index (HI) between energies were tested using the paired sample Wilcoxon signed rank statistical method (p<0.05). Beam delivery accuracy was checked on five patients using portal dosimetry (PD). Results: The PTV HI for the 10FFF shows no statistical difference from the 6X. All the OARs, except left femoral head with 6FFF, have significantly lower Dm using 6FFF and 10FFF .There is no difference in the maximum doses to rectum and bladder and are limited by the prescribed doses. Measurements show good agreements in the gamma evaluation (3%/3mm) for all energies. Conclusion: This preliminary study shows that doses to the OARs are reduced using 10FFF for the same target coverage. The plans using 6FFF result in lower doses to some OARs, and statistically different PTV HI. All plans showed very good agreement with measurements.

  7. Poster - 56: Preliminary comparison of FF- and FFF-VMAT for prostate plans with higher rectal dose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baochang; Darko, Johnson; Osei, Ernest [Grand River Regional Cancer Centre, Kitchener, Ontario (Canada)

    2016-08-15

    Purpose: A recent retrospective study found 53 patients previously treated to 78Gy/39 using flattened filtered (FF) 6X-VMAT at GRRCC had rectal DVH more than one standard deviation higher than the average. This study was to investigate if using 6FFFor10FFF beams could reduce these DVHs without compromising target coverage. Methods: Twenty patients’ plans were re-planed with 2-arc 6X-VMAT, 6FFF-VMAT and 10FFF-VMAT using the Eclipse TPS following departmental protocol. All plans had the same optimization and normalization, and were evaluated against the acceptance criteria from the QUANTEC and Emami. Statistical differences in the mean dose to OARs (D{sub m}) and PTV homogeneity index (HI) between energies were tested using the paired sample Wilcoxon signed rank statistical method (p<0.05). Beam delivery accuracy was checked on five patients using portal dosimetry (PD). Results: The PTV HI for the 10FFF shows no statistical difference from the 6X. All the OARs, except left femoral head with 6FFF, have significantly lower Dm using 6FFF and 10FFF .There is no difference in the maximum doses to rectum and bladder and are limited by the prescribed doses. Measurements show good agreements in the gamma evaluation (3%/3mm) for all energies. Conclusion: This preliminary study shows that doses to the OARs are reduced using 10FFF for the same target coverage. The plans using 6FFF result in lower doses to some OARs, and statistically different PTV HI. All plans showed very good agreement with measurements.

  8. The effective dose equivalent from external and internal radiation

    International Nuclear Information System (INIS)

    Mattsson, Soeren

    1989-01-01

    The various sources of low-level ionizing radiation are discussed and compared in terms of mean effective dose equivalent to man. For the most nonoccupationally exposed individuals, natural sources given the dominating contribution to the effective dose equivalent. The size of this contribution is strongly dependent on human activities. Natural sources contribution on average 2.4 mSV per year, of which half is due to irradiation of lungs and airways from short lived radon daughters present in indoor air. In Sweden this radon daughter contribution is considerably higher and contributes a mean of 3 mSv per year, thus giving a total contribution from natural radiation of about 4 mSV per year. In extreme cases, radon daughter contributions of several hundreds of mSv per year may be reached. Medical exposure, mainly diagnostic X-rays, contributes 0.4-1 mSv per year both in Sweden and as a world average. The testing of nuclear weapons in the atmosphere has given 1-2 mSv to each person in the world as a mean. The contribution from the routine operation of nuclear reactors is insignificant. The reactor accident in Chernobyl resulted in widely varying exposures of the European population. The average for Sweden is estimated to be 0.1 mSv during the first year and about 1 mSv during a 50-year period. For groups of Swedes who eat a considerable amount of game this contribution will be 10 times higher, and for the Lapps who breed reindeer in the most contaminated areas, typical values of 20-70 mSv and extreme values of about 1 Sv may be reached in 50 years. This means that the Chernobyl reactor accident for several years will be their dominating source of irradiation

  9. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    Science.gov (United States)

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to tissues and organs remain above IDRE thresholds).

  10. Committed effective doses at various times after intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed effective doses at nine times after intake from intakes by ingestion and inhalation of 1 mu 1 AMAD particles by adults. Data are given for various chemical forms of 359 nuclides. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on committed equivalent doses to organs is given in NRPB-M288. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  11. Organ doses and effective doses in some medical and industrial applications

    International Nuclear Information System (INIS)

    Keshavkumar, Biju

    2000-01-01

    The ICRP recommends radiation protection standards for the safe use of radiation and also prescribes the radiation protection quantities and periodically reviews them. In this context, the quantities like organ doses and effective doses are defined by ICRP. In this work we calculate these quantities and hence the conversion functions for the industrial radiation sources and those for CT and diagnostic X-ray exposures. Workers who are occupationally exposed to radiation are regularly monitored to evaluate the radiation dose received by them. It is quite possible that in an accident situation, the worker involved in the accident might not have worn a personal monitor, popularly known as the monitoring badge. In addition, even some non radiation workers (who are obviously not monitored) may also have received exposure. Under these circumstances, the persons involved are interviewed, the accident site inspected, and on the basis of realistic assumptions, the likely doses received by the exposed persons are estimated

  12. Higher-Than-Conventional Radiation Doses in Localized Prostate Cancer Treatment: A Meta-analysis of Randomized, Controlled Trials

    International Nuclear Information System (INIS)

    Viani, Gustavo Arruda; Stefano, Eduardo Jose; Afonso, Sergio Luis

    2009-01-01

    Purpose: To determine in a meta-analysis whether the outcomes in men with localized prostate cancer treated with high-dose radiotherapy (HDRT) are better than those in men treated with conventional-dose radiotherapy (CDRT), by quantifying the effect of the total dose of radiotherapy on biochemical control (BC). Methods and Materials: The MEDLINE, EMBASE, CANCERLIT, and Cochrane Library databases, as well as the proceedings of annual meetings, were systematically searched to identify randomized, controlled studies comparing HDRT with CDRT for localized prostate cancer. To evaluate the dose-response relationship, we conducted a meta-regression analysis of BC ratios by means of weighted linear regression. Results: Seven RCTs with a total patient population of 2812 were identified that met the study criteria. Pooled results from these RCTs showed a significant reduction in the incidence of biochemical failure in those patients with prostate cancer treated with HDRT (p 2 gastrointestinal toxicity after HDRT than after CDRT. In the subgroup analysis, patients classified as being at low (p = 0.007), intermediate (p < 0.0001), and high risk (p < 0.0001) of biochemical failure all showed a benefit from HDRT. The meta-regression analysis also detected a linear correlation between the total dose of radiotherapy and biochemical failure (BC = -67.3 + [1.8 x radiotherapy total dose in Gy]; p = 0.04). Conclusions: Our meta-analysis showed that HDRT is superior to CDRT in preventing biochemical failure in low-, intermediate-, and high-risk prostate cancer patients, suggesting that this should be offered as a treatment for all patients, regardless of their risk status.

  13. The Effect of NPP's Stack Height to Radiation Dose

    International Nuclear Information System (INIS)

    Pandi, Liliana Yetta; Rohman, Budi

    2003-01-01

    The purpose of dose calculation for accidents is to analyze the capability of NPP to maintain the safety of public and workers in case an accident occurs on the Plant in a site. This paper calculates the Loss of Coolant Accident in PWR plant. The calculation results shows that no risks of serious radiation exposure are given to the neighboring public even if such a large accident occurred, and the effect of stack height can be predicted by analysis of the calculation results. The whole dose is calculated for some location (100 m, 300 m, 500 m, 700 m, 900 m, 1500 m, and 2000 m) with three difference stack height i.e. 0 m, 40 m and 100 m. The result of the whole dose calculation is under permitted criteria for whole dose : 0.25 Sv and thyroid dose : 3.0 Sv. The calculation of radiation dose in this paper use EEDCDQ code

  14. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  15. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  16. Biological effect of Pulsed Dose Rate brachytherapy with stepping sources

    International Nuclear Information System (INIS)

    Limbergen, Erik F.M. van; Fowler, Jack F.

    1996-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR), for local tissue dose-rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. An earlier publication (Fowler and Mount 1992) had shown that, for dose rates (averaged for the duration of the pulse) up to 3 Gy/h, little change of isoeffect doses from continuous low dose rate (CLDR) are expected, unless larger doses per fraction than 1 Gy are used, and especially if components of very rapid repair are present with half-times of less than about 0.5 hours. However, local and transient dose rates close to stepping sources can be up to several Gy per minute. Methods: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to repair, at a constant exponential rate. The formula developed by Dale for fractionated low-dose-rate radiotherapy was used. A constant overall time of 140 hours and constant total dose of 70 Gy were assumed throughout, the continuous low dose-rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose-rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, and T (1(2)) from 4 minutes to 1.5 hours. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (> 1 Gy) at high instantaneous dose-rates if T (1(2)) in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in the tissue, and - when T (1(2)) is short - the instantaneous dose-rate. Maximum ratios of PDR/CLDR effect occur when the dose-rate is such that pulse duration is approximately equal to T (1(2)) of repair. Results are presented for late-responding tissues, the differences from CLDR

  17. Patients with Posttraumatic Stress Disorder with Comorbid Major Depressive Disorder Require a Higher Dose of Psychotropic Drugs.

    Science.gov (United States)

    Chiba, Hiromi; Oe, Misari; Uchimura, Naohisa

    2016-01-01

    Major depressive disorder (MDD) has been associated with stressful life events and with posttraumatic stress disorder (PTSD). PTSD and MDD comorbidity was also reported to be associated with greater symptom severity and lower levels of functioning. However, the characteristics of pharmacotherapy for PTSD with MDD are not fully understood. To understand this relationship, we conducted a retrospective review using medical charts at the Department of Neuropsychiatry, Kurume University Hospital. Information from 55 patients with PTSD was analyzed. Five cases were excluded after re-evaluation of the PTSD diagnosis. A higher rate of type II trauma was observed in the PTSD with MDD group (50.0%) than in the PTSD-only group [13.6%; χ(2) (1, n =50) = 7.26, p<0.01]. Patients with comorbid MDD were significantly older, had more severe PTSD symptomatology, and a longer duration of treatment. They also received higher doses of psychotropic drugs, regardless of the type (antidepressants, antipsychotics, benzodiazepines), than the PTSD-only group. Our results showed that comorbid MDD is associated with higher doses of psychotropic drugs, suggesting difficulties in treatment.

  18. Building shielding effects on radiation doses from routine radionuclide releases

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1977-01-01

    In calculating population doses from the release of radionuclides to the atmosphere, it is usually assumed that man spends all of his time outdoors standing on a smooth infinite plane. Realistically, however, man spends most of the time indoors, so that substantial reductions in radiation doses may result compared with the usual estimates. Calculational models were developed to study the effects of building structures on radiation doses from routine releases of radionuclides to the atmosphere. Both internal dose from inhaled radionuclides and external photon dose from airborne and surface-deposited radionuclides are considered. The effect of building structures is described quantitatively by a dose reduction factor, which is the ratio of the dose inside a structure to the corresponding dose with no structure present. The internal dose from inhaled radionuclides is proportional to the radionuclide concentration in the air. Assuming that the outdoor airborne concentration is constant with time, the time-dependence of the indoor airborne concentration in terms of the structure air ventilation rate, the deposition velocities for radionuclides on the inside floor, walls, and ceiling, and the radioactive decay constant, were calculated

  19. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry

    International Nuclear Information System (INIS)

    Metz-Flamant, Camille

    2011-01-01

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  20. Adult head CT scans: the uncertainties of effective dose estimates

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    Full Text: CT scanning is a high dose imaging modality. Effective dose estimates from CT scans can provide important information to patients and medical professionals. For example, medical practitioners can use the dose to estimate the risk to the patient, and judge whether this risk is outweighed by the benefits of the CT examination, while radiographers can gauge the effect of different scanning protocols on the patient effective dose, and take this into consideration when establishing routine scan settings. Dose estimates also form an important part of epidemiological studies examining the health effects of medical radiation exposures on the wider population. Medical physicists have been devoting significant effort towards estimating patient radiation doses from diagnostic CT scans for some years. The question arises: How accurate are these effective dose estimates? The need for a greater understanding and improvement of the uncertainties in CT dose estimates is now gaining recognition as an important issue (BEIR VII 2006). This study is an attempt to analyse and quantify the uncertainty components relating to effective dose estimates from adult head CT examinations that are calculated with four commonly used methods. The dose estimation methods analysed are the Nagel method, the ImpaCT method, the Wellhoefer method and the Dose-Length Product (DLP) method. The analysis of the uncertainties was performed in accordance with the International Standards Organisation's Guide to the Expression of Uncertainty in Measurement as discussed in Gregory et al (Australas. Phys. Eng. Sci. Med., 28: 131-139, 2005). The uncertainty components vary, depending on the method used to derive the effective dose estimate. Uncertainty components in this study include the statistical and other errors from Monte Carlo simulations, uncertainties in the CT settings and positions of patients in the CT gantry, calibration errors from pencil ionization chambers, the variations in the organ

  1. Effective dose estimation to patients and staff during urethrography procedures

    International Nuclear Information System (INIS)

    Sulieman, A.; Barakat, H.; Alkhorayef, M.; Babikir, E.; Dalton, A.; Bradley, D.

    2015-10-01

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  2. Effective dose estimation to patients and staff during urethrography procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Prince Sattam bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P. O- Box 422, Alkharj 11942 (Saudi Arabia); Barakat, H. [Neelain University, College of Science and Technology, Medical Physics Department, Khartoum (Sudan); Alkhorayef, M.; Babikir, E. [King Saud University, College of Applied Sciences, Radiological Sciences Department, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Dalton, A.; Bradley, D. [University of Surrey, Centre for Nuclear and Radiation Physics, Department of Physics, Surrey, GU2 7XH Guildford (United Kingdom)

    2015-10-15

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  3. Topics on study of low dose-effect relationship

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takeshi [Toho Univ., School of Medicine, Tokyo (Japan); Ohyama, Harumi

    1999-09-01

    It is not exceptional but usually observed that a dose-effect relationship in biosystem is not linear. Sometimes, the low dose-effect relationship appears entirely contrary to the expectation from high dose-effect. This is called a 'hormesis' phenomena. A high dose irradiation inflicts certainly an injury on biosystem. No matter how low the dose may be, an irradiation might inflict some injury on biosystem according to Linear Non-Threshold hypothesis(LNT). On the contrary to the expectation, a low dose irradiation stimulates immune system, and promotes cell proliferation. This is called 'radiation hormesis'. The studies of the radiation hormesis are made on from four points of view as follows: (1) radiation adaptive response, (2) revitalization caused by a low dose stimulation, (3) a low dose response unexpected from the LNT hypothesis, (4) negation of the LNT hypothesis. The various empirical proofs of radiation hormesis are introduced in the report. (M . Suetake)

  4. Towards a new dose and dose-rate effectiveness factor (DDREF)? Some comments.

    Science.gov (United States)

    Chadwick, K H

    2017-06-26

    The aim of this article is to offer a broader, mechanism-based, analytical tool than that used by (Rühm et al 2016 Ann. ICRP 45 262-79) for the interpretation of cancer induction relationships. The article explains the limitations of this broader analytical tool and the implications of its use in view of the publications by Leuraud et al 2015 (Lancet Haematol. 2 e276-81) and Richardson et al 2015 (Br. Med. J. 351 h5359). The publication by Rühm et al 2016 (Ann. ICRP 45 262-79), which is clearly work in progress, reviews the current status of the dose and dose-rate effectiveness factor (DDREF) as recommended by the ICRP. It also considers the issues which might influence a reassessment of both the value of the DDREF as well as its application in radiological protection. In this article, the problem is approached from a different perspective and starts by commenting on the limited scientific data used by Rühm et al 2016 (Ann. ICRP 45 262-79) to develop their analysis which ultimately leads them to use a linear-quadratic dose effect relationship to fit solid cancer mortality data from the Japanese life span study of atomic bomb survivors. The approach taken here includes more data on the induction of DNA double strand breaks and, using experimental data taken from the literature, directly relates the breaks to cell killing, chromosomal aberrations and somatic mutations. The relationships are expanded to describe the induction of cancer as arising from radiation induced cytological damage coupled to cell killing since the cancer mutated cell has to survive to express its malignant nature. Equations are derived for the induction of cancer after both acute and chronic exposure to sparsely ionising radiation. The equations are fitted to the induction of cancer in mice to illustrate a dose effect relationship over the total dose range. The 'DDREF' derived from the two equations varies with dose and the DDREF concept is called into question. Although the equation for

  5. Estimation of effective dose equivalente from external irradiations

    International Nuclear Information System (INIS)

    Wakabayashi, T.

    1985-07-01

    A methodology for computing effective dose equivalent, derived from the computer code ALGAM: Monte Carlo Estimation of Internal Dose from Gamma-ray Sources in a Phantom Man, developed at Oak Ridge National Laboratory, is presented. The modified code was run for 12 different photon energy levels, from 0,010 Mev to 4.0 Mev, which provides computing the absorved dose, for these energy levels, in each one of the 97 organs of the original code. The code also was run for the principal energy levels used in the calibration of the dosimetric films. The results of the absorved doses per photon obtained for these levels of energy have been transformed in effective dose equivalents. (M.A.C.) [pt

  6. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  7. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  8. Dimensions and Domains of Organisational Effectiveness in Australian Higher Education.

    Science.gov (United States)

    Lysons, Art

    1990-01-01

    Research in Australian higher education testing one theory of dimensions of organizational effectiveness is reviewed, and two theories are analyzed to develop a more comprehensive set of dimensions. The existing taxonomy is further defined, and the implications relating to recent structural adjustments in the higher education system are discussed.…

  9. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Gothenburg (Sweden); Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A. [University of Gothenburg, Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Radiology, Gothenburg (Sweden)

    2014-07-15

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  10. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    International Nuclear Information System (INIS)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus; Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A.

    2014-01-01

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  11. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis.

    Science.gov (United States)

    Asplund, Sara A; Johnsson, Åse A; Vikgren, Jenny; Svalkvist, Angelica; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A; Månsson, Lars Gunnar; Båth, Magnus

    2014-07-01

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70% of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100% dose levels, respectively. The differences in FOM between the 12% dose level and the 32, 70, and 100% dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32%. • A substantial radiation dose reduction in chest tomosynthesis may be possible. • Pulmonary nodule detectability remained unchanged at 32% of the effective dose. • Tomosynthesis might be performed at the dose of a lateral chest radiograph.

  12. Radiation effects after low dose chronic long-term exposure

    International Nuclear Information System (INIS)

    Fliedner, T.M.; Friesecke, I.

    1997-01-01

    This document approaches the radiation effects after low dose chronic long-term exposure, presenting examples occurred, the pathophysiologic mechanisms for cell system tolerance in elevated radiation fields, and the diagnostic and therapeutic possibilities

  13. Radiation doses and correlated late effects in diagnostic radiology

    International Nuclear Information System (INIS)

    Gustafsson, M.

    1980-04-01

    Patient irradiation in diagnostic radiology was estimated from measurements of absorbed doses in different organs, assessment of the energy imparted and retrospective calculations based on literature data. Possible late biological effects, with special aspects on children, were surveyed. The dose to the lens of the eye and the possibility of shielding in carotid angiography was studied as was the absorbed dose to the thyroid gland at cardiac catheterization and angiocardiography in children. Calculations of the mean bone marrow dose and gonad doses were performed in children with chronic skeletal disease revealing large contributions from examinations of organs other than the skeleton. The dose distribution in the breast in mammography was investigated. Comparison of the energy imparted in common roentgen examinations in 1960 and 1975 showed an unexpected low decrease in spite of technical improvements. Reasons for the failing decrease are discussed. The energy imparted to children in urological examinations was reduced significantly due to introduction of high sensitivity screens and omission of dose demanding projections. Contributions to the possible late effects were estimated on the basis of the organ doses assessed. (author)

  14. Study of total ionization dose effects in electronic devices

    International Nuclear Information System (INIS)

    Nidhin, T.S.; Bhattacharyya, Anindya; Gour, Aditya; Behera, R.P.; Jayanthi, T.

    2018-01-01

    Radiation effects in electronic devices are a major challenge in the dependable application developments of nuclear power plant instrumentation and control systems. The main radiation effects are total ionization dose (TID) effects, displacement damage dose (DDD) effects and single event effects (SEE). In this study, we are concentrating on TID effects in electronic devices. The focus of the study is mainly on SRAM based field programmable gate arrays (FPGA) along with that the devices of our interest are voltage regulators, flash memory and optocoupler. The experiments are conducted by exposing the devices to gamma radiation in power off condition and the degradation in the performances are analysed

  15. Correlation between effective dose and radiological risk: general concepts

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paulo Roberto; Yoshimura, Elisabeth Mateus; Nersissian, Denise Yanikian; Melo, Camila Souza, E-mail: pcosta@if.usp.br [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-05-15

    The present review aims to offer an educational approach related to the limitations in the use of the effective dose magnitude as a tool for the quantification of doses resulting from diagnostic applications of ionizing radiation. We present a critical analysis of the quantities accepted and currently used for dosimetric evaluation in diagnostic imaging procedures, based on studies published in the literature. It is highlighted the use of these quantities to evaluate the risk attributed to the procedure and to calculate the effective dose, as well as to determine its correct use and interpretation. (author)

  16. Cardiac-Specific Conversion Factors to Estimate Radiation Effective Dose From Dose-Length Product in Computed Tomography.

    Science.gov (United States)

    Trattner, Sigal; Halliburton, Sandra; Thompson, Carla M; Xu, Yanping; Chelliah, Anjali; Jambawalikar, Sachin R; Peng, Boyu; Peters, M Robert; Jacobs, Jill E; Ghesani, Munir; Jang, James J; Al-Khalidi, Hussein; Einstein, Andrew J

    2018-01-01

    This study sought to determine updated conversion factors (k-factors) that would enable accurate estimation of radiation effective dose (ED) for coronary computed tomography angiography (CTA) and calcium scoring performed on 12 contemporary scanner models and current clinical cardiac protocols and to compare these methods to the standard chest k-factor of 0.014 mSv·mGy -1 cm -1 . Accurate estimation of ED from cardiac CT scans is essential to meaningfully compare the benefits and risks of different cardiac imaging strategies and optimize test and protocol selection. Presently, ED from cardiac CT is generally estimated by multiplying a scanner-reported parameter, the dose-length product, by a k-factor which was determined for noncardiac chest CT, using single-slice scanners and a superseded definition of ED. Metal-oxide-semiconductor field-effect transistor radiation detectors were positioned in organs of anthropomorphic phantoms, which were scanned using all cardiac protocols, 120 clinical protocols in total, on 12 CT scanners representing the spectrum of scanners from 5 manufacturers (GE, Hitachi, Philips, Siemens, Toshiba). Organ doses were determined for each protocol, and ED was calculated as defined in International Commission on Radiological Protection Publication 103. Effective doses and scanner-reported dose-length products were used to determine k-factors for each scanner model and protocol. k-Factors averaged 0.026 mSv·mGy -1 cm -1 (95% confidence interval: 0.0258 to 0.0266) and ranged between 0.020 and 0.035 mSv·mGy -1 cm -1 . The standard chest k-factor underestimates ED by an average of 46%, ranging from 30% to 60%, depending on scanner, mode, and tube potential. Factors were higher for prospective axial versus retrospective helical scan modes, calcium scoring versus coronary CTA, and higher (100 to 120 kV) versus lower (80 kV) tube potential and varied among scanner models (range of average k-factors: 0.0229 to 0.0277 mSv·mGy -1 cm -1 ). Cardiac k

  17. Effective dose range for dental cone beam computed tomography scanners

    International Nuclear Information System (INIS)

    Pauwels, Ruben; Beinsberger, Jilke; Collaert, Bruno; Theodorakou, Chrysoula; Rogers, Jessica; Walker, Anne; Cockmartin, Lesley; Bosmans, Hilde; Jacobs, Reinhilde; Bogaerts, Ria; Horner, Keith

    2012-01-01

    Objective: To estimate the absorbed organ dose and effective dose for a wide range of cone beam computed tomography scanners, using different exposure protocols and geometries. Materials and methods: Two Alderson Radiation Therapy anthropomorphic phantoms were loaded with LiF detectors (TLD-100 and TLD-100H) which were evenly distributed throughout the head and neck, covering all radiosensitive organs. Measurements were performed on 14 CBCT devices: 3D Accuitomo 170, Galileos Comfort, i-CAT Next Generation, Iluma Elite, Kodak 9000 3D, Kodak 9500, NewTom VG, NewTom VGi, Pax-Uni3D, Picasso Trio, ProMax 3D, Scanora 3D, SkyView, Veraviewepocs 3D. Effective dose was calculated using the ICRP 103 (2007) tissue weighting factors. Results: Effective dose ranged between 19 and 368 μSv. The largest contributions to the effective dose were from the remainder tissues (37%), salivary glands (24%), and thyroid gland (21%). For all organs, there was a wide range of measured values apparent, due to differences in exposure factors, diameter and height of the primary beam, and positioning of the beam relative to the radiosensitive organs. Conclusions: The effective dose for different CBCT devices showed a 20-fold range. The results show that a distinction is needed between small-, medium-, and large-field CBCT scanners and protocols, as they are applied to different indication groups, the dose received being strongly related to field size. Furthermore, the dose should always be considered relative to technical and diagnostic image quality, seeing that image quality requirements also differ for patient groups. The results from the current study indicate that the optimisation of dose should be performed by an appropriate selection of exposure parameters and field size, depending on the diagnostic requirements.

  18. Effect of different ionizing radiation dose rates on the Staphylococcal enterotoxin in mechanically deboned chicken meat

    International Nuclear Information System (INIS)

    Azevedo, Heliana de; Brito, Poliana de Paula; Fukuma, Henrique Takuji; Roque, Claudio Vitor; Custodio, Wilson; Kodama, Yasko; Miya, Norma Terugo Nago; Pereira, Jose Luiz

    2009-01-01

    Samples weighing 50g each were prepared from allotments of back with skin MDCM, to the EEB contamination or not (control). Each sample of MDCM contaminated or not with EEB was conditioned in low density polyethylene bag, frozen (-18 ± 1 deg C) for one night in a tunnel and irradiated with gamma rays from 60 Co source in this state with doses of 0.0 kGy (control), 1.5 kGy (5.7 kGy.h -1 - higher dose rate, 1.8 kGy.h -1 - intermediary dose rate and 0.6 kGy.h -1 - lower dose rate) and 3.0 kGy (8.4 kGy.h - '1 - higher dose rate, 2.4 kGy.h -1 - intermediary dose rate and 0.6 kGy.h -1 - lower dose rate). Irradiated or non irradiated MDCM samples were processed to the EEB extraction, according to the VIDAS Staph enterotoxin II kit (bioMerieux) manufacturer protocol. The calculation to determinate the MDCM EEB recovery after the sample (control or irradiated) processing were carried out applying the principle of mass balance, along the whole process. Described experiment was performed in triplicate. Results showed that the irradiation process was effective to remove the MDCM EEB, to both 1.5 kGy and 3.0 kGy. According to the expected, doses of 3.0 kGy showed the highest values of MDCM EEB removal. Regarding the effect of dose rate of radiation on the removal of EEB of the MDCM, it could be observed only for samples irradiated with 1.5 kGy radiation dose; in these processing conditions, the highest value of EEB removal was obtained for samples processed with low radiation dose rate. (author)

  19. Estimation of effective dose from Rn emanating from 'the minus ion' effect wallpaper

    International Nuclear Information System (INIS)

    Yoshizawa, Y.; Minowa, H.; Morita-Murase, Y.; Furuta, E.

    2006-01-01

    We have examined the wall papers which declared 'the minus ion' effect to estimate external and internal exposure dose from them. Results of gamma-ray spectrometry revealed that they contain 0.03 to 0.35 Bq·g -1 of Th-series nuclides, 208 Tl, 212 Pb, 212 Bi and 228 Ac, and U-series one, 214 Pb. Distributions of radioactive nuclides in the samples were measured using an imaging plate and a FLA-2000 (Fuji Photo Film). The radiation doses from the printed side of the wall papers were 5 to 15 times higher than that of the back side. The 222 Rn concentrations emanating from the wall papers in a sealed container of 50 liter were measured using the PICO-RAD radon detectors. One wall paper showed two to five times higher than the background value. (author)

  20. An effective dose of ketamine for eliminating pain during injection of propofol: a dose response study.

    Science.gov (United States)

    Wang, M; Wang, Q; Yu, Y Y; Wang, W S

    2013-09-01

    Ketamine can completely eliminate pain associated with propofol injection. However, the effective dose of ketamine to eliminate propofol injection pain has not been determined. The purpose of this study was to determine the effective dose of ketamine needed to eliminate pain in 50% and 95% of patients (ED50 and ED95, respectively) during propofol injections. This study was conducted in a double-blinded fashion and included 50 patients scheduled for elective gynecological laparoscopy under general anesthesia. The initial dose of ketamine used in the first patient was 0.25mg/kg. The dosing modifications were in increments or decrements of 0.025 mg/kg. Ketamine was administered 15 seconds before injecting propofol (2.5mg/kg), which was injected at a rate of 1mL/s. Patients were asked to rate their pain during propofol injection every 5s econds using a 0-3 pain scale. The highest pain score was recorded. The ED50, ED95 and 95% confidence intervals (CI) were determined by probit analyses. The dose of ketamine ranged from 0.175 to 0.275 mg/kg. The ED50 and ED95 of ketamine for eliminating pain during propofol injection were 0.227 mg/kg and 0.283 mg/kg, respectively (95%CI: 0.211-0.243 mg/kg and 0.26-0.364 mg/kg, respectively). Ketamine at an approximate dose of 0.3mg/kg was effective in eliminating pain during propofol injection. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  1. Lateral topography for reducing effective dose in low-dose chest CT.

    Science.gov (United States)

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.

  2. An efficient dose-compensation method for proximity effect correction

    International Nuclear Information System (INIS)

    Wang Ying; Han Weihua; Yang Xiang; Zhang Yang; Yang Fuhua; Zhang Renping

    2010-01-01

    A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved. (semiconductor technology)

  3. Behaviour of polymers in radioactive environments: Effects of dose speed

    International Nuclear Information System (INIS)

    Docters, A.S.; Gonzalez, M.E.

    1993-01-01

    The scope of this research is to determine the degradation of mechanical properties of cable insulating PVC after irradiation in air at a Cobalt-60 (γ-ray) facility. Amongst the mechanical properties elongation at break and tensile strength were chosen as they are the most sensible to radiation. The samples were exposed to combined radiation-thermal environments with constant airflow in order to obtain accelerated aging data a doses up to 50-300 kGy, with dose rates ranging between 1.3 and 5.6 kGy/h at temperatures from 60 degrees C to 100 degrees C. At lower dose rates the degradation of mechanical properties increased after the same total dose: elongation at break decreases sharply while tensile strength decreases to a less extent, showing dose rate effects. A strong synergy between irradiation and thermal processes was also observed. (author)

  4. Choline PET based dose-painting in prostate cancer - Modelling of dose effects

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Bartenstein, Peter; Belka, Claus; Ganswindt, Ute

    2010-01-01

    Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. Based on different assumptions for α/β, γ50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB) dose on tumor control probability (TCP) was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high γ50/ASTRO definition for tumor control) to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control) or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition) or from 13.2% to 6.0% (CN + 2 definition). Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on choline PET seems less than intuitively expected. Only under the

  5. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  6. Long-Term Results of Fixed High-Dose I-131 Treatment for Toxic Nodular Goiter: Higher Euthyroidism Rates in Geriatric Patients

    Directory of Open Access Journals (Sweden)

    Gül Ege Aktaş

    2015-10-01

    Full Text Available Objective: Geriatric patient population has special importance due to particular challenges. In addition to the increase in incidence of toxic nodular goiter (TNG with age, it has a high incidence in the regions of low-medium iodine intake such as in our country. The aim of this study was to evaluate the overall outcome of high fixed dose radioiodine (RAI therapy, and investigate the particular differences in the geriatric patient population. Methods: One hundred and three TNG patients treated with high dose I-131 (370-740 MBq were retrospectively reviewed. The baseline characteristics; age, gender, scintigraphic patterns and thyroid function tests before and after treatment, as well as follow-up, duration of antithyroid drug (ATD medication and achievement of euthyroid or hypothyroid state were evaluated. The patient population was divided into two groups as those=>65 years and those who were younger, in order to assess the effect of age. Results: Treatment success was 90% with single dose RAI therapy. Hyperthyroidism was treated in 7±7, 2 months after RAI administration. At the end of the first year, overall hypothyroidism rate was 30% and euthyroid state was achieved in 70% of patients. Age was found to be the only statistically significant variable effecting outcome. A higher ratio of euthyroidism was achieved in the geriatric patient population. Conclusion: High fixed dose I-131 treatment should be preferred in geriatric TNG patients in order to treat persistent hyperthyroidism rapidly. The result of this study suggests that high fixed dose RAI therapy is a successful modality in treating TNG, and high rates of euthyroidism can be achieved in geriatric patients.

  7. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose- effect curve)

    International Nuclear Information System (INIS)

    Al Achkar, W.

    2002-01-01

    In order to draw a dose-effect curve, blood from eight healthy people were studied. Samples were irradiated in tubes with 0.15-2.5 gray of gamma ray.Irradiated and control samples were incubated for cell cultures. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics+ rings and total numbers of breaks were drawn. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  8. The researches on the effects of low doses irradiation

    International Nuclear Information System (INIS)

    2009-02-01

    All research conducted as part of 'Risc-Rad' and those conducted by actors in international programs on low doses allow progress in understanding mechanisms of carcinogenesis associated with irradiation. The data do not question the use in radiation protection, risk estimation models based on a linear increase of the risk with the dose of radiation. Nevertheless, they show that the nature of biological responses induced by low doses of radiation has differences with the responses induced by high doses of radiation. They also show the diversity of effects/dose relationships as the mechanism observed and the importance of genetic predisposition in the individual sensitivity to low doses of radiation. It is therefore essential to continue to bring new data to better understand the complex biological effects and their impact on the establishment of radiation protection standards. In addition, the results have often been at the cellular level. The diversity of responses induced by radiations is also a function of cell types observed, the aging of cells and tissue organization. It is essential to strengthen researches at the tissue and body level, involving in vitro and in vivo approaches while testing the hypothesis in epidemiology with a global approach to systems biology. Over the past four years, the collaboration between partners of 'Risc-Rad' using experimental biology approaches and those using mathematical modeling techniques aimed at developing a new model describing the carcinogenesis induced by low radiation doses. On an other hand, The High level expert group on European low dose risk research (H.L.E.G.) develop programmes in the area of low dose irradiation (Germany, Finland, France, Italy and United Kingdom). It proposed a structure of trans national government called M.E.L.O.D.I. ( multidisciplinary european low dose initiative). Its objective is to structure and integrate European research by gathering around a common programme of multidisciplinary

  9. High-dose-rate brachytherapy in the treatment of uterine cervix cancer. Analysis of dose effectiveness and late complications

    International Nuclear Information System (INIS)

    Ferrigno, Robson; Novaes, Paulo Eduardo Ribeiro dos Santos; Pellizzon, Antonio Cassio Assis; Maia, Maria Aparecida Conte; Fogarolli, Ricardo Cesar; Gentil, Andre Cavalcanti; Salvajoli, Joao Victor

    2001-01-01

    Purpose: This retrospective analysis aims to report results of patients with cervix cancer treated by external beam radiotherapy (EBR) and high-dose-rate (HDR) brachytherapy. Methods and Materials: From September 1992 to December 1996, 138 patients with FIGO Stages II and III and mean age of 56 years were treated. Median EBR to the whole pelvis was 45 Gy in 25 fractions. Parametrial boost was performed in 93% of patients, with a median dose of 14.4 Gy. Brachytherapy with HDR was performed during EBR or following its completion with a dose of 24 Gy in four weekly fractions of 6 Gy to point A. Median overall treatment time was of 60 days. Patient age, tumor stage, and overall treatment time were variables analyzed for survival and local control. Cumulative biologic effective dose (BED) at rectal and bladder reference points were correlated with late complications in these organs and dose of EBR at parametrium was correlated with small bowel complications. Results: Median follow-up time was 38 months. Overall survival, disease-free survival, and local control at 5 years was 53.7%, 52.7%, and 62%, respectively. By multivariate and univariate analysis, overall treatment time up to 50 days was the only statistically significant adverse variable for overall survival (p=0.003) and actuarial local control (p=0.008). The 5-year actuarial incidence of rectal, bladder, and small bowel late complications was 16%, 11%, and 14%, respectively. Patients treated with cumulative BED at rectum points above 110 Gy 3 and at bladder point above 125 Gy 3 had a higher but not statistically significant 5-year actuarial rate of complications at these organs (18% vs. 12%, p=0.49 and 17% vs. 9%, p=0.20, respectively). Patients who received parametrial doses larger than 59 Gy had a higher 5-year actuarial rate of complications in the small bowel; however, this was not statistically significant (19% vs. 10%, p=0.260). Conclusion: This series suggests that 45 Gy to the whole pelvis combined with

  10. Effects of oxygen and TMPN on the initial part of the dose-effect curves of human cells in culture

    International Nuclear Information System (INIS)

    Pettersen, E.O.; Wibe, E.; Lovhaug, D.; Oftebro, R.; Brustad, T.

    1975-01-01

    Human cells of the established cell line NHIK 3025 have been irradiated under various conditions of oxygen and TMPN concentrations. Complete survival curves are presented for each concentration of both oxygen and TMPN. The survival curves for extremely hypoxic cells in the absence of TMPN were found to be strictly exponential in the dose range below about 2300 rad, irrespective of the technique used. Oxygen at a concentration of 37 ppm was found to protect the cells at least above the dose range up to 2500 rad, while 250 ppm of oxygen exerted a protective effect in the dose range below 1200 rad and a sensitizing effect (OER = 1.43) for higher doses. However, the protective effect below 700 rad was found to be higher in the presence of 250 ppm O 2 , than 37 ppm O 2 , indicating that the degree of protection in this low-dose range is optimal for an oxygen concentration higher than 37 ppm. TMPN provides a protective and a sensitizing effect in about the same way as oxygen does, but TMPN is less effective. When the TMPN concentration is increased from 0.5 to 10 mM the maximum dose for which TMPN exerts a protective effect on the hypoxic cells decreases from 700 to 400 rad. However the degree of protection in the dose range below 300 rad is higher for TMPN concentrations of 1 mM and 3 mM than for 0.5 mM and 10 mM. Results indicate that the degree of protection is optimal in the low-dose range (< 300 rad) for a TMPN concentration somewhere between 0.5 mM and 3 mM. (author)

  11. Pediatric Obesity: Pharmacokinetic Alterations and Effects on Antimicrobial Dosing.

    Science.gov (United States)

    Natale, Stephanie; Bradley, John; Nguyen, William Huy; Tran, Tri; Ny, Pamela; La, Kirsten; Vivian, Eva; Le, Jennifer

    2017-03-01

    Limited data exist for appropriate drug dosing in obese children. This comprehensive review summarizes pharmacokinetic (PK) alterations that occur with age and obesity, and these effects on antimicrobial dosing. A thorough comparison of different measures of body weight and specific antimicrobial agents including cefazolin, cefepime, ceftazidime, daptomycin, doripenem, gentamicin, linezolid, meropenem, piperacillin-tazobactam, tobramycin, vancomycin, and voriconazole is presented. PubMed (1966-July 2015) and Cochrane Library searches were performed using these key terms: children, pharmacokinetic, obesity, overweight, body mass index, ideal body weight, lean body weight, body composition, and specific antimicrobial drugs. PK studies in obese children and, if necessary, data from adult studies were summarized. Knowledge of PK alterations stemming from physiologic changes that occur with age from the neonate to adolescent, as well as those that result from increased body fat, become an essential first step toward optimizing drug dosing in obese children. Excessive amounts of adipose tissue contribute significantly to body size, total body water content, and organ size and function that may modify drug distribution and clearance. PK studies that evaluated antimicrobial dosing primarily used total (or actual) body weight (TBW) for loading doses and TBW or adjusted body weight for maintenance doses, depending on the drugs' properties and dosing units. PK studies in obese children are imperative to elucidate drug distribution, clearance, and, consequently, the dose required for effective therapy in these children. Future studies should evaluate the effects of both age and obesity on drug dosing because the incidence of obesity is increasing in pediatric patients. © 2017 Pharmacotherapy Publications, Inc.

  12. Single and Multiple Ascending-dose Studies of Oral Delafloxacin: Effects of Food, Sex, and Age.

    Science.gov (United States)

    Hoover, Randall; Hunt, Thomas; Benedict, Michael; Paulson, Susan K; Lawrence, Laura; Cammarata, Sue; Sun, Eugene

    2016-01-01

    The objective of this report is describe the results of 2 studies that examined the pharmacokinetic parameters, safety profile, and tolerability of single and multiple ascending doses of oral delafloxacin and the effects of food, sex, and age on oral delafloxacin pharmacokinetic parameters, safety profile, and tolerability. The first study contained 3 parts and used unformulated delafloxacin in a capsule. Part 1 was a randomized, double-blind, placebo-controlled, single (50, 100, 200, 400, 800, 1200, and 1600 mg) ascending-dose study of oral delafloxacin in healthy men. Part 2 was a single-dose crossover study in which 20 men received 250 mg delafloxacin with or without food. Part 2 also included a parallel group, double-blind, placebo-controlled study in 16 women and 16 elderly men and women who were randomized (3:1) to receive 250 mg delafloxacin or placebo. Part 3 was a randomized, double-blind, placebo-controlled, multiple (100, 200, 400, 800, 1200 mg once daily for 5 days) ascending-dose study of oral delafloxacin in healthy men. The second study was a single-dose, randomized, 3-period crossover study in which participants received 900 mg delafloxacin (2 × 450-mg tablets) under fasted conditions, with a high-fat meal, or fasted with a high-fat meal 2 hours after dosing. Serial blood samples were collected, and plasma pharmacokinetic parameters of delafloxacin were determined. Delafloxacin Cmax and AUC0-∞ increased with increasing oral dose over the dose range of 50 to 1600 mg. The increases in delafloxacin AUC0-∞ were dose proportional at doses of ≥200 mg. Steady state was reached by day 3 of dosing with minimal accumulation of delafloxacin. The Cmax of delafloxacin was decreased slightly in the presence of food. No sex difference in delafloxacin pharmacokinetic parameters was observed. In the elderly men and women, mean delafloxacin Cmax and AUC0-∞ were 35% higher than observed for young adults, which could be partially explained by a decrease in

  13. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  14. Perceived Managerial and Leadership Effectiveness within Higher Education in France

    Science.gov (United States)

    Hamlin, Robert G.; Patel, Taran

    2017-01-01

    Higher Education Institutions (HEIs) in many countries are currently experiencing significant changes in how they are organized and managed. Consequently, exploring the kind of manager/leader behaviours that are perceived as effective and least effective/ineffective by peers, subordinates, collaborators, and team members in HEIs becomes important.…

  15. A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Mehran FARAJOLLAHI

    2010-07-01

    Full Text Available The present research aims at presenting a conceptual model for effective distance learning in higher education. Findings of this research shows that an understanding of the technological capabilities and learning theories especially constructive theory and independent learning theory and communicative and interaction theory in Distance learning is an efficient factor in the planning of effective Distance learning in higher education. Considering the theoretical foundations of the present research, in the effective distance learning model, the learner is situated at the center of learning environment. For this purpose, the learner needs to be ready for successful learning and the teacher has to be ready to design the teaching- learning activities when they initially enter the environment. In the present model, group and individual active teaching-learning approach, timely feedback, using IT and eight types of interactions have been designed with respect to theoretical foundations and current university missions. From among the issues emphasized in this model, one can refer to the Initial, Formative and Summative evaluations. In an effective distance learning environment, evaluation should be part of the learning process and the feedback resulting from it should be used to improve learning. For validating the specified features, the opinions of Distance learning experts in Payame Noor, Shiraz, Science and Technology and Amirkabir Universities have been used which verified a high percentage of the statistical sample of the above mentioned features.

  16. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  17. Dose-response effects in an outbreak of Salmonella enteritidis.

    OpenAIRE

    Mintz, E. D.; Cartter, M. L.; Hadler, J. L.; Wassell, J. T.; Zingeser, J. A.; Tauxe, R. V.

    1994-01-01

    The effects of ingested Salmonella enteritidis (SE) dose on incubation period and on the severity and duration of illness were estimated in a cohort of 169 persons who developed gastroenteritis after eating hollandaise sauce made from grade-A shell eggs. The cohort was divided into three groups based on self-reported dose of sauce ingested. As dose increased, median incubation period decreased (37 h in the low exposure group v. 21 h in the medium exposure group v. 17.5 h in the high exposure ...

  18. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  19. Effective radiation dose from semicoronal CT of the sacroiliac joints in comparison with axial CT and conventional radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jurik, Anne Grethe; Boecker Puhakka, Katriina [Department of Radiology R, Aarhus University Hospital, Aarhus Kommunehospital, Noerrebrogade 44, 8000 Aarhus C (Denmark); Hansen, Jolanta [Department of Medical Physics, Aarhus University Hospital, Aarhus Kommunehospital, Noerrebrogade 44, 8000 Aarhus C (Denmark)

    2002-11-01

    The aim of this study was to evaluate the radiation dose given by semicoronal CT of the sacroiliac joints (SIJs) in comparison with axial CT and conventional radiography. The total effective radiation doses given by serial contiguous semicoronal and axial CT, using 5-mm slices, 120 kV and 330 mAs, were determined by measurement of organ doses using an anthropomorphic Rando Alderson phantom paced with thermoluminescence dosimeters. The doses given by conventional antero-posterior (AP) and oblique projections of the SIJs were determined similarly. In a female the total effective dose by semicoronal CT was found to be more than six times lower than by axial CT and 2.5 times lower than the dose use to obtain a conventional AP radiograph, the values being 102, 678, and 255 {mu}Sv, respectively. The effective dose by semicoronal CT was only a little higher than the dose given to obtain two oblique radiographs. In a male with lead protection of the gonads the dose by semicoronal CT was four times lower than by axial CT, but higher than by conventional radiography. In conclusion, the effective dose by semicoronal CT of the SIJs is lower than by axial CT, and in females a semicoronal CT implies a lower effective radiation dose that used to obtain an AP radiograph. (orig.)

  20. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    International Nuclear Information System (INIS)

    Fuenzalida, M.; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C.

    2011-01-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  1. Effect of tube current modulation for dose estimation using a simulation tool on body CT examination

    International Nuclear Information System (INIS)

    Kawaguchi, Ai; Matsunaga, Yuta; Kobayashi, Masanao; Suzuki, Shoichi; Matsubara, Kosuke; Chida, Koichi

    2015-01-01

    The purpose of this study was to evaluate the effect of tube current modulation for dose estimation of a body computed tomography (CT) examination using a simulation tool. The authors also compared longitudinal variations in tube current values between iterative reconstruction (IR) and filtered back-projection (FBP) reconstruction algorithms. One hundred patients underwent body CT examinations. The tube current values around 10 organ regions were recorded longitudinally from tube current information. The organ and effective doses were simulated by average tube current values and longitudinal modulated tube current values. The organ doses for the bladder and breast estimated by longitudinal modulated tube current values were 20 % higher and 25 % lower than those estimated using the average tube current values, respectively. The differences in effective doses were small (mean, 0.7 mSv). The longitudinal variations in tube current values were almost the same for the IR and FBP algorithms. (authors)

  2. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    Energy Technology Data Exchange (ETDEWEB)

    Fuenzalida, M. [Universidad de la Frontera, Temuco (Chile). Programa de Magister en Fisica Medica; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C., E-mail: fisicamedica@incancer.c [Instituto Nacional del Cancer, Santiago (Chile). Unidad de Fisica Medica

    2011-07-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  3. The dose effect of irradiated rice pollen on double fertilization

    International Nuclear Information System (INIS)

    Wang Houcong; Chen Zhengming; Chen Ruming; Qiu Simi; Yang Juemin; Yang Huijie

    1995-01-01

    The mature panicles of rice were treated with 60 Co γ-rays in the range of 0∼0.372 kGy. The male sterile line used as the female plants were fertilized with γ-irradiated pollen manually. The dose effect of the irradiated pollen on double fertilization was investigated. It was found that double fertilization of the irradiated pollen was suppressed to different degrees as compared with the control. The effect was noticeable as that the fusion time of the male nucleolus with the female one was delayed with the increasing of γ-radiation dose. The delayed time was less than 13 hours when the dose was below 0.186 kGy and it was more than 15 hours when the dose was above 0.279 kGy. Furthermore, several types of deformed embryonic cells and endosperm nuclei were observed

  4. Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects

    International Nuclear Information System (INIS)

    Buonanno, Giorgio; Marks, Guy B.; Morawska, Lidia

    2013-01-01

    Air pollution is a widespread health problem associated with respiratory symptoms. Continuous exposure monitoring was performed to estimate alveolar and tracheobronchial dose, measured as deposited surface area, for 103 children and to evaluate the long-term effects of exposure to airborne particles through spirometry, skin prick tests and measurement of exhaled nitric oxide (eNO). The mean daily alveolar deposited surface area dose received by children was 1.35 × 10 3 mm 2 . The lowest and highest particle number concentrations were found during sleeping and eating time. A significant negative association was found between changes in pulmonary function tests and individual dose estimates. Significant differences were found for asthmatics, children with allergic rhinitis and sensitive to allergens compared to healthy subjects for eNO. Variation is a child's activity over time appeared to have a strong impact on respiratory outcomes, which indicates that personal monitoring is vital for assessing the expected health effects of exposure to particles. -- Highlights: •Particle dose was estimated through personal monitoring on more than 100 children. •We focused on real-time daily dose of particle alveolar deposited surface area. •Spirometry, skin prick and exhaled Nitric Oxide tests were performed. •Negative link was found between changes in pulmonary functions and individual doses. •A child's lifestyle appeared to have a strong impact on health respiratory outcomes. -- The respiratory health effects of daily airborne particle dose on children through personal monitoring

  5. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake.

    Science.gov (United States)

    Demonty, Isabelle; Ras, Rouyanne T; van der Knaap, Henk C M; Duchateau, Guus S M J E; Meijer, Linsie; Zock, Peter L; Geleijnse, Johanna M; Trautwein, Elke A

    2009-02-01

    Phytosterols (plant sterols and stanols) are well known for their LDL-cholesterol (LDL-C)-lowering effect. A meta-analysis of randomized controlled trials in adults was performed to establish a continuous dose-response relationship that would allow predicting the LDL-C-lowering efficacy of different phytosterol doses. Eighty-four trials including 141 trial arms were included. A nonlinear equation comprising 2 parameters (the maximal LDL-C lowering and an incremental dose step) was used to describe the dose-response curve. The overall pooled absolute (mmol/L) and relative (%) LDL-C-lowering effects of phytosterols were also assessed with a random effects model. The pooled LDL-C reduction was 0.34 mmol/L (95% CI: -0.36, -0.31) or 8.8% (95% CI: -9.4, -8.3) for a mean daily dose of 2.15 g phytosterols. The impacts of subject baseline characteristics, food formats, type of phytosterols, and study quality on the continuous dose-response curve were determined by regression or subgroup analyses. Higher baseline LDL-C concentrations resulted in greater absolute LDL-C reductions. No significant differences were found between dose-response curves established for plant sterols vs. stanols, fat-based vs. non fat-based food formats and dairy vs. nondairy foods. A larger effect was observed with solid foods than with liquid foods only at high phytosterol doses (>2 g/d). There was a strong tendency (P = 0.054) towards a slightly lower efficacy of single vs. multiple daily intakes of phytosterols. In conclusion, the dose-dependent LDL-C-lowering efficacy of phytosterols incorporated in various food formats was confirmed and equations of the continuous relationship were established to predict the effect of a given phytosterol dose. Further investigations are warranted to investigate the impact of solid vs. liquid food formats and frequency of intake on phytosterol efficacy.

  6. Low-dose effects hypothesis and observations on NPP personal

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, R.; Acheva, A.; Boteva, R.; Chobanova, N.; Djounova, J.; Gyuleva, I.; Ivanova, K.; Kurchatova, G.; Milchev, A.; Negoicheva, K.; Nikolov, V.; Panova, D.; Pejankov, I.; Rupova, I.; Stankova, K.; Zacharieva, E. [Radiobiology Department, National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria)

    2013-07-01

    In the modern world the use of various sources of ionizing radiation is nearly ubiquitous. They have numerous applications in industry, medicine, science, agriculture, etc. Radiation doses to workers nevertheless are commensurable to the natural background exposure. Published data on the health effects of occupational radiation exposure are often contradictory. Addressing the issue of „negative” (bystander effects, genomic instability) and „positive” (adaptive response, radiation hormesis) effects of low doses is important and has a significant social and economic impact. In this paper we summarize the results of our extensive monitoring of nuclear power plant (NPP) staff. We believe it is a cohort suitable for analysis of health effects at low doses, because of their good medical and dosimetric control. Our results rather support the idea of absence of adverse health effects in NPP workers. (author)

  7. A review of in vitro dose-effect relationships

    International Nuclear Information System (INIS)

    Dolphin, G.W.

    1978-01-01

    One of the principal reasons for investigating the relationship between absorbed dose and the number of chromosome aberrations per cell in lymphocytes taken from samples of human peripheral blood is to obtain a calibration curve for biological dosimetry. Factors affecting the radiation-induced aberration yield in vitro of T lymphocytes are reviewed under the following heads: temperature, oxygen effect, inter-mitotic death, mitotic delay, dose rate background of aberrations in normal humans, mathematical representation. (U.K.)

  8. Simulation experiment on total ionization dose effects of linear CCD

    International Nuclear Information System (INIS)

    Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2004-01-01

    We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)

  9. The effects of various doses of ovaprim on reproductive performance ...

    African Journals Online (AJOL)

    Artificial spawning of two African Catfish species viz: C. gariepinus and H. longifilis of 0.18 – 0.64kg and 0.53 – 1.63 kg respectively were carried out using various doses of Ovaprim with carp pituitary extract (C.P.E.) as the control. Oocyte maturation and ovulation were successfully effected with Ovaprim doses of 0.2, 0.25, ...

  10. The effect of dosing regimen on the pharmacokinetics of risedronate

    Science.gov (United States)

    Mitchell, David Y; Heise, Mark A; Pallone, Karen A; Clay, Marian E; Nesbitt, John D; Russell, Darrell A; Melson, Chad W

    1999-01-01

    Aims To examine the effect of timing of a risedronate dose relative to food intake on the rate and extent of risedronate absorption following single-dose, oral administration to healthy male and female volunteers. Methods A single-dose, randomized, parallel study design was conducted with volunteers assigned to four treatment groups (31 or 32 subjects per group, 127 subjects total). Each subject was orally administered 30 mg risedronate. Group 1 was fasted for 10 h prior to and 4 h after dosing (fasted group); Groups 2 and 3 were fasted for 10 h and were dosed 1 and 0.5 h, respectively, before a high-fat breakfast; and Group 4 was dosed 2 h after a standard dinner. Blood and urine samples were collected for 168 h after dosing. Pharmacokinetic parameters were estimated by simultaneous analysis of risedronate serum concentration and urinary excretion rate-time data. Results Extent of risedronate absorption (AUC and Ae) was comparable (P = 0.4) in subjects dosed 2 h after dinner and 0.5 h before breakfast; however, a significantly greater extent of absorption occurred when risedronate was given 1 or 4 h prior to a meal (1.4- to 2.3-fold greater). Administration 0.5, 1, or 4 h prior to a meal resulted in a significantly greater rate of absorption (Cmax 2.8-, 3.5-, and 4.1-fold greater, respectively) when compared with 2 h after dinner. Conclusions The comparable extent of risedronate absorption when administered either 0.5–1 h before breakfast or 2 h after an evening meal support previous clinical studies where risedronate was found to have similar effectiveness using these dosing regimens. This flexibility in the timing of risedronate administration may provide patients an alternative means to achieve the desired efficacy while maintaining their normal daily routine. PMID:10583024

  11. Radiation exposure during paediatric CT in Sudan: CT dose, organ and effective doses

    International Nuclear Information System (INIS)

    Suliman, I.I.; Khamis, H.M.; Ombada, T.H.; Alzimami, K.; Alkhorayef, M.; Sulieman, A.

    2015-01-01

    The purpose of this study was to assess the magnitude of radiation exposure during paediatric CT in Sudanese hospitals. Doses were determined from CT acquisition parameters using CT-Expo 2.1 dosimetry software. Doses were evaluated for three patient ages (0-1, 1-5 and 5-10 y) and two common procedures (head and abdomen). For children aged 0-1 y, volume CT air kerma index (C vol ), air Kerma-length product and effective dose (E) values were 19.1 mGy, 265 mGy.cm and 3.1 mSv, respectively, at head CT and those at abdominal CT were 8.8 mGy, 242 mGy.cm and 7.7 mSv, respectively. Those for children aged 1-5 y were 22.5 mGy, 305 mGy.cm and 1.1 mSv, respectively, at head CT and 12.6 mGy, 317 mGy.cm, and 5.1 mSv, respectively, at abdominal CT. Dose values and variations were comparable with those reported in the literature. Organ equivalent doses vary from 7.5 to 11.6 mSv for testes, from 9.0 to 10.0 mSv for ovaries and from 11.1 to 14.3 mSv for uterus in abdominal CT. The results are useful for dose optimisation and derivation of national diagnostic reference levels. (authors)

  12. Effect of Localizer Radiography Projection on Organ Dose at Chest CT with Automatic Tube Current Modulation.

    Science.gov (United States)

    Saltybaeva, Natalia; Krauss, Andreas; Alkadhi, Hatem

    2017-03-01

    Purpose To calculate the effect of localizer radiography projections to the total radiation dose, including both the dose from localizer radiography and that from subsequent chest computed tomography (CT) with tube current modulation (TCM). Materials and Methods An anthropomorphic phantom was scanned with 192-section CT without and with differently sized breast attachments. Chest CT with TCM was performed after one localizer radiographic examination with anteroposterior (AP) or posteroanterior (PA) projections. Dose distributions were obtained by means of Monte Carlo simulations based on acquired CT data. For Monte Carlo simulations of localizer radiography, the tube position was fixed at 0° and 180°; for chest CT, a spiral trajectory with TCM was used. The effect of tube start angles on dose distribution was investigated with Monte Carlo simulations by using TCM curves with fixed start angles (0°, 90°, and 180°). Total doses for lungs, heart, and breast were calculated as the sum of the dose from localizer radiography and CT. Image noise was defined as the standard deviation of attenuation measured in 14 circular regions of interest. The Wilcoxon signed rank test, paired t test, and Friedman analysis of variance were conducted to evaluate differences in noise, TCM curves, and organ doses, respectively. Results Organ doses from localizer radiography were lower when using a PA instead of an AP projection (P = .005). The use of a PA projection resulted in higher TCM values for chest CT (P chest CT. © RSNA, 2016 Online supplemental material is available for this article.

  13. Position displacement effect on the doses in the peripheral head regions

    International Nuclear Information System (INIS)

    Kortesniemi, M.; Seppaelae, T.; Bjugg, H.; Seren, T.; Kotiluoto, P.; Auterinen, I.; Parkkinen, R.; Savolainen, S.

    2000-01-01

    Patient positioning is a challenging task in BNCT-treatments due to the use of multiple fields and a static horizontal beam construction. Positioning accuracy of 5 mm is required for acceptable dose delivery within appropriate limits of dose uncertainty (up to 10% of point dose in target volume). The aim of this study was to determine if a patient head position creating a clear gap between the beam port and the head would have a significant effect on the doses to the peripheral regions of the head, e.g. to the eyes. The gamma dose rates were measured in a water filled ellipsoidal phantom with an ionisation chamber (IC). Mn activation wires were used to determine the Mn-55(n, γ) reaction rates. Twelve measurement points were chosen in the phantom and two phantom positions were applied. According to this study the 35 mm position change and the resulting gap has an obvious effect on the peripheral doses in BNCT. The Mn activation reaction rates were on the average 80% higher in the deviation position than in the reference position. Increasing depth from the surface inside the phantom diminished the gamma dose difference between the two positions. Scattering environment changes with position displacement and resulting gap causes differences in neutron fluences and gamma doses. (author)

  14. Biological UV-doses and the effect on an ozone layer depletion

    International Nuclear Information System (INIS)

    Dahlback, A.; Henriksen, T.

    1988-08-01

    Effective UV-doses were calculated based on the integrated product of the biological action spectrum and the solar radiation. The calculations included absorption and scattering of UV-radiation in the atmosphere, both for normal ozone conditions as well as for a depleted ozone layer. The effective annual UV-dose increases by approximately 4% per degree of latitude towards the equator. An ozone depletion of 1% increases the annual UV-dose by approximately 1% at 60 o N. A large depletion of 50% over Scandinavia (60 o N) would give this region an effective UV-dose similar to that obtained, with normal ozone conditions, at a latitude of 40 o N (California or the Mediterranean countries). The Antarctic ozone hole increases the annual UV-dose by 20 to 25% which is a similar increase as that attained by moving 5 to 6 degrees of latitude nearer the equator. The annual UV-dose on higher latitudes is mainly determined by the summer values of ozone. Both the ozone values and the effective UV-doses vary from one year to another (within ±4%). No positive or negative trend is observed for Scandinavia from 1978 to 1988

  15. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  16. A Monte Carlo estimation of effective dose in chest tomosynthesis

    International Nuclear Information System (INIS)

    Sabol, John M.

    2009-01-01

    Purpose: The recent introduction of digital tomosynthesis imaging into routine clinical use has enabled the acquisition of volumetric patient data within a standard radiographic examination. Tomosynthesis requires the acquisition of multiple projection views, requiring additional dose compared to a standard projection examination. Knowledge of the effective dose is needed to make an appropriate decision between standard projection, tomosynthesis, and CT for thoracic x-ray examinations. In this article, the effective dose to the patient of chest tomosynthesis is calculated and compared to a standard radiographic examination and to values published for thoracic CT. Methods: Radiographic technique data for posterior-anterior (PA) and left lateral (LAT) radiographic chest examinations of medium-sized adults was obtained from clinical sites. From these data, the average incident air kerma for the standard views was determined. A commercially available tomosynthesis system was used to define the acquisition technique and geometry for each projection view. Using Monte Carlo techniques, the effective dose of the PA, LAT, and each tomosynthesis projection view was calculated. The effective dose for all projections of the tomosynthesis sweep was summed and compared to the calculated PA and LAT values and to the published values for thoracic CT. Results: The average incident air kerma for the PA and left lateral clinical radiographic examinations were found to be 0.10 and 0.40 mGy, respectively. The effective dose for the PA view of a patient of the size of an average adult male was determined to be 0.017 mSv (ICRP 60) [0.018 mSv (ICRP 103)]. For the left lateral view of the same sized patient, the effective dose was determined to be 0.039 mSv (ICRP 60) [0.050 mSv (ICRP 103)]. The cumulative mA s for a tomosynthesis examination is recommended to be ten times the mA s of the PA image. With this technique, the effective dose for an average tomosynthesis examination was

  17. Dose-effect relationships for the US radium dial painters

    International Nuclear Information System (INIS)

    Thomas, R.G.

    1995-01-01

    Dose-response data are presented from a large percentage of the US workers who were exposed to radium through the painting of luminous dials. The data in this paper are only from females, because very few males worked in this occupation. Log-normal analyses were done for radium-induced bone sarcomas and head carcinomas after the populations of the respective doses were first determined to be log-normally distributed. These populations included luminisers who expressed no radium-related cancerous condition. In this study of the female radium luminisers, the most important data concerning radiation protection are probably from workers who were exposed to radium but showed no cancer incidence. A total of 1391 subjects with average measured skeletal doses below 10 Gy are in this category. A primary purpose is to illustrate the strong case that 226,228 Ra is representative of those radionuclides that exemplify in humans a 'threshold' dose, a dose below which there has been no observed health effects on the exposed individual. Application of a threshold dose for radium deposited in the skeleton does not mean to imply that any other source of skeletal irradiation should be considered to follow a similar pattern. Second, a policy issue that begs for attention is the economic consequence of forcing radiation to appear as a highly toxic insult. It is time to evaluate the data objectively instead of formatting the extrapolation scheme beforehand and forcing the data to fit a preconceived pattern such as linearity through the dose-effect origin. In addition, it is time to re-evaluate (again) variations in background radiation levels throughout the world and to cease being concerned with, and regulating against, miniscule doses for which no biomedical effects on humans have ever been satisfactorily identified or quantified. (author)

  18. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  19. Can results from animal studies be used to estimate dose or low dose effects in humans

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1981-01-01

    A method has been devised to extrapolate biological equilibrium levels between animal species and subsequently to humans. Our initial premise was based on the observation that radionuclide retention is normally a function of metabolism so that direct or indirect measures could be described by a power law based on body weights of test animal species. However, we found that such interspecies comparisons ought to be based on the coefficient of the power equation rather than on the exponential parameter. The method is illustrated using retention data obtained from five non-ruminant species (including humans) that were fed radionuclides with different properties. It appears that biological equilibrium level for radionuclides in man can be estimated using data from mice, rats, and dogs. The need to extrapolate low-dose effects data obtained from small animals (usually rodents) to humans is not unique to radiation dosimetry or radiation protection problems. Therefore, some quantitative problems connected with estimating low-dose effects from other disciplines have been reviewed, both because of the concern about effects induced by the radionuclide moiety of a radiopharmaceutical and those of the nonradioactive component. The possibility of extrapolating low-dose effects calculated from animal studies to human is discussed

  20. Can results from animal studies be used to estimate dose or low dose effects in humans

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1981-01-01

    We have devised a method to extrapolate biological equilibrium levels between animal species and subsequently to humans. Our initial premise was based on the observation that radionuclide retention is normally a function of metabolism so that direct or indirect measures could be described by a power law based on body weights of test animal species. However, we found that such interspecies comparisons ought to be based on the coefficient of the power equation rather than on the exponential parameter. The method is illustrated using retention data obtained from five non-ruminant species (including humans) that were fed radionuclides with different properties. It appears that biological equilibrium level for radionuclides in man can be estimated using data from mice, rats and dogs. The need to extrapolate low-dose effects data obtained from small animals (usually rodents) to humans is not unique to radiation dosimetry or radiation protection problems. Therefore, researchers have reviewed some quantitative problems connected with estimating low-dose effects from other disciplines, both because of the concern about effects induced by the radionuclide moiety of a radiopharmaceutical and those of the nonradioactive component. The possibility of extrapolating low-dose effects calculated from animal studies to humans is discussed

  1. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  2. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  3. Problems linked to effects of ionizing radiations low doses

    International Nuclear Information System (INIS)

    Anon.

    1995-10-01

    The question of exposure to ionizing radiations low doses and risks existing for professional and populations has been asked again, with the recommendations of the International Commission of Radiation Protection (ICRP) to lower the previous standards and agreed as guides to organize radiation protection, by concerned countries and big international organisms. The sciences academy presents an analysis which concerned on epidemiological and dosimetric aspects in risk estimation, on cellular and molecular aspects of response mechanism to irradiation. The observation of absence of carcinogen effects for doses inferior to 200 milli-sieverts and a re-evaluation of data coming from Nagasaki and Hiroshima, lead to revise the methodology of studies to pursue, to appreciate more exactly the effects of low doses, in taking in part, particularly, the dose rate. The progress of molecular and cellular biology showed that the extrapolation from high doses to low doses is not in accordance with actual data. The acknowledge of DNA repair and carcinogenesis should make clearer the debate. (N.C.). 61 refs., 9 annexes

  4. Review of time-dose effects in radiation therapy

    International Nuclear Information System (INIS)

    Peschel, R.E.; Fischer, J.J.

    1980-01-01

    A historical review of conventional fractionation offers little confidence that such treatment is optimal for all tumors. Thus manipulation of time-dose schedules may provide a relatively inexpensive yet potentially useful technique for improving therapeutic results in radiation therapy. Consideration of basic radiobiological principles and animal model data illustrates the complex and heterogeneous nature of normal tissue and tumor response to time-dose effects and supports the hypothesis that better time-dose prescriptions can be found in clinical practice. The number of possible time-dose prescriptions is very large, and a review of the clinical trials using nonconventional fractionation demonstrates that the sampled portion of the total three-dimensional space of time, fraction number, and dose has been very small. Only carefully designed clinical trials can establish the therapeutic advantage of a new treatment schedule, and methods for selecting the most promising schedules are discussed. The use of simple data reduction formulas for time-dose effects should be discarded since they ignore the very complexity and heterogeneity of tissues and tumors which may form the basis of improved clinical results

  5. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  6. Dose rate effects during damage accumulation in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    We combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of Silicon. We obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, we study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  7. Application of a sitting MIRD phantom for effective dose calculations

    International Nuclear Information System (INIS)

    Olsher, R. H.; Van Riper, K. A.

    2005-01-01

    In typical realistic scenarios, dose factors due to 60 Co contaminated steel, used in consumer products, cannot be approximated by standard exposure geometries. It is then necessary to calculate the effective dose using an appropriate anthropomorphic phantom. MCNP calculations were performed using a MIRD human model in two settings. In the first, a male office worker is sitting in a chair containing contaminated steel, surrounded by contaminated furniture. In the second, a male driver is seated inside an automobile, the steel of which is uniformly contaminated. To accurately calculate the dose to lower body organs, especially the gonads, it was essential to modify the MIRD model to simulate two sitting postures: chair and driving position. The phantom modifications are described, and the results of the calculations are presented. In the case of the automobile scenarios, results are compared to those obtained using an isotropic fluence-to-dose conversion function. (authors)

  8. Dose rate effects during damage accumulation in silicon

    International Nuclear Information System (INIS)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    The authors combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of silicon. They obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, the authors study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates

  9. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    International Nuclear Information System (INIS)

    Al-Achkar, W.

    2001-09-01

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co 60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  10. Epidemiology and effects on health of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Rodriguez Artalejo, F.; Andres Manzano, B. de; Rel Calero, J. del

    1997-01-01

    This article describes the concept and aims of epidemiology, its methods and contribution to the knowledge of the effects of low ionizing radiation doses on health. The advantages of epidemiological studies for knowing the consequences of living near nuclear facilities and the effects of occupational exposure to radiations are also described. (Author) 43 refs

  11. EFFECT OF DIFFERENT DOSES OF NPK FERTILIZER ON THE ...

    African Journals Online (AJOL)

    EFFECT OF DIFFERENT DOSES OF NPK FERTILIZER ON THE. INFECTION COEFFICIENT OF RICE (Orysa sativa L.) .... 2014) and the effect of plants extracts on rice seed fungi (Nguefack et al., 2013). Several authors work on ... separated by border rows of 1m wide. Four varieties of rice were used for this study. (NERICA ...

  12. A 3-lever discrimination procedure reveals differences in the subjective effects of low and high doses of MDMA.

    Science.gov (United States)

    Harper, David N; Langen, Anna-Lena; Schenk, Susan

    2014-01-01

    Drug discrimination studies have suggested that the subjective effects of low doses of (±)3,4-methylenedioxymethamphetamine (MDMA) are readily differentiated from those of d-amphetamine (AMPH) and that the discriminative stimulus properties are mediated by serotonergic and dopaminergic mechanisms, respectively. Previous studies, however, have primarily examined responses to doses that do not produce substantial increases in extracellular dopamine. The present study determined whether doses of MDMA that produce increases in synaptic dopamine would also produce subjective effects that were more like AMPH and were sensitive to pharmacological manipulation of D1-like receptors. A three-lever drug discrimination paradigm was used. Rats were trained to respond on different levers following saline, AMPH (0.5mg/kg, IP) or MDMA (1.5mg/kg, IP) injections. Generalization curves were generated for a range of different doses of both drugs and the effect of the D1-like antagonist, SCH23390 on the discriminative stimulus effects of different doses of MDMA was determined. Rats accurately discriminated MDMA, AMPH and saline. Low doses of MDMA produced almost exclusive responding on the MDMA lever but at doses of 3.0mg/kg MDMA or higher, responding shifted to the AMPH lever. The AMPH response produced by higher doses of MDMA was attenuated by pretreatment with SCH23390. The data suggest that low doses and higher doses of MDMA produce distinct discriminative stimuli. The shift to AMPH-like responding following administration of higher doses of MDMA, and the decrease in this response following administration of SCH23390 suggests a dopaminergic component to the subjective experience of MDMA at higher doses. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Estimating effective doses to children from CT examinations

    International Nuclear Information System (INIS)

    Heron, J.C.L.

    2000-01-01

    Full text: Assessing doses to patients in diagnostic radiology is an integral part of implementing optimisation of radiation protection. Sources of normalised data are available for estimating doses to adults undergoing CT examinations, but for children this is not the case. This paper describes a simple method for estimating effective doses arising from paediatric CT examinations. First the effective dose to an adult is calculated, having anatomically matched the scanned regions of the child and the adult and also matched the irradiation conditions. A conversion factor is then applied to the adult effective dose, based on the region of the body being scanned - head, upper or lower trunk. This conversion factor is the child-to-adult ratio of the ratios of effective dose per entrance air kerma (in the absence of the patient) at the FAD. The values of these conversion factors were calculated by deriving effective dose per entrance air kerma at the FAD for new-born, 1, 5, 10, 15 and adult phantoms using four projections (AP, PA, left and right laterals) over a range of beam qualities and FADs.The program PCXMC was used for this purpose. Results to date suggest that the conversion factors to give effective doses for children undergoing CT examinations of the upper trunk are approximately 1.3, 1.2, 1.15, 1.1 and 1.05 for ages 0, 1, 5, 10 and 15 years respectively; CT of the lower trunk - 1.4, 1.3, 1.2, 1.2, 1.1; and CT of the head - 2.3, 2.0, 1.5, 1.3, 1.1. The dependence of these factors on beam quality (HVL from 4 to 10 mm Al) is less than 10%, with harder beams resulting in slightly smaller conversion factors. Dependence on FAD is also less than 10%. Major sources of uncertainties in the conversion factors include matching anatomical regions across the phantoms, and the presence of beam divergence in the z-direction when deriving the factors. The method described provides a simple means of estimating effective doses arising from paediatric CT examinations with

  14. Double dose: High family conflict enhances the effect of media violence exposure on adolescents’ aggression

    NARCIS (Netherlands)

    Fikkers, K.M.; Piotrowski, J.T.; Weeda, W.D.; Vossen, H.G.M.; Valkenburg, P.M.

    2013-01-01

    We investigated how exposure to media violence and family conflict affects adolescents’ subsequent aggressive behavior. We expected a double dose effect, meaning that high media violence exposure would lead to higher levels of aggression for adolescents in high conflict families compared to low

  15. Evaluation of effective dose from CT scans for overweight and obese adult patients using the VirtualDose software

    International Nuclear Information System (INIS)

    Liang, Baohui; Gao, Yiming; Chen, Zhi; Xu, X. George

    2017-01-01

    This paper evaluates effective dose (ED) of overweight and obese patients who undergo body computed tomography (CT) examinations. ED calculations were based on tissue weight factors in the International Commission on Radiological Protection Publication 103 (ICRP 103). ED per unit dose length product (DLP) are reported as a function of the tube voltage, body mass index (BMI) of patient. The VirtualDose software was used to calculate ED for male and female obese phantoms representing normal weight, overweight, obese 1, obese 2 and obese 3 patients. Five anatomic regions (chest, abdomen, pelvis, abdomen/pelvis and chest/abdomen/pelvis) were investigated for each phantom. The conversion factors were computed from the DLP, and then compared with data previously reported by other groups. It was observed that tube voltage and BMI are the major factors that influence conversion factors of obese patients, and that ED computed using ICRP 103 tissue weight factors were 24% higher for a CT chest examination and 21% lower for a CT pelvis examination than the ED using ICRP 60 factors. For body CT scans, increasing the tube voltage from 80 to 140 kVp would increase the conversion factors by as much as 19-54% depending on the patient's BMI. Conversion factor of female patients was ∼7% higher than the factors of male patients. DLP and conversion factors were used to estimate ED, where conversion factors depended on tube voltage, sex, BMI and tissue weight factors. With increasing number of obese individuals, using size-dependence conversion factors will improve accuracy, in estimating patient radiation dose. (authors)

  16. Cost-effectiveness of reduction of off-site dose

    International Nuclear Information System (INIS)

    McGrath, J.J.; Macphee, R.; Arbeau, N.; Miskin, J.; Scott, C.K.; Winters, E.

    1988-03-01

    Since the early 1970's, nuclear power plants have been designed and operated with a target of not releasing more than one percent of the licensed limits (derived emission limits) in liquid and gaseous effluents. The AECB initiated this study of the cost-effectiveness of the reduction of off-site doses as part of a review to determine if further measures to reduce off-site doses might be reasonably achievable. Atlantic Nuclear has estimated the cost of existing technology options that can be applied for a further reduction of radioactive effluents from future CANDU nuclear power plants. Detritiation, filtration, ion exchange and evaporation are included in the assessment. The costs are presented in 1987 Canadian dollars, and include capital and operating costs for a reference 50 year plant life. Darlington NGS and Point Lepreau NGS are the reference nuclear power plant types and locations. The effect resulting from the hypothetical application of each technology has been calculated as the resulting reduction in world collective radiation dose detriment. The CSA N288.1 procedure was used for local pathway analysis and the global dispersion model developed by the NEA (OECD) group of experts was used for dose calculations. The reduction in the 'collective effective dose equivalent commitment' was assumed to exist for 10,000 years, the expected life-span of solid waste repositories. No attempt was made to model world population dynamics. The collective dose reductions were calculated for a nominal world population of 10 billion persons. The estimated cost and effect of applying the technology options are summarized in a tabular form for input to further consideration of 'reasonably achievable off-site dose levels'

  17. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Woloschak, Gayle E. [Northwestern University, Department of Radiation Oncology, Feinberg School of Medicine, Chicago, IL (United States); Shore, Roy E. [Radiation Effects Research Foundation (RERF), Hiroshima City (Japan); Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Grosche, Bernd [Federal Office for Radiation Protection, Oberschleissheim (Germany); Niwa, Ohtsura [Fukushima Medical University, Fukushima (Japan); Akiba, Suminori [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima City (Japan); Ono, Tetsuya [Institute for Environmental Sciences, Rokkasho, Aomori-ken (Japan); Suzuki, Keiji [Nagasaki University, Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki (Japan); Iwasaki, Toshiyasu [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo (Japan); Ban, Nobuhiko [Tokyo Healthcare University, Faculty of Nursing, Tokyo (Japan); Kai, Michiaki [Oita University of Nursing and Health Sciences, Department of Environmental Health Science, Oita (Japan); Clement, Christopher H.; Hamada, Nobuyuki [International Commission on Radiological Protection (ICRP), PO Box 1046, Ottawa, ON (Canada); Bouffler, Simon [Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot (United Kingdom); Toma, Hideki [JAPAN NUS Co., Ltd. (JANUS), Tokyo (Japan)

    2015-11-15

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. (orig.)

  18. Low dose effects and non-monotonic dose responses for endocrine active chemicals: Science to practice workshop: Workshop summary

    DEFF Research Database (Denmark)

    Beausoleil, Claire; Ormsby, Jean-Nicolas; Gies, Andreas

    2013-01-01

    A workshop was held in Berlin September 12–14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses (“low dose hypothesis”) for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted of lectu...

  19. Effect of low dose X-ray irradiation on apoptosis in spermatogenic cells of mouse testes

    International Nuclear Information System (INIS)

    Liu Guangwei; Liu Shuchun; Lu Zhe; Gong Shouliang

    2003-01-01

    To study the effects of low dose radiation (LDR) with different doses of X-rays on the apoptosis in spermatogenic cells of male Kunming mouse testes. The time-effect and dose-effect of apoptosis in the different stages of spermatogenic cell cycles of mouse testis after LDR with different doses of X-rays were studied with light microscope using the methods of TdT-mediated dUTP nick end labeling (TUNEL) and HE staining. The apoptosis of spermatogenic cells induced by LDR had a remarkable regularity in cell types. When the dose was 0.025 Gy, spermatogonium apoptosis was taken as main. With the dose increase of irradiation (0.025-0.2 Gy), spermatocytes also showed an apoptotic change, but the apoptotic rate of spermatogonia was significantly higher than that of spermatocytes. Moreover, the apoptosis of spermatids and spermatozoa scarcely occurred after irradiation with low dose. The apoptosis of spermatogenic cells induced by LDR has a regular change, which provides a further experimental evidence for the mechanism study of hormesis by LDR

  20. Influence of variations in dose and dose rates on biological effects of inhaled beta-emitting radionuclides

    International Nuclear Information System (INIS)

    McClellan, R.O.; Benjamin, S.A.; Boecker, B.B.; Hahn, F.F.; Hobbs, C.H.; Jones, R.K.; Lundgren, D.L.

    1976-01-01

    The biological effects of inhaled β-emitting radionuclides, 90 Y, 91 Y, 144 Ce and 90 Sr, are being investigated in beagle dogs that received single acute exposures at 12 to 14 months of age. The aerosols studied have included 91 YC1 3 , 144 CeC1 3 , 90 SrC1 2 , and 90 Y, 91 Y, 144 Ce or 90 Sr in aluminosilicate particles. Thus, 91 YCl 3 , 144 CeCl 3 and the aluminosilicate containing radionuclide particles all resulted in significant exposures to lung; 91 YC1 3 , 144 CeC1 3 an 90 SrC1 2 resulted in significant exposures to bone; 91 YC1 3 and 144 CeC1 3 resulted in significant exposures to liver. The higher initial doserate exposures have been more effective than low dose-rate exposures on a per-rad basis in producing early effects. To date ( 144 CeO 2 , it was observed that, on a μCi initial lung burden per kilogram body weight basis, mice did not develop pulmonary tumours whereas beagle dogs did. To fid out the reason for this observation mice have been repeatedly exposed by inhalation to 144 CeO 2 to maintain lung burdens of 144 Ce that resulted in radiation dose rates similar to that observed in beagle dogs. Several of the repeatedly exposed mice developed malignant pulmonary tumours. Thus, with similar dose rates and cumulative doses to the lung, mice and dogs responded in a similar manner to chronic β radiation

  1. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  2. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO.

    Science.gov (United States)

    Perez-Calatayud, Jose; Ballester, Facundo; Das, Rupak K; Dewerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Ouhib, Zoubir; Rivard, Mark J; Sloboda, Ron S; Williamson, Jeffrey F

    2012-05-01

    Recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO) on dose calculations for high-energy (average energy higher than 50 keV) photon-emitting brachytherapy sources are presented, including the physical characteristics of specific (192)Ir, (137)Cs, and (60)Co source models. This report has been prepared by the High Energy Brachytherapy Source Dosimetry (HEBD) Working Group. This report includes considerations in the application of the TG-43U1 formalism to high-energy photon-emitting sources with particular attention to phantom size effects, interpolation accuracy dependence on dose calculation grid size, and dosimetry parameter dependence on source active length. Consensus datasets for commercially available high-energy photon sources are provided, along with recommended methods for evaluating these datasets. Recommendations on dosimetry characterization methods, mainly using experimental procedures and Monte Carlo, are established and discussed. Also included are methodological recommendations on detector choice, detector energy response characterization and phantom materials, and measurement specification methodology. Uncertainty analyses are discussed and recommendations for high-energy sources without consensus datasets are given. Recommended consensus datasets for high-energy sources have been derived for sources that were commercially available as of January 2010. Data are presented according to the AAPM TG-43U1 formalism, with modified interpolation and extrapolation techniques of the AAPM TG-43U1S1 report for the 2D anisotropy function and radial dose function.

  3. Examining the Effectiveness of Social Responsibility Courses in Higher Education

    Science.gov (United States)

    Droms, Courtney; Stephen, Sheryl-Ann K.

    2015-01-01

    Individual and corporate social responsibility has been gaining more and more attention over the last several years. We examine the effectiveness of incorporating social responsibility courses into the curriculum in higher education, with a specific look at Butler University. In general, the results indicate that implementing this type of…

  4. ICT as an Effective Tool for Internationalization of Higher Education

    Science.gov (United States)

    Magzan, Masha; Aleksic-Maslac, Karmela

    2009-01-01

    Globalization and new technologies have opened up a global market for education pressuring many institutions to be internationalized. Within mainly descriptive mode of analysis, this study investigates how internationalization of higher education can be facilitated by the effective use of information and communication technologies. Reporting…

  5. The Typology of Organizational Effectiveness in Australian Higher Education.

    Science.gov (United States)

    Lysons, Art

    1993-01-01

    New developments emerging from a study of organizational effectiveness in Australia's system of higher education are reported, and a second study is also described. The results have established a four-group typology of institutions: classical universities, institutes of technology, colleges of advanced education, and other institutions.…

  6. Dose rate effectiveness in radiation-induced teratogenesis in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Norimura, T.

    2000-01-01

    To investigate the role of p53 gene in tissue repair of teratogenic injury, we compared incidence of radiation-induced malformations in homozygous p53(-/-) mice, heterozygous p53(+/-) mice and wild-type p53(+/+) mice. After X-irradiation with 2 Gy at high dose rate on 9.5 days of gestation, p53(-/-) mice showed higher incidences of anomalies and higher resistance to prenatal deaths than p53(+/+) mice. This reciprocal relationship of radiosensitivity to anomalies and deaths supports the notion that embryos or fetuses have a p53-dependent 'guardian' that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of apoptotic cells was greatly increased in p53(+/+) fetuses but not in p53(-/-) fetuses. The same dose of γ-ray exposure at low dose rate on 9.5-10.5 day of gestation produced significant reduction of radiation-induced malformation in p53(+/+) and p53(+/-) mice, remained teratogenic for p53(-/-) mice. These results suggest that complete elimination of teratogenic damage from irradiated tissues requires the concerted cooperation of two mechanisms; proficient DNA repair and the p53-dependent apoptotic tissue repair. When concerted DNA repair and apoptosis functions efficiently, there is a threshold dose-rate for radiation-induced malformations. (author)

  7. Radiation dose reduction in paediatric coronary computed tomography: assessment of effective dose and image quality

    International Nuclear Information System (INIS)

    Habib Geryes, Bouchra; Calmon, Raphael; Boddaert, Nathalie; Khraiche, Diala; Bonnet, Damien; Raimondi, Francesca

    2016-01-01

    To assess the impact of different protocols on radiation dose and image quality for paediatric coronary computed tomography (cCT). From January-2012 to June-2014, 140 children who underwent cCT on a 64-slice scanner were included. Two consecutive changes in imaging protocols were performed: 1) the use of adaptive statistical iterative reconstruction (ASIR); 2) the optimization of acquisition parameters. Effective dose (ED) was calculated by conversion of the dose-length product. Image quality was assessed as excellent, good or with significant artefacts. Patients were divided in three age groups: 0-4, 5-7 and 8-18 years. The use of ASIR combined to the adjustment of scan settings allowed a reduction in the median ED of 58 %, 82 % and 85 % in 0-4, 5-7 and 8-18 years group, respectively (7.3 ± 1.4 vs 3.1 ± 0.7 mSv, 5.5 ± 1.6 vs 1 ± 1.9 mSv and 5.3 ± 5.0 vs 0.8 ± 2.0 mSv, all p < 0,05). Prospective protocol was used in 51 % of children. The reduction in radiation dose was not associated with reduction in diagnostic image quality as assessed by the frequency of coronary segments with excellent or good image quality (88 %). cCT can be obtained at very low radiation doses in children using ASIR, and prospective acquisition with optimized imaging parameters. (orig.)

  8. Predicted effects of countermeasures on radiation doses from contaminated food

    International Nuclear Information System (INIS)

    Yamamoto, Hideaki; Nielsen, S.P.; Nielsen, F.

    1993-02-01

    Quantitative assessments of the effects on radiation-dose reductions from nine typical countermeasures against accidental fod contamination have been carried out with dynamic radioecological models. The foodstuffs are assumed to be contaminated with iodine-131, caesium-134 and caesium-137 after a release of radioactive materials from the Ringhals nuclear power station in Sweden resulting from a hypothetical core melt accident. The release of activity of these radionuclides is assumed at 0.07% of the core inventory of the unit 1 reactor (1600 TBq of I-131, 220 TBq of Cs-134 and 190 TBq of Cs-137). Radiation doses are estimated for the 55,000 affected inhabitants along the south-eastern coast of Sweden eating locally produced foodstuffs. The average effective dose equivalent to an individual in the critical group is predicted to be 2.9 mSv from food consumption contaminated with I-131. An accident occurring during winter is estimated to cause average individual doses of 0.32 mSv from Cs-134 and 0.47 mSv from Cs-137, and 9.4 mSv and 6.8 mSv from Cs-134 and Cs-137, respectively, for an accident occurring during summer. Doses from the intake of radioiodine may be reduced by up to a factor of 60 by rejecting contaminated food for 30 days. For the doses from radiocaesium, the largest effect is found form deep ploughing which may reduce the dose by up to a factor of 80. (au) (12 tabs., 6 ills., 19 refs.)

  9. Effect of low dose ionizing radiation upon concentration of

    International Nuclear Information System (INIS)

    Viliae, M.; Kraljeviae, P.; Simpraga, M.; Miljaniae, S.

    2004-01-01

    It is known that low dose ionizing radiation might have stimulating effects (Luckey, 1982, Kraljeviae, 1988). This fact has also been confirmed in the previous papers of Kraljeviae et al. (2000-2000a; 2001). Namely, those authors showed that irradiation of chicken eggs before incubation by a low dose of 0.15 Gy gamma radiation increases the activity aspartateaminotrasferases (AST) and alanine-aminotransferases (ALT) in blood plasma of chickens hatched from irradiated eggs, as well as growth of chickens during the fattening period. Low doses might also cause changes in the concentration of some biochemical parameters in blood plasma of the same chickens such as changes in the concentration of total proteins, glucose and cholesterol. In this paper, an attempt was made to investigate the effects of low dose gamma radiation upon the concentration of sodium and potassium in the blood plasma of chickens which were hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy. Obtained results were compared with the results from the control group (chickens hatched from nonirradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from heart, and later from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of sodium and potassium was determined spectrophotometrically by atomic absorbing spectrophotometer Perkin-Elmer 1100B. The concentration of sodium and potassium in blood plasma of chickens hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy indicated a statistically significant increase (P>0.01) only on the first day of the experiment. Obtained results showed that irradiation of eggs on the 19th day of incubation by dose of 0.15 Gy gamma radiation could have effects upon the metabolism of electrolytes in chickens. (Author)

  10. Effective dose measurement at workplaces within an instrumented anthropomorphic phantom

    International Nuclear Information System (INIS)

    Villagrasa, C.; Darreon, J.; Martin-Burtat, N.; Clairand, I.; Colin, J.; Fontbonne, J. M.

    2011-01-01

    The Laboratory of Ionizing Radiation Dosimetry of the IRSN (France) is developing an instrumented anthropomorphic phantom in order to measure the effective dose for photon fields at workplaces. This anthropomorphic phantom will be equipped with small active detectors located inside at chosen positions. The aim of this paper is to present the development of these new detectors showing the results of the characterisation of the prototype under metrological conditions. New evaluations of the effective dose for standard and non-homogenous irradiation configurations taking into account the real constraints of the project have been done validating the feasibility and utility of the instrument. (authors)

  11. Pulsed total dose damage effect experimental study on EPROM

    International Nuclear Information System (INIS)

    Luo Yinhong; Yao Zhibin; Zhang Fengqi; Guo Hongxia; Zhang Keying; Wang Yuanming; He Baoping

    2011-01-01

    Nowadays, memory radiation effect study mainly focus on functionality measurement. Measurable parameters is few in china. According to the present situation, threshold voltage testing method was presented on floating gate EPROM memory. Experimental study of pulsed total dose effect on EPROM threshold voltage was carried out. Damage mechanism was analysed The experiment results showed that memory cell threshold voltage negative shift was caused by pulsed total dose, memory cell threshold voltage shift is basically coincident under steady bias supply and no bias supply. (authors)

  12. Effective dose to patient during cardiac interventional procedures (Prague workplaces)

    International Nuclear Information System (INIS)

    Stisova, V.

    2004-01-01

    The aim of this study was to assess effective dose to a patient during cardiac procedures, such as coronary angiography (CA) and percutaneous transluminal angioplasty (PTCA). Measurements were performed on 185 patients in four catheterisation laboratories in three hospitals in Prague using the dose area product (DAP) meter. Calculations of surface and effective dose were performed with Monte-Carlo-based program PCXMC. The mean DAP value per procedure determined in all workplaces ranged between 25.0 and 54.5 Gy cm 2 for CA and 43.0-104.5 Gy cm 2 for PTCA. In three cases, the surface dose exceeded the 2 Gy level for occurrence of transient erythema. The mean effective dose per procedure in an workplaces was determined to be in the range of 2.7-8.8 mSv for CA and 5.7-15.3 mSv for CA + PTCA combined. The results presented are comparable with those published by other authors. (authors)

  13. Cocaine and Pavlovian fear conditioning: dose-effect analysis.

    Science.gov (United States)

    Wood, Suzanne C; Fay, Jonathan; Sage, Jennifer R; Anagnostaras, Stephan G

    2007-01-25

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1-15mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15mg/kg) displayed significantly less contextual and cued memory, compared to saline control animals. Conversely, mice pre-treated with a very low dose of cocaine (0.1mg/kg) showed significantly enhanced fear memory for both context and tone, compared to controls. These results were not due to cocaine's anesthetic effects, as shock reactivity was unaffected by cocaine. The data suggest that despite cocaine's reputation as a performance-enhancing and anxiogenic drug, this effect is seen only at very low doses, whereas a moderate dose disrupts hippocampus and amygdala-dependent fear conditioning.

  14. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1992-01-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modelling techniques and a knowledge of the incident radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well chosen measurements are required to confirm the theoretical models. Neutron doses and dose equivalents were measured in a RANDO phantom at specific locations using thermoluminescence dosemeters, etched track dosemeters, and a 1.27 cm (1/2 in) tissue-equivalent proportional counter. The phantom was exposed to a bare and a D 2 O-moderated 252 Cf neutron source at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and to calculate the organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared with the calculations. (author)

  15. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1991-10-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modeling techniques and a knowledge of the radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well-chosen measurements are required to confirm the theoretical models. Neutron measurements were performed in a RANDO phantom using thermoluminescent dosemeters, track etch dosemeters, and a 1/2-in. (1.27-cm) tissue equivalent proportional counter in order to estimate neutron doses and dose equivalents within the phantom at specific locations. The phantom was exposed to bare and D 2 O-moderated 252 Cf neutrons at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and calculate organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared to the calculations. 8 refs., 3 figs., 3 tabs

  16. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    International Nuclear Information System (INIS)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung

    2010-01-01

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in μSv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  17. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2010-03-15

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in {mu}Sv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  18. Development of double dosimetry algorithm for assessment of effective dose to staff in interventional radiology

    International Nuclear Information System (INIS)

    Kim, Ji Young

    2011-02-01

    Medical staff involving interventional radiology(IR) procedures are significantly exposed to the scatter radiation because they stand in close proximity to the patient. Since modern IR techniques are often very complicated and require extended operation time, doses to IR workers tend to increase considerably. In general, the personal dose equivalent at 10 mm depth, H p (10), read from one dosimeter worn on the trunk of a radiation worker is assumed to be a good estimate of the effective dose and compared to the dose limits for regulatory compliance. This assumption is based on the exposure conditions that the radiation field is broad and rather homogeneous. However, IR workers usually wear protective clothing like lead aprons and thyroid shield which allow part of the body being exposed to much higher doses. To solve this problem, i.e. to adequately estimate the effective doses of IR workers, use of double dosimeters, one under the apron and one over the apron where unshielded part of the body exposed, was recommended. Several algorithms on the interpretation of the two dosimeter readings have been proposed. However, the dosimeter weighting factors applied to the algorithm differ significantly, which quests a question on the reliability of the algorithm. Moreover, there are some changes in the process of calculating the effective dose in the 2007 recommendations of the International Commission on Radiological Protection(ICRP): changes in the radiation weighting factors, tissue weighting factors and the computational reference phantoms. Therefore, this study attempts to set a new algorithm for interpreting two dosimeter readings to provide a proper estimate of the effective dose for IR workers, incorporating those changes in definition of effective dose. The effective doses were estimated using Monte Carlo simulations for various practical conditions based on the vogel reference phantom and the new tissue weighting factors. A quasi-effective dose, which is

  19. Development of double dosimetry algorithm for assessment of effective dose to staff in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young

    2011-02-15

    Medical staff involving interventional radiology(IR) procedures are significantly exposed to the scatter radiation because they stand in close proximity to the patient. Since modern IR techniques are often very complicated and require extended operation time, doses to IR workers tend to increase considerably. In general, the personal dose equivalent at 10 mm depth, H{sub p}(10), read from one dosimeter worn on the trunk of a radiation worker is assumed to be a good estimate of the effective dose and compared to the dose limits for regulatory compliance. This assumption is based on the exposure conditions that the radiation field is broad and rather homogeneous. However, IR workers usually wear protective clothing like lead aprons and thyroid shield which allow part of the body being exposed to much higher doses. To solve this problem, i.e. to adequately estimate the effective doses of IR workers, use of double dosimeters, one under the apron and one over the apron where unshielded part of the body exposed, was recommended. Several algorithms on the interpretation of the two dosimeter readings have been proposed. However, the dosimeter weighting factors applied to the algorithm differ significantly, which quests a question on the reliability of the algorithm. Moreover, there are some changes in the process of calculating the effective dose in the 2007 recommendations of the International Commission on Radiological Protection(ICRP): changes in the radiation weighting factors, tissue weighting factors and the computational reference phantoms. Therefore, this study attempts to set a new algorithm for interpreting two dosimeter readings to provide a proper estimate of the effective dose for IR workers, incorporating those changes in definition of effective dose. The effective doses were estimated using Monte Carlo simulations for various practical conditions based on the vogel reference phantom and the new tissue weighting factors. A quasi-effective dose, which is

  20. Radiation Therapy for Bone Metastases from Hepatocellular Carcinoma: Effect of Radiation Dose Escalation

    International Nuclear Information System (INIS)

    Kim, Tae Gyu; Park, Hee Chul; Lim, Do Hoon

    2011-01-01

    To evaluate the extent of pain response and objective response to palliative radiotherapy (RT) for bone metastases from hepatocellular carcinoma according to RT dose. From January 2007 to June 2010, palliative RT was conducted for 103 patients (223 sites) with bone metastases from hepatocellular carcinoma. Treatment sites were divided into the high RT dose and low RT dose groups by biologically effective dose (BED) of 39 Gy10. Pain responses were evaluated using the numeric rating scale. Pain scores before and after RT were compared and categorized into 'Decreased', 'No change' and 'increased'. Radiological objective responses were categorized into complete response, partial response, stable disease and progression using modified RECIST (Response Evaluation Criteria In Solid Tumors) criteria; the factors predicting patients' survival were analyzed. The median follow-up period was 6 months (range, 0 to 46 months), and the radiologic responses existed in 67 RT sites (66.3%) and 44 sites (89.8%) in the high and low RT dose group, respectively. A dose-response relationship was found in relation to RT dose (p=0.02). Pain responses were 75% and 65% in the high and low RT dose groups, respectively. However, no statistical difference in pain response was found between the two groups (p=0.24). There were no differences in the toxicity profiles between the high and low RT dose groups. Median survival from the time of bone metastases diagnosis was 11 months (range, 0 to 46 months). The Child-Pugh classification at the time of palliative RT was the only significant predictive factor for patient survival after RT. Median survival time was 14 months under Child-Pugh A and 2 months under Child-Pugh B and C. The rate of radiologic objective response was higher in the high RT dose group. Palliative RT with a high dose would provide an improvement in patient quality of life through enhanced tumor response, especially in patients with proper liver function.

  1. Effects of dose, dose-rate and fraction on radiation-induced breast and lung cancers

    International Nuclear Information System (INIS)

    Howe, G.R.

    1992-01-01

    Recent results from a large Canadian epidemiologic cohort study of low-LET radiation and cancer will be described. This is a study of 64,172 tuberculosis patients first treated in Canada between 1930 and 1952, of whom many received substantial doses to breast and lung tissue from repeated chest fluoroscopies. The mortality of the cohort between 1950 and 1987 has been determined by computerized record linkage to the National Mortality Data Base. There is a strong positive association between radiation and breast cancer risk among the females in the cohort, but in contrast very little evidence of any increased risk in lung cancer. The results of this and other studies suggest that the effect of dose-rate and/or fractionation on cancer risk may will differ depending upon the particular cancer being considered. (author)

  2. Higher-order dynamical effects in Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.

    1994-06-01

    We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)

  3. Double Dose: High Family Conflict Enhances the Effect of Media Violence Exposure on Adolescents’ Aggression

    Directory of Open Access Journals (Sweden)

    Patti M. Valkenburg

    2013-07-01

    Full Text Available We investigated how exposure to media violence and family conflict affects adolescents’ subsequent aggressive behavior. We expected a double dose effect, meaning that high media violence exposure would lead to higher levels of aggression for adolescents in high conflict families compared to low conflict families. A total of 499 adolescents (aged 10 to 14, 48% girls participated in a two-wave longitudinal survey (4-month interval. Survey questions assessed their exposure to violence on television and in electronic games, family conflict, and aggressive behavior. Analyses revealed a significant interaction between media violence and family conflict. In families with higher conflict, higher media violence exposure was related to increased subsequent aggression. This study is the first to show a double dose effect of media violence and family conflict on adolescents’ aggression. These findings underscore the important role of the family in shaping the effects of adolescents’ media use on their social development.

  4. Patient effective dose from endovascular brachytherapy with 192Ir Sources

    International Nuclear Information System (INIS)

    Perna, L.; Bianchi, C.; Novario, R.; Nicolini, G.; Tanzi, F.; Conte, L.

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 192 Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rando phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from coronary treatment were 2.4x10 -2 mSv.GBq -1 .min -1 for lung, 0.9x10 -2 mSv.GBq -1 .min -1 for oesophagus and 0.48x10 -2 mSv.GBq -1 .min -1 for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2x10 -2 mSv.GBq -1 .min -1 for colon, 7.8x10 -2 mSv.GBq -1 .min -1 for stomach and 1.7x10 -2 mSv.GBq -1 .min -1 for liver. Coronary treatment involved an effective dose of 0.046 mSv.GBq -1 .min -1 , whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq -1 .min -1 ; there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low. (author)

  5. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  6. The Effect of Aquaplast on Surface Dose of Photon Beam

    International Nuclear Information System (INIS)

    Oh, Do Hoon; Bae, Hoon Sik

    1995-01-01

    Purpose : To evaluate the effect on surface dose due to Aquaplast used for immobilizing the patients with head and neck cancers in photon beam radiotherapy. Materials and Methods : To assess surface and buildup region dose for 6MV X-ray from linear accelerator(Siemens Mevatron 6740), we measured percent ionization value with the Markus chamber model 30-329 manufactured by PTW Frieburg and Capintec electrometer, model WK92. For measurement of surface ionization value, the chamber was embedded in 25 X 25 X 3 cm 3 acrylic phantom and set on 25 X 25 X 5 cm 3 , polystyrene phantom to allow adequate scattering. The measurements of percent depth ionization were made by placing the polystyrene layers of appropriate thickness over the chamber. The measurements were taken at 10 cm SSD for 5 X 5 cm 2 , 10 X 10 cm 2 , and 15 X 15 cm 2 field sizes, respectively. Placing the layer of Aquaplast over the chamber, the same procedures were repeated. We evaluated two types o Aquaplast: 1.6mm layer of original Aquaplast(manufactured by WFR Aquaplast Corp.) and transformed Aquaplast similar to moulded one for immobilizing the patients practically. We also measured surface ionization values with blocking tray in presence or absence of transformed Aquaplast. In calculating percent depth dose, we used the formula suggested by Gerbi and khan to correct over response of the Markus chamber. Results : The surface doses for open fields of 5 X 5 cm 2 , 10 X 10 cm 2 , 15 X 15 cm 2 were 7.9%, 13.6%, and 18.7% respectively. He original Aquaplast increased the surface doses upto 38.4%, 43.6% and 47.4% respectively. There were little differences in percent depth dose values beyond the depth of Dmax. Increasing field size, the blocking tray caused increase of the surface dose by 0.2%, 1.7%, 3.0% without Aquaplast, 0.2%, 1.9%, 3.7% with transformed Aquaplast, respectively. Conclusion : The original and transformed Aquaplast increased the surface dose moderately. The percent depth doses beyond Dmax

  7. Effective dose to staff members in a positron emission tomography/CT facility using zirconium-89

    Science.gov (United States)

    2013-01-01

    Objective: Positron emission tomography (PET) using zirconium-89 (89Zr) is complicated by its complex decay scheme. In this study, we quantified the effective dose from 89Zr and compared it with fluorine-18 fludeoxyglucose (18F-FDG). Methods: Effective dose distribution in a PET/CT facility in Riyadh was calculated by Monte Carlo simulations using MCNPX. The positron bremsstrahlung, the annihilation photons, the delayed gammas from 89Zr and those emissions from 18F-FDG were modelled in the simulations but low-energy characteristic X-rays were ignored. Results: On the basis of injected activity, the dose from 89Zr was higher than that of 18F-FDG. However, the dose per scan from 89Zr became less than that from 18F-FDG near the patient, owing to the difference in injected activities. In the corridor and control rooms, the 89Zr dose was much higher than 18F-FDG, owing to the difference in attenuation by the shielding materials. Conclusion: The presence of the high-energy photons from 89Zr-labelled immuno-PET radiopharmaceuticals causes a significantly higher effective dose than 18F-FDG to the staff outside the patient room. Conversely, despite the low administered activity of 89Zr, it gives rise to a comparable or even lower dose than 18F-FDG to the staff near the patient. This interesting result raises apparently contradictory implications in the radiation protection considerations of a PET/CT facility. Advances in knowledge: To the best of our knowledge, radiation exposure to staff and public in the PET/CT unit using 89Zr has not been investigated. The ultimate output of this study will lead to the optimal design of the facility for routine use of 89Zr. PMID:23934963

  8. Dose rate effects of low-LET ionizing radiation on fish cells

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Nguyen T.K. [McMaster University, Radiation Sciences Program, School of Graduate and Postdoctoral Studies, Hamilton, ON (Canada); Seymour, Colin B.; Mothersill, Carmel E. [McMaster University, Radiation Sciences Program, School of Graduate and Postdoctoral Studies, Hamilton, ON (Canada); McMaster University, Department of Biology, Hamilton, ON (Canada)

    2017-11-15

    Radiobiological responses of a highly clonogenic fish cell line, eelB, to low-LET ionizing radiation and effects of dose rates were studied. In acute exposure to 0.1-12 Gy of gamma rays, eelB's cell survival curve displayed a linear-quadratic (LQ) relationship. In the LQ model, α, β, and α/β ratio were 0.0024, 0.037, and 0.065, respectively; for the first time that these values were reported for fish cells. In the multi-target model, n, D{sub o}, and D{sub q} values were determined to be 4.42, 2.16, and 3.21 Gy, respectively, and were the smallest among fish cell lines being examined to date. The mitochondrial potential response to gamma radiation in eelB cells was at least biphasic: mitochondria hyperpolarized 2 h and then depolarized 5 h post-irradiation. Upon receiving gamma rays with a total dose of 5 Gy, dose rates (ranging between 83 and 1366 mGy/min) had different effects on the clonogenic survival but not the mitochondrial potential. The clonogenic survival was significantly higher at the lowest dose rate of 83 mGy/min than at the other higher dose rates. Upon continuous irradiation with beta particles from tritium at 0.5, 5, 50, and 500 mGy/day for 7 days, mitochondria significantly depolarized at the three higher dose rates. Clearly, dose rates had differential effects on the clonogenic survival of and mitochondrial membrane potential in fish cells. (orig.)

  9. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  10. Effective doses to patients undergoing thoracic computed tomography examinations.

    Science.gov (United States)

    Huda, W; Scalzetti, E M; Roskopf, M

    2000-05-01

    The purpose of this study was to investigate how x-ray technique factors and effective doses vary with patient size in chest CT examinations. Technique factors (kVp, mAs, section thickness, and number of sections) were recorded for 44 patients who underwent a routine chest CT examination. Patient weights were recorded together with dimensions and mean Hounsfield unit values obtained from representative axial CT images. The total mass of directly irradiated patient was modeled as a cylinder of water to permit the computation of the mean patient dose and total energy imparted for each chest CT examination. Computed values of energy imparted during the chest CT examination were converted into effective doses taking into account the patient weight. Patient weights ranged from 4.5 to 127 kg, and half the patients in this study were children under 18 years of age. All scans were performed at 120 kVp with a 1 s scan time. The selected tube current showed no correlation with patient weight (r2=0.06), indicating that chest CT examination protocols do not take into account for the size of the patient. Energy imparted increased with increasing patient weight, with values of energy imparted for 10 and 70 kg patients being 85 and 310 mJ, respectively. The effective dose showed an inverse correlation with increasing patient weight, however, with values of effective dose for 10 and 70 kg patients being 9.6 and 5.4 mSv, respectively. Current CT technique factors (kVp/mAs) used to perform chest CT examinations result in relatively high patient doses, which could be reduced by adjusting technique factors based on patient size.

  11. The estimation of occupational effective dose in diagnostic radiology with two dosimeters

    International Nuclear Information System (INIS)

    Niklason, L.T.; Marx, M.V.; Chan, Heang-Ping

    1994-01-01

    Annual effective dose limits have been proposed by national and international radiation protection committees. Radiation protection agencies must decide upon a method of converting the radiation dose measured from dosimeters to an estimate of effective dose. A proposed method for the estimation of effective dose from the radiation dose to two dosimeters is presented. Correction factors are applied to an over-apron collar dose and an under-apron dose to estimate the effective dose. Correction factors are suggested for two cases, both with and without a thyroid shield. Effective dose may be estimated by the under-apron dose plus 6% of the over-collar dose if a thyroid shield is not worn or plus 2% of the over-collar dose if a thyroid shield is worn. This method provides a reasonable estimate of effective dose that is independent of lead apron thickness and accounts for the use of a thyroid shield. 17 refs., 3 tabs

  12. Investigating Effective Components of Higher Education Marketing and Providing a Marketing Model for Iranian Private Higher Education Institutions

    Science.gov (United States)

    Kasmaee, Roya Babaee; Nadi, Mohammad Ali; Shahtalebi, Badri

    2016-01-01

    Purpose: The purpose of this paper is to study and identify the effective components of higher education marketing and providing a marketing model for Iranian higher education private sector institutions. Design/methodology/approach: This study is a qualitative research. For identifying the effective components of higher education marketing and…

  13. Variation in the Protective Effect of Higher Education Against Depression*

    Science.gov (United States)

    Bauldry, Shawn

    2016-01-01

    Numerous studies document that higher education is associated with a reduced likelihood of depression. The protective effects of higher education, however, are known to vary across population subgroups. This study tests competing theories for who is likely to obtain a greater protective benefit from a college degree against depression through an analysis of data from the National Longitudinal Study of Adolescent Health and recently developed methods for analyzing heterogeneous treatment effects involving the use of propensity scores. The analysis examines how the effects of two “treatments” (at least some college education and attaining at least a four-year college degree) on latent depressive symptomology vary by background disadvantage, as indicated by having a low propensity for completing some college or attaining a four-year college degree. Results indicate that people from disadvantaged backgrounds realize a greater protective effect of higher education, either completing some college or attaining a four-year degree, against depressive symptomology than people from advantaged backgrounds. This pattern is more pronounced for people who attain at least a four-year degree than for people who complete at least some college education. PMID:27840772

  14. Late effects of various dose-fractionation regimens

    International Nuclear Information System (INIS)

    Turesson, I.; Notter, G.

    1983-01-01

    These clinical investigations of various dose-fractionation regimens on human skin show that: The late reactions cannot be predicted from the early reactions; The dose-response curves for late reactions are much steeper than for early reactions; Equivalent doses for various fractionation schedules concerning late effects can be calculated by means of a corrected CRE (NSD) formula; the correction must be considered preliminary because further follow-up is needed. A clinical fractionation study of this type requires: Extremely careful dosimetry; Study of the same anatomical region; Very long follow-up; Studies at different effect levels; Skin reaction is the only end point we have studied systematically for different fractionation regimens. Experience with the CRE formula as a model for calculating isoeffect doses for different fractionation schedules in routine clinical use can be summarized as follows: The CRE formula has been used prospectively since 1972 in all patients; CRE-equivalent weekly doses to 5 x 2.0 Gy per week has been used. (Although the fractionation schedule is changed, the overall treatment time is still the same); The CRE range was 18 to 21 for curative radiotherapy on carcinomas; No irradiation was applied during pronounced acute reactions. No unexpected complications have been observed under these conditions

  15. Effective dose rate coefficients for exposure to contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K.G. [Easterly Scientific, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States); Eckerman, K.F.; Easterly, C.E. [Easterly Scientific, Knoxville, TN (United States); Bellamy, M.B.; Hiller, M.M.; Dewji, S.A. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Hertel, N.E. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Georgia Institute of Technology, Atlanta, GA (United States); Manger, R. [University of California San Diego, Department of Radiation Medicine and Applied Sciences, La Jolla, CA (United States)

    2017-08-15

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose rate calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. The coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios. (orig.)

  16. Radioiodine (I-131) treatment for uncomplicated hyperthyroidism: An assessment of optimal dose and cost-effectiveness

    International Nuclear Information System (INIS)

    Paul, A.K.; Rahman, H.A.; Jahan, N.

    2002-01-01

    Aim: Radioiodine (I-131) is increasingly being considered for the treatment of hyperthyroidism but there is no general agreement for the initial dose. To determine the cost-effectiveness and optimal dose of I-131 to cure disease, we prospectively studied the outcome of radioiodine therapy of 423 patients. Material and Methods: Any of the fixed doses of 6, 8, 10, 12 or 15 mCi of I-131 was administered to the patients relating to thyroid gland size. The individual was excluded from this study who had multinodular goitre and autonomous toxic nodule. Patients were classified as cured if the clinical and biochemical status was either euthyroid or hypothyroid at one year without further treatment by antithyroid drugs or radioiodine. The costs were assessed by analyzing the total cost of care including office visit, laboratory testing, radioiodine treatment, average conveyance and income loss of patient and attendant and thyroxine replacement for a period of 2 years from the day of I-131 administration. Results: The results showed a progressive increase of cure rate from the doses of 6, 8 and 10 mCi by 67%, 76.5% and 85.7% respectively but the cure rate for the doses of 12 and 15 mCi was 87.9% and 88.8% respectively. Cure was directly related to the dose between 6 and 10 mCi but at higher doses the cure rate was increased marginally at the expense of increased total body radiation. There was little variation in total costs, but was higher for low dose-therapy and the cost proportion between the 6 mCi regimen and 10 mCi regimen was 1.04:1. Conclusion: We could conclude that an initial 10 mCi of I-131 may be the optimal dose for curing hyperthyroidism and will also limit the total costs

  17. Dose-effect curves for electron-beam irradiation of some collection microbial strains

    International Nuclear Information System (INIS)

    Ferdes, O.; Dumitru, E.; Catargiu, L.; Ferdes, M.; Minea, R.; Oproiu, C.; Niculescu, A.

    1994-01-01

    There were electron-beam irradiated some microbial strains of B.subtilis ICA I-60 both in germination and in sporulated forms. The irradiation were performed at the IPTRD's electron accelerator at 6 MeV, and in the dose range between 0.1-5.0 kGy, at different dose-rate varying from 50 Gy/minute to 100 Gy/minute. The dosimetry was carried out by a PTW medical dosemeter. There were established the dose-effect relationships and curves, the inactivation dose (factor) and the optimum domain for electron-beam mutagenesis. There were obtained some mutant strains with 2-3.5 higher biosynthesis potential, which are in the IFC's collection. (Author)

  18. Evaluating higher doses of Shunthi - Guduchi formulations for safety in treatment of osteoarthritis knees: A Government of India NMITLI arthritis project.

    Science.gov (United States)

    Chopra, Arvind; Saluja, Manjit; Tillu, Girish; Venugopalan, Anuradha; Narsimulu, Gumdal; Sarmukaddam, Sanjeev; Patwardhan, Bhushan

    2012-01-01

    Results of an exploratory trial suggested activity trends of Zingiber officinale-Tinopsora cordifolia (platform combination)-based formulations in the treatment of Osteoarthritis (OA) Knees. These formulations were "platform combination+Withania somnifera+Tribulus terrestris" (formulation B) and "platform combination+Emblica officinale" (formulation C). This paper reports safety of these formulations when used in higher doses (1.5-2 times) along with Sallaki Guggul and Bhallataka Parpati (a Semecarpus anacardium preparation). Ninety-two patients with symptomatic OA knees were enrolled in a 6 weeks investigator blind, randomized parallel efficacy 4-arm multicenter drug trial. The 4 arms were (I) formulation B, 2 t.i.d.; (II) formulation B, 2 q.i.d.; (III) platform combination+Sallaki Guggul; (IV) Bhallataka Parpati+formulation C. A detailed enquiry was carried out for adverse events (AE) and drug toxicity as per a priori check list and volunteered information. Laboratory evaluation included detailed hematology and metabolic parameters. Patients were examined at baseline, first and fourth weeks, and on completion. Standard statistical program (SPSS version 12.5) was used for analysis. None of the patients reported serious AE or withdrew due to any drug-related toxicity. Mild gut-related (mostly epigastric burning) AE was reported. A mild increase in liver enzymes [serum glutamic pyruvate transaminase (SGPT), serum glutamic oxaloacetic transaminase (SGOT)] without any other hepatic abnormality was reported in 2 patients (group IV). Other laboratory parameters remained normal. The mean improvement in active pain visual analog scale (1.4, CI 0.5-2.22), WOMAC (functional activity questionnaire) pain score (1.37, CI 0.22-2.5), and urinary C-TAX (cartilage collagen breakdown product) assay was maximum (NS) in group IV. Lower dose group I showed numerically superior improvement compared with higher dose group II. The results suggested that despite higher doses, standardized

  19. Evaluating higher doses of Shunthi - Guduchi formulations for safety in treatment of osteoarthritis knees: A Government of India NMITLI arthritis project

    Directory of Open Access Journals (Sweden)

    Arvind Chopra

    2012-01-01

    results suggested that despite higher doses, standardized Ayurvedic formulations demonstrated a good safety profile. An improved efficacy and likely chondroprotective effect was shown by group IV intervention. A confirmatory drug trial with adequate power and sample size was planned based on the learning from this trial.

  20. Antithrombotic effect of repeated doses of the ethanolic extract of ...

    African Journals Online (AJOL)

    Antithrombotic effect of repeated doses of the ethanolic extract of local olive ( Olea europaea L.) leaves in rabbits. ... The incidence of thromboembolic diseases is increasing, and they are a major cause of mortality and morbidity worldwide. Mediterranean diet is known for its high content of olive products, especially olive oil, ...

  1. effect of population density and dose of nitrogen and potassium ...

    African Journals Online (AJOL)

    A. Hussein

    2018-01-01

    Jan 1, 2018 ... while, nitrogen consumption increased dry weight resulting in increased plant yield (Hatami et al., 2009). Vorob (2000) ... of this study was to investigate the effect of plant density and dose of nitrogen and potassium on Green bean Cv. ..... biogeochem. cycle., 2008, 22(1), 1022-1041. [11] Moniruzzaman M ...

  2. Effects of sublethal doses of chlorfluazuron on the ovarian ...

    African Journals Online (AJOL)

    AJB_YOMI

    2011-10-12

    Oct 12, 2011 ... eggs (Perveen, 2000a). The objectives of this research were to determine the effects of sublethal doses of chlorfluazuron (LD10or LD30) on the amounts of ovarianprotein, lipid, carbohydrates, DNA, and RNA, and ecdysteroid titres in different developmental stages of S. litura, a major crop pest around the ...

  3. interactive effect of cowpea variety, dose and exposure time

    African Journals Online (AJOL)

    ACSS

    Callosobruchus maculatus has for years remained a serious menace in cowpea in Sub-Sahara Africa. The objective of this study was to investigate the effect of genotypic cowpea (Vigna unguiculata (L.) Walp) varieties, time and dose on C. maculatus exposed to powders of Piper guineense and Eugenia aromatica.

  4. Effects of a Single Dose of Caffeine on Resting Cardiovascular ...

    African Journals Online (AJOL)

    The objective of this study was to determine the effect of 5mg/kg body weight dose of caffeine on cardiovascular system of normal young adult males of Black African Origin. Twenty normal young adult male volunteers participated. A repeated measures 2 randomized Crosse over (counter balanced) double blind design was ...

  5. The effect of radiation dose on mouse skeletal muscle remodeling

    International Nuclear Information System (INIS)

    Hardee, Justin P.; Puppa, Melissa J.; Fix, Dennis K.; Gao, Song; Hetzler, Kimbell L.; Bateman, Ted A.; Carson, James A.

    2014-01-01

    The purpose of this study was to determine the effect of two clinically relevant radiation doses on the susceptibility of mouse skeletal muscle to remodeling. Alterations in muscle morphology and regulatory signaling were examined in tibialis anterior and gastrocnemius muscles after radiation doses that differed in total biological effective dose (BED). Female C57BL/6 (8-wk) mice were randomly assigned to non-irradiated control, four fractionated doses of 4 Gy (4x4 Gy; BED 37 Gy), or a single 16 Gy dose (16 Gy; BED 100 Gy). Mice were sacrificed 2 weeks after the initial radiation exposure. The 16 Gy, but not 4x4 Gy, decreased total muscle protein and RNA content. Related to muscle regeneration, both 16 Gy and 4x4 Gy increased the incidence of central nuclei containing myofibers, but only 16 Gy increased the extracellular matrix volume. However, only 4x4 Gy increased muscle 4-hydroxynonenal expression. While both 16 Gy and 4x4 Gy decreased IIB myofiber mean cross-sectional area (CSA), only 16 Gy decreased IIA myofiber CSA. 16 Gy increased the incidence of small diameter IIA and IIB myofibers, while 4x4 Gy only increased the incidence of small diameter IIB myofibers. Both treatments decreased the frequency and CSA of low succinate dehydrogenase activity (SDH) fibers. Only 16 Gy increased the incidence of small diameter myofibers having high SDH activity. Neither treatment altered muscle signaling related to protein turnover or oxidative metabolism. Collectively, these results demonstrate that radiation dose differentially affects muscle remodeling, and these effects appear to be related to fiber type and oxidative metabolism

  6. Evaluation of the effect of patient dose from cone beam computed tomography on prostate IMRT using Monte Carlo simulation.

    Science.gov (United States)

    Chow, James C L; Leung, Michael K K; Islam, Mohammad K; Norrlinger, Bernhard D; Jaffray, David A

    2008-01-01

    prescribed dose, it was found that there is about a 5% increase of dose at the femur head. Still, such an increase in the femur head dose is well below the dose limit of the bone in our IMRT plans. Therefore, under these dose fractionation conditions, it is concluded that, though CBCT causes a higher dose deposited at the bones, there may be no significant effect in the DVHs of critical tissues in the prostate IMRT.

  7. Evaluation of the effect of patient dose from cone beam computed tomography on prostate IMRT using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chow, James C. L.; Leung, Michael K. K.; Islam, Mohammad K.; Norrlinger, Bernhard D.; Jaffray, David A.

    2008-01-01

    prescribed dose, it was found that there is about a 5% increase of dose at the femur head. Still, such an increase in the femur head dose is well below the dose limit of the bone in our IMRT plans. Therefore, under these dose fractionation conditions, it is concluded that, though CBCT causes a higher dose deposited at the bones, there may be no significant effect in the DVHs of critical tissues in the prostate IMRT

  8. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  9. Effect of low doses of gamma radiation of Co-60 (radio-hormesis) in tomato seeds

    International Nuclear Information System (INIS)

    Wiendl, Toni Andreas

    2010-01-01

    Tomato seeds of the Gladiador hybrid were exposed to gamma radiation of Co-60 with the following doses: 0; 2,5; 5; 7,5; 10; 12,5; 15 e 20 Gy. Analysis were performed on germination, seedlings height to cotyledon, seedling total height, seedling fresh and dry weight, plant height, stalk diameter at the root beginning, fresh and dry weight of the 5 th leaf, number of green fruits with diameter higher than 3 cm, number of green, half ripen and ripen fruits, total number of fruits, Brix and pH of fruits, average fruit weight and fruit total production. A variety of stimulation effects were observed on the different plant developing stages. The greatest stimulus for production was observed in the 10 Gy dose. The highest seedling average height and plant average height were observed for the 7,5 Gy dose. The biggest number of green fruits with diameter higher than 3 cm occurred for the 12,5 and 15 Gy treatments. Irradiation also stimulated a higher total number of fruits in all doses, having advantage the 10 Gy dose which produced 88% more fruits than control as well as 86% more weight production. The fruits pH acidified significantly in a dose of 12,5 Gy and higher. Production increased in all treatments comparing to control and the highest stimulus for production observed was for the 10, 12,5 and 15 Gy. The use of low gamma radiation doses of Co-60 applied as pre-sowing treatment in the seeds, efficiently stimulated the development of plants and the tomato production. (author)

  10. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  11. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  12. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  13. Anti-tumor effect of low dose radiation in mice

    International Nuclear Information System (INIS)

    Fan Zhengping; Lu Jiaben; Zhu Bingchai

    1997-01-01

    The author reports the effects of the total body irradiation of low dose radiation (LDR) and/or the local irradiation of large dose on average tumor weights and tumor inhibitory rates in 170 mice inoculated S 180 sarcoma cell, and the influence of LDR on average longevity in 40 tumor-bearing animals. Results show (1) LDR in the range of 75∼250 mGy can inhibit tumor growth to some extent; (2) fractionated irradiation of 75 mGy and local irradiation of 10 Gy may produce a synergism in tumor growth inhibition; and (3)LDR may enhance average longevity in ascitic tumor-bearing mice

  14. COCAINE AND PAVLOVIAN FEAR CONDITIONING: DOSE-EFFECT ANALYSIS

    OpenAIRE

    Wood, Suzanne C.; Fay, Jonathon; Sage, Jennifer R.; Anagnostaras, Stephan G.

    2006-01-01

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1 – 15 mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15 mg/kg) displayed significantly less cont...

  15. Higher dose of palonosetron versus lower dose of palonosetron plus droperidol to prevent postoperative nausea and vomiting after eye enucleation and orbital hydroxyapatite implant surgery: a randomized, double-blind trial

    Directory of Open Access Journals (Sweden)

    Hu X

    2017-05-01

    for PONV and achieved a similar prophylactic effect as that with a higher dose of palonosetron. Keywords: eye enucleation, orbital hydroxyapatite implant, palonosetron, PONV

  16. The effects of dose and diet on the pharmacodynamics of omeprazole in the horse.

    Science.gov (United States)

    Sykes, B W; Underwood, C; Greer, R; McGowan, C M; Mills, P C

    2017-07-01

    Conflicting data are presented in the current literature regarding the efficacy of omeprazole for suppressing gastric acidity in the horse. The objective of this study was to investigate the duration of intraday acid suppression achieved with two doses of omeprazole under two different dietary conditions. A four-way crossover design. Six adult Thoroughbred horses instrumented with percutaneous gastrotomy tubes were used. Intragastric pH was measured for continuous 23 h periods (08.00-07.00 h) for six consecutive days (Days 0-5). Baseline data was recorded on Day 0 and omeprazole administered on Days 1-5. Two doses (1 mg/kg and 4 mg/kg bwt per os once a day) and two diets (a high grain/low fibre [HG/LF] and ad libitum hay [HAY)] diet) were studied. Data for the percent (%) time pH was above 4 (%tpH>4) and median intraday pH was reported for two measurement locations and analysed using generalised estimating equations. An effect of both diet and dose was evident with mean %tpH>4 and the mean of the median intraday pHs typically higher at the higher (4 mg/kg bwt) dose and in HG/LF diet. The overall efficacy of omeprazole in raising intragastric pH was good under the HG/LF conditions but relatively poor in the HAY diet. A cumulative effect of dosing, not previously reported in the horse, was observed. The overall efficacy of omeprazole in raising ventral gastric pH was less than previously reported. Both dose and diet may play a role in the efficacy of omeprazole in the horse. Therefore, the use of singular dosing recommendations that encompass all horse types and management conditions may not be appropriate and dosing recommendations that take into account the diet of the horse may be advantageous. © 2016 EVJ Ltd.

  17. Different dose-dependent effects of ebselen in sciatic nerve ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Ozyigit, Filiz; Kucuk, Aysegul; Akcer, Sezer; Tosun, Murat; Kocak, Fatma Emel; Kocak, Cengiz; Kocak, Ahmet; Metineren, Hasan; Genc, Osman

    2015-08-26

    Ebselen is an organoselenium compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of ebselen pretreatment in rats with experimental sciatic nerve ischemia-reperfusion (I/R) injury. Adult male Sprague Dawley rats were divided into four groups (N = 7 in each group). Before sciatic nerve I/R was induced, ebselen was injected intraperitoneally at doses of 15 and 30 mg/kg. After a 2 h ischemia and a 3 h reperfusion period, sciatic nerve tissues were excised. Tissue levels of malondialdehyde (MDA) and nitric oxide (NO), and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured. Sciatic nerve tissues were also examined histopathologically. The 15 mg/kg dose of ebselen reduced sciatic nerve damage and apoptosis (pebselen. Conversely, the 30 mg/kg dose of ebselen increased sciatic nerve damage, apoptosis, iNOS positive cells (pebselen may cause different effects depending on the dose employed. Ebselen may be protective against sciatic nerve I/R injury via antioxidant and antiapoptotic activities at a 15 mg/kg dose, conversely higher doses may cause detrimental effects.

  18. Dose-response effects in an outbreak of Salmonella enteritidis.

    Science.gov (United States)

    Mintz, E D; Cartter, M L; Hadler, J L; Wassell, J T; Zingeser, J A; Tauxe, R V

    1994-02-01

    The effects of ingested Salmonella enteritidis (SE) dose on incubation period and on the severity and duration of illness were estimated in a cohort of 169 persons who developed gastroenteritis after eating hollandaise sauce made from grade-A shell eggs. The cohort was divided into three groups based on self-reported dose of sauce ingested. As dose increased, median incubation period decreased (37 h in the low exposure group v. 21 h in the medium exposure group v. 17.5 h in the high exposure group, P = 0.006) and greater proportions reported body aches (71 v. 85 v. 94%, P = 0.0009) and vomiting (21 v. 56 v. 57%, P = 0.002). Among 118 case-persons who completed a follow-up questionnaire, increased dose was associated with increases in median weight loss in kilograms (3.2 v. 4.5 v. 5.0, P = 0.0001), maximum daily number of stools (12.5 v. 15.0 v. 20.0, P = 0.02), subjective rating of illness severity (P = 0.0007), and the number of days of confinement to bed (3.0 v. 6.5 v. 6.5, P = 0.04). In this outbreak, ingested dose was an important determinant of the incubation period, symptoms and severity of acute salmonellosis.

  19. Late effects of low-dose ionizing radiation on man

    International Nuclear Information System (INIS)

    Brilliant, M.D.; Vorob'ev, A.I.; Gogin, E.E.

    1987-01-01

    One of the most important problems, being stated before the medicine by the accident, which took place in Chernobyl in 1986- the problem of the so-called ionizing radiation low dose effect on a man's organism, is considered because a lot of people were subjected to low dose action. The concept of low doses of radiaion action and specificity of its immediate action in comparison with high dose action is considered. One of the most important poit while studying low dose action is the necessity to develop a system including all irradiated people and dosimetry, and espicially to study frequencies and periods of tumor appearance in different irradiated tissues. The results obtained when examining people who survived the atomic explosion in Japan and on the Marshall islands are analyzed. They testify to the fact that radiation affets more tissues than the clinical picture about the acute radiation sickness tells, and that tumors developing in them many years after radiation action tell about radiosensitivity in some tissues

  20. Effect of low gamma ray doses on sugar beet

    International Nuclear Information System (INIS)

    Al-Oudat, M.

    1993-01-01

    We studied the effect of presowing irradiation simulation on sugar beet seeds in two regions (Deir Elzour and Damascus) and for three successive cropping seasons (1986-1989). Those seeds were irradiated with gamma radiation doses varying from 0.005 to 0.050 kGy in the first region, and from 0.005 to 0.025 kGy in the second region. Results showed that doses varying from 0.005 to 0.05 kGy in Deir Elzour gave a mean yield increase varying from 17.4% to 22.6%. However, doses varying from 0.005 to 0.025 in Damascus gave an increase of the same parameter between 19.5% and 23.8%. The best results for pure sugar yield increase obtained for a dose of 0.015 kGy (27.1% in Deir Elzour and 31.9% in Damascus). Yields on the farm level obtained from presowing irradiated seeds showed an increase in sugar beets when using 0.015 kGy gamma radiation dose. (author)

  1. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance

    International Nuclear Information System (INIS)

    Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney

    1995-01-01

    Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP

  2. Methods of determining the effective dose in dental radiology

    International Nuclear Information System (INIS)

    Thilander-Klang, A.; Helmrot, E.

    2010-01-01

    A wide variety of X-ray equipment is used today in dental radiology, including intra-oral, ortho-pan-tomographic, cephalo-metric, cone-beam computed tomography (CBCT) and computed tomography (CT). This raises the question of how the radiation risks resulting from different kinds of examinations should be compared. The risk to the patient is usually expressed in terms of effective dose. However, it is difficult to determine its reliability, and it is difficult to make comparisons, especially when different modalities are used. The classification of the new CBCT units is also problematic as they are sometimes classified as CT units. This will lead to problems in choosing the best dosimetric method, especially when the examination geometry resembles more on an ordinary ortho-pan-tomographic examination, as the axis of rotation is not at the centre of the patient, and small radiation field sizes are used. The purpose of this study was to present different methods for the estimation of the effective dose from the equipment currently used in dental radiology, and to discuss their limitations. The methods are compared based on commonly used measurable and computable dose quantities, and their reliability in the estimation of the effective dose. (authors)

  3. Committed effective dose determination in southern Brazilian cereal flours.

    Science.gov (United States)

    Scheibel, V; Appoloni, C R

    2013-01-01

    The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of (228)Th, (228)Ra, (226)Ra, (40)K, (7)Be and (137)Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of (228)Th and (40)K were 3.5±0.4 and 1469±17 Bq kg(-1) for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for (137)Cs ranged from 0.04 to 0.4 Bq kg(-1). The highest committed effective dose was 0.36 μSv.y(-1) for (228)Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y(-1), to the public exposure.

  4. Committed effective dose determination in southern Brazilian cereal flours

    International Nuclear Information System (INIS)

    Scheibel, V.; Appoloni, C. R.

    2013-01-01

    The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of 228 Th, 228 Ra, 226 Ra, 40 K, 7 Be and 137 Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of 228 Th and 40 K were 3.5±0.4 and 1469±17 Bq kg -1 for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for 137 Cs ranged from 0.04 to 0.4 Bq kg -1 . The highest committed effective dose was 0.36 μSv.y -1 for 228 Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y -1 , to the public exposure. (authors)

  5. Comparison of two dose and three dose human papillomavirus vaccine schedules: cost effectiveness analysis based on transmission model.

    Science.gov (United States)

    Jit, Mark; Brisson, Marc; Laprise, Jean-François; Choi, Yoon Hong

    2015-01-06

    To investigate the incremental cost effectiveness of two dose human papillomavirus vaccination and of additionally giving a third dose. Cost effectiveness study based on a transmission dynamic model of human papillomavirus vaccination. Two dose schedules for bivalent or quadrivalent human papillomavirus vaccines were assumed to provide 10, 20, or 30 years' vaccine type protection and cross protection or lifelong vaccine type protection without cross protection. Three dose schedules were assumed to give lifelong vaccine type and cross protection. United Kingdom. Males and females aged 12-74 years. No, two, or three doses of human papillomavirus vaccine given routinely to 12 year old girls, with an initial catch-up campaign to 18 years. Costs (from the healthcare provider's perspective), health related utilities, and incremental cost effectiveness ratios. Giving at least two doses of vaccine seems to be highly cost effective across the entire range of scenarios considered at the quadrivalent vaccine list price of £86.50 (€109.23; $136.00) per dose. If two doses give only 10 years' protection but adding a third dose extends this to lifetime protection, then the third dose also seems to be cost effective at £86.50 per dose (median incremental cost effectiveness ratio £17,000, interquartile range £11,700-£25,800). If two doses protect for more than 20 years, then the third dose will have to be priced substantially lower (median threshold price £31, interquartile range £28-£35) to be cost effective. Results are similar for a bivalent vaccine priced at £80.50 per dose and when the same scenarios are explored by parameterising a Canadian model (HPV-ADVISE) with economic data from the United Kingdom. Two dose human papillomavirus vaccine schedules are likely to be the most cost effective option provided protection lasts for at least 20 years. As the precise duration of two dose schedules may not be known for decades, cohorts given two doses should be closely

  6. Long-term effects of ionizing radiation after the Chernobyl accident: Possible contribution of historic dose.

    Science.gov (United States)

    Omar-Nazir, Laila; Shi, Xiaopei; Moller, Anders; Mousseau, Timothy; Byun, Soohyun; Hancock, Samuel; Seymour, Colin; Mothersill, Carmel

    2018-08-01

    The impact of the Chernobyl NPP accident on the environment is documented to be greater than expected, with higher mutation rates than expected at the current, chronic low dose rate. In this paper we suggest that the historic acute exposure and resulting non-targeted effects (NTE) such as delayed mutations and genomic instability could account at least in part for currently measured mutation rates and provide an initial test of this concept. Data from Møller and Mousseau on the phenotypic mutation rates of Chernobyl birds 9-11 generations post the Chernobyl accident were used and the reconstructed dose response for mutations was compared with delayed reproductive death dose responses (as a measure of genomic instability) in cell cultures exposed to a similar range of doses. The dose to birds present during the Chernobyl NPP accident was reconstructed through the external pathway due to Cs-137 with an estimate of the uncertainty associated with such reconstruction. The percentage of Chernobyl birds several generations after the accident without mutations followed the general shape of the clonogenic survival percentage of the progeny of irradiated cells, and it plateaued at low doses. This is the expected result if NTE of radiation are involved. We suggest therefore, that NTE induced by the historic dose may play a role in generating mutations in progeny many generations following the initial disaster. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    International Nuclear Information System (INIS)

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-01-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (α=0.15 Gy -1 and α/β=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD 2 ) with respect to three effects: edema, RBE, and dose heterogeneity for 125 I and 103 Pd implants. The EUD 2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V 100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D 90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125 I and 103 Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125 I and 1.3-1.6 for 103 Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  8. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Gonzalez, Abel

    2008-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose-response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: 1) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either. In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  9. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: (i) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  10. A Phase I Study of the Safety and Pharmacokinetics of Higher-Dose Icotinib in Patients With Advanced Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Liu, Jian; Wu, Lihua; Wu, Guolan; Hu, Xingjiang; Zhou, Huili; Chen, Junchun; Zhu, Meixiang; Xu, Wei; Tan, Fenlai; Ding, Lieming; Wang, Yinxiang; Shentu, Jianzhong

    2016-11-01

    This phase I study evaluated the maximum tolerated dose, dose-limiting toxicities, safety, pharmacokinetics, and efficacy of icotinib with a starting dose of 250 mg in pretreated, advanced non-small cell lung cancer patients. We observed a maximum tolerated dose of 500 mg with a favorable pharmacokinetics profile and antitumor activity.These findings provide clinicians with evidence for application of higher-dose icotinib. Icotinib, an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has shown favorable tolerability and antitumor activity at 100-200 mg in previous studies without reaching the maximum tolerated dose (MTD). In July 2011, icotinib was approved by the China Food and Drug Administration at a dose of 125 mg three times daily for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) after failure of at least one platinum-based chemotherapy regimen. This study investigated the MTD, tolerability, and pharmacokinetics of higher-dose icotinib in patients with advanced NSCLC. Twenty-six patients with advanced NSCLC were treated at doses of 250-625 mg three times daily The EGFR mutation test was not mandatory in this study. Twenty-four (92.3%) of 26 patients experienced at least one adverse event (AE); rash (61.5%), diarrhea (23.1%), and oral ulceration (11.5%) were most frequent AEs. Dose-limiting toxicities were seen in 2 of 6 patients in the 625-mg group, and the MTD was established at 500 mg. Icotinib was rapidly absorbed and eliminated. The amount of time that the drug was present at the maximum concentration in serum (T max ) ranged from 1 to 3 hours (1.5-4 hours) after multiple doses. The t 1/2 was similar after single- and multiple-dose administration (7.11 and 6.39 hours, respectively). A nonlinear relationship was observed between dose and drug exposure. Responses were seen in 6 (23.1%) patients, and 8 (30.8%) patients had stable disease. This study demonstrated that higher-dose

  11. Effect of age and sex on warfarin dosing

    Directory of Open Access Journals (Sweden)

    Khoury G

    2014-07-01

    Full Text Available Ghada Khoury,1 Marwan Sheikh-Taha2 1School of Pharmacy, 2Department of Pharmacy Practice, Lebanese American University, Byblos, Lebanon Objective: We examined the potential effect of sex and age on warfarin dosing in ambulatory adult patients. Methods: We conducted a retrospective chart review of patients attending an anticoagulation clinic. We included patients anticoagulated with warfarin for atrial fibrillation or venous thromboembolism who had a therapeutic international normalized ratio of 2–3 for 2 consecutive months. We excluded patients who had been on any drug that is known to have a major interaction with warfarin, smokers, and heavy alcohol consumers. Out of 340 screened medical records, 96 met the predetermined inclusion criteria. The primary outcome assessed was warfarin total weekly dose (TWD. Results: There was a statistically significant difference in the TWD among the ages (P<0.01; older patients required lower doses. However there was no statistically significant difference in the TWD between sexes (P=0.281. Conclusion: Age was found to have a significant effect on warfarin dosing. Even though women did require a lower TWD than men, this observation was not statistically significant. Keywords: warfarin, INR, anticoagulation, vitamin K antagonists, age

  12. SU-F-J-86: Method to Include Tissue Dose Response Effect in Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J; Liang, J; Chen, S; Qin, A; Yan, D [Beaumont Health Systeml, Royal Oak, MI (United States)

    2016-06-15

    Purpose: Organ changes shape and size during radiation treatment due to both mechanical stress and radiation dose response. However, the dose response induced deformation has not been considered in conventional deformable image registration (DIR). A novel DIR approach is proposed to include both tissue elasticity and radiation dose induced organ deformation. Methods: Assuming that organ sub-volume shrinkage was proportional to the radiation dose induced cell killing/absorption, the dose induced organ volume change was simulated applying virtual temperature on each sub-volume. Hence, both stress and heterogeneity temperature induced organ deformation. Thermal stress finite element method with organ surface boundary condition was used to solve deformation. Initial boundary correspondence on organ surface was created from conventional DIR. Boundary condition was updated by an iterative optimization scheme to minimize elastic deformation energy. The registration was validated on a numerical phantom. Treatment dose was constructed applying both the conventional DIR and the proposed method using daily CBCT image obtained from HN treatment. Results: Phantom study showed 2.7% maximal discrepancy with respect to the actual displacement. Compared with conventional DIR, subvolume displacement difference in a right parotid had the mean±SD (Min, Max) to be 1.1±0.9(−0.4∼4.8), −0.1±0.9(−2.9∼2.4) and −0.1±0.9(−3.4∼1.9)mm in RL/PA/SI directions respectively. Mean parotid dose and V30 constructed including the dose response induced shrinkage were 6.3% and 12.0% higher than those from the conventional DIR. Conclusion: Heterogeneous dose distribution in normal organ causes non-uniform sub-volume shrinkage. Sub-volume in high dose region has a larger shrinkage than the one in low dose region, therefore causing more sub-volumes to move into the high dose area during the treatment course. This leads to an unfavorable dose-volume relationship for the normal organ

  13. adverse effects of low dose methotrexate in rheumatoid arthritis patients

    International Nuclear Information System (INIS)

    Gilani, S.T.; Khan, D.A.; Khan, F.A.; Ahmed, M.

    2012-01-01

    To determine the frequency of adverse effects attributed to Methotrexate (MTX) toxicity and serum minimum toxic concentration with low dose MTX in Rheumatoid Arthritis (RA) patients. Study Design: Cross-sectional observational study. Place and Duration of Study: Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology, Rawalpindi, from March 2010 to March 2011. Methodology: One hundred and forty adult patients of RA receiving low dose MTX (10 mg/week) for at least 3 months, ere included by consecutive sampling. Blood samples were collected 2 hours after the oral dose of MTX. Serum alanine transaminase and creatinine were analyzed on Hitachi and blood counts on Sysmex analyzer. Serum MTX concentration was measured on TDX analyzer. Results: Out of one hundred and forty patients; 68 males (49%) and 72 females (51%), 38 developed MTX toxicity (27%), comprising of hepatotoxicity in 12 (8.6%), nephrotoxicity in 3 (2.1%), anaemia in 8 (5.7%), leucopenia in 2 (1.4%), thrombocytopenia in 3 (2.1%), pancytopenia in 2 (1.4%), gastrointestinal adverse effects in 5 (3.6%) and mucocutaneous problems in 3 (2.1%). Receiver operating characteristic curve revealed serum minimum toxic concentration of MTX at cutoff value of 0.71 mu mol/l with a sensitivity of 71% and specificity of 76%. Conclusion: Adverse effects of low dose MTX were found in 27% of RA patients, mainly comprising of hepatotoxicity and haematological problems. MTX toxicity can be detected by therapeutic drug monitoring of serum concentration of 0.71 mu mol/l with sensitivity of 71% and specificity of 76% in the patients on low dose MTX maintenance therapy. (author)

  14. Radiation tolerance of the cervical spinal cord: incidence and dose-volume relationship of symptomatic and asymptomatic late effects following high dose irradiation of paraspinal tumors

    International Nuclear Information System (INIS)

    Liu, Mitchell C.C.; Munzenrider, John E.; Finkelstein, Dianne; Liebsch, Norbert; Adams, Judy; Hug, Eugen B.

    1997-01-01

    Purpose: Low grade chordomas and chondrosarcomas require high radiation doses for effective, lasting tumor control. Fractionated, 3-D planned, conformal proton radiation therapy has been used for lesions along the base of skull and spine to deliver high target doses, while respecting constraints of critical, normal tissues. In this study, we sought to determine the incidence of myelopathy after high dose radiotherapy to the cervical spine and investigated the influence of various treatment parameters, including dose-volume relationship. Methods and Materials: Between December 1980 and March 1996, 78 patients were treated at the Massachusetts General Hospital and Harvard Cyclotron Laboratory for primary or recurrent chordomas and chondrosarcomas of the cervical spine using combined proton and photon radiation therapy. In general, the tumor dose given was between 64.5 to 79.2 CGE (Cobalt Gray Equivalent). The guidelines for maximum permissible doses to spinal cord were: ≤ 64 CGE to the spinal cord surface and ≤ 53 CGE to the spinal cord center. Dose volume histograms of the spinal cord were analyzed to investigate a possible dose and volume relationship. Results: With a mean follow-up period of 46.6 months (range: 3 - 157 months), 4 of 78 patients (5.1%) developed high-grade (RTOG Grade 3 and 4) late toxicity: 3 patients (3.8%) experienced sensory deficits without motor deficits, none had any limitations of daily activities. One patient (1.2%) developed motor deficit with loss of motor function of one upper extremity. The only patient, who developed permanent motor damage had received additional prior radiation treatment and therefore received a cumulative spinal cord dose higher than the treatment guidelines. No patient treated within the guidelines experienced any motor impairment. Six patients (7.7%) experienced transient Lhermitt's syndrome and 1 patient (1.2%) developed asymptomatic radiographic MR findings only. Time to onset of symptoms of radiographic

  15. The effect of source-axis distance on integral dose: implications for IMRT

    International Nuclear Information System (INIS)

    Keall, P.

    2001-01-01

    The source-axis distance (SAD) is a treatment machine design parameter that affects integral dose, dose rate and patient clearance. The aim of this work was to investigate the effect of source-axis distance on integral dose for conformal arc therapy. This work is part of a larger project to determine the ideal characteristics of a dedicated IMRT machine. The sensitivity of SAD to beam energy, PTV size, body size and PTV position were determined for conformal arc therapy. For the calculations performed here it was assumed that dose equals terma. The integral dose ratio (IDR) was used to quantify the calculation results. It was found that the IDR increases as both SAD and photon energy increase, though the dependence of IDR on SAD decreases as energy increases. The PTV size was found to have a negligible effect on the relationship between the SAD and IDR, however the body size does affect the relationship between the SAD and IDR. The position of the PTV within the body also affects the IDR. From dosimetric considerations alone, the larger the SAD, the better the possible dose distribution. The IDR for a very large SAD is increased by approximately 5% when compared with the IDR for 100 cm SAD. Similarly, the IDR for 100 cm SAD is approximately 5% higher than the IDR at 50 cm SAD. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  16. Cooperative binding mitigates the high-dose hook effect.

    Science.gov (United States)

    Roy, Ranjita Dutta; Rosenmund, Christian; Stefan, Melanie I

    2017-08-14

    The high-dose hook effect (also called prozone effect) refers to the observation that if a multivalent protein acts as a linker between two parts of a protein complex, then increasing the amount of linker protein in the mixture does not always increase the amount of fully formed complex. On the contrary, at a high enough concentration range the amount of fully formed complex actually decreases. It has been observed that allosterically regulated proteins seem less susceptible to this effect. The aim of this study was two-fold: First, to investigate the mathematical basis of how allostery mitigates the prozone effect. And second, to explore the consequences of allostery and the high-dose hook effect using the example of calmodulin, a calcium-sensing protein that regulates the switch between long-term potentiation and long-term depression in neurons. We use a combinatorial model of a "perfect linker protein" (with infinite binding affinity) to mathematically describe the hook effect and its behaviour under allosteric conditions. We show that allosteric regulation does indeed mitigate the high-dose hook effect. We then turn to calmodulin as a real-life example of an allosteric protein. Using kinetic simulations, we show that calmodulin is indeed subject to a hook effect. We also show that this effect is stronger in the presence of the allosteric activator Ca 2+ /calmodulin-dependent kinase II (CaMKII), because it reduces the overall cooperativity of the calcium-calmodulin system. It follows that, surprisingly, there are conditions where increased amounts of allosteric activator actually decrease the activity of a protein. We show that cooperative binding can indeed act as a protective mechanism against the hook effect. This will have implications in vivo where the extent of cooperativity of a protein can be modulated, for instance, by allosteric activators or inhibitors. This can result in counterintuitive effects of decreased activity with increased concentrations of

  17. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  18. Conditioned instrumental behaviour in the rat: Effects of prenatal irradiation with various low dose-rate doses

    International Nuclear Information System (INIS)

    Klug, H.

    1986-01-01

    4 groups of rats of the Wistar-strain were subjected to γ-irradiation on the 16th day of gestation. 5 rats received 0,6 Gy low dose rate irradiation, 5 animals received 0,9 Gy low dose and 6 high dose irradiation, 3 females were shamirradiated. The male offspring of these 3 irradiation groups and 1 control group were tested for locomotor coordination on parallel bars and in a water maze. The female offspring were used in an operant conditioning test. The locomotor test showed slight impairment of locomotor coordination in those animals irradiated with 0,9 Gy high dose rate. Swimming ability was significantly impaired by irradiation with 0,9 Gy high dose rate. Performance in the operant conditioning task was improved by irradiation with 0,9 Gy both low and high dose rate. The 0,9 Gy high dose rate group learned faster than all the other groups. For the dose of 0,9 Gy a significant dose rate effect could be observed. For the dose of 0,6 Gy a similar tendency was observed, differences between 0,6 Gy high and low dose rate and controls not being significant. (orig./MG) [de

  19. THE PRESENT COLLAPSE OF ROMANIAN HIGHER EDUCATION. CAUSES AND EFFECTS

    Directory of Open Access Journals (Sweden)

    GABRIELA DUMBRAVĂ

    2014-12-01

    Full Text Available The paper corroborates statistical data of economic and social nature in an attempt to outline the national and European context within which the Romanian educational system has constantly degraded over the past years. At the same time, the study exceeds the limits of a simple identification of causes and analyzes the collapse of higher education both as an ultimate consequence of governmental oblivion towards national education, and from the perspective of its devastating boomerang effect on the Romanian economy and on the society at large.

  20. Subgroup effects in a randomised trial of different types and doses of exercise during breast cancer chemotherapy.

    Science.gov (United States)

    Courneya, K S; McKenzie, D C; Mackey, J R; Gelmon, K; Friedenreich, C M; Yasui, Y; Reid, R D; Vallerand, J R; Adams, S C; Proulx, C; Dolan, L B; Wooding, E; Segal, R J

    2014-10-28

    The Combined Aerobic and Resistance Exercise Trial tested different types and doses of exercise in breast cancer patients receiving chemotherapy. Here, we explore potential moderators of the exercise training responses. Breast cancer patients initiating chemotherapy (N=301) were randomly assigned to three times a week, supervised exercise of a standard dose of 25-30 min of aerobic exercise, a higher dose of 50-60 min of aerobic exercise, or a higher dose of 50-60 min of combined aerobic and resistance exercise. Outcomes were patient-reported symptoms and health-related fitness. Moderators were baseline demographic, exercise/fitness, and cancer variables. Body mass index moderated the effects of the exercise interventions on bodily pain (P for interaction=0.038), endocrine symptoms (P for interaction=0.029), taxane/neuropathy symptoms (P for interaction=0.013), aerobic fitness (P for interaction=0.041), muscular strength (P for interaction=0.007), and fat mass (P for interaction=0.005). In general, healthy weight patients responded better to the higher-dose exercise interventions than overweight/obese patients. Menopausal status, age, and baseline fitness moderated the effects on patient-reported symptoms. Premenopausal, younger, and fitter patients achieved greater benefits from the higher-dose exercise interventions. Healthy weight, fitter, and premenopausal/younger breast cancer patients receiving chemotherapy are more likely to benefit from higher-dose exercise interventions.

  1. On the effects of higher alcohols on red wine aroma.

    Science.gov (United States)

    de-la-Fuente-Blanco, Arancha; Sáenz-Navajas, María-Pilar; Ferreira, Vicente

    2016-11-01

    This work aims to assess the aromatic sensory contribution of the four most relevant wine higher alcohols (isobutanol, isoamyl alcohol, methionol and β-phenylethanol) on red wine aroma. The four alcohols were added at two levels of concentration, within the natural range of occurrence, to eight different wine models (WM), close reconstitutions of red wines differing in levels of fruity (F), woody (W), animal (A) or humidity (H) notes. Samples were submitted to discriminant and descriptive sensory analysis. Results showed that the contribution of methionol and β-phenylethanol to wine aroma was negligible and confirmed the sensory importance of the pair isobutanol-isoamyl alcohol. Sensory effects were only evident in WM containing intense aromas, demonstrating a strong dependence on the aromatic context. Higher alcohols significantly suppress strawberry/lactic/red fruity, coconut/wood/vanilla and humidity/TCA notes, but not the leather/animal/ink note. The spirit/alcoholic/solvent character generated by higher alcohols has been shown to be wine dependent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Low-dose effect of developmental bisphenol A exposure on sperm count and behaviour in rats

    DEFF Research Database (Denmark)

    Hass, Ulla; Christiansen, Sofie; Boberg, Julie

    2016-01-01

    /day. In the offspring, growth, sexual maturation, weights and histopathology of reproductive organs, oestrus cyclicity and sperm counts were assessed. Neurobehavioural development was investigated using a behavioural testing battery including tests for motor activity, sweet preference, anxiety and spatial learning....... Decreased sperm count was found at the lowest bisphenol A dose, that is 25 μg/kg/day, but not at the higher doses. Reproductive organ weight and histology were not affected and no behavioural effects were seen in male offspring. In the female offspring, exposure to 25 μg/kg bw/day bisphenol A dose resulted...... not significantly affected. In conclusion, the present study using a robust experimental study design, has shown that developmental exposure to 25 μg/kg bw/day bisphenol A can cause adverse effects on fertility (decreased sperm count), neurodevelopment (masculinization of spatial learning in females) and lead...

  3. Low dose effects - is the fear more dangerous than the radiation?

    International Nuclear Information System (INIS)

    Malaxos, M.

    1996-01-01

    The use of hypothesis which assumes a dose / harmful effect relationship without a limit allows the calculation of risks attributable to doses too small to produce detectable, harmful biological effects. The daughter product of this hypothesis is ALARA concept which requires that the dose received is kept as low as reasonably achievable. This concept of prudent avoidance is generally accepted by international radiation protection organisations and universally applied by radiation health professionals. The acceptance of a hypothesis which assumes that a single nuclear event can cause carcinogenesis, has generated levels of anxiety which may have resulted in significant detriment to those possibly exposed to ionising radiation. The anxiety generated may have caused more detriment and a higher death rate than the worst case ' theoretical' value calculated using the Linear or Quadratic Linear Hypothesis. Information selected from reports and comments in relevant publications indicating that this possibility has become a realty is presented. 24 refs

  4. Diagnostic I-131 scintigraphy in patients with differentiated thyroid cancer. No additional value of higher scan dose

    International Nuclear Information System (INIS)

    Phan, T.T.H.; Tol, K.M. van; Links, T.P.; Piers, D.A.; Vries, E.G.E. de; Dullaart, R.P.F.; Jager, P.L.

    2004-01-01

    After initial treatment with total thyroidectomy and radio iodine ablation, most follow-up protocols for patients with differentiated thyroid carcinoma contain cyclic diagnostic I-131 imaging and serum thyroglobulin (Tg) measurements. The applied diagnostic I-131 doses vary between 37 and 370 MBq. The aim of this study was to determine the yield of a diagnostic scan with 370 MBq I-131 in patients with a negative diagnostic scan with 74 MBq I-131. Retrospective evaluation of 158 patients who received a high-dose diagnostic scan with 370 MBq I-131 because of a negative low-dose diagnostic scan with 74 MBq I-131. Special attention was paid to the patients with positive high-dose diagnostic scanning and undetectable serum Tg levels after thyroid hormone withdrawal. In 127 (80%) of patients the 370 MBq I-131 scan was negative, just like the preceding low-dose scan. In 31 (20%) of patients abnormal uptake was present on the 370 MBq diagnostic scan. In 19 of these 31 patients serum Tg was undetectable. In 15/19 the high-dose diagnostic scan proved either false positive or demonstrated clinically irrelevant minor ablation rests. In only four patients (2.5%) did the high-dose diagnostic scans reveal possibly relevant uptake caused by residual differentiated thyroid cancer. In 98% of patients a 370 MBq dose of I-131 for diagnostic whole-body scintigraphy (WBS) had no additional value. The combination of a low-dose diagnostic I-131 scan using only 74 MBq combined with a serum Tg level measurement proved sufficient for correct clinical decision making regarding whether the patient requires additional I-131 therapy. (authors)

  5. Comments on 'Standard effective doses for proliferative tumours'

    International Nuclear Information System (INIS)

    Dasu, Iuliana Livia; Dasu, Alexandru; Denekamp, Juliana; Fowler, Jack F.

    2000-01-01

    We should like to make some comments on the paper published by Jones et al (1999). The paper presents some interesting and useful contributions on the theoretical evaluation of different fractionated schedules used now. The use of the linear quadratic equation has been very useful in focusing attention on the differences in fractionation responses of fast and slow proliferating normal tissues and tumours. Unfortunately the BED 10 or BED 3 units for (α/β ratios of 10 Gy and 3 Gy respectively) do not directly relate to anything used in routine clinical practice. The purpose of the paper by Jones et al (1999) is to covert any new schedule into the equivalent total dose as if it was given in the same size fractions as are in common use in that department. They illustrate that, if proliferation is taken into account for the altered schedule, it can be compared in two ways with the standard conventional schedule: (a) the proliferative standard effective dose one (PSED 1 ) in which the proliferation correction is applied in the altered schedule, but not in the standard schedule; (b) the proliferative standard effective dose two (PSED 2 ) in which the proliferation correction is applied to both schedules using the same proliferation parameters. This is expected to provide a better evaluation of the response of a 'real' tumour (i.e. a tumour that also proliferates during the standard treatment). However, there seem to be two errors in the paper. First, the authors quoted a wrong equation for calculating the proliferative standard effective dose two (PSED 2 ) (equations (2) and (A6) in their paper). There are also some special cases with respect to the time available for proliferation and the duration of the treatment that have been neglected in their paper and which require further specification. Therefore, we should like to give the full mathematical derivation of the correct equations for calculating the proliferative standard effective doses. We would also like to make

  6. The relationships between radiation doses and their effects

    International Nuclear Information System (INIS)

    Beau, P.G.; Nenot, J.C.

    1982-01-01

    Dose-effect relationships have been developed both for the biological effects studied by Radiobiology and the long-term pathological effects (malignant diseases) studied by Radiation Protection. The former approach chiefly considers the primary biological injuries at the cellular level, and the relationship between the dependent variable characteristic of the effect and the dose -an independent variable- has an explanatory meaning. The parameters associated to the independent variable have a biophysical signification and fit into a model of the action of ionizing radiations. In the latter approach, the relationship is pragmatic and the previous parameters are just the results of a curve-fitting procedure realized on experimental or human data. The biophysical models have led to a general formulation associating a linear term to a quadratic term both of them weighted by an exponential term describing cellular killing at the highest doses. To a certain extent the curves obtained for leukemias, bronchopulmonary and breast cancers prove the validity of the pragmatic model [fr

  7. Effect of beam arrangement on oral cavity dose in external beam radiotherapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe; Wu Lili; Lin Zhixiong

    2012-01-01

    This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volume histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.

  8. Annual effective dose due to natural radioactivity in drinking water

    International Nuclear Information System (INIS)

    Padma Savithri, P.; Srivastava, S.K.; Balbudhe, A.Y.; Vishwa Prasad, K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Natural radioactivity concentration in drinking water supply in and round Hyderabad, Secunderabad was determined. The observed gross alpha activity found in water samples vary from 0.027±0.014 Bq/L to 0.042±0.015 Bq/L with average 0.035 Bq/L while beta activity in all the samples are less than 0.076 Bq/l. Contributions of the drinking water samples to total annual effective dose equivalent from 238 U, 234 U, 230 Th, 26 Ra, 210 Po, 232 Th, 228 Th 210 Pb and 228 Ra are 1.14, 1.24, 5.30, 7.07, 30.3, 5.81, 1.82, 38.3 and 38.3 μSvy -1 for adults. The results indicate that the annual effective doses are below the WHO recommended reference level for α and β in food and drinking samples. (author)

  9. Effect of temporal distribution of dose on oncogenic transformation

    International Nuclear Information System (INIS)

    Miller, R.C.; Brenner, D.J.; Geard, C.R.; Marino, S.A.; Hall, E.J.

    1988-01-01

    Risk estimates for neutron hazards are of considerable social and economic importance. Effectiveness per unit dose of X or γ rays (low-LET radiations) has been consistently observed to be dependent on the temporal distribution of dose. In a series of comparisons, 0.5 Gy of single or fractionated (five fractions in 8 h), neutrons of 0.23, 0.35, 0.45, 5.9, or 13.7 MeV were delivered to a synchronous C3H 10T1/2 cells. Transformation frequencies per surviving cell are shown. Cells exposed to one energy (5.9 MeV) show a significant enhancement at the 95% level due to fractionated exposures, and at the 85% confidence level the 0.35- and 0.45-MeV fractionated exposures additionally result in significantly greater transformation frequencies. The frequencies of surviving cells per dish between a single or fractionated exposure vary by less than 10%. In three of five pairwise comparisons, fractionated exposures result in statistically greater frequencies of transformants per dish, and are in complete agreement with the results when induction is expressed as transformants per surviving cell. However, after 0.23-MeV neutron irradiation, the single dose resulted in a greater incidence of transformed foci than the fractionated dose

  10. Effect of dose rate on radical and property of gelatin

    International Nuclear Information System (INIS)

    Geng Shengrong; Chen Yuxia; Zu Xiaoyan; Li Xin; Jiang Hongyou

    2015-01-01

    The gelatin was irradiated respectively in the range of 0-32 kGy by dose rates of 60 Gy/min 60 Co, 480 Gy/min 60 Co and 12000 Gy/min accelerator, and the relationships of the radical character and gelatin property with dose rate were investigated through electron spin resonance (ESR) and gelatin permeation chromatogram. The results show that there is weak ESR signal from unirradiated gelatin, but irradiated one presents typical double peak. The order of ESR signal intensity of gelatin with the same absorbed dosage from high to low is 60 Gy/min 60 Co, 480 Gy/min 60 Co and 12000 Gy/min accelerator. The linear relationship between ESR signal intensity from 60 Co irradiated gelatin and absorbed dose is y= 26.983x 2 +1 641.8x-205.69. The intrinsic viscosity, average relative molecular weight, gelatin strength and breaking elongation of irradiated gelatin from high to low are 480 Gy/min 60 Co, 12000 Gy/min accelerator and 60 Gy/min 60 Co. The protection mechanism of high dose rate radiation on gelatin degradation is that the production of effective long life free radicals reduces. (authors)

  11. Dose-effect studies with inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Data are presented for all dogs employed in current life-span dose effect studies with inhaled 239 PuO 2 , and 239 Pu nitrate. Information is presented on the estimated initial alveolar deposition, based on external thorax counts and on estimated lung weights at time of exposure. Information is also provided on the current interpretation of the most prominent clinical-pathological features associated with the death of animals

  12. Radioprotective effects in mice by a single dose of subcutaneous administration of cobaltous chloride post γ-rays irradiation with a sublethal dose

    International Nuclear Information System (INIS)

    Izumo, Yoshiro; Ogata, Hiromitsu

    1993-01-01

    Radioprotective effects were investigated in mice which received subcutaneously a single dose of each inorganic metal: Co, Cu, Rb, Sr, Mo and W 24 hours post irradiation of 60 Co γ-rays with a sublethal dose. The effects were observed in mice injected with Co at an optimum dosage of 20 mg/kg·body weight. Then to elucidate mechanisms of the effects, mice were injected with Co containing the radioactive tracer ( 60 Co) following the radiation exposure, measured elimination of the radioactivity for 7 days, then sacrificed and divided to some tissues and organs. The radioactivity in whole body during this period resulted in a markedly higher retention than that for mice injected with [ 60 Co] alone, as well as liver in the organs. These higher retentions appeared to be related to the radioprotective effects. (author)

  13. Low dose radiation damage effects in silicon strip detectors

    International Nuclear Information System (INIS)

    Wiącek, P.; Dąbrowski, W.

    2016-01-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  14. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  15. Exposures at low doses and biological effects of ionizing radiations

    International Nuclear Information System (INIS)

    Masse, R.

    2000-01-01

    Everyone is exposed to radiation from natural, man-made and medical sources, and world-wide average annual exposure can be set at about 3.5 mSv. Exposure to natural sources is characterised by very large fluctuations, not excluding a range covering two orders of magnitude. Millions of inhabitants are continuously exposed to external doses as high as 10 mSv per year, delivered at low dose rates, very few workers are exposed above the legal limit of 50 mSv/year, and referring to accidental exposures, only 5% of the 116 000 people evacuated following the Chernobyl disaster encountered doses above 100 mSv. Epidemiological survey of accidentally, occupationally or medically exposed groups have revealed radio-induced cancers, mostly following high dose-rate exposure levels, only above 100 mSv. Risk coefficients were derived from these studies and projected into linear models of risk (linear non-threshold hypothesis: LNT), for the purpose of risk management following exposures at low doses and low dose-rates. The legitimacy of this approach has been questioned, by the Academy of sciences and the Academy of medicine in France, arguing: that LNT was not supported by Hiroshima and Nagasaki studies when neutron dose was revisited; that linear modelling failed to explain why so many site-related cancers were obviously nonlinearly related to the dose, and especially when theory predicted they ought to be; that no evidence could be found of radio-induced cancers related to natural exposures or to low exposures at the work place; and that no evidence of genetic disease could be shown from any of the exposed groups. Arguments were provided from cellular and molecular biology helping to solve this issue, all resulting in dismissing the LNT hypothesis. These arguments included: different mechanisms of DNA repair at high and low dose rate; influence of inducible stress responses modifying mutagenesis and lethality; bystander effects allowing it to be considered that individual

  16. Effect of low doses of gamma radiation on barley tolerance grown under saline conditions

    International Nuclear Information System (INIS)

    Charbaji, T.; Khalifa, Kh; Al-Ain, F.

    2003-01-01

    A field experiment was conducted at Al-Hijanah, an area located at about 35 km south east of Damascus. Seeds of two barley varieties [White Arabi (WA) and Pakistani 30163 (PK) were irradiated with 2 doses 0 and 15 Gy of gamma irradiation. Then, they were shown on salty soil (17.6-18,9 m mos/cm) and irrigated with salty water (5.12-5.75 m mos/cm). A dose of 15 Gy of gamma irradiation was shown to positively affect the percent germination of PK but had no similar effect on WA. The results were obtained at 3 different growth stages: first, the heading stage, 15 Gy dose increased shoots dry weight, Mg ++ , P content and percent of WA, whereas N percent of PK was decreased. When the seeds were irradiated by the same dose. K + content in WA was significantly higher than that in PK. Second, physiological maturity stage, the same dose (15 Gy) increased shoot dry, but affected negatively K + and Na + contents in PK variety. As for WA variety, Mg ++ and P contents were increased, whereas Na + and Cl - were slightly decreased. Third, harvest stage, gamma irradiation had a positive effect on total yield, grain yield, nitrogen yield and harvest index of PK variety. A positive effect was produced on straw yield, 1000-grain weight, and nitrogen yield of WA variety. (author)

  17. Effect of repeated oral therapeutic doses of methylphenidate on food intake and growth rate in rats.

    Science.gov (United States)

    Alam, Nausheen; Najam, Rahila

    2015-01-01

    Central nervous system stimulants are known to produce anorexia. Previous data suggest that methylphenidate can have variable effects on caloric intake and growth rate. A dose-response study was performed to monitor caloric intake, liquid intake and growth rate in rats following repeated administration of human oral therapeutic doses 2 mg/kg/day, 5mg/kg/day and 8mg/kg/day of methylphenidate. We found that food intake and water intake, increased in all weeks and at all doses used in the study. Growth rate increased more at higher dose (8mg/kg/day) and at low dose (2mg/kg/day) of methylphenidate in 1(st) and 2(nd) week whereas more decreased by the above doses in 3(rd) week, suggesting that food stimulation leads to initial increase in growth rate but long term administration of methylphenidate attenuate growth rate that is not due to modulation of appetite but may be due to anxiety and increased activity produce by stimulants. A possible role of DA, 5HT receptors in modulation of appetite and anxiety is discussed.

  18. Effective Teaching Methods in Higher Education: Requirements and Barriers.

    Science.gov (United States)

    Shirani Bidabadi, Nahid; Nasr Isfahani, Ahmmadreza; Rouhollahi, Amir; Khalili, Roya

    2016-10-01

    Teaching is one of the main components in educational planning which is a key factor in conducting educational plans. Despite the importance of good teaching, the outcomes are far from ideal. The present qualitative study aimed to investigate effective teaching in higher education in Iran based on the experiences of best professors in the country and the best local professors of Isfahan University of Technology. This qualitative content analysis study was conducted through purposeful sampling. Semi-structured interviews were conducted with ten faculty members (3 of them from the best professors in the country and 7 from the best local professors). Content analysis was performed by MAXQDA software. The codes, categories and themes were explored through an inductive process that began from semantic units or direct quotations to general themes. According to the results of this study, the best teaching approach is the mixed method (student-centered together with teacher-centered) plus educational planning and previous readiness. But whenever the teachers can teach using this method confront with some barriers and requirements; some of these requirements are prerequisite in professors' behavior and some of these are prerequisite in professors' outlook. Also, there are some major barriers, some of which are associated with the professors' operation and others are related to laws and regulations. Implications of these findings for teachers' preparation in education are discussed. In the present study, it was illustrated that a good teaching method helps the students to question their preconceptions, and motivates them to learn, by putting them in a situation in which they come to see themselves as the authors of answers, as the agents of responsibility for change. But training through this method has some barriers and requirements. To have an effective teaching; the faculty members of the universities should be awarded of these barriers and requirements as a way to

  19. Effective teaching methods in higher education: requirements and barriers

    Directory of Open Access Journals (Sweden)

    NAHID SHIRANI BIDABADI

    2016-10-01

    Full Text Available Introduction: Teaching is one of the main components in educational planning which is a key factor in conducting educational plans. Despite the importance of good teaching, the outcomes are far from ideal. The present qualitative study aimed to investigate effective teaching in higher education in Iran based on the experiences of best professors in the country and the best local professors of Isfahan University of Technology. Methods: This qualitative content analysis study was conducted through purposeful sampling. Semi-structured interviews were conducted with ten faculty members (3 of them from the best professors in the country and 7 from the best local professors. Content analysis was performed by MAXQDA software. The codes, categories and themes were explored through an inductive process that began from semantic units or direct quotations to general themes. Results: According to the results of this study, the best teaching approach is the mixed method (student-centered together with teacher-centered plus educational planning and previous readiness. But whenever the teachers can teach using this method confront with some barriers and requirements; some of these requirements are prerequisite in professors’ behavior and some of these are prerequisite in professors’ outlook. Also, there are some major barriers, some of which are associated with the professors’ operation and others are related to laws and regulations. Implications of these findings for teachers’ preparation in education are discussed. Conclusion: In the present study, it was illustrated that a good teaching method helps the students to question their preconceptions, and motivates them to learn, by putting them in a situation in which they come to see themselves as the authors of answers, as the agents of responsibility for change. But training through this method has some barriers and requirements. To have an effective teaching; the faculty members of the universities

  20. Higher Education: Reputational Effects, Distorted Signaling and Propitious Selection

    Directory of Open Access Journals (Sweden)

    Elena V. Savitskaya

    2017-03-01

    Full Text Available In the paper the authors attempt to underpin the hypothesis that under certain conditions a propitious selection may take place on the higher education market. It is a phenomenon when brand universities automatically reproduce their positive reputation without improving the quality of teaching due to influx of talented entrants. The authors apply econometric modelling and regression analysis based on survey of first-year students from Moscow to demonstrate that graduates with high USE marks really prefer to choose among brand universities; moreover, they appreciate a possibility to obtain a prestigious diploma even more than that of acquiring a particular profession. However, entrants do not possess full information about the quality of teaching in a particular university. The analysis presented in the paper shows that university rankings do not contribute to overcoming of this information asymmetry, since they transmit distorted signals caused by the methodology of ranking. The rankings, first of all, accentuate academic activity of teachers rather than educational process and interaction with students. For this reason, higher schools often adopt such a strategy to meet the ranking criteria as much as possible; they also tend to improve namely these indicators disregarding the other to become a leader. As a result, brand universities may surpass ordinary universities not due to rendering educational services of higher quality but due to selection of best entrants and peer-effects. These factors allow them to have excellent graduates, thus maintain positive reputation in employers’ opinion and simultaneously raise the brand value by advancing in a ranking.

  1. Uncertainties in effective dose estimates of adult CT head scans: The effect of head size

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2009-01-01

    Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.

  2. Uncertainties in effective dose estimates of adult CT head scans: The effect of head size

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E. [Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia 5000 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Division of Medical Imaging, Women' s and Children' s Hospital, North Adelaide, South Australia 5006 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia)

    2009-09-15

    Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.

  3. Effect of low doses of ionizing radiation on human health

    International Nuclear Information System (INIS)

    Kovalenko, A.N.

    1990-01-01

    Data are reported on the possible mechanism of biological effects of low doses of ionizing radiation on the human body. The lesioning effect of this radiation resulted in some of the persons in the development of disorders of the function of information and vegetative-regulatory systems determined as a desintegration syndrome. This syndrome is manifested in unspecific neuro-vegetative disorders of the function of most important physiological and homeostatic system of the body leading to weakening of the processes of compensation and adaptation. This condition is characterized by an unspecific radiation syndrome as distinct from acute or chronic radiation disease which is a specific radiation syndrome

  4. UV dose-effect relationships and current protection exposure standards

    International Nuclear Information System (INIS)

    Singh, M.S.; Campbell, G.W.

    1982-04-01

    In this paper we have attempted to quantify the health effects in man of uv-radiation exposure of wavelengths from 240 nm to 320 nm. Exposure to uv in this region could result in the formation of skin cancer or premature aging in man. The induction of cancer by uv radiation results from changes in genetic material. We have used the DNA action spectrum coupled with the uv skin cancer data available in the literature to derive the dose-effect relationships. The results are compared against the current uv protection standards

  5. The biological bases of the dose-effect relationship

    International Nuclear Information System (INIS)

    Lafuma, J.

    2001-01-01

    In radiation protection, the recent data in epidemiology, in animal experimentation and on the base researches are no more compatible with a linear dose-effect relationship without threshold and do not account for the radiological risks at low doses. The cancers should be accelerated by radiations as any pathology linked to the ageing and for which threshold exit. Relative to the genetic risk it is known today that the natural exposure that lasts for several generations has not lead excess of hereditary illness as it was to be feared in 1959 for several countries. Considering that for populations the exposure levels induced by human activities have already been, under these ones of average natural exposures the genetic risk can be negligible and it is the somatic risk alone, with its thresholds that has to be into account. (N.C.)

  6. The effects of chronic low dose irradiation on drosophila melanogaster

    International Nuclear Information System (INIS)

    Zajnullin, V.G.; Moskalev, A.A.; Shaposhnikov, M.V.; Yuraneva, I.N.; Taskaev, A.I.

    2001-01-01

    It was investigated the influence of the chronic gamma-irradiation in the dose rate of 0.17 cGy/h on the rate of genetic variability and on the life-span in the laboratory strains of Drosophila melanogaster with genotypic distinguishes in mobile genetic elements and defects in the DNA repair processes. It is shown that the radiation-induced alteration of the traits under study depends from genotype of investigated strains. In the different strains we have observed an increase as well as a decrease of the mutation rate and life-span. Also it was established that irradiation leads to the frequencies of the GD-sterility and mutability of the snw and h(w+) in the P-M and H-E dysgenic crosses. The obtained results suggest that mobile genetic elements play an important role in the forming of genetic effects in response to low dose irradiation. (author)

  7. Genetic effects of low-dose irradiation in Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Zajnulin, V.G.; Shaposhnikov, M.V.; Yuraneva, I.N.

    2000-01-01

    Influence of chronic γ-irradiation at the dose rate of 0.17 cGy/h on the rate of genetic variability in the laboratory strains of Drosophila Melanogaster with genotypic distinguishes by families of mobile genetic elements and of systems of hybrid disgenesis and also violations in reparation processes control mechanisms. It was shown that the rates of induction of recessive lethal mutations depended on genotype of investigated strains. In the different strains an increase as well as a decrease of the mutation rate were observed. Also in was established that irradiation leads to the increase in frequencies of the gonads sterility and mutability of the sn w and h(w + ) in the P-M and H-E dysgenic crosses. Obtained results suggest that mobile genetic elements play an important role in the forming of genetic effects in response to low dose irradiation [ru

  8. Pulse and integral optically stimulated luminescence (OSL). Similarities and dissimilarities to thermoluminescence (TL) dose dependence and dose-rate effects

    International Nuclear Information System (INIS)

    Chen, R.; Leung, P.L.

    2000-01-01

    Optically stimulated luminescence (OSL) and thermoluminescence (Tl) are two possible methods to monitor the absorbed radiation in solid samples, and therefore are utilized for dosimetry. For this application, two properties are desirable, namely, linear dose dependence of the measured quantity and dose-rate independence. For Tl, different kinds of super linear dose dependence have been reported in the literature in different materials, and in some cases, dose-rate dependence has also been found. These have been explained as being the result of competition. In OSL, some recent works reported on super linear dose dependence in annealed samples. In the present work, we explain the possible occurrence of these phenomena in OSL by solving numerically the relevant rate equations governing the process during irradiation, relaxation and read-out (heating or light stimulation). The results show that for short pulse OSL, quadratic dose dependence can be expected when only one trapping state and one kind of recombination center are involved and when the excitation starts with empty traps and centers. With the short pulse OSL, the calculation also reveals a possible dose-rate effect. Under the same circumstances, the area under the OSL curve depends linearly on the dose. The dependence of the whole area under the OSL curve on the dose is shown to be super linear when a disconnected trapping state or radiationless center take part in the process. Also, dose-rate effect can be expected in these cases, although no experimental effect of this sort has been reported so far. In pulse OSL, the analogy is made between the measured intensity and the initial rise range of non-first order Tl, whereas for the total area OSL, there is a nearly full analogy with the dose behavior of the Tl maximum. (Author)

  9. Dose-rate effects of low-dropout voltage regulator at various biases

    International Nuclear Information System (INIS)

    Wang Yiyuan; Zheng Yuzhan; Gao Bo; Chen Rui; Fei Wuxiong; Lu Wu; Ren Diyuan

    2010-01-01

    A low-dropout voltage regulator, LM2941, was irradiated by 60 Co γ-rays at various dose rates and biases for investigating the total dose and dose rate effects. The radiation responses show that the key electrical parameters, including its output and dropout voltage, and the maximum output current, are sensitive to total dose and dose rates, and are significantly degraded at low dose rate and zero bias. The integrated circuits damage change with the dose rates and biases, and the dose-rate effects are relative to its electric field. (authors)

  10. Cumulative effective and individual organ dose levels in paediatric patients undergoing multiple catheterizations for congenital heart disease

    International Nuclear Information System (INIS)

    Jones, T.P.; Brennan, P.C.; Ryan, E.

    2017-01-01

    This study examines the cumulative radiation dose levels received by a group of children who underwent multiple cardiac catheterisation procedures during the investigation and management of congenital heart disease (CHD). The purpose is to calculate cumulative doses, identify higher dose individuals, outline the inconsistencies with risk assessment and encourage the establishment of dose databases in order to facilitate the longitudinal research necessary to better understand health risks. A retrospective review of patient records for 117 paediatric patients who have undergone two or more cardiac catheterizations for the investigation of CHD was undertaken. This cohort consisted of patients who were catheterised over a period from September 2002 to August 2014. The age distribution was from newborn to 17 y. Archived kerma-area product (P KA ) and fluoroscopy time (T) readings were retrieved and analysed. Cumulative effective and individual organ doses were determined. The cumulative P KA levels ranged from 1.8 to 651.2 Gycm 2 , whilst cumulative effective dose levels varied from 2 to 259 mSv. The cumulative fluoroscopy time was shown to vary from 8.1 to 193.5 min. Median cumulative organ doses ranged from 3 to 94 mGy. Cumulative effective dose levels are highly variable but may exceed 250 mSv. Individual organ and effective dose measurements remain useful for comparison purposes between institutions although current methodologies used for determining lifetime risks are inadequate. (authors)

  11. The Effects of Electron Beam Irradiation Dose on the Mechanical Performance of Red Maple (Acer rubrum

    Directory of Open Access Journals (Sweden)

    Timothy Starr

    2014-12-01

    Full Text Available To understand how electron beam irradiation affects wood physically and chemically, irradiated maple beams (Acer rubrum and veneers were examined using three-point bend tests, dynamic mechanical analysis (DMA, and NIR- and FTIR- spectroscopy. The MOR from the bending tests revealed a significant decline in the red maple’s strength after a dose of 80 kGy. DMA results showed evidence of crosslinking of the amorphous content of the wood at low doses, followed by degradation at higher doses, with the change in response occurring around 80 kGy. Infrared spectroscopy revealed that the components of wood that were most impacted were the phenolic hydroxyl structures of lignin and cellulose hydroxyls, with the greatest effects being seen after 80 kGy.

  12. Effects of low dose radiation on antioxidant enzymes after radiotherapy of tumor-bearing mice

    International Nuclear Information System (INIS)

    Li Jin; Gao Gang; Wang Qin; Tang Weisheng; Liu Xiaoqiu; Wang Zhiquan

    2005-01-01

    Objective: To search for effects of low dose radiation on the activities of antioxidant enzymes after radiotherapy of tumor-bearing mice. Methods: Superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) were all determined by chemical colorimetry. Results: Low dose radiation increase the activities of antioxidant enzymes superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) in serum of tumor-bearing mice more markedly than those in the unirradiated controls. The activities of antioxidant enzymes SOD, GST, CAT in serum of tumor-bearing mice (d 5 , d 3 ) irradiated with 5cGy 6h before 2.0 Gy radiation are obviously higher than those of the group (c 3 , c 5 ) given with radiotherapy only. Conclusion: The increase in the activities of antioxidant enzymes in serum of tumor-bearing mice triggered by low dose radiation could partly contribute to the protective mechanism. (authors)

  13. Age, Sex, and Dose Effects of Nonbenzodiazepine Hypnotics on Hip Fracture in Nursing Home Residents.

    Science.gov (United States)

    Dore, David D; Zullo, Andrew R; Mor, Vincent; Lee, Yoojin; Berry, Sarah D

    2018-04-01

    The Food and Drug Administration recommends a reduced dose of nonbenzodiazepine hypnotics in women, yet little is known about the age-, sex-, and dose-specific effects of these drugs on risk of hip fracture, especially among nursing home (NH) residents. We estimated the age-, sex-, and dose-specific effects of nonbenzodiazepine hypnotics on the rate of hip fracture among NH residents. Case-crossover study in US NHs. A total of 691 women and 179 men with hip fracture sampled from all US long-stay NH residents. Measures of patient characteristics were obtained from linked Medicare and the Minimum Data Set (2007-2008). The outcome was hospitalization for hip fracture with surgical repair. We estimated rate ratios (RRs) and 95% confidence intervals (CIs) from conditional logistic regression models for nonbenzodiazepine hypnotics (vs nonuse) comparing 0 to 29 days before hip fracture (hazard period) with 60 to 89 and 120 to 149 days before hip fracture (control periods). We stratified analyses by age, sex, and dose. The average RR of hip fracture was 1.7 (95% CI 1.5-1.9) for any use. The RR of hip fracture was higher for residents aged ≥90 years vs <70 years (2.2 vs 1.3); however, the CIs overlapped. No differences in the effect of the hypnotic on risk of hip fracture were evident by sex. Point estimates for hip fracture were greater with high-dose versus low-dose hypnotics (RR 1.9 vs 1.6 for any use), but these differences were highly compatible with chance. The rate of hip fracture in NH residents due to use of nonbenzodiazepine hypnotics was greater among older patients than among younger patients and, possibly, with higher doses than with lower doses. When clinicians are prescribing a nonbenzodiazepine hypnotic to any NH resident, doses of these drugs should be kept as low as possible, especially among those with advanced age. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  14. Combined effects of gamma radiation doses and sodium nitrite content on the lipid oxidation and color of mortadella.

    Science.gov (United States)

    Dutra, Monalisa Pereira; Cardoso, Giselle Pereira; Fontes, Paulo Rogério; Silva, Douglas Roberto Guimarães; Pereira, Marcio Tadeu; Ramos, Alcinéia de Lemos Souza; Ramos, Eduardo Mendes

    2017-12-15

    The effects of different doses of gamma radiation (0-20kGy) on the color and lipid oxidation of mortadella prepared with increasing nitrite levels (0-300ppm) were evaluated using a central composite rotatable design. Higher radiation doses increased the redox potential, promoted the lipid oxidation and elevating the hue color of the mortadellas. Nevertheless, higher addition of sodium nitrite elevated the residual nitrite content, reduced the lipid oxidation and promoted the increase of redness and the reduce of hue color of the mortadellas, regardless of the radiation dose applied. Nitrite addition had a greater effect than irradiation on the quality parameters evaluated, and even at low levels (∼75ppm), its use decreased the deleterious effects of irradiation at doses as high as 20kGy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Efficacy and Safety of Daikenchuto for Constipation and Dose-Dependent Differences in Clinical Effects

    Directory of Open Access Journals (Sweden)

    Tatsuya Hirose

    2018-01-01

    Full Text Available Background. Daikenchuto (DKT is a Kampo medicine used for the treatment of constipation. In this study, we evaluated the effectiveness of DKT against constipation. Patients and Methods. Thirty-three patients administered DKT for constipation were selected and divided into low-dose (7.5 g DKT; n=22 and high-dose (15 g DKT; n=11 groups. We retrospectively evaluated weekly defaecation frequency, side effects, and clinical laboratory data. Results. Median defaecation frequencies after DKT administration (5, 5.5, 5, and 8 for the first, second, third, and fourth weeks, resp. were significantly higher than that before DKT administration (2 in all 33 cases (P<0.01. One case (3% of watery stool, one case of loose stools (3%, and no cases of abdominal pain (0% were observed. Median defaecation frequencies in the high-dose group (7 and 9 were significantly higher than those in the low-dose group (4 and 3 in the first (P=0.0133 and second (P=0.0101 weeks, respectively. There was no significant change in clinical laboratory values. Conclusion. We suggest that DKT increases defaecation frequency and is safe for treating constipation.

  16. Cumulative effective dose and cancer risk for pediatric population in repetitive full spine follow-up imaging: How micro dose is the EOS microdose protocol?

    Science.gov (United States)

    Law, Martin; Ma, Wang-Kei; Lau, Damian; Cheung, Kenneth; Ip, Janice; Yip, Lawrance; Lam, Wendy

    2018-04-01

    To evaluate and to obtain analytic formulation for the calculation of the effective dose and associated cancer risk using the EOS microdose protocol for scoliotic pediatric patients undergoing full spine imaging at different age of exposure; to demonstrate the microdose protocol capable of delivering lesser radiation dose and hence of further reducing cancer risk induction when compared with the EOS low dose protocol; to obtain cumulative effective dose and cancer risk for both genders scoliotic pediatrics of US and Hong Kong population using the microdose protocol. Organ absorbed doses of full spine exposed scoliotic pediatric patients have been simulated with the use of EOS microdose protocol imaging parameters input to the Monte Carlo software PCXMC. Gender and age specific effective dose has been calculated with the simulated organ absorbed dose using the ICRP-103 approach. The associated radiation induced cancer risk, expressed as lifetime attributable risk (LAR), has been estimated according to the method introduced in the Biological Effects of Ionizing Radiation VII report. Values of LAR have been estimated for scoliotic patients exposed repetitively during their follow up period at different age for US and Hong Kong population. The effective doses of full spine imaging with simultaneous posteroanterior and lateral projection for patients exposed at the age between 5 and 18 years using the EOS microdose protocol have been calculated within the range of 2.54-14.75 μSv. The corresponding LAR for US and Hong Kong population was ranged between 0.04 × 10 -6 and 0.84 × 10 -6 . Cumulative effective dose and cancer risk during follow-up period can be estimated using the results and are of information to patients and their parents. With the use of computer simulation and analytic formulation, we obtained the cumulative effective dose and cancer risk at any age of exposure for pediatric patients of US and Hong Kong population undergoing repetitive

  17. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  18. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Otsuka, Kensuke; Yoshida, Kazuo

    2015-01-01

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  19. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  20. Higher order effects in electroweak theory 1981-12 (KEK)

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1982-01-01

    This is a brief report on the higher order or loop effects in electroweak theory. The discussion is based on the Weinberg Salam model and QCD. The loop correction to weak interaction is described. The renormalization conditions were applied to physical parameters, α(QED), M(W) and M(Z). It is expected to obtain experimentally the values of M(W) and M(Z) with the accuracy of 0.1 percent. In this scheme, the parameters were fixed loop by loop. The correction was evaluated along the present on-shell scheme. The general estimation of the order of correction was performed. The evaluation of the size of terms in one-loop correction was made. The examples of one loop analysis are presented. The leading logarithmic correction such as α ln(m 2 q 2 /M 2 ) is discussed. The system was described by H(eff) with the local operator O(i), in which the propagator of heavy particles was contracted. The effective interaction was obtained as C(i) (q 2 ) O(i), where C(i)(q 2 ) satisfies a proper equation of a renormalization group. As the practical examples, μ-decay, charged current and neutral current were studied. The correction to electron neutral current and the shift of M(W) and M(Z) were numerically obtained. Comments on quark mass and the uncertainty of sin 2 (theta) from the νN reaction are presented. (Kato, T.)

  1. Effective description of higher-order scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, David [APC—Astroparticule et Cosmologie, Université Paris Diderot Paris 7, 75013 Paris (France); Mancarella, Michele; Vernizzi, Filippo [Institut de physique théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette (France); Noui, Karim, E-mail: langlois@apc.univ-paris7.fr, E-mail: michele.mancarella@cea.fr, E-mail: karim.noui@lmpt.univ-tours.fr, E-mail: filippo.vernizzi@cea.fr [Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Parc de Grandmont, 37200 Tours (France)

    2017-05-01

    Most existing theories of dark energy and/or modified gravity, involving a scalar degree of freedom, can be conveniently described within the framework of the Effective Theory of Dark Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the lapse function. Although this dependence generically signals the presence of an extra scalar degree of freedom, theories that contain only one propagating scalar degree of freedom, in addition to the usual tensor modes, can be constructed by requiring the initial Lagrangian to be degenerate. Starting from a general quadratic action, we derive the dispersion relations for the linear perturbations around Minkowski and a cosmological background. Our analysis directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST) theories. For these theories, we find that one cannot recover a Poisson-like equation in the static linear regime except for the subclass that includes the Horndeski and so-called 'beyond Horndeski' theories. We also discuss Lorentz-breaking models inspired by Horava gravity.

  2. Committed equivalent organ doses and committed effective doses from intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed equivalent doses to individual organs for intakes by ingestion and inhalation of 1 mu m AMAD particles of 359 nuclides by infants aged 3 months, by children aged 1, 5, 10 and 15 years, and by adults. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on the way committed doses increase with the integration period is given in NRPB-M289. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  3. Estimation of effective dose and lifetime attributable risk from multiple head CT scans in ventriculoperitoneal shunted children

    International Nuclear Information System (INIS)

    Aw-Zoretic, J.; Seth, D.; Katzman, G.; Sammet, S.

    2014-01-01

    Purpose: The purpose of this review is to determine the averaged effective dose and lifetime attributable risk factor from multiple head computed tomography (CT) dose data on children with ventriculoperitoneal shunts (VPS). Method and materials: A total of 422 paediatric head CT exams were found between October 2008 and January 2011 and retrospectively reviewed. The CT dose data was weighted with the latest IRCP 103 conversion factor to obtain the effective dose per study and the averaged effective dose was calculated. Estimates of the lifetime attributable risk were also calculated from the averaged effective dose using a conversion factor from the latest BEIR VII report. Results: Our study found the highest effective doses in neonates and the lowest effective doses were observed in the 10–18 years age group. We estimated a 0.007% potential increase risk in neonates and 0.001% potential increased risk in teenagers over the base risk. Conclusion: Multiple head CTs in children equates to a slight potential increase risk in lifetime attributable risk over the baseline risk for cancer, slightly higher in neonates relative to teenagers. The potential risks versus clinical benefit must be assessed

  4. Implications of effects ''adaptive response'', ''low-dose hypersensitivity'' und ''bystander effect'' for cancer risk at low doses and low dose rates

    International Nuclear Information System (INIS)

    Jacob, P

    2006-01-01

    A model for carcinogenesis (the TSCE model) was applied in order to examine the effects of ''Low-dose hypersensitivity (LDH)'' and the ''Bystander effect (BE)'' on the derivation of radiation related cancer mortality risks. LDH has been discovered to occur in the inactivation of cells after acute exposure to low LET radiation. A corresponding version of the TSCE model was applied to the mortality data on the Abomb survivors from Hiroshima and Nagasaki. The BE has been mainly observed in cells after exposure to high LET radiation. A Version of the TSCE model which included the BE was applied to the data on lung cancer mortality from the workers at the Mayak nuclear facilities who were exposed to Plutonium. In general an equally good description of the A-bomb survivor mortality data (for all solid, stomach and lung tumours) was found for the TSCE model and the (conventional) empirical models but fewer parameters were necessary for the TSCE model. The TSCE model which included the effects of radiation induced cell killing resulted in non-linear dose response curves with excess relative risks after exposure at young ages that were generally lower than in the models without cell killing. The main results from TSCE models which included cell killing described by either conventional survival curves or LDH were very similar. A sub multiplicative effect from the interaction of smoking and exposure to plutonium was found to result from the analysis of the Mayak lung cancer mortality data. All models examined resulted in the predominant number of Mayak lung cancer deaths being ascribed to smoking. The interaction between smoking and plutonium exposures was found to be the second largest effect. The TSCE model resulted in lower estimates for the lung cancer excess relative risk per unit plutonium dose than the empirical risk model, but this difference was not found to be statistically significant. The excess relative risk dose responses were linear in the empirical model and

  5. Collective effective dose in Europe from x-ray and nuclear medicine procedures

    International Nuclear Information System (INIS)

    Bly, R.; Jaervinen, H.; Jahnen, A.; Olerud, H.; Vassileva, J.; Vogiatzi, S.

    2015-01-01

    Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547 500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605 000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30 700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31 100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput. (authors)

  6. Review of proton pump inhibitors for the initial treatment of heartburn: is there a dose ceiling effect?

    Science.gov (United States)

    Kushner, Pamela R; Peura, David A

    2011-05-01

    Proton pump inhibitors (PPIs) are widely used in clinical practice. However, concerns have been expressed about their long-term use, particularly with regard to bone health, Clostridium difficile infections, and drug interactions with platelet aggregation inhibitors. There has been limited guidance for clinicians concerning appropriate dose selection of PPIs for the initial treatment of heartburn. This review explored whether published clinical trials provide evidence of a ceiling above which higher PPI doses do not provide additional clinical benefit over the lowest approved dose. All articles of randomized, controlled clinical trials in nonerosive gastroesophageal reflux disease (GERD) in which the effects of two or more doses of the same PPI on symptomatic relief of heartburn were quantified as a study endpoint were identified and analyzed through PubMed searches up to the end of September 2010. The majority of trials evaluated provided no evidence that higher PPI doses were superior to the lowest approved dose for the initial treatment of heartburn. There were no clinically relevant findings with respect to dose dependence and safety outcomes in these studies. Efficacy outcomes from the trials suggest there may be a dose ceiling effect and highlight the need for further research on the use of the lowest effective PPI doses as an appropriate strategy in the initial treatment of uncomplicated heartburn. Observational studies and some meta-analyses have suggested that long-term PPI pharmacotherapy might be associated with safety concerns, which necessitate the periodic evaluation of therapeutic benefit in terms of symptom resolution and regimen tolerability. However, evidence to date suggests that use of the lowest effective dose for the indication is not associated with significant adverse events, particularly in the short term. Clinical practice suggests that patients requiring long-term treatment should be maintained on the lowest dose necessary to control

  7. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  8. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    Science.gov (United States)

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  9. Efficacy and safety of budesonide/formoterol single inhaler therapy versus a higher dose of budesonide in moderate to severe asthma

    NARCIS (Netherlands)

    Scicchitano, R; Aalbers, R; Ukena, D; Manjra, A; Fouquert, L; Centanni, S; Boulet, LP; Naya, IP; Hultquist, C

    Objectives:This study evaluated the efficacy and safety of a novel asthma management strategy - budesonide/formoterol for both maintenance and symptom relief (Symbicort Single Inhaler Therapy*) - compared with a higher maintenance dose of budesonide in patients with moderate to severe asthma.

  10. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry; Effets sanitaires des faibles doses a faibles debits de dose: modelisation de la relation dose-reponse dans une cohorte de travailleurs du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Metz-Flamant, Camille

    2011-09-19

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  11. Studies on chronic effects of lower dose level irradiation

    International Nuclear Information System (INIS)

    Yun, T.G.; Yun, Y.S.; Yun, M.S.

    1980-01-01

    This experiment is being carried out to elucidate the chronic effects of Co 60 (γ-ray) - low doses irradiation on JCR mice at 3rd week, 6th week, and 5th month after their birth. Experimental mice at 3rd week of age have been irradiated with Co 60 - 60mR weekly, Co 60 - 500mR weekly and Co 60 - 61R biweekly at the dose rate of 60mR per second for 23 weeks until now. Co 60 - 61R irradiated mice were subdivided into Co 60 - alone group and Co 60 combined with red ginseng extracts group. In their survivor's rate and their body weight etc., no significant differences between control groups and test groups in these experimental mice. Experimented mice at 6 weeks and 5 months of age are also being irradiated with Co 60 in the same doses as the above for 14 weeks and 8 weeks until present. In these experimental groups, there are also no significant differences between control groups and experimental groups in their survivor's rate and their body weight

  12. Use of nonlinear dose-effect models to predict consequences

    International Nuclear Information System (INIS)

    Seiler, F.A.; Alvarez, J.L.

    1996-01-01

    The linear dose-effect relationship was introduced as a model for the induction of cancer from exposure to nuclear radiation. Subsequently, it has been used by analogy to assess the risk of chemical carcinogens also. Recently, however, the model for radiation carcinogenesis has come increasingly under attack because its calculations contradict the epidemiological data, such as cancer in atomic bomb survivors. Even so, its proponents vigorously defend it, often using arguments that are not so much scientific as a mix of scientific, societal, and often political arguments. At least in part, the resilience of the linear model is due to two convenient properties that are exclusive to linearity: First, the risk of an event is determined solely by the event dose; second, the total risk of a population group depends only on the total population dose. In reality, the linear model has been conclusively falsified; i.e., it has been shown to make wrong predictions, and once this fact is generally realized, the scientific method calls for a new paradigm model. As all alternative models are by necessity nonlinear, all the convenient properties of the linear model are invalid, and calculational procedures have to be used that are appropriate for nonlinear models

  13. Health effects and radiation dose from exposure to radon indoors

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1998-01-01

    Radon exposure has been declared a health hazard by several organisations, for example the International Commission on Radiological Protection (ICRP) and the World Health Organisation (WHO). The basis for the risk estimate has been the results from epidemiological studies on miners exposed to radon, supported by the results of residential epidemiology. Only few of the many residential epidemiological studies carried out hitherto have a design applicable for a risk estimate. The largest is the Swedish national study but several large well designed studies are ongoing. An excess risk has also been found in animal research. The model describes smoking and radon exposure as between additive and multiplicative, found in both miners and residential studies. The relatively few non-smokers among the miners and also among the residents give a problem at estimating the radon risk for these groups. It would also be desirable to know more about the importance of the age and the time period at exposure. Lung dose calculations from radon exposure are not recommended by ICRP in their publication 66. For comparison with other radiation sources the ICRP recommends the concept 'dose conversion convention' obtained as the risk estimate divided by the detriment. Other effects of radon exposure than lung cancer have not been shown epidemiologically, but dose calculations indicate an excess risk of about 5% of the excess lung cancer risk. (author)

  14. A study of the effects of internal organ motion on dose escalation in conformal prostate treatments

    International Nuclear Information System (INIS)

    Happersett, Laura; Mageras, Gig S.; Zelefsky, Michael J.; Burman, Chandra M.; Leibel, Steven A.; Chui Chen; Fuks, Zvi; Bull, Sarah; Ling, C. Clifton; Kutcher, Gerald J.

    2003-01-01

    Background and purpose: To assess the effect of internal organ motion on the dose distributions and biological indices for the target and non-target organs for three different conformal prostate treatment techniques. Materials and methods: We examined three types of treatment plans in 20 patients: (1) a six field plan, with a prescribed dose of 75.6 Gy; (2) the same six field plan to 72 Gy followed by a boost to 81 Gy; and (3) a five field plan with intensity modulated beams delivering 81 Gy. Treatment plans were designed using an initial CT data set (planning) and applied to three subsequent CT scans (treatment). The treatment CT contours were used to represent patient specific organ displacement; in addition, the dose distribution was convolved with a Gaussian distribution to model random setup error. Dose-volume histograms were calculated using an organ deformation model in which the movement between scans of individual points interior to the organs was tracked and the dose accumulated. The tumor control probability (TCP) for the prostate and proximal half of seminal vesicles (clinical target volume, CTV), normal tissue complication probability (NTCP) for the rectum and the percent volume of bladder wall receiving at least 75 Gy were calculated. Results: The patient averaged increase in the planned TCP between plan types 2 and 1 and types 3 and 1 was 9.8% (range 4.9-12.5%) for both, whereas the corresponding increases in treatment TCP were 9.0% (1.3-16%) and 8.1% (-1.3-13.8%). In all patients, plans 2 and 3 (81 Gy) exhibited equal or higher treatment TCP than plan 1 (75.6 Gy). The maximum treatment NTCP for rectum never exceeded the planning constraint and percent volume of bladder wall receiving at least 75 Gy was similar in the planning and treatment scans for all three plans. Conclusion: For plans that deliver a uniform prescribed dose to the planning target volume (PTV) (plan 1), current margins are adequate. In plans that further escalate the dose to part

  15. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  16. Interface effects on dose distributions in irradiated media

    International Nuclear Information System (INIS)

    Wright, H.A.; Hamm, R.N.; Turner, J.E.

    1980-01-01

    It has long been recognized that nonuniformities in dose distributions may occur in the immediate vicinity of a boundary between two different media. Considerable work has been done to determine interface effects in media irradiated by photons or in media containing β- or α-particle emitters. More recently interface effects have become of interest in additional problems, including pion radiotherapy and radiation effects in electronic microcircuits in space vehicles. These problems arise when pion capture stars or proton-nucleus interactions produce a spectrum of charged nuclear fragments near an interface. The purpose of this paper is to examine interface effects in detail as to their specific origin. We have made Monte Carlo calculations of dose distributions near an interface in a systematic way for a number of idealized cases in order to indicate the separate influences of several factors including different stopping powers of the two media, nonconstancy (e.g., Bragg peak) in the energy loss curve for the particles, different particle spectra in the two media, and curvature of the boundary between the two media

  17. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Alatas, Zubaidah

    2003-01-01

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  18. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts.

    Science.gov (United States)

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R; Medlin, Donald; Zheng, Leon; Wilson, R Kevin; Rusin, Matthew; Takacs, Endre; Dean, Delphine

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial "pause" in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature.

  19. ESTIMATION OF THE CONVERSION COEFFICIENTS FROM DOSE-AREA PRODUCT TO EFFECTIVE DOSE FOR BARIUM MEAL EXAMINATIONS FOR ADULT PATIENTS

    Directory of Open Access Journals (Sweden)

    A. V. Vodovatov

    2018-01-01

    Full Text Available Fluoroscopic examinations of the upper gastro-intestinal tract and, especially, barium meal examinations, are commonly performed in a majority of hospitals. These examinations are associated both with substantial individual patient doses and contribution to the collective dose from medical exposure. Effective dose estimation for this type of examinations is complicated due to: 1 the necessity to simulate the moving X-ray irradiation field; 2 differences in study structure for the individual patients; 3 subjectivity of the operators; and 4 differences in the X-ray equipment. The aim of the current study was to estimate conversion coefficients from dose-area product to effective dose for barium meal examinations for the over couch and under couch exposure conditions. The study was based on data collected in the X-ray unit of the surgical department of the St-Petersburg Mariinsky hospital. A model of patient exposure during barium meal examination was developed based on the collected data on fluoroscopy protocols and adult patient irradiation geometry. Conversion coefficients were calculated using PCXMC 2.0 software. Complete examinations were converted into a set of typical fluoroscopy phases and X-ray images, specified by the examined anatomical region and the projection of patient exposure. Conversion coefficients from dose-area product to effective dose were calculated for each phase of the examination and for the complete examination. The resulting values of the conversion coefficients are comparable with published data. Variations in the absolute values of the conversion coefficients can be explained by differences in clinical protocols, models for the estimation of the effective dose and parameters of barium meal examinations. The proposed approach for estimation of effective dose considers such important features of fluoroscopic examinations as: 1 non-uniform structure of examination, 2 significant movement of the X-ray tube within a single

  20. Risk Factors and Dose-Effect Relationship for Mandibular Osteoradionecrosis in Oral and Oropharyngeal Cancer Patients

    International Nuclear Information System (INIS)

    Lee, Ik Jae; Koom, Woong Sub; Lee, Chang Geol; Kim, Yong Bae; Yoo, Sei Whan; Keum, Ki Chang; Kim, Gwi Eon; Choi, Eun Chang; Cha, In Ho

    2009-01-01

    Purpose: To analyze risk factors and the dose-effect relationship for osteoradionecrosis (ORN) of the mandible after radiotherapy of oral and oropharyngeal cancers. Materials and Methods: One-hundred ninety-eight patients with oral (45%) and oropharyngeal cancer (55%) who had received external radiotherapy between 1990 and 2000 were retrospectively reviewed. All patients had a dental evaluation before radiotherapy. The median radiation dose was 60 Gy (range, 16-75 Gy), and the median biologically effective dose for late effects (BED late ) in bone was 114 Gy 2 (range, 30-167 Gy 2 ). Results: The frequency of ORN was 13 patients (6.6%). Among patients with mandibular surgery, eight had ORN at the surgical site. Among patients without mandibular surgery, five patients had ORN on the molar area of the mandible. The median time to ORN was 22 months (range, 1-69 months). Univariate analysis revealed that mandibular surgery and Co-60 were significant risk factors for ORN (p = 0.01 and 0.04, respectively). In multivariate analysis, mandibular surgery was the most important factor (p = 0.001). High radiation doses over BED 102.6 Gy 2 (conventional dose of 54 Gy at 1.8 Gy/fraction) were also a significant factor for ORN (p = 0.008) and showed a positive dose-effect relationship in logistic regression (p = 0.04) for patients who had undergone mandibular surgery. Conclusions: Mandibular surgery was the most significant risk factor for ORN of mandible in oral and oropharyngeal cancers patients. A BED of 102.6 Gy 2 or higher to the mandible also significantly increases the risk of ORN.

  1. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    International Nuclear Information System (INIS)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Metivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Moeller, Anders

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h -1 ) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h -1 ), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-transformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity. (authors)

  2. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    DEFF Research Database (Denmark)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dos...

  3. Radioprotective effect of RSP-CM on mice irradiated with different doses

    International Nuclear Information System (INIS)

    Zhang Xia; Yang Rujun; Zhang Xin; Yang Yunfang; Jin Zhijun; Xiang Yingsong

    2000-01-01

    Objective: To investigate the radioprotective effects of cytokines on hematopoietic impairment of irradiated mice. Methods: Using RSP-CM and LP3-CM respectively originated GM-CSF and G-CSF to treat ICR mice irradiated with different doses of 60 Co γ-rays. The 30-day survival rate of mice, the mean survival days of dead mice were determined and the numbers of peripheral white blood cells and BMC of part of the mice were counted. At the same time, GM clonogenic activity of BM was assayed. Results:RSP-CM could effectively raise 30-day survival rate of mice irradiated with 7.5 Gy. However, LP3-CM had no obvious effect. Judging from the comparative survival ratio, only the RSP-CM treated group showed protective effect on the 8.0 Gy -irradiated mice. The 8.5 Gy-irradiated mice all died within 30 days, indicating that GM-CSF had weak effect on higher dose-irradiated mice. Conclusion: GM-CSF can stimulate the hematopoietic system of irradiated mice, and has dose-effect and time-effect relations. M-CSF used singly has no obvious effect

  4. Effects of nilotinib on regulatory T cells: the dose matters

    Directory of Open Access Journals (Sweden)

    Chen Baoan

    2010-01-01

    Full Text Available Abstract Background Nilotinib is a tyrosine kinase inhibitor with high target specificity. Here, we characterized the effects of nilotinib for the first time on CD4+CD25+ regulatory T cells (Tregs which regulate anti-tumor/leukemia immune responses. Design and Methods Carboxyfluorescein diacetate succinimidyl ester (CFSE and 5-bromo-2-deoxy -uridine (BrdU were used to assess the proliferation and cell cycle distribution of Tregs. The expression of the transcription factor forkhead box P3 (FoxP3 and the glucocorticoid-induced tumor necrosis factor receptor (GITR were measured by flow cytometry. Western blotting analysis was used to detect the effects of nilotinib on the signal transduction cascade of T-cell receptor (TCR in Tregs. Results Nilotinib inhibited the proliferation and suppressive capacity of Tregs in a dose-dependent manner. However, the production of cytokines secreted by Tregs and CD4+CD25- T cells was only inhibited at high concentrations of nilotinib exceeding the mean therapeutic serum concentrations of the drug in patients. Only high doses of nilotinib arrested both Tregs and CD4+CD25- T cells in the G0/G1 phase and down-regulated the expression of FoxP3 and GITR. In western blotting analysis, nilotinib did not show significant inhibitory effects on TCR signaling events in Tregs and CD4+CD25- T cells. Conclusions These findings indicate that nilotinib does not hamper the function of Tregs at clinical relevant doses, while long-term administration of nilotinib still needs to be investigated.

  5. Dose, time and volume effects in interstitial radiation therapy

    International Nuclear Information System (INIS)

    Burgers, J.M.V.

    1982-01-01

    This study presents the main features and uncertainties of interstitial therapy and was undertaken to examine whether differences could be found in different clinical situations treated by interstitial implants with removable sources, that were not simply related to dose. In chapter 2, dating from 1978, continuous low dose rate irradiation is discussed from the radiobiological point of view together with some points related to variation in dose rate. A benefit of continuous low dose rate irradiation could be surmised in a few situations with special cell-kinetic properties. The problem of dose specification, the sharp dose gradient and other volume characteristics are discussed in chapter 3. Possible adjustments to variations in dose rate are discussed in chapter 4. The clinical material is reviewed in chapter 5, including aspects of dose specification, dose fall-off and variation in dose rate. The general discussion and conclusions are given in chapter 6. (Auth.)

  6. A consideration of low dose radiation effects on human health

    International Nuclear Information System (INIS)

    Shimada, Yoshiya; Nishimura, Mayumi; Imaoka, Tatsuhiko; Kakinuma, Shizuko

    2011-01-01

    On March 11, 2011, an earthquake categorized as 9 Mw occurred off the northeast coast of Japan. The subsequent destructive tsunami disabled emergency units of Fukushima Dai'ichi Nuclear Power Plant and caused partial meltdown of reactors and explosions. Resulting radiation releases forced large evacuations, bore concerns about food and water and fears against human health. In this manuscript, we described the effect of radiation, especially low dose radiation below 100 mSv, on cancer risk, focusing on fetuses and children. (author)

  7. Effect of source term composition on offsite doses

    International Nuclear Information System (INIS)

    Karahalios, P.; Gardner, R.

    1985-01-01

    The development of new realistic accident source terms has identified the need to establish a basis for comparing the impact of such source terms. This paper attempts to develop a generalized basis of comparison by investigating contributions to offsite acute whole body doses from each group of radionuclides being released to the atmosphere, using CRAC2. The paper also investigates the effect of important parameters such as regional meteorology, sheltering, and duration of release. Finally, the paper focuses on significant changes in the relative importance of individual radionuclide groups in PWR2, SST1, and a revision of the Stone and Webster proposed interim source term

  8. Effect of dose on creep and recovery of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O; Charlesby, A; Stannett, V T

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150/sup 0/C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle.

  9. Effect of dose on creep and recovery of polyethylene

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.; Stannett, V.T.

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150 0 C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle. (author)

  10. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  11. Biologically effective dose in total-body irradiation and hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Kal, H.B.; Kempen-Harteveld, M.L. van; Heijenbrok-Kal, M.H.; Struikmans, H.

    2006-01-01

    Background and Purpose: Total-body irradiation (TBI) is an important part of the conditioning regimen for hematopoietic stem cell transplantation (HSCT) in patients with hematologic malignancies. The results after treatment with various TBI regimes were compared, and dose-effect relationships for the endpoints relapse incidence, disease-free survival, treatment-related mortality, and overall survival were derived. The aim was to define requirements for an optimal treatment schedule with respect to leukemic cell kill and late normal-tissue morbidity. Material and Methods: A literature search was performed. Three randomized studies, four studies comparing results of two or three TBI regimens, and nine reports with results of one specific TBI regimen were identified. Biologically effective doses (BEDs) were calculated. The results of the randomized studies and the studies comparing results of two or three TBI regimens were pooled, and the pooled relative risk (RR) was calculated for the treatments with high BED values versus treatments with a low BED. BED-effect relationships were obtained. Results: RRs for the high BED treatments were significantly lower for relapse incidence, not significantly different for disease-free survival and treatment-related mortality, and significantly higher for overall survival. BED-effect relationships indicate a decrease in relapse incidence and treatment-related mortality and an increase in disease-free and overall survival with higher BED values. Conclusion: 'More dose is better', provided that a TBI setting is used limiting the BEDs of lungs, kidneys, and eye lenses. (orig.)

  12. Threshold resummation and higher order effects in QCD

    International Nuclear Information System (INIS)

    Ringer, Felix Maximilian

    2015-01-01

    Quantum chromodynamics (QCD) is a quantum field theory that describes the strong interactions between quarks and gluons, the building blocks of all hadrons. Thanks to the experimental progress over the past decades, there has been an ever-growing need for QCD precision calculations for scattering processes involving hadrons. For processes at large momentum transfer, perturbative QCD offers a systematic approach for obtaining precise predictions. This approach relies on two key concepts: the asymptotic freedom of QCD and factorization. In a perturbative calculation at higher orders, the infrared cancellation between virtual and real emission diagrams generally leaves behind logarithmic contributions. In many observables relevant for hadronic scattering these logarithms are associated with a kinematic threshold and are hence known as ''threshold logarithms''. They become large when the available phase space for real gluon emission shrinks. In order to obtain a reliable prediction from QCD, the threshold logarithms need to be taken into account to all orders in the strong coupling constant, a procedure known as ''threshold resummation''. The main focus of my PhD thesis is on studies of QCD threshold resummation effects beyond the next-to-leading logarithmic order. Here we primarily consider the production of hadron pairs in hadronic collisions as an example. In addition, we also consider hadronic jet production, which is particularly interesting for the phenomenology at the LHC. For both processes, we fully take into account the non-trivial QCD color structure of the underlying partonic hard- scattering cross sections. We find that threshold resummation leads to sizable numerical effects in the kinematic regimes relevant for comparisons to experimental data.

  13. Posttreatment visual acuity in patients treated with episcleral plaque therapy for choroidal melanomas: dose and dose rate effects

    International Nuclear Information System (INIS)

    Jones, Robert; Gore, Elizabeth; Mieler, William; Murray, Kevin; Gillin, Michael; Albano, Katherine; Erickson, Beth

    2002-01-01

    Purpose: To determine the relationship between the long-term visual function and the dose and dose rates delivered to critical ocular structures in patients with choroidal melanoma treated with 125 I episcleral plaque radiotherapy. Methods and Materials: From 1987 to 1994, 63 patients underwent 125 I episcleral plaque (Collaborative Ocular Melanoma Study [COMS] design) application for the treatment of choroidal melanoma. The mean tumor height was 4.5 mm (range 1.7-8.3). Doses and dose rates at the tumor apex, macula, and optic disc were calculated. Forty-three records were scored to assess whether a decrease in visual acuity of >2 lines on a standard Snellen eye chart had occurred. Patient age and the presence of hypertension or diabetes were noted. Statistical analysis was performed to assess both the rate at which visual decline had occurred and the presence of significant factors that had contributed to this decline. Results: With a median follow-up of 36 months, the 3-year actuarial survival rate was 93.6%. The 3-year actuarial local control rate was 86.9%. The median time to visual loss after therapy was 18.7 months. The 3-year actuarial rate of visual preservation was 40.5%. Multivariate analysis demonstrated higher macula dose rates (p=0.003) to forecast visual decline. Macula dose rates of 111±11.1 cGy/h were associated with a 50% risk of significant visual loss. Conclusion: Patients in our series treated with 125 I plaque brachytherapy for choroidal melanoma experienced favorable tumor control, but with a measurable incidence of visual decline. Higher dose rates to the macula correlated strongly with poorer posttreatment visual outcome. This information may be valuable in selecting the optimal dose rates to treat choroidal melanomas and to predict the risk of visual decline

  14. Higher dose intra-arterial milrinone and intra-arterial combined milrinone-nimodipine infusion as a rescue therapy for refractory cerebral vasospasm.

    Science.gov (United States)

    Duman, Enes; Karakoç, Fatma; Pinar, H Ulas; Dogan, Rafi; Fırat, Ali; Yıldırım, Erkan

    2017-12-01

    Background Cerebral vasospasm (CV) is a major cause of delayed morbidity and mortality in patients with subarachnoid hemorrhage (SAH). Various cerebral protectants have been tested in patients with aneurysmal SAH. We aimed to research the success rate of treatment of CV via intra-arterial milrinone injection and aggressive pharmacological therapy for refractory CV. Methods A total of 25 consecutive patients who received intra-arterial milrinone and nimodipine treatment for CV following SAH between 2014 and 2017 were included in the study. Patients who underwent surgical clipping were excluded. Refractory vasospasm was defined as patients with CV refractory to therapies requiring ≥3 endovascular interventions. Overall, six patients had refractory CV. Long-term neurological outcome was assessed 6-18 months after SAH using a modified Rankin score and Barthel index. Results The median modified Rankin scores were 1 (min: 0, max: 3) and Barthel index scores were 85 (min: 70, max: 100) From each vasospastic territory maximal 10-16 mg milrinone was given to patients; a maximum of 24 mg milrinone was given to each patient in a session and a maximum of 42 mg milrinone was given to a patient in a day. Both milrinone and nimodipine were given to three patients. There was a large vessel diameter increase after milrinone and nimodipine injections. No patient died due to CV; only one patient had motor dysfunction on the right lower extremity. Conclusion Higher doses of milrinone can be used effectively to control refractory CV. For exceptional patients with refractory CV, high dose intra-arterial nimodipine and milrinone infusion can be used as a rescue therapy.

  15. The effect of low-dose spironolactone on resistant hypertension

    DEFF Research Database (Denmark)

    Engbaek, Mette; Hjerrild, Mette; Hallas, Jesper

    2010-01-01

    with three classes of antihypertensive drugs. The effect on blood pressure was estimated by office measurements together with serum potassium and adverse effects. The data were analyzed retrospectively. A total of 544 patients were identified; 200 were excluded because of secondary hypertension, other......Our objective was to estimate the effect of addition of low-dose spironolactone to previous antihypertensive therapy in patients with resistant hypertension. Patients had 25 to 50 mg of spironolactone once daily added to the treatment of hypertension that was uncontrolled despite previous treatment...... indications for spironolactone than hypertension, previous antihypertensive therapy with less than three drugs unless demonstrated intolerance to a third drug, insufficient compliance, and lack of follow-up data. Thus, 344 cases were included in the analysis. The population was 62.1 ± 12.8 years old, 45...

  16. Dose dependent sun protective effect of topical melatonin

    DEFF Research Database (Denmark)

    Scheuer, Cecilie; Pommergaard, Hans-Christian; Rosenberg, Jacob

    2016-01-01

    BACKGROUND: Ultraviolet radiation (UVR) by sunlight results in an increasing number of skin conditions. Earlier studies have suggested a protective effect of topical treatment with the pineal hormone melatonin. However, this protective effect has never been evaluated in natural sunlight......-blind study in healthy volunteers. Twenty-three healthy volunteers, 8 male and 15 female, were enrolled. The protective effect of three different doses of melatonin cream (0.5%, 2.5%, 12.5%) against erythema induced by natural sunlight was tested. All participants had their backs exposed to sun from 1:22 PM.......5% concentrations. CONCLUSION: Application of melatonin cream 12.5% protects against natural sunlight induced erythema....

  17. Dose formation and hematologic effects with prolonged internal exposure of rats by isotope 131I

    International Nuclear Information System (INIS)

    Sova, O.A.; Drozd, Yi.P.

    2013-01-01

    Processes in single dose formation and long-term domestic revenue 131 I in rats was investigated. Original method of estimating absorbed doses in hemacyte for macro-dosemeters indicators was proposed. Dose factors for hemacyte and the dynamics of the blood-forming organs doses for prolonged two cases of prolonged exposure was calculated. Hematologic effects were studied for two variants of entry of the isotope. Peculiarities of doses formation and identified hematological effects are discussed

  18. Low-dose radiation employed in diagnostic imaging causes genetic effects in cultured cells

    International Nuclear Information System (INIS)

    Ponzinibbio, Maria V.; Peral-Garcia, Pilar; Seoane, Analia; Crudeli, Cintia

    2010-01-01

    Background: Exposure to environmental, diagnostic, and occupational sources of radiation frequently involves low doses. Although these doses have no immediately noticeable impact on human health there is great interest in their long-term biological effects. Purpose: To assess immediate and time-delayed DNA damage in two cell lines exposed to low doses of ionizing radiation by using the comet assay and micronucleus test, and to compare these two techniques in the analysis of low-dose induced genotoxicity. Material and Methods: CHO and MRC-5 cells were exposed to 50 milliSievert (mSv) of ionizing radiation and assayed immediately after irradiation and at 16 or 12 passages post-irradiation, respectively. Comet assay and micronucleus test were employed. Results: The comet assay values observed in 50 mSv-treated cells were significantly higher than in the control group for both sample times and cell lines (P < 0.001). Micronuclei frequencies were higher in treated cells than in the control group (P < 0.01, CHO cells passage 16; P < 0.05, MRC-5 cells immediately after exposure; P < 0.01 MRC-5 cells passage 12). Correlation analysis between the two techniques was statistically significant (correlation coefficient 0.82, P < 0.05 and correlation coefficient 0.86, P < 0.05 for CHO and MRC-5 cells, respectively). Cells scored at passages 12 or 16 showed more damage than those scored immediately after exposure in both cell lines (no statistically significant differences). Conclusion: Cytomolecular and cytogenetic damage was observed in cells exposed to very low doses of X-rays and their progeny. A single low dose of ionizing radiation was sufficient to induce such response, indicating that mammalian cells are exquisitely sensitive to it. Comet and micronucleus assays are sensitive enough to assess this damage, although the former seems to be more efficient

  19. Low-dose radiation employed in diagnostic imaging causes genetic effects in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Ponzinibbio, Maria V.; Peral-Garcia, Pilar; Seoane, Analia (Inst. de Genetica Veterinaria, Univ. Nacional de La Plata CONICET, La Plata (Argentina)), e-mail: aseoane@fcv.unlp.edu.ar; Crudeli, Cintia (Agencia Nacional de Promocion Cientifica y Tecnologica, La Plata (Argentina))

    2010-11-15

    Background: Exposure to environmental, diagnostic, and occupational sources of radiation frequently involves low doses. Although these doses have no immediately noticeable impact on human health there is great interest in their long-term biological effects. Purpose: To assess immediate and time-delayed DNA damage in two cell lines exposed to low doses of ionizing radiation by using the comet assay and micronucleus test, and to compare these two techniques in the analysis of low-dose induced genotoxicity. Material and Methods: CHO and MRC-5 cells were exposed to 50 milliSievert (mSv) of ionizing radiation and assayed immediately after irradiation and at 16 or 12 passages post-irradiation, respectively. Comet assay and micronucleus test were employed. Results: The comet assay values observed in 50 mSv-treated cells were significantly higher than in the control group for both sample times and cell lines (P < 0.001). Micronuclei frequencies were higher in treated cells than in the control group (P < 0.01, CHO cells passage 16; P < 0.05, MRC-5 cells immediately after exposure; P < 0.01 MRC-5 cells passage 12). Correlation analysis between the two techniques was statistically significant (correlation coefficient 0.82, P < 0.05 and correlation coefficient 0.86, P < 0.05 for CHO and MRC-5 cells, respectively). Cells scored at passages 12 or 16 showed more damage than those scored immediately after exposure in both cell lines (no statistically significant differences). Conclusion: Cytomolecular and cytogenetic damage was observed in cells exposed to very low doses of X-rays and their progeny. A single low dose of ionizing radiation was sufficient to induce such response, indicating that mammalian cells are exquisitely sensitive to it. Comet and micronucleus assays are sensitive enough to assess this damage, although the former seems to be more efficient

  20. Assessment of effective dose from cone beam CT imaging in SPECT/CT examination in comparison with other modalities

    International Nuclear Information System (INIS)

    Tonkopi, Elena; Ross, Andrew A.

    2016-01-01

    The aim of this study was to assess radiation dose from the cone beam computed tomography (CBCT) component of single photon emission tomography/computed tomography (SPECT/CT) examinations and to compare it with the radiopharmaceutical related dose as well as dose from multidetector computed tomography (MDCT). Effective dose (ED) from computed tomography (CT) was estimated using dose-length product values and anatomy-specific conversion factors. The contribution from the SPECT component was evaluated using ED per unit administered activity for the radiopharmaceuticals listed in the International Commission on Radiological Protection Publications 80 and 106. With the exception of cardiac studies (0.11 mSv), the CBCT dose (3.96-6.04 mSv) was similar to that from the radiopharmaceutical accounting for 29-56 % of the total ED from the examination. In comparison with MDCT examinations, the CBCT dose was 48 and 42 % lower for abdomen/pelvis and chest/abdomen/pelvis scans, respectively, while in the chest the CBCT scan resulted in higher dose (23 %). Radiation dose from the CT component should be taken into consideration when evaluating total SPECT/CT patient dose. (authors)

  1. Different dose-dependent effects of ebselen in sciatic nerve ischemia-reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Filiz Ozyigit

    2015-08-01

    Full Text Available Ebselen is an organoselenium compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of ebselen pretreatment in rats with experimental sciatic nerve ischemia-reperfusion (I/R injury. Adult male Sprague Dawley rats were divided into four groups (N = 7 in each group. Before sciatic nerve I/R was induced, ebselen was injected intraperitoneally at doses of 15 and 30 mg/kg. After a 2 h ischemia and a 3 h reperfusion period, sciatic nerve tissues were excised. Tissue levels of malondialdehyde (MDA and nitric oxide (NO, and activities of superoxide dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT were measured. Sciatic nerve tissues were also examined histopathologically. The 15 mg/kg dose of ebselen reduced sciatic nerve damage and apoptosis (P < 0.01, levels of MDA, NO, and inducible nitric oxide synthase (iNOS positive cells (P < 0.01, P < 0.05, respectively, and increased SOD, GPx, and CAT activities (P < 0.001, P < 0.01, P < 0.05, respectively compared with the I/R group that did not receive ebselen. Conversely, the 30 mg/kg dose of ebselen increased sciatic nerve damage, apoptosis, iNOS positive cells (P < 0.01, P < 0.05, P < 0.001 and MDA and NO levels (P < 0.05, P < 0.01 and decreased SOD, GPx, and CAT activities (P < 0.05 compared with the sham group. The results of this study suggest that ebselen may cause different effects depending on the dose employed. Ebselen may be protective against sciatic nerve I/R injury via antioxidant and antiapoptotic activities at a 15 mg/kg dose, conversely higher doses may cause detrimental effects.

  2. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    International Nuclear Information System (INIS)

    Hashim, S.; Karim, M.K.A.; Bakar, K.A.; Sabarudin, A.; Chin, A.W; Saripan, M.I.; Bradley, D.A.

    2016-01-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, ~8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose. - Highlights: • Using TLD-100 dosimeters and a RANDO phantom 5 CT thorax protocol organ doses were assessed. • The specific k coefficient for effective dose estimation of protocols differed with approach. • Organ dose was observed to decrease in the order: thyroid>skin>lung>liver>breast. • E103 k factors were constant for all protocols, lower by ~8% compared to the universal k factor.

  3. The Normative Effects of Higher Education Policy in France

    Science.gov (United States)

    Langan, Elise

    2012-01-01

    This student survey was a response to the French youth unrest in 2005 and 2006. It considers the degree to which French higher and secondary education institutions create social cohesion. Focusing on three distinct higher-education institutions: "L'institut d'etudes politiques de Paris" (Sciences Po), "Ecole Normale…

  4. Ensuring Effective Student Support in Higher Education Alleged Plagiarism Cases

    Science.gov (United States)

    Baird, Craig; Dooey, Patricia

    2014-01-01

    Plagiarism and other forms of academic misconduct are matters of great concern at all levels of study worldwide. This is especially so for students in higher education institutions, where higher degrees and publications are key focus activities. Ready access to internet based resources assist academic writing practices. However, the unintentional,…

  5. Effective radiation dose and eye lens dose in dental cone beam CT: effect of field of view and angle of rotation.

    Science.gov (United States)

    Pauwels, R; Zhang, G; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Bogaerts, R; Horner, K

    2014-10-01

    To quantify the effect of field of view (FOV) and angle of rotation on radiation dose in dental cone beam CT (CBCT) and to define a preliminary volume-dose model. Organ and effective doses were estimated using 148 thermoluminescent dosemeters placed in an anthropomorphic phantom. Dose measurements were undertaken on a 3D Accuitomo 170 dental CBCT unit (J. Morita, Kyoto, Japan) using six FOVs as well as full-rotation (360°) and half-rotation (180°) protocols. For the 360° rotation protocols, effective dose ranged between 54 µSv (4 × 4 cm, upper canine) and 303 µSv (17 × 12 cm, maxillofacial). An empirical relationship between FOV dimension and effective dose was derived. The use of a 180° rotation resulted in an average dose reduction of 45% compared with a 360° rotation. Eye lens doses ranged between 95 and 6861 µGy. Significant dose reduction can be achieved by reducing the FOV size, particularly the FOV height, of CBCT examinations to the actual region of interest. In some cases, a 180° rotation can be preferred, as it has the added value of reducing the scan time. Eye lens doses should be reduced by decreasing the height of the FOV rather than using inferior FOV positioning, as the latter would increase the effective dose considerably. The effect of the FOV and rotation angle on the effective dose in dental CBCT was quantified. The dominant effect of FOV height was demonstrated. A preliminary model has been proposed, which could be used to predict effective dose as a function of FOV size and position.

  6. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  7. Effect of almond consumption on the serum fatty acid profile: a dose-response study.

    Science.gov (United States)

    Nishi, Stephanie; Kendall, Cyril W C; Gascoyne, Ana-Maria; Bazinet, Richard P; Bashyam, Balachandran; Lapsley, Karen G; Augustin, Livia S A; Sievenpiper, John L; Jenkins, David J A

    2014-10-14

    Consumption of almonds has been shown to be associated with a decreased risk of CHD, which may be related to their fatty acid (FA) composition. However, the effect of almond consumption on the serum FA composition is not known. Therefore, in the present study, we investigated whether almond consumption would alter the serum FA profile and risk of CHD, as calculated using Framingham's 10-year risk score, in a dose-dependent manner in hyperlipidaemic individuals when compared with a higher-carbohydrate control group using dietary interventions incorporating almonds. A total of twenty-seven hyperlipidaemic individuals consumed three isoenergetic (mean 1770 kJ/d) supplements during three 1-month dietary phases: (1) full-dose almonds (50-100 g/d); (2) half-dose almonds with half-dose muffins; (3) full-dose muffins. Fasting blood samples were obtained at weeks 0 and 4 for the determination of FA concentrations. Almond intake (g/d) was found to be inversely associated with the estimated Framingham 10-year CHD risk score (P= 0·026). In both the half-dose and full-dose almond groups, the proportions of oleic acid (OA) and MUFA in the TAG fraction (half-almond: OA P= 0·003; MUFA P= 0·004; full-almond: OA Pconsumption increases OA and MUFA content in serum TAG and NEFA fractions, which are inversely associated with CHD lipid risk factors and overall estimated 10-year CHD risk.

  8. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  9. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  10. Estimation of effective dose from radionuclides contained in misch metal

    International Nuclear Information System (INIS)

    Furuta, Etsuko; Aburai, Tamaru; Nisizawa, Kunihide

    2003-01-01

    Radionuclides contained in three kinds of misch metal products and two kinds of ingots were analyzed using a Ge (Li) semiconductor detector. Lanthanum-138 ( 138 La) and several daughter nuclides derived from thorium and uranium series were detected in all samples. All misch metal products and ingots were determined to be radioactive consumer products (RCP), although they have not been regarded as RCP in Japan. 138 La showed the highest nuclide content rate of all the radionuclides, and the lanthanum metal ingots displayed the highest specific activity at 720 mBq·g -1 . The maximum external effective dose was estimated to be at 3.7 mSv when a metal match was carried for 8,760 hours at 1 mm from the skin. The calculated effective dose under some conditions exceeded 10 μSv per year. This value corresponded to the exemption standard proposed by the UK's National Radiological Protection Board. Individuals working with large amounts of RCP should be appropriately protected. (author)

  11. A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in type 2 diabetes mellitus.

    Science.gov (United States)

    Hohendorff, J; Szopa, M; Skupien, J; Kapusta, M; Zapala, B; Platek, T; Mrozinska, S; Parpan, T; Glodzik, W; Ludwig-Galezowska, A; Kiec-Wilk, B; Klupa, T; Malecki, M T

    2017-08-01

    SGLT2 inhibitors are a new class of oral hypoglycemic agents used in type 2 diabetes (T2DM). Their effectiveness in maturity onset diabetes of the young (MODY) is unknown. We aimed to assess the response to a single dose of 10 mg dapagliflozin in patients with Hepatocyte Nuclear Factor 1 Alpha (HNF1A)-MODY, Glucokinase (GCK)-MODY, and type 2 diabetes. We examined 14 HNF1A-MODY, 19 GCK-MODY, and 12 type 2 diabetes patients. All studied individuals received a single morning dose of 10 mg of dapagliflozin added to their current therapy of diabetes. To assess the response to dapagliflozin we analyzed change in urinary glucose to creatinine ratio and serum 1,5-Anhydroglucitol (1,5-AG) level. There were only four patients with positive urine glucose before dapagliflozin administration (one with HNF1A-MODY, two with GCK-MODY, and one with T2DM), whereas after SGLT-2 inhibitor use, glycosuria occurred in all studied participants. Considerable changes in mean glucose to creatinine ratio after dapagliflozin administration were observed in all three groups (20.51 ± 12.08, 23.19 ± 8.10, and 9.84 ± 6.68 mmol/mmol for HNF1A-MODY, GCK-MODY, and T2DM, respectively, p MODY, respectively), but not between the two MODY forms (p = 0.7231). Significant change in serum 1,5-AG was noticed only in T2DM and it was -6.57 ± 7.34 mg/ml (p = 0.04). A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in T2DM. Whether flozins are a valid therapeutic option in these forms of MODY requires long-term clinical studies.

  12. Effect of physiological factors on dose due to organically bound tritium

    International Nuclear Information System (INIS)

    Trivedi, A.

    1998-01-01

    The International Commission on Radiological Protection (ICRP) recommends the understanding of the effect of age, anatomical and physiological data on the doses in order to prescribe dose coefficient for radionuclides. The published data on OBT dose fraction after acute or chronic intakes of HTO are evaluated to examine the variation of OBT dose with the age and physiology of occupational workers. (author)

  13. Single event effects and total ionizing dose effects of typical VDMOSFET devices

    International Nuclear Information System (INIS)

    Lou Jianshe; Cai Nan; Liu Jiaxin; Wu Qinzhi; Wang Jia

    2012-01-01

    In this work, single event effects and total ionizing dose effects of typical VDMOSFET irradiated by 60 Co γ-rays and 252 Cf source were studied. The single event burnout and single event gate rupture (SEB/SEGR) effects were investigated, and the relationship between drain-source breakdown voltage and ionizing dose was obtained. The results showed that the VDMOSFET devices were sensitive to SEB and SEGR, and measures to improve their resistance to SEB and SEGR should be considered seriously for their space applications. The drain-source breakdown voltage was sensitive to total ionizing dose effects as the threshold voltage. In assessing the devices' resistance to the total ionizing dose effects, both the threshold voltage and the drain-source breakdown voltage should be taken into account. (authors)

  14. Effects of dose, species, and dosing vehicle on the disposition of methacrylonitrile (MAN) in male rats

    International Nuclear Information System (INIS)

    Sanchez, I.M.; Ghanayem, B.I.

    1991-01-01

    MAN is structurally similar to known carcinogen acrylontrile (AN), with nitriles having similar industrial uses. Current studies were designed to investigate the biological fate of 2- 14 C-MAN in rats. After gavage administration of 115, 11.5 or 1.15 mg MAN/kg in water, F344 male rats were placed in glass metabolism cages and urine, expired air and feces were collected. Rats were sacrificed at various times and concentration of MAN-derived radioactivity in tissues was determined. MAN was rapidly absorbed from the GI tract and distributed to all major tissues. Sixty-70% of the low and medium doses were exhaled as 14 CO 2 in 72 hr compared to 25% of the highest dose. While 40% of the highest dose was expired as organic volatiles in 72 hr, only 9-12% of the low and accounted for 20-30% of all doses within 72 hr after dosing. Comparison of MAN disposition in Sprague-Dawley (SD) and F344 rats at 115 mg/kg revealed that SD rats excreted a greater % of the dose as 14 CO 2 and in the urine than did F344 rats. Administration of 115 mg MAN/kg to SD male rats in safflower oil resulted in increased elimination of MAN-derived radioactivity as CO 2 , volatiles, and in the urine over that observed when administered in water. These results suggest that: (1) saturation of MAN metabolism occurs at high doses: (2) MAN metabolism and disposition differ with the strain of rats studied; (3) MAN disposition may vary with the dosing vehicle used; and (4) MAN metabolism and disposition is apparently different from that reported on AN

  15. Optimizing CT technique to reduce radiation dose: effect of changes in kVp, iterative reconstruction, and noise index on dose and noise in a human cadaver.

    Science.gov (United States)

    Chang, Kevin J; Collins, Scott; Li, Baojun; Mayo-Smith, William W

    2017-06-01

    For assessment of the effect of varying the peak kilovoltage (kVp), the adaptive statistical iterative reconstruction technique (ASiR), and automatic dose modulation on radiation dose and image noise in a human cadaver, a cadaver torso underwent CT scanning at 80, 100, 120 and 140 kVp, each at ASiR settings of 0, 30 and 50 %, and noise indices (NIs) of 5.5, 11 and 22. The volume CT dose index (CTDI vol ), image noise, and attenuation values of liver and fat were analyzed for 20 data sets. Size-specific dose estimates (SSDEs) and liver-to-fat con