WorldWideScience

Sample records for higher dimensional representations

  1. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank

    Science.gov (United States)

    Fu, Yuchen; Shelley-Abrahamson, Seth

    2016-06-01

    We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.

  2. Extended higher-spin superalgebras and their massless representations

    Energy Technology Data Exchange (ETDEWEB)

    Konstein, S E; Vasiliev, M A [AN SSSR, Moscow (USSR). Fizicheskij Inst.

    1990-02-12

    Three two-parameter sequences of infinite-dimensional extended higher-spin superalgebras are constructed, which give rise to consistent equations of motion of interacting gauge fields of all spins in four dimensions. In the Yang-Mills sector of spin-1 gauge fields, these higher-spin superalgebras reduce to u(n) + u(m), o(n) + o(m) and usp(n) + usp(m) with arbitrary integer parameters n {ge} 0 and m {ge} 0 (n and m are assumed to be even for symplectic algebras). Massless unitary representations of the proposed higher-spin superalgebras are analyzed. It is shown that all these superalgebras obey the admissibility condition which requires them to possess massless unitary representations with just the same spectra of spins as follows from the structure of the related higher-spin gauge fields. We argue that the infinite-dimensional (super)algebras listed in this article classify all possible higher-spin rigid (super)symmetries in four dimensions. (orig.).

  3. E6 unification model building. III. Clebsch-Gordan coefficients in E6 tensor products of the 27 with higher dimensional representations

    International Nuclear Information System (INIS)

    Anderson, Gregory W.; Blazek, Tomas

    2005-01-01

    E 6 is an attractive group for unification model building. However, the complexity of a rank 6 group makes it nontrivial to write down the structure of higher dimensional operators in an E 6 theory in terms of the states labeled by quantum numbers of the standard model gauge group. In this paper, we show the results of our computation of the Clebsch-Gordan coefficients for the products of the 27 with irreducible representations of higher dimensionality: 78, 351, 351 ' , 351, and 351 ' . Application of these results to E 6 model building involving higher dimensional operators is straightforward

  4. Massless representations and admissibility condition for higher spin superalgebras

    Energy Technology Data Exchange (ETDEWEB)

    Konstein, S E; Vasiliev, M A

    1989-01-16

    Massless particle representations of various infinite-dimensional higher spin superalgebras proposed previously are constructed. We analyse which of higher spin superalgebras obey the requirement (the admissibility condition) of possessing massless unitary representations with the same spectra of spins as predicted by the structure of gauge fields originating from these superalgebras. It is argued that those higher spin superalgebras, which obey the admissibility condition, can serve as rigid supersymmetries in nontrivial consistent gauge theories of massless fields of all spins.

  5. Higher representations: Confinement and large N

    International Nuclear Information System (INIS)

    Sannino, Francesco

    2005-01-01

    We investigate the confining phase transition as a function of temperature for theories with dynamical fermions in the two index symmetric and antisymmetric representation of the gauge group. By studying the properties of the center of the gauge group we predict for an even number of colors a confining phase transition, if second order, to be in the universality class of Ising in three dimensions. This is due to the fact that the center group symmetry does not break completely for an even number of colors. For an odd number of colors the center group symmetry breaks completely. This pattern remains unaltered at a large number of colors. The confining/deconfining phase transition in these theories at large and finite N is not mapped in the one of super Yang-Mills theory. We extend the Polyakov loop effective theory to describe the confining phase transition of the theories studied here for a generic number of colors. Our results are not modified when adding matter in the same higher dimensional representations of the gauge group. We comment on the interplay between confinement and chiral symmetry in these theories and suggest that they are ideal laboratories to shed light on this issue also for ordinary QCD. We compare the free energy as a function of temperature for different theories. We find that the conjectured thermal inequality between the infrared and ultraviolet degrees of freedom computed using the free energy does not lead to new constraints on asymptotically free theories with fermions in higher dimensional representations of the gauge group. Since the center of the gauge group is an important quantity for the confinement properties at zero temperature our results are relevant here as well

  6. Categorification and higher representation theory

    CERN Document Server

    Beliakova, Anna

    2017-01-01

    The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory. This volume exhibits some of the current trends in higher representation theory and the diverse te...

  7. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  8. Knot invariants and higher representation theory

    CERN Document Server

    Webster, Ben

    2018-01-01

    The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for \\mathfrak{sl}_2 and \\mathfrak{sl}_3 and by Mazorchuk-Stroppel and Sussan for \\mathfrak{sl}_n. The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is \\mathfrak{sl}_n, the author shows that these categories agree with certain subcategories of parabolic category \\mathcal{O} for \\mathfrak{gl}_k.

  9. Higher Dimensional Spacetimes for Visualizing and Modeling Subluminal, Luminal and Superluminal Flight

    International Nuclear Information System (INIS)

    Froning, H. David; Meholic, Gregory V.

    2010-01-01

    This paper briefly explores higher dimensional spacetimes that extend Meholic's visualizable, fluidic views of: subluminal-luminal-superluminal flight; gravity, inertia, light quanta, and electromagnetism from 2-D to 3-D representations. Although 3-D representations have the potential to better model features of Meholic's most fundamental entities (Transluminal Energy Quantum) and of the zero-point quantum vacuum that pervades all space, the more complex 3-D representations loose some of the clarity of Meholic's 2-D representations of subluminal and superlumimal realms. So, much new work would be needed to replace Meholic's 2-D views of reality with 3-D ones.

  10. Finite-dimensional representations of the quantum superalgebra Uq[gl(2/2)] II: Nontypical representations at generic q

    International Nuclear Information System (INIS)

    Nguyen Anh Ky; Stoilova, N.I.

    1994-11-01

    The construction approach proposed in the previous paper Ref.1 allows us there and in the present paper to construct at generic deformation parameter q all finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)]. The finite-dimensional U q [gl(2/2)]-modules W q constructed in Ref.1 are either irreducible or indecomposable. If a module W q is indecomposable, i.e. when the condition (4.41) in Ref.1 does not hold, there exists an invariant maximal submodule of W q , to say I q k , such that the factor-representation in the factor-module W q /I q k is irreducible and called nontypical. Here, in this paper, indecomposable representations and nontypical finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)] are considered and classified as their module structures are analyzed and the matrix elements of all nontypical representations are written down explicitly. (author). 23 refs

  11. Finite-Dimensional Representations for Controlled Diffusions with Delay

    Energy Technology Data Exchange (ETDEWEB)

    Federico, Salvatore, E-mail: salvatore.federico@unimi.it [Università di Milano, Dipartimento di Economia, Management e Metodi Quantitativi (Italy); Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr [Université Paris Diderot, Laboratoire de Probabilités et Modèles Aléatoires (France)

    2015-02-15

    We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.

  12. Two-dimensional N=(2,2) lattice gauge theories with matter in higher representations

    International Nuclear Information System (INIS)

    Joseph, Anosh

    2014-06-01

    We construct two-dimensional N=(2,2) supersymmetric gauge theories on a Euclidean spacetime lattice with matter in the two-index symmetric and anti-symmetric representations of SU(N c ) color group. These lattice theories preserve a subset of the supercharges exact at finite lattice spacing. The method of topological twisting is used to construct such theories in the continuum and then the geometric discretization scheme is used to formulate them on the lattice. The lattice theories obtained this way are gauge-invariant, free from fermion doubling problem and exact supersymmetric at finite lattice spacing. We hope that these lattice constructions further motivate the nonperturbative explorations of models inspired by technicolor, orbifolding and orientifolding in string theories and the Corrigan-Ramond limit.

  13. 3-Dimensional Agent Representations Increase Generosity in a Naturalistic Setting

    DEFF Research Database (Denmark)

    Krátký, Jan; McGraw, John J.; Xygalatas, Dimitris

    do not always act as deliberative, rational actors. Various studies have investigated the effects of both material cues and complex environmental settings on behavioral choices. One particularly common and salient aspect of the environment involves cues related to intentional agents, whether...... they be our conspecifics, non-human species or supernatural beings. A number of studies have found that exposing participants to cues of agency increase prosocial or cooperative behavior. In two separate studies, we investigated the role dimensionality plays in priming inferences of agency. In contrast...... to previous studies utilizing 2-dimensional images, 3-dimensional representations share morphological elements with real life agents which may enhance the salience of the cues. Higher activation of agency detection, in turn, ought to trigger stronger reputational concerns and thus further amplify prosocial...

  14. High dimensional model representation method for fuzzy structural dynamics

    Science.gov (United States)

    Adhikari, S.; Chowdhury, R.; Friswell, M. I.

    2011-03-01

    Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.

  15. Conformal Windows of SU(N) Gauge Theories, Higher Dimensional Representations and The Size of The Unparticle World

    CERN Document Server

    Ryttov, Thomas A

    2007-01-01

    We present the conformal windows of SU(N) supersymmetric and nonsupersymmetric gauge theories with vector-like matter transforming according to higher irreducible representations of the gauge group. We determine the fraction of asymptotically free theories expected to develop an infrared fixed point and find that it does not depend on the specific choice of the representation. This result is exact in supersymmetric theories while it is an approximate one in the nonsupersymmetric case. The analysis allows us to size the unparticle world related to the existence of underlying gauge theories developing an infrared stable fixed point. We find that exactly 50 % of the asymptotically free theories can develop an infrared fixed point while for the nonsupersymmetric theories it is circa 25 %. When considering multiple representations, only for the nonsupersymmetric case, the conformal regions quickly dominate over the nonconformal ones. For four representations, 70 % of the asymptotically free space is filled by the ...

  16. THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY

    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar

    2014-03-01

    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  17. Finite-dimensional representations of the quantum superalgebra Uq[gl(2/2)]: 1. Typical representations at generic q

    International Nuclear Information System (INIS)

    Nguyen Anh Ky.

    1993-05-01

    In the present paper we construct all typical finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)] at generic deformation parameter q. As in the non-deformed case the finite-dimensional U q [gl(2/2)]-module W q obtained is irreducible and can be decomposed into finite-dimensional irreducible U q [l(2)+gl(2)]submodules V i q . (authohor). 32 refs

  18. Faithful representation of similarities among three-dimensional shapes in human vision.

    Science.gov (United States)

    Cutzu, F; Edelman, S

    1996-01-01

    Efficient and reliable classification of visual stimuli requires that their representations reside a low-dimensional and, therefore, computationally manageable feature space. We investigated the ability of the human visual system to derive such representations from the sensory input-a highly nontrivial task, given the million or so dimensions of the visual signal at its entry point to the cortex. In a series of experiments, subjects were presented with sets of parametrically defined shapes; the points in the common high-dimensional parameter space corresponding to the individual shapes formed regular planar (two-dimensional) patterns such as a triangle, a square, etc. We then used multidimensional scaling to arrange the shapes in planar configurations, dictated by their experimentally determined perceived similarities. The resulting configurations closely resembled the original arrangements of the stimuli in the parameter space. This achievement of the human visual system was replicated by a computational model derived from a theory of object representation in the brain, according to which similarities between objects, and not the geometry of each object, need to be faithfully represented. Images Fig. 3 PMID:8876260

  19. Conformal windows of SU(N) gauge theories, higher dimensional representations, and the size of the unparticle world

    International Nuclear Information System (INIS)

    Ryttov, Thomas A.; Sannino, Francesco

    2007-01-01

    We present the conformal windows of SU(N) supersymmetric and nonsupersymmetric gauge theories with vectorlike matter transforming according to higher irreducible representations of the gauge group. We determine the fraction of asymptotically free theories expected to develop an infrared fixed point and find that it does not depend on the specific choice of the representation. This result is exact in supersymmetric theories while it is an approximate one in the nonsupersymmetric case. The analysis allows us to size the unparticle world related to the existence of underlying gauge theories developing an infrared stable fixed point. We find that exactly 50% of the asymptotically free theories can develop an infrared fixed point while for the nonsupersymmetric theories it is circa 25%. When considering multiple representations, only for the nonsupersymmetric case, the conformal regions quickly dominate over the nonconformal ones. For four representations, 70% of the asymptotically free space is filled by the conformal region. According to our theoretical landscape survey the unparticle physics world occupies a sizable amount of the particle world, at least in theory space, and before mixing it (at the operator level) with the nonconformal one

  20. The finite - dimensional star and grade star irreducible representation of SU(n/1)

    International Nuclear Information System (INIS)

    Han Qi-zhi.

    1981-01-01

    We derive the conditions of star and grade star representations of SU(n/1) and give some examples of them. We also give a brief review of the finite - dimensional irreducible representations of SU(n/1). (author)

  1. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  2. Magnetic translation groups in an n-dimensional torus and their representations

    International Nuclear Information System (INIS)

    Tanimura, Shogo

    2002-01-01

    A charged particle in a uniform magnetic field in a two-dimensional torus has a discrete noncommutative translation symmetry instead of a continuous commutative translation symmetry. We study topology and symmetry of a particle in a magnetic field in a torus of arbitrary dimensions. The magnetic translation group (MTG) is defined as a group of translations that leave the gauge field invariant. We show that the MTG in an n-dimensional torus is isomorphic to a central extension of a cyclic group Z ν 1 x···xZ ν 2l xT m by U(1) with 2l+m=n. We construct and classify irreducible unitary representations of the MTG in a three-torus and apply the representation theory to three examples. We briefly describe a representation theory for a general n-torus. The MTG in an n-torus can be regarded as a generalization of the so-called noncommutative torus

  3. Research on a Rotating Machinery Fault Prognosis Method Using Three-Dimensional Spatial Representations

    Directory of Open Access Journals (Sweden)

    Xiaoni Dong

    2016-01-01

    Full Text Available Process models and parameters are two critical steps for fault prognosis in the operation of rotating machinery. Due to the requirement for a short and rapid response, it is important to study robust sensor data representation schemes. However, the conventional holospectrum defined by one-dimensional or two-dimensional methods does not sufficiently present this information in both the frequency and time domains. To supply a complete holospectrum model, a new three-dimensional spatial representation method is proposed. This method integrates improved three-dimensional (3D holospectra and 3D filtered orbits, leading to the integration of radial and axial vibration features in one bearing section. The results from simulation and experimental analysis on a complex compressor show that the proposed method can present the real operational status and clearly reveal early faults, thus demonstrating great potential for condition-based maintenance prediction in industrial machinery.

  4. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  5. Higher dimensional loop quantum cosmology

    International Nuclear Information System (INIS)

    Zhang, Xiangdong

    2016-01-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)

  6. Fermion tunneling from higher-dimensional black holes

    International Nuclear Information System (INIS)

    Lin Kai; Yang Shuzheng

    2009-01-01

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  7. Higher representations and multijet resonances at the LHC

    International Nuclear Information System (INIS)

    Kumar, Jason; Thomas, Brooks; Rajaraman, Arvind

    2011-01-01

    The CMS Collaboration has recently conducted a search for trijet resonances in multijet events at the LHC. Motivated in part by this analysis, we examine the phenomenology of exotic particles transforming under higher representations of SU(3) color, focusing on those representations which intrinsically prohibit decays to fewer than three jets. We determine the LHC discovery reach for a particle transforming in a representation of this sort and discuss several additional theoretical and phenomenological constraints which apply to such a particle. Furthermore, we demonstrate that such a particle can provide a consistent explanation for a trijet excess (an invariant-mass peak of roughly 375 GeV) observed in the recent CMS study.

  8. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)

    2017-03-15

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)

  9. Partially-massless higher-spin algebras and their finite-dimensional truncations

    International Nuclear Information System (INIS)

    Joung, Euihun; Mkrtchyan, Karapet

    2016-01-01

    The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 (ℓ−1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ−d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of so d+2 . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.

  10. On higher-dimensional loop algebras, pseudodifferential operators and Fock space realizations

    International Nuclear Information System (INIS)

    Westerberg, A.

    1997-01-01

    We discuss a previously discovered extension of the infinite-dimensional Lie algebra map(M,g) which generalizes the Kac-Moody algebras in 1+1 dimensions and the Mickelsson-Faddeev algebras in 3+1 dimensions to manifolds M of general dimensions. Furthermore, we review the method of regularizing current algebras in higher dimensions using pseudodifferential operator (PSDO) symbol calculus. In particular, we discuss the issue of Lie algebra cohomology of PSDOs and its relation to the Schwinger terms arising in the quantization process. Finally, we apply this regularization method to the algebra with partial success, and discuss the remaining obstacles to the construction of a Fock space representation. (orig.)

  11. Higher-dimensional relativistic-fluid spheres

    International Nuclear Information System (INIS)

    Patel, L. K.; Ahmedabad, Gujarat Univ.

    1997-01-01

    They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given

  12. Higher-dimensional Bianchi type-VIh cosmologies

    Science.gov (United States)

    Lorenz-Petzold, D.

    1985-09-01

    The higher-dimensional perfect fluid equations of a generalization of the (1 + 3)-dimensional Bianchi type-VIh space-time are discussed. Bianchi type-V and Bianchi type-III space-times are also included as special cases. It is shown that the Chodos-Detweiler (1980) mechanism of cosmological dimensional-reduction is possible in these cases.

  13. Australian Indigenous Higher Education: Politics, Policy and Representation

    Science.gov (United States)

    Wilson, Katie; Wilks, Judith

    2015-01-01

    The growth of Aboriginal and Torres Strait Islander participation in Australian higher education from 1959 to the present is notable statistically, but below population parity. Distinct patterns in government policy-making and programme development, inconsistent funding and political influences, together with Indigenous representation during the…

  14. Generating a New Higher-Dimensional Coupled Integrable Dispersionless System: Algebraic Structures, Bäcklund Transformation and Hidden Structural Symmetries

    International Nuclear Information System (INIS)

    Abbagari, Souleymanou; Bouetou, Thomas B.; Kofane, Timoleon C.

    2013-01-01

    The prolongation structure methodologies of Wahlquist—Estabrook [H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16 (1975) 1] for nonlinear differential equations are applied to a more general set of coupled integrable dispersionless system. Based on the obtained prolongation structure, a Lie-Algebra valued connection of a closed ideal of exterior differential forms related to the above system is constructed. A Lie-Algebra representation of some hidden structural symmetries of the previous system, its Bäcklund transformation using the Riccati form of the linear eigenvalue problem and their general corresponding Lax-representation are derived. In the wake of the previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2 + 1)-dimensional coupled integrable dispersionless system is unveiled along with its inverse scattering formulation, which applications are straightforward in nonlinear optics where additional propagating dimension deserves some attention. (general)

  15. Higher dimensional discrete Cheeger inequalities

    Directory of Open Access Journals (Sweden)

    Anna Gundert

    2015-01-01

    Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.

  16. Octonionic matrix representation and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Chanyal, B. C. [Kumaun University, S. S. J. Campus, Almora (India)

    2014-12-15

    Keeping in mind the important role of octonion algebra, we have obtained the electromagnetic field equations of dyons with an octonionic 8 x 8 matrix representation. In this paper, we consider the eight - dimensional octonionic space as a combination of two (external and internal) four-dimensional spaces for the existence of magnetic monopoles (dyons) in a higher-dimensional formalism. As such, we describe the octonion wave equations in terms of eight components from the 8 x 8 matrix representation. The octonion forms of the generalized potential, fields and current source of dyons in terms of 8 x 8 matrix are discussed in a consistent manner. Thus, we have obtained the generalized Dirac-Maxwell equations of dyons from an 8x8 matrix representation of the octonion wave equations in a compact and consistent manner. The generalized Dirac-Maxwell equations are fully symmetric Maxwell equations and allow for the possibility of magnetic charges and currents, analogous to electric charges and currents. Accordingly, we have obtained the octonionic Dirac wave equations in an external field from the matrix representation of the octonion-valued potentials of dyons.

  17. Affine.m—Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras

    Science.gov (United States)

    Nazarov, Anton

    2012-11-01

    In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent

  18. Superalgebras, their quantum deformations and the induced representation method

    International Nuclear Information System (INIS)

    Nguyen Anh Ky.

    1996-08-01

    In this paper some introductory concepts and basic definitions of the Lie superalgebras and their quantum deformations are exposed. Especially the induced representation methods in both cases are described. Up to now, based on the Kac representation theory we have succeeded in constructing representations of several higher rank superalgebras. When representations of quantum superalgebras are concerned, we develop a method which can be applied not only to the one-parametric quantum deformations but also to the multi-parametric ones. Here, being illustrations of the above-mentioned methods, the superalgebra gl(2/1) and its (one-parametric) quantum deformation U q [gl(2/1)] are considered as their finite-dimensional representations are investigated in detail and constructed explicitly. Also, it is shown that the finite-dimensional representations obtained constitute classes of all irreducible (typical and non-typical) finite-dimensional representations of gl(2/1) and U q [gl(2/1)]. Some of the detailed results may be simple but they are given for the first time. (author). 64 refs

  19. Perturbations of higher-dimensional spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Mark; Reall, Harvey S, E-mail: M.N.Durkee@damtp.cam.ac.uk, E-mail: H.S.Reall@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-02-07

    We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.

  20. Singularity Structure Analysis of the Higher-Dimensional Time-Gated Manakov System: Periodic Excitations and Elastic Scattering

    International Nuclear Information System (INIS)

    Kuetche, Victor Kamgang; Bouetou, Thomas Bouetou; Kofane, Timoleon Crepin

    2010-12-01

    We investigate the singularity structure analysis of the higher-dimensional time-gated Manakov system referring to the (2+1)-dimensional coupled nonlinear Schroedinger (CNLS) equations, and we show that these equations are Painleve-integrable. By means of the Weiss et al.'s methodology, we show the arbitrariness of the expansion coefficients and the consistency of the truncation corresponding to a special Baecklund transformation (BT) of these CNLS equations. In the wake of such transformation, following the Hirota's formalism, we derive a one-soliton solution. Besides, by using the Zakharov-Shabat (ZS) scheme which provides a general Lax-representation of an evolution system, we show that the (2+1)-dimensional CNLS system under interests is completely integrable. Furthermore, using the arbitrariness of the above coefficients, we unearth and investigate a typical spectrum of periodic coherent structures while depicting elastic interactions amongst such patterns. (author)

  1. Instabilities of higher dimensional compactifications

    International Nuclear Information System (INIS)

    Accetta, F.S.

    1987-02-01

    Various schemes for cosmological compactification of higher dimensional theories are considered. Possible instabilities which drive the ground state with static internal space to de Sitter-like expansion of all dimensions are discussed. These instabilities are due to semiclassical barrier penetration and classical thermal fluctuations. For the case of the ten dimensional Chapline-Manton action, it is possible to avoid such difficulties by balancing one-loop Casimir corrections against monopole contributions from the field strength H/sub MNP/ and fermionic condensates. 10 refs

  2. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    Science.gov (United States)

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  3. SING-dialoque subsystem for graphical representation of one-dimensional array contents

    International Nuclear Information System (INIS)

    Karlov, A.A.; Kirilov, A.S.

    1979-01-01

    General principles of organization and main features of dialogue subsystem for graphical representation of one-dimensional array contents are considered. The subsystem is developed for remote display station of the JINR BESM-6 computer. Some examples of using the subsystem for drawing curves and histograms are given. The subsystem is developed according to modern dialogue systems requirements. It is ''open'' for extension and could be installed into other computers [ru

  4. Converting boundary representation solid models to half-space representation models for Monte Carlo analysis

    International Nuclear Information System (INIS)

    Davis, J. E.; Eddy, M. J.; Sutton, T. M.; Altomari, T. J.

    2007-01-01

    Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces - a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation. (authors)

  5. A Conference on Three-Dimensional Representation held in University of Minnesota on 24-26 May 1989

    Science.gov (United States)

    Biederman, Irving

    1989-06-01

    This is the final report for a conference grant entitled: A conference on Three-Dimensional Representation. The two and one-half day conference was held at the University of Minn. on May 24 to 26, 1989 to evaluate the current status of problem associated with three-dimensional representations from current computational, psychological, development, and neurophysiological perspectives. Nineteen presentations were made spanning these approaches. One hundred sixty-six individuals attended the conference. Of 44 evaluations received, 75 percent rated the conference as excellent, 20 percent as good, and 5 percent as fair. None rated it poor. The report consists of the original and revised program, conference abstracts evaluation summary and the rooster of attendees.

  6. Low Dimensional Representation of Fisher Vectors for Microscopy Image Classification.

    Science.gov (United States)

    Song, Yang; Li, Qing; Huang, Heng; Feng, Dagan; Chen, Mei; Cai, Weidong

    2017-08-01

    Microscopy image classification is important in various biomedical applications, such as cancer subtype identification, and protein localization for high content screening. To achieve automated and effective microscopy image classification, the representative and discriminative capability of image feature descriptors is essential. To this end, in this paper, we propose a new feature representation algorithm to facilitate automated microscopy image classification. In particular, we incorporate Fisher vector (FV) encoding with multiple types of local features that are handcrafted or learned, and we design a separation-guided dimension reduction method to reduce the descriptor dimension while increasing its discriminative capability. Our method is evaluated on four publicly available microscopy image data sets of different imaging types and applications, including the UCSB breast cancer data set, MICCAI 2015 CBTC challenge data set, and IICBU malignant lymphoma, and RNAi data sets. Our experimental results demonstrate the advantage of the proposed low-dimensional FV representation, showing consistent performance improvement over the existing state of the art and the commonly used dimension reduction techniques.

  7. Basic hypergeometric functions and covariant spaces for even-dimensional representations of Uq[osp(1/2)

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R; Mohammed, S S Naina; Segar, J

    2007-01-01

    Representations of the quantum superalgebra U q [osp(1/2)] and their relations to the basic hypergeometric functions are investigated. We first establish Clebsch-Gordan decomposition for the superalgebra U q [osp(1/2)] in which the representations having no classical counterparts are incorporated. Formulae for these Clebsch-Gordan coefficients are derived, and is observed that they may be expressed in terms of the Q-Hahn polynomials. We next investigate representations of the quantum supergroup OSp q (1/2) which are not well defined in the classical limit. Employing the universal T-matrix, the representation matrices are obtained explicitly, and found to be related to the little Q-Jacobi polynomials. Characteristically, the relation Q = -q is satisfied in all cases. Using the Clebsch-Gordan coefficients derived here, we construct new noncommutative spaces that are covariant under the coaction of the even-dimensional representations of the quantum supergroup OSp q (1/2)

  8. Thermodynamics of higher dimensional black holes

    International Nuclear Information System (INIS)

    Accetta, F.S.; Gleiser, M.

    1986-05-01

    We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs

  9. Thermodynamics of higher dimensional black holes

    Energy Technology Data Exchange (ETDEWEB)

    Accetta, F.S.; Gleiser, M.

    1986-05-01

    We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs.

  10. Extended inflation from higher-dimensional theories

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.

    1991-01-01

    We consider the possibility that higher-dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. We analyze two separate models. One is a very simple toy model consisting of higher-dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of nontrivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a nontrivial potential for the radius of the internal space. We find that extended inflation does not occur in these models. We also find that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation

  11. Extended inflation from higher dimensional theories

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Yun.

    1990-04-01

    The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation

  12. Execution spaces for simple higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    2012-01-01

    Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions of allowa......Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions...

  13. Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations

    International Nuclear Information System (INIS)

    Ferrie, Christopher; Emerson, Joseph

    2008-01-01

    Several finite-dimensional quasi-probability representations of quantum states have been proposed to study various problems in quantum information theory and quantum foundations. These representations are often defined only on restricted dimensions and their physical significance in contexts such as drawing quantum-classical comparisons is limited by the non-uniqueness of the particular representation. Here we show how the mathematical theory of frames provides a unified formalism which accommodates all known quasi-probability representations of finite-dimensional quantum systems. Moreover, we show that any quasi-probability representation is equivalent to a frame representation and then prove that any such representation of quantum mechanics must exhibit either negativity or a deformed probability calculus. (fast track communication)

  14. An approach to higher dimensional theories based on lattice gauge theory

    International Nuclear Information System (INIS)

    Murata, M.; So, H.

    2004-01-01

    A higher dimensional lattice space can be decomposed into a number of four-dimensional lattices called as layers. The higher dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. We propose the new possibility to realize the continuum limit of a five-dimensional theory based on the property of the phase diagram

  15. Unitary representations of some infinite-dimensional Lie algebras motivated by string theory on AdS3

    International Nuclear Information System (INIS)

    Andreev, Oleg

    1999-01-01

    We consider some unitary representations of infinite-dimensional Lie algebras motivated by string theory on AdS 3 . These include examples of two kinds: the A,D,E type affine Lie algebras and the N=4 superconformal algebra. The first presents a new construction for free field representations of affine Lie algebras. The second is of a particular physical interest because it provides some hints that a hybrid of the NSR and GS formulations for string theory on AdS 3 exists

  16. A new quantum representation for canonical gravity and SU(2) Yang-Mills theory

    International Nuclear Information System (INIS)

    Loll, R.

    1990-04-01

    Starting from Rovelli-Smolin's infinite-dimensional graded Poisson-bracket algebra of loop variables, we propose a new way of constructing a corresponding quantum representation. After eliminating certain quadratic constraints, we 'integrate' an infinite-dimensional subalgebra of loop variables, using a formal group law expansion. With the help of techniques from the representation theory of semidirect-product groups, we find an exact quantum representation of the full classical Poisson-bracket algebra of loop variables, without any higher-order correction terms. This opens new ways of tackling the quantum dynamics for both canonical gravity and Yang-Mills theory. (orig.)

  17. A new quantum representation for canonical gravity and SU(2) Yang-Mills theory

    International Nuclear Information System (INIS)

    Loll, R.

    1991-01-01

    Starting from Rovelli-Smolin's infinite-dimensional graded Poisson-bracket algebra of loop variables, we propose a new way of constructing a corresponding quantum representation. After eliminating certain quadratic constraints, we 'integrate' an infinite-dimensional subalgebra of loop variables, using a formal group law expansion. With the help of techniques from the representation theory of semidirect-product groups, we find an exact quantum representation of the full classical Poisson-bracket algebra of loop variables, without any higher-order correction terms. This opens new ways of tackling the quantum dynamics for both canonical gravity and Yang-Mills theory. (orig.)

  18. Functional representations for quantized fields

    International Nuclear Information System (INIS)

    Jackiw, R.

    1988-01-01

    This paper provides information on Representing transformations in quantum theory bosonic quantum field theories: Schrodinger Picture; Represnting Transformations in Bosonic Quantum Field Theory; Two-Dimensional Conformal Transformations, Schrodinger picture representation, Fock space representation, Inequivalent Schrodinger picture representations; Discussion, Self-Dual and Other Models; Field Theory in de Sitter Space. Fermionic Quantum Field Theories: Schroedinger Picture; Schrodinger Picture Representation for Two-Dimensional; Conformal Transformations; Fock Space Dynamics in the Schrodinger Picture; Fock Space Evaluation of Anomalous Current and Conformal Commutators

  19. Higher conservation laws for ten-dimensional supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Abdalla, E.; Forger, M.; Freiburg Univ.; Jacques, M.

    1988-01-01

    It is shown that ten-dimensional supersymmetric Yang-Mills theories are integrable systems, in the (weak) sense of admitting a (superspace) Lax representation for their equations of motion. This is achieved by means of an explicit proof that the equations of motion are not only a consequence of but in fact fully equivalent to the superspace constraint F αβ =0. Moreover, a procedure for deriving infinite series of non-local conservation laws is outlined. (orig.)

  20. The use of virtual reality to reimagine two-dimensional representations of three-dimensional spaces

    Science.gov (United States)

    Fath, Elaine

    2015-03-01

    A familiar realm in the world of two-dimensional art is the craft of taking a flat canvas and creating, through color, size, and perspective, the illusion of a three-dimensional space. Using well-explored tricks of logic and sight, impossible landscapes such as those by surrealists de Chirico or Salvador Dalí seem to be windows into new and incredible spaces which appear to be simultaneously feasible and utterly nonsensical. As real-time 3D imaging becomes increasingly prevalent as an artistic medium, this process takes on an additional layer of depth: no longer is two-dimensional space restricted to strategies of light, color, line and geometry to create the impression of a three-dimensional space. A digital interactive environment is a space laid out in three dimensions, allowing the user to explore impossible environments in a way that feels very real. In this project, surrealist two-dimensional art was researched and reimagined: what would stepping into a de Chirico or a Magritte look and feel like, if the depth and distance created by light and geometry were not simply single-perspective illusions, but fully formed and explorable spaces? 3D environment-building software is allowing us to step into these impossible spaces in ways that 2D representations leave us yearning for. This art project explores what we gain--and what gets left behind--when these impossible spaces become doors, rather than windows. Using sketching, Maya 3D rendering software, and the Unity Engine, surrealist art was reimagined as a fully navigable real-time digital environment. The surrealist movement and its key artists were researched for their use of color, geometry, texture, and space and how these elements contributed to their work as a whole, which often conveys feelings of unexpectedness or uneasiness. The end goal was to preserve these feelings while allowing the viewer to actively engage with the space.

  1. Low-Dimensional Feature Representation for Instrument Identification

    Science.gov (United States)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  2. Possibility of higher-dimensional anisotropic compact star

    International Nuclear Information System (INIS)

    Bhar, Piyali; Rahaman, Farook; Ray, Saibal; Chatterjee, Vikram

    2015-01-01

    We provide a new class of interior solutions for anisotropic stars admitting conformal motion in higher-dimensional noncommutative spacetime. The Einstein field equations are solved by choosing a particular density distribution function of Lorentzian type as provided by Nazari and Mehdipour [1, 2] under a noncommutative geometry. Several cases with 4 and higher dimensions, e.g. 5, 6, and 11 dimensions, are discussed separately. An overall observation is that the model parameters, such as density, radial pressure, transverse pressure, and anisotropy, all are well behaved and represent a compact star with mass 2.27 M s un and radius 4.17 km. However, emphasis is put on the acceptability of the model from a physical point of view. As a consequence it is observed that higher dimensions, i.e. beyond 4D spacetime, exhibit several interesting yet bizarre features, which are not at all untenable for a compact stellar model of strange quark type; thus this dictates the possibility of its extra-dimensional existence. (orig.)

  3. Possibility of higher-dimensional anisotropic compact star

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali; Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chatterjee, Vikram [Central Footwear Training Centre, Department of Physics, Parganas, West Bengal (India)

    2015-05-15

    We provide a new class of interior solutions for anisotropic stars admitting conformal motion in higher-dimensional noncommutative spacetime. The Einstein field equations are solved by choosing a particular density distribution function of Lorentzian type as provided by Nazari and Mehdipour [1, 2] under a noncommutative geometry. Several cases with 4 and higher dimensions, e.g. 5, 6, and 11 dimensions, are discussed separately. An overall observation is that the model parameters, such as density, radial pressure, transverse pressure, and anisotropy, all are well behaved and represent a compact star with mass 2.27 M{sub s}un and radius 4.17 km. However, emphasis is put on the acceptability of the model from a physical point of view. As a consequence it is observed that higher dimensions, i.e. beyond 4D spacetime, exhibit several interesting yet bizarre features, which are not at all untenable for a compact stellar model of strange quark type; thus this dictates the possibility of its extra-dimensional existence. (orig.)

  4. The semantic representation of prejudice and stereotypes.

    Science.gov (United States)

    Bhatia, Sudeep

    2017-07-01

    We use a theory of semantic representation to study prejudice and stereotyping. Particularly, we consider large datasets of newspaper articles published in the United States, and apply latent semantic analysis (LSA), a prominent model of human semantic memory, to these datasets to learn representations for common male and female, White, African American, and Latino names. LSA performs a singular value decomposition on word distribution statistics in order to recover word vector representations, and we find that our recovered representations display the types of biases observed in human participants using tasks such as the implicit association test. Importantly, these biases are strongest for vector representations with moderate dimensionality, and weaken or disappear for representations with very high or very low dimensionality. Moderate dimensional LSA models are also the best at learning race, ethnicity, and gender-based categories, suggesting that social category knowledge, acquired through dimensionality reduction on word distribution statistics, can facilitate prejudiced and stereotyped associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Higher dimensional global monopole in Brans–Dicke theory

    Indian Academy of Sciences (India)

    Keywords. Global monopole; Brans–Dicke theory; higher dimension. PACS Nos 04.20.Jb; 98.80.Bp; 04.50.+h. 1. Introduction. The idea of higher dimensional theory was originated in super string and super gravity the- ories to unify gravity with other fundamental forces in nature. Solutions of Einstein field equations in higher ...

  6. Three-dimensional visual feature representation in the primary visual cortex.

    Science.gov (United States)

    Tanaka, Shigeru; Moon, Chan-Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2011-12-01

    In the cat primary visual cortex, it is accepted that neurons optimally responding to similar stimulus orientations are clustered in a column extending from the superficial to deep layers. The cerebral cortex is, however, folded inside a skull, which makes gyri and fundi. The primary visual area of cats, area 17, is located on the fold of the cortex called the lateral gyrus. These facts raise the question of how to reconcile the tangential arrangement of the orientation columns with the curvature of the gyrus. In the present study, we show a possible configuration of feature representation in the visual cortex using a three-dimensional (3D) self-organization model. We took into account preferred orientation, preferred direction, ocular dominance and retinotopy, assuming isotropic interaction. We performed computer simulation only in the middle layer at the beginning and expanded the range of simulation gradually to other layers, which was found to be a unique method in the present model for obtaining orientation columns spanning all the layers in the flat cortex. Vertical columns of preferred orientations were found in the flat parts of the model cortex. On the other hand, in the curved parts, preferred orientations were represented in wedge-like columns rather than straight columns, and preferred directions were frequently reversed in the deeper layers. Singularities associated with orientation representation appeared as warped lines in the 3D model cortex. Direction reversal appeared on the sheets that were delimited by orientation-singularity lines. These structures emerged from the balance between periodic arrangements of preferred orientations and vertical alignment of the same orientations. Our theoretical predictions about orientation representation were confirmed by multi-slice, high-resolution functional MRI in the cat visual cortex. We obtained a close agreement between theoretical predictions and experimental observations. The present study throws a

  7. World-volume effective theory for higher-dimensional black holes.

    Science.gov (United States)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A

    2009-05-15

    We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes.

  8. Higher dimensional homogeneous cosmology in Lyra geometry

    Indian Academy of Sciences (India)

    1Department of Mathematics, Jadavpur University, Kolkata 700 032, India. 2Khodar ... 1. Introduction. The idea of higher dimensional theory was originated in super string and super gravity .... Equation (7) can easily be integrated to obtain.

  9. Higher-Dimensional Solitons Stabilized by Opposite Charge

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper it is shown how higher-dimensional solitons can be stabilized by a topological phase gradient, a field-induced shift in effective dimensionality. As a prototype, two instable 2-dimensional radial symmetric Sine-Gordon extensions (pulsons) are coupled by a sink/source term such, that one becomes a stable 1d and the other a 3d wave equation. The corresponding physical process is identified as a polarization that fits perfectly to preliminary considerations regarding the nature of electric charge and background of 1/137. The coupling is iterative with convergence limit and bifurcation at high charge. It is driven by the topological phase gradient or non-local Gauge potential that can be mapped to a local oscillator potential under PSL(2,R).

  10. Three-dimensional image capturing and representation for multimedia ambiance communication

    Science.gov (United States)

    Ichikawa, Tadashi; Iwasawa, Shoichiro; Yamada, Kunio; Kanamaru, Toshifumi; Naemura, Takeshi; Aizawa, Kiyoharu; Morishima, Shigeo; Saito, Takahiro

    2001-02-01

    Multimedia Ambiance Communication is as a means of achieving shared-space communication in an immersive environment consisting of an arch-type stereoscopic projection display. Our goal is to enable shared-space communication by creating a photo-realistic three-dimensional (3D) image space that users can feel a part of. The concept of a layered structure defined for painting, such as long-range, mid-range, and short-range views, can be applied to a 3D image space. New techniques, such as two-plane expression, high quality panorama image generation and setting representation for image processing, 3D image representation and generation for photo- realistic 3D image space have been developed. Also, we propose a life-like avatar within the 3D image space. To obtain the characteristics of user's body, a human subject is scanned using a CyberwareTM whole body scanner. The output from the scanner, a range image, is a good start for modeling the avatar's geometric shape. A generic human surface model is fitted to the range image. The obtained model is topologically equivalent even if our method is applied to another subject. If a generic model with motion definitions is employed, and common motion rules can be applied to all models made from the generic model.

  11. Bianchi's Bäcklund transformation for higher dimensional quadrics

    Science.gov (United States)

    Dincă, Ion I.

    2016-12-01

    We provide a generalization of Bianchi's Bäcklund transformation from 2-dimensional quadrics to higher dimensional quadrics (which is also a generalization of Tenenblat-Terng's Bäcklund transformation of isometric deformations of Hn(R) in R 2 n - 1 to general quadrics). Our investigation is the higher dimensional version of Bianchi's main three theorems on the theory of isometric deformations of quadrics and Bianchi's treatment of the Bäcklund transformation for diagonal paraboloids via conjugate systems. It became the driving force which led to the flourishing of the classical differential geometry in the second half of the XIX th century and its profound study by illustrious geometers led to interesting results. Today it is still an open problem in its full generality, but basic familiar results like the Gauß-Bonnet fundamental theorem of surfaces and the Codazzi-Mainardi equations (independently discovered also by Peterson) were first communicated to the French Academy of Sciences. A list (most likely incomplete) of the winners of the prize includes Bianchi, Bonnet, Guichard, Weingarten.Up to 1899 isometric deformations of the (pseudo-)sphere and isotropic quadrics without center (from a metric point of view they can be considered as metrically degenerate quadrics without center) together with their Bäcklund transformation and the complementary transformation of isometric deformations of surfaces of revolution were investigated by geometers such as Bäcklund, Bianchi, Bonnet, Darboux, Goursat, Hazzidakis, Lie, Weingarten, etc.In 1899 Guichard discovered that when quadrics with(out) center and of revolution around the focal axis roll on their isometric deformations their foci describe constant mean curvature (minimal) surfaces (and Bianchi proved the converse: all constant mean curvature (minimal) surfaces can be realized in this way).With Guichard's result the race to find the isometric deformations of general quadrics was on; it ended with Bianchi

  12. The use of non-dimensional representation of the solute transport equations

    International Nuclear Information System (INIS)

    Laurens, J.-M.

    1988-07-01

    This report presents the results obtained in a pilot investigation into the use of non-dimensional representations of the solute transport equations, so as to improve the efficiency of the PRA codes used by the DoE and its contractors. A reduced set of parameters was obtained for a single layer transport model. As expected, the response was shown to be highly sensitive on the new parameters. A faster convergence of the system was observed when the sampling technique used was changed to take into account the properties of the new parameters, such that uniform coverage of the reduced parameter hyperspace was achieved. (author)

  13. Conformal symmetry in two-dimensional space: recursion representation of conformal block

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1988-01-01

    The four-point conformal block plays an important part in the analysis of the conformally invariant operator algebra in two-dimensional space. The behavior of the conformal block is calculated in the present paper in the limit in which the dimension Δ of the intermediate operator tends to infinity. This makes it possible to construct a recursion relation for this function that connects the conformal block at arbitrary Δ to the blocks corresponding to the dimensions of the zero vectors in the degenerate representations of the Virasoro algebra. The relation is convenient for calculating the expansion of the conformal block in powers of the uniformizing parameters q = i π tau

  14. Lakshmibai-Seshadri paths of level-zero weight shape and one-dimensional sums associated to level-zero fundamental representations

    OpenAIRE

    Naito, Satoshi; Sagaki, Daisuke

    2006-01-01

    We give interpretations of energy functions and (classically restricted) one-dimensional sums associated to tensor products of level-zero fundamental representations of quantum affine algebras in terms of Lakshmibai-Seshadri paths of level-zero weight shape.

  15. Higher-dimensional analogues of Donaldson-Witten theory

    International Nuclear Information System (INIS)

    Acharya, B.S.; Spence, B.

    1997-01-01

    We present a Donaldson-Witten-type field theory in eight dimensions on manifolds with Spin(7) holonomy. We prove that the stress tensor is BRST exact for metric variations preserving the holonomy and we give the invariants for this class of variations. In six and seven dimensions we propose similar theories on Calabi-Yau threefolds and manifolds of G 2 holonomy, respectively. We point out that these theories arise by considering supersymmetric Yang-Mills theory defined on such manifolds. The theories are invariant under metric variations preserving the holonomy structure without the need for twisting. This statement is a higher-dimensional analogue of the fact that Donaldson-Witten field theory on hyper-Kaehler 4-manifolds is topological without twisting. Higher-dimensional analogues of Floer cohomology are briefly outlined. All of these theories arise naturally within the context of string theory. (orig.)

  16. Color-motion feature-binding errors are mediated by a higher-order chromatic representation.

    Science.gov (United States)

    Shevell, Steven K; Wang, Wei

    2016-03-01

    Peripheral and central moving objects of the same color may be perceived to move in the same direction even though peripheral objects have a different true direction of motion [Nature429, 262 (2004)10.1038/429262a]. The perceived, illusory direction of peripheral motion is a color-motion feature-binding error. Recent work shows that such binding errors occur even without an exact color match between central and peripheral objects, and, moreover, the frequency of the binding errors in the periphery declines as the chromatic difference increases between the central and peripheral objects [J. Opt. Soc. Am. A31, A60 (2014)JOAOD60740-323210.1364/JOSAA.31.000A60]. This change in the frequency of binding errors with the chromatic difference raises the general question of the chromatic representation from which the difference is determined. Here, basic properties of the chromatic representation are tested to discover whether it depends on independent chromatic differences on the l and the s cardinal axes or, alternatively, on a more specific higher-order chromatic representation. Experimental tests compared the rate of feature-binding errors when the central and peripheral colors had the identical s chromaticity (so zero difference in s) and a fixed magnitude of l difference, while varying the identical s level in center and periphery (thus always keeping the s difference at zero). A chromatic representation based on independent l and s differences would result in the same frequency of color-motion binding errors at everyslevel. The results are contrary to this prediction, thus showing that the chromatic representation at the level of color-motion feature binding depends on a higher-order chromatic mechanism.

  17. Magnetized black holes and black rings in the higher dimensional dilaton gravity

    International Nuclear Information System (INIS)

    Yazadjiev, Stoytcho S.

    2006-01-01

    In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes, and five-dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the D-dimensional magnetized Schwarzschild-Tangherlini black holes

  18. Supersymmetry breaking in the linear representation of the dilaton

    International Nuclear Information System (INIS)

    Gaida, I.

    1995-01-01

    String effective theories with N=1 supersymmetry in 4 dimensions are subject of the discussion. These theories are effective in the sense, that they are low-energy limits of a given higher dimensional string theory after dimensional reduction and integrating out all heavy modes. At tree level the gauge coupling constant can be expressed by the vacuum expectation value of the dilaton superfield S:g 2 =2 -1 . Throughout this text S+ anti S will be denoted as the chiral representation of the dilaton. It has been shown that there exists a supersymmetric legendre transformation called supersymmetric duality, which transforms S+ anti S into a linear superfield L, where L will be called the linear representation of the dilaton. (orig.)

  19. Three-dimensional plasma equilibrium model based on the poloidal representation of the magnetic field

    International Nuclear Information System (INIS)

    Gruber, R.; Degtyarev, L.M.; Kuper, A.; Martynov, A.A.; Medvedev, S.Yu.; Shafranov, V.D.

    1996-01-01

    Equations for the three-dimensional equilibrium of a plasma are formulated in the poloidal representation. The magnetic field is expressed in terms of the poloidal magnetic flux Ψ and the poloidal electric current F. As a result, three-dimensional equilibrium configurations are analyzed with the help of a set of equations including the elliptical equation for the poloidal flux, the magnetic differential equation for the parallel current, and the equations for the basis vector field b. To overcome the difficulties associated with peculiarities that can arise in solving the magnetic differential equation at rational toroidal magnetic surfaces, small regulating corrections are introduced into the proposed set of equations. In this case, second-order differential terms with a small parameter appear in the magnetic differential equations. As a result, these equations take the form of elliptical equations. Three versions of regulating corrections are proposed. The equations obtained can be used to develop numerical codes for calculating three-dimensional equilibrium plasma configurations with an island structure

  20. The association of personal semantic memory to identity representations: insight into higher-order networks of autobiographical contents.

    Science.gov (United States)

    Grilli, Matthew D

    2017-11-01

    Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.

  1. Face recognition from unconstrained three-dimensional face images using multitask sparse representation

    Science.gov (United States)

    Bentaieb, Samia; Ouamri, Abdelaziz; Nait-Ali, Amine; Keche, Mokhtar

    2018-01-01

    We propose and evaluate a three-dimensional (3D) face recognition approach that applies the speeded up robust feature (SURF) algorithm to the depth representation of shape index map, under real-world conditions, using only a single gallery sample for each subject. First, the 3D scans are preprocessed, then SURF is applied on the shape index map to find interest points and their descriptors. Each 3D face scan is represented by keypoints descriptors, and a large dictionary is built from all the gallery descriptors. At the recognition step, descriptors of a probe face scan are sparsely represented by the dictionary. A multitask sparse representation classification is used to determine the identity of each probe face. The feasibility of the approach that uses the SURF algorithm on the shape index map for face identification/authentication is checked through an experimental investigation conducted on Bosphorus, University of Milano Bicocca, and CASIA 3D datasets. It achieves an overall rank one recognition rate of 97.75%, 80.85%, and 95.12%, respectively, on these datasets.

  2. Execution spaces for simple higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    Higher Dimensional Automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek [26]. For a topologist, they are attractive since they can be modeled as cubical complexes - with an inbuilt restriction for directions´of allowable (d-)paths. In Raussen [25], we...

  3. Unlabored system motion by specially conditioned electromagnetic fields in higher dimensional realms

    Science.gov (United States)

    David Froning, H.; Meholic, Gregory V.

    2010-01-01

    This third of three papers explores the possibility of swift, stress-less system transitions between slower-than-light and faster-than-light speeds with negligible net expenditure of system energetics. The previous papers derived a realm of higher dimensionality than 4-D spacetime that enabled such unlabored motion; and showed that fields that could propel and guide systems on unlabored paths in the higher dimensional realm must be fields that have been conditioned to SU(2) (or higher) Lie group symmetry. This paper shows that the system's surrounding vacuum dielectric ɛμ, within the higher dimensional realm's is a vector (not scalar) quantity with fixed magnitude ɛ0μ0 and changing direction within the realm with changing system speed. Thus, ɛμ generated by the system's EM field must remain tuned to vacuum ɛ0μ0 in both magnitude and direction during swift, unlabored system transitions between slower and faster than light speeds. As a result, the system's changing path and speed is such that the magnitude of the higher dimensional realm's ɛ0μ0 is not disturbed. And it is shown that a system's flight trajectories associated with its swift, unlabored transitions between zero and infinite speed can be represented by curved paths traced-out within the higher dimensional realm.

  4. Orthogonality measurements for multidimensional chromatography in three and higher dimensional separations.

    Science.gov (United States)

    Schure, Mark R; Davis, Joe M

    2017-11-10

    Orthogonality metrics (OMs) for three and higher dimensional separations are proposed as extensions of previously developed OMs, which were used to evaluate the zone utilization of two-dimensional (2D) separations. These OMs include correlation coefficients, dimensionality, information theory metrics and convex-hull metrics. In a number of these cases, lower dimensional subspace metrics exist and can be readily calculated. The metrics are used to interpret previously generated experimental data. The experimental datasets are derived from Gilar's peptide data, now modified to be three dimensional (3D), and a comprehensive 3D chromatogram from Moore and Jorgenson. The Moore and Jorgenson chromatogram, which has 25 identifiable 3D volume elements or peaks, displayed good orthogonality values over all dimensions. However, OMs based on discretization of the 3D space changed substantially with changes in binning parameters. This example highlights the importance in higher dimensions of having an abundant number of retention times as data points, especially for methods that use discretization. The Gilar data, which in a previous study produced 21 2D datasets by the pairing of 7 one-dimensional separations, was reinterpreted to produce 35 3D datasets. These datasets show a number of interesting properties, one of which is that geometric and harmonic means of lower dimensional subspace (i.e., 2D) OMs correlate well with the higher dimensional (i.e., 3D) OMs. The space utilization of the Gilar 3D datasets was ranked using OMs, with the retention times of the datasets having the largest and smallest OMs presented as graphs. A discussion concerning the orthogonality of higher dimensional techniques is given with emphasis on molecular diversity in chromatographic separations. In the information theory work, an inconsistency is found in previous studies of orthogonality using the 2D metric often identified as %O. A new choice of metric is proposed, extended to higher dimensions

  5. 2D biological representations with reduced speckle obtained from two perpendicular ultrasonic arrays.

    Science.gov (United States)

    Rodriguez-Hernandez, Miguel A; Gomez-Sacristan, Angel; Sempere-Payá, Víctor M

    2016-04-29

    Ultrasound diagnosis is a widely used medical tool. Among the various ultrasound techniques, ultrasonic imaging is particularly relevant. This paper presents an improvement to a two-dimensional (2D) ultrasonic system using measurements taken from perpendicular planes, where digital signal processing techniques are used to combine one-dimensional (1D) A-scans were acquired by individual transducers in arrays located in perpendicular planes. An algorithm used to combine measurements is improved based on the wavelet transform, which includes a denoising step during the 2D representation generation process. The inclusion of this new denoising stage generates higher quality 2D representations with a reduced level of speckling. The paper includes different 2D representations obtained from noisy A-scans and compares the improvements obtained by including the denoising stage.

  6. Spatial infinity in higher dimensional spacetimes

    International Nuclear Information System (INIS)

    Shiromizu, Tetsuya; Tomizawa, Shinya

    2004-01-01

    Motivated by recent studies on the uniqueness or nonuniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes (n≥4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the nontrivial Weyl tensor (n-1) C abcd in general. We also address static spacetime and its multipole moments P a 1 a 2 ···a s . Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed multipole moments in static vacuum spacetimes. For example, we consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of the static vacuum solution we need some additional information, at least the Weyl tensor (n-2) C abcd at spatial infinity

  7. Electromagnetic field in higher-dimensional black-hole spacetimes

    International Nuclear Information System (INIS)

    Krtous, Pavel

    2007-01-01

    A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational backreaction of such a field cannot be consistently solved

  8. EYE TRACKING TO EXPLORE THE IMPACTS OF PHOTOREALISTIC 3D REPRESENTATIONS IN PEDSTRIAN NAVIGATION PERFORMANCE

    Directory of Open Access Journals (Sweden)

    W. Dong

    2016-06-01

    Full Text Available Despite the now-ubiquitous two-dimensional (2D maps, photorealistic three-dimensional (3D representations of cities (e.g., Google Earth have gained much attention by scientists and public users as another option. However, there is no consistent evidence on the influences of 3D photorealism on pedestrian navigation. Whether 3D photorealism can communicate cartographic information for navigation with higher effectiveness and efficiency and lower cognitive workload compared to the traditional symbolic 2D maps remains unknown. This study aims to explore whether the photorealistic 3D representation can facilitate processes of map reading and navigation in digital environments using a lab-based eye tracking approach. Here we show the differences of symbolic 2D maps versus photorealistic 3D representations depending on users’ eye-movement and navigation behaviour data. We found that the participants using the 3D representation were less effective, less efficient and were required higher cognitive workload than using the 2D map for map reading. However, participants using the 3D representation performed more efficiently in self-localization and orientation at the complex decision points. The empirical results can be helpful to improve the usability of pedestrian navigation maps in future designs.

  9. On representations of Higher Spin symmetry algebras for mixed-symmetry HS fields on AdS-spaces. Lagrangian formulation

    International Nuclear Information System (INIS)

    Burdík, C; Reshetnyak, A

    2012-01-01

    We derive non-linear commutator HS symmetry algebra, which encode unitary irreducible representations of AdS group subject to Young tableaux Y(s 1 ,..., s k ) with κ ≥ 2 rows on d-dimensional anti-de-Sitter space. Auxiliary representations for specially deformed non-linear HS symmetry algebra in terms of generalized Verma module in order to additively convert a subsystem of second-class constraints in the HS symmetry algebra into one with first-class constraints are found explicitly for the case of HS fields for κ = 2 Young tableaux. The oscillator realization over Heisenberg algebra for obtained Verma module is constructed. The results generalize the method of auxiliary representations construction for symplectic sp(2κ) algebra used for mixed-symmetry HS fields on a flat spaces and can be extended on a case of arbitrary HS fields in AdS-space. Gauge-invariant unconstrained reducible Lagrangian formulation for free bosonic HS fields with generalized spin (s 1 , s 2 ) is derived.

  10. Generalized zeta function representation of groups and 2-dimensional topological Yang-Mills theory: The example of GL(2, _q) and PGL(2, _q)

    International Nuclear Information System (INIS)

    Roche, Ph.

    2016-01-01

    We recall the relation between zeta function representation of groups and two-dimensional topological Yang-Mills theory through Mednikh formula. We prove various generalisations of Mednikh formulas and define generalization of zeta function representations of groups. We compute some of these functions in the case of the finite group GL(2, _q) and PGL(2, _q). We recall the table characters of these groups for any q, compute the Frobenius-Schur indicator of their irreducible representations, and give the explicit structure of their fusion rings.

  11. Diffusion in higher dimensional SYK model with complex fermions

    Science.gov (United States)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  12. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.

    Science.gov (United States)

    Yu, Zhang; Zhang, Yufeng

    2009-01-15

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.

  13. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Krtous, Pavel

    2011-01-01

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  14. Naked singularities in higher dimensional Vaidya space-times

    International Nuclear Information System (INIS)

    Ghosh, S. G.; Dadhich, Naresh

    2001-01-01

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension

  15. Multifractal and higher-dimensional zeta functions

    International Nuclear Information System (INIS)

    Véhel, Jacques Lévy; Mendivil, Franklin

    2011-01-01

    In this paper, we generalize the zeta function for a fractal string (as in Lapidus and Frankenhuijsen 2006 Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings (New York: Springer)) in several directions. We first modify the zeta function to be associated with a sequence of covers instead of the usual definition involving gap lengths. This modified zeta function allows us to define both a multifractal zeta function and a zeta function for higher-dimensional fractal sets. In the multifractal case, the critical exponents of the zeta function ζ(q, s) yield the usual multifractal spectrum of the measure. The presence of complex poles for ζ(q, s) indicates oscillations in the continuous partition function of the measure, and thus gives more refined information about the multifractal spectrum of a measure. In the case of a self-similar set in R n , the modified zeta function yields asymptotic information about both the 'box' counting function of the set and the n-dimensional volume of the ε-dilation of the set

  16. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    International Nuclear Information System (INIS)

    Yu Zhang; Zhang Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings

  17. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    Science.gov (United States)

    Yu, Zhang; Zhang, Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092

  18. Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions

    Science.gov (United States)

    Ziegler, Benjamin; Rauhut, Guntram

    2016-03-01

    The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.

  19. Linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes

    OpenAIRE

    Schlue, Volker

    2012-01-01

    I study linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes. In the first part of this thesis two decay results are proven for general finite energy solutions to the linear wave equation on higher dimensional Schwarzschild black holes. I establish uniform energy decay and improved interior first order energy decay in all dimensions with rates in accordance with the 3 + 1-dimensional case. The method of proof departs from earlier work on th...

  20. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  1. Higher spin fields and the Gelfand-Dickey algebra

    International Nuclear Information System (INIS)

    Bakas, I.

    1989-01-01

    We show that in 2-dimensional field theory, higher spin algebras are contained in the algebra of formal pseudodifferential operators introduced by Gelfand and Dickey to describe integrable nonlinear differential equations in Lax form. The spin 2 and 3 algebras are discussed in detail and the generalization to all higher spins is outlined. This provides a conformal field theory approach to the representation theory of Gelfand-Dickey algebras. (orig.)

  2. The Interaction between Semantic Representation and Episodic Memory.

    Science.gov (United States)

    Fang, Jing; Rüther, Naima; Bellebaum, Christian; Wiskott, Laurenz; Cheng, Sen

    2018-02-01

    The experimental evidence on the interrelation between episodic memory and semantic memory is inconclusive. Are they independent systems, different aspects of a single system, or separate but strongly interacting systems? Here, we propose a computational role for the interaction between the semantic and episodic systems that might help resolve this debate. We hypothesize that episodic memories are represented as sequences of activation patterns. These patterns are the output of a semantic representational network that compresses the high-dimensional sensory input. We show quantitatively that the accuracy of episodic memory crucially depends on the quality of the semantic representation. We compare two types of semantic representations: appropriate representations, which means that the representation is used to store input sequences that are of the same type as those that it was trained on, and inappropriate representations, which means that stored inputs differ from the training data. Retrieval accuracy is higher for appropriate representations because the encoded sequences are less divergent than those encoded with inappropriate representations. Consistent with our model prediction, we found that human subjects remember some aspects of episodes significantly more accurately if they had previously been familiarized with the objects occurring in the episode, as compared to episodes involving unfamiliar objects. We thus conclude that the interaction with the semantic system plays an important role for episodic memory.

  3. Higher dimensional quantum Hall effect as A-class topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Kazuki, E-mail: khasebe@stanford.edu

    2014-09-15

    We perform a detail study of higher dimensional quantum Hall effects and A-class topological insulators with emphasis on their relations to non-commutative geometry. There are two different formulations of non-commutative geometry for higher dimensional fuzzy spheres: the ordinary commutator formulation and quantum Nambu bracket formulation. Corresponding to these formulations, we introduce two kinds of monopole gauge fields: non-abelian gauge field and antisymmetric tensor gauge field, which respectively realize the non-commutative geometry of fuzzy sphere in the lowest Landau level. We establish connection between the two types of monopole gauge fields through Chern–Simons term, and derive explicit form of tensor monopole gauge fields with higher string-like singularity. The connection between two types of monopole is applied to generalize the concept of flux attachment in quantum Hall effect to A-class topological insulator. We propose tensor type Chern–Simons theory as the effective field theory for membranes in A-class topological insulators. Membranes turn out to be fractionally charged objects and the phase entanglement mediated by tensor gauge field transforms the membrane statistics to be anyonic. The index theorem supports the dimensional hierarchy of A-class topological insulator. Analogies to D-brane physics of string theory are discussed too.

  4. Covariant representation theory of the Poincaré algebra and some of its extensions

    Science.gov (United States)

    Boels, Rutger

    2010-01-01

    There has been substantial calculational progress in the last few years for gauge theory amplitudes which involve massless four dimensional particles. One of the central ingredients in this has been the ability to keep precise track of the Poincaré algebra quantum numbers of the particles involved. Technically, this is most easily done using the well-known four dimensional spinor helicity method. In this article a natural generalization to all dimensions higher than four is obtained based on a covariant version of the representation theory of the Poincaré algebra. Covariant expressions for all possible polarization states, both bosonic and fermionic, are constructed. For the fermionic states the analysis leads directly to pure spinors. The natural extension to the representation theory of the on-shell supersymmetry algebra results in an elementary derivation of the supersymmetry Ward identities for scattering amplitudes with massless or massive legs in any integer dimension from four onwards. As a proof-of-concept application a higher dimensional analog of the vanishing helicity-equal amplitudes in four dimensions is presented in (super) Yang-Mills theory, Einstein (super-)gravity and superstring theory in a flat background.

  5. Higher dimensional time-energy entanglement

    International Nuclear Information System (INIS)

    Richart, Daniel Lampert

    2014-01-01

    Judging by the compelling number of innovations based on taming quantum mechanical effects, such as the development of transistors and lasers, further research in this field promises to tackle further technological challenges in the years to come. This statement gains even more importance in the information processing scenario. Here, the growing data generation and the correspondingly higher need for more efficient computational resources and secure high bandwidth networks are central problems which need to be tackled. In this sense, the required CPU minituarization makes the design of structures at atomic levels inevitable, as foreseen by Moore's law. From these perspectives, it is necessary to concentrate further research efforts into controlling and manipulating quantum mechanical systems. This enables for example to encode quantum superposition states to tackle problems which are computationally NP hard and which therefore cannot be solved efficiently by classical computers. The only limitation affecting these solutions is the low scalability of existing quantum systems. Similarly, quantum communication schemes are devised to certify the secure transmission of quantum information, but are still limited by a low transmission bandwidth. This thesis follows the guideline defined by these research projects and aims to further increase the scalability of the quantum mechanical systems required to perform these tasks. The method used here is to encode quantum states into photons generated by spontaneous parametric down-conversion (SPDC). An intrinsic limitation of photons is that the scalability of quantum information schemes employing them is limited by the low detection efficiency of commercial single photon detectors. This is addressed by encoding higher dimensional quantum states into two photons, increasing the scalability of the scheme in comparison to multi-photon states. Further on, the encoding of quantum information into the emission-time degree of

  6. Higher dimensional time-energy entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Richart, Daniel Lampert

    2014-07-08

    Judging by the compelling number of innovations based on taming quantum mechanical effects, such as the development of transistors and lasers, further research in this field promises to tackle further technological challenges in the years to come. This statement gains even more importance in the information processing scenario. Here, the growing data generation and the correspondingly higher need for more efficient computational resources and secure high bandwidth networks are central problems which need to be tackled. In this sense, the required CPU minituarization makes the design of structures at atomic levels inevitable, as foreseen by Moore's law. From these perspectives, it is necessary to concentrate further research efforts into controlling and manipulating quantum mechanical systems. This enables for example to encode quantum superposition states to tackle problems which are computationally NP hard and which therefore cannot be solved efficiently by classical computers. The only limitation affecting these solutions is the low scalability of existing quantum systems. Similarly, quantum communication schemes are devised to certify the secure transmission of quantum information, but are still limited by a low transmission bandwidth. This thesis follows the guideline defined by these research projects and aims to further increase the scalability of the quantum mechanical systems required to perform these tasks. The method used here is to encode quantum states into photons generated by spontaneous parametric down-conversion (SPDC). An intrinsic limitation of photons is that the scalability of quantum information schemes employing them is limited by the low detection efficiency of commercial single photon detectors. This is addressed by encoding higher dimensional quantum states into two photons, increasing the scalability of the scheme in comparison to multi-photon states. Further on, the encoding of quantum information into the emission-time degree of

  7. Blocks of tame representation type and related algebras

    CERN Document Server

    Erdmann, Karin

    1990-01-01

    This monograph studies algebras that are associated to blocks of tame representation type. Over the past few years, a range of new results have been obtained and a comprehensive account of these is provided here to- gether with some new proofs of known results. Some general theory of algebras is also presented, as a means of understanding the subject. The book is addressed to researchers and graduate students interested in the links between representations of finite-dimensional algebras and modular group representation theory. The basic properties of modules and finite-dimensional algebras are assumed known.

  8. Higher-dimensional bulk wormholes and their manifestations in brane worlds

    International Nuclear Information System (INIS)

    Rodrigo, Enrico

    2006-01-01

    There is nothing to prevent a higher-dimensional anti-de Sitter bulk spacetime from containing various other branes in addition to hosting our universe, presumed to be a positive-tension 3-brane. In particular, it could contain closed, microscopic branes that form the boundary surfaces of void bubbles and thus violate the null energy condition in the bulk. The possible existence of such micro branes can be investigated by considering the properties of the ground state of a pseudo-Wheeler-DeWitt equation describing brane quantum dynamics in minisuperspace. If they exist, a concentration of these micro branes could act as a fluid of exotic matter able to support macroscopic wormholes connecting otherwise-distant regions of the bulk. Were the brane constituting our universe to expand into a region of the bulk containing such higher-dimensional macroscopic wormholes, they would likely manifest themselves in our brane as wormholes of normal dimensionality, whose spontaneous appearance and general dynamics would seem inexplicably peculiar. This encounter could also result in the formation of baby universes of a particular type

  9. Pair creation of higher dimensional black holes on a de Sitter background

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.

    2004-01-01

    We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstroem-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, which describe, respectively, a pair accelerated by a string and by an electromagnetic field, are not known yet in a higher dimensional spacetime

  10. Finite-dimensional effects and critical indices of one-dimensional quantum models

    International Nuclear Information System (INIS)

    Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.

    1986-01-01

    Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values

  11. Recent developments in multi-parametric three-dimensional stress field representation in plates weakened by cracks and notches

    Directory of Open Access Journals (Sweden)

    P. Lazzarin

    2013-07-01

    Full Text Available The paper deals with the three-dimensional nature and the multi-parametric representation of the stress field ahead of cracks and notches of different shape. Finite thickness plates are considered, under different loading conditions. Under certain hypotheses, the three-dimensional governing equations of elasticity can be reduced to a system where a bi-harmonic equation and a harmonic equation have to be simultaneously satisfied. The former provides the solution of the corresponding plane notch problem, the latter provides the solution of the corresponding out-of-plane shear notch problem. The analytical frame is applied to some notched and cracked geometries and its degree of accuracy is discussed comparing theoretical results and numerical data from 3D FE models.

  12. On super-exponential inflation in a higher-dimensional theory of gravity with higher-derivative terms

    International Nuclear Information System (INIS)

    Pollock, M.D.

    1988-01-01

    We consider super-exponential inflation in the early universe, for which H 2 /H = q >> 1, with particular reference to the higher-dimensional theory of Shafi and Wetterich, which is discussed in further detail. The Hubble parameter H is given by H 2 ≅ (8π/3m P 2 )V(Φ), where the ''inflation'' field Φ is related to the radius of the internal space, and obeys the equation of motion 3HΦ ≅ -dW/dΦ. The spectrum of density perturbations is given by δρ/ρ = (M/M 0 ) -s , where s -1 ≅ 3(q + 1); and X = (-dV/dΦ)/(dW/dΦ). The parameters q and X are both positive constants, hence the need for two distinct potentials, which can be met in a higher-dimensional theory with higher-derivative terms R 2 = α 1 R 2 + α 2 R AB R AB + α 3 R ABCD R ABCD . Some fine-tuning of the parameters α i and/or of the cosmological constant Λ is always necessary in order to have super-exponential inflation. It is possible to obtain a spectrum of density perturbations with s > or approx. 1/20, which helps to give agreement with observations of the cosmic microwave background radiation at very large scales ∝ 1000 Mpc. When R 2 is proportional to the Euler number density, making the four-dimensional theory free of ghosts, then super-exponential inflation is impossible, but a phase of inflation with H < 0 can still occur. (orig.)

  13. Geometric Representations for Discrete Fourier Transforms

    Science.gov (United States)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  14. Torsion and curvature in higher dimensional supergravity theories

    International Nuclear Information System (INIS)

    Smith, A.W.; Pontificia Univ. Catolica do Rio de Janeiro

    1983-01-01

    This work is an extension of Dragon's theorems to higher dimensional space-time. It is shown that the first set of Bianchi identities allow us to express the curvature components in terms of torsion components and its covariant derivatives. It is also shown that the second set of Bianchi identities does not give any new information which is not already contained in the first one. (Author) [pt

  15. On the dimensional reduction of a gravitational theory containing higher-derivative terms

    International Nuclear Information System (INIS)

    Pollock, M.D.

    1990-02-01

    From the higher-dimensional gravitational theory L-circumflex=R-circumflex-2Λ-circumflex-α-circumflex 1 R-circumflex 2 =α-circumflex 2 R-circumflex AB R-circumflex AB -α-circumflex 3 R-circumflex ABCD R-circumflex ABCD , we derive the effective four-dimensional Lagrangian L. (author). 12 refs

  16. Gravastars with higher dimensional spacetimes

    Science.gov (United States)

    Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2018-07-01

    We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.

  17. Accretion onto a charged higher-dimensional black hole

    International Nuclear Information System (INIS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  18. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  19. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  20. The Peierls argument for higher dimensional Ising models

    International Nuclear Information System (INIS)

    Bonati, Claudio

    2014-01-01

    The Peierls argument is a mathematically rigorous and intuitive method to show the presence of a non-vanishing spontaneous magnetization in some lattice models. This argument is typically explained for the D = 2 Ising model in a way which cannot be easily generalized to higher dimensions. The aim of this paper is to present an elementary discussion of the Peierls argument for the general D-dimensional Ising model. (paper)

  1. Bisimulation for Higher-Dimensional Automata. A Geometric Interpretation

    DEFF Research Database (Denmark)

    Fahrenberg, Ulrich

    We show how parallel compostition of higher-dimensional automata (HDA) can be expressed categorically in the spirit of Winskel & Nielsen. Employing the notion of computation path introduced by van Glabbeek, we define a new notion of bisimulation of HDA using open maps. We derive a connection...... between computation paths and carrier sequences of dipaths and show that bisimilarity of HDA can be decided by the use of geometric techniques....

  2. A Lie based 4-dimensional higher Chern-Simons theory

    Science.gov (United States)

    Zucchini, Roberto

    2016-05-01

    We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.

  3. Exact coefficients for higher dimensional operators with sixteen supersymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ming [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, Congkao [INFN Sezione di Roma “Tor Vergata' ,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2015-09-15

    We consider constraints on higher-dimensional operators for supersymmetric effective field theories. In four dimensions with maximal supersymmetry and SU(4) R-symmetry, we demonstrate that the coefficients of abelian operators F{sup n} with MHV helicity configurations must satisfy a recursion relation, and are completely determined by that of F{sup 4}. As the F{sup 4} coefficient is known to be one-loop exact, this allows us to derive exact coefficients for all such operators. We also argue that the results are consistent with the SL(2,Z) duality symmetry. Breaking SU(4) to Sp(4), in anticipation for the Coulomb branch effective action, we again find an infinite class of operators whose coefficients are determined exactly. We also consider three-dimensional N=8 as well as six-dimensional N=(2,0),(1,0) and (1,1) theories. In all cases, we demonstrate that the coefficient of dimension-six operator must be proportional to the square of that of dimension-four.

  4. Infinite dimensional groups and algebras in quantum physics

    International Nuclear Information System (INIS)

    Ottesen, J.T.

    1995-01-01

    This book is an introduction to the application of infite-dimensional groups and algebras in quantum physics. Especially considered are the spin representation of the infinite-dimensional orthogonal group, the metaplectic representation of the infinite-dimensional symplectic groups, and Loop and Virasoro algebras. (HSI)

  5. Quiver representations

    CERN Document Server

    Schiffler, Ralf

    2014-01-01

    This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel’s Theorem. The language of category theory is developed along the way as needed.

  6. Stationary axially symmetric exterior solutions in the five-dimensional representation of the Brans-Dicke-Jordan theory of gravitation

    International Nuclear Information System (INIS)

    Bruckman, W.

    1986-01-01

    The inverse scattering method of Belinsky and Zakharov is used to investigate axially symmetric stationary vacuum soliton solutions in the five-dimensional representation of the Brans-Dicke-Jordan theory of gravitation, where the scalar field of the theory is an element of a five-dimensional metric. The resulting equations for the spacetime metric are similar to those of solitons in general relativity, while the scalar field generated is the product of a simple function of the coordinates and an already known scalar field solution. A family of solutions is considered that reduce, in the absence of rotation, to the five-dimensional form of a well-known Weyl-Levi Civita axially symmetric static vacuum solution. With a suitable choice of parameters, this static limit becomes equivalent to the spherically symmetric solution of the Brans-Dicke theory. An exact metric, in which the Kerr-scalar McIntosh solution is a special case, is given explicitly

  7. Some nonunitary, indecomposable representations of the Euclidean algebra e(3)

    International Nuclear Information System (INIS)

    Douglas, Andrew; De Guise, Hubert

    2010-01-01

    The Euclidean group E(3) is the noncompact, semidirect product group E(3)≅R 3 x SO(3). It is the Lie group of orientation-preserving isometries of three-dimensional Euclidean space. The Euclidean algebra e(3) is the complexification of the Lie algebra of E(3). We construct three distinct families of finite-dimensional, nonunitary representations of e(3) and show that each representation is indecomposable. The representations of the first family are explicitly realized as subspaces of the polynomial ring F[X,Y,Z] with the action of e(3) given by differential operators. The other families are constructed via duals and tensor products of the representations within the first family. We describe subrepresentations, quotients and duals of these indecomposable representations.

  8. On conformal Paneitz curvature equations in higher dimensional spheres

    International Nuclear Information System (INIS)

    El Mehdi, Khalil

    2004-11-01

    We study the problem of prescribing the Paneitz curvature on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results. (author)

  9. Moduli stabilization in higher dimensional brane models

    International Nuclear Information System (INIS)

    Flachi, Antonino; Pujolas, Oriol; Garriga, Jaume; Tanaka, Takahiro

    2003-01-01

    We consider a class of warped higher dimensional brane models with topology M x Σ x S 1 /Z 2 , where Σ is a D2 dimensional manifold. Two branes of co-dimension one are embedded in such a bulk space-time and sit at the orbifold fixed points. We concentrate on the case where an exponential warp factor (depending on the distance along the orbifold) accompanies the Minkowski M and the internal space Σ line elements. We evaluate the moduli effective potential induced by bulk scalar fields in these models, and we show that generically this can stabilize the size of the extra dimensions. As an application, we consider a scenario where supersymmetry is broken not far below the cutoff scale, and the hierarchy between the electroweak and the effective Planck scales is generated by a combination of redshift and large volume effects. The latter is efficient due to the shrinking of Σ at the negative tension brane, where matter is placed. In this case, we find that the effective potential can stabilize the size of the extra dimensions (and the hierarchy) without fine tuning, provided that the internal space Σ is flat. (author)

  10. Moduli stabilization in higher dimensional brane models

    Energy Technology Data Exchange (ETDEWEB)

    Flachi, Antonino; Pujolas, Oriol [IFAE, Campus UAB, 08193 Bellaterra, Barcelona (Spain)]. E-mail: pujolas@ifae.es; Garriga, Jaume [IFAE, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Departament de Fisica Fonamental and C.E.R. en Astrofisica, Fisica de Particules i Cosmologia Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Tanaka, Takahiro [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford MA 02155 (United States); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2003-08-01

    We consider a class of warped higher dimensional brane models with topology M x {sigma} x S{sup 1}/Z{sub 2}, where {sigma} is a D2 dimensional manifold. Two branes of co-dimension one are embedded in such a bulk space-time and sit at the orbifold fixed points. We concentrate on the case where an exponential warp factor (depending on the distance along the orbifold) accompanies the Minkowski M and the internal space {sigma} line elements. We evaluate the moduli effective potential induced by bulk scalar fields in these models, and we show that generically this can stabilize the size of the extra dimensions. As an application, we consider a scenario where supersymmetry is broken not far below the cutoff scale, and the hierarchy between the electroweak and the effective Planck scales is generated by a combination of redshift and large volume effects. The latter is efficient due to the shrinking of {sigma} at the negative tension brane, where matter is placed. In this case, we find that the effective potential can stabilize the size of the extra dimensions (and the hierarchy) without fine tuning, provided that the internal space {sigma} is flat. (author)

  11. Lax representations for matrix short pulse equations

    Science.gov (United States)

    Popowicz, Z.

    2017-10-01

    The Lax representation for different matrix generalizations of Short Pulse Equations (SPEs) is considered. The four-dimensional Lax representations of four-component Matsuno, Feng, and Dimakis-Müller-Hoissen-Matsuno equations are obtained. The four-component Feng system is defined by generalization of the two-dimensional Lax representation to the four-component case. This system reduces to the original Feng equation, to the two-component Matsuno equation, or to the Yao-Zang equation. The three-component version of the Feng equation is presented. The four-component version of the Matsuno equation with its Lax representation is given. This equation reduces the new two-component Feng system. The two-component Dimakis-Müller-Hoissen-Matsuno equations are generalized to the four-parameter family of the four-component SPE. The bi-Hamiltonian structure of this generalization, for special values of parameters, is defined. This four-component SPE in special cases reduces to the new two-component SPE.

  12. Cavalier perspective plots of two-dimensional matrices. Program Stereo

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    The program Stereo allows representation of a two-dimensional matrix containing numerical data, in the form of a cavalier perspective, isometric or not, with an angle variable between 0 deg and 180 deg. The representation is in histogram form for each matrix row and those curves which fall behind higher curves and therefore would not be seen are suppressed. It has been written in Fortran V for a Calcomp-936 digital plotter operating off-line with a Univac 1106 computer. Drawing method, subroutine structure and running instructions are described in this paper. (author)

  13. Graph Regularized Auto-Encoders for Image Representation.

    Science.gov (United States)

    Yiyi Liao; Yue Wang; Yong Liu

    2017-06-01

    Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.

  14. Generative Representations for the Automated Design of Modular Physical Robots

    Science.gov (United States)

    Hornby, Gregory S.; Lipson, Hod; Pollack, Jordan B.

    2003-01-01

    We will begin with a brief background of evolutionary robotics and related work, and demonstrate the scaling problem with our own prior results. Next we propose the use of an evolved generative representation as opposed to a non-generative representation. We describe this representation in detail as well as the evolutionary process that uses it. We then compare progress of evolved robots with and without the use of the grammar, and quantify the obtained advantage. Working two- dimensional and three-dimensional physical robots produced by the system are shown.

  15. Three-dimensional structural representation of the sleep-wake adaptability.

    Science.gov (United States)

    Putilov, Arcady A

    2016-01-01

    Various characteristics of the sleep-wake cycle can determine the success or failure of individual adjustment to certain temporal conditions of the today's society. However, it remains to be explored how many such characteristics can be self-assessed and how they are inter-related one to another. The aim of the present report was to apply a three-dimensional structural representation of the sleep-wake adaptability in the form of "rugby cake" (scalene or triaxial ellipsoid) to explain the results of analysis of the pattern of correlations of the responses to the initial 320-item list of a new inventory with scores on the six scales designed for multidimensional self-assessment of the sleep-wake adaptability (Morning and Evening Lateness, Anytime and Nighttime Sleepability, and Anytime and Daytime Wakeability). The results obtained for sample consisting of 149 respondents were confirmed by the results of similar analysis of earlier collected responses of 139 respondents to the same list of 320 items and responses of 1213 respondents to the 72 items of one of the earlier established questionnaire tools. Empirical evidence was provided in support of the model-driven prediction of the possibility to identify items linked to as many as 36 narrow (6 core and 30 mixed) adaptabilities of the sleep-wake cycle. The results enabled the selection of 168 items for self-assessment of all these adaptabilities predicted by the rugby cake model.

  16. Three-Dimensional Messages for Interstellar Communication

    Science.gov (United States)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  17. Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures.

    Science.gov (United States)

    Grossberg, S

    1997-07-01

    This article develops the FACADE theory of 3-dimensional (3-D) vision and figure-ground separation to explain data concerning how 2-dimensional pictures give rise to 3-D percepts of occluding and occluded objects. The model describes how geometrical and contrastive properties of a picture can either cooperate or compete when forming the boundaries and surface representation that subserve conscious percepts. Spatially long-range cooperation and spatially short-range competition work together to separate the boundaries of occluding figures from their occluded neighbors. This boundary ownership process is sensitive to image T junctions at which occluded figures contact occluding figures. These boundaries control the filling-in of color within multiple depth-sensitive surface representations. Feedback between surface and boundary representations strengthens consistent boundaries while inhibiting inconsistent ones. Both the boundary and the surface representations of occluded objects may be amodally completed, while the surface representations of unoccluded objects become visible through modal completion. Functional roles for conscious modal and amodal representations in object recognition, spatial attention, and reaching behaviors are discussed. Model interactions are interpreted in terms of visual, temporal, and parietal cortices.

  18. Public pedagogy and representations of higher education in popular film: New ground for the scholarship of teaching and learning

    Directory of Open Access Journals (Sweden)

    Katelyn Johnstone

    2018-03-01

    Full Text Available Constructions of teaching, learning, and the university within popular culture can exert an important influence on public understandings of higher education, including those held by faculty and students. As such, they constitute a rich site of inquiry for the scholarship of teaching and learning. Drawing on the notion of film as ‘public pedagogy,’ this article analyses representations of higher education within 11 top grossing and/or critically acclaimed films released in 2014. We identify three broad themes across these texts—the purpose of higher education, relationships between students and professors, and the creation of academic identities—and consider the implications and functions of these representational patterns for teaching, learning, and SoTL. Particular attention is given to the difference between the framing of science and arts and humanities disciplines, and to how this might resonate with the contemporary ‘crisis of the humanities.’

  19. A higher dimensional explanation of the excess of Higgs-like events at CERN LEP

    CERN Document Server

    Van der Bij, J J

    2006-01-01

    Searches for the SM Higgs boson by the four LEP experiments have found a 2.3 sigma excess at 98 GeV and a smaller 1.7 sigma at around 115 GeV. We interpret these excesses as evidence for a Higgs boson coupled to a higher dimensional singlet scalar. The fit implies a relatively low dimensional mixing scale mu_{lhd} 100 GeV. The data show a slight preference for a five-dimensional over a six-dimensional field. This Higgs boson cannot be seen at the LHC, but can be studied at the ILC.

  20. Mass generation and related issues from exotic higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Colatto, Luiz Paulo [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET), Petropolis, RJ (Brazil); Andrade, Marco Antonio de [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil); Assis, Leonardo Paulo Guimaraes de; Helayel-Neto, Jose Abdalla [Centro Brasileiro de Pesquisas Fisicas(LAFEX/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Experimental de Altas Energias; Matheus-Valle, Jose Luiz [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil); Rojas, Moises [Universidade Federal de Lavras, MG (Brazil)

    2011-07-01

    Full text: he main purpose of this work is to show that massless Dirac equation formulated for non-interacting Majorana-Weyl spinors in higher dimensions, particularly in D = 1 + 9 and D = 5 + 5, may yield to an interpretation of massive Majorana and Dirac spinors in D = 1 + 3 dimensions. The particular case of a dimensional reduction from D = 4 + 4 to D = 1 + 3 has already been fairly-well discussed in the literature. By adopting suitable representations of the Dirac matrices in higher dimensions, we pursue the investigation of which higher dimensional space-times and which metric signatures concerning massless Dirac equations in highermay induce massive spinors in D = 1+3 dimensions. The mixing of the chiral fermions in higher dimensions may induce a mechanism such that four massive Majorana fermions may show up and, at an appropriate limit an almost zero and a huge mass show up with corresponding left-handed and right-handed eigenstates. This mechanism could reassess a peculiar connection with the See-Saw scheme associated to neutrino with Majorana-type masses. The masses of the particle are fixed by the dimensional reduction scheme, which the decoupled dimensions contribute coordinates and depend on the mass invariants in lower dimensions. This proposal should allow us to understand the generation of hierarchies for the fermionic masses in D = 1 + 3, or in lower dimensions in general, starting from the constraints between the energy and the momentum in (n; n) dimensions. For the initial D = 5 + 5 Majorana-Weyl spinors framework using the Weyl representation to the Dirac matrices we observe an intriguing decomposition of space-time that result in two equivalent D = 1 + 4 massive spinors which mass term, in D = 1 + 3 included, is originated from the remained component and that could induce a Brane-World mechanism. (author)

  1. Partition function of free conformal fields in 3-plet representation

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento & INFN,Via Arnesano, 73100 Lecce (Italy); Tseytlin, Arkady A. [The Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)

    2017-05-10

    Simplest examples of AdS/CFT duality correspond to free CFTs in d dimensions with fields in vector or adjoint representation of an internal symmetry group dual in the large N limit to a theory of massless or massless plus massive higher spins in AdS{sub d+1}. One may also study generalizations when conformal fields belong to higher dimensional representations, i.e. carry more than two internal symmetry indices. Here we consider the case of the 3-fundamental (“3-plet”) representation. One motivation is a conjectured connection to multiple M5-brane theory: heuristic arguments suggest that it may be related to an (interacting) CFT of 6d (2,0) tensor multiplets in 3-plet representation of large N symmetry group that has an AdS{sub 7} dual. We compute the singlet partition function Z on S{sup 1}×S{sup d−1} for a free field in 3-plet representation of U(N) and analyse its novel large N behaviour. The large N limit of the low temperature expansion of Z which is convergent in the vector and adjoint cases here is only asymptotic, reflecting the much faster growth of the number of singlet operators with dimension, indicating a phase transition at very low temperature. Indeed, while the critical temperatures in the vector (T{sub c}∼N{sup γ}, γ>0) and adjoint (T{sub c}∼1) cases are finite, we find that in the 3-plet case T{sub c}∼(log N){sup −1}, i.e. it approaches zero at large N. We discuss some details of large N solution for the eigenvalue distribution. Similar conclusions apply to higher p-plet representations of U(N) or O(N) and also to the free p-tensor theories invariant under [U(N)]{sup p} or [O(N)]{sup p} with p≥3.

  2. Higher dimensional operator corrections to the goldstino Goldberger-Treiman vertices

    International Nuclear Information System (INIS)

    Lee, T.

    2000-01-01

    The goldstino-matter interactions given by the Goldberger-Treiman relations can receive higher dimensional operator corrections of O(q 2 /M 2 ), where M denotes the mass of the mediators through which SUSY breaking is transmitted. These corrections in the gauge mediated SUSY breaking models arise from loop diagrams, and an explicit calculation of such corrections is presented. It is emphasized that the Goldberger-Treiman vertices are valid only below the mediator scale, and at higher energies goldstinos decouple from the MSSM fields. The implication of this fact for gravitino cosmology in GMSB models is mentioned. (orig.)

  3. 'Twisted' strings and higher level Kac-Moody representations

    International Nuclear Information System (INIS)

    Horvath, Z.; Palla, L.

    1989-01-01

    Using an orbifold-like construction the twisted sector of a closed string moving on GxG (with G simply laced) is determined. A level-two G current operating there is constructed explicitly. The decomposition of the twisted sector into products between appropriate conformal and level-two G representations is given if 2 rank G-2 dim G/(2+g)<1. (orig.)

  4. Ultraviolet divergences in higher dimensional supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Howe, P.S.; Stelle, K.S.

    1984-01-01

    We determine the loop orders for the onset of allowed ultra-violet divergences in higher dimensional supersymmetric Yang-Mills theories. Cancellations are controlled by the non-renormalization theorems for the linearly realizable supersymmetries and by the requirement that counterterms display the full non-linear supersymmetries when the classical equations of motion are imposed. The first allowed divergences in the maximal super Yang-Mills theories occur at four loops in five dimensions, three loops in six dimensions and two loops in seven dimensions. (orig.)

  5. High dimensional neurocomputing growth, appraisal and applications

    CERN Document Server

    Tripathi, Bipin Kumar

    2015-01-01

    The book presents a coherent understanding of computational intelligence from the perspective of what is known as "intelligent computing" with high-dimensional parameters. It critically discusses the central issue of high-dimensional neurocomputing, such as quantitative representation of signals, extending the dimensionality of neuron, supervised and unsupervised learning and design of higher order neurons. The strong point of the book is its clarity and ability of the underlying theory to unify our understanding of high-dimensional computing where conventional methods fail. The plenty of application oriented problems are presented for evaluating, monitoring and maintaining the stability of adaptive learning machine. Author has taken care to cover the breadth and depth of the subject, both in the qualitative as well as quantitative way. The book is intended to enlighten the scientific community, ranging from advanced undergraduates to engineers, scientists and seasoned researchers in computational intelligenc...

  6. Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, V

    2000-03-01

    I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system.

  7. Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models

    International Nuclear Information System (INIS)

    Chudnovsky, V.

    2000-01-01

    I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system

  8. Free massless fermionic fields of arbitrary spin in d-dimensional anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-04-25

    Free massless fermionic fields of arbitrary spins, corresponding to fully symmetric tensor-spinor irreducible representations of the flat little group SO(d-2), are described in d-dimensional anti-de Sitter space in terms of differential forms. Appropriate linearized higher-spin curvature 2-forms are found. Explicitly gauge invariant higher-spin actions are constructed in terms of these linearized curvatures.

  9. Densis. Densimetric representation of two-dimensional matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)

  10. Chern-Simons action for inhomogeneous Virasoro group as extension of three dimensional flat gravity

    Energy Technology Data Exchange (ETDEWEB)

    Barnich, Glenn [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Giribet, Gastón [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina); Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Leston, Mauricio [Instituto de Astronomía y Física del Espacio IAFE-CONICET, Ciudad Universitaria, Pabellón IAFE, C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina)

    2015-07-15

    We initiate the study of a Chern-Simons action associated to the semi-direct sum of the Virasoro algebra with its coadjoint representation. This model extends the standard Chern-Simons formulation of three dimensional flat gravity and is similar to the higher-spin extension of three dimensional anti-de Sitter or flat gravity. The extension can also be constructed for the exotic but not for the cosmological constant deformation of flat gravity.

  11. Higher dimensional curved domain walls on Kähler surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Radjabaycolle, Flinn C. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Departement of Physics, Faculty of Mathematics and Natural Sciences, Cendrawasih University, Jl. Kampwolker Kampus Uncen Baru Waena-Jayapura 99351 (Indonesia); Wijaya, Rio N. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia)

    2017-03-15

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  12. Higher dimensional curved domain walls on Kähler surfaces

    International Nuclear Information System (INIS)

    Akbar, Fiki T.; Gunara, Bobby E.; Radjabaycolle, Flinn C.; Wijaya, Rio N.

    2017-01-01

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  13. Simulation of conditional diffusions via forward-reverse stochastic representations

    KAUST Repository

    Bayer, Christian

    2015-01-01

    We derive stochastic representations for the finite dimensional distributions of a multidimensional diffusion on a fixed time interval,conditioned on the terminal state. The conditioning can be with respect to a fixed measurement point or more generally with respect to some subset. The representations rely on a reverse process connected with the given (forward) diffusion as introduced by Milstein, Schoenmakers and Spokoiny in the context of density estimation. The corresponding Monte Carlo estimators have essentially root-N accuracy, and hence they do not suffer from the curse of dimensionality. We also present an application in statistics, in the context of the EM algorithm.

  14. Simulation of conditional diffusions via forward-reverse stochastic representations

    KAUST Repository

    Bayer, Christian

    2015-01-07

    We derive stochastic representations for the finite dimensional distributions of a multidimensional diffusion on a fixed time interval,conditioned on the terminal state. The conditioning can be with respect to a fixed measurement point or more generally with respect to some subset. The representations rely on a reverse process connected with the given (forward) diffusion as introduced by Milstein, Schoenmakers and Spokoiny in the context of density estimation. The corresponding Monte Carlo estimators have essentially root-N accuracy, and hence they do not suffer from the curse of dimensionality. We also present an application in statistics, in the context of the EM algorithm.

  15. Graviton emission from a higher-dimensional black hole

    International Nuclear Information System (INIS)

    Cornell, Alan S.; Naylor, Wade; Sasaki, Misao

    2006-01-01

    We discuss the graviton absorption probability (greybody factor) and the cross-section of a higher-dimensional Schwarzschild black hole (BH). We are motivated by the suggestion that a great many BHs may be produced at the LHC and bearing this fact in mind, for simplicity, we shall investigate the intermediate energy regime for a static Schwarzschild BH. That is, for (2M) 1/(n-1) ω ∼ 1, where M is the mass of the black hole and ω is the energy of the emitted gravitons in (2+n)-dimensions. To find easily tractable solutions we work in the limit l >> 1, where l is the angular momentum quantum number of the graviton

  16. Two-dimensional shape recognition using oriented-polar representation

    Science.gov (United States)

    Hu, Neng-Chung; Yu, Kuo-Kan; Hsu, Yung-Li

    1997-10-01

    To deal with such a problem as object recognition of position, scale, and rotation invariance (PSRI), we utilize some PSRI properties of images obtained from objects, for example, the centroid of the image. The corresponding position of the centroid to the boundary of the image is invariant in spite of rotation, scale, and translation of the image. To obtain the information of the image, we use the technique similar to Radon transform, called the oriented-polar representation of a 2D image. In this representation, two specific points, the centroid and the weighted mean point, are selected to form an initial ray, then the image is sampled with N angularly equispaced rays departing from the initial rays. Each ray contains a number of intersections and the distance information obtained from the centroid to the intersections. The shape recognition algorithm is based on the least total error of these two items of information. Together with a simple noise removal and a typical backpropagation neural network, this algorithm is simple, but the PSRI is achieved with a high recognition rate.

  17. The effects of mental representation on performance in a navigation task

    Science.gov (United States)

    Barshi, Immanuel

    Most aviation accidents and incidents are attributed to human error. Among the various kinds of human errors found in aviation, problems in communication constitute a large majority. The purpose of this study is to understand some of the cognitive factors influencing these misunderstandings so they can be prevented. Five experiments tested individuals' ability to follow verbal instructions pertaining to navigating in space. The experiments simulated the kinds of instructions pilots receive from air traffic controllers. All five experiments show the importance of the mental representation of the task over and above the short-term memory demands. The results of Experiment 1 show that the number of instructional units is a critical factor, rather than the number of words per unit. The results of Experiment 2 show that when moving in a three dimensional space, it does not matter whether movement is required along all three dimensions or along only two of the three dimensions. The results of Experiment 3 show that individuals perform much better when they have to maintain a two-dimensional mental representation than when they have to maintain a three-dimensional mental representation. What is more, it shows that even immediate verbatim recall is affected by the representation of the situation to which the language input applies. The results of Experiments 4 and 5 show that the two-dimensional advantage found in Experiment 3 is indeed an aspect of the mental representation, rather than a result of translating a visual display into a mental representation. These results also suggest that three units is the capacity limit of short-term memory. Thus, to minimize misunderstandings due to message length, air traffic controllers are advised to limit their messages to no more than three instructions at a time. In addition to ATC procedures, this research has practical implications for computer/visual displays, and for training environments.

  18. Mental Representation and Motor Imagery Training

    Directory of Open Access Journals (Sweden)

    Thomas eSchack

    2014-05-01

    Full Text Available Research in sports, dance and rehabilitation has shown that Basic Action Concepts (BACs are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, SDA-M (structural dimensional analysis of mental representation, to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.

  19. Vacuum polarization and classical self-action near higher-dimensional defects

    Energy Technology Data Exchange (ETDEWEB)

    Grats, Yuri V.; Spirin, Pavel [Moscow State University, Department of Theoretical Physics, Faculty of Physics, Moscow (Russian Federation)

    2017-02-15

    We analyze the gravity-induced effects associated with a massless scalar field in a higher-dimensional spacetime being the tensor product of (d - n)-dimensional Minkowski space and n-dimensional spherically/cylindrically symmetric space with a solid/planar angle deficit. These spacetimes are considered as simple models for a multidimensional global monopole (if n ≥ 3) or cosmic string (if n = 2) with (d - n - 1) flat extra dimensions. Thus, we refer to them as conical backgrounds. In terms of the angular-deficit value, we derive the perturbative expression for the scalar Green function, valid for any d ≥ 3 and 2 ≤ n ≤ d - 1, and compute it to the leading order. With the use of this Green function we compute the renormalized vacuum expectation value of the field square left angle φ{sup 2}(x) right angle {sub ren} and the renormalized vacuum averaged of the scalar-field energy-momentum tensor left angle T{sub MN}(x) right angle {sub ren} for arbitrary d and n from the interval mentioned above and arbitrary coupling constant to the curvature ξ. In particular, we revisit the computation of the vacuum polarization effects for a non-minimally coupled massless scalar field in the spacetime of a straight cosmic string. The same Green function enables to consider the old purely classical problem of the gravity-induced self-action of a classical point-like scalar or electric charge, placed at rest at some fixed point of the space under consideration. To deal with divergences, which appear in consideration of the two problems, we apply the dimensional-regularization technique, widely used in quantum field theory. The explicit dependence of the results upon the dimensionalities of both the bulk and conical submanifold is discussed. (orig.)

  20. ANOVA-HDMR structure of the higher order nodal diffusion solution

    International Nuclear Information System (INIS)

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-01-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  1. Representations of the algebra Uq'(son) related to quantum gravity

    International Nuclear Information System (INIS)

    Klimyk, A.U.

    2002-01-01

    The aim of this paper is to review our results on finite dimensional irreducible representations of the nonstandard q-deformation U q ' (so n ) of the universal enveloping algebra U(so(n)) of the Lie algebra so(n) which does not coincide with the Drinfeld-Jimbo quantum algebra U q (so n ).This algebra is related to algebras of observables in quantum gravity and to algebraic geometry.Irreducible finite dimensional representations of the algebra U q ' (so n ) for q not a root of unity and for q a root of unity are given

  2. A comprehensive analysis of earthquake damage patterns using high dimensional model representation feature selection

    Science.gov (United States)

    Taşkin Kaya, Gülşen

    2013-10-01

    Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input

  3. Spontaneous symmetry breaking and fermion chirality in higher-dimensional gauge theory

    International Nuclear Information System (INIS)

    Wetterich, C.

    1985-01-01

    The number of chiral fermions may change in the course of spontaneous symmetry breaking. We discuss solutions of a six-dimensional Einstein-Yang-Mills theory based on SO(12). In the resulting effective four-dimensional theory they can be interpreted as spontaneous breaking of a gauge group SO(10) to H=SU(3)sub(C)xSU(2)sub(L)xU(1)sub(R)xU(1)sub(B-L). For all solutions, the fermions which are chiral with respect to H form standard generations. However, the number of generations for the solutions with broken SO(10) may be different compared to the symmetric solutions. All solutions considered here exhibit a local generation group SU(2)sub(G)xU(1)sub(G). For the solutions with broken SO(10) symmetry, the leptons and quarks within one generation transform differently with respect to SU(2)sub(G)xU(1)sub(G). Spontaneous symmetry breaking also modifies the SO(10) relations among Yukawa couplings. All this has important consequences for possible fermion mass relations obtained from higher-dimensional theories. (orig.)

  4. Higher dimensional strange quark matter solutions in self creation cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Şen, R., E-mail: ramazansen-1991@hotmail.com [Institute for Natural and Applied Sciences, Çanakkale Onsekiz Mart University, 17020, Çanakkale (Turkey); Aygün, S., E-mail: saygun@comu.edu.tr [Department of Physics, Art and Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey)

    2016-03-25

    In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.

  5. Higher order BLG supersymmetry transformations from 10-dimensional super Yang Mills

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John [Alumnus of Physics Department, Imperial College,South Kensington, London, SW7 2AZ (United Kingdom); Low, Andrew [Physics Department, Wimbledon High School,Mansel Road, London, SW19 4AB (United Kingdom)

    2014-06-26

    We study a Simple Route for constructing the higher order Bagger-Lambert-Gustavsson theory - both supersymmetry transformations and Lagrangian - starting from knowledge of only the 10-dimensional Super Yang Mills Fermion Supersymmetry transformation. We are able to uniquely determine the four-derivative order corrected supersymmetry transformations, to lowest non-trivial order in Fermions, for the most general three-algebra theory. For the special case of Euclidean three-algbera, we reproduce the result presented in arXiv:1207.1208, with significantly less labour. In addition, we apply our method to calculate the quadratic fermion terms in the higher order BLG fermion supersymmetry transformation.

  6. Uniform surface-to-line integral reduction of physical optics for curved surfaces by modified edge representation with higher-order correction

    Science.gov (United States)

    Lyu, Pengfei; Ando, Makoto

    2017-09-01

    The modified edge representation is one of the equivalent edge currents approximation methods for calculating the physical optics surface radiation integrals in diffraction analysis. The Stokes' theorem is used in the derivation of the modified edge representation from the physical optics for the planar scatterer case, which implies that the surface integral is rigorously reduced into the line integral of the modified edge representation equivalent edge currents, defined in terms of the local shape of the edge. On the contrary, for curved surfaces, the results of radiation integrals depend upon the global shape of the scatterer. The physical optics surface integral consists of two components, from the inner stationary phase point and the edge. The modified edge representation is defined independently from the orientation of the actual edge, and therefore, it could be available not only at the edge but also at the arbitrary points on the scatterer except the stationary phase point where the modified edge representation equivalent edge currents becomes infinite. If stationary phase point exists inside the illuminated region, the physical optics surface integration is reduced into two kinds of the modified edge representation line integrations, along the edge and infinitesimally small integration around the inner stationary phase point, the former and the latter give the diffraction and reflection components, respectively. The accuracy of the latter has been discussed for the curved surfaces and published. This paper focuses on the errors of the former and discusses its correction. It has been numerically observed that the modified edge representation works well for the physical optics diffraction in flat and concave surfaces; errors appear especially for the observer near the reflection shadow boundary if the frequency is low for the convex scatterer. This paper gives the explicit expression of the higher-order correction for the modified edge representation.

  7. Operators and representation theory canonical models for algebras of operators arising in quantum mechanics

    CERN Document Server

    Jorgensen, Palle E T

    1987-01-01

    Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e

  8. Renormalization in the complete Mellin representation of Feynman amplitudes

    International Nuclear Information System (INIS)

    Calan, C. de; David, F.; Rivasseau, V.

    1981-01-01

    The Feynmann amplitudes are renormalized in the formalism of the CM representation. This Mellin-Barnes type integral representation, previously introduced for the study of asymptotic behaviours, is shown to have the following interesting property: in contrast with the usual subtraction procedures, the renormalization leaves the CM intergrand unchanged, and only results into translations of the integration path. The explicit CM representation of the renormalized amplitudes is given. In addition, the dimensional regularization and the extension to spinor amplitudes are sketched. (orig.)

  9. Single-shot imaging with higher-dimensional encoding using magnetic field monitoring and concomitant field correction.

    Science.gov (United States)

    Testud, Frederik; Gallichan, Daniel; Layton, Kelvin J; Barmet, Christoph; Welz, Anna M; Dewdney, Andrew; Cocosco, Chris A; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2015-03-01

    PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding. © 2014 Wiley Periodicals, Inc.

  10. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases

    CSIR Research Space (South Africa)

    Mafu, M

    2013-09-01

    Full Text Available We present an experimental study of higher-dimensional quantum key distribution protocols based on mutually unbiased bases, implemented by means of photons carrying orbital angular momentum. We perform (d + 1) mutually unbiased measurements in a...

  11. Fermions Tunneling from Higher-Dimensional Reissner-Nordström Black Hole: Semiclassical and Beyond Semiclassical Approximation

    Directory of Open Access Journals (Sweden)

    ShuZheng Yang

    2016-01-01

    Full Text Available Based on semiclassical tunneling method, we focus on charged fermions tunneling from higher-dimensional Reissner-Nordström black hole. We first simplify the Dirac equation by semiclassical approximation, and then a semiclassical Hamilton-Jacobi equation is obtained. Using the Hamilton-Jacobi equation, we study the Hawking temperature and fermions tunneling rate at the event horizon of the higher-dimensional Reissner-Nordström black hole space-time. Finally, the correct entropy is calculation by the method beyond semiclassical approximation.

  12. Upper Estimates on the Higher-dimensional Multifractal Spectrum of Local Entropy%局部熵高维重分形谱的上界估计

    Institute of Scientific and Technical Information of China (English)

    严珍珍; 陈二才

    2008-01-01

    We discuss the problem of higher-dimensional multifractal spectrum of lo-cal entropy for arbitrary invariant measures. By utilizing characteristics of a dynam-ical system, namely, higher-dimensional entropy capacities and higher-dimensional correlation entropies, we obtain three upper estimates on the higher-dimensional mul-tifractal spectrum of local entropies. We also study the domain of higher-dimensional multifractal spetrum of entropies.

  13. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA.

    Science.gov (United States)

    Wang, Shunfang; Liu, Shuhui

    2015-12-19

    An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.

  14. Evolved Representation and Computational Creativity

    Directory of Open Access Journals (Sweden)

    Ashraf Fouad Hafez Ismail

    2001-01-01

    Full Text Available Advances in science and technology have influenced designing activity in architecture throughout its history. Observing the fundamental changes to architectural designing due to the substantial influences of the advent of the computing era, we now witness our design environment gradually changing from conventional pencil and paper to digital multi-media. Although designing is considered to be a unique human activity, there has always been a great dependency on design aid tools. One of the greatest aids to architectural design, amongst the many conventional and widely accepted computational tools, is the computer-aided object modeling and rendering tool, commonly known as a CAD package. But even though conventional modeling tools have provided designers with fast and precise object handling capabilities that were not available in the pencil-and-paper age, they normally show weaknesses and limitations in covering the whole design process.In any kind of design activity, the design worked on has to be represented in some way. For a human designer, designs are for example represented using models, drawings, or verbal descriptions. If a computer is used for design work, designs are usually represented by groups of pixels (paintbrush programs, lines and shapes (general-purpose CAD programs or higher-level objects like ‘walls’ and ‘rooms’ (purpose-specific CAD programs.A human designer usually has a large number of representations available, and can use the representation most suitable for what he or she is working on. Humans can also introduce new representations and thereby represent objects that are not part of the world they experience with their sensory organs, for example vector representations of four and five dimensional objects. In design computing on the other hand, the representation or representations used have to be explicitly defined. Many different representations have been suggested, often optimized for specific design domains

  15. Bulk emission by higher-dimensional black holes: almost perfect blackbody radiation

    International Nuclear Information System (INIS)

    Hod, Shahar

    2011-01-01

    We study the Hawking radiation emitted into the bulk by (D + 1)-dimensional Schwarzschild black holes. It is well known that the black-hole spectrum departs from exact blackbody form due to the frequency dependence of the 'greybody' factors. For intermediate values of D (3 ≤ D ∼ > 1, the typical wavelengths in the black-hole spectrum are much shorter than the size of the black hole. In this regime, the greybody factors are well described by the geometric-optics approximation according to which they are almost frequency independent. Following this observation, we argue that for higher-dimensional black holes with D >> 1, the total power emitted into the bulk should be well approximated by the analytical formula for perfect blackbody radiation. We test the validity of this analytical prediction with numerical computations.

  16. Room Scanner representation and measurement of three-dimensional spaces using a smartphone

    International Nuclear Information System (INIS)

    Bejarano Rodriguez, Mauricio

    2013-01-01

    An algorithm was designed to measure and represent three-dimensional spaces using the resources available on a smartphone. The implementation of the fusion sensor has enabled to use basic trigonometry to calculate the lengths of the walls and the corners of the room. The OpenGL library was used to create and visualize the three-dimensional model of the measured internal space. A library was created to export the represented model to other commercial formats. A certain level of degradation is obtained once an attempt is made to measure long distances because the algorithm depends on the degree of inclination of the smarthphone to perform the measurements. For this reason, at higher elevations are obtained more accurate measurements. The capture process was changed in order to correct the margin of error to measure soccer field. The algorithm has recorded measurements less than 3% margin of error through the process of subdividing the measurement area. (author) [es

  17. Stationary strings near a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Stevens, Kory A.

    2004-01-01

    We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string

  18. Geometry of higher-dimensional black hole thermodynamics

    International Nuclear Information System (INIS)

    Aaman, Jan E.; Pidokrajt, Narit

    2006-01-01

    We investigate thermodynamic curvatures of the Kerr and Reissner-Nordstroem (RN) black holes in spacetime dimensions higher than four. These black holes possess thermodynamic geometries similar to those in four-dimensional spacetime. The thermodynamic geometries are the Ruppeiner geometry and the conformally related Weinhold geometry. The Ruppeiner geometry for a d=5 Kerr black hole is curved and divergent in the extremal limit. For a d≥6 Kerr black hole there is no extremality but the Ruppeiner curvature diverges where one suspects that the black hole becomes unstable. The Weinhold geometry of the Kerr black hole in arbitrary dimension is a flat geometry. For the RN black hole the Ruppeiner geometry is flat in all spacetime dimensions, whereas its Weinhold geometry is curved. In d≥5 the Kerr black hole can possess more than one angular momentum. Finally we discuss the Ruppeiner geometry for the Kerr black hole in d=5 with double angular momenta

  19. Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory

    International Nuclear Information System (INIS)

    Lee, Bum-Hoon; Ro, Daeho; Yang, Hyun Seok

    2017-01-01

    We study localization of five-dimensional supersymmetric U(1) gauge theory on S 3 ×ℝ θ 2 where ℝ θ 2 is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N→∞) gauge theory on S 3 using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space ℝ θ 2 allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.

  20. Reflectance distribution in optimal transmittance cavities: The remains of a higher dimensional space

    International Nuclear Information System (INIS)

    Naumis, Gerardo G.; Bazan, A.; Torres, M.; Aragon, J.L.; Quintero-Torres, R.

    2008-01-01

    One of the few examples in which the physical properties of an incommensurable system reflect an underlying higher dimensionality is presented. Specifically, we show that the reflectivity distribution of an incommensurable one-dimensional cavity is given by the density of states of a tight-binding Hamiltonian in a two-dimensional triangular lattice. Such effect is due to an independent phase decoupling of the scattered waves, produced by the incommensurable nature of the system, which mimics a random noise generator. This principle can be applied to design a cavity that avoids resonant reflections for almost any incident wave. An optical analogy, by using three mirrors with incommensurable distances between them, is also presented. Such array produces a countable infinite fractal set of reflections, a phenomena which is opposite to the effect of optical invisibility

  1. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality...... are less demanding on the brain’s working memory than 3D models seen on flat two-dimensional screens. This paper suggests that virtual reality representational architectural models can, if used correctly, significantly improve the imaginative role of architectural representation....

  2. A 2.5-D Representation of the Human Hand

    Science.gov (United States)

    Longo, Matthew R.; Haggard, Patrick

    2012-01-01

    Primary somatosensory maps in the brain represent the body as a discontinuous, fragmented set of two-dimensional (2-D) skin regions. We nevertheless experience our body as a coherent three-dimensional (3-D) volumetric object. The links between these different aspects of body representation, however, remain poorly understood. Perceiving the body's…

  3. Multidimensional digital image representations using generalized Kaiser-Bessel window functions.

    Science.gov (United States)

    Lewitt, R M

    1990-10-01

    Inverse problems that require the solution of integral equations are inherent in a number of indirect imaging applications, such as computerized tomography. Numerical solutions based on discretization of the mathematical model of the imaging process, or on discretization of analytic formulas for iterative inversion of the integral equations, require a discrete representation of an underlying continuous image. This paper describes discrete image representations, in n-dimensional space, that are constructed by the superposition of shifted copies of a rotationally symmetric basis function. The basis function is constructed using a generalization of the Kaiser-Bessel window function of digital signal processing. The generalization of the window function involves going from one dimension to a rotationally symmetric function in n dimensions and going from the zero-order modified Bessel function of the standard window to a function involving the modified Bessel function of order m. Three methods are given for the construction, in n-dimensional space, of basis functions having a specified (finite) number of continuous derivatives, and formulas are derived for the Fourier transform, the x-ray transform, the gradient, and the Laplacian of these basis functions. Properties of the new image representations using these basis functions are discussed, primarily in the context of two-dimensional and three-dimensional image reconstruction from line-integral data by iterative inversion of the x-ray transform. Potential applications to three-dimensional image display are also mentioned.

  4. The universe as a topological defect in a higher-dimensional Einstein-Yang-Mills theory

    International Nuclear Information System (INIS)

    Nakamura, A.; Shiraishi, K.

    1989-04-01

    An interpretation is suggested that a spontaneous compactification of space-time can be regarded as a topological defect in a higher-dimensional Einstein-Yang-Mills (EYM) theory. We start with D-dimensional EYM theory in our present analysis. A compactification leads to a D-2 dimensional effective action of Abelian gauge-Higgs theory. We find a 'vortex' solution in the effective theory. Our universe appears to be confined in a center of a 'vortex', which has D-4 large dimensions. In this paper we show an example with SU (2) symmetry in the original EYM theory, and the resulting solution is found to be equivalent to the 'instanton-induced compactification'. The cosmological implication is also mentioned. (author)

  5. Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.

    Science.gov (United States)

    Qu, Kaiyang; Han, Ke; Wu, Song; Wang, Guohua; Wei, Leyi

    2017-09-22

    DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF), is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.

  6. Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods

    Directory of Open Access Journals (Sweden)

    Kaiyang Qu

    2017-09-01

    Full Text Available DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF, is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.

  7. Representation theory of 2-groups on finite dimensional 2-vector spaces

    OpenAIRE

    Elgueta, Josep

    2004-01-01

    In this paper, the 2-category $\\mathfrak{Rep}_{{\\bf 2Mat}_{\\mathbb{C}}}(\\mathbb{G})$ of (weak) representations of an arbitrary (weak) 2-group $\\mathbb{G}$ on (some version of) Kapranov and Voevodsky's 2-category of (complex) 2-vector spaces is studied. In particular, the set of equivalence classes of representations is computed in terms of the invariants $\\pi_0(\\mathbb{G})$, $\\pi_1(\\mathbb{G})$ and $[\\alpha]\\in H^3(\\pi_0(\\mathbb{G}),\\pi_1(\\mathbb{G}))$ classifying $\\mathbb{G}$. Also the categ...

  8. Continuous Dimensionality Characterization of Image Structures

    DEFF Research Database (Denmark)

    Felsberg, Michael; Kalkan, Sinan; Krüger, Norbert

    2009-01-01

    gradient field. By making use of a cone structure and barycentric co-ordinates, we can associate three confidences to the three different ideal cases of intrinsic dimensions corresponding to homogeneous image patches, edge-like structures and junctions. The main novelty of our approach......Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its...... is the representation of confidences as prior probabilities which can be used within a probabilistic framework. To show the potential of our continuous representation, we highlight applications in various contexts such as image structure classification, feature detection and localisation, visual scene statistics...

  9. Poincaré Embeddings for Learning Hierarchical Representations

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Abstracts: Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically do not account for this property. In this talk, I will discuss a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincaré ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincaré embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.      &...

  10. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA

    Directory of Open Access Journals (Sweden)

    Shunfang Wang

    2015-12-01

    Full Text Available An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC, pseudo-amino acid composition (PseAAC and position specific scoring matrix (PSSM, are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.

  11. Off-diagonal coefficients of the DeWitt-Schwinger and Hadamard representations of the Feynman propagator

    International Nuclear Information System (INIS)

    Decanini, Yves; Folacci, Antoine

    2006-01-01

    Having in mind applications to gravitational wave theory (in connection with the radiation reaction problem), stochastic semiclassical gravity (in connection with the regularization of the noise kernel) and quantum field theory in higher-dimensional curved spacetime (in connection with the Hadamard regularization of the stress-energy tensor), we improve the DeWitt-Schwinger and Hadamard representations of the Feynman propagator of a massive scalar field theory defined on an arbitrary gravitational background by deriving higher-order terms for the covariant Taylor series expansions of the geometrical coefficients--i.e., the DeWitt and Hadamard coefficients--that define them

  12. An introduction to quiver representations

    CERN Document Server

    Derksen, Harm

    2017-01-01

    This book is an introduction to the representation theory of quivers and finite dimensional algebras. It gives a thorough and modern treatment of the algebraic approach based on Auslander-Reiten theory as well as the approach based on geometric invariant theory. The material in the opening chapters is developed starting slowly with topics such as homological algebra, Morita equivalence, and Gabriel's theorem. Next, the book presents Auslander-Reiten theory, including almost split sequences and the Auslander-Reiten transform, and gives a proof of Kac's generalization of Gabriel's theorem. Once this basic material is established, the book goes on with developing the geometric invariant theory of quiver representations. The book features the exposition of the saturation theorem for semi-invariants of quiver representations and its application to Littlewood-Richardson coefficients. In the final chapters, the book exposes tilting modules, exceptional sequences and a connection to cluster categories. The book is su...

  13. A new class of infinite-dimensional Lie algebras: an analytical continuation of the arbitrary finite-dimensional semisimple Lie algebra

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Linetsky, V.Ya.

    1990-06-01

    With any semisimple Lie algebra g we associate an infinite-dimensional Lie algebra AC(g) which is an analytic continuation of g from its root system to its root lattice. The manifest expressions for the structure constants of analytic continuations of the symplectic Lie algebras sp2 n are obtained by Poisson-bracket realizations method and AC(g) for g=sl n and so n are discussed. The representations, central extension, supersymmetric and higher spin generalizations are considered. The Virasoro theory is a particular case when g=sp 2 . (author). 9 refs

  14. A covariant representation of the Ball–Chiu vertex

    International Nuclear Information System (INIS)

    Ahmadiniaz, Naser; Schubert, Christian

    2013-01-01

    In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry

  15. A covariant representation of the Ball–Chiu vertex

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadiniaz, Naser, E-mail: naser@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán (Mexico); Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Schubert, Christian, E-mail: schubert@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán (Mexico); Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Mühlenberg 1, D-14476 Potsdam (Germany)

    2013-04-21

    In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry.

  16. Women and political representation.

    Science.gov (United States)

    Rathod, P B

    1999-01-01

    A remarkable progress in women's participation in politics throughout the world was witnessed in the final decade of the 20th century. According to the Inter-Parliamentary Union report, there were only eight countries with no women in their legislatures in 1998. The number of women ministers at the cabinet level worldwide doubled in a decade, and the number of countries without any women ministers dropped from 93 to 48 during 1987-96. However, this progress is far from satisfactory. Political representation of women, minorities, and other social groups is still inadequate. This may be due to a complex combination of socioeconomic, cultural, and institutional factors. The view that women's political participation increases with social and economic development is supported by data from the Nordic countries, where there are higher proportions of women legislators than in less developed countries. While better levels of socioeconomic development, having a women-friendly political culture, and higher literacy are considered favorable factors for women's increased political representation, adopting one of the proportional representation systems (such as a party-list system, a single transferable vote system, or a mixed proportional system with multi-member constituencies) is the single factor most responsible for the higher representation of women.

  17. The Phase Transition of Higher Dimensional Charged Black Holes

    International Nuclear Information System (INIS)

    Li, Huaifan; Zhao, Ren; Zhang, Lichun; Guo, Xiongying

    2016-01-01

    We have studied phase transitions of higher dimensional charge black hole with spherical symmetry. We calculated the local energy and local temperature and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters (Q,Φ) of black hole thermodynamic system, in accordance with considering the state parameters (P,V) of van der Waals system, respectively. We obtain the critical point of black hole thermodynamic system and find that the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime and is intrinsic property of black hole thermodynamic system.

  18. Two-dimensional beam profiles and one-dimensional projections

    Science.gov (United States)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  19. Global representations of the Heat and Schrodinger equation with singular potential

    Directory of Open Access Journals (Sweden)

    Jose A. Franco

    2013-07-01

    Full Text Available The n-dimensional Schrodinger equation with a singular potential $V_lambda(x=lambda |x|^{-2}$ is studied. Its solution space is studied as a global representation of $widetilde{SL(2,mathbb{R}}imes O(n$. A special subspace of solutions for which the action globalizes is constructed via nonstandard induction outside the semisimple category. The space of K-finite vectors is calculated, obtaining conditions for $lambda$ so that this space is non-empty. The direct sum of solution spaces over such admissible values of $lambda$ is studied as a representation of the (2n+1-dimensional Heisenberg group.

  20. Representations of Lie algebras and partial differential equations

    CERN Document Server

    Xu, Xiaoping

    2017-01-01

    This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

  1. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis

    Science.gov (United States)

    Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.

    2016-01-01

    Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; ptalent identification. PMID:27224653

  2. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.

    Science.gov (United States)

    Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B

    2016-01-01

    Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; ptalent identification.

  3. The Link between Higher Order Thinking Skills, Representation and Concepts in Enhancing TIMSS Tasks

    Directory of Open Access Journals (Sweden)

    Nor’ain Mohd. Tajudin

    2016-08-01

    Full Text Available Students’ performances in TIMSS have featured strongly in recent discussions and debates about the quality of mathematical learning outcomes both from teachers and policy makers. Findings of TIMSS trends showed that most high school students in Malaysia continue to perform at less than satisfactory levels, particularly, in tasks that are cognitively demanding. In this article, we present a critical analysis of selected TIMSS Tasks and demonstrate how to support students better in the use of Higher Order Thinking Skills (HOTS in making progress with such tasks. In so doing we present analyses of TIMSS tasks and a model of these tasks that relate HOTS, representation and concepts which can be utilised by teachers to understand the role of HOTS better in empowering students shift to higher levels of cognitive funtioning in the context of tackling TIMSS and similarly demanding tasks. Our analyses and model provide an important starting point for the design of future professional development programs for Malaysian mathematics teachers in reconceptualising HOTS and implementing them in regular classrooms.

  4. Lorentz covariant tempered distributions in two-dimensional space-time

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1989-01-01

    The problem of describing Lorentz covariant distributions without any spectral condition has hitherto remained unsolved even for two-dimensional space-time. Attempts to solve this problem have already been made. Zharinov obtained an integral representation for the Laplace transform of Lorentz invariant distributions with support in the product of two-dimensional future light cones. However, this integral representation does not make it possible to obtain a complete description of the corresponding Lorentz invariant distributions. In this paper the author gives a complete description of Lorentz covariant distributions for two-dimensional space-time. No spectral conditions is assumed

  5. Representation of Probability Density Functions from Orbit Determination using the Particle Filter

    Science.gov (United States)

    Mashiku, Alinda K.; Garrison, James; Carpenter, J. Russell

    2012-01-01

    Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty. In order to obtain an accurate representation of the probability density function (PDF) that incorporates higher order statistical information, we propose the use of nonlinear estimation methods such as the Particle Filter. The Particle Filter (PF) is capable of providing a PDF representation of the state estimates whose accuracy is dependent on the number of particles or samples used. For this method to be applicable to real case scenarios, we need a way of accurately representing the PDF in a compressed manner with little information loss. Hence we propose using the Independent Component Analysis (ICA) as a non-Gaussian dimensional reduction method that is capable of maintaining higher order statistical information obtained using the PF. Methods such as the Principal Component Analysis (PCA) are based on utilizing up to second order statistics, hence will not suffice in maintaining maximum information content. Both the PCA and the ICA are applied to two scenarios that involve a highly eccentric orbit with a lower apriori uncertainty covariance and a less eccentric orbit with a higher a priori uncertainty covariance, to illustrate the capability of the ICA in relation to the PCA.

  6. Affine Kac-Moody algebras and their representations

    International Nuclear Information System (INIS)

    Slansky, R.

    1988-01-01

    Highest weight representation theory of finite dimensional and affine Kac-Moody algebras is summarized from a unified point of view. Lattices of discrete additive quantum numbers and the presentation of Lie algebras on Cartan matrices are the central points of departure for the analysis. (author)

  7. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  8. 3D representations of amino acids—applications to protein sequence comparison and classification

    Directory of Open Access Journals (Sweden)

    Jie Li

    2014-08-01

    Full Text Available The amino acid sequence of a protein is the key to understanding its structure and ultimately its function in the cell. This paper addresses the fundamental issue of encoding amino acids in ways that the representation of such a protein sequence facilitates the decoding of its information content. We show that a feature-based representation in a three-dimensional (3D space derived from amino acid substitution matrices provides an adequate representation that can be used for direct comparison of protein sequences based on geometry. We measure the performance of such a representation in the context of the protein structural fold prediction problem. We compare the results of classifying different sets of proteins belonging to distinct structural folds against classifications of the same proteins obtained from sequence alone or directly from structural information. We find that sequence alone performs poorly as a structure classifier. We show in contrast that the use of the three dimensional representation of the sequences significantly improves the classification accuracy. We conclude with a discussion of the current limitations of such a representation and with a description of potential improvements.

  9. Unsupervised learning of a steerable basis for invariant image representations

    Science.gov (United States)

    Bethge, Matthias; Gerwinn, Sebastian; Macke, Jakob H.

    2007-02-01

    There are two aspects to unsupervised learning of invariant representations of images: First, we can reduce the dimensionality of the representation by finding an optimal trade-off between temporal stability and informativeness. We show that the answer to this optimization problem is generally not unique so that there is still considerable freedom in choosing a suitable basis. Which of the many optimal representations should be selected? Here, we focus on this second aspect, and seek to find representations that are invariant under geometrical transformations occuring in sequences of natural images. We utilize ideas of 'steerability' and Lie groups, which have been developed in the context of filter design. In particular, we show how an anti-symmetric version of canonical correlation analysis can be used to learn a full-rank image basis which is steerable with respect to rotations. We provide a geometric interpretation of this algorithm by showing that it finds the two-dimensional eigensubspaces of the average bivector. For data which exhibits a variety of transformations, we develop a bivector clustering algorithm, which we use to learn a basis of generalized quadrature pairs (i.e. 'complex cells') from sequences of natural images.

  10. Approximate representations of propagators in an external field

    International Nuclear Information System (INIS)

    Fried, H.M.

    1979-01-01

    A method of forming approximate representations for propagators with external field dependence is suggested and discussed in the context of potential scattering. An integro-differential equation in D+1 variables, where D represents the dimensionality of Euclidian space-time, is replaced by a Volterra equation in one variable. Approximate solutions to the latter provide a generalization of the Bloch-Nordsieck representation, containing the effects of all powers of hard-potential interactions, each modified by a characteristic soft-potential dependence [fr

  11. The dynamical structure of higher dimensional Chern-Simons theory

    International Nuclear Information System (INIS)

    Banados, M.; Garay, L.J.; Henneaux, M.

    1996-01-01

    Higher dimensional Chern-Simons theories, even though constructed along the same topological pattern as in 2+1 dimensions, have been shown recently to have generically a non-vanishing number of degrees of freedom. In this paper, we carry out the complete Dirac Hamiltonian analysis (separation of first and second class constraints and calculation of the Dirac bracket) for a group G x U(1). We also study the algebra of surface charges that arise in the presence of boundaries and show that it is isomorphic to the WZW 4 discussed in the literature. Some applications are then considered. It is shown, in particular, that Chern-Simons gravity in dimensions greater than or equal to five has a propagating torsion. (orig.)

  12. Representation of pheromones, interspecific signals, and plant odors in higher olfactory centers; mapping physiologically identified antennal-lobe projection neurons in the male heliothine moth

    Directory of Open Access Journals (Sweden)

    Xin-Cheng eZhao

    2014-10-01

    Full Text Available In the primary olfactory centre of the moth brain, for example, a few enlarged glomeruli situated dorsally, at the entrance of the antennal nerve, are devoted to information about female-produced substances whereas a set of more numerous ordinary glomeruli receives input about general odorants. Heliothine moths are particularly suitable for studying central chemosensory mechanisms not only because of their anatomically separated systems for plant odours and pheromones but also due to their use of female-produced substances in communication across the species. Thus, the male-specific system of heliothine moths includes two sub arrangements, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecifics, and the other reproductive isolation via signal information emitted from heterospecifics. Based on previous tracing experiments, a general chemotopic organization of the male-specific glomeruli has been demonstrated in a number of heliothine species. As compared to the well explored organization of the moth antennal lobe, demonstrating a non-overlapping representation of the biologically relevant stimuli, less is known about the neural arrangement residing at the following synaptic level, i.e. the mushroom body calyces and the lateral horn. In the study presented here, we have labelled physiologically characterized antennal-lobe projection neurons in males of the two heliothine species, Heliothis virescens and Helicoverpa assulta, for the purpose of mapping their target regions in the protocerebrum. In order to compare the representation of plant odours, pheromones, and interspecific signals in the higher brain regions of each species, we have created standard brain atlases and registered three-dimensional models of distinct uniglomerular projection neuron types into the relevant atlas.

  13. Off-shell representations of maximally-extended supersymmetry

    International Nuclear Information System (INIS)

    Cox, P.H.

    1985-01-01

    A general theorem on the necessity of off-shell central charges in representations of maximally-extended supersymmetry (number of spinor charges - 4 x largest spin) is presented. A procedure for building larger and higher-N representations is also explored; a (noninteracting) N=8, maximum spin 2, off-shell representation is achieved. Difficulties in adding interactions for this representation are discussed

  14. Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. Pt. 2

    International Nuclear Information System (INIS)

    Babbitt, D.; Thomas, L.

    1977-01-01

    In its ground state representation, the infinite, spin 1/2 Heisenberg chain provides a model for spin wave scattering, which entails many features of the quantum mechanical N-body problem. Here, we give a complete eigenfunction expansion for the Hamiltonian of the chain in this representation, for all numbers of spin waves. Our results resolve the questions of completeness and orthogonality of the eigenfunctions given by Bethe for finite chains, in the infinite volume limit. (orig.) [de

  15. Schroedinger representation in quantum field theory

    International Nuclear Information System (INIS)

    Luescher, M.

    1985-01-01

    Until recently, the Schroedinger representation in quantum field theory had not received much attention, even more so because there were reasons to believe that in the presence of interactions it did not exist in a mathematically well-defined sense. When Symanzik set out to solve this problem, he was motivated by a special 2-dimensional case, the relativistic string model, in which the Schroedinger wave functionals are the primary objects of physical interest. Also, he knew that if it were possible to demonstrate the existence of the Schroedinger representation, the (then unproven) ultraviolet finiteness of the Casimir force in renormalizable quantum field theories would probably follow. (orig./HSI)

  16. Hawking Radiation Spectra for Scalar Fields by a Higher-Dimensional Schwarzschild-de-Sitter Black Hole

    OpenAIRE

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-01-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de-Sitter black hole as well as on the projected-on-the-brane 4-dimensional background. The scalar fields have also a non-minimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then pro...

  17. The mental representation of social connections: generalizability extended to Beijing adults.

    Directory of Open Access Journals (Sweden)

    Louise C Hawkley

    Full Text Available Social connections are essential for the survival of a social species like humans. People differ in the degree to which they are sensitive to perceived deficits in their social connections, but evidence suggests that they nevertheless construe the nature of their social connections similarly. This construal can be thought of as a mental representation of a multi-faceted social experience. A three-dimensional mental representation has been identified with the UCLA Loneliness Scale and consists of Intimate, Relational, and Collective Connectedness reflecting beliefs about one's individual, dyadic, and collective (group social value, respectively. Moreover, this mental representation has been replicated with other scales and validated across age, gender, and racial/ethnic lines in U.S. samples. The purpose of this study is to evaluate the extent to which this three-dimensional representation applies to people whose social lives are experienced in a collectivistic rather than individualistic culture. To that end, we used confirmatory factor analyses to assess the fit of the three-dimensional mental structure to data collected from Chinese people living in China. Two hundred sixty-seven young adults (16-25 yrs and 250 older adults (50-65 yrs in Beijing completed the revised UCLA Loneliness Scale and demographic and social activity questionnaires. Results revealed adequate fit of the structure to data from young and older Chinese adults. Moreover, the structure exhibited equivalent fit in young and older Chinese adults despite changes in the Chinese culture that exposed these two generations to different cultural experiences. Social activity variables that discriminated among the three dimensions in the Chinese samples corresponded well with variables that discriminated among the three dimensions in the U.S.-based samples, indicating cultural commonalities in the factors predicting dimensions of people's representations of their social connections

  18. The mental representation of social connections: generalizability extended to Beijing adults.

    Science.gov (United States)

    Hawkley, Louise C; Gu, Yuanyuan; Luo, Yue-Jia; Cacioppo, John T

    2012-01-01

    Social connections are essential for the survival of a social species like humans. People differ in the degree to which they are sensitive to perceived deficits in their social connections, but evidence suggests that they nevertheless construe the nature of their social connections similarly. This construal can be thought of as a mental representation of a multi-faceted social experience. A three-dimensional mental representation has been identified with the UCLA Loneliness Scale and consists of Intimate, Relational, and Collective Connectedness reflecting beliefs about one's individual, dyadic, and collective (group) social value, respectively. Moreover, this mental representation has been replicated with other scales and validated across age, gender, and racial/ethnic lines in U.S. samples. The purpose of this study is to evaluate the extent to which this three-dimensional representation applies to people whose social lives are experienced in a collectivistic rather than individualistic culture. To that end, we used confirmatory factor analyses to assess the fit of the three-dimensional mental structure to data collected from Chinese people living in China. Two hundred sixty-seven young adults (16-25 yrs) and 250 older adults (50-65 yrs) in Beijing completed the revised UCLA Loneliness Scale and demographic and social activity questionnaires. Results revealed adequate fit of the structure to data from young and older Chinese adults. Moreover, the structure exhibited equivalent fit in young and older Chinese adults despite changes in the Chinese culture that exposed these two generations to different cultural experiences. Social activity variables that discriminated among the three dimensions in the Chinese samples corresponded well with variables that discriminated among the three dimensions in the U.S.-based samples, indicating cultural commonalities in the factors predicting dimensions of people's representations of their social connections. Equivalence of the

  19. Generalized zeta function representation of groups and 2-dimensional topological Yang-Mills theory: The example of GL(2, #Mathematical Double-Struck Capital F#{sub q}) and PGL(2, #Mathematical Double-Struck Capital F#{sub q})

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Ph., E-mail: philippe.roche@univ-montp2.fr [Université Montpellier 2, CNRS, L2C, IMAG, Montpellier (France)

    2016-03-15

    We recall the relation between zeta function representation of groups and two-dimensional topological Yang-Mills theory through Mednikh formula. We prove various generalisations of Mednikh formulas and define generalization of zeta function representations of groups. We compute some of these functions in the case of the finite group GL(2, #Mathematical Double-Struck Capital F#{sub q}) and PGL(2, #Mathematical Double-Struck Capital F#{sub q}). We recall the table characters of these groups for any q, compute the Frobenius-Schur indicator of their irreducible representations, and give the explicit structure of their fusion rings.

  20. Spinning higher dimensional Einstein-Yang-Mills black holes

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Papnoi, Uma

    2014-01-01

    We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)

  1. Spinning higher dimensional Einstein-Yang-Mills black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of Kwa-Zulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Papnoi, Uma [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India)

    2014-08-15

    We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)

  2. Euclidean D-branes and higher-dimensional gauge theory

    International Nuclear Information System (INIS)

    Acharya, B.S.; Figueroa-O'Farrill, J.M.; Spence, B.; O'Loughlin, M.

    1997-07-01

    We consider euclidean D-branes wrapping around manifolds of exceptional holonomy in dimensions seven and eight. The resulting theory on the D-brane-that is, the dimensional reduction of 10-dimensional supersymmetric Yang-Mills theory-is a cohomological field theory which describes the topology of the moduli space of instantons. The 7-dimensional theory is an N T =2 (or balanced) cohomological theory given by an action potential of Chern-Simons type. As a by-product of this method, we construct a related cohomological field theory which describes the monopole moduli space on a 7-manifold of G 2 holonomy. (author). 22 refs, 3 tabs

  3. Global Linear Representations of Nonlinear Systems and the Adjoint Map

    OpenAIRE

    Banks, S.P.

    1988-01-01

    In this paper we shall study the global linearization of nonlinear systems on a manifold by two methods. The first consists of an expansion of the vector field in the space of square integrable vector fields. In the second method we use the adjoint representation of the Lie algebra vector fields to obtain an infinite-dimensional matrix representation of the system. A connection between the two approaches will be developed.

  4. The construction of representations of Lie supergroups U(p,q) and C(m,n)

    International Nuclear Information System (INIS)

    Berezin, F.A.

    1977-01-01

    The construction of finite-dimensional representations of the Lie supergroups under some general assumptions is given. It is shown that U(p,q) and C(m,n) supergroups satisfy these assumptions. The detailed study of representations of U(p,q) supergroup is given

  5. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality......This paper discusses the present and future possibilities of representation models of architecture in new media such as virtual reality, seen in the broader context of tradition, perception, and neurology. Through comparative studies of real and virtual scenarios using eye tracking, the paper...... are less demanding on the brain’s working memory than 3D models seen on flat two-dimensional screens. This paper suggests that virtual reality representational architectural models can, if used correctly, significantly improve the imaginative role of architectural representation....

  6. Sparse representation of multi parametric DCE-MRI features using K-SVD for classifying gene expression based breast cancer recurrence risk

    Science.gov (United States)

    Mahrooghy, Majid; Ashraf, Ahmed B.; Daye, Dania; Mies, Carolyn; Rosen, Mark; Feldman, Michael; Kontos, Despina

    2014-03-01

    We evaluate the prognostic value of sparse representation-based features by applying the K-SVD algorithm on multiparametric kinetic, textural, and morphologic features in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). K-SVD is an iterative dimensionality reduction method that optimally reduces the initial feature space by updating the dictionary columns jointly with the sparse representation coefficients. Therefore, by using K-SVD, we not only provide sparse representation of the features and condense the information in a few coefficients but also we reduce the dimensionality. The extracted K-SVD features are evaluated by a machine learning algorithm including a logistic regression classifier for the task of classifying high versus low breast cancer recurrence risk as determined by a validated gene expression assay. The features are evaluated using ROC curve analysis and leave one-out cross validation for different sparse representation and dimensionality reduction numbers. Optimal sparse representation is obtained when the number of dictionary elements is 4 (K=4) and maximum non-zero coefficients is 2 (L=2). We compare K-SVD with ANOVA based feature selection for the same prognostic features. The ROC results show that the AUC of the K-SVD based (K=4, L=2), the ANOVA based, and the original features (i.e., no dimensionality reduction) are 0.78, 0.71. and 0.68, respectively. From the results, it can be inferred that by using sparse representation of the originally extracted multi-parametric, high-dimensional data, we can condense the information on a few coefficients with the highest predictive value. In addition, the dimensionality reduction introduced by K-SVD can prevent models from over-fitting.

  7. Visual representation of spatiotemporal structure

    Science.gov (United States)

    Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.

    1998-07-01

    The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.

  8. All unitary ray representations of the conformal group SU(2,2) with positive energy

    International Nuclear Information System (INIS)

    Mack, G.

    1975-12-01

    We find all those unitary irreducible representations of the infinitely - sheeted covering group G tilde of the conformal group SU(2,2)/Z 4 which have positive energy P 0 >= O. They are all finite component field representations and are labelled by dimension d and a finite dimensional irreducible representation (j 1 , j 2 ) of the Lorentz group SL(2C). They all decompose into a finite number of unitary irreducible representations of the Poincare subgroup with dilations. (orig.) [de

  9. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    International Nuclear Information System (INIS)

    Zou, De-Cheng; Yue, Ruihong; Zhang, Ming

    2017-01-01

    We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c_im"2 of massive potential satisfy some certain conditions. (orig.)

  10. Representations of Urbanik's classes and multiparameter Ornstein-Uhlenbeck processes

    DEFF Research Database (Denmark)

    Graversen, Svend-Erik; Pedersen, Jan

    2011-01-01

    A class of integrals with respect to homogeneous Lévy bases on Rk is considered. In the one-dimensional case k=1 this class corresponds to the selfdecomposable distributions. Necessary and sufficient conditions for existence as well as some representations of the integrals are given. Generalizing...... the one-dimensional case it is shown that the class of integrals corresponds to Urbanik's class Lk-1(R). Finally, multiparameter Ornstein-Uhlenbeck processes are defined and studied....

  11. Spacetime representation of topological phononics

    Science.gov (United States)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  12. New Traveling Wave Solutions of the Higher Dimensional Nonlinear Partial Differential Equation by the Exp-Function Method

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2012-01-01

    Full Text Available We construct new analytical solutions of the (3+1-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.

  13. Computer aided surface representation. Progress report, June 1, 1989--May 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a ``surface defined on a surface``. Sometimes properties of an already defined surface are desired, which is ``geometry processing``. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  14. Fock representation of the renormalized higher powers of White noise and the centreless Virasoro (or Witt)-Zamolodchikov-w∞*-Lie algebra

    International Nuclear Information System (INIS)

    Accardi, Luigi; Boukas, Andreas

    2008-01-01

    The identification of the *-Lie algebra of the renormalized higher powers of White noise (RHPWN) and the analytic continuation of the second quantized centreless Virasoro (or Witt)-Zamolodchikov-w ∞ *-Lie algebra of conformal field theory and high-energy physics, was recently established on results obtained. In the present paper, we show how the RHPWN Fock kernels must be truncated in order to be positive semi-definite and we obtain a Fock representation of the two algebras. We show that the truncated renormalized higher powers of White noise (TRHPWN) Fock spaces of order ≥2 host the continuous binomial and beta processes

  15. Quantum holonomy theory and Hilbert space representations

    Energy Technology Data Exchange (ETDEWEB)

    Aastrup, Johannes [Mathematisches Institut, Universitaet Hannover (Germany); Moeller Grimstrup, Jesper [QHT Gruppen, Copenhagen Area (Denmark)

    2016-11-15

    We present a new formulation of quantum holonomy theory, which is a candidate for a non-perturbative and background independent theory of quantum gravity coupled to matter and gauge degrees of freedom. The new formulation is based on a Hilbert space representation of the QHD(M) algebra, which is generated by holonomy-diffeomorphisms on a 3-dimensional manifold and by canonical translation operators on the underlying configuration space over which the holonomy-diffeomorphisms form a non-commutative C*-algebra. A proof that the state that generates the representation exist is left for later publications. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Chern--Simons theory in the Schroedinger representation

    International Nuclear Information System (INIS)

    Dunne, G.V.; Jackiw, R.; Trugenberger, C.A.

    1989-01-01

    We quantize the (2+1)-dimensional Chern--Simons theory in the functional Schroedinger representation. The realization of gauge transformations on states involves a 1-cocycle. We determine this cocycle; we show how solving the Gauss law constraint in the non-Abelian theory requires quantizing the parameter that normalizes the action; we trivialize the 1-cocycle with a spatially non-local cochain related to a 2-dimensional fermion determinant and we find the physical states that satisfy the Gauss law constraint. The quantum holonomy of physical states involves a contribution that is missed when the constraint is solved before quantization. We compute this quantity for the Abelian theory in Minkowski space, where it exhibits an interesting group theoretic structure. (In a note added in proof the corresponding non-Abelian computation is presented.) Also we consider coupling to external sources and offer yet another derivation of the anomalous statistics and spin of the charge and flux carrying particles---a calculation which is especially simple in the functional Schroedinger representation. copyright 1989 Academic Press, Inc

  17. Deep linear autoencoder and patch clustering-based unified one-dimensional coding of image and video

    Science.gov (United States)

    Li, Honggui

    2017-09-01

    This paper proposes a unified one-dimensional (1-D) coding framework of image and video, which depends on deep learning neural network and image patch clustering. First, an improved K-means clustering algorithm for image patches is employed to obtain the compact inputs of deep artificial neural network. Second, for the purpose of best reconstructing original image patches, deep linear autoencoder (DLA), a linear version of the classical deep nonlinear autoencoder, is introduced to achieve the 1-D representation of image blocks. Under the circumstances of 1-D representation, DLA is capable of attaining zero reconstruction error, which is impossible for the classical nonlinear dimensionality reduction methods. Third, a unified 1-D coding infrastructure for image, intraframe, interframe, multiview video, three-dimensional (3-D) video, and multiview 3-D video is built by incorporating different categories of videos into the inputs of patch clustering algorithm. Finally, it is shown in the results of simulation experiments that the proposed methods can simultaneously gain higher compression ratio and peak signal-to-noise ratio than those of the state-of-the-art methods in the situation of low bitrate transmission.

  18. Uncertainty quantification in transcranial magnetic stimulation via high-dimensional model representation.

    Science.gov (United States)

    Gomez, Luis J; Yücel, Abdulkadir C; Hernandez-Garcia, Luis; Taylor, Stephan F; Michielssen, Eric

    2015-01-01

    A computational framework for uncertainty quantification in transcranial magnetic stimulation (TMS) is presented. The framework leverages high-dimensional model representations (HDMRs), which approximate observables (i.e., quantities of interest such as electric (E) fields induced inside targeted cortical regions) via series of iteratively constructed component functions involving only the most significant random variables (i.e., parameters that characterize the uncertainty in a TMS setup such as the position and orientation of TMS coils, as well as the size, shape, and conductivity of the head tissue). The component functions of HDMR expansions are approximated via a multielement probabilistic collocation (ME-PC) method. While approximating each component function, a quasi-static finite-difference simulator is used to compute observables at integration/collocation points dictated by the ME-PC method. The proposed framework requires far fewer simulations than traditional Monte Carlo methods for providing highly accurate statistical information (e.g., the mean and standard deviation) about the observables. The efficiency and accuracy of the proposed framework are demonstrated via its application to the statistical characterization of E-fields generated by TMS inside cortical regions of an MRI-derived realistic head model. Numerical results show that while uncertainties in tissue conductivities have negligible effects on TMS operation, variations in coil position/orientation and brain size significantly affect the induced E-fields. Our numerical results have several implications for the use of TMS during depression therapy: 1) uncertainty in the coil position and orientation may reduce the response rates of patients; 2) practitioners should favor targets on the crest of a gyrus to obtain maximal stimulation; and 3) an increasing scalp-to-cortex distance reduces the magnitude of E-fields on the surface and inside the cortex.

  19. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, De-Cheng; Yue, Ruihong [Yangzhou University, College of Physical Science and Technology, Yangzhou (China); Zhang, Ming [Xi' an Aeronautical University, Faculty of Science, Xi' an (China)

    2017-04-15

    We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c{sub i}m{sup 2} of massive potential satisfy some certain conditions. (orig.)

  20. SUSY field theories in higher dimensions and integrable spin chains

    International Nuclear Information System (INIS)

    Gorsky, A.; Gukov, S.; Mironov, A.

    1998-01-01

    Five- and six-dimensional SUSY gauge theories, with one or two compactified directions, are discussed. The 5d theories with the matter hypermultiplets in the fundamental representation are associated with the twisted XXZ spin chain, while the group product case with bi-fundamental matter corresponds to the higher rank spin chains. The Riemann surfaces for 6d theories with fundamental matter and two compact directions are proposed to correspond to the XYZ spin chain based on the Sklyanin algebra. We also discuss the obtained results within the brane and geometrical engineering frameworks and explain the relation to the toric diagrams. (orig.)

  1. Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings

    Science.gov (United States)

    Olson, Erik D.

    2015-01-01

    Class-Shape Transformation (CST) is a popular method for creating analytical representations of the surface coordinates of various components of aerospace vehicles. A wide variety of two- and three-dimensional shapes can be represented analytically using only a modest number of parameters, and the surface representation is smooth and continuous to as fine a degree as desired. This paper expands upon the original two-dimensional representation of airfoils to develop a generalized three-dimensional CST parametrization scheme that is suitable for a wider range of aircraft wings than previous formulations, including wings with significant non-planar shapes such as blended winglets and box wings. The method uses individual functions for the spanwise variation of airfoil shape, chord, thickness, twist, and reference axis coordinates to build up the complete wing shape. An alternative formulation parameterizes the slopes of the reference axis coordinates in order to relate the spanwise variation to the tangents of the sweep and dihedral angles. Also discussed are methods for fitting existing wing surface coordinates, including the use of piecewise equations to handle discontinuities, and mathematical formulations of geometric continuity constraints. A subsonic transport wing model is used as an example problem to illustrate the application of the methodology and to quantify the effects of piecewise representation and curvature constraints.

  2. Existence of local degrees of freedom for higher dimensional pure Chern-Simons theories

    International Nuclear Information System (INIS)

    Banados, M.; Garay, L.J.; Henneaux, M.

    1996-01-01

    The canonical structure of higher dimensional pure Chern-Simons theories is analyzed. It is shown that these theories have generically a nonvanishing number of local degrees of freedom, even though they are obtained by means of a topological construction. This number of local degrees of freedom is computed as a function of the spacetime dimension and the dimension of the gauge group. copyright 1996 The American Physical Society

  3. Metric versus observable operator representation, higher spin models

    Science.gov (United States)

    Fring, Andreas; Frith, Thomas

    2018-02-01

    We elaborate further on the metric representation that is obtained by transferring the time-dependence from a Hermitian Hamiltonian to the metric operator in a related non-Hermitian system. We provide further insight into the procedure on how to employ the time-dependent Dyson relation and the quasi-Hermiticity relation to solve time-dependent Hermitian Hamiltonian systems. By solving both equations separately we argue here that it is in general easier to solve the former. We solve the mutually related time-dependent Schrödinger equation for a Hermitian and non-Hermitian spin 1/2, 1 and 3/2 model with time-independent and time-dependent metric, respectively. In all models the overdetermined coupled system of equations for the Dyson map can be decoupled algebraic manipulations and reduces to simple linear differential equations and an equation that can be converted into the non-linear Ermakov-Pinney equation.

  4. Parental representations and dimensions of personality: empirical relations and assessment implications.

    Science.gov (United States)

    Pincus, A L; Ruiz, M A

    1997-04-01

    Research on the relations between parental representations, personality traits, and psychopathology was discussed with reference to their integration for clinical personality assessment. Empirical results linking parental representations assessed by the Structural Analysis of Social Behavior and the Five-Factor Model of personality traits in a young adult population supported the position that parental representations significantly relate to adult personality. Individuals whose parental representations were generally affiliative described themselves as less prone to emotional distress (lower neuroticism); more interpersonally oriented and experiencing of positive emotions (higher extraversion); more peaceable and trustworthy (higher agreeableness); and more dutiful, resourceful, and dependable (higher conscientiousness). Parental representations colored by autonomy granting and autonomy taking were related to higher levels of openness to experience but lower levels of conscientiousness and extraversion in self-descriptions. Assessment implications and an integrative assessment strategy were presented along with a clinical case example.

  5. The Weyl approach to the representation theory of reflection equation algebra

    International Nuclear Information System (INIS)

    Saponov, P A

    2004-01-01

    The present paper deals with the representation theory of reflection equation algebra, connected to a Hecke type R-matrix. Up to some reasonable additional conditions, the R-matrix is arbitrary (not necessary originating from quantum groups). We suggest a universal method for constructing finite dimensional irreducible representations in the framework of the Weyl approach well known in the representation theory of classical Lie groups and algebras. With this method a series of irreducible modules is constructed. The modules are parametrized by Young diagrams. The spectrum of central elements s k Tr q L k is calculated in the single-row and single-column representations. A rule for the decomposition of the tensor product of modules into a direct sum of irreducible components is also suggested

  6. Method and system for manipulating a digital representation of a three-dimensional object

    DEFF Research Database (Denmark)

    2010-01-01

    A method of manipulating a three-dimensional virtual building block model by means of two-dimensional cursor movements, the virtual building block model including a plurality of virtual building blocks each including a number of connection elements for connecting the virtual building block...... with another virtual building block according to a set of connection rules, the method comprising positioning by means of cursor movements in a computer display area representing a two-dimensional projection of said model, a two-dimensional projection of a first virtual building block to be connected...... to the structure, resulting in a two-dimensional position; determining, from the two-dimensional position, a number of three-dimensional candidate positions of the first virtual building block in the three-dimensional coordinate system; selecting one of said candidate positions based on the connection rules...

  7. An algebraic approach towards the classification of 2 dimensional conformal field theories

    International Nuclear Information System (INIS)

    Bouwknegt, P.G.

    1988-01-01

    This thesis treats an algebraic method for the construction of 2-dimensional conformal field theories. The method consists of the study of the representation theory of the Virasoro algebra and suitable extensions of this. The classification of 2-dimensional conformal field theories is translated into the classification of combinations of representations which satisfy certain consistence conditions (unitarity and modular invariance). For a certain class of 2-dimensional field theories, namely the one with central charge c = 1 from the theory of Kac-Moody algebra's. there exist indications, but as yet mainly hope, that this construction will finally lead to a classification of 2-dimensional conformal field theories. 182 refs.; 2 figs.; 26 tabs

  8. Splines under tension for gridding three-dimensional data

    International Nuclear Information System (INIS)

    Brand, H.R.; Frazer, J.W.

    1982-01-01

    By use of the splines-under-tension concept, a simple algorithm has been developed for the three-dimensional representation of nonuniformly spaced data. The representations provide useful information to the experimentalist when he is attempting to understand the results obtained in a self-adaptive experiment. The shortcomings of the algorithm are discussed as well as the advantages

  9. Spinors and supersymmetry in four-dimensional Euclidean space

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Sherry, T.N.

    2001-01-01

    Spinors in four-dimensional Euclidean space are treated using the decomposition of the Euclidean space SO(4) symmetry group into SU(2)xSU(2). Both 2- and 4-spinor representations of this SO(4) symmetry group are shown to differ significantly from the corresponding spinor representations of the SO(3, 1) symmetry group in Minkowski space. The simplest self conjugate supersymmetry algebra allowed in four-dimensional Euclidean space is demonstrated to be an N=2 supersymmetry algebra which resembles the N=2 supersymmetry algebra in four-dimensional Minkowski space. The differences between the two supersymmetry algebras gives rise to different representations; in particular an analysis of the Clifford algebra structure shows that the momentum invariant is bounded above by the central charges in 4dE, while in 4dM the central charges bound the momentum invariant from below. Dimensional reduction of the N=1 SUSY algebra in six-dimensional Minkowski space (6dM) to 4dE reproduces our SUSY algebra in 4dE. This dimensional reduction can be used to introduce additional generators into the SUSY algebra in 4dE. Well known interpolating maps are used to relate the N=2 SUSY algebra in 4dE derived in this paper to the N=2 SUSY algebra in 4dM. The nature of the spinors in 4dE allows us to write an axially gauge invariant model which is shown to be both Hermitian and anomaly-free. No equivalent model exists in 4dM. Useful formulae in 4dE are collected together in two appendixes

  10. Higher-dimensional puncture initial data

    International Nuclear Information System (INIS)

    Zilhao, Miguel; Ansorg, Marcus; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich; Witek, Helvi

    2011-01-01

    We calculate puncture initial data, corresponding to single and binary black holes with linear momenta, which solve the constraint equations of D-dimensional vacuum gravity. The data are generated by a modification of the pseudospectral code presented in [M. Ansorg, B. Bruegmann, and W. Tichy, Phys. Rev. D 70, 064011 (2004).] and made available as the TwoPunctures thorn inside the Cactus computational toolkit. As examples, we exhibit convergence plots, the violation of the Hamiltonian constraint as well as the initial data for D=4,5,6,7. These initial data are the starting point to perform high-energy collisions of black holes in D dimensions.

  11. Singletons, higher spin massless states and the supermembrane

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Salam, A.; Sezgin, E.; Tanii, Yoshiaki.

    1988-01-01

    We analyse the spectrum of the eleven dimensional supermembrane quantized in AdS 4 xS 7 background. The classical membrane lives at the boundary of AdS 4 which is S 2 xS 1 , and has OSp(8,4) symmetry. We find that the spectrum contains, in addition to the N=8 supersymmetric (massive) singletons (which may possibly be the ultimate preons), also massless states of all higher integer and half-integer spin. These states fill the irreducible representations of OSp(8,4) with highest spin s max =2,4,6,... The s max =2 multiplet corresponds to the states of the de Wit-Nicolai's N=8 gauged supergravity in four dimensions. (author). 24 refs

  12. Tensor products of higher almost split sequences

    OpenAIRE

    Pasquali, Andrea

    2015-01-01

    We investigate how the higher almost split sequences over a tensor product of algebras are related to those over each factor. Herschend and Iyama gave a precise criterion for when the tensor product of an $n$-representation finite algebra and an $m$-representation finite algebra is $(n+m)$-representation finite. In this case we give a complete description of the higher almost split sequences over the tensor product by expressing every higher almost split sequence as the mapping cone of a suit...

  13. Qualitative aspects of representational competence among college chemistry students: Multiple representations and their role in the understanding of ideal gases

    Science.gov (United States)

    Madden, Sean Patrick

    This study examined the role of multiple representations of chemical phenomena, specifically, the temperature-pressure relationship of ideal gases, in the problem solving strategies of college chemistry students. Volunteers included students enrolled in a first semester general chemistry course at a western university. Two additional volunteers from the same university were asked to participate and serve as models of greater sophistication. One was a senior chemistry major; another was a junior science writing major. Volunteers completed an initial screening task involving multiple representations of concentration and dilution concepts. Based on the results of this screening instrument a smaller set of subjects were asked to complete a think aloud session involving multiple representations of the temperature-pressure relationship. Data consisted of the written work of the volunteers and transcripts from videotaped think aloud sessions. The data were evaluated by the researcher and two other graduate students in chemical education using a coding scheme (Kozma, Schank, Coppola, Michalchik, and Allen. 2000). This coding scheme was designed to identify essential features of representational competence and differences in uses of multiple representations. The results indicate that students tend to have a strong preference for one type of representation. Students scoring low on representational competence, as measured by the rubric, ignored important features of some representations or acknowledged them only superficially. Students scoring higher on representational competence made meaningful connections among representations. The more advanced students, those who rated highly on representational competence, tended to use their preferred representation in a heuristic manner to establish meaning for other representations. The more advanced students also reflected upon the problem at greater length before beginning work. Molecular level sketches seemed to be the most

  14. On higher dimensional Einstein spacetimes with a non-degenerate double Weyl aligned null direction

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello; Pravda, Vojtěch; Pravdová, Alena

    Roč. 35, č. 7 ( 2018 ), č. článku 075004. ISSN 0264-9381 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * WANDs * Weyl tensor Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 3.119, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6382/aaae25

  15. Variational Homotopy Perturbation Method for Solving Higher Dimensional Initial Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Noor

    2008-01-01

    Full Text Available We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method (VHPM. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.

  16. Analysis of students’ spatial thinking in geometry: 3D object into 2D representation

    Science.gov (United States)

    Fiantika, F. R.; Maknun, C. L.; Budayasa, I. K.; Lukito, A.

    2018-05-01

    The aim of this study is to find out the spatial thinking process of students in transforming 3-dimensional (3D) object to 2-dimensional (2D) representation. Spatial thinking is helpful in using maps, planning routes, designing floor plans, and creating art. The student can engage geometric ideas by using concrete models and drawing. Spatial thinking in this study is identified through geometrical problems of transforming a 3-dimensional object into a 2-dimensional object image. The problem was resolved by the subject and analyzed by reference to predetermined spatial thinking indicators. Two representative subjects of elementary school were chosen based on mathematical ability and visual learning style. Explorative description through qualitative approach was used in this study. The result of this study are: 1) there are different representations of spatial thinking between a boy and a girl object, 2) the subjects has their own way to invent the fastest way to draw cube net.

  17. Mellin-Barnes meets Method of Brackets: a novel approach to Mellin-Barnes representations of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Prausa, Mario [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)

    2017-09-15

    In this paper, we present a new approach to the construction of Mellin-Barnes representations for Feynman integrals inspired by the Method of Brackets. The novel technique is helpful to lower the dimensionality of Mellin-Barnes representations in complicated cases, some examples are given. (orig.)

  18. Baikov-Lee representations of cut Feynman integrals

    International Nuclear Information System (INIS)

    Harley, Mark; Moriello, Francesco; Schabinger, Robert M.

    2017-01-01

    We develop a general framework for the evaluation of d-dimensional cut Feynman integrals based on the Baikov-Lee representation of purely-virtual Feynman integrals. We implement the generalized Cutkosky cutting rule using Cauchy’s residue theorem and identify a set of constraints which determine the integration domain. The method applies equally well to Feynman integrals with a unitarity cut in a single kinematic channel and to maximally-cut Feynman integrals. Our cut Baikov-Lee representation reproduces the expected relation between cuts and discontinuities in a given kinematic channel and furthermore makes the dependence on the kinematic variables manifest from the beginning. By combining the Baikov-Lee representation of maximally-cut Feynman integrals and the properties of periods of algebraic curves, we are able to obtain complete solution sets for the homogeneous differential equations satisfied by Feynman integrals which go beyond multiple polylogarithms. We apply our formalism to the direct evaluation of a number of interesting cut Feynman integrals.

  19. Mental Models of Proteins and Amino Acids Observed in Students in Higher Education

    Directory of Open Access Journals (Sweden)

    M. F Silva

    2012-05-01

    Full Text Available Molecular Biology and Biotechnology are part of the curriculum of basic education and are present in everyday life of students in situations that involve their thinking and  decision  making.  The  explanations  of  some  phenomena  and  processes related  to  these  themes  are  almost  always  in  atomic  and  molecular  level, described and explained with scientific models or through representations. In light of  the  Theory  of  Mental  Models  of  Johnson-Laird  some  people  reason  with images,  using  them  in  their  models,  while  others  find  it  difficult  to  infer  the  three dimensional  structure  from  two-dimensional  figures,  such  as  those  used  in textbooks or projected on screens. In this context it is proposed to raise the mental models and/or representations that students in higher education have on proteins and amino acids. For this purpose, we interviewed thirteen students, four from the course  of  Licenciatura  em  Ciências  Exatas  and  nine  from  Bacharelado  em Ciências Físicas e Biomoleculares (USP. Three basic types of mental models of proteins  have  been  detected:  the  two-dimensional  (15%,  the  three-dimensional (38.5% and a transition between these two types (38.5%. With respect to amino acids, the following types of models were identified: the two-dimensional (38.5%, the three-dimensional (8% and the atomic (23%. These data show the restricted way that situations of teaching and learning on this topic have been conducted in higher  education  and  point  to  the  use  of  teaching  methods  and  educational resources  that  allow  three-dimensional  visualization  of  these  organic  molecules, such as the use of tactile models, for understanding of these concepts.

  20. Features of common representations of suiciders in young people

    Directory of Open Access Journals (Sweden)

    I. B. Bovina

    2013-04-01

    Full Text Available We discuss the first phase results of a research project dedicated to study of suicide representations in youth. In the framework of structural approach to social representations, we study features of structure and content of social representations of suiciders in two groups of young people (the criterion for group allocation was their acquaintance with people who has suicide attempts. Our sample (N = 106 consisted of representatives of several youth groups (students and working youths with specialized secondary, higher or incomplete higher education, aged 18 to 35 years (M = 23,48 years, SD = 4,36 years: 67 women and 39 men. The 1st group includes respondents personally acquainted with suicide attempters (44 respondents, the 2nd group – respondents without such experience. The subject of research were common representations of suiciders. We tested assumptions about the specificity of protective functions of social representations, as well as consistency of representations in the two groups of respondents.

  1. Dimensional degression in AdSd

    International Nuclear Information System (INIS)

    Artsukevich, A. Yu.; Vasiliev, M. A.

    2009-01-01

    We analyze the pattern of fields in (d+1)-dimensional anti-de Sitter space in terms of those in d-dimensional anti-de Sitter space. The procedure, which is neither dimensional reduction nor dimensional compactification, is called dimensional degression. The analysis is performed group theoretically for all totally symmetric bosonic and fermionic representations of the anti-de Sitter algebra. The field-theoretical analysis is done for a massive scalar field in AdS d+d ' and massless spin-one-half, spin-one, and spin-two fields in AdS d+1 . The mass spectra of the resulting towers of fields in AdS d are found. For the scalar field case, the obtained results extend to the shadow sector those obtained by Metsaev [Nucl. Phys. B, Proc. Suppl. 102, 100 (2001)] by a different method.

  2. Dimensional Representation and Gradient Boosting for Seismic Event Classification

    Science.gov (United States)

    Semmelmayer, F. C.; Kappedal, R. D.; Magana-Zook, S. A.

    2017-12-01

    In this research, we conducted experiments of representational structures on 5009 seismic signals with the intent of finding a method to classify signals as either an explosion or an earthquake in an automated fashion. We also applied a gradient boosted classifier. While perfect classification was not attained (approximately 88% was our best model), some cases demonstrate that many events can be filtered out as very high probability being explosions or earthquakes, diminishing subject-matter experts'(SME) workload for first stage analysis. It is our hope that these methods can be refined, further increasing the classification probability.

  3. Eigenfunctions of quadratic hamiltonians in Wigner representation

    International Nuclear Information System (INIS)

    Akhundova, Eh.A.; Dodonov, V.V.; Man'ko, V.I.

    1984-01-01

    Exact solutions of the Schroedinger equation in Wigner representation are obtained for an arbitrary non-stationary N-dimensional quadratic Hamiltonian. It is shown that the complete system of the solutions can always be chosen in the form of the products of Laguerre polynomials, the arguments of which are the quadratic integrals of motion of the corresponding classical problem. The generating function is found for the transition probabilities between Fock states which represent a many-dimensional generatization of a well-known Husimi formula for the oscillator of variable frequency. As an example, the motion of a charged particle in an uniform alternate electromagnetic field is considered in detail

  4. Using Harry Potter to Bridge Higher Dimensionality in Mathematics and High-interest Literature

    Science.gov (United States)

    Boerman-Cornell, William; Klanderman, David; Schut, Alexa

    2017-01-01

    The Harry Potter series is a favorite for out-of-school reading and has been used in school, largely as an object of study in language arts. Using a content analysis to highlight the ways in which J.K. Rowling's work could be used to teach higher dimensionality in math, the authors argues that the content is sufficient in such books to engage the…

  5. Representation theory of finite monoids

    CERN Document Server

    Steinberg, Benjamin

    2016-01-01

    This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional ...

  6. Dimensionality Reduction and Information-Theoretic Divergence Between Sets of Ladar Images

    National Research Council Canada - National Science Library

    Gray, David M; Principe, Jose C

    2008-01-01

    ... can be exploited while circumventing many of the problems associated with the so-called "curse of dimensionality." In this study, PCA techniques are used to find a low-dimensional sub-space representation of LADAR image sets...

  7. The Higgs particle and higher-dimensional theories

    International Nuclear Information System (INIS)

    Lim, C. S.

    2014-01-01

    In spite of the great success of LHC experiments, we do not know whether the discovered “standard model-like” Higgs particle is really what the standard model predicts, or a particle that some new physics has in its low-energy effective theory. Also, the long-standing problems concerning the property of the Higgs and its interactions are still there, and we still do not have any conclusive argument on the origin of the Higgs itself. In this article we focus on higher-dimensional theories as new physics. First we give a brief review of their representative scenarios and closely related 4D scenarios. Among them, we mainly discuss two interesting possibilities of the origin of the Higgs: the Higgs as a gauge boson and the Higgs as a (pseudo) Nambu–Goldstone boson. Next, we argue that theories of new physics are divided into two categories, i.e., theories with normal Higgs interactions and those with anomalous Higgs interactions. Interestingly, both the candidates for the origin of the Higgs mentioned above predict characteristic “anomalous” Higgs interactions, such as the deviation of the Yukawa couplings from the standard model predictions. Such deviations can hopefully be investigated by precision tests of Higgs interactions at the planned ILC experiment. Also discussed is the main decay mode of the Higgs, H→γγ. Again, theories belonging to different categories are known to predict remarkably different new physics contributions to this important process

  8. Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime

    International Nuclear Information System (INIS)

    Zhao Haixia; Hu Shuangqi; Zhao Ren; Li Huaifan

    2007-01-01

    Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.

  9. The Polyakov loop and its correlators in higher representations of SU(3) at finite temperature

    International Nuclear Information System (INIS)

    Huebner, K.A.

    2006-09-01

    We have calculated the Polyakov loop in representations D=3,6,8,10,15,15',24,27 and diquark and baryonic Polyakov loop correlation functions with fundamental sources in SU(3) pure gauge theory and 2-flavour QCD with staggered quarks and Q anti Q-singlet correlation functions with sources in the fundamental and adjoint representation in SU(3) pure gauge theory. We have tested a new renormalisation procedure for the Polyakov loop and extracted the adjoint Polyakov loop below T c , binding energy of the gluelump and string breaking distances. Moreover, we could show Casimir scaling for the Polyakov loop in different representations in SU(3) pure gauge theory above T c . Diquark antitriplet and baryonic singlet free energies are related to the Q anti Q-singlet free energies by the Casimir as well. (orig.)

  10. The Polyakov loop and its correlators in higher representations of SU(3) at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, K.A.

    2006-09-15

    We have calculated the Polyakov loop in representations D=3,6,8,10,15,15',24,27 and diquark and baryonic Polyakov loop correlation functions with fundamental sources in SU(3) pure gauge theory and 2-flavour QCD with staggered quarks and Q anti Q-singlet correlation functions with sources in the fundamental and adjoint representation in SU(3) pure gauge theory. We have tested a new renormalisation procedure for the Polyakov loop and extracted the adjoint Polyakov loop below T{sub c}, binding energy of the gluelump and string breaking distances. Moreover, we could show Casimir scaling for the Polyakov loop in different representations in SU(3) pure gauge theory above T{sub c}. Diquark antitriplet and baryonic singlet free energies are related to the Q anti Q-singlet free energies by the Casimir as well. (orig.)

  11. QED representation for the net of causal loops

    Science.gov (United States)

    Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2015-06-01

    The present work tackles the existence of local gauge symmetries in the setting of Algebraic Quantum Field Theory (AQFT). The net of causal loops, previously introduced by the authors, is a model independent construction of a covariant net of local C*-algebras on any 4-dimensional globally hyperbolic space-time, aimed to capture structural properties of any reasonable quantum gauge theory. Representations of this net can be described by causal and covariant connection systems, and local gauge transformations arise as maps between equivalent connection systems. The present paper completes these abstract results, realizing QED as a representation of the net of causal loops in Minkowski space-time. More precisely, we map the quantum electromagnetic field Fμν, not free in general, into a representation of the net of causal loops and show that the corresponding connection system and the local gauge transformations find a counterpart in terms of Fμν.

  12. Minimal Representations and Reductive Dual Pairs in Conformal Field Theory

    International Nuclear Information System (INIS)

    Todorov, Ivan

    2010-01-01

    A minimal representation of a simple non-compact Lie group is obtained by 'quantizing' the minimal nilpotent coadjoint orbit of its Lie algebra. It provides context for Roger Howe's notion of a reductive dual pair encountered recently in the description of global gauge symmetry of a (4-dimensional) conformal observable algebra. We give a pedagogical introduction to these notions and point out that physicists have been using both minimal representations and dual pairs without naming them and hence stand a chance to understand their theory and to profit from it.

  13. Compressive sensing for sparse time-frequency representation of nonstationary signals in the presence of impulsive noise

    Science.gov (United States)

    Orović, Irena; Stanković, Srdjan; Amin, Moeness

    2013-05-01

    A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The two-dimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in the ambiguity domain is heavily corrupted by an impulsive type of noise. Consequently, the problem of sparse TFR reconstruction cannot be tackled using standard compressive sensing optimization algorithms. We introduce a two-dimensional L-statistics based modification into the transform domain representation. It provides suitable initial conditions that will produce efficient convergence of the reconstruction algorithm. This approach applies sorting and weighting operations to discard an expected amount of samples corrupted by noise. The remaining samples serve as observations used in sparse reconstruction of the time-frequency signal representation. The efficiency of the proposed approach is demonstrated on numerical examples that comprise both cases of monocomponent and multicomponent signals.

  14. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion

    Directory of Open Access Journals (Sweden)

    Zhang Xinzheng

    2017-10-01

    Full Text Available In this paper, we present a Synthetic Aperture Radar (SAR image target recognition algorithm based on multi-feature multiple representation learning classifier fusion. First, it extracts three features from the SAR images, namely principal component analysis, wavelet transform, and Two-Dimensional Slice Zernike Moments (2DSZM features. Second, we harness the sparse representation classifier and the cooperative representation classifier with the above-mentioned features to get six predictive labels. Finally, we adopt classifier fusion to obtain the final recognition decision. We researched three different classifier fusion algorithms in our experiments, and the results demonstrate thatusing Bayesian decision fusion gives thebest recognition performance. The method based on multi-feature multiple representation learning classifier fusion integrates the discrimination of multi-features and combines the sparse and cooperative representation classification performance to gain complementary advantages and to improve recognition accuracy. The experiments are based on the Moving and Stationary Target Acquisition and Recognition (MSTAR database,and they demonstrate the effectiveness of the proposed approach.

  15. Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory

    Science.gov (United States)

    Wang, Juven C.; Wen, Xiao-Gang

    2015-01-01

    String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.

  16. Specialized mechanisms for theory of mind: are mental representations special because they are mental or because they are representations?

    Science.gov (United States)

    Cohen, Adam S; Sasaki, Joni Y; German, Tamsin C

    2015-03-01

    Does theory of mind depend on a capacity to reason about representations generally or on mechanisms selective for the processing of mental state representations? In four experiments, participants reasoned about beliefs (mental representations) and notes (non-mental, linguistic representations), which according to two prominent theories are closely matched representations because both are represented propositionally. Reaction times were faster and accuracies higher when participants endorsed or rejected statements about false beliefs than about false notes (Experiment 1), even when statements emphasized representational format (Experiment 2), which should have favored the activation of representation concepts. Experiments 3 and 4 ruled out a counterhypothesis that differences in task demands were responsible for the advantage in belief processing. These results demonstrate for the first time that understanding of mental and linguistic representations can be dissociated even though both may carry propositional content, supporting the theory that mechanisms governing theory of mind reasoning are narrowly specialized to process mental states, not representations more broadly. Extending this theory, we discuss whether less efficient processing of non-mental representations may be a by-product of mechanisms specialized for processing mental states. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  17. Higher dimensional supersymmetric quantum mechanics and Dirac ...

    Indian Academy of Sciences (India)

    We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with specific examples. We also discuss the `physical' significance of the supersymmetric states in this formalism.

  18. Higher-dimensional cosmological model with variable gravitational ...

    Indian Academy of Sciences (India)

    We have studied five-dimensional homogeneous cosmological models with variable and bulk viscosity in Lyra geometry. Exact solutions for the field equations have been obtained and physical properties of the models are discussed. It has been observed that the results of new models are well within the observational ...

  19. Sufficient condition for existence of solutions for higher-order resonance boundary value problem with one-dimensional p-Laplacian

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2007-10-01

    Full Text Available By using coincidence degree theory of Mawhin, existence results for some higher order resonance multipoint boundary value problems with one dimensional p-Laplacian operator are obtained.

  20. The role of national identity representation in the relation between in-group identification and out-group derogation: Ethnic versus civic representation

    OpenAIRE

    Meeus, Joke; Duriez, Bart; Vanbeselaere, Norbert; Boen, Filip

    2010-01-01

    Two studies investigated whether the content of in-group identity affects the relation between in-group identification and ethnic prejudice. The first study among university students, tested whether national identity representations (i.e. ethnic vs. civic) moderate or mediate the relation between Flemish in-group identification and ethnic prejudice. A moderation hypothesis is supported when those higher in identification who subscribe to a more ethnic representation display higher ethnic prej...

  1. Fractional supersymmetry and infinite dimensional lie algebras

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    2001-01-01

    In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed

  2. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)

    2017-01-11

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  3. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty

    Science.gov (United States)

    Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.

    2015-04-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.

  4. Mental representation and mental practice: experimental investigation on the functional links between motor memory and motor imagery.

    Directory of Open Access Journals (Sweden)

    Cornelia Frank

    Full Text Available Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal on both putting performance and the development of one's representation of the golf putt during early skill acquisition. Novice golfers (N = 52 practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only.

  5. Higher-dimensional black holes: hidden symmetries and separation of variables

    International Nuclear Information System (INIS)

    Frolov, Valeri P; Kubiznak, David

    2008-01-01

    In this paper, we discuss hidden symmetries in rotating black hole spacetimes. We start with an extended introduction which mainly summarizes results on hidden symmetries in four dimensions and introduces Killing and Killing-Yano tensors, objects responsible for hidden symmetries. We also demonstrate how starting with a principal CKY tensor (that is a closed non-degenerate conformal Killing-Yano 2-form) in 4D flat spacetime one can 'generate' the 4D Kerr-NUT-(A)dS solution and its hidden symmetries. After this we consider higher-dimensional Kerr-NUT-(A)dS metrics and demonstrate that they possess a principal CKY tensor which allows one to generate the whole tower of Killing-Yano and Killing tensors. These symmetries imply complete integrability of geodesic equations and complete separation of variables for the Hamilton-Jacobi, Klein-Gordon and Dirac equations in the general Kerr-NUT-(A)dS metrics

  6. Extraction Analysis and Creation of Three-Dimensional Road Profiles Using Matlab OpenCRG Tool

    Directory of Open Access Journals (Sweden)

    Rakesh Hari Borse

    2015-08-01

    Full Text Available In vehicle systems dynamics there are wide applications of simulation of vehicles on road surfaces. These simulation applications are related to vehicle handling ride comfort and durability. For accurate prediction of results there is a need for a reliable and efficient road representations. The efficient representation of road surface profiles is to represent them in three-dimensional space. This is made possible by the CRG Curved Regular Grid approach. OpenCRG is a completely open source project including a tool suite for the creation modification and evaluation of road surfaces. Its objective is to standardized detailed road surface description and it may be used for applications like tire models vibrations or driving simulation. The Matlab tool suite of OpenCRG provides powerful modification or creation tools and allows to visualize the 3D road data representation. The current research focuses on basic concepts of OpenCRG and its Matlab environment. The extraction of longitudinal two-dimensional road profiles from three-dimensional CRG format is researched. The creation of simple virtual three-dimensional roads has been programmed. A Matlab software tool to extract create and analyze the three-dimensional road profiles is to be developed.

  7. Three Dimensional Dirac Semimetals

    Science.gov (United States)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  8. Oscillator representations for self-adjoint Calogero Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V; Voronov, B L, E-mail: gitman@dfn.if.usp.br, E-mail: tyutin@lpi.ru, E-mail: voronov@lpi.ru [Lebedev Physical Institute, Moscow (Russian Federation)

    2011-10-21

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = {alpha}x{sup -2}. We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d{sub x}{sup 2}+{alpha}x{sup -2} for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat{sup +} a-hat and A-hat = a-hat a-hat{sup +} are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat{sup +}. An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  9. Oscillator representations for self-adjoint Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Gitman, D M; Tyutin, I V; Voronov, B L

    2011-01-01

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = αx -2 . We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d x 2 +αx -2 for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat + a-hat and A-hat = a-hat a-hat + are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat + . An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  10. Factorial structure of the German version of the dimensional assessment of personality pathology-basic questionnaire in clinical and nonclinical samples.

    Science.gov (United States)

    Pukrop, R; Gentil, I; Steinbring, I; Steinmeyer, E

    2001-10-01

    The Dimensional Assessment of Personality Pathology-Basic Questionnaire (DAPP-BQ) assesses 18 traits to provide a systematic representation of the overall domain of personality disorders. We tested the cross-cultural stability of the prediction that four higher-order factors (Emotional Dysregulation, Dissocial Behavior, Inhibitedness, and Compulsivity) underlie the 18 basic traits. A total of 81 patients who were primarily treated for an Axis II personality disorder and N = 166 healthy control patients completed the German version of the DAPP-BQ. Results clearly confirmed cross-cultural stability of the postulated four-factor structure in both samples, accounting for 74.7% (clinical sample), and 65.7% (nonclinical sample) of the total variance. All four higher-order factors showed specific correlational relationships with dimensional assessments of DSM-IV personality disorders.

  11. Implications of a decay law for the cosmological constant in higher dimensional cosmology and cosmological wormholes

    International Nuclear Information System (INIS)

    Rami, El-Nabulsi Ahmad

    2009-01-01

    Higher dimensional cosmological implications of a decay law for the cosmological constant term are analyzed. Three independent cosmological models are explored mainly: 1) In the first model, the effective cosmological constant was chosen to decay with times like Δ effective = Ca -2 + D(b/a I ) 2 where a I is an arbitrary scale factor characterizing the isotropic epoch which proceeds the graceful exit period. Further, the extra-dimensional scale factor decays classically like b(t) approx. a x (t), x is a real negative number. 2) In the second model, we adopt in addition to Δ effective = Ca -2 + D(b/a I ) 2 the phenomenological law b(t) = a(t)exp( -Qt) as we expect that at the origin of time, there is no distinction between the visible and extra dimensions; Q is a real number. 3) In the third model, we study a Δ - decaying extra-dimensional cosmology with a static traversable wormhole in which the four-dimensional Friedmann-Robertson-Walker spacetime is subject to the conventional perfect fluid while the extra-dimensional part is endowed by an exotic fluid violating strong energy condition and where the cosmological constant in (3+n+1) is assumed to decays like Δ(a) = 3Ca -2 . The three models are discussed and explored in some details where many interesting points are revealed. (author)

  12. RAMONA-3B/MINET composite representation of BWR thermal-hydraulic systems

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.; Cazzoli, E.G.; Nepsee, T.C.; Guppy, J.G.

    1985-01-01

    The modification and interfacing of two computer codes, RAMONA-3B and MINET, for the thermal hydraulic transient analysis of a Boiling Water Reactor nuclear steam supply system, is described. The RAMONA-3B code provides for multi-channel thermal hydraulics and three-dimensional (or one-dimensional) neutron kinetics analysis of a boiling water reactor core. The RAMONA-3B system representation terminates at the end of the steam line and at the junction of the feedwater line at the vessel inlet. By interfacing RAMONA-3B with MINET, a generic balance-of-plant systems analysis code, a complete BWR systems code with detailed core modeling was obtained. The result is a code of particular importance to the analysis of transients such as ATWS. A comparison between the 3-D and 1-D neutronics representation is provided, along with a test case utilizing the composite RAMONA-3B/MINET code

  13. Surface Casimir densities and induced cosmological constant in higher dimensional braneworlds

    International Nuclear Information System (INIS)

    Saharian, Aram A.

    2006-01-01

    We investigate the vacuum expectation value of the surface energy-momentum tensor for a massive scalar field with general curvature coupling parameter obeying the Robin boundary conditions on two codimension one parallel branes in a (D+1)-dimensional background spacetime AdS D 1 +1 xΣ with a warped internal space Σ. These vacuum densities correspond to a gravitational source of the cosmological constant type for both subspaces of the branes. Using the generalized zeta function technique in combination with contour integral representations, the surface energies on the branes are presented in the form of the sum of single-brane and second-brane-induced parts. For the geometry of a single brane both regions, on the left and on the right of the brane, are considered. At the physical point the corresponding zeta functions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total zeta function is finite. The renormalization procedure for the surface energies and the structure of the corresponding counterterms are discussed. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation and are investigated in various asymptotic regions of the parameters. In particular, it is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. The total energy of the vacuum including the bulk and boundary contributions is evaluated by the zeta function technique and the energy balance between separate parts is discussed

  14. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. III. Representations and calculations.

    Science.gov (United States)

    Poirier, Bill; Salam, A

    2004-07-22

    In a previous paper [J. Theo. Comput. Chem. 2, 65 (2003)], one of the authors (B.P.) presented a method for solving the multidimensional Schrodinger equation, using modified Wilson-Daubechies wavelets, and a simple phase space truncation scheme. Unprecedented numerical efficiency was achieved, enabling a ten-dimensional calculation of nearly 600 eigenvalues to be performed using direct matrix diagonalization techniques. In a second paper [J. Chem. Phys. 121, 1690 (2004)], and in this paper, we extend and elaborate upon the previous work in several important ways. The second paper focuses on construction and optimization of the wavelength functions, from theoretical and numerical viewpoints, and also examines their localization. This paper deals with their use in representations and eigenproblem calculations, which are extended to 15-dimensional systems. Even higher dimensionalities are possible using more sophisticated linear algebra techniques. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved.

  15. Finite-dimensional calculus

    International Nuclear Information System (INIS)

    Feinsilver, Philip; Schott, Rene

    2009-01-01

    We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.

  16. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and its Application to Data Representation

    Directory of Open Access Journals (Sweden)

    Tomas eVeloz

    2015-11-01

    Full Text Available Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked.In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. %Moreover, we show that each representation is unique up to change of basis. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.

  17. Sampling-free Bayesian inversion with adaptive hierarchical tensor representations

    Science.gov (United States)

    Eigel, Martin; Marschall, Manuel; Schneider, Reinhold

    2018-03-01

    A sampling-free approach to Bayesian inversion with an explicit polynomial representation of the parameter densities is developed, based on an affine-parametric representation of a linear forward model. This becomes feasible due to the complete treatment in function spaces, which requires an efficient model reduction technique for numerical computations. The advocated perspective yields the crucial benefit that error bounds can be derived for all occuring approximations, leading to provable convergence subject to the discretization parameters. Moreover, it enables a fully adaptive a posteriori control with automatic problem-dependent adjustments of the employed discretizations. The method is discussed in the context of modern hierarchical tensor representations, which are used for the evaluation of a random PDE (the forward model) and the subsequent high-dimensional quadrature of the log-likelihood, alleviating the ‘curse of dimensionality’. Numerical experiments demonstrate the performance and confirm the theoretical results.

  18. Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry

    2007-01-01

    The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...

  19. An improved Lobatto discrete variable representation by a phase optimisation and variable mapping method

    International Nuclear Information System (INIS)

    Yu, Dequan; Cong, Shu-Lin; Sun, Zhigang

    2015-01-01

    Highlights: • An optimised finite element discrete variable representation method is proposed. • The method is tested by solving one and two dimensional Schrödinger equations. • The method is quite efficient in solving the molecular Schrödinger equation. • It is very easy to generalise the method to multidimensional problems. - Abstract: The Lobatto discrete variable representation (LDVR) proposed by Manoloupolos and Wyatt (1988) has unique features but has not been generally applied in the field of chemical dynamics. Instead, it has popular application in solving atomic physics problems, in combining with the finite element method (FE-DVR), due to its inherent abilities for treating the Coulomb singularity in spherical coordinates. In this work, an efficient phase optimisation and variable mapping procedure is proposed to improve the grid efficiency of the LDVR/FE-DVR method, which makes it not only be competing with the popular DVR methods, such as the Sinc-DVR, but also keep its advantages for treating with the Coulomb singularity. The method is illustrated by calculations for one-dimensional Coulomb potential, and the vibrational states of one-dimensional Morse potential, two-dimensional Morse potential and two-dimensional Henon–Heiles potential, which prove the efficiency of the proposed scheme and promise more general applications of the LDVR/FE-DVR method

  20. An improved Lobatto discrete variable representation by a phase optimisation and variable mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dequan [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China); Cong, Shu-Lin, E-mail: shlcong@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Sun, Zhigang, E-mail: zsun@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China); Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026 (China)

    2015-09-08

    Highlights: • An optimised finite element discrete variable representation method is proposed. • The method is tested by solving one and two dimensional Schrödinger equations. • The method is quite efficient in solving the molecular Schrödinger equation. • It is very easy to generalise the method to multidimensional problems. - Abstract: The Lobatto discrete variable representation (LDVR) proposed by Manoloupolos and Wyatt (1988) has unique features but has not been generally applied in the field of chemical dynamics. Instead, it has popular application in solving atomic physics problems, in combining with the finite element method (FE-DVR), due to its inherent abilities for treating the Coulomb singularity in spherical coordinates. In this work, an efficient phase optimisation and variable mapping procedure is proposed to improve the grid efficiency of the LDVR/FE-DVR method, which makes it not only be competing with the popular DVR methods, such as the Sinc-DVR, but also keep its advantages for treating with the Coulomb singularity. The method is illustrated by calculations for one-dimensional Coulomb potential, and the vibrational states of one-dimensional Morse potential, two-dimensional Morse potential and two-dimensional Henon–Heiles potential, which prove the efficiency of the proposed scheme and promise more general applications of the LDVR/FE-DVR method.

  1. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.

    Directory of Open Access Journals (Sweden)

    Kevin Till

    Full Text Available Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional. Players were blindly and randomly divided into an exploratory (n = 165 and validation dataset (n = 92. The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001, although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003. Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.

  2. The one-loop Green's functions of dimensionally reduced gauge theories

    International Nuclear Information System (INIS)

    Ketov, S.V.; Prager, Y.S.

    1988-01-01

    The dimensional regularization technique as well as that by dimensional reduction is applied to the calculation of the regularized one-loop Green's functions in dsub(o)-dimensional Yang-Mills theory with real massless scalars and spinors in arbitrary (real) representations of a gauge group G. As a particular example, the super-symmetrically regularized one-loop Green's functions of the N=4 supersymmetric Yang-Mills model are derived. (author). 17 refs

  3. On an analytical representation of the solution of the one-dimensional transport equation for a multi-group model in planar geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Julio C.L.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: julio.lombaldo@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada; Dulla, Sandra; Ravetto, Piero, E-mail: sandra.dulla@polito.it, E-mail: piero.ravetto@polito.it [Dipartimento di Energia, Politecnico di Torino, Piemonte (Italy)

    2015-07-01

    In this work we generalize the solution of the one-dimensional neutron transport equation to a multi- group approach in planar geometry. The basic idea of this work consists in consider the hierarchical construction of a solution for a generic number G of energy groups, starting from a mono-energetic solution. The hierarchical method follows the reasoning of the decomposition method. More specifically, the additional terms from adding energy groups is incorporated into the recursive scheme as source terms. This procedure leads to an analytical representation for the solution with G energy groups. The recursion depth is related to the accuracy of the solution, that may be evaluated after each recursion step. The authors present a heuristic analysis of stability for the results. Numerical simulations for a specific example with four energy groups and a localized pulsed source. (author)

  4. Black holes in higher dimensional gravity theory with corrections quadratic in curvature

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Shapiro, Ilya L.

    2009-01-01

    Static spherically symmetric black holes are discussed in the framework of higher dimensional gravity with quadratic in curvature terms. Such terms naturally arise as a result of quantum corrections induced by quantum fields propagating in the gravitational background. We focus our attention on the correction of the form C 2 =C αβγδ C αβγδ . The Gauss-Bonnet equation in four-dimensional spacetime enables one to reduce this term in the action to the terms quadratic in the Ricci tensor and scalar curvature. As a result the Schwarzschild solution which is Ricci flat will be also a solution of the theory with the Weyl scalar C 2 correction. An important new feature of the spaces with dimension D>4 is that in the presence of the Weyl curvature-squared term a necessary solution differs from the corresponding 'classical' vacuum Tangherlini metric. This difference is related to the presence of secondary or induced hair. We explore how the Tangherlini solution is modified by 'quantum corrections', assuming that the gravitational radius r 0 is much larger than the scale of the quantum corrections. We also demonstrated that finding a general solution beyond the perturbation method can be reduced to solving a single third order ordinary differential equation (master equation).

  5. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs

  6. Towards realistic models from Higher-Dimensional theories with Fuzzy extra dimensions

    CERN Document Server

    Gavriil, D.; Zoupanos, G.

    2014-01-01

    We briefly review the Coset Space Dimensional Reduction (CSDR) programme and the best model constructed so far and then we present some details of the corresponding programme in the case that the extra dimensions are considered to be fuzzy. In particular, we present a four-dimensional $\\mathcal{N} = 4$ Super Yang Mills Theory, orbifolded by $\\mathbb{Z}_3$, which mimics the behaviour of a dimensionally reduced $\\mathcal{N} = 1$, 10-dimensional gauge theory over a set of fuzzy spheres at intermediate high scales and leads to the trinification GUT $SU(3)^3$ at slightly lower, which in turn can be spontaneously broken to the MSSM in low scales.

  7. Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.

    2018-04-01

    We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.

  8. Higher-dimensional bosonization and its application to Fermi liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Hendrik

    2012-06-28

    The bosonization scheme presented in this thesis allows to map models of interacting fermions onto equivalent models describing collective bosonic excitations. For simple systems that do not require plenty computational power and optimized algorithms, the positivity of the weight function in the bosonic frame has been confirmed - in particular also for those configurations in which the fermionic representation shows the minus-sign problem. The numerical tests are absolutely elementary and based on the simplest possible regularization scheme. The second part of this thesis presented an analytical study about the non-analytic corrections to thermodynamic quantities in a two-dimensional Fermi liquid. The perturbation theory developed for the exact formulation is by no means more convenient than the well-established fermionic diagram technique. The effective low-energy theory for studying the anomalous contributions to the Fermi liquid was derived focussing on the relevant soft modes of the interaction only. The final effective model took the form of a field theory for a bosonic superfield Ψ interacting in quadratic, cubic, and quartic terms in the action. This field theory turned out nontrivial and was shown to lead to logarithmic divergencies in both spin and charge channels. By means of a combined scheme of ladder diagram summations and renormalization group equations, the logarithmic terms were summed up in the first-loop order, thus yielding the renormalized effective coupling constants of the theory at low temperatures. The fully renormalized action then allowed to conveniently compute the low-temperature limit behavior of the non-analytic corrections to the Fermi-liquid thermodynamic response functions such as the low temperature non-analytic correction δc to the specific heat. The explicit formula for δc is the sum of two contributions - one due to the spin singlet and one due to the spin triplet superconducting excitations. Depending on the values of the

  9. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and Its Application to Data Representation.

    Science.gov (United States)

    Veloz, Tomas; Desjardins, Sylvie

    2015-01-01

    Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.

  10. The quantum Rabi model and Lie algebra representations of sl2

    International Nuclear Information System (INIS)

    Wakayama, Masato; Yamasaki, Taishi

    2014-01-01

    The aim of the present paper is to understand the spectral problem of the quantum Rabi model in terms of Lie algebra representations of sl 2 (R). We define a second order element of the universal enveloping algebra U(sl 2 ) of sl 2 (R), which, through the image of a principal series representation of sl 2 (R), provides a picture equivalent to the quantum Rabi model drawn by confluent Heun differential equations. By this description, in particular, we give a representation theoretic interpretation of the degenerate part of the spectrum (i.e., Judd's eigenstates) of the Rabi Hamiltonian due to Kuś in 1985, which is a part of the exceptional spectrum parameterized by integers. We also discuss the non-degenerate part of the exceptional spectrum of the model, in addition to the Judd eigenstates, from a viewpoint of infinite dimensional irreducible submodules (or subquotients) of the non-unitary principal series such as holomorphic discrete series representations of sl 2 (R). (paper)

  11. Instability of higher dimensional Yang-Mills systems

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1983-01-01

    We investigate the stability of Poincare xO(3) invariant solutions for a pure semi-simple Yang-Mills, as well as Yang-Mills coupled to gravity in 6-dimensional space-time compactified over M 4 xS 2 . In contrast to the Maxwell U(1) theory (IC-82/208) in six dimensions coupled with gravity and investigated previously, the present theory exhibits tachyonic excitations and is unstable. (author)

  12. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  13. A sparse grid based method for generative dimensionality reduction of high-dimensional data

    Science.gov (United States)

    Bohn, Bastian; Garcke, Jochen; Griebel, Michael

    2016-03-01

    Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.

  14. Exact solutions of Einstein and Einstein-Maxwell equations in higher-dimensional spacetime

    International Nuclear Information System (INIS)

    Xu Dianyan; Beijing Univ., BJ

    1988-01-01

    The D-dimensional Schwarzschild-de Sitter metric and Reissner-Nordstrom-de-Sitter metric are derived directly by solving the Einstein and Einstein-Maxwell equations. The D-dimensional Kerr metric is rederived by using the complex coordinate transformation method and the D-dimensional Kerr-de Sitter metric is also given. The conjecture about the D-dimensional metric of a rotating charged mass is given at the end of this paper. (author)

  15. Representation theory a first course

    CERN Document Server

    Fulton, William

    1991-01-01

    The primary goal of these lectures is to introduce a beginner to the finite­ dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e. g. , a cohomology group, tangent space, etc. }. As a consequence, many mathematicians other than specialists in the field {or even those who think they might want to be} come in contact with the subject in various ways. It is for ...

  16. Apparatus for producing a visual representation of a radiographic scan

    International Nuclear Information System (INIS)

    Hounsfield, G.N.

    1976-01-01

    An apparatus is disclosed for providing a visual representation of the absorption or transmission coefficients of the elements of a two dimensional matrix of elements notionally defined in a cross-sectional plane through a body. The representation is in the form of an analogue display comprising superimposed lines of information scanned on the surface of a suitable screen, the brightness of each line being indicative of the absorption suffered by penetrating radiation on traversing a respective path through said plane of the body. The orientation of each scanned line depends on the orientation of the respective path with respect to the body. 7 Claims, 4 Drawing Figures

  17. The Effect of Two-dimensional and Stereoscopic Presentation on Middle School Students' Performance of Spatial Cognition Tasks

    Science.gov (United States)

    Price, Aaron; Lee, Hee-Sun

    2010-02-01

    We investigated whether and how student performance on three types of spatial cognition tasks differs when worked with two-dimensional or stereoscopic representations. We recruited nineteen middle school students visiting a planetarium in a large Midwestern American city and analyzed their performance on a series of spatial cognition tasks in terms of response accuracy and task completion time. Results show that response accuracy did not differ between the two types of representations while task completion time was significantly greater with the stereoscopic representations. The completion time increased as the number of mental manipulations of 3D objects increased in the tasks. Post-interviews provide evidence that some students continued to think of stereoscopic representations as two-dimensional. Based on cognitive load and cue theories, we interpret that, in the absence of pictorial depth cues, students may need more time to be familiar with stereoscopic representations for optimal performance. In light of these results, we discuss potential uses of stereoscopic representations for science learning.

  18. The construction of tridimensional representation of body and external reality in man. The greatest achievement of evolution to date implications for virtual reality.

    Science.gov (United States)

    Woodbury, M A; Woodbury, M F

    1998-01-01

    Our 3-D Body Representation constructed during development by our Central Nervous System under the direction of our DNA, consists of a holographic representation arising from sensory input in the cerebellum and projected extraneurally in the brain ventricular fluid which has the chemical structure of liquid crystal. The structure of 3-D holographic Body Representation is then extrapolated by such cognitive instruments as boundarization, geometrization and gestalt organization upon the external environment which is perceived consequently as three dimensional. When the Body Representation collapses as in psychotic panic states. patients become terrified as they suddenly lose the perception of themselves and the world around them as three dimensional, solid in a reliably solid environment but feel suddenly that they are no longer a person but a disorganized blob. In our clinical practice we found serendipitously that the structure of three dimensionality can be restored even without medication by techniques involving stimulation of the body sensory system in the presence of a benevolent psychotherapist. Implications for Virtual Reality will be discussed.

  19. Indicators that influence prospective mathematics teachers representational and reasoning abilities

    Science.gov (United States)

    Darta; Saputra, J.

    2018-01-01

    Representational and mathematical reasoning ability are very important ability as basic in mathematics learning process. The 2013 curriculum suggests that the use of a scientific approach emphasizes higher order thinking skills. Therefore, a scientific approach is required in mathematics learning to improve ability of representation and mathematical reasoning. The objectives of this research are: (1) to analyze representational and reasoning abilities, (2) to analyze indicators affecting the ability of representation and mathematical reasoning, (3) to analyze scientific approaches that can improve the ability of representation and mathematical reasoning. The subject of this research is the students of mathematics prospective teachers in the first semester at Private Higher Education of Bandung City. The research method of this research was descriptive analysis. The research data were collected using reasoning and representation tests on sixty-one students. Data processing was done by descriptive analysis specified based on the indicators of representation ability and mathematical reasoning that influenced it. The results of this first-year study showed that students still had many weaknesses in reasoning and mathematical representation that were influenced by the ability to understand the indicators of both capabilities. After observing the results of the first-year research, then in the second and third year, the development of teaching materials with a scientific approach in accordance with the needs of prospective students was planned.

  20. Model of geophysical fields representation in problems of complex correlation-extreme navigation

    Directory of Open Access Journals (Sweden)

    Volodymyr KHARCHENKO

    2015-09-01

    Full Text Available A model of the optimal representation of spatial data for the task of complex correlation-extreme navigation is developed based on the criterion of minimum deviation of the correlation functions of the original and the resulting fields. Calculations are presented for one-dimensional case using the approximation of the correlation function by Fourier series. It is shown that in the presence of different geophysical map data fields their representation is possible by single template with optimal sampling without distorting the form of the correlation functions.

  1. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza; Validi, AbdoulAhad; Iaccarino, Gianluca

    2013-01-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  2. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza

    2013-08-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  3. The effective action for edge states in higher-dimensional quantum Hall systems

    International Nuclear Information System (INIS)

    Karabali, Dimitra; Nair, V.P.

    2004-01-01

    We show that the effective action for the edge excitations of a quantum Hall droplet of fermions in higher dimensions is generically given by a chiral bosonic action. We explicitly analyze the quantum Hall effect on complex projective spaces CP k , with a U(1) background magnetic field. The edge excitations are described by Abelian bosonic fields on S 2k-1 with only one spatial direction along the boundary of the droplet relevant for the dynamics. Our analysis also leads to an action for edge excitations for the case of the Zhang-Hu four-dimensional quantum Hall effect defined on S 4 with an SU(2) background magnetic field, using the fact that CP 3 is an S 2 -bundle over S 4

  4. The Fuzzy analogy of chiral diffeomorphisms in higher dimensional quantum field theories

    International Nuclear Information System (INIS)

    Fassarella, Lucio; Schroer, Bert

    2001-06-01

    Our observation that the chiral diffeomorphisms allow an interpretation as modular groups of local operator algebras in the sense of Tomita and takesaki allows us to conclude that the higher deimensional generalizations are certain infinite dimensional groups which act in a 'fuzzy' way on the operator algebras of local quantum physics. These actions do not require any spacetime noncommutativity and are in complete harmony with causality and localization principles. The use of an appropriately defined isomorphism reprocesses these fuzzy actions into partially geometric actions on the holographic image and in this way tightens the relation with chiral structures and makes recent attempts to explain the required universal structure of a would be quantum Bekenstein law in terms of Virasoro algebra structures more palatable. (author)

  5. An essential representation for a product system over a finitely ...

    Indian Academy of Sciences (India)

    25

    2017-10-06

    An essential representation for a product system over a finitely generated subsemigroup of Z d. S.P. Murugan and S. Sundar. October 6, 2017. Abstract. Let S ⊂ Zd be a finitely generated subsemigroup. Let E be a product system over S. We show that there exists an infinite dimensional separable Hilbert space. H and a ...

  6. Interrogation of an object for dimensional and topographical information

    Science.gov (United States)

    McMakin, Doug L [Richland, WA; Severtsen, Ronald H [Richland, WA; Hall, Thomas E [Richland, WA; Sheen, David M [Richland, WA

    2003-01-14

    Disclosed are systems, methods, devices, and apparatus to interrogate a clothed individual with electromagnetic radiation to determine one or more body measurements at least partially covered by the individual's clothing. The invention further includes techniques to interrogate an object with electromagnetic radiation in the millimeter and/or microwave range to provide a volumetric representation of the object. This representation can be used to display images and/or determine dimensional information concerning the object.

  7. A Killing tensor for higher dimensional Kerr-AdS black holes with NUT charge

    International Nuclear Information System (INIS)

    Davis, Paul

    2006-01-01

    In this paper, we study the recently discovered family of higher dimensional Kerr-AdS black holes with an extra NUT-like parameter. We show that the inverse metric is additively separable after multiplication by a simple function. This allows us to separate the Hamilton-Jacobi equation, showing that geodesic motion is integrable on this background. The separation of the Hamilton-Jacobi equation is intimately linked to the existence of an irreducible Killing tensor, which provides an extra constant of motion. We also demonstrate that the Klein-Gordon equation for this background is separable

  8. Grand unified theory precursors and nontrivial fixed points in higher-dimensional gauge theories

    International Nuclear Information System (INIS)

    Dienes, Keith R.; Dudas, Emilian; Gherghetta, Tony

    2003-01-01

    Within the context of traditional logarithmic grand unification at M GUT ≅10 16 GeV, we show that it is nevertheless possible to observe certain GUT states such as X and Y gauge bosons at lower scales, perhaps even in the TeV range. We refer to such states as 'GUT precursors'. These states offer an interesting alternative possibility for new physics at the TeV scale, and could be used to directly probe GUT physics even though the scale of gauge coupling unification remains high. Our results also give rise to a Kaluza-Klein realization of nontrivial fixed points in higher-dimensional gauge theories

  9. Second-Order Systems of ODEs Admitting Three-Dimensional Lie Algebras and Integrability

    Directory of Open Access Journals (Sweden)

    Muhammad Ayub

    2013-01-01

    the case of k≥3. We discuss the singular invariant representations of canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras. Furthermore, we give an integration procedure for canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras which comprises of two approaches, namely, division into four types I, II, III, and IV and that of integrability of the invariant representations. We prove that if a system of two second-order ODEs has a three-dimensional solvable Lie algebra, then, its general solution can be obtained from a partially linear, partially coupled or reduced invariantly represented system of equations. A natural extension of this result is provided for a system of two kth-order (k≥3 ODEs. We present illustrative examples of familiar integrable physical systems which admit three-dimensional Lie algebras such as the classical Kepler problem and the generalized Ermakov systems that give rise to closed trajectories.

  10. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    International Nuclear Information System (INIS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  11. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Feng, Zhong-Wen [China West Normal University, College of Physics and Space Science, Nanchong (China); Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China)

    2018-01-15

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  12. Cortical Representations of Speech in a Multitalker Auditory Scene.

    Science.gov (United States)

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  13. Concise and Accessible Representations for Multidimensional Datasets: Introducing a Framework Based on the nD-EVM and Kohonen Networks

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Aguila

    2015-01-01

    Full Text Available A new framework intended for representing and segmenting multidimensional datasets resulting in low spatial complexity requirements and with appropriate access to their contained information is described. Two steps are going to be taken in account. The first step is to specify (n-1D hypervoxelizations, n≥2, as Orthogonal Polytopes whose nth dimension corresponds to color intensity. Then, the nD representation is concisely expressed via the Extreme Vertices Model in the n-Dimensional Space (nD-EVM. Some examples are presented, which, under our methodology, have storing requirements minor than those demanded by their original hypervoxelizations. In the second step, 1-Dimensional Kohonen Networks (1D-KNs are applied in order to segment datasets taking in account their geometrical and topological properties providing a non-supervised way to compact even more the proposed n-Dimensional representations. The application of our framework shares compression ratios, for our set of study cases, in the range 5.6496 to 32.4311. Summarizing, the contribution combines the power of the nD-EVM and 1D-KNs by producing very concise datasets’ representations. We argue that the new representations also provide appropriate segmentations by introducing some error functions such that our 1D-KNs classifications are compared against classifications based only in color intensities. Along the work, main properties and algorithms behind the nD-EVM are introduced for the purpose of interrogating the final representations in such a way that it efficiently obtains useful geometrical and topological information.

  14. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-07

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  15. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-01

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  16. Three-dimensional perceived-shape representation fusing range data and fuzzy-like segmented image data

    Science.gov (United States)

    Bourbakis, Nikolaos G.

    2001-04-01

    A fusion technique is presented for 3D representation. The fusion involves laser range data and segmented image data, using human expertise related to the environment. In particular, the range data may contain noise due to reflections on sloped surfaces or long open corridors; the proposed approach removes the noise by using human expertise from 3D environments. This method could be utilized either by an autonomous robot in an unknown environment, or by an inspection machine in a complex manufacturing environment, or by a visual navigation device used by blind people. Additional applications for this technique are to correct measurement deficiencies in a laser scan and to provide a true color and 3D perceived-shape representation for a given object in a modeling environment.

  17. Dimensional reduction of exceptional E6,E8 gauge groups and flavour chirality

    International Nuclear Information System (INIS)

    Koca, M.

    1984-01-01

    Ten-dimensional Yang - Mills gauge theories based on the exceptional groups E 6 and E 8 are reduced to four-dimensional flavour-chiral Yang - Mills - Higgs theories where the extra six dimensions are identified with the compact G 2 /SU(3) and SO(7)/SO(6) coset spaces. A ten-dimensional E 8 theory leads to three families of SU(5), one of which lies in the 144-dimensional representation of SO(10)

  18. Back in the USSR: Path Dependence Effects in Student Representation in Russia

    Science.gov (United States)

    Chirikov, Igor; Gruzdev, Ivan

    2014-01-01

    This paper analyses the current state of student representation in Russia as deeply rooted in the institutional structure of the Soviet higher education system. The study traces the origins of existing institutional arrangements for student representation at the level of university governance and analyses how representation practices have been…

  19. Implementation schemes in NMR of quantum processors and the Deutsch-Jozsa algorithm by using virtual spin representation

    International Nuclear Information System (INIS)

    Kessel, Alexander R.; Yakovleva, Natalia M.

    2002-01-01

    Schemes of experimental realization of the main two-qubit processors for quantum computers and the Deutsch-Jozsa algorithm are derived in virtual spin representation. The results are applicable for every four quantum states allowing the required properties for quantum processor implementation if for qubit encoding, virtual spin representation is used. A four-dimensional Hilbert space of nuclear spin 3/2 is considered in detail for this aim

  20. The epistemic representation: visual production and communication of scientific knowledge.

    Directory of Open Access Journals (Sweden)

    Francisco López Cantos

    2015-03-01

    Full Text Available Despite its great influence on the History of Science, visual representations have attracted marginal interest until very recently and have often been regarded as a simple aid for mere illustration or scientific demonstration. However, it has been shown that visualization is an integral element of reasoning and a highly effective and common heuristic strategy in the scientific community and that the study of the conditions of visual production and communication are essential in the development of scientific knowledge. In this paper we deal with the nature of the various forms of visual representation of knowledge that have been happening throughout the history of science, taking as its starting point the illustrated monumental works and three-dimensional models that begin to develop within the scientific community around the fifteenth century. The main thesis of this paper is that any scientific visual representations have common elements that allow us to approach them from epistemic nature, heuristic and communicative dimension.

  1. Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization.

    Science.gov (United States)

    Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot

    2013-01-01

    Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.

  2. Locality-preserving sparse representation-based classification in hyperspectral imagery

    Science.gov (United States)

    Gao, Lianru; Yu, Haoyang; Zhang, Bing; Li, Qingting

    2016-10-01

    This paper proposes to combine locality-preserving projections (LPP) and sparse representation (SR) for hyperspectral image classification. The LPP is first used to reduce the dimensionality of all the training and testing data by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold, where the high-dimensional data lies. Then, SR codes the projected testing pixels as sparse linear combinations of all the training samples to classify the testing pixels by evaluating which class leads to the minimum approximation error. The integration of LPP and SR represents an innovative contribution to the literature. The proposed approach, called locality-preserving SR-based classification, addresses the imbalance between high dimensionality of hyperspectral data and the limited number of training samples. Experimental results on three real hyperspectral data sets demonstrate that the proposed approach outperforms the original counterpart, i.e., SR-based classification.

  3. Representation theory of current algebra and conformal field theory on Riemann surfaces

    International Nuclear Information System (INIS)

    Yamada, Yasuhiko

    1989-01-01

    We study conformal field theories with current algebra (WZW-model) on general Riemann surfaces based on the integrable representation theory of current algebra. The space of chiral conformal blocks defined as solutions of current and conformal Ward identities is shown to be finite dimensional and satisfies the factorization properties. (author)

  4. Minimal representations of supersymmetry and 1D N-extended σ-models

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2008-01-01

    We discuss the minimal representations of the 1D N-Extended Supersymmetry algebra (the Z 2 -graded symmetry algebra of the Supersymmetric Quantum Mechanics) linearly realized on a finite number of fields depending on a real parameter t, the time. Their knowledge allows to construct one-dimensional sigma-models with extended off-shell supersymmetries without using superfields (author)

  5. Riemann surfaces, Clifford algebras and infinite dimensional groups

    International Nuclear Information System (INIS)

    Carey, A.L.; Eastwood, M.G.; Hannabuss, K.C.

    1990-01-01

    We introduce of class of Riemann surfaces which possess a fixed point free involution and line bundles over these surfaces with which we can associate an infinite dimensional Clifford algebra. Acting by automorphisms of this algebra is a 'gauge' group of meromorphic functions on the Riemann surface. There is a natural Fock representation of the Clifford algebra and an associated projective representation of this group of meromorphic functions in close analogy with the construction of the basic representation of Kac-Moody algebras via a Fock representation of the Fermion algebra. In the genus one case we find a form of vertex operator construction which allows us to prove a version of the Boson-Fermion correspondence. These results are motivated by the analysis of soliton solutions of the Landau-Lifshitz equation and are rather distinct from recent developments in quantum field theory on Riemann surfaces. (orig.)

  6. Homological methods, representation theory, and cluster algebras

    CERN Document Server

    Trepode, Sonia

    2018-01-01

    This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...

  7. What we think about the higher dimensional Chern-Simons theories

    International Nuclear Information System (INIS)

    Fock, V.V.; Nekrasov, N.A.; Rosly, A.A.; Selivanov, K.G.

    1992-01-01

    This paper reports that one of the most interesting developments in mathematical physics was the investigation of the so-called topological field theories i.e. such theories which do not need a metric on the manifold for their definition a d hence the observable of which are topologically invariant. The Chern-Simons (CS) functionals considered as actions give us examples the theories of such a type. The CS theory on a 3d manifold was firstly considered in the Abelian case by A.S. Schwartz and then after papers of E. Witten there has been an explosive process of publications on this subject. This paper discusses topological invariants of the manifolds (like the Ray-Singer torsion) computed by the quantum field theory methods; conformal blocks of 2d conformal field theories as vectors in the CS theory Hilbert space; correlators of Wilson loop and the invariants of 1d links in 3d manifolds; braid groups; unusual relations between spin and statistics; here we would like to consider the generalization of a part of the outlined ideas to the CS theories on higher dimensional manifolds. Some of our results intersect with

  8. Standalone visualization tool for three-dimensional DRAGON geometrical models

    International Nuclear Information System (INIS)

    Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.

    2008-01-01

    DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)

  9. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    Science.gov (United States)

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  10. Higher dimensional models of cross-coupled oscillators and application to design

    KAUST Repository

    Elwakil, Ahmed S.; Salama, Khaled N.

    2010-01-01

    We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.

  11. Higher dimensional models of cross-coupled oscillators and application to design

    KAUST Repository

    Elwakil, Ahmed S.

    2010-06-01

    We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.

  12. Poincare-Birkhoff-Witt theorems and generalized Casimir invariants for some infinite-dimensional Lie groups: II

    International Nuclear Information System (INIS)

    Ton-That, Tuong

    2005-01-01

    In a previous paper we gave a generalization of the notion of Casimir invariant differential operators for the infinite-dimensional Lie groups GL ∞ (C) (or equivalently, for its Lie algebra gj ∞ (C)). In this paper we give a generalization of the Casimir invariant differential operators for a class of infinite-dimensional Lie groups (or equivalently, for their Lie algebras) which contains the infinite-dimensional complex classical groups. These infinite-dimensional Lie groups, and their Lie algebras, are inductive limits of finite-dimensional Lie groups, and their Lie algebras, with some additional properties. These groups or their Lie algebras act via the generalized adjoint representations on projective limits of certain chains of vector spaces of universal enveloping algebras. Then the generalized Casimir operators are the invariants of the generalized adjoint representations. In order to be able to explicitly compute the Casimir operators one needs a basis for the universal enveloping algebra of a Lie algebra. The Poincare-Birkhoff-Witt (PBW) theorem gives an explicit construction of such a basis. Thus in the first part of this paper we give a generalization of the PBW theorem for inductive limits of Lie algebras. In the last part of this paper a generalization of the very important theorem in representation theory, namely the Chevalley-Racah theorem, is also discussed

  13. Three-dimensional freak waves and higher-order wave-wave resonances

    Science.gov (United States)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover

  14. Boson representations of the real symplectic group and their applications to the nuclear collective model

    International Nuclear Information System (INIS)

    Deenen, J.; Quesne, C.

    1985-01-01

    Both non-Hermitian Dyson and Hermitian Holstein--Primakoff representations of the Sp(2d,R) algebra are obtained when the latter is restricted to a positive discrete series irreducible representation 1 +n/2>. For such purposes, some results for boson representations, recently deduced from a study of the Sp(2d,R) partially coherent states, are combined with some standard techniques of boson expansion theories. The introduction of Usui operators enables the establishment of useful relations between the various boson representations. Two Dyson representations of the Sp(2d,R) algebra are obtained in compact form in terms of ν = d(d+1)/2 pairs of boson creation and annihilation operators, and of an extra U(d) spin, characterized by the irreducible representation [lambda 1 xxxlambda/sub d/]. In contrast to what happens when lambda 1 = xxx = lambda/sub d/ = lambda, it is shown that the Holstein--Primakoff representation of the Sp(2d,R) algebra cannot be written in such a compact form for a generic irreducible representation. Explicit expansions are, however, obtained by extending the Marumori, Yamamura, and Tokunaga method of boson expansion theories. The Holstein--Primakoff representation is then used to prove that, when restricted to the Sp(2d,R) irreducible representation 1 +n/2>, the dn-dimensional harmonic oscillator Hamiltonian has a U(ν) x SU(d) symmetry group

  15. On the representations of Poincare group associated with unstable particles

    International Nuclear Information System (INIS)

    Exner, RP.

    1983-01-01

    The problem of relativistically-covariant description of unstable particles is reexamined. We follow the approach which associates a unitary reducible representation of Poincare group with a larger isolated system, and compare it with the one ascribing a non-unitary irreducible representation to the unstable particle alone. It is shown that the problem roots in choice of the subspace Hsub(u) of the state Hilbert space which could be related to the unstable particle. Translational invariance of Hsub(u) is proved to be incompatible with unitarity of the boosts. Further we propose a concrete choice of Hsub(u) and argue that in most cases of the actual experimental arrangements, this subspace is effectively one-dimensional. A correct slow-down for decay of a moving particle is obtained

  16. Integral equations for four identical particles in angular momentum representation

    International Nuclear Information System (INIS)

    Kharchenko, V.F.; Shadchin, S.A.

    1975-01-01

    In integral equations of motion for a system of four identical spinless particles with central pair interactions, transition is realized from the representation of relative Jacobi momenta to the representation of their moduli and relative angular moments. As a result, the variables associated with the rotation of the system as a whole are separated in the equations. The integral equations of motion for four particles are reduced to the form of an infinite system of three-demensional integral equations. The four-particle kinematic factors contained in integral kernels are expressed in terms of three-particle type kinematic factors. In the case of separable two-particle interaction, the equations of motion for four particles have the form of an infinite system of two-dimensional integral equations

  17. Symposium on Singularities, Representation of Algebras, and Vector Bundles

    CERN Document Server

    Trautmann, Günther

    1987-01-01

    It is well known that there are close relations between classes of singularities and representation theory via the McKay correspondence and between representation theory and vector bundles on projective spaces via the Bernstein-Gelfand-Gelfand construction. These relations however cannot be considered to be either completely understood or fully exploited. These proceedings document recent developments in the area. The questions and methods of representation theory have applications to singularities and to vector bundles. Representation theory itself, which had primarily developed its methods for Artinian algebras, starts to investigate algebras of higher dimension partly because of these applications. Future research in representation theory may be spurred by the classification of singularities and the highly developed theory of moduli for vector bundles. The volume contains 3 survey articles on the 3 main topics mentioned, stressing their interrelationships, as well as original research papers.

  18. Higher-order thinking skill problem on data representation in primary school: A case study

    Science.gov (United States)

    Putri, R. I. I.; Zulkardi, Z.

    2018-01-01

    This article aimed at reporting research result on a case study of a lesson using a HOTS problem. The task was about data representation using baby growth context. The study used a design research method consisting of three stages: preparing for an experiment, experiment in the classroom (pilot and teaching), and retrospective analysis. Participants were sixth grade students who were learning data representations in a Primary School in Palembang Indonesia. A set of instructional activities were designed using Indonesian version of Realistic Mathematics Education (PMRI) approach. The result showed that students were able to solve the problem and present their solution in front of the classroom. The conclusion indicated that that HOTS problem using the growth of a child as the context could lead students to use their mathematical thinking. During the learning activities along with teacher orchestra’s guidance, and discussion, students were able to solve the problem using line graph although some of them used a bar graph. In the future, teachers are necessary to focus on the role of real-world figure in mathematics learning.

  19. Chaos game representation of the D st index and prediction of geomagnetic storm events

    International Nuclear Information System (INIS)

    Yu, Z.G.; Anh, V.V.; Wanliss, J.A.; Watson, S.M.

    2007-01-01

    This paper proposes a two-dimensional chaos game representation (CGR) for the D st index. The CGR provides an effective method to characterize the multifractality of the D st time series. The probability measure of this representation is then modeled as a recurrent iterated function system in fractal theory, which leads to an algorithm for prediction of a storm event. We present an analysis and modeling of the D st time series over the period 1963-2003. The numerical results obtained indicate that the method is useful in predicting storm events one day ahead

  20. Taking space literally: reconceptualizing the effects of stereoscopic representation on user experience

    Directory of Open Access Journals (Sweden)

    Benny Liebold

    2013-03-01

    Full Text Available Recently, cinemas, home theater systems and game consoles have undergone a rapid evolution towards stereoscopic representation with recipients gradually becoming accustomed to these changes. Stereoscopy techniques in most media present two offset images separately to the left and right eye of the viewer (usually with the help of glasses separating both images resulting in the perception of three-dimensional depth. In contrast to these mass market techniques, true 3D volumetric displays or holograms that display an image in three full dimensions are relatively uncommon. The visual quality and visual comfort of stereoscopic representation is constantly being improved by the industry.

  1. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    Science.gov (United States)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  2. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo

    2018-03-01

    In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.

  3. Higher dimensional uniformisation and W-geometry

    International Nuclear Information System (INIS)

    Govindarajan, S.

    1995-01-01

    We formulate the uniformisation problem underlying the geometry of W n -gravity using the differential equation approach to W-algebras. We construct W n -space (analogous to superspace in supersymmetry) as an (n-1)-dimensional complex manifold using isomonodromic deformations of linear differential equations. The W n -manifold is obtained by the quotient of a Fuchsian subgroup of PSL(n,R) which acts properly discontinuously on a simply connected domain in bfCP n-1 . The requirement that a deformation be isomonodromic furnishes relations which enable one to convert non-linear W-diffeomorphisms to (linear) diffeomorphisms on the W n -manifold. We discuss how the Teichmueller spaces introduced by Hitchin can then be interpreted as the space of complex structures or the space of projective structures with real holonomy on the W n -manifold. The projective structures are characterised by Halphen invariants which are appropriate generalisations of the Schwarzian. This construction will work for all ''generic'' W-algebras. (orig.)

  4. Dimensional reduction from entanglement in Minkowski space

    International Nuclear Information System (INIS)

    Brustein, Ram; Yarom, Amos

    2005-01-01

    Using a quantum field theoretic setting, we present evidence for dimensional reduction of any sub-volume of Minkowksi space. First, we show that correlation functions of a class of operators restricted to a sub-volume of D-dimensional Minkowski space scale as its surface area. A simple example of such area scaling is provided by the energy fluctuations of a free massless quantum field in its vacuum state. This is reminiscent of area scaling of entanglement entropy but applies to quantum expectation values in a pure state, rather than to statistical averages over a mixed state. We then show, in a specific case, that fluctuations in the bulk have a lower-dimensional representation in terms of a boundary theory at high temperature. (author)

  5. Geometric Representations of Condition Queries on Three-Dimensional Vector Fields

    Science.gov (United States)

    Henze, Chris

    1999-01-01

    Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.

  6. In defense of abstract conceptual representations.

    Science.gov (United States)

    Binder, Jeffrey R

    2016-08-01

    An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.

  7. Treatment of dynamical processes in two-dimensional models of the troposphere and stratosphere

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1980-07-01

    The physical structure of the troposphere and stratosphere is the result of an intricate interplay among a large number of radiative, chemical, and dynamical processes. Because it is not possible to model the global environment in the laboratory, theoretical models must be relied on, subject to observational verification, to simulate atmospheric processes. Of particular concern in recent years has been the modeling of those processes affecting the structure of ozone and other trace species in the stratosphere and troposphere. Zonally averaged two-dimensional models with spatial resolution in the vertical and meridional directions can provide a much more realistic representation of tracer transport than one-dimensional models, yet are capable of the detailed representation of chemical and radiative processes contained in the one-dimensional models. The purpose of this study is to describe and analyze existing approaches to representing global atmospheric transport processes in two-dimensional models and to discuss possible alternatives to these approaches. A general description of the processes controlling the transport of trace constituents in the troposphere and stratosphere is given

  8. Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)

    2017-05-15

    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)

  9. On a microscopic representation of space-time

    International Nuclear Information System (INIS)

    Dahm, R.

    2012-01-01

    We start from a noncompact Lie algebra isomorphic to the Dirac algebra and relate this Lie algebra in a brief review to low-energy hadron physics described by the compact group SU(4). This step permits an overall physical identification of the operator actions. Then we discuss the geometrical origin of this noncompact Lie algebra and “reduce” the geometry in order to introduce in each of these steps coordinate definitions which can be related to an algebraic representation in terms of the spontaneous symmetry breakdown along the Lie algebra chain su*(4) → usp(4) → su(2) × u(1). Standard techniques of Lie algebra decomposition(s) as well as the (physical) operator identification give rise to interesting physical aspects and lead to a rank-1 Riemannian space which provides an analytic representation and leads to a 5-dimensional hyperbolic space H 5 with SO(5, 1) isometries. The action of the (compact) symplectic group decomposes this (globally) hyperbolic space into H 2 ⊕ H 3 with SO(2, 1) and SO(3, 1) isometries, respectively, which we relate to electromagnetic (dynamically broken SU(2) isospin) and Lorentz transformations. Last not least, we attribute this symmetry pattern to the algebraic representation of a projective geometry over the division algebra H and subsequent coordinate restrictions.

  10. Three-dimensional facial scanning technology: applications and future trends

    NARCIS (Netherlands)

    Hassan, B.; Giménez Gonzáles, B.; Tahmaseb, A.; Jacobs, R.; Bornstein, M.M.

    2014-01-01

    Basic components of the conventional prosthodontic diagnostic set-up workflow include dental cast models, full-mouth two-dimensional digital photographs, as well as selected intra- and extra-oral radiographs. This set-up provides a limited two-dimen-sional representation of the maxillofacial region

  11. Higher dimensional generalizations of the SYK model

    Energy Technology Data Exchange (ETDEWEB)

    Berkooz, Micha [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Narayan, Prithvi [International Centre for Theoretical Sciences, Hesaraghatta,Bengaluru North, 560 089 (India); Rozali, Moshe [Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Simón, Joan [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom)

    2017-01-31

    We discuss a 1+1 dimensional generalization of the Sachdev-Ye-Kitaev model. The model contains N Majorana fermions at each lattice site with a nearest-neighbour hopping term. The SYK random interaction is restricted to low momentum fermions of definite chirality within each lattice site. This gives rise to an ordinary 1+1 field theory above some energy scale and a low energy SYK-like behavior. We exhibit a class of low-pass filters which give rise to a rich variety of hyperscaling behaviour in the IR. We also discuss another set of generalizations which describes probing an SYK system with an external fermion, together with the new scaling behavior they exhibit in the IR.

  12. Microstructure representations for sound absorbing fibrous media: 3D and 2D multiscale modelling and experiments

    Science.gov (United States)

    Zieliński, Tomasz G.

    2017-11-01

    The paper proposes and investigates computationally-efficient microstructure representations for sound absorbing fibrous media. Three-dimensional volume elements involving non-trivial periodic arrangements of straight fibres are examined as well as simple two-dimensional cells. It has been found that a simple 2D quasi-representative cell can provide similar predictions as a volume element which is in general much more geometrically accurate for typical fibrous materials. The multiscale modelling allowed to determine the effective speeds and damping of acoustic waves propagating in such media, which brings up a discussion on the correlation between the speed, penetration range and attenuation of sound waves. Original experiments on manufactured copper-wire samples are presented and the microstructure-based calculations of acoustic absorption are compared with the corresponding experimental results. In fact, the comparison suggested the microstructure modifications leading to representations with non-uniformly distributed fibres.

  13. Reinforcement learning on slow features of high-dimensional input streams.

    Directory of Open Access Journals (Sweden)

    Robert Legenstein

    Full Text Available Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms for reward-based learning are only applicable if the dimensionality of the state-space is sufficiently small or its structure is sufficiently simple. Therefore, the question arises how the problem of learning on high-dimensional data is solved in the brain. In this article, we propose a biologically plausible generic two-stage learning system that can directly be applied to raw high-dimensional input streams. The system is composed of a hierarchical slow feature analysis (SFA network for preprocessing and a simple neural network on top that is trained based on rewards. We demonstrate by computer simulations that this generic architecture is able to learn quite demanding reinforcement learning tasks on high-dimensional visual input streams in a time that is comparable to the time needed when an explicit highly informative low-dimensional state-space representation is given instead of the high-dimensional visual input. The learning speed of the proposed architecture in a task similar to the Morris water maze task is comparable to that found in experimental studies with rats. This study thus supports the hypothesis that slowness learning is one important unsupervised learning principle utilized in the brain to form efficient state representations for behavioral learning.

  14. State-space representation of instationary two-dimensional airfoil aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Marcus; Matthies, Hermann G. [Institute of Scientific Computing, Technical University Braunschweig, Hans-Sommer-Str. 65, Braunschweig 38106 (Germany)

    2004-03-01

    In the aero-elastic analysis of wind turbines the need to include a model of the local, two-dimensional instationary aerodynamic loads, commonly referred to as dynamic stall model, has become obvious in the last years. In this contribution an alternative choice for such a model is described, based on the DLR model. Its derivation is governed by the flow physics, thus enabling interpolation between different profile geometries. An advantage of the proposed model is its state-space form, i.e. a system of differential equations, which facilitates the important tasks of aeroelastic stability and sensitivity investigations. The model is validated with numerical calculations.

  15. Student Engagement: Stakeholder Perspectives on Course Representation in University Governance

    Science.gov (United States)

    Carey, Philip

    2013-01-01

    Student engagement has become a key feature of UK higher education policy and analysis. At the core of this is a notion of engagement characterised by dialogue and joint venture. The article explores this by considering the role of student representation in university governance. It focuses on the system of course representation that is a feature…

  16. Low-dimensional filiform Lie algebras over finite fields

    OpenAIRE

    Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)

    2011-01-01

    In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...

  17. Elliptic hypergeometric functions and the representation theory

    International Nuclear Information System (INIS)

    Spiridonov, V.P.

    2011-01-01

    Full text: (author)Elliptic hypergeometric functions were discovered around ten years ago. They represent the top level known generalization of the Euler beta integral and Euler-Gauss 2 F 1 hypergeometric function. In general form they are defined by contour integrals involving elliptic gamma functions. We outline the structure of the simplest examples of such functions and discuss their relations to the representation theory of the classical Lie groups and their various deformations. In one of the constructions elliptic hypergeometric integrals describe purely group-theoretical objects having the physical meaning of superconformal indices of four-dimensional supersymmetric gauge field theories

  18. The Roles of Representations in Building Design

    DEFF Research Database (Denmark)

    Harty, Chris; Tryggestad, Kjell

    2012-01-01

    minimum) spatial requirements should be to allow effective care of patients. The first representation is a three dimensional augmented reality model of a single room for a new hospital in the UK, using a CAVE (Cave Automatic Virtual Environment) where the room is reproduced virtually at one-to-one scale......, and which can be explored or navigated using head-tracker technology and a joystick controller. The second is a physical mock up of a single room for a Danish hospital where actual medical procedures are simulated using real equipment and real people. Drawing on Latour’s concepts of matters of concern...

  19. Fractal zeta functions and fractal drums higher-dimensional theory of complex dimensions

    CERN Document Server

    Lapidus, Michel L; Žubrinić, Darko

    2017-01-01

    This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the f...

  20. Euclidean scalar Green function in a higher dimensional global monopole space-time

    International Nuclear Information System (INIS)

    Bezerra de Mello, E.R.

    2002-01-01

    We construct the explicit Euclidean scalar Green function associated with a massless field in a higher dimensional global monopole space-time, i.e., a (1+d)-space-time with d≥3 which presents a solid angle deficit. Our result is expressed in terms of an infinite sum of products of Legendre functions with Gegenbauer polynomials. Although this Green function cannot be expressed in a closed form, for the specific case where the solid angle deficit is very small, it is possible to develop the sum and obtain the Green function in a more workable expression. Having this expression it is possible to calculate the vacuum expectation value of some relevant operators. As an application of this formalism, we calculate the renormalized vacuum expectation value of the square of the scalar field, 2 (x)> Ren , and the energy-momentum tensor, μν (x)> Ren , for the global monopole space-time with spatial dimensions d=4 and d=5

  1. Multiple Kernel Sparse Representation based Orthogonal Discriminative Projection and Its Cost-Sensitive Extension.

    Science.gov (United States)

    Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen

    2016-07-07

    Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.

  2. Perceptual, semantic and affective dimensions of experience of abstract and representational paintings

    Directory of Open Access Journals (Sweden)

    Marković Slobodan

    2011-01-01

    Full Text Available In this study the difference between representational and abstract paintings in judgments on perceptual, semantic and affective dimensions was investigated. Two groups of participants judged the sets of representational and abstract paintings on three groups of dimensions: perceptual (Form, Color, Space and Complexity, semantic (Illusion-Construction of Reality, Expression, Ideology and Decoration, and affective (Hedonic Tone, Arousal, Relaxation and Regularity. The results have shown that representational paintings have higher judgments on the perceptual dimensions of Form and Complexity, the semantic dimension of the Illusion of Reality (the opposite pole of the Construction of Reality, and the affective dimension of Regularity. On the other hand, abstract paintings have higher judgments on the perceptual dimension of Color, the semantic dimensions of Construction of Reality (the opposite pole of the Illusion of Reality and Expression, and the affective dimension Arousal. A discriminant analysis indicated that all three sets of dimensions are relatively good predictors of the classification of representational and abstract paintings (61-100%. The results suggest that the subjective categorization of paintings is generally based on the recognizability of pictorial content (representational vs. abstract, but some formal or stylistic properties play a role in the categorization, as well: some expressionistic representational paintings were classified in an abstract category, and some geometrically abstract paintings were classified as representational.

  3. A representation theoretic approach to the WZW Verlinde formula

    CERN Document Server

    Fuchs, J

    1997-01-01

    By exploring the description of chiral blocks in terms of co-invariants, a proof of the Verlinde formula for WZW models is obtained which is entirely based on the representation theory of affine Lie algebras. In contrast to other proofs of the Verlinde formula, this approach works for all untwisted affine Lie algebras. As a by-product we obtain a homological interpretation of the Verlinde multiplicities, as Euler characteristics of complexes built from invariant tensors of finite-dimensional simple Lie algebras.

  4. Sparse Representation of Deformable 3D Organs with Spherical Harmonics and Structured Dictionary

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2011-01-01

    Full Text Available This paper proposed a novel algorithm to sparsely represent a deformable surface (SRDS with low dimensionality based on spherical harmonic decomposition (SHD and orthogonal subspace pursuit (OSP. The key idea in SRDS method is to identify the subspaces from a training data set in the transformed spherical harmonic domain and then cluster each deformation into the best-fit subspace for fast and accurate representation. This algorithm is also generalized into applications of organs with both interior and exterior surfaces. To test the feasibility, we first use the computer models to demonstrate that the proposed approach matches the accuracy of complex mathematical modeling techniques and then both ex vivo and in vivo experiments are conducted using 3D magnetic resonance imaging (MRI scans for verification in practical settings. All results demonstrated that the proposed algorithm features sparse representation of deformable surfaces with low dimensionality and high accuracy. Specifically, the precision evaluated as maximum error distance between the reconstructed surface and the MRI ground truth is better than 3 mm in real MRI experiments.

  5. Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-07-01

    Full Text Available Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannian manifold, and hence, normal sparse representation classification cannot be applied to polarimetric SAR directly. This paper proposes a new land cover classification approach for polarimetric SAR. There are two principal novelties in this paper. First, a Stein kernel on a Riemannian manifold instead of Euclidean metrics, combined with sparse representation, is employed for polarimetric SAR land cover classification. This approach is named Stein-sparse representation-based classification (SRC. Second, using simultaneous sparse representation and reasonable assumptions of the correlation of representation among different frequency bands, Stein-SRC is generalized to simultaneous Stein-SRC for multi-frequency polarimetric SAR classification. These classifiers are assessed using polarimetric SAR images from the Airborne Synthetic Aperture Radar (AIRSAR sensor of the Jet Propulsion Laboratory (JPL and the Electromagnetics Institute Synthetic Aperture Radar (EMISAR sensor of the Technical University of Denmark (DTU. Experiments on single-band and multi-band data both show that these approaches acquire more accurate classification results in comparison to many conventional and advanced classifiers.

  6. Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons theory and their string theory duals

    International Nuclear Information System (INIS)

    Drukker, Nadav; Plefka, Jan; Young, Donovan

    2008-01-01

    We study Wilson loops in the three-dimensional N = 6 supersymmetric Chern-Simons theory recently constructed by Aharony, Bergman, Jafferis and Maldacena, that is conjectured to be dual to type IIA string theory on AdS 4 x CP 3 . We construct loop operators in the Chern-Simons theory which preserve 1/6 of the supercharges and calculate their expectation value up to 2-loop order at weak coupling. The expectation value at strong coupling is found by constructing the string theory duals of these operators. For low dimensional representations these are fundamental strings, for high dimensional representations these are D2-branes and D6-branes. In support of this identification we demonstrate that these string theory solutions match the symmetries, charges and the preserved supersymmetries of their Chern-Simons theory counterparts.

  7. Representation of SO(4,1) group and Hawking effect in the de-Sitter space

    International Nuclear Information System (INIS)

    Bogush, A.A.; Otchik, V.S.

    1983-01-01

    Expression relating the solution of the equation for particles with spin 1/2 to matrix elements of group SO(4, 1), is obtained. When using the relation of the Dirac equation solutions in the de Sitter space with matrix elements of representations of group SO(4, 1) the presence of the Hawking effect in the space is established. The de Sitter space is considered as 4-dimensional hyperboloid, inserted into 5-dimensional pseudo-Euclidean space. It is established, that the average number of emitted spinor particles obeys the Fermi-Dirac distribution

  8. Late-time tails of wave propagation in higher dimensional spacetimes

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Yoshida, Shijun; Dias, Oscar J.C.; Lemos, Jose P.S.

    2003-01-01

    We study the late-time tails appearing in the propagation of massless fields (scalar, electromagnetic, and gravitational) in the vicinities of a D-dimensional Schwarzschild black hole. We find that at late times the fields always exhibit a power-law falloff, but the power law is highly sensitive to the dimensionality of the spacetime. Accordingly, for odd D>3 we find that the field behaves as t -(2l+D-2) at late times, where l is the angular index determining the angular dependence of the field. This behavior is entirely due to D being odd; it does not depend on the presence of a black hole in the spacetime. Indeed this tail is already present in the flat space Green's function. On the other hand, for even D>4 the field decays as t -(2l+3D-8) , and this time there is no contribution from the flat background. This power law is entirely due to the presence of the black hole. The D=4 case is special and exhibits, as is well known, t -(2l+3) behavior. In the extra dimensional scenario for our Universe, our results are strictly correct if the extra dimensions are infinite, but also give a good description of the late-time behavior of any field if the large extra dimensions are large enough

  9. An Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces

    Directory of Open Access Journals (Sweden)

    Farhad A. Namin

    2016-08-01

    Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.

  10. Multidimensional Representations of Natural and Cultural Heritage in the DEDI Project

    Directory of Open Access Journals (Sweden)

    Dalibor Radovan

    2013-09-01

    Full Text Available EXTENDED ABSTRACT:DEDI stands for the Digital Encyclopaedia of Natural and Cultural Heritage in Slovenia which was a result of two prototype research and development projects DEDI and DEDI II in the period between 2008 and 2010. The two projects were co-financed by the Ministry of Higher Education, Science and Technology and the European Regional Development Fund in the frame of research and development projects e-content and e-services. DEDI is the first attempt of multimediarich digital representation of Slovenian natural and cultural heritage on a common web site offering verifiable, qualitative and complex content to a wide range of general public. Digital content (text, video records, audio records, photographs is enriched by 2-dimensional and/or 3-dimensional visualisation of geographical data or even by 4-dimensional models with time component. 4D models combine 3D models with the time dimension. Thus it is possible to simulate the past, the current and the future condition of natural and cultural heritage objects, their changes, growth, deterioration or oscillation. 3D and 4D models are more explanatory, plastic and attractive to the unprofessional public thus increasing the interest in the digital encyclopaedia. Technological solutions for the project were developed by the consortium partners in the field of web technologies who succeeded to locate all immovable natural and cultural heritage objects. The Google Maps web platform is normally used for 2D representations but it is often too complex to represent a large amount of data. In order to meet the needs of the digital encyclopaedia data need to be structured and linked which is one of the main advantages of Geopedia, an interactive atlas which enables active user participation in adding and editing information on Slovenia. A 3D visualisation tool Gaea+ is used for real time visualisation of 3D models offering user-friendly presentation of any geospatial information and an

  11. The continuous spin representations of the Poincare and super-Poincare groups and their construction by the Inonu-Wigner group contraction

    Science.gov (United States)

    Khan, Abu M. A. S.

    We study the continuous spin representation (CSR) of the Poincare group in arbitrary dimensions. In d dimensions, the CSRs are characterized by the length of the light-cone vector and the Dynkin labels of the SO(d-3) short little group which leaves the light-cone vector invariant. In addition to these, a solid angle Od-3 which specifies the direction of the light-cone vector is also required to label the states. We also find supersymmetric generalizations of the CSRs. In four dimensions, the supermultiplet contains one bosonic and one fermionic CSRs which transform into each other under the action of the supercharges. In a five dimensional case, the supermultiplet contains two bosonic and two fermionic CSRs which is like N = 2 supersymmetry in four dimensions. When constructed using Grassmann parameters, the light-cone vector becomes nilpotent. This makes the representation finite dimensional, but at the expense of introducing central charges even though the representation is massless. This leads to zero or negative norm states. The nilpotent constructions are valid only for even dimensions. We also show how the CSRs in four dimensions can be obtained from five dimensions by the combinations of Kaluza-Klein (KK) dimensional reduction and the Inonu-Wigner group contraction. The group contraction is a singular transformation. We show that the group contraction is equivalent to imposing periodic boundary condition along one direction and taking a double singular limit. In this form the contraction parameter is interpreted as the inverse KK radius. We apply this technique to both five dimensional regular massless and massive representations. For the regular massless case, we find that the contraction gives the CSR in four dimensions under a double singular limit and the representation wavefunction is the Bessel function. For the massive case, we use Majorana's infinite component theory as a model for the SO(4) little group. In this case, a triple singular limit is

  12. Central subspace dimensionality reduction using covariance operators.

    Science.gov (United States)

    Kim, Minyoung; Pavlovic, Vladimir

    2011-04-01

    We consider the task of dimensionality reduction informed by real-valued multivariate labels. The problem is often treated as Dimensionality Reduction for Regression (DRR), whose goal is to find a low-dimensional representation, the central subspace, of the input data that preserves the statistical correlation with the targets. A class of DRR methods exploits the notion of inverse regression (IR) to discover central subspaces. Whereas most existing IR techniques rely on explicit output space slicing, we propose a novel method called the Covariance Operator Inverse Regression (COIR) that generalizes IR to nonlinear input/output spaces without explicit target slicing. COIR's unique properties make DRR applicable to problem domains with high-dimensional output data corrupted by potentially significant amounts of noise. Unlike recent kernel dimensionality reduction methods that employ iterative nonconvex optimization, COIR yields a closed-form solution. We also establish the link between COIR, other DRR techniques, and popular supervised dimensionality reduction methods, including canonical correlation analysis and linear discriminant analysis. We then extend COIR to semi-supervised settings where many of the input points lack their labels. We demonstrate the benefits of COIR on several important regression problems in both fully supervised and semi-supervised settings.

  13. A kernel-based multi-feature image representation for histopathology image classification

    International Nuclear Information System (INIS)

    Moreno J; Caicedo J Gonzalez F

    2010-01-01

    This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further enhanced by the application of latent semantic analysis, to model hidden relationships among visual patterns. All that information is included in the new image representation space. Then, support vector machine classifiers are used to assign semantic labels to images. Processing and classification algorithms operate on top of kernel functions, so that; the structure of the feature space is completely controlled using similarity measures and a dual representation. The proposed approach has shown a successful performance in a classification task using a dataset with 1,502 real histopathology images in 18 different classes. The results show that our approach for histological image classification obtains an improved average performance of 20.6% when compared to a conventional classification approach based on SVM directly applied to the original kernel.

  14. A KERNEL-BASED MULTI-FEATURE IMAGE REPRESENTATION FOR HISTOPATHOLOGY IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    J Carlos Moreno

    2010-09-01

    Full Text Available This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further enhanced by the application of Latent Semantic Analysis, to model hidden relationships among visual patterns. All that information is included in the new image representation space. Then, Support Vector Machine classifiers are used to assign semantic labels to images. Processing and classification algorithms operate on top of kernel functions, so that, the structure of the feature space is completely controlled using similarity measures and a dual representation. The proposed approach has shown a successful performance in a classification task using a dataset with 1,502 real histopathology images in 18 different classes. The results show that our approach for histological image classification obtains an improved average performance of 20.6% when compared to a conventional classification approach based on SVM directly applied to the original kernel.

  15. On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation

    Directory of Open Access Journals (Sweden)

    Yuri Luchko

    2017-12-01

    Full Text Available In this paper, some new properties of the fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation are deduced. We start with the Mellin-Barnes representation of the fundamental solution that was derived in the previous publications of the author. The Mellin-Barnes integral is used to obtain two new representations of the fundamental solution in the form of the Mellin convolution of the special functions of the Wright type. Moreover, some new closed-form formulas for particular cases of the fundamental solution are derived. In particular, we solve the open problem of the representation of the fundamental solution to the two-dimensional neutral-fractional diffusion-wave equation in terms of the known special functions.

  16. DOCUMENT REPRESENTATION FOR CLUSTERING OF SCIENTIFIC ABSTRACTS

    Directory of Open Access Journals (Sweden)

    S. V. Popova

    2014-01-01

    Full Text Available The key issue of the present paper is clustering of narrow-domain short texts, such as scientific abstracts. The work is based on the observations made when improving the performance of key phrase extraction algorithm. An extended stop-words list was used that was built automatically for the purposes of key phrase extraction and gave the possibility for a considerable quality enhancement of the phrases extracted from scientific publications. A description of the stop- words list creation procedure is given. The main objective is to investigate the possibilities to increase the performance and/or speed of clustering by the above-mentioned list of stop-words as well as information about lexeme parts of speech. In the latter case a vocabulary is applied for the document representation, which contains not all the words that occurred in the collection, but only nouns and adjectives or their sequences encountered in the documents. Two base clustering algorithms are applied: k-means and hierarchical clustering (average agglomerative method. The results show that the use of an extended stop-words list and adjective-noun document representation makes it possible to improve the performance and speed of k-means clustering. In a similar case for average agglomerative method a decline in performance quality may be observed. It is shown that the use of adjective-noun sequences for document representation lowers the clustering quality for both algorithms and can be justified only when a considerable reduction of feature space dimensionality is necessary.

  17. A Geometric Representation of Collective Attention Flows.

    Directory of Open Access Journals (Sweden)

    Peiteng Shi

    Full Text Available With the fast development of Internet and WWW, "information overload" has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery. 20% popular sites (Google.com, Myspace.com, Facebook.com, etc. attracting 75% attention flows with only 55% dissipations (log off users locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by "S"-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation.

  18. A Geometric Representation of Collective Attention Flows.

    Science.gov (United States)

    Shi, Peiteng; Huang, Xiaohan; Wang, Jun; Zhang, Jiang; Deng, Su; Wu, Yahui

    2015-01-01

    With the fast development of Internet and WWW, "information overload" has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery). 20% popular sites (Google.com, Myspace.com, Facebook.com, etc.) attracting 75% attention flows with only 55% dissipations (log off users) locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by "S"-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation.

  19. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    Science.gov (United States)

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  20. A higher-dimensional Bianchi type-I inflationary Universe in general ...

    Indian Academy of Sciences (India)

    Inflation, the stage of accelerated expansion of the Universe, first proposed ... ary model in the context of grand unified theory (GUT), which has been ... The role of self-interacting scalar fields in inflationary cosmology in four-dimensional.

  1. Factorizations and physical representations

    International Nuclear Information System (INIS)

    Revzen, M; Khanna, F C; Mann, A; Zak, J

    2006-01-01

    A Hilbert space in M dimensions is shown explicitly to accommodate representations that reflect the decomposition of M into prime numbers. Representations that exhibit the factorization of M into two relatively prime numbers: the kq representation (Zak J 1970 Phys. Today 23 51), and related representations termed q 1 q 2 representations (together with their conjugates) are analysed, as well as a representation that exhibits the complete factorization of M. In this latter representation each quantum number varies in a subspace that is associated with one of the prime numbers that make up M

  2. z -Weyl gravity in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Taeyoon; Oh, Phillial, E-mail: dpproject@skku.edu, E-mail: ploh@skku.edu [Department of Physics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-09-01

    We consider higher dimensional gravity in which the four dimensional spacetime and extra dimensions are not treated on an equal footing. The anisotropy is implemented in the ADM decomposition of higher dimensional metric by requiring the foliation preserving diffeomorphism invariance adapted to the extra dimensions, thus keeping the general covariance only for the four dimensional spacetime. The conformally invariant gravity can be constructed with an extra (Weyl) scalar field and a real parameter z which describes the degree of anisotropy of conformal transformation between the spacetime and extra dimensional metrics. In the zero mode effective 4D action, it reduces to four-dimensional scalar-tensor theory coupled with nonlinear sigma model described by extra dimensional metrics. There are no restrictions on the value of z at the classical level and possible applications to the cosmological constant problem with a specific choice of z are discussed.

  3. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  4. 3D surface parameterization using manifold learning for medial shape representation

    Science.gov (United States)

    Ward, Aaron D.; Hamarneh, Ghassan

    2007-03-01

    The choice of 3D shape representation for anatomical structures determines the effectiveness with which segmentation, visualization, deformation, and shape statistics are performed. Medial axis-based shape representations have attracted considerable attention due to their inherent ability to encode information about the natural geometry of parts of the anatomy. In this paper, we propose a novel approach, based on nonlinear manifold learning, to the parameterization of medial sheets and object surfaces based on the results of skeletonization. For each single-sheet figure in an anatomical structure, we skeletonize the figure, and classify its surface points according to whether they lie on the upper or lower surface, based on their relationship to the skeleton points. We then perform nonlinear dimensionality reduction on the skeleton, upper, and lower surface points, to find the intrinsic 2D coordinate system of each. We then center a planar mesh over each of the low-dimensional representations of the points, and map the meshes back to 3D using the mappings obtained by manifold learning. Correspondence between mesh vertices, established in their intrinsic 2D coordinate spaces, is used in order to compute the thickness vectors emanating from the medial sheet. We show results of our algorithm on real brain and musculoskeletal structures extracted from MRI, as well as an artificial multi-sheet example. The main advantages to this method are its relative simplicity and noniterative nature, and its ability to correctly compute nonintersecting thickness vectors for a medial sheet regardless of both the amount of coincident bending and thickness in the object, and of the incidence of local concavities and convexities in the object's surface.

  5. Inflation from higher dimensions

    International Nuclear Information System (INIS)

    Shafi, Q.

    1987-01-01

    We argue that an inflationary phase in the very early universe is related to the transition from a higher dimensional to a four-dimensional universe. We present details of a previously considered model which gives sufficient inflation without fine tuning of parameters. (orig.)

  6. Distinguishing Representations as Origin and Representations as Input: Roles for Individual Cells

    Directory of Open Access Journals (Sweden)

    Jonathan C.W. Edwards

    2016-09-01

    Full Text Available It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with meaning, interpretation or significance (semantic content. It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right - some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity. The concept of representations-as-input emphasises the need for a ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved in an

  7. Kac--Moody current algebras of D = 2 massless gauge theories, their representations and applications

    International Nuclear Information System (INIS)

    Craigie, N.S.; Nahm, W.; Narain, K.S.

    1987-01-01

    We give a classification of the Kac--Moody current algebras of all the possible massless fermion-gauge theories in two dimensions. It is shown that only Kac--Moody algebras based on A/sub N/, B/sub N/, C/sub N/, and D/sub N/ in the Cartan classification with all possible central charge occur.The representation of local fermion fields and simply laced Kac--Moody algebras with minimal central charge in terms of free boson fields on a compactified space is discussed in detail, where stress is laid on the role played by the boundary conditions on the various collective modes. Fractional solitons and the possible soliton representation of certain nonsimply laced algebras is also analysed. We briefly discuss the relationship between the massless bound state sector of these two-dimensional gauge theories and the critically coupled two-dimensional nonlinear sigma model, which share the same current algebra. Finally we briefly discuss the relevance of Sp(n) Kac--Moody algebras to the physics of monopole-fermion systems. copyright 1987 Academic Press, Inc

  8. Emission of massive scalar fields by a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Kanti, P.; Pappas, N.

    2010-01-01

    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m Φ ≤1 TeV in the bulk and m Φ ≤0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 34%) when the mass of the emitted field is taken into account.

  9. Charged gravastars in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S., E-mail: shnkghosh122@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, B. Garden, Howrah 711103, West Bengal (India); Rahaman, F., E-mail: rahaman@associates.iucaa.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Guha, B.K., E-mail: bkguhaphys@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, B. Garden, Howrah 711103, West Bengal (India); Ray, Saibal, E-mail: saibal@associates.iucaa.in [Department of Physics, Government College of Engineering and Ceramic Technology, 73 A.C.B. Lane, Kolkata 700010, West Bengal (India)

    2017-04-10

    We explore possibility to find out a new model of gravastars in the extended D-dimensional Einstein–Maxwell space–time. The class of solutions as obtained by Mazur and Mottola of a neutral gravastar have been observed as a competent alternative to D-dimensional versions of the Schwarzschild–Tangherlini black hole. The outer region of the charged gravastar model therefore corresponds to a higher dimensional Reissner–Nordström black hole. In connection to this junction conditions, therefore we have formulated mass and the related Equation of State of the gravastar. It has been shown that the model satisfies all the requirements of the physical features. However, overall observational survey of the results also provide probable indication of non-applicability of higher dimensional approach for construction of a gravastar with or without charge from an ordinary 4-dimensional seed as far as physical ground is concerned.

  10. Quantum stochastic calculus and representations of Lie superalgebras

    CERN Document Server

    Eyre, Timothy M W

    1998-01-01

    This book describes the representations of Lie superalgebras that are yielded by a graded version of Hudson-Parthasarathy quantum stochastic calculus. Quantum stochastic calculus and grading theory are given concise introductions, extending readership to mathematicians and physicists with a basic knowledge of algebra and infinite-dimensional Hilbert spaces. The develpment of an explicit formula for the chaotic expansion of a polynomial of quantum stochastic integrals is particularly interesting. The book aims to provide a self-contained exposition of what is known about Z_2-graded quantum stochastic calculus and to provide a framework for future research into this new and fertile area.

  11. Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD.

    Science.gov (United States)

    Bullinaria, John A; Levy, Joseph P

    2012-09-01

    In a previous article, we presented a systematic computational study of the extraction of semantic representations from the word-word co-occurrence statistics of large text corpora. The conclusion was that semantic vectors of pointwise mutual information values from very small co-occurrence windows, together with a cosine distance measure, consistently resulted in the best representations across a range of psychologically relevant semantic tasks. This article extends that study by investigating the use of three further factors--namely, the application of stop-lists, word stemming, and dimensionality reduction using singular value decomposition (SVD)--that have been used to provide improved performance elsewhere. It also introduces an additional semantic task and explores the advantages of using a much larger corpus. This leads to the discovery and analysis of improved SVD-based methods for generating semantic representations (that provide new state-of-the-art performance on a standard TOEFL task) and the identification and discussion of problems and misleading results that can arise without a full systematic study.

  12. Fermion tunnels of higher-dimensional anti-de Sitter Schwarzschild black hole and its corrected entropy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Kai, E-mail: lk314159@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China); Yang Shuzheng, E-mail: szyangcwnu@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)

    2009-10-12

    Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the 'tortoise' coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r-t) sector is important to our research. Because we only need to study the (r-t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.

  13. Canonical representations of the Lie superalgebra osp(1,4)

    International Nuclear Information System (INIS)

    Blank, J.; Havlicek, M.; Lassner, W.; Bednar, M.

    1981-06-01

    The method for constructing infinite dimensional representations of Lie superalgebras proposed by the authors recently is applied to the superalgebra osp(1,4). Explicit formulae for its generators in terms of two or three pairs of operators fulfilling the canonical commutation relations, at most one pair of operators fulfilling the canonical anticommutation relations and at most one real parameter are obtained. The generators of the Lie subalgebra sp(4,IR) contains osp(1,4) are represented skew-symmetrically and both Casimir operators are equal to multiples of the unity operator. (author)

  14. On push-forward representations in the standard gyrokinetic model

    International Nuclear Information System (INIS)

    Miyato, N.; Yagi, M.; Scott, B. D.

    2015-01-01

    Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear

  15. On push-forward representations in the standard gyrokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Miyato, N., E-mail: miyato.naoaki@jaea.go.jp; Yagi, M. [Japan Atomic Energy Agency, 2-116 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Scott, B. D. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-01-15

    Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear.

  16. First law of black ring thermodynamics in higher dimensional Chern-Simons gravity

    International Nuclear Information System (INIS)

    Rogatko, Marek

    2007-01-01

    The physical process version and the equilibrium state version of the first law of black ring thermodynamics in n-dimensional Einstein gravity with Chern-Simons term were derived. This theory constitutes the simplest generalization of the five-dimensional one admitting a stationary black ring solution. The equilibrium state version of the first law of black ring mechanics was achieved by choosing any cross section of the event horizon to the future of the bifurcation surface

  17. Graph-representation of oxidative folding pathways

    Directory of Open Access Journals (Sweden)

    Kaján László

    2005-01-01

    Full Text Available Abstract Background The process of oxidative folding combines the formation of native disulfide bond with conformational folding resulting in the native three-dimensional fold. Oxidative folding pathways can be described in terms of disulfide intermediate species (DIS which can also be isolated and characterized. Each DIS corresponds to a family of folding states (conformations that the given DIS can adopt in three dimensions. Results The oxidative folding space can be represented as a network of DIS states interconnected by disulfide interchange reactions that can either create/abolish or rearrange disulfide bridges. We propose a simple 3D representation wherein the states having the same number of disulfide bridges are placed on separate planes. In this representation, the shuffling transitions are within the planes, and the redox edges connect adjacent planes. In a number of experimentally studied cases (bovine pancreatic trypsin inhibitor, insulin-like growth factor and epidermal growth factor, the observed intermediates appear as part of contiguous oxidative folding pathways. Conclusions Such networks can be used to visualize folding pathways in terms of the experimentally observed intermediates. A simple visualization template written for the Tulip package http://www.tulip-software.org/ can be obtained from V.A.

  18. Multi-representation based on scientific investigation for enhancing students’ representation skills

    Science.gov (United States)

    Siswanto, J.; Susantini, E.; Jatmiko, B.

    2018-03-01

    This research aims to implementation learning physics with multi-representation based on the scientific investigation for enhancing students’ representation skills, especially on the magnetic field subject. The research design is one group pretest-posttest. This research was conducted in the department of mathematics education, Universitas PGRI Semarang, with the sample is students of class 2F who take basic physics courses. The data were obtained by representation skills test and documentation of multi-representation worksheet. The Results show gain analysis value of .64 which means some medium improvements. The result of t-test (α = .05) is shows p-value = .001. This learning significantly improves students representation skills.

  19. Representation in Memory.

    Science.gov (United States)

    Rumelhart, David E.; Norman, Donald A.

    This paper reviews work on the representation of knowledge from within psychology and artificial intelligence. The work covers the nature of representation, the distinction between the represented world and the representing world, and significant issues concerned with propositional, analogical, and superpositional representations. Specific topics…

  20. Attention and Representational Momentum

    OpenAIRE

    Hayes, Amy; Freyd, Jennifer J

    1995-01-01

    Representational momentum, the tendency for memory to be distorted in the direction of an implied transformation, suggests that dynamics are an intrinsic part of perceptual representations. We examined the effect of attention on dynamic representation by testing for representational momentum under conditions of distraction. Forward memory shifts increase when attention is divided. Attention may be involved in halting but not in maintaining dynamic representations.

  1. A communication-channel-based representation system for software

    NARCIS (Netherlands)

    Demirezen, Zekai; Tanik, Murat M.; Aksit, Mehmet; Skjellum, Anthony

    We observed that before initiating software development the objectives are minimally organized and developers introduce comparatively higher organization throughout the design process. To be able to formally capture this observation, a new communication channel representation system for software is

  2. Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation

    NARCIS (Netherlands)

    P.W. Hemker (Piet); M.H. van Raalte (Marc)

    2002-01-01

    textabstractIn this paper we study the convergence of a multigrid method for the solution of a two-dimensional linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods. For the Baumann-Oden and for the symmetric DG method, we give a detailed analysis of the

  3. Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.

    Science.gov (United States)

    Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen

    2017-08-29

    In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.

  4. Some spacetimes with higher rank Killing-Staeckel tensors

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Houri, T.; Kubiznak, D.; Warnick, C.M.

    2011-01-01

    By applying the lightlike Eisenhart lift to several known examples of low-dimensional integrable systems admitting integrals of motion of higher-order in momenta, we obtain four- and higher-dimensional Lorentzian spacetimes with irreducible higher-rank Killing tensors. Such metrics, we believe, are first examples of spacetimes admitting higher-rank Killing tensors. Included in our examples is a four-dimensional supersymmetric pp-wave spacetime, whose geodesic flow is superintegrable. The Killing tensors satisfy a non-trivial Poisson-Schouten-Nijenhuis algebra. We discuss the extension to the quantum regime.

  5. Development of a global aerosol model using a two-dimensional sectional method: 1. Model design

    Science.gov (United States)

    Matsui, H.

    2017-08-01

    This study develops an aerosol module, the Aerosol Two-dimensional bin module for foRmation and Aging Simulation version 2 (ATRAS2), and implements the module into a global climate model, Community Atmosphere Model. The ATRAS2 module uses a two-dimensional (2-D) sectional representation with 12 size bins for particles from 1 nm to 10 μm in dry diameter and 8 black carbon (BC) mixing state bins. The module can explicitly calculate the enhancement of absorption and cloud condensation nuclei activity of BC-containing particles by aging processes. The ATRAS2 module is an extension of a 2-D sectional aerosol module ATRAS used in our previous studies within a framework of a regional three-dimensional model. Compared with ATRAS, the computational cost of the aerosol module is reduced by more than a factor of 10 by simplifying the treatment of aerosol processes and 2-D sectional representation, while maintaining good accuracy of aerosol parameters in the simulations. Aerosol processes are simplified for condensation of sulfate, ammonium, and nitrate, organic aerosol formation, coagulation, and new particle formation processes, and box model simulations show that these simplifications do not substantially change the predicted aerosol number and mass concentrations and their mixing states. The 2-D sectional representation is simplified (the number of advected species is reduced) primarily by the treatment of chemical compositions using two interactive bin representations. The simplifications do not change the accuracy of global aerosol simulations. In part 2, comparisons with measurements and the results focused on aerosol processes such as BC aging processes are shown.

  6. LGBT Representations on Facebook : Representations of the Self and the Content

    OpenAIRE

    Chu, Yawen

    2017-01-01

    The topic of LGBT rights has been increasingly discussed and debated over recent years. More and more scholars show their interests in the field of LGBT representations in media. However, not many studies involved LGBT representations in social media. This paper explores LGBT representations on Facebook by analysing posts on an open page and in a private group, including both representations of the self as the identity of sexual minorities, content that is displayed on Facebook and the simila...

  7. Emerging Object Representations in the Visual System Predict Reaction Times for Categorization

    Science.gov (United States)

    Ritchie, J. Brendan; Tovar, David A.; Carlson, Thomas A.

    2015-01-01

    Recognizing an object takes just a fraction of a second, less than the blink of an eye. Applying multivariate pattern analysis, or “brain decoding”, methods to magnetoencephalography (MEG) data has allowed researchers to characterize, in high temporal resolution, the emerging representation of object categories that underlie our capacity for rapid recognition. Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional activation space in the brain. In this emerging activation space, the decodability of exemplar category varies over time, reflecting the brain’s transformation of visual inputs into coherent category representations. How do these emerging representations relate to categorization behavior? Recently it has been proposed that the distance of an exemplar representation from a categorical boundary in an activation space is critical for perceptual decision-making, and that reaction times should therefore correlate with distance from the boundary. The predictions of this distance hypothesis have been born out in human inferior temporal cortex (IT), an area of the brain crucial for the representation of object categories. When viewed in the context of a time varying neural signal, the optimal time to “read out” category information is when category representations in the brain are most decodable. Here, we show that the distance from a decision boundary through activation space, as measured using MEG decoding methods, correlates with reaction times for visual categorization during the period of peak decodability. Our results suggest that the brain begins to read out information about exemplar category at the optimal time for use in choice behaviour, and support the hypothesis that the structure of the representation for objects in the visual system is partially constitutive of the decision process in recognition. PMID:26107634

  8. Discrete series representations for sl(2|1), Meixner polynomials and oscillator models

    International Nuclear Information System (INIS)

    Jafarov, E I; Van der Jeugt, J

    2012-01-01

    We explore a model for a one-dimensional quantum oscillator based on the Lie superalgebra sl(2|1). For this purpose, a class of discrete series representations of sl(2|1) is constructed, each representation characterized by a real number β > 0. In this model, the position and momentum operators of the oscillator are odd elements of sl(2|1) and their expressions involve an arbitrary parameter γ. In each representation, the spectrum of the Hamiltonian is the same as that of a canonical oscillator. The spectrum of a position operator can be continuous or infinite discrete, depending on the value of γ. We determine the position wavefunctions both in the continuous and the discrete case and discuss their properties. In the discrete case, these wavefunctions are given in terms of Meixner polynomials. From the embedding osp(1|2) subset of sl(2|1), it can be seen why the case γ = 1 corresponds to a paraboson oscillator. Consequently, taking the values (β, γ) = (1/2, 1) in the sl(2|1) model yields a canonical oscillator. (paper)

  9. A new (in)finite-dimensional algebra for quantum integrable models

    International Nuclear Information System (INIS)

    Baseilhac, Pascal; Koizumi, Kozo

    2005-01-01

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models

  10. Continuous versus discontinuous albedo representations in a simple diffusive climate model

    Science.gov (United States)

    Simmons, P. A.; Griffel, D. H.

    1988-07-01

    A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.

  11. Efficient Online Aggregates in Dense-Region-Based Data Cube Representations

    Science.gov (United States)

    Haddadin, Kais; Lauer, Tobias

    In-memory OLAP systems require a space-efficient representation of sparse data cubes in order to accommodate large data sets. On the other hand, most efficient online aggregation techniques, such as prefix sums, are built on dense array-based representations. These are often not applicable to real-world data due to the size of the arrays which usually cannot be compressed well, as most sparsity is removed during pre-processing. A possible solution is to identify dense regions in a sparse cube and only represent those using arrays, while storing sparse data separately, e.g. in a spatial index structure. Previous dense-region-based approaches have concentrated mainly on the effectiveness of the dense-region detection (i.e. on the space-efficiency of the result). However, especially in higher-dimensional cubes, data is usually more cluttered, resulting in a potentially large number of small dense regions, which negatively affects query performance on such a structure. In this paper, our focus is not only on space-efficiency but also on time-efficiency, both for the initial dense-region extraction and for queries carried out in the resulting hybrid data structure. We describe two methods to trade available memory for increased aggregate query performance. In addition, optimizations in our approach significantly reduce the time to build the initial data structure compared to former systems. Also, we present a straightforward adaptation of our approach to support multi-core or multi-processor architectures, which can further enhance query performance. Experiments with different real-world data sets show how various parameter settings can be used to adjust the efficiency and effectiveness of our algorithms.

  12. BEYOND THE DYAD: THE RELATIONSHIP BETWEEN PRESCHOOLERS' ATTACHMENT REPRESENTATIONS AND FAMILY TRIADIC INTERACTIONS.

    Science.gov (United States)

    C, Francisca Pérez; Moessner, Markus; A, María Pía Santelices

    2017-03-01

    This study examines the relationship between triadic family interactions and preschoolers' attachment representations, or internal working models (IWMs), from a qualitative and dimensional perspective. Individual, relational, and sociocultural variables were evaluated using two different samples. The results showed that triadic family interactions were linked to preschoolers' attachment security levels in both groups, indicating the reliability of the proposed model. © 2017 Michigan Association for Infant Mental Health.

  13. Gelfand-Dikii Hamiltonian operator and co-ad joint representation of the Volterra group

    International Nuclear Information System (INIS)

    Lebedev, D.R.; Manin, Yu.I.

    1978-01-01

    It is shown that the Gelfand-Dikii Hamiltonian structure is an analogue of a very special class of finite-dimensional symplectic structures, namely, the Kirillow structures on the orbits of the co-adjoint representation of the Lie groups. The Lie group is represented by the Volterra operators. The main interest lies in the possibility of application of the ideology of ''geometric quantization'' to the Lax equations

  14. Parallel log structured file system collective buffering to achieve a compact representation of scientific and/or dimensional data

    Science.gov (United States)

    Grider, Gary A.; Poole, Stephen W.

    2015-09-01

    Collective buffering and data pattern solutions are provided for storage, retrieval, and/or analysis of data in a collective parallel processing environment. For example, a method can be provided for data storage in a collective parallel processing environment. The method comprises receiving data to be written for a plurality of collective processes within a collective parallel processing environment, extracting a data pattern for the data to be written for the plurality of collective processes, generating a representation describing the data pattern, and saving the data and the representation.

  15. Sparse Representations of Hyperspectral Images

    KAUST Repository

    Swanson, Robin J.

    2015-11-23

    Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.

  16. Sparse Representations of Hyperspectral Images

    KAUST Repository

    Swanson, Robin J.

    2015-01-01

    Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.

  17. Summary of the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere: 1981

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1981-09-01

    Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere

  18. Dimensional transition of the universe

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1989-08-01

    In the extended n-dimensional Einstein theory of gravitation, where the spacetime dimension can be taken as a 'dynamical variable' which is determined by the 'Hamilton principle' of minimizing the extended Einstein-Hilbert action, it is suggested that our Universe of four-dimensional spacetime may encounter an astonishing dimensional transition into a new universe of three-dimensional or higher-than-four-dimensional spacetime. (author)

  19. Three-dimensional morphologic description and visualization of brain anatomy from MR images

    International Nuclear Information System (INIS)

    Kraske, W.; George, F.W.; Zee, C.S.; Colletti, P.M.; Halls, J.M.; Boswell, W.O.

    1989-01-01

    The USC VOXAR-MRI system incorporates MR tissue classification algorithms to provide dynamic three- dimensional volumetric visualization and discrimination of brain anatomy and pathology for precision diagnosis, staging, and treatment planning. The VOXAR-MRI approach to tissue classification employs the three-dimensional reconstruction of various intracranial features from gray-scale morphologic erosion and dilation (GMED)-derived skeleton representation of the MR acquisition. Case presentations include an array of VOXAR-MRI-demonstrated tumors, abscesses, hematomas, and other lesions

  20. Uncovering the Images and Meanings of International Organizations (IOs) in Higher Education Research

    Science.gov (United States)

    Shahjahan, Riyad A.; Madden, Meggan

    2015-01-01

    Employing Stuart Hall's concept of representation, we examine how international organizations (IOs) are presented in the higher education literature. This paper examines how IOs, such as the World Bank, OECD, and UNESCO, are conceptualized and represented by higher education researchers. We focus on three main representations of IOs in the higher…

  1. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kunkun, E-mail: ktg@illinois.edu [The Center for Exascale Simulation of Plasma-Coupled Combustion (XPACC), University of Illinois at Urbana–Champaign, 1308 W Main St, Urbana, IL 61801 (United States); Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence (France); Congedo, Pietro M. [Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence (France); Abgrall, Rémi [Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2016-06-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  2. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    International Nuclear Information System (INIS)

    Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi

    2016-01-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  3. Representation of photon limited data in emission tomography using origin ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, A [Radiology Department, Brigham and Women' s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States)], E-mail: asitek@bwh.harvard.edu

    2008-06-21

    Representation and reconstruction of data obtained by emission tomography scanners are challenging due to high noise levels in the data. Typically, images obtained using tomographic measurements are represented using grids. In this work, we define images as sets of origins of events detected during tomographic measurements; we call these origin ensembles (OEs). A state in the ensemble is characterized by a vector of 3N parameters Y, where the parameters are the coordinates of origins of detected events in a three-dimensional space and N is the number of detected events. The 3N-dimensional probability density function (PDF) for that ensemble is derived, and we present an algorithm for OE image estimation from tomographic measurements. A displayable image (e.g. grid based image) is derived from the OE formulation by calculating ensemble expectations based on the PDF using the Markov chain Monte Carlo method. The approach was applied to computer-simulated 3D list-mode positron emission tomography data. The reconstruction errors for a 10 000 000 event acquisition for simulated ranged from 0.1 to 34.8%, depending on object size and sampling density. The method was also applied to experimental data and the results of the OE method were consistent with those obtained by a standard maximum-likelihood approach. The method is a new approach to representation and reconstruction of data obtained by photon-limited emission tomography measurements.

  4. Representation of photon limited data in emission tomography using origin ensembles

    Science.gov (United States)

    Sitek, A.

    2008-06-01

    Representation and reconstruction of data obtained by emission tomography scanners are challenging due to high noise levels in the data. Typically, images obtained using tomographic measurements are represented using grids. In this work, we define images as sets of origins of events detected during tomographic measurements; we call these origin ensembles (OEs). A state in the ensemble is characterized by a vector of 3N parameters Y, where the parameters are the coordinates of origins of detected events in a three-dimensional space and N is the number of detected events. The 3N-dimensional probability density function (PDF) for that ensemble is derived, and we present an algorithm for OE image estimation from tomographic measurements. A displayable image (e.g. grid based image) is derived from the OE formulation by calculating ensemble expectations based on the PDF using the Markov chain Monte Carlo method. The approach was applied to computer-simulated 3D list-mode positron emission tomography data. The reconstruction errors for a 10 000 000 event acquisition for simulated ranged from 0.1 to 34.8%, depending on object size and sampling density. The method was also applied to experimental data and the results of the OE method were consistent with those obtained by a standard maximum-likelihood approach. The method is a new approach to representation and reconstruction of data obtained by photon-limited emission tomography measurements.

  5. Representation of photon limited data in emission tomography using origin ensembles

    International Nuclear Information System (INIS)

    Sitek, A

    2008-01-01

    Representation and reconstruction of data obtained by emission tomography scanners are challenging due to high noise levels in the data. Typically, images obtained using tomographic measurements are represented using grids. In this work, we define images as sets of origins of events detected during tomographic measurements; we call these origin ensembles (OEs). A state in the ensemble is characterized by a vector of 3N parameters Y, where the parameters are the coordinates of origins of detected events in a three-dimensional space and N is the number of detected events. The 3N-dimensional probability density function (PDF) for that ensemble is derived, and we present an algorithm for OE image estimation from tomographic measurements. A displayable image (e.g. grid based image) is derived from the OE formulation by calculating ensemble expectations based on the PDF using the Markov chain Monte Carlo method. The approach was applied to computer-simulated 3D list-mode positron emission tomography data. The reconstruction errors for a 10 000 000 event acquisition for simulated ranged from 0.1 to 34.8%, depending on object size and sampling density. The method was also applied to experimental data and the results of the OE method were consistent with those obtained by a standard maximum-likelihood approach. The method is a new approach to representation and reconstruction of data obtained by photon-limited emission tomography measurements

  6. Massive Higher Dimensional Gauge Fields as Messengers of Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Chacko, Z.; Luty, Markus A.; Ponton, Eduardo

    2000-01-01

    We consider theories with one or more compact dimensions with size r > 1/M, where M is the fundamental Planck scale, with the visible and hidden sectors localized on spatially separated 3 -branes''. We show that a bulk U(1) gauge field spontaneously broken on the hidden-sector 3-brane is an attractive candidate for the messenger of supersymmetry breaking. In this scenario scalar mass-squared terms are proportional to U(1) charges, and therefore naturally conserve flavor. Arbitrary flavor violation at the Planck scale gives rise to exponentially suppressed flavor violation at low energies. Gaugino masses can be generated if the standard gauge fields propagate in the bulk; μ and Bμ terms can be generated by the Giudice-Masiero or by the VEV of a singlet in the visible sector. The latter case naturally solves the SUSY CP problem. Realistic phenomenology can be obtained either if all microscopic parameters are order one in units of M, or if the theory is strongly coupled at the scale M. (For the latter case, we estimate parameters by extending n aive dimensional analysis'' to higher-dimension theories with branes.) In either case, the only unexplained hierarchy is the l arge'' size of the extra dimensions in fundamental units, which need only be an order of magnitude. All soft masses are naturally within an order of magnitude of m 3/2 , and trilinear scalar couplings are negligible. Squark and slepton masses can naturally unify even in the absence of grand unification. (author)

  7. Representation Elements of Spatial Thinking

    Science.gov (United States)

    Fiantika, F. R.

    2017-04-01

    This paper aims to add a reference in revealing spatial thinking. There several definitions of spatial thinking but it is not easy to defining it. We can start to discuss the concept, its basic a forming representation. Initially, the five sense catch the natural phenomenon and forward it to memory for processing. Abstraction plays a role in processing information into a concept. There are two types of representation, namely internal representation and external representation. The internal representation is also known as mental representation; this representation is in the human mind. The external representation may include images, auditory and kinesthetic which can be used to describe, explain and communicate the structure, operation, the function of the object as well as relationships. There are two main elements, representations properties and object relationships. These elements play a role in forming a representation.

  8. Nonasymptotic form of the recursion relations of the three-dimensional Ising model

    International Nuclear Information System (INIS)

    Kozlovskii, M.P.

    1989-01-01

    Approximate recursion relations for the three-dimensional Ising model are obtained in the form of rapidly converging series. The representation of the recursion relations in the form of nonasymptotic series entails the abandonment of traditional perturbation theory based on a Gaussian measure density. The recursion relations proposed in the paper are used to calculate the critical exponent ν of the correlation length. It is shown that the difference form of the recursion relations leads, when higher non-Gaussian basis measures are used, to disappearance of a dependence of the critical exponent ν on s when s > 2 (s is the parameter of the division of the phase space into layers). The obtained results make it possible to calculate explicit expressions for the thermodynamic functions near the phase transition point

  9. Classification of the Weyl tensor in higher dimensions and applications

    International Nuclear Information System (INIS)

    Coley, A

    2008-01-01

    We review the theory of alignment in Lorentzian geometry and apply it to the algebraic classification of the Weyl tensor in higher dimensions. This classification reduces to the well-known Petrov classification of the Weyl tensor in four dimensions. We discuss the algebraic classification of a number of known higher dimensional spacetimes. There are many applications of the Weyl classification scheme, especially when used in conjunction with the higher dimensional frame formalism that has been developed in order to generalize the four-dimensional Newman-Penrose formalism. For example, we discuss higher dimensional generalizations of the Goldberg-Sachs theorem and the peeling theorem. We also discuss the higher dimensional Lorentzian spacetimes with vanishing scalar curvature invariants and constant scalar curvature invariants, which are of interest since they are solutions of supergravity theory. (topical review)

  10. When mirroring is both simple and smart: How mimicry can be embodied, adaptive, and non-representational

    Directory of Open Access Journals (Sweden)

    Evan Walker Carr

    2014-07-01

    Full Text Available The concept of mirroring has become rather ubiquitous. One of the most fundamental empirical and theoretical debates within research on mirroring concerns the role of mental representations: While some models argue that higher-order representational mechanisms underpin most cases of mirroring, other models argue that they only moderate a primarily non-representational process. As such, even though research on mirroring—along with its neural substrates, including the putative mirror neuron system—has grown tremendously, so too has confusion about what it actually means to mirror. Using recent research on spontaneous imitation, we argue that flexible mirroring effects can be fully embodied and dynamic—even in the absence of higher-order mental representations. We propose that mirroring can simply reflect an adaptive integration and utilization of cues obtained from the brain, body, and environment, which is especially evident within the social context. Such a view offers reconciliation among both representational and non-representational frameworks in cognitive neuroscience, which will facilitate revised interpretations of modern (and seemingly divergent findings on when and how these embodied mirroring responses are employed.

  11. The three-dimensional origin of the classifying algebra

    International Nuclear Information System (INIS)

    Fuchs, Juergen; Schweigert, Christoph; Stigner, Carl

    2010-01-01

    It is known that reflection coefficients for bulk fields of a rational conformal field theory in the presence of an elementary boundary condition can be obtained as representation matrices of irreducible representations of the classifying algebra, a semisimple commutative associative complex algebra. We show how this algebra arises naturally from the three-dimensional geometry of factorization of correlators of bulk fields on the disk. This allows us to derive explicit expressions for the structure constants of the classifying algebra as invariants of ribbon graphs in the three-manifold S 2 xS 1 . Our result unravels a precise relation between intertwiners of the action of the mapping class group on spaces of conformal blocks and boundary conditions in rational conformal field theories.

  12. On construction of two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space

    International Nuclear Information System (INIS)

    Saveliev, M.V.

    1983-01-01

    In the framework of the algebraic approach a construction of exactly integrable two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space Rsub(N) of an arbitrary dimension is presented. The construction is based on a reformulation of the Gauss, Peterson-Codazzi and Ricci equations in the form of a Lax-type representation in two-dimensional space. Here the Lax pair operators take the values in algebra SO(N)

  13. Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments

    NARCIS (Netherlands)

    Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke

    Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode,

  14. Strategies to Evaluate the Visibility Along AN Indoor Path in a Point Cloud Representation

    Science.gov (United States)

    Grasso, N.; Verbree, E.; Zlatanova, S.; Piras, M.

    2017-09-01

    Many research works have been oriented to the formulation of different algorithms for estimating the paths in indoor environments from three-dimensional representations of space. The architectural configuration, the actions that take place within it, and the location of some objects in the space influence the paths along which is it possible to move, as they may cause visibility problems. To overcome the visibility issue, different methods have been proposed which allow to identify the visible areas and from a certain point of view, but often they do not take into account the user's visual perception of the environment and not allow estimating how much may be complicated to follow a certain path. In the field of space syntax and cognitive science, it has been attempted to describe the characteristics of a building or an urban environment by the isovists and visibility graphs methods; some numerical properties of these representations allow to describe the space as for how it is perceived by a user. However, most of these studies are directed to analyze the environment in a two-dimensional space. In this paper we propose a method to evaluate in a quantitative way the complexity of a certain path within an environment represented by a three-dimensional point cloud, by the combination of some of the previously mentioned techniques, considering the space visible from a certain point of view, depending on the moving agent (pedestrian , people in wheelchairs, UAV, UGV, robot).

  15. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    Science.gov (United States)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  16. Advances in visual representation of molecular potentials.

    Science.gov (United States)

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  17. Document representations for classification of short web-page descriptions

    Directory of Open Access Journals (Sweden)

    Radovanović Miloš

    2008-01-01

    Full Text Available Motivated by applying Text Categorization to classification of Web search results, this paper describes an extensive experimental study of the impact of bag-of- words document representations on the performance of five major classifiers - Naïve Bayes, SVM, Voted Perceptron, kNN and C4.5. The texts, representing short Web-page descriptions sorted into a large hierarchy of topics, are taken from the dmoz Open Directory Web-page ontology, and classifiers are trained to automatically determine the topics which may be relevant to a previously unseen Web-page. Different transformations of input data: stemming, normalization, logtf and idf, together with dimensionality reduction, are found to have a statistically significant improving or degrading effect on classification performance measured by classical metrics - accuracy, precision, recall, F1 and F2. The emphasis of the study is not on determining the best document representation which corresponds to each classifier, but rather on describing the effects of every individual transformation on classification, together with their mutual relationships. .

  18. Graphical Representation of Complex Solutions of the Quadratic Equation in the "xy" Plane

    Science.gov (United States)

    McDonald, Todd

    2006-01-01

    This paper presents a visual representation of complex solutions of quadratic equations in the xy plane. Rather than moving to the complex plane, students are able to experience a geometric interpretation of the solutions in the xy plane. I am also working on these types of representations with higher order polynomials with some success.

  19. Poetic representation

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard

    2012-01-01

    , and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in participative social...

  20. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    Science.gov (United States)

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  1. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Wenjia Liu

    2013-01-01

    Full Text Available This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate.

  2. On higher-spin supertranslations and superrotations

    Energy Technology Data Exchange (ETDEWEB)

    Campoleoni, Andrea [Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Francia, Dario; Heissenberg, Carlo [Scuola Normale Superiore and INFN,Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2017-05-22

    We study the large gauge transformations of massless higher-spin fields in four-dimensional Minkowski space. Upon imposing suitable fall-off conditions, providing higher-spin counterparts of the Bondi gauge, we observe the existence of an infinite-dimensional asymptotic symmetry algebra. The corresponding Ward identities can be held responsible for Weinberg’s factorisation theorem for amplitudes involving soft particles of spin greater than two.

  3. An Eye-tracking Study of Notational, Informational, and Emotional Aspects of Learning Analytics Representations

    DEFF Research Database (Denmark)

    Vatrapu, Ravi; Reimann, Peter; Bull, Susan

    2013-01-01

    This paper presents an eye-tracking study of notational, informational, and emotional aspects of nine different notational systems (Skill Meters, Smilies, Traffic Lights, Topic Boxes, Collective Histograms, Word Clouds, Textual Descriptors, Table, and Matrix) and three different information states...... (Weak, Average, & Strong) used to represent student's learning. Findings from the eye-tracking study show that higher emotional activation was observed for the metaphorical notations of traffic lights and smilies and collective representations. Mean view time was higher for representations...... of the "average" informational learning state. Qualitative data analysis of the think-aloud comments and post-study interview show that student participants reflected on the meaning-making opportunities and action-taking possibilities afforded by the representations. Implications for the design and evaluation...

  4. Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods

    DEFF Research Database (Denmark)

    Brander, David; Rossman, Wayne; Schmitt, Nicholas

    2010-01-01

    We give an infinite dimensional generalized Weierstrass representation for spacelike constant mean curvature (CMC) surfaces in Minkowski 3-space $\\R^{2,1}$. The formulation is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in Euclidean space, replacing the group $SU_2$ with...

  5. A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid

    International Nuclear Information System (INIS)

    Kirkpatrick, M.P.; Armfield, S.W.; Kent, J.H.

    2003-01-01

    A method is presented for representing curved boundaries for the solution of the Navier-Stokes equations on a non-uniform, staggered, three-dimensional Cartesian grid. The approach involves truncating the Cartesian cells at the boundary surface to create new cells which conform to the shape of the surface. We discuss in some detail the problems unique to the development of a cut cell method on a staggered grid. Methods for calculating the fluxes through the boundary cell faces, for representing pressure forces and for calculating the wall shear stress are derived and it is verified that the new scheme retains second-order accuracy in space. In addition, a novel 'cell-linking' method is developed which overcomes problems associated with the creation of small cells while avoiding the complexities involved with other cell-merging approaches. Techniques are presented for generating the geometric information required for the scheme based on the representation of the boundaries as quadric surfaces. The new method is tested for flow through a channel placed oblique to the grid and flow past a cylinder at Re=40 and is shown to give significant improvement over a staircase boundary formulation. Finally, it is used to calculate unsteady flow past a hemispheric protuberance on a plate at a Reynolds number of 800. Good agreement is obtained with experimental results for this flow

  6. Dimensional representations of DSM-IV cluster B personality disorders in a population-based sample of Norwegian twins: a multivariate study.

    Science.gov (United States)

    Torgersen, S; Czajkowski, N; Jacobson, K; Reichborn-Kjennerud, T; Røysamb, E; Neale, M C; Kendler, K S

    2008-11-01

    The personality disorders (PDs) in the 'dramatic' cluster B [antisocial (ASPD), histrionic (HPD), narcissistic (NPD) and borderline (BPD)] demonstrate co-morbidity. However, the degree to which genetic and/or environmental factors influence their co-occurrence is not known and, with the exception of ASPD, the relative impact of genetic and environmental risk factors on liability to the cluster B PDs has not been conclusively established. PD traits were assessed in 1386 Norwegian twin pairs between the age of 19 and 35 years using the Structured Interview for DSM-IV Personality Disorders (SIDP-IV). Using the statistical package Mx, multivariate twin models were fitted to dimensional representations of the PDs. The best-fitting model, which did not include sex or shared family environment effects, included common genetic and environmental factors influencing all four dramatic PD traits, and factors influencing only ASPD and BPD. Heritability was estimated at 38% for ASPD traits, 31% for HPD traits, 24% for NPD traits and 35% for BPD traits. BPD traits had the lowest and ASPD traits the highest disorder-specific genetic variance. The frequently observed co-morbidity between cluster B PDs results from both common genetic and environmental influences. Etiologically, cluster B has a 'substructure' in which ASPD and BPD are more closely related to each other than to the other cluster B disorders.

  7. Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy

    Science.gov (United States)

    Naaz, Farah

    Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D representations only. The Integrated 2D3D group learned sectional anatomy from a graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to interpreting biomedical images was conducted immediately after learning was completed. The order of presentation of the tests of generalization of knowledge was counterbalanced across participants to explore a secondary hypothesis of the study: preparation for future learning. If the computer-based instruction programs used in this study are effective tools for teaching anatomy, the participants should continue learning neuroanatomy with exposure to new representations. A test of long-term retention of sectional anatomy was conducted 4-8 weeks after learning was completed. The Integrated 2D3D group was better than the Whole then Sections group in retaining knowledge of difficult instances of sectional anatomy after the retention interval. The benefit

  8. Turning Symbolic: The representation of motion direction in working memory

    Directory of Open Access Journals (Sweden)

    Tal eSeidel Malkinson

    2016-02-01

    Full Text Available What happens to the representation of a moving stimulus when it is no longer present and its motion direction has to be maintained in working memory (WM? Is the initial, sensorial representation maintained during the delay period or is there another representation, at a higher level of abstraction? It is also feasible that multiple representations may co-exist in WM, manifesting different facets of sensory and more abstract features.To that end, we investigated the mnemonic representation of motion direction in a series of three psychophysical experiments, using a delayed motion-discrimination task (relative clockwisecounter-clockwise judgment. First, we show that a change in the dots' contrast polarity does not hamper performance. Next, we demonstrate that performance is unaffected by relocation of the Test stimulus in either retinotopic or spatiotopic coordinate frames. Finally, we show that an arrow-shaped cue presented during the delay interval between the Sample and Test stimulus, biases performance towards the direction of the arrow, although the cue itself is non-informative (it has no predictive value of the correct answer. These results indicate that the representation of motion direction in WM is independent of the physical features of the stimulus (polarity or position and has non-sensorial abstract qualities. It is plausible that an abstract mnemonic trace might be activated alongside a more basic, analogue representation of the stimulus. We speculate that the specific sensitivity of the mnemonic representation to the arrow-shaped symbol may stem from the long term learned association between direction and the hour in the clock.

  9. Fractional Delayer Utilizing Hermite Interpolation with Caratheodory Representation

    Directory of Open Access Journals (Sweden)

    Qiang DU

    2018-04-01

    Full Text Available Fractional delay is indispensable for many sorts of circuits and signal processing applications. Fractional delay filter (FDF utilizing Hermite interpolation with an analog differentiator is a straightforward way to delay discrete signals. This method has a low time-domain error, but a complicated sampling module than the Shannon sampling scheme. A simplified scheme, which is based on Shannon sampling and utilizing Hermite interpolation with a digital differentiator, will lead a much higher time-domain error when the signal frequency approaches the Nyquist rate. In this letter, we propose a novel fractional delayer utilizing Hermite interpolation with Caratheodory representation. The samples of differential signal are obtained by Caratheodory representation from the samples of the original signal only. So, only one sampler is needed and the sampling module is simple. Simulation results for four types of signals demonstrate that the proposed method has significantly higher interpolation accuracy than Hermite interpolation with digital differentiator.

  10. Understanding representations in design

    DEFF Research Database (Denmark)

    Bødker, Susanne

    1998-01-01

    Representing computer applications and their use is an important aspect of design. In various ways, designers need to externalize design proposals and present them to other designers, users, or managers. This article deals with understanding design representations and the work they do in design....... The article is based on a series of theoretical concepts coming out of studies of scientific and other work practices and on practical experiences from design of computer applications. The article presents alternatives to the ideas that design representations are mappings of present or future work situations...... and computer applications. It suggests that representations are primarily containers of ideas and that representation is situated at the same time as representations are crossing boundaries between various design and use activities. As such, representations should be carriers of their own contexts regarding...

  11. TRIMARAN: a three dimensional multigroup P1 Monte Carlo code for criticality studies

    International Nuclear Information System (INIS)

    Ermumcu, G.; Gonnord, J.; Nimal, J.C.

    1980-01-01

    TRIMARAN is developed for safety analysis of nuclear components containing fissionable materials: shipping casks, storage and cooling pools, manufacture and reprocessing plants. It solves the transport equation by Monte Carlo method, in general three dimensional geometry with multigroup P1 approximation. A special representation of cross sections and numbers has been developed in order to reduce considerably the computing cost and allow this three dimensional code to compete with standard numerical program used in parametric studies

  12. TRIMARAN: a three dimensional multigroup P1 Monte Carlo code for criticallity studies

    International Nuclear Information System (INIS)

    Ermuncu, G.; Gonnord, J.; Nimal, J.C.

    1980-04-01

    TRIMARAN is developed for safety analysis of nuclar components containing fissionnable materials: shipping casks, storage and cooling pools, manufacture and reprocessing plants. It solves the transport equation by Monte Carlo method in general three dimensional geometry with multigroup P1 approximation. A special representation of cross sections and numbers has been developed in order to reduce considerably the computing cost and allow this three dimensional code to compete with standard numerical program used in parametric studies

  13. Exact explicit travelling wave solutions for (n + 1)-dimensional Klein-Gordon-Zakharov equations

    International Nuclear Information System (INIS)

    Li Jibin

    2007-01-01

    Using the methods of dynamical systems for the (n + 1)-dimensional KGS nonlinear wave equations, five classes of exact explicit parametric representations of the bounded travelling solutions are obtained. To guarantee the existence of the above solutions, all parameter conditions are given

  14. Joint and collaborative representation with local Volterra kernels convolution feature for face recognition

    Science.gov (United States)

    Feng, Guang; Li, Hengjian; Dong, Jiwen; Chen, Xi; Yang, Huiru

    2018-04-01

    In this paper, we proposed a joint and collaborative representation with Volterra kernel convolution feature (JCRVK) for face recognition. Firstly, the candidate face images are divided into sub-blocks in the equal size. The blocks are extracted feature using the two-dimensional Voltera kernels discriminant analysis, which can better capture the discrimination information from the different faces. Next, the proposed joint and collaborative representation is employed to optimize and classify the local Volterra kernels features (JCR-VK) individually. JCR-VK is very efficiently for its implementation only depending on matrix multiplication. Finally, recognition is completed by using the majority voting principle. Extensive experiments on the Extended Yale B and AR face databases are conducted, and the results show that the proposed approach can outperform other recently presented similar dictionary algorithms on recognition accuracy.

  15. Unilateral vestibular loss impairs external space representation.

    Directory of Open Access Journals (Sweden)

    Liliane Borel

    Full Text Available The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal and far (extrapersonal spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation, and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss.

  16. Covariant representations of nuclear *-algebras

    International Nuclear Information System (INIS)

    Moore, S.M.

    1978-01-01

    Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

  17. Multidimensional integral representations problems of analytic continuation

    CERN Document Server

    Kytmanov, Alexander M

    2015-01-01

    The monograph is devoted to integral representations for holomorphic functions in several complex variables, such as Bochner-Martinelli, Cauchy-Fantappiè, Koppelman, multidimensional logarithmic residue etc., and their boundary properties. The applications considered are problems of analytic continuation of functions from the boundary of a bounded domain in C^n. In contrast to the well-known Hartogs-Bochner theorem, this book investigates functions with the one-dimensional property of holomorphic extension along complex lines, and includes the problems of receiving multidimensional boundary analogs of the Morera theorem.   This book is a valuable resource for specialists in complex analysis, theoretical physics, as well as graduate and postgraduate students with an understanding of standard university courses in complex, real and functional analysis, as well as algebra and geometry.

  18. Stabilized Discretization in Spline Element Method for Solution of Two-Dimensional Navier-Stokes Problems

    Directory of Open Access Journals (Sweden)

    Neng Wan

    2014-01-01

    Full Text Available In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.

  19. Nariai, Bertotti-Robinson, and anti-Nariai solutions in higher dimensions

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Dias, Oscar J.C.; Lemos, Jose P.S.

    2004-01-01

    We find all higher dimensional solutions of Einstein-Maxwell theory that are the topological product of two manifolds of constant curvature. These solutions include the higher dimensional Nariai, Bertotti-Robinson and anti-Nariai solutions and the anti-de Sitter Bertotti-Robinson solutions with toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit results for any dimension D≥4. These solutions are generated from the appropriate extremal limits of the higher dimensional near-extreme black holes in de Sitter and anti-de Sitter backgrounds. Thus, we also find the mass and charge parameters of higher dimensional extreme black holes as a function of the radius of the degenerate horizon

  20. Examining the Relationship between 2D Diagrammatic Conventions and Students' Success on Representational Translation Tasks in Organic Chemistry

    Science.gov (United States)

    Olimpo, Jeffrey T.; Kumi, Bryna C.; Wroblewski, Richard; Dixon, Bonnie L.

    2015-01-01

    Two-dimensional (2D) diagrams are essential in chemistry for conveying and communicating key knowledge about disciplinary phenomena. While experts are adept at identifying, interpreting, and manipulating these representations, novices often are not. Ongoing research efforts in the field suggest that students' effective use of concrete and virtual…

  1. The representation of object distance: evidence from neuroimaging and neuropsychology

    Directory of Open Access Journals (Sweden)

    Marian Berryhill

    2009-11-01

    Full Text Available Perceived distance in two-dimensional images relies on monocular distance cues. Here, we examined the representation of perceived object distance using a continuous carry-over adaptation design for fMRI. The task was to look at photographs of objects and make a judgment as to whether or not the item belonged in the kitchen. Importantly, this task was orthogonal to the variable of interest: the object’s perceived distance from the viewer. In Experiment 1, whole brain group analyses identified bilateral clusters in the superior occipital gyrus (approximately area V3/V3A that showed parametric adaptation to relative changes in perceived distance. In Experiment 2, retinotopic analyses confirmed that area V3A/B reflected the greatest magnitude of response to monocular changes in perceived distance. In Experiment 3, we report that the functional activations overlap with the occipito-parietal lesions in a patient with impaired distance perception, showing that the same regions monitor implied (two-dimensional and actual (three-dimensional distance. These data suggest that distance information is automatically processed even when it is task-irrelevant and that this process relies on superior occipital areas in and around area V3A.

  2. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  3. Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes

    Science.gov (United States)

    Araneda, Bernardo

    2018-04-01

    We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.

  4. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    Science.gov (United States)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  5. Comparison of triton bound-state properties using different separable representations of realistic nucleon-nucleon potentials

    CERN Document Server

    Schadow, W; Haidenbauer, J; Nogga, A

    2000-01-01

    The quality of two different separable expansion methods (W-matrix and Ernst-Shakin-Thaler) is investigated. We compare the triton binding energies and components of the triton wave functions obtained in this way with the results of the direct two-dimensional treatment. The Paris, Bonn A and Bonn B potentials are employed as underlying two-body interactions, their total angular momenta being incorporated up to j <= 2. It is found that the most accurate results based on the Ernst-Shakin-Thaler method agree within 1.5 % or better with the two-dimensional calculations, whereas the results for the W-matrix representation are less accurate. Refs. 29 (author)

  6. Os métodos quantitativos no ensino superior: uma tipologia de representações Quantitative methods in higher education: a typology of representations

    Directory of Open Access Journals (Sweden)

    Madalena Ramos

    2009-04-01

    Full Text Available É recorrente concluir-se que níveis mais elevados de autoconfiança dos alunos, relativamente às suas capacidades para interagir com a matemática, associados a uma maior utilidade percebida desta concorrem para os alunos terem representações positivas da disciplina. Um dos objectivos deste artigo é averiguar se no contexto universitário se mantém esta tendência linear na relação entre as duas dimensões - afectiva e instrumental - estruturantes das representações das disciplinas de métodos quantitativos. Um segundo objectivo consiste em perceber como é que os alunos de diferentes cursos (de áreas científicas distintas geram as suas representações relativamente a essas disciplinas. Foi aplicado um inquérito por questionário a uma amostra de alunos numa instituição universitária. Para a definição dos padrões de representações, foi usada a Análise de Correspondências Múltiplas e, para a identificação de factores explicativos dos perfis dos alunos, foi usada a Regressão Categorial. Os resultados evidenciam que o espaço das representações dos métodos quantitativos em contexto universitário é um espaço marcado pela heterogeneidade, mas cuja complexidade ultrapassa essa tendência linear na relação entre a dimensão da utilidade e a dimensão afectiva. Outra das conclusões é a não sustentabilidade da tese que aponta (pelo menos em contexto não universitário para a feminização da falta de autoestima e da autoconfiança para lidar com disciplinas dessa área científica. Conclui-se, ainda, que parece existir uma certa cultura de curso, na medida em que os cursos tendem a reflectir um padrão predominante de representações dos métodos quantitativos.It is often concluded that higher levels of self-confidence in pupils in relation to their ability to interact with mathematics, associated to the perception of the latter's greater utility contributed for pupils making positive representations of this

  7. Students' Development of Representational Competence Through the Sense of Touch

    Science.gov (United States)

    Magana, Alejandra J.; Balachandran, Sadhana

    2017-06-01

    Electromagnetism is an umbrella encapsulating several different concepts like electric current, electric fields and forces, and magnetic fields and forces, among other topics. However, a number of studies in the past have highlighted the poor conceptual understanding of electromagnetism concepts by students even after instruction. This study aims to identify novel forms of "hands-on" instruction that can result in representational competence and conceptual gain. Specifically, this study aimed to identify if the use of visuohaptic simulations can have an effect on student representations of electromagnetic-related concepts. The guiding questions is How do visuohaptic simulations influence undergraduate students' representations of electric forces? Participants included nine undergraduate students from science, technology, or engineering backgrounds who participated in a think-aloud procedure while interacting with a visuohaptic simulation. The think-aloud procedure was divided in three stages, a prediction stage, a minimally visual haptic stage, and a visually enhanced haptic stage. The results of this study suggest that students' accurately characterized and represented the forces felt around a particle, line, and ring charges either in the prediction stage, a minimally visual haptic stage or the visually enhanced haptic stage. Also, some students accurately depicted the three-dimensional nature of the field for each configuration in the two stages that included a tactile mode, where the point charge was the most challenging one.

  8. On the v-representability of ensemble densities of electron systems

    Science.gov (United States)

    Gonis, A.; Däne, M.

    2018-05-01

    Analogously to the case at zero temperature, where the density of the ground state of an interacting many-particle system determines uniquely (within an arbitrary additive constant) the external potential acting on the system, the thermal average of the density over an ensemble defined by the Boltzmann distribution at the minimum of the thermodynamic potential, or the free energy, determines the external potential uniquely (and not just modulo a constant) acting on a system described by this thermodynamic potential or free energy. The paper describes a formal procedure that generates the domain of a constrained search over general ensembles (at zero or elevated temperatures) that lead to a given density, including as a special case a density thermally averaged at a given temperature, and in the case of a v-representable density determines the external potential leading to the ensemble density. As an immediate consequence of the general formalism, the concept of v-representability is extended beyond the hitherto discussed case of ground state densities to encompass excited states as well. Specific application to thermally averaged densities solves the v-representability problem in connection with the Mermin functional in a manner analogous to that in which this problem was recently settled with respect to the Hohenberg and Kohn functional. The main formalism is illustrated with numerical results for ensembles of one-dimensional, non-interacting systems of particles under a harmonic potential.

  9. Non-Markovian reduced dynamics based upon a hierarchical effective-mode representation

    Energy Technology Data Exchange (ETDEWEB)

    Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt (Germany); Martinazzo, Rocco [Dipartimento di Chimica, Universita degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom)

    2012-10-14

    A reduced dynamics representation is introduced which is tailored to a hierarchical, Mori-chain type representation of a bath of harmonic oscillators which are linearly coupled to a subsystem. We consider a spin-boson system where a single effective mode is constructed so as to absorb all system-environment interactions, while the residual bath modes are coupled bilinearly to the primary mode and among each other. Using a cumulant expansion of the memory kernel, correlation functions for the primary mode are obtained, which can be suitably approximated by truncated chains representing the primary-residual mode interactions. A series of reduced-dimensional bath correlation functions is thus obtained, which can be expressed as Fourier-Laplace transforms of spectral densities that are given in truncated continued-fraction form. For a master equation which is second order in the system-bath coupling, the memory kernel is re-expressed in terms of local-in-time equations involving auxiliary densities and auxiliary operators.

  10. Social Representations of the "Musical Child": An Empirical Investigation on Implicit Music Knowledge in Higher Teacher Education

    Science.gov (United States)

    Addessi, Anna Rita; Carugati, Felice

    2010-01-01

    This paper deals with an empirical study undertaken at the University of Bologna about the social representations of music held by university students studying to become teachers in nursery, kindergarten and primary education. An open questionnaire was submitted to the university students at the beginning and end of the music education teaching…

  11. The Past Is Present: Representations of Parents, Friends, and Romantic Partners Predict Subsequent Romantic Representations.

    Science.gov (United States)

    Furman, Wyndol; Collibee, Charlene

    2018-01-01

    This study examined how representations of parent-child relationships, friendships, and past romantic relationships are related to subsequent romantic representations. Two-hundred 10th graders (100 female; M age  = 15.87 years) from diverse neighborhoods in a Western U.S. city were administered questionnaires and were interviewed to assess avoidant and anxious representations of their relationships with parents, friends, and romantic partners. Participants then completed similar questionnaires and interviews about their romantic representations six more times over the next 7.5 years. Growth curve analyses revealed that representations of relationships with parents, friends, and romantic partners each uniquely predicted subsequent romantic representations across development. Consistent with attachment and behavioral systems theory, representations of romantic relationships are revised by representations and experiences in other relationships. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  12. Learning Combinations of Multiple Feature Representations for Music Emotion Prediction

    DEFF Research Database (Denmark)

    Madsen, Jens; Jensen, Bjørn Sand; Larsen, Jan

    2015-01-01

    Music consists of several structures and patterns evolving through time which greatly influences the human decoding of higher-level cognitive aspects of music like the emotions expressed in music. For tasks, such as genre, tag and emotion recognition, these structures have often been identified...... and used as individual and non-temporal features and representations. In this work, we address the hypothesis whether using multiple temporal and non-temporal representations of different features is beneficial for modeling music structure with the aim to predict the emotions expressed in music. We test...

  13. Representational Learning for Fault Diagnosis of Wind Turbine Equipment: A Multi-Layered Extreme Learning Machines Approach

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Yang

    2016-05-01

    Full Text Available Reliable and quick response fault diagnosis is crucial for the wind turbine generator system (WTGS to avoid unplanned interruption and to reduce the maintenance cost. However, the conditional data generated from WTGS operating in a tough environment is always dynamical and high-dimensional. To address these challenges, we propose a new fault diagnosis scheme which is composed of multiple extreme learning machines (ELM in a hierarchical structure, where a forwarding list of ELM layers is concatenated and each of them is processed independently for its corresponding role. The framework enables both representational feature learning and fault classification. The multi-layered ELM based representational learning covers functions including data preprocessing, feature extraction and dimension reduction. An ELM based autoencoder is trained to generate a hidden layer output weight matrix, which is then used to transform the input dataset into a new feature representation. Compared with the traditional feature extraction methods which may empirically wipe off some “insignificant’ feature information that in fact conveys certain undiscovered important knowledge, the introduced representational learning method could overcome the loss of information content. The computed output weight matrix projects the high dimensional input vector into a compressed and orthogonally weighted distribution. The last single layer of ELM is applied for fault classification. Unlike the greedy layer wise learning method adopted in back propagation based deep learning (DL, the proposed framework does not need iterative fine-tuning of parameters. To evaluate its experimental performance, comparison tests are carried out on a wind turbine generator simulator. The results show that the proposed diagnostic framework achieves the best performance among the compared approaches in terms of accuracy and efficiency in multiple faults detection of wind turbines.

  14. Beyond Low-Rank Representations: Orthogonal clustering basis reconstruction with optimized graph structure for multi-view spectral clustering.

    Science.gov (United States)

    Wang, Yang; Wu, Lin

    2018-07-01

    Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Maximal locality and predictive power in higher-dimensional, compactified field theories

    International Nuclear Information System (INIS)

    Kubo, Jisuke; Nunami, Masanori

    2004-01-01

    To realize maximal locality in a trivial field theory, we maximize the ultraviolet cutoff of the theory by fine tuning the infrared values of the parameters. This optimization procedure is applied to the scalar theory in D + 1 dimensional (D ≥ 4) with one extra dimension compactified on a circle of radius R. The optimized, infrared values of the parameters are then compared with the corresponding ones of the uncompactified theory in D dimensions, which is assumed to be the low-energy effective theory. We find that these values approximately agree with each other as long as R -1 > approx sM is satisfied, where s ≅ 10, 50, 50, 100 for D = 4,5,6,7, and M is a typical scale of the D-dimensional theory. This result supports the previously made claim that the maximization of the ultraviolet cutoff in a nonrenormalizable field theory can give the theory more predictive power. (author)

  16. Exact asymptotic expansions for solutions of multi-dimensional renewal equations

    International Nuclear Information System (INIS)

    Sgibnev, M S

    2006-01-01

    We derive expansions with exact asymptotic expressions for the remainders for solutions of multi-dimensional renewal equations. The effect of the roots of the characteristic equation on the asymptotic representation of solutions is taken into account. The resulting formulae are used to investigate the asymptotic behaviour of the average number of particles in age-dependent branching processes having several types of particles

  17. Social representations of entrepreneurship: The role of training in the acquisition of entrepreneurial skills

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Parreira

    2015-12-01

    Full Text Available Objectives: To assess the change in the social representation structure of entrepreneurship in Portuguese students after training sessions in entrepreneurship. Method: An exploratory research was conducted, based on the structural approach of the theory of social representations. A group of 4th-year undergraduate nursing students of a Portuguese nursing school participated in this study: 192 in the pre-intervention phase and 139 in the post-intervention phase (N=331 participants. Social representations of entrepreneurship were assessed through the technique of free association in the pre- and post-test (before and after the 14-hour training. Results: A total of 1200 evocations with 169 different words and an overall mean order of 2.62 were obtained. The arrangement of data into four quadrants in the pre- and post-test found no change in the structure of representations in terms of the core components. However, a higher variability and dispersion of corpus was observed after the training period, which reflects a higher cognitive complexity and awareness for entrepreneurship/ to acquire entrepreneurial skills. Conclusions: The intervention showed a consistency between the central themes of entrepreneurship and its representation structure. It proved to contribute to a process of entrepreneurship change, although it requires a longer and more intense intervention.

  18. SL(2, 7) representations and their relevance to neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Aliferis, G.; Vlachos, N.D. [University of Thessaloniki, Department of Nuclear and Particle Physics, Thessaloniki (Greece); Leontaris, G.K. [University of Ioannina, Physics Department, Ioannina (Greece); CERN, Department of Physics, Geneva 23 (Switzerland)

    2017-06-15

    The investigation of the role of finite groups in flavor physics and, particularly, in the interpretation of the neutrino data has been the subject of intensive research. Motivated by this fact, in this work we derive the three-dimensional unitary representations of the projective linear group PSL{sub 2}(7). Based on the observation that the generators of the group exhibit a Latin square pattern, we use available computational packages on discrete algebra to determine the generic properties of the group elements. We present analytical expressions and discuss several examples which reproduce the neutrino mixing angles in accordance with the experimental data. (orig.)

  19. Volta-Based Cells Materials Chemical Multiple Representation to Improve Ability of Student Representation

    Science.gov (United States)

    Helsy, I.; Maryamah; Farida, I.; Ramdhani, M. A.

    2017-09-01

    This study aimed to describe the application of teaching materials, analyze the increase in the ability of students to connect the three levels of representation and student responses after application of multiple representations based teaching materials chemistry. The method used quasi one-group pretest-posttest design to 71 students. The results showed the application of teaching materials carried 88% with very good category. A significant increase ability to connect the three levels of representation of students after the application of multiple representations based teaching materials chemistry with t-value > t-crit (11.402 > 1.991). Recapitulation N-gain pretest and posttest showed relatively similar for all groups is 0.6 criterion being achievement. Students gave a positive response to the application of multiple representations based teaching materials chemistry. Students agree teaching materials used in teaching chemistry (88%), and agrees teaching materials to provide convenience in connecting the three levels of representation (95%).

  20. Application of the Binary Bell Polynomials Method to the Dissipative (2+1)-Dimensional AKNS Equation

    International Nuclear Information System (INIS)

    Liu Na; Liu Xi-Qiang

    2012-01-01

    Based on the binary Bell polynomials, the bilinear representation, bilinear Bäcklund transformation and the Lax pair for the dissipative (2+1)-dimensional Ablowitz—Kaup—Newell—Segur (AKNS) equation are obtained. Moreover, the infinite conservation laws are also derived