Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?
Energy Technology Data Exchange (ETDEWEB)
Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)
2017-03-15
Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)
Static wormhole solution for higher-dimensional gravity in vacuum
International Nuclear Information System (INIS)
Dotti, Gustavo; Oliva, Julio; Troncoso, Ricardo
2007-01-01
A static wormhole solution for gravity in vacuum is found for odd dimensions greater than four. In five dimensions the gravitational theory considered is described by the Einstein-Gauss-Bonnet action where the coupling of the quadratic term is fixed in terms of the cosmological constant. In higher dimensions d=2n+1, the theory corresponds to a particular case of the Lovelock action containing higher powers of the curvature, so that in general, it can be written as a Chern-Simons form for the AdS group. The wormhole connects two asymptotically locally AdS spacetimes each with a geometry at the boundary locally given by RxS 1 xH d-3 . Gravity pulls towards a fixed hypersurface located at some arbitrary proper distance parallel to the neck. The causal structure shows that both asymptotic regions are connected by light signals in a finite time. The Euclidean continuation of the wormhole is smooth independently of the Euclidean time period, and it can be seen as instanton with vanishing Euclidean action. The mass can also be obtained from a surface integral and it is shown to vanish
Extensions of three-dimensional higher-derivative gravity
Yin, Yihao
2013-01-01
Driedimensionale zwaartekrachtmodellen met hogere afgeleiden, met in het bijzonder New Massive Gravity (NMG) en Topologically Massive Gravity (TMG), zijn speelmodellen die gebruikt worden door theoretische natuurkundigen om te onderzoeken hoe Einsteins algemene relativiteitstheorie verbeterd kan
Magnetized black holes and black rings in the higher dimensional dilaton gravity
International Nuclear Information System (INIS)
Yazadjiev, Stoytcho S.
2006-01-01
In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes, and five-dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the D-dimensional magnetized Schwarzschild-Tangherlini black holes
New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity
Energy Technology Data Exchange (ETDEWEB)
Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)
2017-01-11
We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.
Scalar QNMs for higher dimensional black holes surrounded by quintessence in Rastall gravity
Energy Technology Data Exchange (ETDEWEB)
Graca, J.P.M.; Lobo, Iarley P. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)
2018-02-15
The spacetime solution for a black hole, surrounded by an exotic matter field, in Rastall gravity, is calculated in an arbitrary d-dimensional spacetime. After this, we calculate the scalar quasinormal modes of such solution, and study the shift on the modes caused by the modification of the theory of gravity, i.e., by the introduction of a new term due to Rastall. We conclude that the shift strongly depends on the kind of exotic field one is studying, but for a low density matter that supposedly pervades the universe, it is unlikely that Rastall gravity will cause an instability for the probe field. (orig.)
First law of black ring thermodynamics in higher dimensional Chern-Simons gravity
International Nuclear Information System (INIS)
Rogatko, Marek
2007-01-01
The physical process version and the equilibrium state version of the first law of black ring thermodynamics in n-dimensional Einstein gravity with Chern-Simons term were derived. This theory constitutes the simplest generalization of the five-dimensional one admitting a stationary black ring solution. The equilibrium state version of the first law of black ring mechanics was achieved by choosing any cross section of the event horizon to the future of the bifurcation surface
Black holes in higher dimensional gravity theory with corrections quadratic in curvature
International Nuclear Information System (INIS)
Frolov, Valeri P.; Shapiro, Ilya L.
2009-01-01
Static spherically symmetric black holes are discussed in the framework of higher dimensional gravity with quadratic in curvature terms. Such terms naturally arise as a result of quantum corrections induced by quantum fields propagating in the gravitational background. We focus our attention on the correction of the form C 2 =C αβγδ C αβγδ . The Gauss-Bonnet equation in four-dimensional spacetime enables one to reduce this term in the action to the terms quadratic in the Ricci tensor and scalar curvature. As a result the Schwarzschild solution which is Ricci flat will be also a solution of the theory with the Weyl scalar C 2 correction. An important new feature of the spaces with dimension D>4 is that in the presence of the Weyl curvature-squared term a necessary solution differs from the corresponding 'classical' vacuum Tangherlini metric. This difference is related to the presence of secondary or induced hair. We explore how the Tangherlini solution is modified by 'quantum corrections', assuming that the gravitational radius r 0 is much larger than the scale of the quantum corrections. We also demonstrated that finding a general solution beyond the perturbation method can be reduced to solving a single third order ordinary differential equation (master equation).
International Nuclear Information System (INIS)
Brown, J.D.
1988-01-01
This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant
International Nuclear Information System (INIS)
Accioly, A.J.
1987-01-01
A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt
Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity
International Nuclear Information System (INIS)
Zou, De-Cheng; Yue, Ruihong; Zhang, Ming
2017-01-01
We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c_im"2 of massive potential satisfy some certain conditions. (orig.)
Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity
Energy Technology Data Exchange (ETDEWEB)
Zou, De-Cheng; Yue, Ruihong [Yangzhou University, College of Physical Science and Technology, Yangzhou (China); Zhang, Ming [Xi' an Aeronautical University, Faculty of Science, Xi' an (China)
2017-04-15
We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c{sub i}m{sup 2} of massive potential satisfy some certain conditions. (orig.)
Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry
International Nuclear Information System (INIS)
Afshar, Hamid; Creutzig, Thomas; Grumiller, Daniel; Hikida, Yasuaki; Rønne, Peter B.
2014-01-01
We investigate whether there are unitary families of W-algebras with spin one fields in the natural example of the Feigin-Semikhatov W_n"("2")-algebra. This algebra is conjecturally a quantum Hamiltonian reduction corresponding to a non-principal nilpotent element. We conjecture that this algebra admits a unitary real form for even n. Our main result is that this conjecture is consistent with the known part of the operator product algebra, and especially it is true for n=2 and n=4. Moreover, we find certain ranges of allowed levels where a positive definite inner product is possible. We also find a unitary conformal field theory for every even n at the special level k+n=(n+1)/(n−1). At these points, the W_n"("2")-algebra is nothing but a compactified free boson. This family of W-algebras admits an ’t Hooft limit. Further, in the case of n=4, we reproduce the algebra from the higher spin gravity point of view. In general, gravity computations allow us to reproduce some leading coefficients of the operator product.
International Nuclear Information System (INIS)
Pollock, M.D.
1988-01-01
We consider super-exponential inflation in the early universe, for which H 2 /H = q >> 1, with particular reference to the higher-dimensional theory of Shafi and Wetterich, which is discussed in further detail. The Hubble parameter H is given by H 2 ≅ (8π/3m P 2 )V(Φ), where the ''inflation'' field Φ is related to the radius of the internal space, and obeys the equation of motion 3HΦ ≅ -dW/dΦ. The spectrum of density perturbations is given by δρ/ρ = (M/M 0 ) -s , where s -1 ≅ 3(q + 1); and X = (-dV/dΦ)/(dW/dΦ). The parameters q and X are both positive constants, hence the need for two distinct potentials, which can be met in a higher-dimensional theory with higher-derivative terms R 2 = α 1 R 2 + α 2 R AB R AB + α 3 R ABCD R ABCD . Some fine-tuning of the parameters α i and/or of the cosmological constant Λ is always necessary in order to have super-exponential inflation. It is possible to obtain a spectrum of density perturbations with s > or approx. 1/20, which helps to give agreement with observations of the cosmic microwave background radiation at very large scales ∝ 1000 Mpc. When R 2 is proportional to the Euler number density, making the four-dimensional theory free of ghosts, then super-exponential inflation is impossible, but a phase of inflation with H < 0 can still occur. (orig.)
z -Weyl gravity in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Moon, Taeyoon; Oh, Phillial, E-mail: dpproject@skku.edu, E-mail: ploh@skku.edu [Department of Physics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)
2017-09-01
We consider higher dimensional gravity in which the four dimensional spacetime and extra dimensions are not treated on an equal footing. The anisotropy is implemented in the ADM decomposition of higher dimensional metric by requiring the foliation preserving diffeomorphism invariance adapted to the extra dimensions, thus keeping the general covariance only for the four dimensional spacetime. The conformally invariant gravity can be constructed with an extra (Weyl) scalar field and a real parameter z which describes the degree of anisotropy of conformal transformation between the spacetime and extra dimensional metrics. In the zero mode effective 4D action, it reduces to four-dimensional scalar-tensor theory coupled with nonlinear sigma model described by extra dimensional metrics. There are no restrictions on the value of z at the classical level and possible applications to the cosmological constant problem with a specific choice of z are discussed.
Higher dimensional loop quantum cosmology
International Nuclear Information System (INIS)
Zhang, Xiangdong
2016-01-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)
Topologically Massive Higher Spin Gravity
Bagchi, A.; Lal, S.; Saha, A.; Sahoo, B.
2011-01-01
We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the
International Nuclear Information System (INIS)
Akarsu, Özgür; Dereli, Tekin
2013-01-01
We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales
Akarsu, Özgür; Dereli, Tekin
2013-02-01
We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.
Even-dimensional topological gravity from Chern-Simons gravity
International Nuclear Information System (INIS)
Merino, N.; Perez, A.; Salgado, P.
2009-01-01
It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).
Higher dimensional homogeneous cosmology in Lyra geometry
Indian Academy of Sciences (India)
1Department of Mathematics, Jadavpur University, Kolkata 700 032, India. 2Khodar ... 1. Introduction. The idea of higher dimensional theory was originated in super string and super gravity .... Equation (7) can easily be integrated to obtain.
Dimensional reduction in quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Hooft, G [Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica
1994-12-31
The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two- dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. (author). 13 refs, 2 figs.
Equivalence of two-dimensional gravities
International Nuclear Information System (INIS)
Mohammedi, N.
1990-01-01
The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given
Workshop on Topics in Three Dimensional Gravity
2016-01-01
Gravity in three dimensions has rather special features which makes it particularly suitable for addressing questions related to the quantization of gravity and puzzles concerning black hole physics. AdS3 gravity and in particular AdS3/CFT2 has played a crucial role in black hole microstate counting, and more recently in studying holographic entanglement entropy and higher spin theories.
Classical gravity with higher derivatives
International Nuclear Information System (INIS)
Stelle, K.S.
1978-01-01
Inclusion of the four-derivative terms ∫Rsub(μν) Rsup(μν)(-g)sup(1/2) and ∫R 2 (-g)sup(1/2) into the gravitational action gives a class of effectively multimass models of gravity. In addition to the usual massless excitations of the field, there are now, for general amounts of the two new terms, massive spin-two and massive scalar excitations, with a total of eight degrees of freedom. The massive spin-two part of the field has negative energy. Specific ration of the two new terms give models with either the massive tensor or the massive scalar missing, with correspondingly fewer degrees of freedom. The static, linearized solutions of the field equations are combinations of Newtonian and Yukawa potentials. Owing to the Yukawa form of the corrections, observational evidence sets only very weak restrictions on the new masses. The acceptable static metric solutions in the full nonlinear theory are regular at the origin. The dynamical content of the linearized field is analyzed by reducing the fourth-order field equations to separated second-order equations, related by coupling to external sources in a fixed ratio. This analysis is carried out into the various helicity components using the transverse-traceless decomposition of the metric. (author)
Beyond Lovelock gravity: Higher derivative metric theories
Crisostomi, M.; Noui, K.; Charmousis, C.; Langlois, D.
2018-02-01
We consider theories describing the dynamics of a four-dimensional metric, whose Lagrangian is diffeomorphism invariant and depends at most on second derivatives of the metric. Imposing degeneracy conditions we find a set of Lagrangians that, apart form the Einstein-Hilbert one, are either trivial or contain more than 2 degrees of freedom. Among the partially degenerate theories, we recover Chern-Simons gravity, endowed with constraints whose structure suggests the presence of instabilities. Then, we enlarge the class of parity violating theories of gravity by introducing new "chiral scalar-tensor theories." Although they all raise the same concern as Chern-Simons gravity, they can nevertheless make sense as low energy effective field theories or, by restricting them to the unitary gauge (where the scalar field is uniform), as Lorentz breaking theories with a parity violating sector.
Higher dimensional global monopole in Brans–Dicke theory
Indian Academy of Sciences (India)
Keywords. Global monopole; Brans–Dicke theory; higher dimension. PACS Nos 04.20.Jb; 98.80.Bp; 04.50.+h. 1. Introduction. The idea of higher dimensional theory was originated in super string and super gravity the- ories to unify gravity with other fundamental forces in nature. Solutions of Einstein field equations in higher ...
Scalar fields and higher-derivative gravity in brane worlds
International Nuclear Information System (INIS)
Pichler, S.
2004-01-01
We consider the brane world picture in the context of higher-derivative theories of gravity and tackle the problematic issues fine-tuning and brane-embedding. First, we give an overview of extra-dimensional physics, from the Kaluza-Klein picture up to modern brane worlds with large extra dimensions. We describe the different models and their physical impact on future experiments. We work within the framework of Randall-Sundrum models in which the brane is a gravitating object, which warps the background metric. We add scalar fields to the original model and find new and self-consistent solutions for quadratic potentials of the fields. This gives us the tools to investigate higher-derivative gravity theories in brane world models. Specifically, we take gravitational Lagrangians that depend on an arbitrary function of the Ricci scalar only, so-called f(R)-gravity. We make use of the conformal equivalence between f(R)-gravity and Einstein-Hilbert gravity with an auxiliary scalar field. We find that the solutions in the higher-derivative gravity framework behave very differently from the original Randall-Sundrum model: the metric functions do not have the typical kink across the brane. Furthermore, we present solutions that do not rely on a cosmological constant in the bulk and so avoid the fine-tuning problem. We address the issue of brane-embedding, which is important in perturbative analyses. We consider the embedding of codimension one hypersurfaces in general and derive a new equation of motion with which the choice for the embedding has to comply. In particular, this allows for a consistent consideration of brane world perturbations in the case of higher-derivative gravity. We use the newly found background solutions for quadratic potentials and find that gravity is still effectively localized on the brane, i.e that the Newtonian limit holds
Initial value formulation of higher derivative gravity
International Nuclear Information System (INIS)
Noakes, D.R.
1983-01-01
The initial value problem is considered for the conformally coupled scalar field and higher derivative gravity, by expressing the equations of each theory in harmonic coordinates. For each theory it is shown that the (vacuum) equations can take the form of a diagonal hyperbolic system with constraints on the initial data. Consequently these theories possess well-posed initial value formulations
Black holes in higher derivative gravity.
Lü, H; Perkins, A; Pope, C N; Stelle, K S
2015-05-01
Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.
Solitons in four dimensional gravity
International Nuclear Information System (INIS)
Matos, T.
1990-01-01
An alternative method to solve the Chiral equations with SL (2,R) symmetry is developed. One gets the N-soliton solution using the Neugebauer Ansatz. For N = 1 one obtains the Backlund transformation of the Chiral equations. From the application of this transformation for the flat seed solution one finds the Kerr-NUT solution. This method can be applied to generate solutions of the n-dimensional Einstein equations (Author)
Exact solutions in three-dimensional gravity
Garcia-Diaz, Alberto A
2017-01-01
A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...
Classical aspects of higher spin topologically massive gravity
International Nuclear Information System (INIS)
Chen Bin; Long Jiang; Zhang Jiandong
2012-01-01
We study the classical solutions of three-dimensional topologically massive gravity (TMG) and its higher spin generalization, in the first-order formulation. The action of higher spin TMG has been proposed by Chen and Long (2011 J. High Energy Phys. JHEP12(2011)114) to be of a Chern–Simons-like form. The equations of motion are more complicated than the ones in pure higher spin AdS 3 gravity, but are still tractable. As all the solutions in higher spin gravity are automatically the solutions of higher spin TMG, we focus on other solutions. We manage to find the AdS pp-wave solutions with higher spin hair and find that the non-vanishing higher spin fields may or may not modify the pp-wave geometry. In order to discuss the warped spacetime, we introduce the notion of a special Killing vector, which is defined to be the symmetry on the frame-like fields. We reproduce various warped spacetimes of TMG in our framework, with the help of special Killing vectors. (paper)
On butterfly effect in higher derivative gravities
Energy Technology Data Exchange (ETDEWEB)
Alishahiha, Mohsen [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2016-11-07
We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.
On butterfly effect in higher derivative gravities
International Nuclear Information System (INIS)
Alishahiha, Mohsen; Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid
2016-01-01
We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.
Feynman diagrams coupled to three-dimensional quantum gravity
International Nuclear Information System (INIS)
Barrett, John W
2006-01-01
A framework for quantum field theory coupled to three-dimensional quantum gravity is proposed. The coupling with quantum gravity regulates the Feynman diagrams. One recovers the usual Feynman amplitudes in the limit as the cosmological constant tends to zero
Chern-Simons action for inhomogeneous Virasoro group as extension of three dimensional flat gravity
Energy Technology Data Exchange (ETDEWEB)
Barnich, Glenn [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Giribet, Gastón [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina); Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Leston, Mauricio [Instituto de Astronomía y Física del Espacio IAFE-CONICET, Ciudad Universitaria, Pabellón IAFE, C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina)
2015-07-15
We initiate the study of a Chern-Simons action associated to the semi-direct sum of the Virasoro algebra with its coadjoint representation. This model extends the standard Chern-Simons formulation of three dimensional flat gravity and is similar to the higher-spin extension of three dimensional anti-de Sitter or flat gravity. The extension can also be constructed for the exotic but not for the cosmological constant deformation of flat gravity.
Three-dimensional massive gravity and the bigravity black hole
International Nuclear Information System (INIS)
Banados, Maximo; Theisen, Stefan
2009-01-01
We study three-dimensional massive gravity formulated as a theory with two dynamical metrics, like the f-g theories of Isham-Salam and Strathdee. The action is parity preserving and has no higher derivative terms. The spectrum contains a single massive graviton. This theory has several features discussed recently in TMG and NMG. We find warped black holes, a critical point, and generalized Brown-Henneaux boundary conditions.
Extended inflation from higher dimensional theories
International Nuclear Information System (INIS)
Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Yun.
1990-04-01
The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation
Extended inflation from higher-dimensional theories
International Nuclear Information System (INIS)
Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.
1991-01-01
We consider the possibility that higher-dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. We analyze two separate models. One is a very simple toy model consisting of higher-dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of nontrivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a nontrivial potential for the radius of the internal space. We find that extended inflation does not occur in these models. We also find that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation
Higher-spin extended conformal algebras and W-gravities
International Nuclear Information System (INIS)
Hull, C.M.
1991-01-01
The construction of classical W 3 gravity is reviewed. It is suggested that the hidden symmetry for quantum W 3 gravity in the chiral gauge is not SL(3, R) but a group contraction of this, ISL(2, R). This is extended to W N gravity, and the case of W 4 gravity is presented in detail. The gauge transformations are realized on D free bosons, with the spin-n conserved current (2 ≤ n ≤ N) taking the form d sub(i i ...i n ) δ + Φ sup(i 1 ) δ + Φ sup(i n ) for some constant tensor d sub(i i ...i n ). The d-tensors must satisfy N-2 non-linear algebraic constraints and these constraints are shown to be satisfied if the d-tensors are taken to be the structure-tensors of an Nth degree Jordan algebra. The relation with Jordan algebras is used to give solutions of the d-tensor constraints for any value of D, N. The free-boson construction of the W N algebras is generalized to give a Sugaware-type construction of a large class of classical extended conformal algebras. The chiral gauging of any classical extended conformal algebra is shown to require only a linear Noether coupling to world-sheet gauge-fields, while gauging a non-chiral algebra in general leads to a non-polynomial action. A number of examples are examined, including W ∞ W-supergravity, Knizhnik-Berschadsky supergravity and 'W N/M ' algebras. Theories of higher-spin W-gravity of the type described are only possible in one and two space-time dimensions, and the one-dimensional cases is briefly discussed. The covariant formulation of W-gravity is briefly discussed and the relation between classical and quantum extended conformal algebras is analyzed. (orig.)
Unruly topologies in two-dimensional quantum gravity
International Nuclear Information System (INIS)
Hartle, J.B.
1985-01-01
A sum over histories formulation of quantum geometry could involve sums over different topologies as well as sums over different metrics. In classical gravity a geometry is a manifold with a metric, but it is difficult to implement a sum over manifolds in quantum gravity. In this difficulty, motivation is found for including in the sum over histories, geometries defined on more general objects than manifolds-unruly topologies. In simplicial two-dimensional quantum gravity a class of simplicial complexes is found to which the gravitational action can be extended, for which sums over the class are straightforwardly defined, and for which a manifold dominates the sum in the classical limit. The situation in higher dimensions is discussed. (author)
Wormholes in higher dimensions with non-linear curvature terms from quantum gravity corrections
Energy Technology Data Exchange (ETDEWEB)
El-Nabulsi, Ahmad Rami [Neijiang Normal University, Neijiang, Sichuan (China)
2011-11-15
In this work, we discuss a 7-dimensional universe in the presence of a static traversable wormhole and a decaying cosmological constant and dominated by higher-order curvature effects expected from quantum gravity corrections. We confirmed the existence of wormhole solutions in the form of the Lovelock gravity. Many interesting and attractive features are discussed in some detail.
Indian Academy of Sciences (India)
We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...
Instabilities of higher dimensional compactifications
International Nuclear Information System (INIS)
Accetta, F.S.
1987-02-01
Various schemes for cosmological compactification of higher dimensional theories are considered. Possible instabilities which drive the ground state with static internal space to de Sitter-like expansion of all dimensions are discussed. These instabilities are due to semiclassical barrier penetration and classical thermal fluctuations. For the case of the ten dimensional Chapline-Manton action, it is possible to avoid such difficulties by balancing one-loop Casimir corrections against monopole contributions from the field strength H/sub MNP/ and fermionic condensates. 10 refs
Higher dimensional discrete Cheeger inequalities
Directory of Open Access Journals (Sweden)
Anna Gundert
2015-01-01
Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.
Smoothed transitions in higher spin AdS gravity
International Nuclear Information System (INIS)
Banerjee, Shamik; Shenker, Stephen; Castro, Alejandra; Hellerman, Simeon; Hijano, Eliot; Lepage-Jutier, Arnaud; Maloney, Alexander
2013-01-01
We consider CFTs conjectured to be dual to higher spin theories of gravity in AdS 3 and AdS 4 . Two-dimensional CFTs with W N symmetry are considered in the λ = 0 (k → ∞) limit where they are conjectured to be described by continuous orbifolds. The torus partition function is computed, using reasonable assumptions, and equals that of a free-field theory. We find no phase transition at temperatures of order 1; the usual Hawking–Page phase transition is removed by the highly degenerate light states associated with conical defect states in the bulk. Three-dimensional Chern–Simons matter CFTs with vector-like matter are considered on T 3 , where the dynamics is described by an effective theory for the eigenvalues of the holonomies. Likewise, we find no evidence for a Hawking–Page phase transition at a large level k. (paper)
(2+1)-dimensional quantum gravity
International Nuclear Information System (INIS)
Hosoya, Akio; Nakao, Ken-ichi.
1989-05-01
The (2+1)-dimensional pure Einstein gravity is studied in the canonical ADM formalism, assuming that the spatial surface is closed and compact. Owing to the constraints, the dynamical variables are reduced to the moduli parameters of the 2-surface. Upon quantization, the system becomes a quantum mechanics of moduli parameters in a curved space endowed with the Weil-Petersson metric. In the case of torus in particular, the superspace, on which the wave function of universe is defined, turns out to be the fundamental region is the moduli space. The solution of the Wheeler-DeWitt equation is explicitly given as the Maass form which is perfectly regular in the superspace. (author)
Stochastic quantum gravity-(2+1)-dimensional case
International Nuclear Information System (INIS)
Hosoya, Akio
1991-01-01
At first the amazing coincidences are pointed out in quantum field theory in curved space-time and quantum gravity, when they exhibit stochasticity. To explore the origin of them, the (2+1)-dimensional quantum gravity is considered as a toy model. It is shown that the torus universe in the (2+1)-dimensional quantum gravity is a quantum chaos in a rigorous sense. (author). 15 refs
A Lifshitz black hole in four dimensional R2 gravity
International Nuclear Information System (INIS)
Cai Ronggen; Liu Yan; Sun Yawen
2009-01-01
We consider a higher derivative gravity theory in four dimensions with a negative cosmological constant and show that vacuum solutions of both Lifshitz type and Schroedinger type with arbitrary dynamical exponent z exist in this system. Then we find an analytic black hole solution which asymptotes to the vacuum Lifshitz solution with z = 3/2 at a specific value of the coupling constant. We analyze the thermodynamic behavior of this black hole and find that the black hole has zero entropy while non-zero temperature, which is very similar to the case of BTZ black holes in new massive gravity at a specific coupling. In addition, we find that the three dimensional Lifshitz black hole recently found by E. Ayon-Beato et al. has a negative entropy and mass when the Newton constant is taken to be positive.
Topics in field theory-higher spins, CFT, and gravity
International Nuclear Information System (INIS)
Yang, Z.
1990-01-01
Several topics in field theory are investigated. (1) Massive higher spin actions are obtained as gauge theories from the dimensional reduction of the corresponding massless ones. (2) The author considers a model of spin4 and spin2 interaction through the Bel-Robinson tensor of spin2 field, which in conserved at free level. The coupling is inconsistent, yet there are indications that adding still higher spin couplings would be a promising direction to achieve consistency. (3) Energy and Stability of Einstein-Gauss-Bonnet models of gravity are studied. It is shown that flat space is stable while AdS is not. (4) Gauged Wess-Zumino-Witten models are studied in detail. The equivalence to GKO construction of conformal field theory is considered. BRST quantization of the models is given. (5) Nonrenormalizability of quantum gravity is, in the binomial first order metric formulation, traced to a mismatch between the symmetries of its quadratic and cubic term. (6) The possibility that the gravitational model defined in D = 3 by an action which is the sum of Einstein and Chern-Simons terms is a viable quantum theory is investigated. It is shown that it is compatible with power-counting renormalizability. Gauge invariant regularizations, however, have not been found to exist. Detailed BRS analysis shows that there are possible anomalies
Holographic metal-insulator transition in higher derivative gravity
Energy Technology Data Exchange (ETDEWEB)
Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China); Zhou, Zhenhua, E-mail: zhouzh@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)
2017-03-10
We introduce a Weyl term into the Einstein–Maxwell-Axion theory in four dimensional spacetime. Up to the first order of the Weyl coupling parameter γ, we construct charged black brane solutions without translational invariance in a perturbative manner. Among all the holographic frameworks involving higher derivative gravity, we are the first to obtain metal-insulator transitions (MIT) when varying the system parameters at zero temperature. Furthermore, we study the holographic entanglement entropy (HEE) of strip geometry in this model and find that the second order derivative of HEE with respect to the axion parameter exhibits maximization behavior near quantum critical points (QCPs) of MIT. It testifies the conjecture in that HEE itself or its derivatives can be used to diagnose quantum phase transition (QPT).
Gravastars with higher dimensional spacetimes
Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.
2018-07-01
We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.
Exact Solutions in Three-Dimensional Gravity
García-Díaz, Alberto A.
2017-09-01
Preface; 1. Introduction; 2. Point particles; 3. Dust solutions; 4. AdS cyclic symmetric stationary solutions; 5. Perfect fluid static stars; 6. Static perfect fluid stars with Λ; 7. Hydrodynamic equilibrium; 8. Stationary perfect fluid with Λ; 9. Friedmann–Robertson–Walker cosmologies; 10. Dilaton-inflaton FRW cosmologies; 11. Einstein–Maxwell solutions; 12. Nonlinear electrodynamics black hole; 13. Dilaton minimally coupled to gravity; 14. Dilaton non-minimally coupled to gravity; 15. Low energy 2+1 string gravity; 16. Topologically massive gravity; 17. Bianchi type spacetimes in TMG; 18. Petrov type N wave metrics; 19. Kundt spacetimes in TMG; 20. Cotton tensor in Riemannian spacetimes; References; Index.
Generalised boundary terms for higher derivative theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Teimouri, Ali; Talaganis, Spyridon; Edholm, James [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Mazumdar, Anupam [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands)
2016-08-24
In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.
Sharpening the weak gravity conjecture with dimensional reduction
International Nuclear Information System (INIS)
Heidenreich, Ben; Reece, Matthew; Rudelius, Tom
2016-01-01
We investigate the behavior of the Weak Gravity Conjecture (WGC) under toroidal compactification and RG flows, finding evidence that WGC bounds for single photons become weaker in the infrared. By contrast, we find that a photon satisfying the WGC will not necessarily satisfy it after toroidal compactification when black holes charged under the Kaluza-Klein photons are considered. Doing so either requires an infinite number of states of different charges to satisfy the WGC in the original theory or a restriction on allowed compactification radii. These subtleties suggest that if the Weak Gravity Conjecture is true, we must seek a stronger form of the conjecture that is robust under compactification. We propose a “Lattice Weak Gravity Conjecture” that meets this requirement: a superextremal particle should exist for every charge in the charge lattice. The perturbative heterotic string satisfies this conjecture. We also use compactification to explore the extent to which the WGC applies to axions. We argue that gravitational instanton solutions in theories of axions coupled to dilaton-like fields are analogous to extremal black holes, motivating a WGC for axions. This is further supported by a match between the instanton action and that of wrapped black branes in a higher-dimensional UV completion.
Three-dimensional dilatonic gravity's rainbow: Exact solutions
International Nuclear Information System (INIS)
Hossein Hendi, Seyed; Eslam Panah, Behzad; Panahiyan, Shahram
2016-01-01
Deep relations of dark energy scenario and string theory results into dilaton gravity, on the one hand, and the connection between quantum gravity and gravity's rainbow, on the other hand, motivate us to consider three-dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions, which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.
Thermodynamics of event horizons in (2+1)-dimensional gravity
International Nuclear Information System (INIS)
Reznik, B.
1992-01-01
Although gravity in 2+1 dimensions is very different in nature from gravity in 3+1 dimensions, it is shown that the laws of thermodynamics for event horizons can be manifested also for (2+1)-dimensional gravity. The validity of the classical laws of horizon mechanics is verified in general and exemplified for the (2+1)-dimensional analogues of Reissner-Nordstroem and Schwarzschild--de Sitter spacetimes. We find that the entropy is given by 1/4L, where L is the length of the horizon. A consequence of having consistent thermodynamics is that the second law fixes the sign of Newton's constant to be positive
General relativity and gauge gravity theories of higher order
International Nuclear Information System (INIS)
Konopleva, N.P.
1998-01-01
It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one
Scalar brane backgrounds in higher order curvature gravity
International Nuclear Information System (INIS)
Charmousis, Christos; Davis, Stephen C.; Dufaux, Jean-Francois
2003-01-01
We investigate maximally symmetric brane world solutions with a scalar field. Five-dimensional bulk gravity is described by a general lagrangian which yields field equations containing no higher than second order derivatives. This includes the Gauss-Bonnet combination for the graviton. Stability and gravitational properties of such solutions are considered, and we particularly emphasise the modifications induced by the higher order terms. In particular it is shown that higher curvature corrections to Einstein theory can give rise to instabilities in brane world solutions. A method for analytically obtaining the general solution for such actions is outlined. Generically, the requirement of a finite volume element together with the absence of a naked singularity in the bulk imposes fine-tuning of the brane tension. A model with a moduli scalar field is analysed in detail and we address questions of instability and non-singular self-tuning solutions. In particular, we discuss a case with a normalisable zero mode but infinite volume element. (author)
On the gravitational seesaw in higher-derivative gravity
Energy Technology Data Exchange (ETDEWEB)
Accioly, Antonio; Giacchini, Breno L. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil); Shapiro, Ilya L. [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomsk State University, Tomsk (Russian Federation)
2017-08-15
Local gravitational theories with more than four derivatives are superrenormalizable. They also may be unitary in the Lee-Wick sense. Thus it is relevant to study the low-energy properties of these theories, especially to identify observables which might be useful for experimental detection of higher derivatives. Using an analogy with the neutrino physics, we explore the possibility of a gravitational seesaw mechanism in which several dimensional parameters of the same order of magnitude produce a hierarchy in the masses of propagating particles. Such a mechanism could make a relatively light degree of freedom detectable in low-energy laboratory and astrophysical observations, such as torsion-balance experiments and the bending of light. We demonstrate that such a seesaw mechanism in the six- and more-derivative theories is unable to reduce the lightest mass more than in the simplest four-derivative model. Adding more derivatives to the four-derivative action of gravity makes heavier masses even greater, while the lightest massive ghost is not strongly affected. This fact is favorable for protecting the theory from instabilities but makes the experimental detection of higher derivatives more difficult. (orig.)
On the background independence of two-dimensional topological gravity
Imbimbo, Camillo
1995-04-01
We formulate two-dimensional topological gravity in a background covariant Lagrangian framework. We derive the Ward identities which characterize the dependence of physical correlators on the background world-sheet metric defining the gauge-slice. We point out the existence of an "anomaly" in Ward identitites involving correlators of observables with higher ghost number. This "anomaly" represents an obstruction for physical correlators to be globally defined forms on moduli space which could be integrated in a background independent way. Starting from the anomalous Ward identities, we derive "descent" equations whose solutions are cocycles of the Lie algebra of the diffeomorphism group with values in the space of local forms on the moduli space. We solve the descent equations and provide explicit formulas for the cocycles, which allow for the definition of background independent integrals of physical correlators on the moduli space.
Entropy bound and causality violation in higher curvature gravity
International Nuclear Information System (INIS)
Neupane, Ishwaree P; Dadhich, Naresh
2009-01-01
In any quantum theory of gravity we do expect corrections to Einstein gravity to occur. Yet, at a fundamental level, it is not apparent what the most relevant corrections are. We argue that the generic curvature square corrections present in the lower dimensional actions of various compactified string theories provide a natural passage between the classical and quantum realms of gravity. The Gauss-Bonnet and (Riemann) 2 gravities, in particular, provide concrete examples in which inconsistency of a theory, such as a violation of microcausality, and a classical limit on black hole entropy are correlated. In such theories the ratio of the shear viscosity to the entropy density, η/s, can be smaller than for a boundary conformal field theory with Einstein gravity dual. This result is interesting from the viewpoint that nuclear matter or quark-gluon plasma produced (such as at RHIC) under extreme densities and temperatures may violate the conjectured KSS bound η/s ≥ 1/4π, albeit marginally so.
Higher Curvature Gravity from Entanglement in Conformal Field Theories
Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles
2018-05-01
By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.
Black hole production in particle collisions and higher curvature gravity
International Nuclear Information System (INIS)
Rychkov, Vyacheslav S.
2004-01-01
The problem of black hole production in trans-Planckian particle collisions is revisited, in the context of large extra dimensions scenarios of TeV-scale gravity. The validity of the standard description of this process (two colliding Aichelburg-Sexl shock waves in classical Einstein gravity) is questioned. It is observed that the classical spacetime has large curvature along the transverse collision plane, as signaled by the curvature invariant (R μνλσ ) 2 . Thus quantum gravity effects, and in particular higher curvature corrections to the Einstein gravity, cannot be ignored. To give a specific example of what may happen, the collision is reanalyzed in the Einstein-Lanczos-Lovelock gravity theory, which modifies the Einstein-Hilbert Lagrangian by adding a particular 'Gauss-Bonnet' combination of curvature squared terms. The analysis uses a series of approximations, which reduce the field equations to a tractable second order nonlinear PDE of the Monge-Ampere type. It is found that the resulting spacetime is significantly different from the pure Einstein case in the future of the transverse collision plane. These considerations cast serious doubts on the geometric cross section estimate, which is based on the classical Einstein gravity description of the black hole production process
On boundary conditions in three-dimensional AdS gravity
Energy Technology Data Exchange (ETDEWEB)
Miskovic, Olivera [Instituto de Fisica, P. Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile) and Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)]. E-mail: olivera.miskovic@ucv.cl; Olea, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile) and Centro Multidisciplinar de Astrofisica, CENTRA, Departamento de Fisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)]. E-mail: rolea@fisica.ist.utl.pt
2006-09-07
A finite action principle for three-dimensional gravity with negative cosmological constant, based on a boundary condition for the asymptotic extrinsic curvature, is considered. The bulk action appears naturally supplemented by a boundary term that is one half the Gibbons-Hawking term, that makes the Euclidean action and the Noether charges finite without additional Dirichlet counterterms. The consistency of this boundary condition with the Dirichlet problem in AdS gravity and the Chern-Simons formulation in three dimensions, and its suitability for the higher odd-dimensional case, are also discussed.
5-dimensional quantum gravity effects in exclusive double diffractive events
International Nuclear Information System (INIS)
Kisselev, A.V.; Petrov, V.A.; Ryutin, R.A.
2005-01-01
The experimentally measurable effects related to extra dimensional gravity in a RS-type brane world are estimated. Two options of the RS framework (with small and large curvature) are considered. It is shown that physical signals of both can be detected by the joint experiment of the CMS and TOTEM Collaborations at the LHC
Six-dimensional Yang black holes in dilaton gravity
International Nuclear Information System (INIS)
Abbott, Michael C.; Lowe, David A.
2008-01-01
We study the six-dimensional dilaton gravity Yang black holes of Bergshoeff, Gibbons and Townsend, which carry (1,-1) charge in SU(2)xSU(2) gauge group. We find what values of the asymptotic parameters (mass and scalar charge) lead to a regular horizon, and show that there are no regular solutions with an extremal horizon
Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy
Directory of Open Access Journals (Sweden)
Kazuki Hasebe
2017-07-01
Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.
Metric dimensional reduction at singularities with implications to Quantum Gravity
International Nuclear Information System (INIS)
Stoica, Ovidiu Cristinel
2014-01-01
A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being just non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained
Higher-dimensional puncture initial data
International Nuclear Information System (INIS)
Zilhao, Miguel; Ansorg, Marcus; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich; Witek, Helvi
2011-01-01
We calculate puncture initial data, corresponding to single and binary black holes with linear momenta, which solve the constraint equations of D-dimensional vacuum gravity. The data are generated by a modification of the pseudospectral code presented in [M. Ansorg, B. Bruegmann, and W. Tichy, Phys. Rev. D 70, 064011 (2004).] and made available as the TwoPunctures thorn inside the Cactus computational toolkit. As examples, we exhibit convergence plots, the violation of the Hamiltonian constraint as well as the initial data for D=4,5,6,7. These initial data are the starting point to perform high-energy collisions of black holes in D dimensions.
Holographic entanglement entropy for the most general higher derivative gravity
International Nuclear Information System (INIS)
Miao, Rong-Xin; Guo, Wu-zhong
2015-01-01
The holographic entanglement entropy for the most general higher derivative gravity is investigated. We find a new type of Wald entropy, which appears on entangling surface without the rotational symmetry and reduces to usual Wald entropy on Killing horizon. Furthermore, we obtain a formal formula of HEE for the most general higher derivative gravity and work it out exactly for some squashed cones. As an important application, we derive HEE for gravitational action with one derivative of the curvature when the extrinsic curvature vanishes. We also study some toy models with non-zero extrinsic curvature. We prove that our formula yields the correct universal term of entanglement entropy for 4d CFTs. Furthermore, we solve the puzzle raised by Hung, Myers and Smolkin that the logarithmic term of entanglement entropy derived from Weyl anomaly of CFTs does not match the holographic result even if the extrinsic curvature vanishes. We find that such mismatch comes from the ‘anomaly of entropy’ of the derivative of curvature. After considering such contributions carefully, we resolve the puzzle successfully. In general, we need to fix the splitting problem for the conical metrics in order to derive the holographic entanglement entropy. We find that, at least for Einstein gravity, the splitting problem can be fixed by using equations of motion. How to derive the splittings for higher derivative gravity is a non-trivial and open question. For simplicity, we ignore the splitting problem in this paper and find that it does not affect our main results.
A classical approach to higher-derivative gravity
International Nuclear Information System (INIS)
Accioly, A.J.
1988-01-01
Two classical routes towards higher-derivative gravity theory are described. The first one is a geometrical route, starting from first principles. The second route is a formal one, and is based on a recent theorem by Castagnino et.al. [J. Math. Phys. 28 (1987) 1854]. A cosmological solution of the higher-derivative field equations is exhibited which in a classical framework singles out this gravitation theory. (author) [pt
BRST quantization of Polyakov's two-dimensional gravity
International Nuclear Information System (INIS)
Itoh, Katsumi
1990-01-01
Two-dimensional gravity coupled to minimal models is quantized in the chiral gauge by the BRST method. By using the Wakimoto construction for the gravity sector, we show how the quartet mechanism of Kugo and Ojima works and solve the physical state condition. As a result the positive semi-definiteness of the physical subspace is shown. The formula of Knizhnik et al. for gravitational scaling dimensions is rederived from the physical state condition. We also observe a relation between the chiral gauge and the conformal gauge. (orig.)
Generalized Gödel universes in higher dimensions and pure Lovelock gravity
Dadhich, Naresh; Molina, Alfred; Pons, Josep M.
2017-10-01
The Gödel universe is a homogeneous rotating dust with negative Λ which is a direct product of a three-dimensional pure rotation metric with a line. We would generalize it to higher dimensions for Einstein and pure Lovelock gravity with only one N th-order term. For higher-dimensional generalization, we have to include more rotations in the metric, and hence we shall begin with the corresponding pure rotation odd (d =2 n +1 )-dimensional metric involving n rotations, which eventually can be extended by a direct product with a line or a space of constant curvature for yielding a higher-dimensional Gödel universe. The considerations of n rotations and also of constant curvature spaces is a new line of generalization and is being considered for the first time.
Cosmological perturbations in non-local higher-derivative gravity
International Nuclear Information System (INIS)
Craps, Ben; Jonckheere, Tim De; Koshelev, Alexey S.
2014-01-01
We study cosmological perturbations in a non-local higher-derivative model of gravity introduced by Biswas, Mazumdar and Siegel. We extend previous work, which had focused on classical scalar perturbations around a cosine hyperbolic bounce solution, in three ways. First, we point out the existence of a Starobinsky solution in this model, which is more attractive from a phenomenological point of view (even though it has no bounce). Second, we study classical vector and tensor pertuxsxrbations. Third, we show how to quantize scalar and tensor perturbations in a de Sitter phase (for choices of parameters such that the model is ghost-free). Our results show that the model is well-behaved at this level, and are very similar to corresponding results in local f(R) models. In particular, for the Starobinsky solution of non-local higher-derivative gravity, we find the same tensor-to-scalar ratio as for the conventional Starobinsky model
Canonical and symplectic analysis for three dimensional gravity without dynamics
Energy Technology Data Exchange (ETDEWEB)
Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)
2017-03-15
In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.
Higher dimensional curved domain walls on Kähler surfaces
Energy Technology Data Exchange (ETDEWEB)
Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Radjabaycolle, Flinn C. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Departement of Physics, Faculty of Mathematics and Natural Sciences, Cendrawasih University, Jl. Kampwolker Kampus Uncen Baru Waena-Jayapura 99351 (Indonesia); Wijaya, Rio N. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia)
2017-03-15
In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.
Higher dimensional curved domain walls on Kähler surfaces
International Nuclear Information System (INIS)
Akbar, Fiki T.; Gunara, Bobby E.; Radjabaycolle, Flinn C.; Wijaya, Rio N.
2017-01-01
In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.
Fermion localization in higher curvature and scalar-tensor theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Mitra, Joydip [Scottish Church College, Department of Physics, Kolkata (India); Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)
2017-12-15
It is well known that, in a braneworld model, the localization of fermions on a lower dimensional submanifold (say a TeV 3-brane) is governed by the gravity in the bulk, which also determines the corresponding phenomenology on the brane. Here we consider a five dimensional warped spacetime where the bulk geometry is governed by higher curvature like F(R) gravity. In such a scenario, we explore the role of higher curvature terms on the localization of bulk fermions which in turn determines the effective radion-fermion coupling on the brane. Our result reveals that, for appropriate choices of the higher curvature parameter, the profiles of the massless chiral modes of the fermions may get localized near the TeV brane, while those for massive Kaluza-Klein (KK) fermions localize towards the Planck brane. We also explore these features in the dual scalar-tensor model by appropriate transformations. The localization property turns out to be identical in the two models. This rules out the possibility of any signature of massive KK fermions in TeV scale collider experiments due to higher curvature gravity effects. (orig.)
Execution spaces for simple higher dimensional automata
DEFF Research Database (Denmark)
Raussen, Martin
2012-01-01
Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions of allowa......Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions...
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Cosmological and black hole brane-world universes in higher derivative gravity
International Nuclear Information System (INIS)
Nojiri, Shin'ichi; Odintsov, Sergei D.; Ogushi, Sachiko
2002-01-01
A general model of multidimensional R 2 gravity including a Riemann tensor square term (nonzero c case) is considered. The number of brane-worlds in such a model is constructed (mainly in five dimensions) and their properties are discussed. The thermodynamics of a Schwarzschild-anti-deSitter (S-AdS) BH (with boundary) is presented when perturbation on c is used. The entropy, free energy, and energy are calculated. For a nonzero c the entropy (energy) is not proportional to the area (mass). The equation of motion of the brane in a BH background is presented as a FRW equation. Using a dual CFT description it is shown that the dual field theory is not a conformal one when c is not zero. In this case the holographic entropy does not coincide with the BH entropy (they coincide for Einstein gravity or c=0 HD gravity where the AdS/CFT description is well applied). An asymmetrically warped background (an analogue of a charged AdS BH) where Lorentz invariance violation occurs is found. The cosmological 4D dS brane connecting two dS bulk spaces is formulated in terms of the parameters of R 2 gravity. Within the proposed dS/CFT correspondence the holographic conformal anomaly from five-dimensional higher derivative gravity in a de Sitter background is evaluated
Higher-dimensional relativistic-fluid spheres
International Nuclear Information System (INIS)
Patel, L. K.; Ahmedabad, Gujarat Univ.
1997-01-01
They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given
Quantum fluctuations and spontaneous compactification of eleven-dimensional gravity
International Nuclear Information System (INIS)
Nguen Van Hieu.
1985-01-01
The reduction of the eleven-dimensional pure gravity to the field theory in the four-dimensional Minkowski space-time by means of the spontaneous compactification of the extra dimensions is investigated. The contribution of the quantum fluctuations of the eleven-dimen-- sonal second rank symmetric tensor field to the curvatures of the space-time and the compactified space of the extra dimensions are calculated in the one-loop approximation. It is shown that there exist the values of the cosmological constant for which tachions are absent. As a result, self-consistent quantum field theory is obtained in spontaneous compactified Minkowski space M 4 xS 7 ,is where M 4 is Minkowski space-time, and S 7 is seven-dimensional sphere
Four-dimensional gravity as an almost-Poisson system
Ita, Eyo Eyo
2015-04-01
In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.
Execution spaces for simple higher dimensional automata
DEFF Research Database (Denmark)
Raussen, Martin
Higher Dimensional Automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek [26]. For a topologist, they are attractive since they can be modeled as cubical complexes - with an inbuilt restriction for directions´of allowable (d-)paths. In Raussen [25], we...
A new approach for gravity localization in six-dimensional geometries
International Nuclear Information System (INIS)
Santos, Victor Pereira do Nascimento; Almeida, Carlos Alberto Santos de
2011-01-01
Full text: The idea that spacetime may have more than four dimensions is old, originally presented as an attempt to unify Maxwell's theory of Electromagnetism with the brand-new gravitation theory of Einstein. Such extra dimensions are in principle unobservable to the energy scales currently available. However, its effects can be seen in short distance gravity experiments and in observations in cosmology. Also, it is used as a mechanism to explain the difference between the energy scales of the weak force and gravity, which is called the hierarchy problem. The current framework for the extra dimension scenario is consider the four-dimensional known universe as embedded in a higher dimensional space called bulk. The form of this bulk determines how we perceive gravity in our universe; then, the behaviour of gravitational field depends on the geometry of the bulk. Metric solutions were already presented for string-like defect, with and without matter sources, where was shown that the gravity Newtonian potential grows with the inverse cube of distance. Such correction arises from a very particular mass spectrum for the gravitational field, which already contains the orbital angular momentum contributions. In this work we study the behaviour of gravitational field in a extra-dimensional braneworld scenario, using non-factorizable geometries (which preserves Poincare symmetry) and setting suitable matter distributions in order to verify its localization, for several geometries. For such geometries it is possible to find explicit solutions for the tensor fluctuations of the metric. (author)
Nonlinear massive spin-2 field generated by higher derivative gravity
International Nuclear Information System (INIS)
Magnano, Guido; Sokolowski, Leszek M.
2003-01-01
We present a systematic exposition of the Lagrangian field theory for the massive spin-2 field generated in higher-derivative gravity upon reduction to a second-order theory by means of the appropriate Legendre transformation. It has been noticed by various authors that this nonlinear field overcomes the well-known inconsistency of the theory for a linear massive spin-2 field interacting with Einstein's gravity. Starting from a Lagrangian quadratically depending on the Ricci tensor of the metric, we explore the two possible second-order pictures usually called '(Helmholtz-)Jordan frame' and 'Einstein frame'. In spite of their mathematical equivalence, the two frames have different structural properties: in Einstein frame, the spin-2 field is minimally coupled to gravity, while in the other frame it is necessarily coupled to the curvature, without a separate kinetic term. We prove that the theory admits a unique and linearly stable ground state solution, and that the equations of motion are consistent, showing that these results can be obtained independently in either frame (each frame therefore provides a self-contained theory). The full equations of motion and the (variational) energy-momentum tensor for the spin-2 field in Einstein frame are given, and a simple but non-trivial exact solution to these equations is found. The comparison of the energy-momentum tensors for the spin-2 field in the two frames suggests that the Einstein frame is physically more acceptable. We point out that the energy-momentum tensor generated by the Lagrangian of the linearized theory is unrelated to the corresponding tensor of the full theory. It is then argued that the ghost-like nature of the nonlinear spin-2 field, found long ago in the linear approximation, may not be so harmful to classical stability issues, as has been expected
Higher dimensional uniformisation and W-geometry
International Nuclear Information System (INIS)
Govindarajan, S.
1995-01-01
We formulate the uniformisation problem underlying the geometry of W n -gravity using the differential equation approach to W-algebras. We construct W n -space (analogous to superspace in supersymmetry) as an (n-1)-dimensional complex manifold using isomonodromic deformations of linear differential equations. The W n -manifold is obtained by the quotient of a Fuchsian subgroup of PSL(n,R) which acts properly discontinuously on a simply connected domain in bfCP n-1 . The requirement that a deformation be isomonodromic furnishes relations which enable one to convert non-linear W-diffeomorphisms to (linear) diffeomorphisms on the W n -manifold. We discuss how the Teichmueller spaces introduced by Hitchin can then be interpreted as the space of complex structures or the space of projective structures with real holonomy on the W n -manifold. The projective structures are characterised by Halphen invariants which are appropriate generalisations of the Schwarzian. This construction will work for all ''generic'' W-algebras. (orig.)
Thermodynamics of higher dimensional black holes
International Nuclear Information System (INIS)
Accetta, F.S.; Gleiser, M.
1986-05-01
We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs
Thermodynamics of higher dimensional black holes
Energy Technology Data Exchange (ETDEWEB)
Accetta, F.S.; Gleiser, M.
1986-05-01
We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs.
Perturbations of higher-dimensional spacetimes
Energy Technology Data Exchange (ETDEWEB)
Durkee, Mark; Reall, Harvey S, E-mail: M.N.Durkee@damtp.cam.ac.uk, E-mail: H.S.Reall@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2011-02-07
We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
International Nuclear Information System (INIS)
Accioly, Antonio; Helayël-Neto, José; Barone, F E; Herdy, Wallace
2015-01-01
A straightforward prescription for computing the D-dimensional potential energy of gravitational models, which is strongly based on the Feynman path integral, is built up. Using this method, the static potential energy for the interaction of two masses is found in the context of D-dimensional higher-derivative gravity models, and its behavior is analyzed afterwards in both ultraviolet and infrared regimes. As a consequence, two new gravity systems in which the potential energy is finite at the origin, respectively, in D = 5 and D = 6, are found. Since the aforementioned prescription is equivalent to that based on the marriage between quantum mechanics (to leading order, i.e., in the first Born approximation) and the nonrelativistic limit of quantum field theory, and bearing in mind that the latter relies basically on the calculation of the nonrelativistic Feynman amplitude (M NR ), a trivial expression for computing M NR is obtained from our prescription as an added bonus. (paper)
Spatial infinity in higher dimensional spacetimes
International Nuclear Information System (INIS)
Shiromizu, Tetsuya; Tomizawa, Shinya
2004-01-01
Motivated by recent studies on the uniqueness or nonuniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes (n≥4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the nontrivial Weyl tensor (n-1) C abcd in general. We also address static spacetime and its multipole moments P a 1 a 2 ···a s . Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed multipole moments in static vacuum spacetimes. For example, we consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of the static vacuum solution we need some additional information, at least the Weyl tensor (n-2) C abcd at spatial infinity
Quantum fluctuations and thermal dissipation in higher derivative gravity
Directory of Open Access Journals (Sweden)
Dibakar Roychowdhury
2015-08-01
Full Text Available In this paper, based on the AdS2/CFT1 prescription, we explore the low frequency behavior of quantum two point functions for a special class of strongly coupled CFTs in one dimension whose dual gravitational counterpart consists of extremal black hole solutions in higher derivative theories of gravity defined over an asymptotically AdS spacetime. The quantum critical points thus described are supposed to correspond to a very large value of the dynamic exponent (z→∞. In our analysis, we find that quantum fluctuations are enhanced due to the higher derivative corrections in the bulk which in turn increases the possibility of quantum phase transition near the critical point. On the field theory side, such higher derivative effects would stand for the corrections appearing due to the finite coupling in the gauge theory. Finally, we compute the coefficient of thermal diffusion at finite coupling corresponding to Gauss Bonnet corrected charged Lifshitz black holes in the bulk. We observe an important crossover corresponding to z=5 fixed point.
The dynamical structure of higher dimensional Chern-Simons theory
International Nuclear Information System (INIS)
Banados, M.; Garay, L.J.; Henneaux, M.
1996-01-01
Higher dimensional Chern-Simons theories, even though constructed along the same topological pattern as in 2+1 dimensions, have been shown recently to have generically a non-vanishing number of degrees of freedom. In this paper, we carry out the complete Dirac Hamiltonian analysis (separation of first and second class constraints and calculation of the Dirac bracket) for a group G x U(1). We also study the algebra of surface charges that arise in the presence of boundaries and show that it is isomorphic to the WZW 4 discussed in the literature. Some applications are then considered. It is shown, in particular, that Chern-Simons gravity in dimensions greater than or equal to five has a propagating torsion. (orig.)
Anomalous dimension in three-dimensional semiclassical gravity
International Nuclear Information System (INIS)
Alesci, Emanuele; Arzano, Michele
2012-01-01
The description of the phase space of relativistic particles coupled to three-dimensional Einstein gravity requires momenta which are coordinates on a group manifold rather than on ordinary Minkowski space. The corresponding field theory turns out to be a non-commutative field theory on configuration space and a group field theory on momentum space. Using basic non-commutative Fourier transform tools we introduce the notion of non-commutative heat-kernel associated with the Laplacian on the non-commutative configuration space. We show that the spectral dimension associated to the non-commutative heat kernel varies with the scale reaching a non-integer value smaller than three for Planckian diffusion scales.
Hamiltonian Approach to 2+1 Dimensional Gravity
Cantini, L.; Menotti, P.; Seminara, D.
2002-12-01
It is shown that the reduced particle dynamics of 2+1 dimensional gravity in the maximally slicing gauge has hamiltonian form. We give the exact diffeomorphism which transforms the spinning cone metric in the Deser, Jackiw, 't Hooft gauge to the maximally slicing gauge. It is explicitly shown that the boundary term in the action, written in hamiltonian form gives the hamiltonian for the reduced particle dynamics. The quantum mechanical translation of the two particle hamiltonian gives rise to the logarithm of the Laplace-Beltrami operator on a cone whose angular deficit is given by the total energy of the system irrespective of the masses of the particles thus proving at the quantum level a conjecture by 't Hooft on the two particle dynamics.
Instability of higher dimensional Yang-Mills systems
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1983-01-01
We investigate the stability of Poincare xO(3) invariant solutions for a pure semi-simple Yang-Mills, as well as Yang-Mills coupled to gravity in 6-dimensional space-time compactified over M 4 xS 2 . In contrast to the Maxwell U(1) theory (IC-82/208) in six dimensions coupled with gravity and investigated previously, the present theory exhibits tachyonic excitations and is unstable. (author)
Gauges and functional measures in quantum gravity II: higher-derivative gravity
Energy Technology Data Exchange (ETDEWEB)
Ohta, N. [Kindai University, Department of Physics, Higashi-Osaka, Osaka (Japan); Percacci, R. [International School for Advanced Studies, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Pereira, A.D. [UERJ-Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)
2017-09-15
We compute the one-loop divergences in a higher-derivative theory of gravity including Ricci tensor squared and Ricci scalar squared terms, in addition to the Hilbert and cosmological terms, on an (generally off-shell) Einstein background. We work with a two-parameter family of parametrizations of the graviton field, and a two-parameter family of gauges. We find that there are some choices of gauge or parametrization that reduce the dependence on the remaining parameters. The results are invariant under a recently discovered ''duality'' that involves the replacement of the densitized metric by a densitized inverse metric as the fundamental quantum variable. (orig.)
International Nuclear Information System (INIS)
Elizalde, E.; Odintsov, S.D.; Romeo, A.
1995-01-01
We develop a general formalism to study the renormalization-group- (RG-)improved effective potential for renormalizable gauge theories, including matter-R 2 -gravity, in curved spacetime. The result is given up to quadratic terms in curvature, and one-loop effective potentials may be easily obtained from it. As an example, we consider scalar QED, where dimensional transmutation in curved space and the phase structure of the potential (in particular, curvature-induced phase transitions) are discussed. For scalar QED with higher-derivative quantum gravity (QG), we examine the influence of QG on dimensional transmutation and calculate QG corrections to the scalar-to-vector mass ratio. The phase structure of the RG-improved effective potential is also studied in this case, and the values of the induced Newton and cosmological coupling constants at the critical point are estimated. The stability of the running scalar coupling in the Yukawa theory with conformally invariant higher-derivative QG, and in the standard model with the same addition, is numerically analyzed. We show that, in these models, QG tends to make the scalar sector less unstable
Multifractal and higher-dimensional zeta functions
International Nuclear Information System (INIS)
Véhel, Jacques Lévy; Mendivil, Franklin
2011-01-01
In this paper, we generalize the zeta function for a fractal string (as in Lapidus and Frankenhuijsen 2006 Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings (New York: Springer)) in several directions. We first modify the zeta function to be associated with a sequence of covers instead of the usual definition involving gap lengths. This modified zeta function allows us to define both a multifractal zeta function and a zeta function for higher-dimensional fractal sets. In the multifractal case, the critical exponents of the zeta function ζ(q, s) yield the usual multifractal spectrum of the measure. The presence of complex poles for ζ(q, s) indicates oscillations in the continuous partition function of the measure, and thus gives more refined information about the multifractal spectrum of a measure. In the case of a self-similar set in R n , the modified zeta function yields asymptotic information about both the 'box' counting function of the set and the n-dimensional volume of the ε-dilation of the set
Moduli stabilization in higher dimensional brane models
International Nuclear Information System (INIS)
Flachi, Antonino; Pujolas, Oriol; Garriga, Jaume; Tanaka, Takahiro
2003-01-01
We consider a class of warped higher dimensional brane models with topology M x Σ x S 1 /Z 2 , where Σ is a D2 dimensional manifold. Two branes of co-dimension one are embedded in such a bulk space-time and sit at the orbifold fixed points. We concentrate on the case where an exponential warp factor (depending on the distance along the orbifold) accompanies the Minkowski M and the internal space Σ line elements. We evaluate the moduli effective potential induced by bulk scalar fields in these models, and we show that generically this can stabilize the size of the extra dimensions. As an application, we consider a scenario where supersymmetry is broken not far below the cutoff scale, and the hierarchy between the electroweak and the effective Planck scales is generated by a combination of redshift and large volume effects. The latter is efficient due to the shrinking of Σ at the negative tension brane, where matter is placed. In this case, we find that the effective potential can stabilize the size of the extra dimensions (and the hierarchy) without fine tuning, provided that the internal space Σ is flat. (author)
Moduli stabilization in higher dimensional brane models
Energy Technology Data Exchange (ETDEWEB)
Flachi, Antonino; Pujolas, Oriol [IFAE, Campus UAB, 08193 Bellaterra, Barcelona (Spain)]. E-mail: pujolas@ifae.es; Garriga, Jaume [IFAE, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Departament de Fisica Fonamental and C.E.R. en Astrofisica, Fisica de Particules i Cosmologia Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Tanaka, Takahiro [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford MA 02155 (United States); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2003-08-01
We consider a class of warped higher dimensional brane models with topology M x {sigma} x S{sup 1}/Z{sub 2}, where {sigma} is a D2 dimensional manifold. Two branes of co-dimension one are embedded in such a bulk space-time and sit at the orbifold fixed points. We concentrate on the case where an exponential warp factor (depending on the distance along the orbifold) accompanies the Minkowski M and the internal space {sigma} line elements. We evaluate the moduli effective potential induced by bulk scalar fields in these models, and we show that generically this can stabilize the size of the extra dimensions. As an application, we consider a scenario where supersymmetry is broken not far below the cutoff scale, and the hierarchy between the electroweak and the effective Planck scales is generated by a combination of redshift and large volume effects. The latter is efficient due to the shrinking of {sigma} at the negative tension brane, where matter is placed. In this case, we find that the effective potential can stabilize the size of the extra dimensions (and the hierarchy) without fine tuning, provided that the internal space {sigma} is flat. (author)
Quantizing higher-spin gravity in free-field variables
Campoleoni, Andrea; Fredenhagen, Stefan; Raeymaekers, Joris
2018-02-01
We study the formulation of massless higher-spin gravity on AdS3 in a gauge in which the fundamental variables satisfy free field Poisson brackets. This gauge choice leaves a small portion of the gauge freedom unfixed, which should be further quotiented out. We show that doing so leads to a bulk version of the Coulomb gas formalism for W N CFT's: the generators of the residual gauge symmetries are the classical limits of screening charges, while the gauge-invariant observables are classical W N charges. Quantization in these variables can be carried out using standard techniques and makes manifest a remnant of the triality symmetry of W ∞[λ]. This symmetry can be used to argue that the theory should be supplemented with additional matter content which is precisely that of the Prokushkin-Vasiliev theory. As a further application, we use our formulation to quantize a class of conical surplus solutions and confirm the conjecture that these are dual to specific degenerate W N primaries, to all orders in the large central charge expansion.
Signs and stability in higher-derivative gravity
Narain, Gaurav
2018-02-01
Perturbatively renormalizable higher-derivative gravity in four space-time dimensions with arbitrary signs of couplings has been considered. Systematic analysis of the action with arbitrary signs of couplings in Lorentzian flat space-time for no-tachyons, fixes the signs. Feynman + i𝜖 prescription for these signs further grants necessary convergence in path-integral, suppressing the field modes with large action. This also leads to a sensible wick rotation where quantum computation can be performed. Running couplings for these sign of parameters make the massive tensor ghost innocuous leading to a stable and ghost-free renormalizable theory in four space-time dimensions. The theory has a transition point arising from renormalization group (RG) equations, where the coefficient of R2 diverges without affecting the perturbative quantum field theory (QFT). Redefining this coefficient gives a better handle over the theory around the transition point. The flow equations push the flow of parameters across the transition point. The flow beyond the transition point is analyzed using the one-loop RG equations which shows that the regime beyond the transition point has unphysical properties: there are tachyons, the path-integral loses positive definiteness, Newton’s constant G becomes negative and large, and perturbative parameters become large. These shortcomings indicate a lack of completeness beyond the transition point and need of a nonperturbative treatment of the theory beyond the transition point.
Higher-order gravity and the classical equivalence principle
Accioly, Antonio; Herdy, Wallace
2017-11-01
As is well known, the deflection of any particle by a gravitational field within the context of Einstein’s general relativity — which is a geometrical theory — is, of course, nondispersive. Nevertheless, as we shall show in this paper, the mentioned result will change totally if the bending is analyzed — at the tree level — in the framework of higher-order gravity. Indeed, to first order, the deflection angle corresponding to the scattering of different quantum particles by the gravitational field mentioned above is not only spin dependent, it is also dispersive (energy-dependent). Consequently, it violates the classical equivalence principle (universality of free fall, or equality of inertial and gravitational masses) which is a nonlocal principle. However, contrary to popular belief, it is in agreement with the weak equivalence principle which is nothing but a statement about purely local effects. It is worthy of note that the weak equivalence principle encompasses the classical equivalence principle locally. We also show that the claim that there exists an incompatibility between quantum mechanics and the weak equivalence principle, is incorrect.
2D higher spin gravity and the multimatrix models
International Nuclear Information System (INIS)
Awada, M.; Qiu Zongan
1990-01-01
We quantize W-gravity coupled to matter fields in the conformal gauge and obtain the critical exponents. We demonstrate explicitly how the generators of the W-algebra are described by an infinite set of conserved charges of the KdV hierarchy. We obtain the generalized hamiltonian equation of motion and show that it contains the class of universal differential equations of the matrix models. Thus we propose that these models describe pure W-gravity theories of the A-type. Consequently we give a new set of universal equations that correspond to other types of W-gravity theories. (orig.)
Dynamics and phenomenology of higher order gravity cosmological models
Moldenhauer, Jacob Andrew
2010-10-01
I present here some new results about a systematic approach to higher-order gravity (HOG) cosmological models. The HOG models are derived from curvature invariants that are more general than the Einstein-Hilbert action. Some of the models exhibit late-time cosmic acceleration without the need for dark energy and fit some current observations. The open question is that there are an infinite number of invariants that one could select, and many of the published papers have stressed the need to find a systematic approach that will allow one to study methodically the various possibilities. We explore a new connection that we made between theorems from the theory of invariants in general relativity and these cosmological models. In summary, the theorems demonstrate that curvature invariants are not all independent from each other and that for a given Ricci Segre type and Petrov type (symmetry classification) of the space-time, there exists a complete minimal set of independent invariants (a basis) in terms of which all the other invariants can be expressed. As an immediate consequence of the proposed approach, the number of invariants to consider is dramatically reduced from infinity to four invariants in the worst case and to only two invariants in the cases of interest, including all Friedmann-Lemaitre-Robertson-Walker metrics. We derive models that pass stability and physical acceptability conditions. We derive dynamical equations and phase portrait analyses that show the promise of the systematic approach. We consider observational constraints from magnitude-redshift Supernovae Type Ia data, distance to the last scattering surface of the Cosmic Microwave Background radiation, and Baryon Acoustic Oscillations. We put observational constraints on general HOG models. We constrain different forms of the Gauss-Bonnet, f(G), modified gravity models with these observations. We show some of these models pass solar system tests. We seek to find models that pass physical and
Three-dimensional simplicial quantum gravity and generalized matrix models
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.; Jonsson, T.
1990-11-01
We consider a discrete model of Euclidean quantum gravity in three dimensions based on a summation over random simplicial manifolds. We derive some elementary properties of the model and discuss possible 'matrix' models for 3d gravity. (orig.)
International Nuclear Information System (INIS)
Zheng Wei; Hsu Hou-Tse; Zhong Min; Yun Mei-Juan
2012-01-01
The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 ½ times higher than that measured by the three-dimensional gravity gradient V ij . Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10 −12 /s 2 , the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%–40% on average compared with that using the radial gravity gradient V zz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 −13 /s 2 −10 −15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field
Higher dimensional time-energy entanglement
International Nuclear Information System (INIS)
Richart, Daniel Lampert
2014-01-01
Judging by the compelling number of innovations based on taming quantum mechanical effects, such as the development of transistors and lasers, further research in this field promises to tackle further technological challenges in the years to come. This statement gains even more importance in the information processing scenario. Here, the growing data generation and the correspondingly higher need for more efficient computational resources and secure high bandwidth networks are central problems which need to be tackled. In this sense, the required CPU minituarization makes the design of structures at atomic levels inevitable, as foreseen by Moore's law. From these perspectives, it is necessary to concentrate further research efforts into controlling and manipulating quantum mechanical systems. This enables for example to encode quantum superposition states to tackle problems which are computationally NP hard and which therefore cannot be solved efficiently by classical computers. The only limitation affecting these solutions is the low scalability of existing quantum systems. Similarly, quantum communication schemes are devised to certify the secure transmission of quantum information, but are still limited by a low transmission bandwidth. This thesis follows the guideline defined by these research projects and aims to further increase the scalability of the quantum mechanical systems required to perform these tasks. The method used here is to encode quantum states into photons generated by spontaneous parametric down-conversion (SPDC). An intrinsic limitation of photons is that the scalability of quantum information schemes employing them is limited by the low detection efficiency of commercial single photon detectors. This is addressed by encoding higher dimensional quantum states into two photons, increasing the scalability of the scheme in comparison to multi-photon states. Further on, the encoding of quantum information into the emission-time degree of
Higher dimensional time-energy entanglement
Energy Technology Data Exchange (ETDEWEB)
Richart, Daniel Lampert
2014-07-08
Judging by the compelling number of innovations based on taming quantum mechanical effects, such as the development of transistors and lasers, further research in this field promises to tackle further technological challenges in the years to come. This statement gains even more importance in the information processing scenario. Here, the growing data generation and the correspondingly higher need for more efficient computational resources and secure high bandwidth networks are central problems which need to be tackled. In this sense, the required CPU minituarization makes the design of structures at atomic levels inevitable, as foreseen by Moore's law. From these perspectives, it is necessary to concentrate further research efforts into controlling and manipulating quantum mechanical systems. This enables for example to encode quantum superposition states to tackle problems which are computationally NP hard and which therefore cannot be solved efficiently by classical computers. The only limitation affecting these solutions is the low scalability of existing quantum systems. Similarly, quantum communication schemes are devised to certify the secure transmission of quantum information, but are still limited by a low transmission bandwidth. This thesis follows the guideline defined by these research projects and aims to further increase the scalability of the quantum mechanical systems required to perform these tasks. The method used here is to encode quantum states into photons generated by spontaneous parametric down-conversion (SPDC). An intrinsic limitation of photons is that the scalability of quantum information schemes employing them is limited by the low detection efficiency of commercial single photon detectors. This is addressed by encoding higher dimensional quantum states into two photons, increasing the scalability of the scheme in comparison to multi-photon states. Further on, the encoding of quantum information into the emission-time degree of
Topological aspects of classical and quantum (2+1)-dimensional gravity
International Nuclear Information System (INIS)
Soda, Jiro.
1990-03-01
In order to understand (3+1)-dimensional gravity, (2+1)-dimensional gravity is studied as a toy model. Our emphasis is on its topological aspects, because (2+1)-dimensional gravity without matter fields has no local dynamical degrees of freedom. Starting from a review of the canonical ADM formalism and York's formalism for the initial value problem, we will solve the evolution equations of (2+1)-dimensional gravity with a cosmological constant in the case of g=0 and g=1, where g is the genus of Riemann surface. The dynamics of it is understood as the geodesic motion in the moduli space. This remarkable fact is the same with the case of (2+1)-dimensional pure gravity and seen more apparently from the action level. Indeed we will show the phase space reduction of (2+1)-dimensional gravity in the case of g=1. For g ≥ 2, unfortunately we are not able to explicitly perform the phase space reduction of (2+1)-dimensional gravity due to the complexity of the Hamiltonian constraint equation. Based on this result, we will attempt to incorporate matter fields into (2+1)-dimensional pure gravity. The linearization and mini-superspace methods are used for this purpose. By using the linearization method, we conclude that the transverse-traceless part of the energy-momentum tensor affects the geodesic motion. In the case of the Einstein-Maxwell theory, we observe that the Wilson lines interact with the geometry to bend the geodesic motion. We analyze the mini-superspace model of (2+1)-dimensional gravity with the matter fields in the case of g=0 and g=1. For g=0, a wormhole solution is found but for g=1 we can not find an analogous solution. Quantum gravity is also considered and we succeed to perform the phase space reduction of (2+1)-dimensional gravity in the case of g=1 at the quantum level. From this analysis we argue that the conformal rotation is not necessary in the sense that the Euclidean quantum gravity is inappropriate for the full gravity. (author)
In search of fundamental discreteness in (2 + 1)-dimensional quantum gravity
Budd, T.G.; Loll, R.
2009-01-01
Inspired by previous work in (2 + 1)-dimensional quantum gravity, which found evidence for a discretization of time in the quantum theory, we reexamine the issue for the case of pure Lorentzian gravity with vanishing cosmological constant and spatially compact universes of genus g ≥ 2. Taking the
Topology Change and the Emergence of Geometry in Two Dimensional Causal Quantum Gravity
Westra, W.
2007-01-01
Despite many attempts, gravity has vigorously resisted a unification with the laws of quantum mechanics. Besides a plethora of technical issues, one is also faced with many interesting conceptual problems. The study of quantum gravity in lower dimensional models ameliorates the technical
Coloured Black Holes in Higher Curvature String Gravity
Kanti, Panagiota
1997-01-01
We consider the combined Yang Mills-Dilaton-Gravity system in the presence of a Gauss-Bonnet term as it appears in the $4D$ Effective Superstring Action. We give analytical arguments and demonstrate numerically the existence of black hole solutions with non-trivial dilaton and Yang Mills hair for the particular case of SU(2) gauge fields. The thermodynamical properties of the solutions are also discussed.
Renormalization group flows in σ-models coupled to two-dimensional dynamical gravity
International Nuclear Information System (INIS)
Penati, S.; Santambrogio, A.; Zanon, D.
1997-01-01
We consider a bosonic σ-model coupled to two-dimensional gravity. In the semiclassical limit, c→-∞, we compute the gravity dressing of the β-functions at two-loop order in the matter fields. We find that the corrections due to the presence of dynamical gravity are not expressible simply in terms of a multiplicative factor as previously obtained at the one-loop level. Our result indicates that the critical points of the theory are non-trivially influenced and modified by the induced gravity. (orig.)
Higher dimensional supersymmetric quantum mechanics and Dirac ...
Indian Academy of Sciences (India)
We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with speciﬁc examples. We also discuss the `physical' signiﬁcance of the supersymmetric states in this formalism.
Three-dimensional gravity investigation of the Hanford reservation
International Nuclear Information System (INIS)
Richard, B.H.; Deju, R.A.
1977-07-01
Models of the basalt surface buried under the Hanford reservation are constructed from gravity data. The method uses a modified third order polynomial surface to remove the regional effects and a gravity-geologic method to remove the water table effects. When these influences are subtracted from previous data, the anomaly remaining directly reflects the irregularity of the underlying basalt surface. The Umtanum Anticline and the Cold Creek Syncline are delineated beneath the overlying surficial deposits. Along the crest of the Umtanum Anticline, a number of gravity lows are evident. These may identify locations of breaching by an ancestral river. In addition, the data are examined to determine optimum gravity data spacing for modeling. Optimum results were obtained using a station separation of one per four square miles. Less will delineate only the major underlying structures. It is also very important to have all data points distributed in a regularly spaced grid
Flow equation of quantum Einstein gravity in a higher-derivative truncation
International Nuclear Information System (INIS)
Lauscher, O.; Reuter, M.
2002-01-01
Motivated by recent evidence indicating that quantum Einstein gravity (QEG) might be nonperturbatively renormalizable, the exact renormalization group equation of QEG is evaluated in a truncation of theory space which generalizes the Einstein-Hilbert truncation by the inclusion of a higher-derivative term (R 2 ). The beta functions describing the renormalization group flow of the cosmological constant, Newton's constant, and the R 2 coupling are computed explicitly. The fixed point properties of the 3-dimensional flow are investigated, and they are confronted with those of the 2-dimensional Einstein-Hilbert flow. The non-Gaussian fixed point predicted by the latter is found to generalize to a fixed point on the enlarged theory space. In order to test the reliability of the R 2 truncation near this fixed point we analyze the residual scheme dependence of various universal quantities; it turns out to be very weak. The two truncations are compared in detail, and their numerical predictions are found to agree with a surprisingly high precision. Because of the consistency of the results it appears increasingly unlikely that the non-Gaussian fixed point is an artifact of the truncation. If it is present in the exact theory QEG is probably nonperturbatively renormalizable and ''asymptotically safe.'' We discuss how the conformal factor problem of Euclidean gravity manifests itself in the exact renormalization group approach and show that, in the R 2 truncation, the investigation of the fixed point is not afflicted with this problem. Also the Gaussian fixed point of the Einstein-Hilbert truncation is analyzed; it turns out that it does not generalize to a corresponding fixed point on the enlarged theory space
On higher dimensional Einstein spacetimes with a non-degenerate double Weyl aligned null direction
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravda, Vojtěch; Pravdová, Alena
Roč. 35, č. 7 ( 2018 ), č. článku 075004. ISSN 0264-9381 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * WANDs * Weyl tensor Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 3.119, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6382/aaae25
Gravity, two times, tractors, Weyl invariance, and six-dimensional quantum mechanics
International Nuclear Information System (INIS)
Bonezzi, R.; Latini, E.; Waldron, A.
2010-01-01
Fefferman and Graham showed some time ago that four-dimensional conformal geometries could be analyzed in terms of six-dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently, it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein's equations are then equivalent to the existence of a parallel scale tractor (a six-component vector subject to a certain first order covariant constancy condition at every point in four-dimensional spacetime). These results suggest a six-dimensional description of four-dimensional physics, a viewpoint promulgated by the 2 times physics program of Bars. The Fefferman-Graham construction relies on a triplet of operators corresponding, respectively, to a curved six-dimensional light cone, the dilation generator and the Laplacian. These form an sp(2) algebra which Bars employs as a first class algebra of constraints in a six-dimensional gauge theory. In this article four-dimensional gravity is recast in terms of six-dimensional quantum mechanics by melding the 2 times and tractor approaches. This parent formulation of gravity is built from an infinite set of six-dimensional fields. Successively integrating out these fields yields various novel descriptions of gravity including a new four-dimensional one built from a scalar doublet, a tractor-vector multiplet and a conformal class of metrics.
Higher-dimensional Bianchi type-VIh cosmologies
Lorenz-Petzold, D.
1985-09-01
The higher-dimensional perfect fluid equations of a generalization of the (1 + 3)-dimensional Bianchi type-VIh space-time are discussed. Bianchi type-V and Bianchi type-III space-times are also included as special cases. It is shown that the Chodos-Detweiler (1980) mechanism of cosmological dimensional-reduction is possible in these cases.
Euler–Chern–Simons gravity from Lovelock–Born–Infeld gravity
Izaurieta, F.; Rodriguez, E.; Salgado, P.
2004-01-01
In the context of a gauge theoretical formulation, higher dimensional gravity invariant under the AdS group is dimensionally reduced to Euler-Chern-Simons gravity. The dimensional reduction procedure of Grignani-Nardelli [Phys. Lett. B 300, 38 (1993)] is generalized so as to permit reducing D-dimensional Lanczos Lovelock gravity to d=D-1 dimensions.
An unusual cosmological solution in the context of higher-derivative gravity
International Nuclear Information System (INIS)
Accioly, A.J.
1988-01-01
A general vacuum solution to the higher-derivative gravity field equations is presented in case of a model that exhibits symmetries of the Goedel-type. The solution possesses unusual properties. (author) [pt
(2+1) gravity for higher genus in the polygon model
Kádár, Zoltán; Loll, R.
2004-01-01
We construct explicitly a (12g − 12)-dimensional space P of unconstrained and independent initial data for ’t Hooft’s polygon model of (2+1) gravity for vacuum spacetimes with compact genus-g spacelike slices, for any g ≥ 2. Our method relies on interpreting the boost parameters of the gluing
Higher dimensional generalizations of the SYK model
Energy Technology Data Exchange (ETDEWEB)
Berkooz, Micha [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Narayan, Prithvi [International Centre for Theoretical Sciences, Hesaraghatta,Bengaluru North, 560 089 (India); Rozali, Moshe [Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Simón, Joan [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom)
2017-01-31
We discuss a 1+1 dimensional generalization of the Sachdev-Ye-Kitaev model. The model contains N Majorana fermions at each lattice site with a nearest-neighbour hopping term. The SYK random interaction is restricted to low momentum fermions of definite chirality within each lattice site. This gives rise to an ordinary 1+1 field theory above some energy scale and a low energy SYK-like behavior. We exhibit a class of low-pass filters which give rise to a rich variety of hyperscaling behaviour in the IR. We also discuss another set of generalizations which describes probing an SYK system with an external fermion, together with the new scaling behavior they exhibit in the IR.
Fermion tunneling from higher-dimensional black holes
International Nuclear Information System (INIS)
Lin Kai; Yang Shuzheng
2009-01-01
Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.
Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system
Hamada, Yuta; Yamada, Masatoshi
2017-08-01
We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.
One loop partition function of six dimensional conformal gravity using heat kernel on AdS
Energy Technology Data Exchange (ETDEWEB)
Lovreković, Iva [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria)
2016-10-13
We compute the heat kernel for the Laplacians of symmetric transverse traceless fields of arbitrary spin on the AdS background in even number of dimensions using the group theoretic approach introduced in http://dx.doi.org/10.1007/JHEP11(2011)010 and apply it on the partition function of six dimensional conformal gravity. The obtained partition function consists of the Einstein gravity, conformal ghost and two modes that contain mass.
Notes on black holes and three dimensional gravity
International Nuclear Information System (INIS)
Banados, Maximo
1999-01-01
In these notes we review some relevant results on 2+1 quantum gravity. These include the Chern-Simons formulation and its affine Kac-Moody symmetry, the asymptotic algebra of Brown and Henneaux, and the statistical mechanics description of 2+1 black holes. A brief introduction to the classical and semiclassical aspects of black holes is also included. The level of the notes is basic assuming only some knowledge on Statistical Mechanics, General Relativity and Yang-Mills theory
Interactions in higher-spin gravity: a holographic perspective
Sleight, Charlotte
2017-09-01
This review is an elaboration of recent results on the holographic re-construction of metric-like interactions in higher-spin gauge theories on anti-de Sitter space (AdS), employing their conjectured duality with free conformal field theories (CFTs). After reviewing the general approach and establishing the necessary intermediate results, we extract explicit expressions for the complete cubic action on AdSd+1 and the quartic self-interaction of the scalar on AdS4 for the type A minimal bosonic higher-spin theory from the three- and four- point correlation functions of single-trace operators in the free scalar O(N) vector model. For this purpose tools were developed to evaluate tree-level three-point Witten diagrams involving totally symmetric fields of arbitrary integer spin and mass, and the conformal partial wave expansions of their tree-level four-point Witten diagrams. We also discuss the implications of the holographic duality on the locality properties of interactions in higher-spin gauge theories.
International Nuclear Information System (INIS)
QEB, Inc. has completed a two-dimensional coherence analysis of gravity and magnetic data from the Casper, Wyoming NTMS quadrangle. Magnetic data from an airborne survey were reduced to produce a Residual Magnetic map, and gravity data obtained from several sources were reduced to produce a Complete Bouguer Gravity map. Both sets of data were upward continued to a plane one kilometer above the surface; and then, to make the magnetic and gravity data comparable, the magnetic data were transformed to pseudo-gravity data by the application of Poisson's relationship for rocks that are both dense and magnetic relative to the surrounding rocks. A pseudo-gravity map was then produced and an analysis made of the two-dimensional coherence between the upward continued Bouguer gravity and the pseudo-gravity data. Based on the results of the coherence analysis, digital filters were designed to either pass or reject wavelength bands with high coherence
Charged fluid distribution in higher dimensional spheroidal space-time
Indian Academy of Sciences (India)
A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.
Sectors of solutions in three-dimensional gravity and black holes
International Nuclear Information System (INIS)
Fjelstad, Jens; Hwang, Stephen
2002-01-01
We examine the connection between three-dimensional gravity with negative cosmological constant and two-dimensional CFT via the Chern-Simons formulation. A set of generalized spectral flow transformations are shown to yield new sectors of solutions. One implication is that the microscopic calculation of the entropy of the Banados-Teitelboim-Zanelli (BTZ) black hole is corrected by a multiplicative factor with the result that it saturates the Bekenstein-Hawking expression
Sectors of solutions in three-dimensional gravity and black holes
Energy Technology Data Exchange (ETDEWEB)
Fjelstad, Jens E-mail: jens.fjelstad@kau.se; Hwang, Stephen E-mail: stephen.hwang@kau.se
2002-04-29
We examine the connection between three-dimensional gravity with negative cosmological constant and two-dimensional CFT via the Chern-Simons formulation. A set of generalized spectral flow transformations are shown to yield new sectors of solutions. One implication is that the microscopic calculation of the entropy of the Banados-Teitelboim-Zanelli (BTZ) black hole is corrected by a multiplicative factor with the result that it saturates the Bekenstein-Hawking expression.
Rainbow vacua of colored higher-spin (A)dS_3 gravity
International Nuclear Information System (INIS)
Gwak, Seungho; Joung, Euihun; Mkrtchyan, Karapet; Rey, Soo-Jong
2016-01-01
We study the color-decoration of higher-spin (anti)-de Sitter gravity in three dimensions. We show that the rainbow vacua, which we found recently for the colored gravity theory, also pertain in the colored higher-spin theory. The color singlet spin-two plays the role of first fundamental form (metric). The difference is that when spontaneous breaking of color symmetry takes place, the Goldstone modes of massless spin-two combine with all other spins and become the maximal-depth partially massless fields of the highest spin in the theory, forming a Regge trajectory.
Birkhoff's Theorem for Three-Dimensional AdS Gravity
Ayón-Beato, Eloy; Martínez, Cristián; Zanelli, Jorge
2004-01-01
All three-dimensional matter-free spacetimes with negative cosmological constant, compatible with cyclic symmetry are identified. The only cyclic solutions are the 2+1 (BTZ) black hole with SO(2) x R isometry, and the self-dual Coussaert-Henneaux spacetimes, with isometry groups SO(2) x SO(2,1) or SO(2) x SO(2).
International Nuclear Information System (INIS)
Tseytlin, A.A.
1993-01-01
We consider a two-dimensional sigma model with a (2+N)-dimensional Minkowski signature target space metric having a covariantly constant null Killing vector. We study solutions of the conformal invariance conditions in 2+N dimensions and find that generic solutions can be represented in terms of the RG flow in N-dimensional 'transverse space' theory. The resulting conformal invariant sigma model is interpreted as a quantum action of the two-dimensional scalar ('dilaton') quantum gravity model coupled to a (non-conformal) 'transverse' sigma model. The conformal factor of the two-dimensional metric is identified with a light-cone coordinate of the (2+N)-dimensional sigma model. We also discuss the case when the transverse theory is conformal (with or without the antisymmetric tensor background) and reproduce in a systematic way the solutions with flat transverse space known before. (orig.)
Gribov ambiguity in asymptotically AdS three-dimensional gravity
International Nuclear Information System (INIS)
Anabalon, Andres; Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio
2011-01-01
In this paper the zero modes of the de Donder gauge Faddeev-Popov operator for three-dimensional gravity with negative cosmological constant are analyzed. It is found that the AdS 3 vacuum produces (infinitely many) normalizable smooth zero modes of the Faddeev-Popov operator. On the other hand, it is found that the Banados-Teitelboim-Zanelli black hole (including the zero mass black hole) does not generate zero modes. This differs from the usual Gribov problem in QCD where, close to the maximally symmetric vacuum, the Faddeev-Popov determinant is positive definite while 'far enough' from the vacuum it can vanish. This suggests that the zero mass Banados-Teitelboim-Zanelli black hole could be a suitable ground state of three-dimensional gravity with negative cosmological constant. Because of the kinematic origin of this result, it also applies for other covariant gravity theories in three dimensions with AdS 3 as maximally symmetric solution, such as new massive gravity and topologically massive gravity. The relevance of these results for supersymmetry breaking is pointed out.
Birkhoff's theorem for three-dimensional AdS gravity
International Nuclear Information System (INIS)
Ayon-Beato, Eloy; Martinez, Cristian; Zanelli, Jorge
2004-01-01
All three-dimensional matter-free space-times with negative cosmological constant, compatible with cyclic symmetry, are identified. The only cyclic solutions are the 2+1 (BTZ) black hole with SO(2)xR isometry, and the self-dual Coussaert-Henneaux space-times, with isometry groups SO(2)xSO(2,1) or SO(2)xSO(2)
International Nuclear Information System (INIS)
Froning, H. David; Meholic, Gregory V.
2010-01-01
This paper briefly explores higher dimensional spacetimes that extend Meholic's visualizable, fluidic views of: subluminal-luminal-superluminal flight; gravity, inertia, light quanta, and electromagnetism from 2-D to 3-D representations. Although 3-D representations have the potential to better model features of Meholic's most fundamental entities (Transluminal Energy Quantum) and of the zero-point quantum vacuum that pervades all space, the more complex 3-D representations loose some of the clarity of Meholic's 2-D representations of subluminal and superlumimal realms. So, much new work would be needed to replace Meholic's 2-D views of reality with 3-D ones.
International Nuclear Information System (INIS)
Hamber, H.W.; Williams, R.M.; Cambridge Univ.
1986-01-01
Higher derivative terms for Regge's formulation of lattice gravity are discussed. The analytic weak-field expansion for the regular tessellation α 5 of the four-sphere is presented. Preliminary numerical results for some computations in four dimensions are also discussed. (orig.)
Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary
Directory of Open Access Journals (Sweden)
Fitkevich Maxim
2016-01-01
Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.
Landi, Gregorio
2003-01-01
The center of gravity as an algorithm for position measurements is analyzed for a two-dimensional geometry. Several mathematical consequences of discretization for various types of detector arrays are extracted. Arrays with rectangular, hexagonal, and triangular detectors are analytically studied, and tools are given to simulate their discretization properties. Special signal distributions free of discretized error are isolated. It is proved that some crosstalk spreads are able to eliminate the center of gravity discretization error for any signal distribution. Simulations, adapted to the CMS em-calorimeter and to a triangular detector array, are provided for energy and position reconstruction algorithms with a finite number of detectors.
Can the causal pathologies of Goedel-type universes be avoided in higher-derivative gravity
International Nuclear Information System (INIS)
Accioly, A.J.; Goncalves, A.T.
1986-10-01
A completely causal rotating Goedel-type universe is obtained in the context of higher-derivative gravity. The solution is such that it has no similar in the framework of standard general relativity. The aforementioned solution presents the interesting feature of relating the mass of the nontachyonic spin-O particle, concerning the linearized higher-derivative theory, with the velocity of rigid rotation of matter. (Author) [pt
Standard 4D gravity on a brane in six-dimensional flux compactifications
International Nuclear Information System (INIS)
Peloso, Marco; Sorbo, Lorenzo; Tasinato, Gianmassimo
2006-01-01
We consider a six-dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4D gravity at large distances. Our model provides a consistent setup for the study of gravity in the rugby (or football) compactification, without having to deal with the complications of a deltalike, codimension two brane. To our knowledge, this is the first complete study of gravity in a realistic brane model with two extra dimensions, in which the mechanism of stabilization of the extra space is fully taken into account
Quantization of coset space σ-models coupled to two-dimensional gravity
International Nuclear Information System (INIS)
Korotkin, D.; Samtleben, H.
1996-07-01
The mathematical framework for an exact quantization of the two-dimensional coset space σ-models coupled to dilaton gravity, that arise from dimensional reduction of gravity and supergravity theories, is presented. The two-time Hamiltonian formulation is obtained, which describes the complete phase space of the model in the whole isomonodromic sector. The Dirac brackets arising from the coset constraints are calculated. Their quantization allows to relate exact solutions of the corresponding Wheeler-DeWitt equations to solutions of a modified (Coset) Knizhnik-Zamolodchikov system. On the classical level, a set of observables is identified, that is complete for essential sectors of the theory. Quantum counterparts of these observables and their algebraic structure are investigated. Their status in alternative quantization procedures is discussed, employing the link with Hamiltonian Chern-Simons theory. (orig.)
One-dimensional gravity in infinite point distributions
Gabrielli, A.; Joyce, M.; Sicard, F.
2009-10-01
The dynamics of infinite asymptotically uniform distributions of purely self-gravitating particles in one spatial dimension provides a simple and interesting toy model for the analogous three dimensional problem treated in cosmology. In this paper we focus on a limitation of such models as they have been treated so far in the literature: the force, as it has been specified, is well defined in infinite point distributions only if there is a centre of symmetry (i.e., the definition requires explicitly the breaking of statistical translational invariance). The problem arises because naive background subtraction (due to expansion, or by “Jeans swindle” for the static case), applied as in three dimensions, leaves an unregulated contribution to the force due to surface mass fluctuations. Following a discussion by Kiessling of the Jeans swindle in three dimensions, we show that the problem may be resolved by defining the force in infinite point distributions as the limit of an exponentially screened pair interaction. We show explicitly that this prescription gives a well defined (finite) force acting on particles in a class of perturbed infinite lattices, which are the point processes relevant to cosmological N -body simulations. For identical particles the dynamics of the simplest toy model (without expansion) is equivalent to that of an infinite set of points with inverted harmonic oscillator potentials which bounce elastically when they collide. We discuss and compare with previous results in the literature and present new results for the specific case of this simplest (static) model starting from “shuffled lattice” initial conditions. These show qualitative properties of the evolution (notably its “self-similarity”) like those in the analogous simulations in three dimensions, which in turn resemble those in the expanding universe.
On conformal Paneitz curvature equations in higher dimensional spheres
International Nuclear Information System (INIS)
El Mehdi, Khalil
2004-11-01
We study the problem of prescribing the Paneitz curvature on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results. (author)
Electromagnetic field in higher-dimensional black-hole spacetimes
International Nuclear Information System (INIS)
Krtous, Pavel
2007-01-01
A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational backreaction of such a field cannot be consistently solved
Directory of Open Access Journals (Sweden)
W.Janke
2006-01-01
Full Text Available This paper gives a brief introduction to using two-dimensional discrete and Euclidean quantum gravity approaches as a laboratory for studying the properties of fluctuating and frozen random graphs in interaction with "matter fields" represented by simple spin or vertex models. Due to the existence of numerous exact analytical results and predictions for comparison with simulational work, this is an interesting and useful enterprise.
The effective action in (2+1)-dimensional gravity and generalized BF topological field theory
Energy Technology Data Exchange (ETDEWEB)
Birmingham, D. (Theory Div., CERN, Geneva (Switzerland)); Gibbs, R.; Mokhtari, S. (Physics Dept., Louisiana Tech Univ., Ruston, LA (United States))
1991-07-11
The one-loop off-shell effective action is studied for the case of generalized BF theories in three dimensions, including, for example, (2 + 1)-dimensional gravity with a cosmological constant. The phase contribution to the effective action, originating from the {eta}-function of a particular first order operator, is calculated using a momentum space technique. It is found that the {eta}-function is proportional to the classical action. (orig.).
The effective action in (2+1)-dimensional gravity and generalized BF topological field theory
International Nuclear Information System (INIS)
Birmingham, D.; Gibbs, R.; Mokhtari, S.
1991-01-01
The one-loop off-shell effective action is studied for the case of generalized BF theories in three dimensions, including, for example, (2 + 1)-dimensional gravity with a cosmological constant. The phase contribution to the effective action, originating from the η-function of a particular first order operator, is calculated using a momentum space technique. It is found that the η-function is proportional to the classical action. (orig.)
Vacuum polarization and classical self-action near higher-dimensional defects
Energy Technology Data Exchange (ETDEWEB)
Grats, Yuri V.; Spirin, Pavel [Moscow State University, Department of Theoretical Physics, Faculty of Physics, Moscow (Russian Federation)
2017-02-15
We analyze the gravity-induced effects associated with a massless scalar field in a higher-dimensional spacetime being the tensor product of (d - n)-dimensional Minkowski space and n-dimensional spherically/cylindrically symmetric space with a solid/planar angle deficit. These spacetimes are considered as simple models for a multidimensional global monopole (if n ≥ 3) or cosmic string (if n = 2) with (d - n - 1) flat extra dimensions. Thus, we refer to them as conical backgrounds. In terms of the angular-deficit value, we derive the perturbative expression for the scalar Green function, valid for any d ≥ 3 and 2 ≤ n ≤ d - 1, and compute it to the leading order. With the use of this Green function we compute the renormalized vacuum expectation value of the field square left angle φ{sup 2}(x) right angle {sub ren} and the renormalized vacuum averaged of the scalar-field energy-momentum tensor left angle T{sub MN}(x) right angle {sub ren} for arbitrary d and n from the interval mentioned above and arbitrary coupling constant to the curvature ξ. In particular, we revisit the computation of the vacuum polarization effects for a non-minimally coupled massless scalar field in the spacetime of a straight cosmic string. The same Green function enables to consider the old purely classical problem of the gravity-induced self-action of a classical point-like scalar or electric charge, placed at rest at some fixed point of the space under consideration. To deal with divergences, which appear in consideration of the two problems, we apply the dimensional-regularization technique, widely used in quantum field theory. The explicit dependence of the results upon the dimensionalities of both the bulk and conical submanifold is discussed. (orig.)
Black holes of dimensionally continued gravity coupled to Born-Infeld electromagnetic field
Meng, Kun; Yang, Da-Bao
2018-05-01
In this paper, for dimensionally continued gravity coupled to Born-Infeld electromagnetic field, we construct topological black holes in diverse dimensions and construct dyonic black holes in general even dimensions. We study thermodynamics of the black holes and obtain first laws. We study thermal phase transitions of the black holes in T-S plane and find van der Waals-like phase transitions for even-dimensional spherical black holes, such phase transitions are not found for other types of black holes constructed in this paper.
Kink-antikink, trapping bags and five-dimensional Gauss-Bonnet gravity
Giovannini, Massimo
2006-01-01
Five-dimensional Gauss-Bonnet gravity, with one warped extra-dimension, allows classes of solutions where two scalar fields combine either in a kink-antikink system or in a trapping bag configuration. While the kink-antikink system can be interpreted as a pair of gravitating domain walls with opposite topological charges, the trapping bag solution consists of a domain wall supplemented by a non-topological defect. In both classes of solutions, for large absolute values of the bulk coordinate (i.e. far from the core of the defects), the geometry is given by five-dimensional anti-de Sitter space.
RG flow and thermodynamics of causal horizons in higher-derivative AdS gravity
International Nuclear Information System (INIS)
Banerjee, Shamik; Bhattacharyya, Arpan
2016-01-01
In http://arxiv.org/abs/1508.01343 [hep-th], one of the authors proposed that in AdS/CFT the gravity dual of the boundary c-theorem is the second law of thermodynamics satisfied by causal horizons in AdS and this was verified for Einstein gravity in the bulk. In this paper we verify this for higher derivative theories. We pick up theories for which an entropy expression satisfying the second law exists and show that the entropy density evaluated on the causal horizon in a RG flow geometry is a holographic c-function. We also prove that given a theory of gravity described by a local covariant action in the bulk a sufficient condition to ensure holographic c-theorem is that the second law of causal horizon thermodynamics be satisfied by the theory. This allows us to explicitly construct holographic c-function in a theory where there is curvature coupling between gravity and matter and standard null energy condition cannot be defined although second law is known to hold. Based on the duality between c-theorem and the second law of causal horizon thermodynamics proposed in http://arxiv.org/abs/1508.01343 [hep-th] and the supporting calculations of this paper we conjecture that every Unitary higher derivative theory of gravity in AdS satisfies the second law of causal horizon thermodynamics. If this is not true then c-theorem will be violated in a unitary Lorentz invariant field theory.
The Origin of Chern-Simons Modified Gravity from an 11 + 3-Dimensional Manifold
Directory of Open Access Journals (Sweden)
J. A. Helayël-Neto
2017-01-01
Full Text Available It is our aim to show that the Chern-Simons terms of modified gravity can be understood as generated by the addition of a 3-dimensional algebraic manifold to an initial 11-dimensional space-time manifold; this builds up an 11+3-dimensional space-time. In this system, firstly, some fields living in the bulk join the fields that live on the 11-dimensional manifold, so that the rank of the gauge fields exceeds the dimension of the algebra; consequently, there emerges an anomaly. To solve this problem, another 11-dimensional manifold is included in the 11+3-dimensional space-time, and it interacts with the initial manifold by exchanging Chern-Simon fields. This mechanism is able to remove the anomaly. Chern-Simons terms actually produce an extra manifold in the pair of 11-dimensional manifolds of the 11+3-space-time. Summing up the topology of both the 11-dimensional manifolds and the topology of the exchanged Chern-Simons manifold in the bulk, we conclude that the total topology shrinks to one, which is in agreement with the main idea of the Big Bang theory.
A Lie based 4-dimensional higher Chern-Simons theory
Zucchini, Roberto
2016-05-01
We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.
Higher-Dimensional Solitons Stabilized by Opposite Charge
Binder, B
2002-01-01
In this paper it is shown how higher-dimensional solitons can be stabilized by a topological phase gradient, a field-induced shift in effective dimensionality. As a prototype, two instable 2-dimensional radial symmetric Sine-Gordon extensions (pulsons) are coupled by a sink/source term such, that one becomes a stable 1d and the other a 3d wave equation. The corresponding physical process is identified as a polarization that fits perfectly to preliminary considerations regarding the nature of electric charge and background of 1/137. The coupling is iterative with convergence limit and bifurcation at high charge. It is driven by the topological phase gradient or non-local Gauge potential that can be mapped to a local oscillator potential under PSL(2,R).
Gheorghiu, Tamara; Vacaru, Sergiu I
2014-01-01
We find general parameterizations for generic off-diagonal spacetime metrics and matter sources in general relativity, GR, and modified gravity theories when the field equations decouple with respect to certain types of nonholonomic frames of reference. This allows us to construct various classes of exact solutions when the coefficients of fundamental geometric/ physical objects depend on all spacetime coordinates via corresponding classes of generating and integration functions and/or constants. Such (modified) spacetimes can be with Killing and non-Killing symmetries, describe nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants. Our method can be extended to higher dimensions which simplifies some proofs for imbedded and nonholonomically constrained four dimensional configurations. We reproduce the Kerr solution and show how to deform it nonholonomically into new classes of generic off-diagonal solutions depending on 3-8 spacetime coordinates. There are anal...
Diffusion in higher dimensional SYK model with complex fermions
Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong
2018-01-01
We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.
Higher-dimensional analogues of Donaldson-Witten theory
International Nuclear Information System (INIS)
Acharya, B.S.; Spence, B.
1997-01-01
We present a Donaldson-Witten-type field theory in eight dimensions on manifolds with Spin(7) holonomy. We prove that the stress tensor is BRST exact for metric variations preserving the holonomy and we give the invariants for this class of variations. In six and seven dimensions we propose similar theories on Calabi-Yau threefolds and manifolds of G 2 holonomy, respectively. We point out that these theories arise by considering supersymmetric Yang-Mills theory defined on such manifolds. The theories are invariant under metric variations preserving the holonomy structure without the need for twisting. This statement is a higher-dimensional analogue of the fact that Donaldson-Witten field theory on hyper-Kaehler 4-manifolds is topological without twisting. Higher-dimensional analogues of Floer cohomology are briefly outlined. All of these theories arise naturally within the context of string theory. (orig.)
The Peierls argument for higher dimensional Ising models
International Nuclear Information System (INIS)
Bonati, Claudio
2014-01-01
The Peierls argument is a mathematically rigorous and intuitive method to show the presence of a non-vanishing spontaneous magnetization in some lattice models. This argument is typically explained for the D = 2 Ising model in a way which cannot be easily generalized to higher dimensions. The aim of this paper is to present an elementary discussion of the Peierls argument for the general D-dimensional Ising model. (paper)
Higher dimensional strange quark matter solutions in self creation cosmology
Energy Technology Data Exchange (ETDEWEB)
Şen, R., E-mail: ramazansen-1991@hotmail.com [Institute for Natural and Applied Sciences, Çanakkale Onsekiz Mart University, 17020, Çanakkale (Turkey); Aygün, S., E-mail: saygun@comu.edu.tr [Department of Physics, Art and Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey)
2016-03-25
In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.
Torsion and curvature in higher dimensional supergravity theories
International Nuclear Information System (INIS)
Smith, A.W.; Pontificia Univ. Catolica do Rio de Janeiro
1983-01-01
This work is an extension of Dragon's theorems to higher dimensional space-time. It is shown that the first set of Bianchi identities allow us to express the curvature components in terms of torsion components and its covariant derivatives. It is also shown that the second set of Bianchi identities does not give any new information which is not already contained in the first one. (Author) [pt
Bisimulation for Higher-Dimensional Automata. A Geometric Interpretation
DEFF Research Database (Denmark)
Fahrenberg, Ulrich
We show how parallel compostition of higher-dimensional automata (HDA) can be expressed categorically in the spirit of Winskel & Nielsen. Employing the notion of computation path introduced by van Glabbeek, we define a new notion of bisimulation of HDA using open maps. We derive a connection...... between computation paths and carrier sequences of dipaths and show that bisimilarity of HDA can be decided by the use of geometric techniques....
Low-dimensional gravities as gauge theories with non-compact groups
International Nuclear Information System (INIS)
Cangeni, D.
1993-01-01
In another note presented in these Proceedings it is shown that the two main lineal gravities can be given a gauge formulation. If it is already known that one of them the Sitter model - is a dimensional reduction of a Chern-Simons model in (2+1) dimensions, it was not clear whether the other one - the extended Poincare model follows from a similar reduction. The purpose of this note is to show that this is indeed the case provide we start in 2+1 dimensions with an extension ISO(2,1) of the Poincare groups as gauge group of a Chern-Simons model. We first show that this model gives a new proposal for gravity in 2*1 dimensions, since we get classically the Einstein's equations. Performing then a dimensional reduction, we recover not only the extended Poincare model but also the de Sitter one; hence, both lineal gravities get unified in the reduced model. (Author) 6 refs
Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation
International Nuclear Information System (INIS)
Agishtein, M.E.; Migdal, A.A.
1992-01-01
In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 x 10 4 simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths
International Nuclear Information System (INIS)
Biswas, Tirthabir; Koivisto, Tomi; Mazumdar, Anupam
2010-01-01
One of the greatest problems of standard cosmology is the Big Bang singularity. Previously it has been shown that non-local ghostfree higher-derivative modifications of Einstein gravity in the ultra-violet regime can admit non-singular bouncing solutions. In this paper we study in more details the dynamical properties of the equations of motion for these theories of gravity in presence of positive and negative cosmological constants and radiation. We find stable inflationary attractor solutions in the presence of a positive cosmological constant which renders inflation geodesically complete, while in the presence of a negative cosmological constant a cyclic universe emerges. We also provide an algorithm for tracking the super-Hubble perturbations during the bounce and show that the bouncing solutions are free from any perturbative instability
Determination of angle of light deflection in higher-derivative gravity theories
Xu, Chenmei; Yang, Yisong
2018-03-01
Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.
First law of AdS black holes in higher curvature gravity
International Nuclear Information System (INIS)
Koga, Jun-ichirou
2005-01-01
We consider the first law of black hole thermodynamics in an asymptotically anti-de Sitter spacetime in the class of gravitational theories whose gravitational Lagrangian is an arbitrary function of the Ricci scalar. We first show that the conserved quantities in this class of gravitational theories constructed through conformal completion remain unchanged under the conformal transformation into the Einstein frame. We then prove that the mass and the angular momenta defined by these conserved quantities, along with the entropy defined by the Noether charge, satisfy the first law of black hole thermodynamics, not only in Einstein gravity but also in the higher curvature gravity within the class under consideration. We also point out that it is naturally understood in the symplectic formalism that the mass satisfying the first law should be necessarily defined associated with the timelike Killing vector nonrotating at infinity. Finally, a possible generalization into a wider class of gravitational theories is discussed
Energy Technology Data Exchange (ETDEWEB)
Ferraro, Rafael, E-mail: ferraro@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Fiorini, Franco, E-mail: franco@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)
2010-08-30
In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.
International Nuclear Information System (INIS)
Ferraro, Rafael; Fiorini, Franco
2010-01-01
In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.
Naked singularities in higher dimensional Vaidya space-times
International Nuclear Information System (INIS)
Ghosh, S. G.; Dadhich, Naresh
2001-01-01
We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension
Accretion onto a charged higher-dimensional black hole
International Nuclear Information System (INIS)
Sharif, M.; Iftikhar, Sehrish
2016-01-01
This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)
Accretion onto a charged higher-dimensional black hole
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2016-03-15
This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)
Bianchi's Bäcklund transformation for higher dimensional quadrics
Dincă, Ion I.
2016-12-01
We provide a generalization of Bianchi's Bäcklund transformation from 2-dimensional quadrics to higher dimensional quadrics (which is also a generalization of Tenenblat-Terng's Bäcklund transformation of isometric deformations of Hn(R) in R 2 n - 1 to general quadrics). Our investigation is the higher dimensional version of Bianchi's main three theorems on the theory of isometric deformations of quadrics and Bianchi's treatment of the Bäcklund transformation for diagonal paraboloids via conjugate systems. It became the driving force which led to the flourishing of the classical differential geometry in the second half of the XIX th century and its profound study by illustrious geometers led to interesting results. Today it is still an open problem in its full generality, but basic familiar results like the Gauß-Bonnet fundamental theorem of surfaces and the Codazzi-Mainardi equations (independently discovered also by Peterson) were first communicated to the French Academy of Sciences. A list (most likely incomplete) of the winners of the prize includes Bianchi, Bonnet, Guichard, Weingarten.Up to 1899 isometric deformations of the (pseudo-)sphere and isotropic quadrics without center (from a metric point of view they can be considered as metrically degenerate quadrics without center) together with their Bäcklund transformation and the complementary transformation of isometric deformations of surfaces of revolution were investigated by geometers such as Bäcklund, Bianchi, Bonnet, Darboux, Goursat, Hazzidakis, Lie, Weingarten, etc.In 1899 Guichard discovered that when quadrics with(out) center and of revolution around the focal axis roll on their isometric deformations their foci describe constant mean curvature (minimal) surfaces (and Bianchi proved the converse: all constant mean curvature (minimal) surfaces can be realized in this way).With Guichard's result the race to find the isometric deformations of general quadrics was on; it ended with Bianchi
Xu, C.; Luo, Z.; Sun, R.; Li, Q.
2017-12-01
The Tibetan Plateau, the largest and highest plateau on Earth, was uplifted, shorten and thicken by the collision and continuous convergence of the Indian and Eurasian plates since 50 million years ago, the Eocene epoch. Fine three-dimensional crustal structure of the Tibetan Plateau is helpful in understanding the tectonic development. At present, the ordinary method used for revealing crustal structure is seismic method, which is inhibited by poor seismic station coverage, especially in the central and western plateau primarily due to the rugged terrain. Fortunately, with the implementation of satellite gravity missions, gravity field models have demonstrated unprecedented global-scale accuracy and spatial resolution, which can subsequently be employed to study the crustal structure of the entire Tibetan Plateau. This study inverts three-dimensional crustal density and Moho topography of the Tibetan Plateau from gravity data using multi-scale gravity analysis. The inverted results are in agreement with those provided by the previous works. Besides, they can reveal rich tectonic development of the Tibetan Plateau: (1) The low-density channel flow can be observed from the inverted crustal density; (2) The Moho depth in the west is deeper than that in the east, and the deepest Moho, which is approximately 77 km, is located beneath the western Qiangtang Block; (3) The Moho fold, the directions of which are in agreement with the results of surface movement velocities estimated from Global Positioning System, exists clearly on the Moho topography.This study is supported by the National Natural Science Foundation of China (Grant No. 41504015), the China Postdoctoral Science Foundation (Grant No. 2015M572146), and the Surveying and Mapping Basic Research Programme of the National Administration of Surveying, Mapping and Geoinformation (Grant No. 15-01-08).
(2+1)-dimensional pure gravity for an arbitrary closed initial surface
International Nuclear Information System (INIS)
Hosoya, Akio; Nakao, Ken-ichi.
1989-04-01
The (2+1)-dimensional pure Einstein gravity is studied in the ADM formalism. We completely solve the initial value and the time evolution problems with a closed Riemann surface being an initial surface, choosing the time slicing so that the trace of the extrinsic curvature is independent of spatial coordinates. The possible topology of the two-surface is either a torus or a Riemann surface of genus g≥2. It is shown that the moduli parameters of the torus follow the geodesic curve in the moduli space, while the motion of the moduli is static for the case g≥2. (author)
Kink-antikink, trapping bags and five-dimensional Gauss-Bonnet gravity
Giovannini, Massimo
2006-01-01
Five-dimensional Gauss-Bonnet gravity, with one warped extra-dimension, allows classes of solutions where two scalar fields combine either in a kink-antikink system or in a trapping bag configuration. While the kink-antikink system can be interpreted as a pair of gravitating domain walls with opposite topological charges, the trapping bag solution consists of a domain wall supplemented by a non-topological defect. In both classes of solutions, for large absolute values of the bulk coordinate ...
Teichmueller motion of (2+1)-dimensional gravity with the cosmological constant
International Nuclear Information System (INIS)
Fujiwara, Yoshihisa; Soda, Jiro.
1989-08-01
The (2+1)-dimensional Einstein gravity with a cosmological constant is studied in the ADM canonical formalism. Adopting the York's time slice, we completely solve the initial-value problem and the time evolution equations with an initial spacelike 2-surface being a closed Riemann surface of genus zero and one. The result in a torus case is that the Teichmueller parameters for the torus follow a geodesic in the Teichmueller space but its motion asymptotically stops due to the presence of the cosmological constant. (author)
Gauge dependence and new kind of two-dimensional gravity theory with trivial quantum corrections
International Nuclear Information System (INIS)
Banin, A.T.; Shapiro, I.L.
1993-12-01
We search for the new kinds of classical potentials in two-dimensional induced gravity, which provide the triviality of the one-loop quantum corrections. First of all the gauge dependence of the effective potential is studied. The unique effective potential, introduced by Vilkovisly in 1984 is found to manifest the gauge dependence due to some unusual properties of the theory under consideration. Then we take the gauge of harmonical type, which provides the one-loop finiteness off shell, and then the solution for the required classical potential is found. (author). 35 refs
Cascading Gravity Extending the Dvali-Gabadadze-Porrati Model to Higher Dimension
de Rham, Claudia; Hofmann, Stefan; Khoury, Justin; Pujolas, Oriol; Redi, Michele; Tolley, Andrew J
2008-01-01
We present a higher codimension generalization of the DGP scenario which, unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced metric remains flat. The gravitational force law `cascades' from a 6D behavior at the largest distances followed by a 5D and finally a 4D regime at the shortest scales.
Cascading Gravity: Extending the Dvali-Gabadadze-Porrati Model to Higher Dimension
International Nuclear Information System (INIS)
Rham, Claudia de; Dvali, Gia; Hofmann, Stefan; Khoury, Justin; Tolley, Andrew J.; Pujolas, Oriol; Redi, Michele
2008-01-01
We present a generalization of the Dvali-Gabadadze-Porrati scenario to higher codimensions which, unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced metric remains flat. The gravitational force law ''cascades'' from a 6D behavior at the largest distances followed by a 5D and finally a 4D regime at the shortest scales
Possibility of higher-dimensional anisotropic compact star
International Nuclear Information System (INIS)
Bhar, Piyali; Rahaman, Farook; Ray, Saibal; Chatterjee, Vikram
2015-01-01
We provide a new class of interior solutions for anisotropic stars admitting conformal motion in higher-dimensional noncommutative spacetime. The Einstein field equations are solved by choosing a particular density distribution function of Lorentzian type as provided by Nazari and Mehdipour [1, 2] under a noncommutative geometry. Several cases with 4 and higher dimensions, e.g. 5, 6, and 11 dimensions, are discussed separately. An overall observation is that the model parameters, such as density, radial pressure, transverse pressure, and anisotropy, all are well behaved and represent a compact star with mass 2.27 M s un and radius 4.17 km. However, emphasis is put on the acceptability of the model from a physical point of view. As a consequence it is observed that higher dimensions, i.e. beyond 4D spacetime, exhibit several interesting yet bizarre features, which are not at all untenable for a compact stellar model of strange quark type; thus this dictates the possibility of its extra-dimensional existence. (orig.)
Possibility of higher-dimensional anisotropic compact star
Energy Technology Data Exchange (ETDEWEB)
Bhar, Piyali; Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chatterjee, Vikram [Central Footwear Training Centre, Department of Physics, Parganas, West Bengal (India)
2015-05-15
We provide a new class of interior solutions for anisotropic stars admitting conformal motion in higher-dimensional noncommutative spacetime. The Einstein field equations are solved by choosing a particular density distribution function of Lorentzian type as provided by Nazari and Mehdipour [1, 2] under a noncommutative geometry. Several cases with 4 and higher dimensions, e.g. 5, 6, and 11 dimensions, are discussed separately. An overall observation is that the model parameters, such as density, radial pressure, transverse pressure, and anisotropy, all are well behaved and represent a compact star with mass 2.27 M{sub s}un and radius 4.17 km. However, emphasis is put on the acceptability of the model from a physical point of view. As a consequence it is observed that higher dimensions, i.e. beyond 4D spacetime, exhibit several interesting yet bizarre features, which are not at all untenable for a compact stellar model of strange quark type; thus this dictates the possibility of its extra-dimensional existence. (orig.)
Ultraviolet divergences in higher dimensional supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Howe, P.S.; Stelle, K.S.
1984-01-01
We determine the loop orders for the onset of allowed ultra-violet divergences in higher dimensional supersymmetric Yang-Mills theories. Cancellations are controlled by the non-renormalization theorems for the linearly realizable supersymmetries and by the requirement that counterterms display the full non-linear supersymmetries when the classical equations of motion are imposed. The first allowed divergences in the maximal super Yang-Mills theories occur at four loops in five dimensions, three loops in six dimensions and two loops in seven dimensions. (orig.)
Exact coefficients for higher dimensional operators with sixteen supersymmetries
Energy Technology Data Exchange (ETDEWEB)
Chen, Wei-Ming [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, Congkao [INFN Sezione di Roma “Tor Vergata' ,Via della Ricerca Scientifica, 00133 Roma (Italy)
2015-09-15
We consider constraints on higher-dimensional operators for supersymmetric effective field theories. In four dimensions with maximal supersymmetry and SU(4) R-symmetry, we demonstrate that the coefficients of abelian operators F{sup n} with MHV helicity configurations must satisfy a recursion relation, and are completely determined by that of F{sup 4}. As the F{sup 4} coefficient is known to be one-loop exact, this allows us to derive exact coefficients for all such operators. We also argue that the results are consistent with the SL(2,Z) duality symmetry. Breaking SU(4) to Sp(4), in anticipation for the Coulomb branch effective action, we again find an infinite class of operators whose coefficients are determined exactly. We also consider three-dimensional N=8 as well as six-dimensional N=(2,0),(1,0) and (1,1) theories. In all cases, we demonstrate that the coefficient of dimension-six operator must be proportional to the square of that of dimension-four.
Is higher-derivative gravity a good therapy to the causal pathologies of Goedel-type universes
International Nuclear Information System (INIS)
Accioly, A.J.
1988-01-01
The possibility of considering higher-derivative gravity as a therapy to the causal pathologies of Goedel-type universes is investigated. As a consequence an unusual cosmological solution is obtained. (author) [pt
Non extensive statistics and entropic gravity in a non-integer dimensional space
International Nuclear Information System (INIS)
Abreu, Everton M.C.; Ananias Neto, Jorge; Godinho, Cresus F.L.
2013-01-01
Full text: The idea that gravity can be originated from thermodynamics features has begun with the discovering that black hole physics is connected to the thermodynamics laws. These concepts were strongly boosted after Jacobson's work, where the Einstein equations were obtained from general thermodynamics approaches. In a recent work, Padmanabhan obtained an interpretation of gravity as an equipartition law. In Verlinde's thermo gravitational formalism, the temperature and the acceleration are connected via Unruh effect. At the same time, he combined the holographic principle with an equipartition law, where the number of bits is proportional to the area of the holographic surface. Bits were used to define the microscopic degrees of freedom. With these ingredients, the entropic force combined with the holographic principle and the equipartition law originated the Newton's law of gravitation. The possible interpretation of Verlinde's result is that gravity is not an underlying concept, but an emergent one. It originates from the statistical behavior of the holographic screen microscopic degrees of freedom. Following these ideas, the current literature has grown in an accelerated production from Coulomb force and symmetry considerations of entropic force to cosmology and loop quantum. In this work we introduced the Newton's constant in a fractal space as a function of the non extensive one. With this result we established a relation between the Tsallis non extensive parameter and the dimension of this fractal space. Using Verlinde's formalism we used these fractal ideas combined with the concept of entropic gravity to calculate the number of bits of an holographic surface in this non-integer dimensional space, a fractal holographic screen. We introduced a fundamental length, a Planck-like length, into this space as a function of this fractal holographic screen radius. Finally, we consider superior dimensions in this analysis. (author)
Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory
International Nuclear Information System (INIS)
Noui, Karim
2007-01-01
In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function
Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity
Saadi, Maha
1991-01-01
The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories
Zemba, Guillermo Raul
A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
Stationary strings near a higher-dimensional rotating black hole
International Nuclear Information System (INIS)
Frolov, Valeri P.; Stevens, Kory A.
2004-01-01
We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string
Analytic rotating black-hole solutions in N-dimensional f(T) gravity
Energy Technology Data Exchange (ETDEWEB)
Nashed, G.G.L. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Cairo (Egypt); Ain Shams University, Faculty of Science, Mathematics Department, Cairo (Egypt); Egyptian Relativity Group (ERG), Cairo (Egypt); El Hanafy, W. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Cairo (Egypt); Egyptian Relativity Group (ERG), Cairo (Egypt)
2017-02-15
A non-diagonal vielbein ansatz is applied to the N-dimension field equations of f(T) gravity. An analytical vacuum solution is derived for the quadratic polynomial f(T)=T+εT{sup 2} and an inverse relation between the coupling constant ε and the cosmological constant Λ. Since the induced metric has off-diagonal components, it cannot be removed by a mere coordinate transformation, the solution has a rotating parameter. The curvature and torsion scalars invariants are calculated to study the singularities and horizons of the solution. In contrast to general relativity, the Cauchy horizon differs from the horizon which shows the effect of the higher order torsion. The general expression of the energy-momentum vector of f(T) gravity is used to calculate the energy of the system. Finally, we have shown that this kind of solution satisfies the first law of thermodynamics in the framework of f(T) gravitational theories. (orig.)
Geometry of higher-dimensional black hole thermodynamics
International Nuclear Information System (INIS)
Aaman, Jan E.; Pidokrajt, Narit
2006-01-01
We investigate thermodynamic curvatures of the Kerr and Reissner-Nordstroem (RN) black holes in spacetime dimensions higher than four. These black holes possess thermodynamic geometries similar to those in four-dimensional spacetime. The thermodynamic geometries are the Ruppeiner geometry and the conformally related Weinhold geometry. The Ruppeiner geometry for a d=5 Kerr black hole is curved and divergent in the extremal limit. For a d≥6 Kerr black hole there is no extremality but the Ruppeiner curvature diverges where one suspects that the black hole becomes unstable. The Weinhold geometry of the Kerr black hole in arbitrary dimension is a flat geometry. For the RN black hole the Ruppeiner geometry is flat in all spacetime dimensions, whereas its Weinhold geometry is curved. In d≥5 the Kerr black hole can possess more than one angular momentum. Finally we discuss the Ruppeiner geometry for the Kerr black hole in d=5 with double angular momenta
The Phase Transition of Higher Dimensional Charged Black Holes
International Nuclear Information System (INIS)
Li, Huaifan; Zhao, Ren; Zhang, Lichun; Guo, Xiongying
2016-01-01
We have studied phase transitions of higher dimensional charge black hole with spherical symmetry. We calculated the local energy and local temperature and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters (Q,Φ) of black hole thermodynamic system, in accordance with considering the state parameters (P,V) of van der Waals system, respectively. We obtain the critical point of black hole thermodynamic system and find that the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime and is intrinsic property of black hole thermodynamic system.
Graviton emission from a higher-dimensional black hole
International Nuclear Information System (INIS)
Cornell, Alan S.; Naylor, Wade; Sasaki, Misao
2006-01-01
We discuss the graviton absorption probability (greybody factor) and the cross-section of a higher-dimensional Schwarzschild black hole (BH). We are motivated by the suggestion that a great many BHs may be produced at the LHC and bearing this fact in mind, for simplicity, we shall investigate the intermediate energy regime for a static Schwarzschild BH. That is, for (2M) 1/(n-1) ω ∼ 1, where M is the mass of the black hole and ω is the energy of the emitted gravitons in (2+n)-dimensions. To find easily tractable solutions we work in the limit l >> 1, where l is the angular momentum quantum number of the graviton
Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Myrzakulov, R. [Department of General & Theoretical Physics and Eurasian Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Odintsov, S.D. [Consejo Superior de Investigaciones Científicas, ICE/CSIC-IEEC, Campus UAB, Facultat de Ciències, Torre C5-Parell-2a pl, E-08193 Bellaterra, Barcelona (Spain); Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n 08193 Cerdanyola del Valles, Barcelona (Spain); Tomsk State Pedagogical University, 634050 Tomsk (Russian Federation); Tomsk State University of Control Systems and Radioelectronics (TUSUR) 634050 Tomsk (Russian Federation); Sebastiani, L., E-mail: lorenzo.sebastiani@unitn.it [Department of General & Theoretical Physics and Eurasian Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)
2016-06-15
We study inflation for a quantum scalar electrodynamics model in curved space–time and for higher-derivative quantum gravity (QG) coupled with scalar electrodynamics. The corresponding renormalization-group (RG) improved potential is evaluated for both theories in Jordan frame where non-minimal scalar-gravitational coupling sector is explicitly kept. The role of one-loop quantum corrections is investigated by showing how these corrections enter in the expressions for the slow-roll parameters, the spectral index and the tensor-to-scalar ratio and how they influence the bound of the Hubble parameter at the beginning of the primordial acceleration. We demonstrate that the viable inflation maybe successfully realized, so that it turns out to be consistent with last Planck and BICEP2/Keck Array data.
International Nuclear Information System (INIS)
Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory
2002-01-01
We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework
Automatic program for the interpretation of two-dimensional gravity and magnetic anomalies
International Nuclear Information System (INIS)
Wagini, A.
1985-01-01
This automatic inversion program for the interpretation of two-dimensional gravity and magnetic anomalies has been developed mainly in support of the US Geological Survey's effort to characterize potential radioactive-waste storage sites at the Nevada Test Site, Nevada. Determining subsurface shapes and extensions of geologic bodies necessitates extensive modeling of magnetic and gravity data. Geologic models for the source of magnetic or gravity anomalies are often developed by trial and error: an approximation is made to establish an initial model, the anomaly due to the model is calculated and compared with the observed anomaly, and the model is iteratively modified to improve the agreement between calculated and observed anomalies. The method presented is not a least-squares method like other methods developed during the last few years, but minimizes the sum of the squares of the residuals by varying only one variable (coordinate) at a time. Varying one variable at a time allows one to use all available information in the model calculation, which can essentially reduce the computation time. The objective of this program is to find the shape of geologic bodies when the physical parameters are known. Except for the outermost corners, only the z-coordinate of each corner-point is varied. The variation of only one variable at a time has the advantage that a large number of bodies and corner-points (in this program up to 50 bodies, each with up to 50 corner-points) can be used for the model calculation without solving a large matrix. This can be important, especially for smaller computers. The program is written in ANSI Standard FORTRAN 77 and is interactive; thus it requires little knowledge of the computer system and its editing facilities. 5 refs
Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity
International Nuclear Information System (INIS)
Dehghani, M. H.; Sedehi, H. R. Rastegar
2006-01-01
We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account
International Nuclear Information System (INIS)
Das, S.R.; Mukherji, S.
1994-01-01
We study black hole formation in a model of two dimensional dilaton gravity and 24 massless scalar fields with a boundary. We find the most general boundary condition consistent with perfect reflection of matter and the constraints. We show that in the semiclassical approximation and for the generic value of a parameter which characterizes the boundary conditions, the boundary starts receding to infinity at the speed of light whenever the total energy of the incoming matter flux exceeds a certain critical value. This is also the critical energy which marks the onset of black hole formation. We then compute the quantum fluctuations of the boundary and of the rescaled scalar curvature and show that as soon as the incoming energy exceeds this critical value, and asymptotic observer using normal time resolutions will always measure large quantum fluctuations of space-time near the horizon, even though the freely falling observer does not. This is an aspect of black hole complementarity relating directly to quantum gravity effects. (author). 30 refs, 4 figs
Finite action for three dimensional gravity with a minimally coupled scalar field
International Nuclear Information System (INIS)
Gegenberg, Jack; Martinez, Cristian; Troncoso, Ricardo
2003-01-01
Three-dimensional gravity with a minimally coupled self-interacting scalar is considered. The falloff of the fields at infinity is assumed to be slower than that of a localized distribution of matter in the presence of a negative cosmological constant. However, the asymptotic symmetry group remains to be the conformal group. The counterterm Lagrangian needed to render the action finite is found by demanding that the action attain an extremum for the boundary conditions implied by the above falloff of the fields at infinity. These counterterms explicitly depend on the scalar field. As a consequence, the Brown-York stress-energy tensor acquires a nontrivial contribution from the matter sector. Static circularly symmetric solutions with a regular scalar field are explored for a one-parameter family of potentials. Their masses are computed via the Brown-York quasilocal stress-energy tensor, and they coincide with the values obtained from the Hamiltonian approach. The thermal behavior, including the transition between different configurations, is analyzed, and it is found that the scalar black hole can decay into the Banados-Teitelboim-Zanelli solution irrespective of the horizon radius. It is also shown that the AdS conformal field theory correspondence yields the same central charge as for pure gravity
A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves
Sassi, Fabrizio; Garcia, Rolando R.
1994-01-01
A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.
Directory of Open Access Journals (Sweden)
Yao Huang
2017-05-01
Full Text Available Active movements are important in the rehabilitation training for patients with neurological motor disorders, while weight of upper limb impedes movements due to muscles weakness. The objective of this study is to develop a position-varying gravity compensation strategy for a cable-based rehabilitation robot. The control strategy can estimate real-time gravity torque according to position feedback. Then, the performance of this control strategy was compared with the other two kinds of gravity compensation strategies (i.e., without compensation and with fixed compensation during movements tracking. Seven healthy subjects were invited to conduct tracking tasks along four different directions (i.e., upward, forward, leftward, and rightward. The performance of movements with different compensation strategies was compared in terms of root mean square error (RMSE between target and actual moving trajectories, normalized jerk score (NJS, mean velocity ratio (MVR of main motion direction, and the activation of six muscles. The results showed that there were significant effects in control strategies in all four directions with the RMSE and NJS values in the following order: without compensation > fixed compensation > position-varying compensation and MVR values in the following order: without compensation < fixed compensation < position-varying compensation (p < 0.05. Comparing with movements without compensation in all four directions, the activation of muscles during movements with position-varying compensation showed significant reductions, except the activations of triceps and in forward and leftward movements, the activations of upper trapezius and middle parts of deltoid in upward movements and the activations of posterior parts of deltoid in all four directions (p < 0.05. Therefore, with position-varying gravity compensation, the upper limb cable-based rehabilitation robotic system might assist subjects to perform movements with higher quality and
Critical behavior in two-dimensional quantum gravity and equations of motion of the string
International Nuclear Information System (INIS)
Das, S.R.; Dhar, A.; Wadia, S.R.
1990-01-01
The authors show how consistent quantization determines the renormalization of couplings in a quantum field theory coupled to gravity in two dimensions. The special status of couplings corresponding to conformally invariant matter is discussed. In string theory, where the dynamical degree of freedom of the two-dimensional metric plays the role of time in target space, these renormalization group equations are themselves the classical equations of motion. Time independent solutions, like classical vacuua, correspond to the situation in which matter is conformally invariant. Time dependent solutions, like tunnelling configurations between vacuua, correspond to special trajectories in theory space. The authors discuss an example of such a trajectory in the space containing the c ≤ 1 minimal models. The authors also discuss the connection between this work and the recent attempts to construct non-pertubative string theories based on matrix models
Fermionic field perturbations of a three-dimensional Lifshitz black hole in conformal gravity
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, P.A. [Facultad de Ingenieria y Ciencias, Universidad Diego Portales, Santiago (Chile); Vasquez, Yerko; Villalobos, Ruth Noemi [Universidad de La Serena, Departamento de Fisica y Astronomia, Facultad de Ciencias, La Serena (Chile)
2017-09-15
We study the propagation of massless fermionic fields in the background of a three-dimensional Lifshitz black hole, which is a solution of conformal gravity. The black-hole solution is characterized by a vanishing dynamical exponent. Then we compute analytically the quasinormal modes, the area spectrum, and the absorption cross section for fermionic fields. The analysis of the quasinormal modes shows that the fermionic perturbations are stable in this background. The area and entropy spectrum are evenly spaced. In the low frequency limit, it is observed that there is a range of values of the angular momentum of the mode that contributes to the absorption cross section, whereas it vanishes in the high frequency limit. In addition, by a suitable change of variables a gravitational soliton can also be obtained and the stability of the quasinormal modes are studied and ensured. (orig.)
Poisson structure and symmetry in the Chern-Simons formulation of (2 + 1)-dimensional gravity
International Nuclear Information System (INIS)
Meusburger, C; Schroers, B J
2003-01-01
In the formulation of (2 + 1)-dimensional gravity as a Chern-Simons gauge theory, the phase space is the moduli space of flat Poincare group connections. Using the combinatorial approach developed by Fock and Rosly, we give an explicit description of the phase space and its Poisson structure for the general case of a genus g oriented surface with punctures representing particles and a boundary playing the role of spatial infinity. We give a physical interpretation and explain how the degrees of freedom associated with each handle and each particle can be decoupled. The symmetry group of the theory combines an action of the mapping class group with asymptotic Poincare transformations in a nontrivial fashion. We derive the conserved quantities associated with the latter and show that the mapping class group of the surface acts on the phase space via Poisson isomorphisms
Gauge/gravity duality for interactions of spherical membranes in 11-dimensional pp-wave
International Nuclear Information System (INIS)
Lee, Hok Kong; McLoughlin, Tristan; Wu Xinkai
2005-01-01
We investigate the gauge/gravity duality in the interaction between two spherical membranes in the 11-dimensional pp-wave background. On the supergravity side, we find the solution to the field equations at locations close to a spherical source membrane, and use it to obtain the light-cone Lagrangian of a spherical probe membrane very close to the source, i.e., with their separation much smaller than their radii. On the gauge theory side, using the BMN matrix model, we compute the one-loop effective potential between two membrane fuzzy spheres. Perfect agreement is found between the two sides. Moreover, the one-loop effective potential we obtain on the gauge theory side is valid beyond the small-separation approximation, giving the full interpolation between interactions of membrane-like objects and that of graviton-like objects
Conservation laws and two-dimensional black holes in dilaton gravity
Mann, R. B.
1993-05-01
A very general class of Lagrangians which couple scalar fields to gravitation and matter in two spacetime dimensions is investigated. It is shown that a vector field exists along whose flow lines the stress-energy tensor is conserved, regardless of whether or not the equations of motion are satisfied or if any Killing vectors exist. Conditions necessary for the existence of Killing vectors are derived. A new set of two-dimensional (2D) black-hole solutions is obtained for one particular member within this class of Lagrangians, which couples a Liouville field to 2D gravity in a novel way. One solution of this theory bears an interesting resemblance to the 2D string-theoretic black hole, yet contains markedly different thermodynamic properties.
BRS current and related anomalies in two-dimensional gravity and string theories
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Inagaki, Takeshi; Suzuki, Hiroshi.
1989-06-01
The BRS currents in two-dimensional gravity and supergravity theories, which are related to string theory, contain anomalous terms. The origin of these anomalies can be neatly understood in a carefully defined path integral. We present the detailed calculations of these BRS and related anomalies in the holomorphic or antiholomorphic sector separately in the conformal gauge. One-loop renormalization of the Liouville action becomes transparent in our formulation. We identify a BRS-invariant BRS current (and thus nil-potent charge) and a conformally invariant ghost number current by incorporating the dynamical Weyl freedom explicitly. The formal path integral construction of various composite operators is also checked by using the operator product technique. Implications of these BRS analyses on possible non-critical string theories at d<26 or d<10 are briefly discussed. (author)
(2+1)-dimensional quantum gravity as the continuum limit of causal dynamical triangulations
International Nuclear Information System (INIS)
Benedetti, D.; Loll, R.; Zamponi, F.
2007-01-01
We perform a nonperturbative sum over geometries in a (2+1)-dimensional quantum gravity model given in terms of causal dynamical triangulations. Inspired by the concept of triangulations of product type introduced previously, we impose an additional notion of order on the discrete, causal geometries. This simplifies the combinatorial problem of counting geometries just enough to enable us to calculate the transfer matrix between boundary states labeled by the area of the spatial universe, as well as the corresponding quantum Hamiltonian of the continuum theory. This is the first time in dimension larger than 2 that a Hamiltonian has been derived from such a model by mainly analytical means, and it opens the way for a better understanding of scaling and renormalization issues
Energy Technology Data Exchange (ETDEWEB)
Garbarz, Alan, E-mail: alan-at@df.uba.ar [Departamento de Física, Universidad de Buenos Aires FCEN-UBA, IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires, Argentina and Instituto de Física de La Plata, Universidad Nacional de La Plata IFLP-UNLP, C.C. 67 (Argentina); Giribet, Gaston, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar; Goya, Andrés, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar [Departamento de Física, Universidad de Buenos Aires FCEN-UBA, IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Leston, Mauricio, E-mail: mauricio-at@iafe.uba.ar [Instituto de Astronomía y Física del Espacio IAFE-CONICET, Ciudad Universitaria, C.C. 67 Suc. 28, 1428, Buenos Aires (Argentina)
2015-03-26
We consider critical gravity in three dimensions; that is, the New Massive Gravity theory formulated about Anti-de Sitter (AdS) space with the specific value of the graviton mass for which it results dual to a two-dimensional conformai field theory with vanishing central charge. As it happens with Kerr black holes in four-dimensional critical gravity, in three-dimensional critical gravity the Bañados-Teitelboim-Zanelli black holes have vanishing mass and vanishing angular momentum. However, provided suitable asymptotic conditions are chosen, the theory may also admit solutions carrying non-vanishing charges. Here, we give simple examples of exact solutions that exhibit falling-off conditions that are even weaker than those of the so-called Log-gravity. For such solutions, we define the quasilocal stress-tensor and use it to compute conserved charges. Despite the drastic deformation of AdS{sub 3} asymptotic, these solutions have finite mass and angular momentum, which are shown to be non-zero.
Dehghani, M.
2018-02-01
Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.
Compositional modeling of three-phase flow with gravity using higher-order finite element methods
Moortgat, Joachim
2011-05-11
A wide range of applications in subsurface flow involve water, a nonaqueous phase liquid (NAPL) or oil, and a gas phase, such as air or CO2. The numerical simulation of such processes is computationally challenging and requires accurate compositional modeling of three-phase flow in porous media. In this work, we simulate for the first time three-phase compositional flow using higher-order finite element methods. Gravity poses complications in modeling multiphase processes because it drives countercurrent flow among phases. To resolve this issue, we propose a new method for the upwinding of three-phase mobilities. Numerical examples, related to enhanced oil recovery and carbon sequestration, are presented to illustrate the capabilities of the proposed algorithm. We pay special attention to challenges associated with gravitational instabilities and take into account compressibility and various phase behavior effects, including swelling, viscosity changes, and vaporization. We find that the proposed higher-order method can capture sharp solution discontinuities, yielding accurate predictions of phase boundaries arising in computational three-phase flow. This work sets the stage for a broad extension of the higher-order methods for numerical simulation of three-phase flow for complex geometries and processes.
(2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model
Hoseinzadeh, S.; Rezaei-Aghdam, A.
2018-06-01
We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.
The Higgs particle and higher-dimensional theories
International Nuclear Information System (INIS)
Lim, C. S.
2014-01-01
In spite of the great success of LHC experiments, we do not know whether the discovered “standard model-like” Higgs particle is really what the standard model predicts, or a particle that some new physics has in its low-energy effective theory. Also, the long-standing problems concerning the property of the Higgs and its interactions are still there, and we still do not have any conclusive argument on the origin of the Higgs itself. In this article we focus on higher-dimensional theories as new physics. First we give a brief review of their representative scenarios and closely related 4D scenarios. Among them, we mainly discuss two interesting possibilities of the origin of the Higgs: the Higgs as a gauge boson and the Higgs as a (pseudo) Nambu–Goldstone boson. Next, we argue that theories of new physics are divided into two categories, i.e., theories with normal Higgs interactions and those with anomalous Higgs interactions. Interestingly, both the candidates for the origin of the Higgs mentioned above predict characteristic “anomalous” Higgs interactions, such as the deviation of the Yukawa couplings from the standard model predictions. Such deviations can hopefully be investigated by precision tests of Higgs interactions at the planned ILC experiment. Also discussed is the main decay mode of the Higgs, H→γγ. Again, theories belonging to different categories are known to predict remarkably different new physics contributions to this important process
Massive Higher Dimensional Gauge Fields as Messengers of Supersymmetry Breaking
International Nuclear Information System (INIS)
Chacko, Z.; Luty, Markus A.; Ponton, Eduardo
2000-01-01
We consider theories with one or more compact dimensions with size r > 1/M, where M is the fundamental Planck scale, with the visible and hidden sectors localized on spatially separated 3 -branes''. We show that a bulk U(1) gauge field spontaneously broken on the hidden-sector 3-brane is an attractive candidate for the messenger of supersymmetry breaking. In this scenario scalar mass-squared terms are proportional to U(1) charges, and therefore naturally conserve flavor. Arbitrary flavor violation at the Planck scale gives rise to exponentially suppressed flavor violation at low energies. Gaugino masses can be generated if the standard gauge fields propagate in the bulk; μ and Bμ terms can be generated by the Giudice-Masiero or by the VEV of a singlet in the visible sector. The latter case naturally solves the SUSY CP problem. Realistic phenomenology can be obtained either if all microscopic parameters are order one in units of M, or if the theory is strongly coupled at the scale M. (For the latter case, we estimate parameters by extending n aive dimensional analysis'' to higher-dimension theories with branes.) In either case, the only unexplained hierarchy is the l arge'' size of the extra dimensions in fundamental units, which need only be an order of magnitude. All soft masses are naturally within an order of magnitude of m 3/2 , and trilinear scalar couplings are negligible. Squark and slepton masses can naturally unify even in the absence of grand unification. (author)
Spinning higher dimensional Einstein-Yang-Mills black holes
International Nuclear Information System (INIS)
Ghosh, Sushant G.; Papnoi, Uma
2014-01-01
We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)
Spinning higher dimensional Einstein-Yang-Mills black holes
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of Kwa-Zulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Papnoi, Uma [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India)
2014-08-15
We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)
An approach to higher dimensional theories based on lattice gauge theory
International Nuclear Information System (INIS)
Murata, M.; So, H.
2004-01-01
A higher dimensional lattice space can be decomposed into a number of four-dimensional lattices called as layers. The higher dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. We propose the new possibility to realize the continuum limit of a five-dimensional theory based on the property of the phase diagram
Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime
Directory of Open Access Journals (Sweden)
Gianluca Calcagni
2017-10-01
Full Text Available We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.
Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime
International Nuclear Information System (INIS)
Calcagni, Gianluca; Ronco, Michele
2017-01-01
We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.
Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime
Calcagni, Gianluca; Ronco, Michele
2017-10-01
We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.
Symmetries, holography, and quantum phase transition in two-dimensional dilaton AdS gravity
Cadoni, Mariano; Ciulu, Matteo; Tuveri, Matteo
2018-05-01
We revisit the Almheiri-Polchinski dilaton gravity model from a two-dimensional (2D) bulk perspective. We describe a peculiar feature of the model, namely the pattern of conformal symmetry breaking using bulk Killing vectors, a covariant definition of mass and the flow between different vacua of the theory. We show that the effect of the symmetry breaking is both the generation of an infrared scale (a mass gap) and to make local the Goldstone modes associated with the asymptotic symmetries of the 2D spacetime. In this way a nonvanishing central charge is generated in the dual conformal theory, which accounts for the microscopic entropy of the 2D black hole. The use of covariant mass allows to compare energetically the two different vacua of the theory and to show that at zero temperature the vacuum with a constant dilaton is energetically preferred. We also translate in the bulk language several features of the dual CFT discussed by Maldacena et al. The uplifting of the 2D model to (d +2 )-dimensional theories exhibiting hyperscaling violation is briefly discussed.
Euclidean D-branes and higher-dimensional gauge theory
International Nuclear Information System (INIS)
Acharya, B.S.; Figueroa-O'Farrill, J.M.; Spence, B.; O'Loughlin, M.
1997-07-01
We consider euclidean D-branes wrapping around manifolds of exceptional holonomy in dimensions seven and eight. The resulting theory on the D-brane-that is, the dimensional reduction of 10-dimensional supersymmetric Yang-Mills theory-is a cohomological field theory which describes the topology of the moduli space of instantons. The 7-dimensional theory is an N T =2 (or balanced) cohomological theory given by an action potential of Chern-Simons type. As a by-product of this method, we construct a related cohomological field theory which describes the monopole moduli space on a 7-manifold of G 2 holonomy. (author). 22 refs, 3 tabs
Directory of Open Access Journals (Sweden)
Baojun Zhao
2018-01-01
Full Text Available Envelope gravity solitary waves are an important research hot spot in the field of solitary wave. And the weakly nonlinear model equations system is a part of the research of envelope gravity solitary waves. Because of the lack of technology and theory, previous studies tried hard to reduce the variable numbers and constructed the two-dimensional model in barotropic atmosphere and could only describe the propagation feature in a direction. But for the propagation of envelope gravity solitary waves in real ocean ridges and atmospheric mountains, the three-dimensional model is more appropriate. Meanwhile, the baroclinic problem of atmosphere is also an inevitable topic. In the paper, the three-dimensional coupled nonlinear Schrödinger (CNLS equations are presented to describe the evolution of envelope gravity solitary waves in baroclinic atmosphere, which are derived from the basic dynamic equations by employing perturbation and multiscale methods. The model overcomes two disadvantages: (1 baroclinic problem and (2 propagation path problem. Then, based on trial function method, we deduce the solution of the CNLS equations. Finally, modulational instability of wave trains is also discussed.
On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current
Directory of Open Access Journals (Sweden)
Dali Guo
2014-01-01
Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.
The fate of the zero mode of the five-dimensional kink in the presence of gravity
International Nuclear Information System (INIS)
Shaposhnikov, Mikhail; Tinyakov, Petr; Zuleta, Katarzyna
2005-01-01
We investigate what becomes of the translational zero-mode of a five-dimensional domain wall in the presence of gravity, studying the scalar perturbations of a thick gravitating domain wall with AdS asymptotics and a well-defined zero-gravity limit. Our analysis reveals the presence of a wide resonance which can be seen as a remnant of the translational zero-mode present in the domain wall in the absence of gravity and which ensures a continuous change of the physical quantities (such as e.g. static potential between sources) when the Planck mass is sent to infinity. Provided that the thickness of the wall is much smaller than the AdS radius of the space-time, the parameters of this resonance do not depend on details of the domain wall's structure, but solely on the geometry of the space-time
Light higgsinos as heralds of higher-dimensional unification
International Nuclear Information System (INIS)
Bruemmer, F.; Buchmueller, W.
2011-05-01
Grand-unified models with extra dimensions at the GUT scale will typically contain exotic states with Standard Model charges and GUT-scale masses. They can act as messengers for gauge-mediated supersymmetry breaking. If the number of messengers is sizeable, soft terms for the visible sector fields will be predominantly generated by gauge mediation, while gravity mediation can induce a small μ parameter. We illustrate this hybrid mediation pattern with two examples, in which the superpartner spectrum contains light and near-degenerate higgsinos with masses below 200 GeV. The typical masses of all other superpartners are much larger, from at least 500 GeV up to several TeV. The lightest superparticle is the gravitino, which may be the dominant component of dark matter. (orig.)
Light higgsinos as heralds of higher-dimensional unification
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, F.; Buchmueller, W.
2011-05-15
Grand-unified models with extra dimensions at the GUT scale will typically contain exotic states with Standard Model charges and GUT-scale masses. They can act as messengers for gauge-mediated supersymmetry breaking. If the number of messengers is sizeable, soft terms for the visible sector fields will be predominantly generated by gauge mediation, while gravity mediation can induce a small {mu} parameter. We illustrate this hybrid mediation pattern with two examples, in which the superpartner spectrum contains light and near-degenerate higgsinos with masses below 200 GeV. The typical masses of all other superpartners are much larger, from at least 500 GeV up to several TeV. The lightest superparticle is the gravitino, which may be the dominant component of dark matter. (orig.)
Higher-dimensional cosmological model with variable gravitational ...
Indian Academy of Sciences (India)
We have studied five-dimensional homogeneous cosmological models with variable and bulk viscosity in Lyra geometry. Exact solutions for the field equations have been obtained and physical properties of the models are discussed. It has been observed that the results of new models are well within the observational ...
International Nuclear Information System (INIS)
Foda, O.
1984-12-01
The effective potential of components of the curl of an antisymmetric tensor coupled to gravity in D dimensions is evaluated in a 1/D expansion. For large D, only highest-rank propagators contribute to leading order, while multiloop diagrams are suppressed by phase-space factors. Divergences are regulated by a cut-off LAMBDA, that we interpret as the mass-breaking scale of a larger theory that is finite. As an application we consider the bosonic sector of D=11, N=1 supergravity. If the full theory is finite, then LAMBDA is msub(SUSY): the scale below which the fermion sector decouples. For m 9 sub(SUSY)>1/akappa 2 , (kappa 2 : the D=11 Newton's coupling, a approx.= O(1)) the 11-dimensional symmetric vacuum is unstable under compactification. For m 9 sub(SUSY) 2 , it is metastable. To leading order in 1/D, all gauge dependence cancels identically, while ghosts as well as the graviton decouple. (author)
Thermodynamics of (2 +1 )-dimensional black holes in Einstein-Maxwell-dilaton gravity
Dehghani, M.
2017-08-01
In this paper, the linearly charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered. It has been shown that the dilatonic potential must be considered in a form of generalized Liouville-type potential. Two new classes of charged dilatonic black hole solutions, as the exact solutions to the Einstein-Maxwell-dilaton (EMd) gravity, have been obtained and their properties have been studied. The conserved charge and mass related to both of the new EMd black holes have been calculated. Through comparison of the thermodynamical extensive quantities (i.e., temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of first law of black hole thermodynamics has been investigated for both of the new black holes we just obtained. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new black hole solutions have been analyzed. It has been shown that there is a specific range for the horizon radius in such a way that the black holes with the horizon radius in that range are locally stable. Otherwise, they are unstable and may undergo type one or type two phase transitions to be stabilized.
Application of Quantum Process Calculus to Higher Dimensional Quantum Protocols
Directory of Open Access Journals (Sweden)
Simon J. Gay
2014-07-01
Full Text Available We describe the use of quantum process calculus to describe and analyze quantum communication protocols, following the successful field of formal methods from classical computer science. We have extended the quantum process calculus to describe d-dimensional quantum systems, which has not been done before. We summarise the necessary theory in the generalisation of quantum gates and Bell states and use the theory to apply the quantum process calculus CQP to quantum protocols, namely qudit teleportation and superdense coding.
Teleparallel equivalent of Lovelock gravity
González, P. A.; Vásquez, Yerko
2015-12-01
There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.
Phase space and black-hole entropy of higher genus horizons in loop quantum gravity
International Nuclear Information System (INIS)
Kloster, S; Brannlund, J; DeBenedictis, A
2008-01-01
In the context of loop quantum gravity, we construct the phase space of isolated horizons with genus greater than 0. Within the loop quantum gravity framework, these horizons are described by genus g surfaces with N punctures and the dimension of the corresponding phase space is calculated including the genus cycles as degrees of freedom. From this, the black-hole entropy can be calculated by counting the microstates which correspond to a black hole of fixed area. We find that the leading term agrees with the A/4 law and that the sub-leading contribution is modified by the genus cycles
Unitarity in three-dimensional flat space higher spin theories
International Nuclear Information System (INIS)
Grumiller, D.; Riegler, M.; Rosseel, J.
2014-01-01
We investigate generic flat-space higher spin theories in three dimensions and find a no-go result, given certain assumptions that we spell out. Namely, it is only possible to have at most two out of the following three properties: unitarity, flat space, non-trivial higher spin states. Interestingly, unitarity provides an (algebra-dependent) upper bound on the central charge, like c=42 for the Galilean W_4"("2"−"1"−"1") algebra. We extend this no-go result to rule out unitary “multi-graviton” theories in flat space. We also provide an example circumventing the no-go result: Vasiliev-type flat space higher spin theory based on hs(1) can be unitary and simultaneously allow for non-trivial higher-spin states in the dual field theory.
Linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes
Schlue, Volker
2012-01-01
I study linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes. In the first part of this thesis two decay results are proven for general finite energy solutions to the linear wave equation on higher dimensional Schwarzschild black holes. I establish uniform energy decay and improved interior first order energy decay in all dimensions with rates in accordance with the 3 + 1-dimensional case. The method of proof departs from earlier work on th...
Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics
Sheykhi, Ahmad; Hashemi Asl, Doa; Dehyadegari, Amin
2018-06-01
We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature Tc. We find that in each dimension, Tc /ρ 1 / (d - 2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension.
Gravitational collapse in higher-dimensional charged-Vaidya space ...
Indian Academy of Sciences (India)
time. We show that singularities arising in a charged null fluid in higher dimension are always naked violating ... of matter is one of the most active field of research in the contemporary general relativity. ... The main open issue ..... [3] A Papapetrou, in A random walk in relativity and cosmology edited by N Dadhich, J K Rao,.
Generalized Virasoro constructions and higher spin gravity: An SL(3) example
International Nuclear Information System (INIS)
Mohammedi, N.
1990-06-01
We consider a SL(3) current algebra and construct bilinears in the currents. A multitude of new Virasoro algebras, differing from the usual Sugawara and coset constructions, are then obtained. Since the SL(3) current algebra is a hidden symmetry of W 3 -gravity, we apply our results to calculate the allowed range for the values of the matter central charge. We find that this depends crucially on a parameter arising from the Sugawara-like constructions. (author). 23 refs
International Nuclear Information System (INIS)
Elizalde, E.; Makarenko, A.N.; Obukhov, V.V.; Osetrin, K.E.; Filippov, A.E.
2007-01-01
Six-dimensional Einstein-Gauss-Bonnet gravity (with a linear Gauss-Bonnet term) is investigated. This theory is inspired by basic features of results coming from string and M-theory. Dynamical compactification is carried out and it is seen that a four-dimensional accelerating FRW universe is recovered, when the two-dimensional internal space radius shrinks. A non-perturbative structure of the corresponding theory is identified which has either three or one stable fixed points, depending on the Gauss-Bonnet coupling being positive or negative. A much richer structure than in the case of the perturbative regime of the dynamical compactification recently studied by Andrew, Bolen, and Middleton is exhibited
Casimir energy and the possibility of higher dimensional manipulation
Obousy, R. K.; Saharian, A. A.
2009-01-01
It is well known that the Casimir effect is an excellent candidate for the stabilization of the extra dimensions. It has also been suggested that the Casimir effect in higher dimensions may be the underlying phenomenon that is responsible for the dark energy which is currently driving the accelerated expansion of the universe. In this paper we suggest that, in principle, it may be possible to directly manipulate the size of an extra dimension locally using Standard Model fields in the next ge...
DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data
Tian, Yu; Ke, Xiaoping; Wang, Yong
2018-04-01
This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.
Higher-dimensional bosonization and its application to Fermi liquids
Energy Technology Data Exchange (ETDEWEB)
Meier, Hendrik
2012-06-28
The bosonization scheme presented in this thesis allows to map models of interacting fermions onto equivalent models describing collective bosonic excitations. For simple systems that do not require plenty computational power and optimized algorithms, the positivity of the weight function in the bosonic frame has been confirmed - in particular also for those configurations in which the fermionic representation shows the minus-sign problem. The numerical tests are absolutely elementary and based on the simplest possible regularization scheme. The second part of this thesis presented an analytical study about the non-analytic corrections to thermodynamic quantities in a two-dimensional Fermi liquid. The perturbation theory developed for the exact formulation is by no means more convenient than the well-established fermionic diagram technique. The effective low-energy theory for studying the anomalous contributions to the Fermi liquid was derived focussing on the relevant soft modes of the interaction only. The final effective model took the form of a field theory for a bosonic superfield Ψ interacting in quadratic, cubic, and quartic terms in the action. This field theory turned out nontrivial and was shown to lead to logarithmic divergencies in both spin and charge channels. By means of a combined scheme of ladder diagram summations and renormalization group equations, the logarithmic terms were summed up in the first-loop order, thus yielding the renormalized effective coupling constants of the theory at low temperatures. The fully renormalized action then allowed to conveniently compute the low-temperature limit behavior of the non-analytic corrections to the Fermi-liquid thermodynamic response functions such as the low temperature non-analytic correction δc to the specific heat. The explicit formula for δc is the sum of two contributions - one due to the spin singlet and one due to the spin triplet superconducting excitations. Depending on the values of the
Chi, Yong Mann
A numerical simulation model has been developed for the dynamical behavior of spacecraft propellant, both during the draining and the closing of the tank outlet at the onset of suction dip affected by the asymmetric combined gravity gradient and gravity jitter accelerations. In particular the effect of the surface tension of the fluids in the partially filled dewar (applicable to the Gravity Probe-B spacecraft dewar tank and fuel tanks for a liquid rocket) with rotation has been simulated and investigated. Two different cases of accelerations, one with gravity jitter dominated and the other equally weighted between gravity gradient and gravity jitter accelerations, are studied. In the development of this numerical simulation model, the NASA-VOF3D has been used as a supplement to the numerical program of this dissertation. The NASA-VOF3D code has been used for performing the three-dimensional incompressible flows with free surface. This is also used for controlling liquid sloshing inside the tank when the spacecraft is orbiting. To keep track of the location of the liquid, the fractional volume of fluid (VOF) technique was used. The VOF is based on the indicator function of the region occupied by the liquid with an Eulerian approach to solve the free surface phenomena between liquid and gas phases. For the calculation of surface tension force, the VOF model is also used. The newly developed simulation model is used to investigate the characteristics of liquid hydrogen draining in terms of the residual amount of trapped liquid at the onset of the suction dip and residual liquid volume at the time the dip of the liquid-vapor interface formed. This investigation simulates the characteristics of liquid oscillations due to liquid container outlet shut-off at the onset of suction dip. These phenomena checked how these mechanisms affected the excitation of slosh waves during the course of liquid draining and after shut-off tank outlet. In the present study, the dynamical
Three-dimensional gravity modeling and focusing inversion using rectangular meshes.
Energy Technology Data Exchange (ETDEWEB)
Commer, M.
2011-03-01
Rectangular grid cells are commonly used for the geophysical modeling of gravity anomalies, owing to their flexibility in constructing complex models. The straightforward handling of cubic cells in gravity inversion algorithms allows for a flexible imposition of model regularization constraints, which are generally essential in the inversion of static potential field data. The first part of this paper provides a review of commonly used expressions for calculating the gravity of a right polygonal prism, both for gravity and gradiometry, where the formulas of Plouff and Forsberg are adapted. The formulas can be cast into general forms practical for implementation. In the second part, a weighting scheme for resolution enhancement at depth is presented. Modelling the earth using highly digitized meshes, depth weighting schemes are typically applied to the model objective functional, subject to minimizing the data misfit. The scheme proposed here involves a non-linear conjugate gradient inversion scheme with a weighting function applied to the non-linear conjugate gradient scheme's gradient vector of the objective functional. The low depth resolution due to the quick decay of the gravity kernel functions is counteracted by suppressing the search directions in the parameter space that would lead to near-surface concentrations of gravity anomalies. Further, a density parameter transformation function enabling the imposition of lower and upper bounding constraints is employed. Using synthetic data from models of varying complexity and a field data set, it is demonstrated that, given an adequate depth weighting function, the gravity inversion in the transform space can recover geologically meaningful models requiring a minimum of prior information and user interaction.
TeV-scale black hole lifetimes in extra-dimensional Lovelock gravity
International Nuclear Information System (INIS)
Rizzo, Thomas G
2006-01-01
We examine the mass loss rates and lifetimes of TeV-scale extra-dimensional black holes (BH) in Arkani-Hamed, Dimopoulos and Dvali-like models with Lovelock higher-curvature terms present in the action. In particular, we focus on the predicted differences between the canonical and microcanonical ensemble statistical mechanics descriptions of the Hawking radiation that result in the decay of these BH. In even numbers of extra dimensions, the employment of the microcanonical approach is shown to generally lead to a significant increase in the BH lifetime as in the case of the Einstein-Hilbert action. For odd numbers of extra dimensions, stable BH remnants occur when employing either description provided the highest order allowed Lovelock invariant is present. However, in this case, the time dependence of the mass loss rates obtained employing the two approaches will be different. These effects are in principle measurable at future colliders
Supergravity and the knitting of the Kalb-Ramond two-form in eight-dimensional topological gravity
Energy Technology Data Exchange (ETDEWEB)
Baulieu, Laurent; Bellon, Marc; Tanzini, Alessandro
2003-07-17
Topological Euclidean gravity is built in eight dimensions for manifolds with Spin(7) subset of SO(8) holonomy. In a previous work, we considered the construction of an eight-dimensional topological theory describing the graviton and one graviphoton. Here we solve the question of determining a topological model for the combined system of a metric and a Kalb-Ramond two-form gauge field. We then recover the complete N=1, D=8 supergravity theory in a twisted form. We observe that the generalized self-duality conditions of our model correspond to the octonionic string equations.
International Nuclear Information System (INIS)
Kenmoku, M; Matsuyama, T; Sato, R; Uchida, S
2002-01-01
We have studied classical and quantum solutions of (2+1)-dimensional Einstein gravity theory. Quantum theory is defined through the local conserved angular momentum and mass operators in the case of spherically symmetric spacetime. The de Broglie-Bohm interpretation is applied to the wavefunction and we derive the differential equations for the metric. By solving these equations, we obtain the quantum effect for the metric and compare them with the classical metric. In particular, the quantum effect on the metric for the closed de Sitter universe is estimated quantitatively
On the dimensional reduction of a gravitational theory containing higher-derivative terms
International Nuclear Information System (INIS)
Pollock, M.D.
1990-02-01
From the higher-dimensional gravitational theory L-circumflex=R-circumflex-2Λ-circumflex-α-circumflex 1 R-circumflex 2 =α-circumflex 2 R-circumflex AB R-circumflex AB -α-circumflex 3 R-circumflex ABCD R-circumflex ABCD , we derive the effective four-dimensional Lagrangian L. (author). 12 refs
Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss-Bonnet gravity
International Nuclear Information System (INIS)
Abdujabbarov, Ahmadjon; Ahmedov, Bobomurat; Atamurotov, Farruh; Dadhich, Naresh; Stuchlik, Zdenek
2015-01-01
We study physical processes around a rotating black hole in pure Gauss-Bonnet (GB) gravity. In pure GB gravity, the gravitational potential has a slower fall-off as compared to the corresponding Einstein potential in the same dimension. It is therefore expected that the energetics of a pure GB black hole would be weaker, and our analysis bears out that the efficiency of energy extraction by the Penroseprocess is increased to 25.8 % and the particle acceleration is increased to 55.28 %; the optical shadow of the black hole is decreased. These are in principle distinguishing observable features of a pure GB black hole. (orig.)
Gravity mediated supersymmetry breaking in six dimensions
International Nuclear Information System (INIS)
Falkowski, A.; Lee, H.M.; Luedeling, C.
2005-04-01
We study gravity mediated supersymmetry breaking in four-dimensional effective theories derived from six-dimensional brane-world supergravities. Using the Noether method we construct a locally supersymmetric action for a bulk-brane system consisting of the minimal six-dimensional supergravity coupled to vector and chiral multiplets located at four-dimensional branes. We compactify this system on T 2 /Z 2 and derive the four-dimensional effective supergravity. Most interestingly, sequestering of the matter living on different branes is not explicit in the tree-level Kaehler potential (but of course the action obtained from this Kaehler potential is consistent with higher dimensional locality). As a consequence, the features of gravity mediation are different than in five-dimensional models. We identify one scenario of moduli stabilization that yields positive gravity mediated soft scalar masses squared. (orig.)
A higher dimensional explanation of the excess of Higgs-like events at CERN LEP
Van der Bij, J J
2006-01-01
Searches for the SM Higgs boson by the four LEP experiments have found a 2.3 sigma excess at 98 GeV and a smaller 1.7 sigma at around 115 GeV. We interpret these excesses as evidence for a Higgs boson coupled to a higher dimensional singlet scalar. The fit implies a relatively low dimensional mixing scale mu_{lhd} 100 GeV. The data show a slight preference for a five-dimensional over a six-dimensional field. This Higgs boson cannot be seen at the LHC, but can be studied at the ILC.
CSIR Research Space (South Africa)
Mafu, M
2013-09-01
Full Text Available We present an experimental study of higher-dimensional quantum key distribution protocols based on mutually unbiased bases, implemented by means of photons carrying orbital angular momentum. We perform (d + 1) mutually unbiased measurements in a...
Energy Technology Data Exchange (ETDEWEB)
Makino, M; Murata, Y [Geological Survey of Japan, Tsukuba (Japan)
1996-05-01
An examination was made, in the two dimensional tectonic analysis by gravity exploration, on a method that was applicable from a deep underground part to a shallow geological structure by using logarithmic functions. In the examination, a case was considered in which an underground structure was divided into a basement and a covering formation and in which the boundary part had undulations. An equation to calculate a basement structure from a gravity anomaly was derived so that, taking into consideration the effect from the height of an observation point, it might be applicable to the shallow distribution of the basement depth. In the test calculation, a model was assumed reaching the depth near the surface with the basement being a step structure. Density difference was set as 0.4g/cm{sup 3}. An analysis using an equation two-dimensionally modified from Ogihara`s (1987) method produced a fairly reasonable result, showing, however, a deformed basement around the boundary of the step structure, with the appearance of a small pulse-shaped structure. The analysis using logarithmic functions revealed that the original basement structure was faithfully restored. 3 refs., 5 figs.
Black Holes in Higher Dimensions
Directory of Open Access Journals (Sweden)
Reall Harvey S.
2008-09-01
Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.
Metric-like formalism for matter fields coupled to 3D higher spin gravity
Fujisawa, Ippei; Nakayama, Ryuichi
2014-12-01
The action integral for a matter system composed of 0- and 2-forms, C and Bμν, topologically coupled to 3D spin-3 gravity is considered first in the frame-like formalism. The field C satisfies an equation of motion, \\partial _{\\mu } \\, C+A_{\\mu } \\, C-C \\, \\bar{A}_{\\mu }=0, where Aμ and \\bar{A}_{\\mu } are the Chern-Simons gauge fields. With a suitable gauge fixing of a new local symmetry and diffeomorphism, only one component of Bμν, say Bϕr, remains non-vanishing and satisfies \\partial _{\\mu } \\, B_{\\phi r}+\\bar{A}_{\\mu } \\, B_{\\phi r}-B_{\\phi r} \\, A_{\\mu }=0. These equations are the same as those for 3D (free) Vasiliev scalars, C and \\tilde{C}. The spin connection is eliminated by solving the equation of motion for the total action, and it is shown that in the resulting metric-like formalism, (BC)2 interaction terms are induced because of the torsion. The world-volume components of the matter field, C0, Cμ and C(μν), are introduced by contracting the local-frame index of C with those of the inverse vielbeins, E_a^{\\mu } and E_a^{(\\mu \
Natural inflation and quantum gravity.
de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman
2015-04-17
Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.
Black holes in pure Lovelock gravities
International Nuclear Information System (INIS)
Cai Ronggen; Ohta, Nobuyoshi
2006-01-01
Lovelock gravity is a fascinating extension of general relativity, whose action consists of dimensionally extended Euler densities. Compared to other higher order derivative gravity theories, Lovelock gravity is attractive since it has a lot of remarkable features such as the fact that there are no more than second order derivatives with respect to the metric in its equations of motion, and that the theory is free of ghosts. Recently, in the study of black strings and black branes in Lovelock gravity, a special class of Lovelock gravity is considered, which is named pure Lovelock gravity, where only one Euler density term exists. In this paper we study black hole solutions in the special class of Lovelock gravity and associated thermodynamic properties. Some interesting features are found, which are quite different from the corresponding ones in general relativity
International Nuclear Information System (INIS)
1981-01-01
Volume II contains the following: gravity station location map; complete Bouguer gravity map; total magnetic map; gravity data copper area detrended continued 1 km; magnetic data Casper Wyoming continued 1 km; upward continued coherent gravity maps; magnetic field reduced to the pole/pseudo gravity map; geology map-Casper Quadrangle; magnetic interpretation map-Casper Quadrangle; gravity interpretation map; magnetic interpretation cross section; magnetic profiles; flight line map and uranium occurrences
Unlabored system motion by specially conditioned electromagnetic fields in higher dimensional realms
David Froning, H.; Meholic, Gregory V.
2010-01-01
This third of three papers explores the possibility of swift, stress-less system transitions between slower-than-light and faster-than-light speeds with negligible net expenditure of system energetics. The previous papers derived a realm of higher dimensionality than 4-D spacetime that enabled such unlabored motion; and showed that fields that could propel and guide systems on unlabored paths in the higher dimensional realm must be fields that have been conditioned to SU(2) (or higher) Lie group symmetry. This paper shows that the system's surrounding vacuum dielectric ɛμ, within the higher dimensional realm's is a vector (not scalar) quantity with fixed magnitude ɛ0μ0 and changing direction within the realm with changing system speed. Thus, ɛμ generated by the system's EM field must remain tuned to vacuum ɛ0μ0 in both magnitude and direction during swift, unlabored system transitions between slower and faster than light speeds. As a result, the system's changing path and speed is such that the magnitude of the higher dimensional realm's ɛ0μ0 is not disturbed. And it is shown that a system's flight trajectories associated with its swift, unlabored transitions between zero and infinite speed can be represented by curved paths traced-out within the higher dimensional realm.
International Nuclear Information System (INIS)
Francaviglia, M.
1990-01-01
Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)
Boundary dynamics of asymptotically flat 3D gravity coupled to higher spin fields
International Nuclear Information System (INIS)
González, Hernán A.; Pino, Miguel
2014-01-01
We construct a two-dimensional action principle invariant under a spin-three extension of BMS_3 group. Such a theory is obtained through a reduction of Chern-Simons action with a boundary. This procedure is carried out by imposing a set of boundary conditions obtained from asymptotically flat spacetimes in three dimensions. When implementing part of this set, we obtain an analog of chiral WZW model based on a contraction of sl(3,ℝ)×sl(3,ℝ). The remaining part of the boundary conditions imposes constraints on the conserved currents of the model, which allows to further reduce the action principle. It is shown that a sector of this latter theory is related to a flat limit of Toda theory
Boundary dynamics of asymptotically flat 3D gravity coupled to higher spin fields
Energy Technology Data Exchange (ETDEWEB)
González, Hernán A. [Physique Théorique et Mathématique,Université Libre de Bruxelles & International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Pino, Miguel [Departamento de Física, Universidad de Santiago de Chile,Av. Ecuador 3493, Estación Central, Santiago (Chile)
2014-05-27
We construct a two-dimensional action principle invariant under a spin-three extension of BMS{sub 3} group. Such a theory is obtained through a reduction of Chern-Simons action with a boundary. This procedure is carried out by imposing a set of boundary conditions obtained from asymptotically flat spacetimes in three dimensions. When implementing part of this set, we obtain an analog of chiral WZW model based on a contraction of sl(3,ℝ)×sl(3,ℝ). The remaining part of the boundary conditions imposes constraints on the conserved currents of the model, which allows to further reduce the action principle. It is shown that a sector of this latter theory is related to a flat limit of Toda theory.
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
International Nuclear Information System (INIS)
Yu Zhang; Zhang Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
A three-dimensional gravity inversion applied to São Miguel Island (Azores)
Camacho, A. G.; Montesinos, F. G.; Vieira, R.
1997-04-01
Gravimetric studies are becoming more and more widely acknowledged as a useful tool for studying and modeling the distributions of subsurface masses that are associated with volcanic activity. In this paper, new gravimetric data for the volcanic island of São Miguel (Azores) were analyzed and interpreted by a stabilized linear inversion methodology. An inversion model of higher resolution was calculated for the Caldera of Furnas, which has a larger density of data. In order to filter out the noncorrelatable anomalies, least squares prediction was used, resulting in a correlated gravimetric signal model with an accuracy of the order of 0.9 mGal. The gravimetric inversion technique is based on the adjustment of a three-dimensional (3-D) model of cubes of unknown density that represents the island's subsurface. The problem of non-uniqueness is solved by minimization with appropriate covariance matrices of the data (resulting from the least squares prediction) and of the unknowns. We also propose a criterion for choosing a balance between the data fit (which in this case corresponds to residues with rms of the order of 0.6 mGal) and the smoothness of the solution. The global model of the island includes a low-density zone in a WNW-ESE direction and a depth of the order of 20 km, associated with the Terceira rift spreading center. The minimums located at a depth of 4 km may be associated with shallow magmatic chambers beneath the main volcanoes of the island. The main high-density area is related to the Nordeste basaltic shield. With regard to the Caldera Furnas, in addition to the minimum that can be associated with a magmatic chamber, there are other shallow minimums that correspond to eruptive processes.
Energy Technology Data Exchange (ETDEWEB)
Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)
2017-05-15
Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)
A study of three-dimensional gravity currents on a uniform slope
Ross, Andrew N.; Linden, P. F.; Dalziel, Stuart B.
2002-02-01
In many geophysical, environmental and industrial situations, a finite volume of fluid with a density different to the ambient is released on a sloping boundary. This leads to the formation of a gravity current travelling up, down and across the slope. We present novel laboratory experiments in which the dense fluid spreads both down-slope (and initially up-slope) and laterally across the slope. The position, shape and dilution of the current are determined through video and conductivity measurements for moderate slopes (5° to 20°). The entrainment coefficient for different slopes is calculated from the experimental results and is found to depend very little on the slope. The value agrees well with previously published values for entrainment into gravity currents on a horizontal surface. The experimental measurements are compared with previous shallow-water models and with a new wedge integral model developed and presented here. It is concluded that these simplified models do not capture all the significant features of the flow. In the models, the current takes the form of a wedge which travels down the slope, but the experiments show the formation of a more complicated current. It is found that the wedge integral model over-predicts the length and width of the gravity current but gives fair agreement with the measured densities in the head. The initial stages of the flow, during which time the wedge shape develops, are studied. It is found that although the influence of the slope is seen relatively quickly for moderate slopes, the time taken for the wedge to develop is much longer. The implications of these findings for safety analysis are briefly discussed.
A generalized action for (2 + 1)-dimensional Chern–Simons gravity
International Nuclear Information System (INIS)
Díaz, J; Fierro, O; Merino, N; Salgado, P; Valdivia, O; Izaurieta, F; Rodriguez, E
2012-01-01
We show that the so-called semi-simple extended Poincaré (SSEP) algebra in D dimensions can be obtained from the anti-de Sitter algebra so(D-1,2) by means of the S-expansion procedure with an appropriate semigroup S. A general prescription is given for computing Casimir operators for S-expanded algebras, and the method is exemplified for the SSEP algebra. The S-expansion method also allows us to extract the corresponding invariant tensor for the SSEP algebra, which is a key ingredient in the construction of a generalized action for Chern–Simons gravity in (2 + 1) dimensions. (paper)
The second law in four-dimensional Einstein–Gauss–Bonnet gravity
International Nuclear Information System (INIS)
Chatterjee, Saugata; Parikh, Maulik
2014-01-01
The topological contribution of a Gauss–Bonnet term in four dimensions to black hole entropy opens up the possibility of a violation of the second law of thermodynamics in black hole mergers. We show, however, that the second law is not violated in the regime where Einstein–Gauss–Bonnet holds as an effective theory and black holes can be treated thermodynamically. For mergers of anti-de Sitter (AdS) black holes, the second law appears to be violated even in Einstein gravity; we argue, however, that the second law holds when gravitational potential energy is taken into account. (paper)
Three-dimensional Gravity Inversion with a New Gradient Scheme on Unstructured Grids
Sun, S.; Yin, C.; Gao, X.; Liu, Y.; Zhang, B.
2017-12-01
Stabilized gradient-based methods have been proved to be efficient for inverse problems. Based on these methods, setting gradient close to zero can effectively minimize the objective function. Thus the gradient of objective function determines the inversion results. By analyzing the cause of poor resolution on depth in gradient-based gravity inversion methods, we find that imposing depth weighting functional in conventional gradient can improve the depth resolution to some extent. However, the improvement is affected by the regularization parameter and the effect of the regularization term becomes smaller with increasing depth (shown as Figure 1 (a)). In this paper, we propose a new gradient scheme for gravity inversion by introducing a weighted model vector. The new gradient can improve the depth resolution more efficiently, which is independent of the regularization parameter, and the effect of regularization term will not be weakened when depth increases. Besides, fuzzy c-means clustering method and smooth operator are both used as regularization terms to yield an internal consecutive inverse model with sharp boundaries (Sun and Li, 2015). We have tested our new gradient scheme with unstructured grids on synthetic data to illustrate the effectiveness of the algorithm. Gravity forward modeling with unstructured grids is based on the algorithm proposed by Okbe (1979). We use a linear conjugate gradient inversion scheme to solve the inversion problem. The numerical experiments show a great improvement in depth resolution compared with regular gradient scheme, and the inverse model is compact at all depths (shown as Figure 1 (b)). AcknowledgeThis research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). ReferencesSun J, Li Y. 2015. Multidomain petrophysically constrained inversion and
International Nuclear Information System (INIS)
Meusburger, C.; Schroers, B. J.
2008-01-01
Each of the local isometry groups arising in three-dimensional (3d) gravity can be viewed as a group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for the case of Euclidean signature with positive cosmological constant, the local isometry groups are equipped with the Poisson-Lie structure of a classical double. We calculate the dressing action of the factor groups on each other and find, among others, a simple and unified description of the symplectic leaves of SU(2) and SL(2,R). We also compute the Poisson structure on the dual Poisson-Lie groups of the local isometry groups and on their Heisenberg doubles; together, they determine the Poisson structure of the phase space of 3d gravity in the so-called combinatorial description
Massive, massless and ghost modes of gravitational waves from higher-order gravity
DEFF Research Database (Denmark)
Bogdanos, Charalampos; Capozziello, Salvatore; De Laurentis, Mariafelicia
We linearize the field equations for higher order theories that contain scalar invariants other than the Ricci scalar. We find that besides a massless spin-2 field (the standard graviton), the theory contains also spin-0 and spin-2 massive modes with the latter being, in general, ghost modes. Then...
International Nuclear Information System (INIS)
Vladimirov, Yu.S.; Kislov, V.V.
1982-01-01
Basic equations of the united five-dimensional theory of gravity, electromagnetism and scalar field are given. Discussed is one of the given theory consequences - dependence of electric charge ratio to the e/m test, particle mass on fundamental scalar field value in the specified point. The latter is determined by the solution of the Einstein, Maxwell and Klein-Fock equations system. In particular, this field varies in the Sun-Earth system for an observer bound to the Earth owing to orbit ellipticity of the Earth. The formula describing the e/m variation is given. Data on measuring Josephson frequency revealing the tendency of season dependence (Earth-Sun distances) which raises the problem of performing direct experiments for controlling e/m ratio stability are reproduced
Pair creation of higher dimensional black holes on a de Sitter background
International Nuclear Information System (INIS)
Dias, Oscar J.C.; Lemos, Jose P.S.
2004-01-01
We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstroem-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, which describe, respectively, a pair accelerated by a string and by an electromagnetic field, are not known yet in a higher dimensional spacetime
Charged particle in higher dimensional weakly charged rotating black hole spacetime
International Nuclear Information System (INIS)
Frolov, Valeri P.; Krtous, Pavel
2011-01-01
We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.
Three-dimensional gravity and Drinfel'd doubles: Spacetimes and symmetries from quantum deformations
International Nuclear Information System (INIS)
Ballesteros, Angel; Herranz, Francisco J.; Meusburger, Catherine
2010-01-01
We show how the constant curvature spacetimes of 3d gravity and the associated symmetry algebras can be derived from a single quantum deformation of the 3d Lorentz algebra sl(2,R). We investigate the classical Drinfel'd double of a 'hybrid' deformation of sl(2,R) that depends on two parameters (η,z). With an appropriate choice of basis and real structure, this Drinfel'd double agrees with the 3d anti-de Sitter algebra. The deformation parameter η is related to the cosmological constant, while z is identified with the inverse of the speed of light and defines the signature of the metric. We generalise this result to de Sitter space, the three-sphere and 3d hyperbolic space through analytic continuation in η and z; we also investigate the limits of vanishing η and z, which yield the flat spacetimes (Minkowski and Euclidean spaces) and Newtonian models, respectively.
Schure, Mark R; Davis, Joe M
2017-11-10
Orthogonality metrics (OMs) for three and higher dimensional separations are proposed as extensions of previously developed OMs, which were used to evaluate the zone utilization of two-dimensional (2D) separations. These OMs include correlation coefficients, dimensionality, information theory metrics and convex-hull metrics. In a number of these cases, lower dimensional subspace metrics exist and can be readily calculated. The metrics are used to interpret previously generated experimental data. The experimental datasets are derived from Gilar's peptide data, now modified to be three dimensional (3D), and a comprehensive 3D chromatogram from Moore and Jorgenson. The Moore and Jorgenson chromatogram, which has 25 identifiable 3D volume elements or peaks, displayed good orthogonality values over all dimensions. However, OMs based on discretization of the 3D space changed substantially with changes in binning parameters. This example highlights the importance in higher dimensions of having an abundant number of retention times as data points, especially for methods that use discretization. The Gilar data, which in a previous study produced 21 2D datasets by the pairing of 7 one-dimensional separations, was reinterpreted to produce 35 3D datasets. These datasets show a number of interesting properties, one of which is that geometric and harmonic means of lower dimensional subspace (i.e., 2D) OMs correlate well with the higher dimensional (i.e., 3D) OMs. The space utilization of the Gilar 3D datasets was ranked using OMs, with the retention times of the datasets having the largest and smallest OMs presented as graphs. A discussion concerning the orthogonality of higher dimensional techniques is given with emphasis on molecular diversity in chromatographic separations. In the information theory work, an inconsistency is found in previous studies of orthogonality using the 2D metric often identified as %O. A new choice of metric is proposed, extended to higher dimensions
Three-dimensional gravity and instability of $\\text{AdS}_{3}$
Jałmużna, Joanna
2013-01-01
This is an extended version of my lecture at the LIII Cracow School of Theoretical Physics in Zakopane in which I presented the results of joint work with Piotr Bizo\\'n concerning (in)stability of the three-dimensional anti-de Sitter spacetime.
World-volume effective theory for higher-dimensional black holes.
Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A
2009-05-15
We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes.
Reparametrization BRS cohomology in two-dimensional gravity and non-critical string theories
International Nuclear Information System (INIS)
Fujikawa, Kazuo.
1989-07-01
Various anomalies related to the gravitational BRS current in two-dimensional theories are explained from the view point of the path integral formalism, and the algebraic properties of composite operators are confirmed by the operator product technique. The implications of the reparametrization BRS cohomology on possible non-critical string theory are illustrated by using the string field theoretical technique. The appearance of the Higgs (or Stueckelberg)-like mechanism due to the Liouville freedom is shown. (author)
Horizon thermodynamics in fourth-order gravity
Directory of Open Access Journals (Sweden)
Meng-Sen Ma
2017-03-01
Full Text Available In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE=TdS−PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called “Legendre transformation” at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.
Quantum gravity as Escher's dragon
International Nuclear Information System (INIS)
Smilga, A.V.
2003-01-01
The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D = 4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N = 4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N= 1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N = 4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives
International Nuclear Information System (INIS)
Naumis, Gerardo G.; Bazan, A.; Torres, M.; Aragon, J.L.; Quintero-Torres, R.
2008-01-01
One of the few examples in which the physical properties of an incommensurable system reflect an underlying higher dimensionality is presented. Specifically, we show that the reflectivity distribution of an incommensurable one-dimensional cavity is given by the density of states of a tight-binding Hamiltonian in a two-dimensional triangular lattice. Such effect is due to an independent phase decoupling of the scattered waves, produced by the incommensurable nature of the system, which mimics a random noise generator. This principle can be applied to design a cavity that avoids resonant reflections for almost any incident wave. An optical analogy, by using three mirrors with incommensurable distances between them, is also presented. Such array produces a countable infinite fractal set of reflections, a phenomena which is opposite to the effect of optical invisibility
The universe as a topological defect in a higher-dimensional Einstein-Yang-Mills theory
International Nuclear Information System (INIS)
Nakamura, A.; Shiraishi, K.
1989-04-01
An interpretation is suggested that a spontaneous compactification of space-time can be regarded as a topological defect in a higher-dimensional Einstein-Yang-Mills (EYM) theory. We start with D-dimensional EYM theory in our present analysis. A compactification leads to a D-2 dimensional effective action of Abelian gauge-Higgs theory. We find a 'vortex' solution in the effective theory. Our universe appears to be confined in a center of a 'vortex', which has D-4 large dimensions. In this paper we show an example with SU (2) symmetry in the original EYM theory, and the resulting solution is found to be equivalent to the 'instanton-induced compactification'. The cosmological implication is also mentioned. (author)
International Nuclear Information System (INIS)
Rami, El-Nabulsi Ahmad
2009-01-01
Higher dimensional cosmological implications of a decay law for the cosmological constant term are analyzed. Three independent cosmological models are explored mainly: 1) In the first model, the effective cosmological constant was chosen to decay with times like Δ effective = Ca -2 + D(b/a I ) 2 where a I is an arbitrary scale factor characterizing the isotropic epoch which proceeds the graceful exit period. Further, the extra-dimensional scale factor decays classically like b(t) approx. a x (t), x is a real negative number. 2) In the second model, we adopt in addition to Δ effective = Ca -2 + D(b/a I ) 2 the phenomenological law b(t) = a(t)exp( -Qt) as we expect that at the origin of time, there is no distinction between the visible and extra dimensions; Q is a real number. 3) In the third model, we study a Δ - decaying extra-dimensional cosmology with a static traversable wormhole in which the four-dimensional Friedmann-Robertson-Walker spacetime is subject to the conventional perfect fluid while the extra-dimensional part is endowed by an exotic fluid violating strong energy condition and where the cosmological constant in (3+n+1) is assumed to decays like Δ(a) = 3Ca -2 . The three models are discussed and explored in some details where many interesting points are revealed. (author)
International Nuclear Information System (INIS)
La, H.
1992-01-01
A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint
Lorentzian wormholes in Lovelock gravity
International Nuclear Information System (INIS)
Dehghani, M. H.; Dayyani, Z.
2009-01-01
In this paper, we introduce the n-dimensional Lorentzian wormhole solutions of third order Lovelock gravity. In contrast to Einstein gravity and as in the case of Gauss-Bonnet gravity, we find that the wormhole throat radius r 0 has a lower limit that depends on the Lovelock coefficients, the dimensionality of the spacetime, and the shape function. We study the conditions of having normal matter near the throat, and find that the matter near the throat can be normal for the region r 0 ≤r≤r max , where r max depends on the Lovelock coefficients and the shape function. We also find that the third order Lovelock term with negative coupling constant enlarges the radius of the region of normal matter, and conclude that the higher order Lovelock terms with negative coupling constants enlarge the region of normal matter near the throat.
International Nuclear Information System (INIS)
Christodoulakis, T; Doulis, G; Terzis, Petros A; Melas, E; Grammenos, Th; Papadopoulos, G O; Spanou, A
2010-01-01
The canonical decomposition of all 3+1 geometries admitting two-dimensional space-like surfaces is exhibited as a generalization of a previous work. A proposal, consisting of a specific renormalization Assumption and an accompanying Requirement, which has been put forward in the 2+1 case is now generalized to 3+1 dimensions. This enables the canonical quantization of these geometries through a generalization of Kuchar's quantization scheme in the case of infinite degrees of freedom. The resulting Wheeler-DeWitt equation is based on a renormalized manifold parameterized by three smooth scalar functionals. The entire space of solutions to this equation is analytically given, a fact that is entirely new to the present case. This is made possible through the exploitation of the residual freedom in the choice of the third functional, which is left by the imposition of the Requirement, and is proven to correspond to a general coordinate transformation in the renormalized manifold.
Fu, Yuchen; Shelley-Abrahamson, Seth
2016-06-01
We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.
Using Harry Potter to Bridge Higher Dimensionality in Mathematics and High-interest Literature
Boerman-Cornell, William; Klanderman, David; Schut, Alexa
2017-01-01
The Harry Potter series is a favorite for out-of-school reading and has been used in school, largely as an object of study in language arts. Using a content analysis to highlight the ways in which J.K. Rowling's work could be used to teach higher dimensionality in math, the authors argues that the content is sufficient in such books to engage the…
Existence of local degrees of freedom for higher dimensional pure Chern-Simons theories
International Nuclear Information System (INIS)
Banados, M.; Garay, L.J.; Henneaux, M.
1996-01-01
The canonical structure of higher dimensional pure Chern-Simons theories is analyzed. It is shown that these theories have generically a nonvanishing number of local degrees of freedom, even though they are obtained by means of a topological construction. This number of local degrees of freedom is computed as a function of the spacetime dimension and the dimension of the gauge group. copyright 1996 The American Physical Society
Higher dimensional quantum Hall effect as A-class topological insulator
Energy Technology Data Exchange (ETDEWEB)
Hasebe, Kazuki, E-mail: khasebe@stanford.edu
2014-09-15
We perform a detail study of higher dimensional quantum Hall effects and A-class topological insulators with emphasis on their relations to non-commutative geometry. There are two different formulations of non-commutative geometry for higher dimensional fuzzy spheres: the ordinary commutator formulation and quantum Nambu bracket formulation. Corresponding to these formulations, we introduce two kinds of monopole gauge fields: non-abelian gauge field and antisymmetric tensor gauge field, which respectively realize the non-commutative geometry of fuzzy sphere in the lowest Landau level. We establish connection between the two types of monopole gauge fields through Chern–Simons term, and derive explicit form of tensor monopole gauge fields with higher string-like singularity. The connection between two types of monopole is applied to generalize the concept of flux attachment in quantum Hall effect to A-class topological insulator. We propose tensor type Chern–Simons theory as the effective field theory for membranes in A-class topological insulators. Membranes turn out to be fractionally charged objects and the phase entanglement mediated by tensor gauge field transforms the membrane statistics to be anyonic. The index theorem supports the dimensional hierarchy of A-class topological insulator. Analogies to D-brane physics of string theory are discussed too.
Black hole physics from two-dimensional dilaton gravity based on the SL(2,R)/U(1) coset model
International Nuclear Information System (INIS)
Nojiri, S.; Oda, I.
1994-01-01
We analyze the quantum two-dimensional dilaton gravity model, which is described by the SL(2,R)/U(1) gauged Wess-Zumino-Witten model deformed by a (1,1) operator. We show that the curvature singularity does not appear when the central charge c matter of the matter fields is given by 22 matter matter matter ∝δ(x + -x 0 + ), create a kind of wormholes, i.e., causally disconnected regions. Most of the quantum information in past null infinity is lost in future null infinity but the lost information would be carried by the wormholes. We also discuss the problem of defining the mass of quantum black holes. On the basis of the argument by Regge and Teitelboim, we show that the ADM mass measured by the observer who lives in one of the asymptotically flat regions is finite and does not vanish in general. On the other hand, the Bondi mass is ill defined in this model. Instead of the Bondi mass, we consider the mass measured by observers who live in an asymptotically flat region at first. A class of observers finds the mass of the black hole created by a shock wave changes as the observers' proper time goes by, i.e., they observe Hawking radiation. The measured mass vanishes after the infinite proper time and the black hole evaporates completely. Therefore the total Hawking radiation is positive even when N<24
International Nuclear Information System (INIS)
Setare, M R; Kamali, V
2011-01-01
We show that a BTZ black hole solution of cosmological topological massive gravity has a hidden conformal symmetry. In this regard, we consider the wave equation of a massless scalar field propagating in BTZ spacetime and find that the wave equation could be written in terms of the SL(2, R) quadratic Casimir. From the conformal coordinates, the temperatures of the dual conformal field theories (CFTs) could be read directly. Moreover, we compute the microscopic entropy of the dual CFT by the Cardy formula and find a perfect match to the Bekenstein-Hawking entropy of a BTZ black hole. Then, we consider Galilean conformal algebras (GCA), which arises as a contraction of relativistic conformal algebras (x → εx, t → t, ε → 0). We show that there is a correspondence between GCA 2 on the boundary and contracted BTZ in the bulk. For this purpose we obtain the central charges and temperatures of GCA 2 . Then, we compute the microscopic entropy of the GCA 2 by the Cardy formula and find a perfect match to the Bekenstein-Hawking entropy of a BTZ black hole in a non-relativistic limit. The absorption cross section of a near-region scalar field also matches the microscopic absorption cross section of the dual GCA 2 . So we find further evidence that shows correspondence between a contracted BTZ black hole and two-dimensional GCA.
Higher dimensional operator corrections to the goldstino Goldberger-Treiman vertices
International Nuclear Information System (INIS)
Lee, T.
2000-01-01
The goldstino-matter interactions given by the Goldberger-Treiman relations can receive higher dimensional operator corrections of O(q 2 /M 2 ), where M denotes the mass of the mediators through which SUSY breaking is transmitted. These corrections in the gauge mediated SUSY breaking models arise from loop diagrams, and an explicit calculation of such corrections is presented. It is emphasized that the Goldberger-Treiman vertices are valid only below the mediator scale, and at higher energies goldstinos decouple from the MSSM fields. The implication of this fact for gravitino cosmology in GMSB models is mentioned. (orig.)
Higher order BLG supersymmetry transformations from 10-dimensional super Yang Mills
Energy Technology Data Exchange (ETDEWEB)
Hall, John [Alumnus of Physics Department, Imperial College,South Kensington, London, SW7 2AZ (United Kingdom); Low, Andrew [Physics Department, Wimbledon High School,Mansel Road, London, SW19 4AB (United Kingdom)
2014-06-26
We study a Simple Route for constructing the higher order Bagger-Lambert-Gustavsson theory - both supersymmetry transformations and Lagrangian - starting from knowledge of only the 10-dimensional Super Yang Mills Fermion Supersymmetry transformation. We are able to uniquely determine the four-derivative order corrected supersymmetry transformations, to lowest non-trivial order in Fermions, for the most general three-algebra theory. For the special case of Euclidean three-algbera, we reproduce the result presented in arXiv:1207.1208, with significantly less labour. In addition, we apply our method to calculate the quadratic fermion terms in the higher order BLG fermion supersymmetry transformation.
Quantum Gravity Effect on the Tunneling Particles from 2 + 1-Dimensional New-Type Black Hole
Directory of Open Access Journals (Sweden)
Ganim Gecim
2018-01-01
Full Text Available We investigate the generalized uncertainty principle (GUP effect on the Hawking temperature for the 2 + 1-dimensional new-type black hole by using the quantum tunneling method for both the spin-1/2 Dirac and the spin-0 scalar particles. In computation of the GUP correction for the Hawking temperature of the black hole, we modified Dirac and Klein-Gordon equations. We observed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the graviton mass and the intrinsic properties of the tunneling particle, such as total angular momentum, energy, and mass. Also, we see that the Hawking temperature was found to be probed by these particles in different manners. The modified Hawking temperature for the scalar particle seems low compared with its standard Hawking temperature. Also, we find that the modified Hawking temperature of the black hole caused by Dirac particle’s tunneling is raised by the total angular momentum of the particle. It is diminishable by the energy and mass of the particle and graviton mass as well. These intrinsic properties of the particle, except total angular momentum for the Dirac particle, and graviton mass may cause screening for the black hole radiation.
Generalized pure Lovelock gravity
Concha, Patrick; Rodríguez, Evelyn
2017-11-01
We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Generalized pure Lovelock gravity
Directory of Open Access Journals (Sweden)
Patrick Concha
2017-11-01
Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Higher-dimensional bulk wormholes and their manifestations in brane worlds
International Nuclear Information System (INIS)
Rodrigo, Enrico
2006-01-01
There is nothing to prevent a higher-dimensional anti-de Sitter bulk spacetime from containing various other branes in addition to hosting our universe, presumed to be a positive-tension 3-brane. In particular, it could contain closed, microscopic branes that form the boundary surfaces of void bubbles and thus violate the null energy condition in the bulk. The possible existence of such micro branes can be investigated by considering the properties of the ground state of a pseudo-Wheeler-DeWitt equation describing brane quantum dynamics in minisuperspace. If they exist, a concentration of these micro branes could act as a fluid of exotic matter able to support macroscopic wormholes connecting otherwise-distant regions of the bulk. Were the brane constituting our universe to expand into a region of the bulk containing such higher-dimensional macroscopic wormholes, they would likely manifest themselves in our brane as wormholes of normal dimensionality, whose spontaneous appearance and general dynamics would seem inexplicably peculiar. This encounter could also result in the formation of baby universes of a particular type
Bulk emission by higher-dimensional black holes: almost perfect blackbody radiation
International Nuclear Information System (INIS)
Hod, Shahar
2011-01-01
We study the Hawking radiation emitted into the bulk by (D + 1)-dimensional Schwarzschild black holes. It is well known that the black-hole spectrum departs from exact blackbody form due to the frequency dependence of the 'greybody' factors. For intermediate values of D (3 ≤ D ∼ > 1, the typical wavelengths in the black-hole spectrum are much shorter than the size of the black hole. In this regime, the greybody factors are well described by the geometric-optics approximation according to which they are almost frequency independent. Following this observation, we argue that for higher-dimensional black holes with D >> 1, the total power emitted into the bulk should be well approximated by the analytical formula for perfect blackbody radiation. We test the validity of this analytical prediction with numerical computations.
Palme, Klaus; Aubry, D.; Bensch, M.; Schmidt, T.; Ronneberger, O.; Neu, C.; Li, X.; Wang, H.; Santos, F.; Wang, B.; Paponov, I.; Ditengou, F. A.; Teale, W. T.; Volkmann, D.; Baluska, F.; Nonis, A.; Trevisan, S.; Ruperti, B.; Dovzhenko, A.
Gravity plays a fundamental role in plant growth and development. Up to now, little is known about the molecular organisation of the signal transduction cascades and networks which co-ordinate gravity perception and response. By using an integrated systems biological approach, a systems analysis of gravity perception and the subsequent tightly-regulated growth response is planned in the model plant Arabidopsis thaliana. This approach will address questions such as: (i) what are the components of gravity signal transduction pathways? (ii) what are the dynamics of these components? (iii) what is their spatio-temporal regulation in different tis-sues? Using Arabidopsis thaliana as a model-we use root growth to obtain insights in the gravity response. New techniques enable identification of the individual genes affected by grav-ity and further integration of transcriptomics and proteomics data into interaction networks and cell communication events that operate during gravitropic curvature. Using systematic multiscale analysis we have identified regulatory networks consisting of transcription factors, the protein degradation machinery, vesicle trafficking and cellular signalling during the gravire-sponse. We developed approach allowing to incorporate key features of the root system across all relevant spatial and temporal scales to describe gene-expression patterns and correlate them with individual gene and protein functions. Combination of high-resolution microscopy and novel computational tools resulted in development of the root 3D model in which quantitative descriptions of cellular network properties and of multicellular interactions important in root growth and gravitropism can be integrated for the first time.
UV caps, IR modification of gravity, and recovery of 4D gravity in regularized braneworlds
International Nuclear Information System (INIS)
Kobayashi, Tsutomu
2008-01-01
In the context of six-dimensional conical braneworlds we consider a simple and explicit model that incorporates long-distance modification of gravity and regularization of codimension-2 singularities. To resolve the conical singularities we replace the codimension-2 branes with ringlike codimension-1 branes, filling in the interiors with regular caps. The six-dimensional Planck scale in the cap is assumed to be much greater than the bulk Planck scale, which gives rise to the effect analogous to brane-induced gravity. Weak gravity on the regularized brane is studied in the case of a sharp conical bulk. We show by a linear analysis that gravity at short distances is effectively described by the four-dimensional Brans-Dicke theory, while the higher dimensional nature of gravity emerges at long distances. The linear analysis breaks down at some intermediate scale, below which four-dimensional Einstein gravity is shown to be recovered thanks to the second-order effects of the brane bending.
Energy Technology Data Exchange (ETDEWEB)
Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Feng, Zhong-Wen [China West Normal University, College of Physics and Space Science, Nanchong (China); Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China)
2018-01-15
With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2008-01-01
Full Text Available We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method (VHPM. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.
A Killing tensor for higher dimensional Kerr-AdS black holes with NUT charge
International Nuclear Information System (INIS)
Davis, Paul
2006-01-01
In this paper, we study the recently discovered family of higher dimensional Kerr-AdS black holes with an extra NUT-like parameter. We show that the inverse metric is additively separable after multiplication by a simple function. This allows us to separate the Hamilton-Jacobi equation, showing that geodesic motion is integrable on this background. The separation of the Hamilton-Jacobi equation is intimately linked to the existence of an irreducible Killing tensor, which provides an extra constant of motion. We also demonstrate that the Klein-Gordon equation for this background is separable
International Nuclear Information System (INIS)
Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao
2018-01-01
With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)
Grand unified theory precursors and nontrivial fixed points in higher-dimensional gauge theories
International Nuclear Information System (INIS)
Dienes, Keith R.; Dudas, Emilian; Gherghetta, Tony
2003-01-01
Within the context of traditional logarithmic grand unification at M GUT ≅10 16 GeV, we show that it is nevertheless possible to observe certain GUT states such as X and Y gauge bosons at lower scales, perhaps even in the TeV range. We refer to such states as 'GUT precursors'. These states offer an interesting alternative possibility for new physics at the TeV scale, and could be used to directly probe GUT physics even though the scale of gauge coupling unification remains high. Our results also give rise to a Kaluza-Klein realization of nontrivial fixed points in higher-dimensional gauge theories
Spontaneous symmetry breaking and fermion chirality in higher-dimensional gauge theory
International Nuclear Information System (INIS)
Wetterich, C.
1985-01-01
The number of chiral fermions may change in the course of spontaneous symmetry breaking. We discuss solutions of a six-dimensional Einstein-Yang-Mills theory based on SO(12). In the resulting effective four-dimensional theory they can be interpreted as spontaneous breaking of a gauge group SO(10) to H=SU(3)sub(C)xSU(2)sub(L)xU(1)sub(R)xU(1)sub(B-L). For all solutions, the fermions which are chiral with respect to H form standard generations. However, the number of generations for the solutions with broken SO(10) may be different compared to the symmetric solutions. All solutions considered here exhibit a local generation group SU(2)sub(G)xU(1)sub(G). For the solutions with broken SO(10) symmetry, the leptons and quarks within one generation transform differently with respect to SU(2)sub(G)xU(1)sub(G). Spontaneous symmetry breaking also modifies the SO(10) relations among Yukawa couplings. All this has important consequences for possible fermion mass relations obtained from higher-dimensional theories. (orig.)
Belenchia, Alessio; Letizia, Marco; Liberati, Stefano; Di Casola, Eolo
2018-03-01
Modifications of Einstein's theory of gravitation have been extensively considered in the past years, in connection to both cosmology and quantum gravity. Higher-curvature and higher-derivative gravity theories constitute the main examples of such modifications. These theories exhibit, in general, more degrees of freedom than those found in standard general relativity; counting, identifying, and retrieving the description/representation of such dynamical variables is currently an open problem, and a decidedly nontrivial one. In this work we review, via both formal arguments and custom-made examples, the most relevant methods to unveil the gravitational degrees of freedom of a given model, discussing the merits, subtleties and pitfalls of the various approaches.
Belenchia, Alessio; Letizia, Marco; Liberati, Stefano; Di Casola, Eolo
2018-03-01
Modifications of Einstein’s theory of gravitation have been extensively considered in the past years, in connection to both cosmology and quantum gravity. Higher-curvature and higher-derivative gravity theories constitute the main examples of such modifications. These theories exhibit, in general, more degrees of freedom than those found in standard general relativity; counting, identifying, and retrieving the description/representation of such dynamical variables is currently an open problem, and a decidedly nontrivial one. In this work we review, via both formal arguments and custom-made examples, the most relevant methods to unveil the gravitational degrees of freedom of a given model, discussing the merits, subtleties and pitfalls of the various approaches.
The phase structure of higher-dimensional black rings and black holes
International Nuclear Information System (INIS)
Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A.; RodrIguez, Maria J.
2007-01-01
We construct an approximate solution for an asymptotically flat, neutral, thin rotating black ring in any dimension D ≥ 5 by matching the near-horizon solution for a bent boosted black string, to a linearized gravity solution away from the horizon. The rotating black ring solution has a regular horizon of topology S 1 x S D-3 and incorporates the balancing condition of the ring as a zero-tension condition. For D = 5 our method reproduces the thin ring limit of the exact black ring solution. For D ≥ 6 we show that the black ring has a higher entropy than the Myers-Perry black hole in the ultra-spinning regime. By exploiting the correspondence between ultra-spinning black holes and black membranes on a two-torus, we take steps towards qualitatively completing the phase diagram of rotating blackfolds with a single angular momentum. We are led to propose a connection between MP black holes and black rings, and between MP black holes and black Saturns, through merger transitions involving two kinds of 'pinched' black holes. More generally, the analogy suggests an infinite number of pinched black holes of spherical topology leading to a complicated pattern of connections and mergers between phases
Upper Estimates on the Higher-dimensional Multifractal Spectrum of Local Entropy%局部熵高维重分形谱的上界估计
Institute of Scientific and Technical Information of China (English)
严珍珍; 陈二才
2008-01-01
We discuss the problem of higher-dimensional multifractal spectrum of lo-cal entropy for arbitrary invariant measures. By utilizing characteristics of a dynam-ical system, namely, higher-dimensional entropy capacities and higher-dimensional correlation entropies, we obtain three upper estimates on the higher-dimensional mul-tifractal spectrum of local entropies. We also study the domain of higher-dimensional multifractal spetrum of entropies.
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis
Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; ptalent identification. PMID:27224653
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.
Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; ptalent identification.
Inverse dualization and non-local dualities between Einstein gravity and supergravities
International Nuclear Information System (INIS)
Chen Chiangmei; Gal'tsov, Dmitri V; Sharakin, Sergei A
2002-01-01
We investigate non-local dualities between suitably compactified higher dimensional Einstein gravity and supergravities which can be revealed if one reinterprets the dualized Kaluza-Klein 2-forms in D>4 as antisymmetric forms belonging to supergravities. We find several examples of such a correspondence including one between the six-dimensional Einstein gravity and the four-dimensional Einstein-Maxwell-dilaton-axion theory (truncated N=4 supergravity), and others between the compactified eleven- and ten-dimensional supergravities and the eight- or ten-dimensional pure gravity. The Killing spinor equation of the D=11 supergravity is shown to be equivalent to the geometric Killing spinor equation in the dual gravity. We give several examples of using new dualities for solution generation and demonstrate how p-branes can be interpreted as non-local duals of pure gravity solutions. New supersymmetric solutions are presented including M2 subset of 5-brane with two rotation parameters
Directory of Open Access Journals (Sweden)
L. Schoon
2018-05-01
Full Text Available For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi. It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia–gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia–gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.
Geometrodynamics of spherically symmetric Lovelock gravity
International Nuclear Information System (INIS)
Kunstatter, Gabor; Taves, Tim; Maeda, Hideki
2012-01-01
We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchar (1994 Phys. Rev. D 50 3961) in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes. (fast track communication)
Generalized modified gravity in large extra dimensions
International Nuclear Information System (INIS)
Aslan, Onder; Demir, Durmus A.
2006-01-01
We discuss effective interactions among brane matter induced by modifications of higher-dimensional Einstein gravity through the replacement of Einstein-Hilbert term with a generic function f(R,R AB R AB ,R ABCD R ABCD ) of the curvature tensors. We determine gravi-particle spectrum of the theory, and perform a comparative analysis of its predictions with those of the Einstein gravity within Arkani-Hamed-Dvali-Dimopoulos (ADD) setup. We find that this general higher-curvature quantum gravity theory contributes to scatterings among both massive and massless brane matter (in contrast to much simpler generalization of the Einstein gravity, f(R), which influences only the massive matter), and therefore, can be probed via various scattering processes at present and future colliders and directly confronted with the ADD expectations. In addition to collision processes which proceed with tree-level gravi-particle exchange, effective interactions among brane matter are found to exhibit a strong sensitivity to higher-curvature gravity via the gravi-particle loops. Furthermore, particle collisions with missing energy in their final states are found to be sensitive to additional gravi-particles not found in Einstein gravity. In general, road to a correct description of quantum gravity above Fermi energies depends crucially on if collider and other search methods end up with a negative or positive answer for the presence of higher-curvature gravitational interactions
Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime
International Nuclear Information System (INIS)
Zhao Haixia; Hu Shuangqi; Zhao Ren; Li Huaifan
2007-01-01
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.
On higher-dimensional loop algebras, pseudodifferential operators and Fock space realizations
International Nuclear Information System (INIS)
Westerberg, A.
1997-01-01
We discuss a previously discovered extension of the infinite-dimensional Lie algebra map(M,g) which generalizes the Kac-Moody algebras in 1+1 dimensions and the Mickelsson-Faddeev algebras in 3+1 dimensions to manifolds M of general dimensions. Furthermore, we review the method of regularizing current algebras in higher dimensions using pseudodifferential operator (PSDO) symbol calculus. In particular, we discuss the issue of Lie algebra cohomology of PSDOs and its relation to the Schwinger terms arising in the quantization process. Finally, we apply this regularization method to the algebra with partial success, and discuss the remaining obstacles to the construction of a Fock space representation. (orig.)
Higher-dimensional black holes: hidden symmetries and separation of variables
International Nuclear Information System (INIS)
Frolov, Valeri P; Kubiznak, David
2008-01-01
In this paper, we discuss hidden symmetries in rotating black hole spacetimes. We start with an extended introduction which mainly summarizes results on hidden symmetries in four dimensions and introduces Killing and Killing-Yano tensors, objects responsible for hidden symmetries. We also demonstrate how starting with a principal CKY tensor (that is a closed non-degenerate conformal Killing-Yano 2-form) in 4D flat spacetime one can 'generate' the 4D Kerr-NUT-(A)dS solution and its hidden symmetries. After this we consider higher-dimensional Kerr-NUT-(A)dS metrics and demonstrate that they possess a principal CKY tensor which allows one to generate the whole tower of Killing-Yano and Killing tensors. These symmetries imply complete integrability of geodesic equations and complete separation of variables for the Hamilton-Jacobi, Klein-Gordon and Dirac equations in the general Kerr-NUT-(A)dS metrics
Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes
Boos, Jens; Frolov, Valeri P.
2018-04-01
We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.
The effective action for edge states in higher-dimensional quantum Hall systems
International Nuclear Information System (INIS)
Karabali, Dimitra; Nair, V.P.
2004-01-01
We show that the effective action for the edge excitations of a quantum Hall droplet of fermions in higher dimensions is generically given by a chiral bosonic action. We explicitly analyze the quantum Hall effect on complex projective spaces CP k , with a U(1) background magnetic field. The edge excitations are described by Abelian bosonic fields on S 2k-1 with only one spatial direction along the boundary of the droplet relevant for the dynamics. Our analysis also leads to an action for edge excitations for the case of the Zhang-Hu four-dimensional quantum Hall effect defined on S 4 with an SU(2) background magnetic field, using the fact that CP 3 is an S 2 -bundle over S 4
The Fuzzy analogy of chiral diffeomorphisms in higher dimensional quantum field theories
International Nuclear Information System (INIS)
Fassarella, Lucio; Schroer, Bert
2001-06-01
Our observation that the chiral diffeomorphisms allow an interpretation as modular groups of local operator algebras in the sense of Tomita and takesaki allows us to conclude that the higher deimensional generalizations are certain infinite dimensional groups which act in a 'fuzzy' way on the operator algebras of local quantum physics. These actions do not require any spacetime noncommutativity and are in complete harmony with causality and localization principles. The use of an appropriately defined isomorphism reprocesses these fuzzy actions into partially geometric actions on the holographic image and in this way tightens the relation with chiral structures and makes recent attempts to explain the required universal structure of a would be quantum Bekenstein law in terms of Virasoro algebra structures more palatable. (author)
Euclidean scalar Green function in a higher dimensional global monopole space-time
International Nuclear Information System (INIS)
Bezerra de Mello, E.R.
2002-01-01
We construct the explicit Euclidean scalar Green function associated with a massless field in a higher dimensional global monopole space-time, i.e., a (1+d)-space-time with d≥3 which presents a solid angle deficit. Our result is expressed in terms of an infinite sum of products of Legendre functions with Gegenbauer polynomials. Although this Green function cannot be expressed in a closed form, for the specific case where the solid angle deficit is very small, it is possible to develop the sum and obtain the Green function in a more workable expression. Having this expression it is possible to calculate the vacuum expectation value of some relevant operators. As an application of this formalism, we calculate the renormalized vacuum expectation value of the square of the scalar field, 2 (x)> Ren , and the energy-momentum tensor, μν (x)> Ren , for the global monopole space-time with spatial dimensions d=4 and d=5
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.
Directory of Open Access Journals (Sweden)
Kevin Till
Full Text Available Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional. Players were blindly and randomly divided into an exploratory (n = 165 and validation dataset (n = 92. The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001, although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003. Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.
Exact solutions of Einstein and Einstein-Maxwell equations in higher-dimensional spacetime
International Nuclear Information System (INIS)
Xu Dianyan; Beijing Univ., BJ
1988-01-01
The D-dimensional Schwarzschild-de Sitter metric and Reissner-Nordstrom-de-Sitter metric are derived directly by solving the Einstein and Einstein-Maxwell equations. The D-dimensional Kerr metric is rederived by using the complex coordinate transformation method and the D-dimensional Kerr-de Sitter metric is also given. The conjecture about the D-dimensional metric of a rotating charged mass is given at the end of this paper. (author)
Bergshoeff, E.; Pope, C.N.; Stelle, K.S.
1990-01-01
We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.
Mannheim, Philip D
2005-01-01
This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.
A flat Chern-Simons gauge theory for (2+1)-dimensional gravity coupled to point particles
International Nuclear Information System (INIS)
Grignani, G.; Nardelli, G.
1991-01-01
We present a classical ISO (2,1) Chern-Simons gauge theory for planar gravity coupled to point-like sources. The theory is defined in terms of flat coordinates whose relation with the space-time coordinates is established. Though flat, the theory is equivalent to Einstein's as we show explicitly in two examples. (orig.)
Three-dimensional freak waves and higher-order wave-wave resonances
Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.
2012-04-01
Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover
Towards realistic models from Higher-Dimensional theories with Fuzzy extra dimensions
Gavriil, D.; Zoupanos, G.
2014-01-01
We briefly review the Coset Space Dimensional Reduction (CSDR) programme and the best model constructed so far and then we present some details of the corresponding programme in the case that the extra dimensions are considered to be fuzzy. In particular, we present a four-dimensional $\\mathcal{N} = 4$ Super Yang Mills Theory, orbifolded by $\\mathbb{Z}_3$, which mimics the behaviour of a dimensionally reduced $\\mathcal{N} = 1$, 10-dimensional gauge theory over a set of fuzzy spheres at intermediate high scales and leads to the trinification GUT $SU(3)^3$ at slightly lower, which in turn can be spontaneously broken to the MSSM in low scales.
Fractal zeta functions and fractal drums higher-dimensional theory of complex dimensions
Lapidus, Michel L; Žubrinić, Darko
2017-01-01
This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the f...
Araneda, Bernardo
2018-04-01
We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.
Kanti, P.; Pappas, T.
2017-07-01
The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.
Emission of massive scalar fields by a higher-dimensional rotating black hole
International Nuclear Information System (INIS)
Kanti, P.; Pappas, N.
2010-01-01
We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m Φ ≤1 TeV in the bulk and m Φ ≤0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 34%) when the mass of the emitted field is taken into account.
What we think about the higher dimensional Chern-Simons theories
International Nuclear Information System (INIS)
Fock, V.V.; Nekrasov, N.A.; Rosly, A.A.; Selivanov, K.G.
1992-01-01
This paper reports that one of the most interesting developments in mathematical physics was the investigation of the so-called topological field theories i.e. such theories which do not need a metric on the manifold for their definition a d hence the observable of which are topologically invariant. The Chern-Simons (CS) functionals considered as actions give us examples the theories of such a type. The CS theory on a 3d manifold was firstly considered in the Abelian case by A.S. Schwartz and then after papers of E. Witten there has been an explosive process of publications on this subject. This paper discusses topological invariants of the manifolds (like the Ray-Singer torsion) computed by the quantum field theory methods; conformal blocks of 2d conformal field theories as vectors in the CS theory Hilbert space; correlators of Wilson loop and the invariants of 1d links in 3d manifolds; braid groups; unusual relations between spin and statistics; here we would like to consider the generalization of a part of the outlined ideas to the CS theories on higher dimensional manifolds. Some of our results intersect with
Partially-massless higher-spin algebras and their finite-dimensional truncations
International Nuclear Information System (INIS)
Joung, Euihun; Mkrtchyan, Karapet
2016-01-01
The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 (ℓ−1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ−d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of so d+2 . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.
Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.
2018-02-01
We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.
Directory of Open Access Journals (Sweden)
Hasibun Naher
2012-01-01
Full Text Available We construct new analytical solutions of the (3+1-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.
Static and radiating p-form black holes in the higher dimensional Robinson-Trautman class
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Podolský, J.; Žofka, M.
2015-01-01
Roč. 2015, č. 2 (2015), 045 ISSN 1029-8479 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : Einstein-Maxwell spacetimes * classical theories of gravity * black holes Subject RIV: BA - General Mathematics Impact factor: 6.023, year: 2015 http://link.springer.com/article/10.1007/JHEP02%282015%29045
Higher dimensional models of cross-coupled oscillators and application to design
Elwakil, Ahmed S.; Salama, Khaled N.
2010-01-01
We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.
Higher dimensional models of cross-coupled oscillators and application to design
Elwakil, Ahmed S.
2010-06-01
We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.
International Nuclear Information System (INIS)
Jevicki, A.; Ninomiya, M.
1985-01-01
We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)
An ambiguity in one-loop quantum gravity
International Nuclear Information System (INIS)
Capper, D.M.; Kimber, D.P.
1980-01-01
It is argued that the application of the dimensional regularisation technique to one-loop quantum gravity calculations is ambiguous. However, for the calculation of on-mass-shell S-matrix elements, this ambiguity can be resolved by requiring consistency with results obtained from other regularisation schemes. Some discussion is also given of the implications of this work for recent attempts to use higher derivative Lagrangians to solve the renormalisability problem in quantum gravity. (author)
Lohe, M. A.
2018-06-01
We generalize the Watanabe–Strogatz (WS) transform, which acts on the Kuramoto model in d = 2 dimensions, to a higher-dimensional vector transform which operates on vector oscillator models of synchronization in any dimension , for the case of identical frequency matrices. These models have conserved quantities constructed from the cross ratios of inner products of the vector variables, which are invariant under the vector transform, and have trajectories which lie on the unit sphere S d‑1. Application of the vector transform leads to a partial integration of the equations of motion, leaving independent equations to be solved, for any number of nodes N. We discuss properties of complete synchronization and use the reduced equations to derive a stability condition for completely synchronized trajectories on S d‑1. We further generalize the vector transform to a mapping which acts in and in particular preserves the unit ball , and leaves invariant the cross ratios constructed from inner products of vectors in . This mapping can be used to partially integrate a system of vector oscillators with trajectories in , and for d = 2 leads to an extension of the Kuramoto system to a system of oscillators with time-dependent amplitudes and trajectories in the unit disk. We find an inequivalent generalization of the Möbius map which also preserves but leaves invariant a different set of cross ratios, this time constructed from the vector norms. This leads to a different extension of the Kuramoto model with trajectories in the complex plane that can be partially integrated by means of fractional linear transformations.
Directory of Open Access Journals (Sweden)
ShuZheng Yang
2016-01-01
Full Text Available Based on semiclassical tunneling method, we focus on charged fermions tunneling from higher-dimensional Reissner-Nordström black hole. We first simplify the Dirac equation by semiclassical approximation, and then a semiclassical Hamilton-Jacobi equation is obtained. Using the Hamilton-Jacobi equation, we study the Hawking temperature and fermions tunneling rate at the event horizon of the higher-dimensional Reissner-Nordström black hole space-time. Finally, the correct entropy is calculation by the method beyond semiclassical approximation.
New Views on Dark Matter from Emergent Gravity
Directory of Open Access Journals (Sweden)
Sun Sichun
2018-01-01
Full Text Available We discuss a scenario that apparent dark matter comes from the induced gravity in the (3+1- dimensional spacetime, which can be embedded into one higher dimensional flat spacetime. The stress tensor of dark energy and dark matter is identified with the Brown-York stress tensor on the hypersurface, and we find an interesting constraint relation between the dark matter and dark energy density parameter and baryonic density parameter. Our approach may show a new understanding for Verlinde’s emergent gravity from higher dimensions. We also comment on some phenomenological implications, including gravitational wave solutions and MOND limit.
A higher-dimensional Bianchi type-I inflationary Universe in general ...
Indian Academy of Sciences (India)
Inflation, the stage of accelerated expansion of the Universe, first proposed ... ary model in the context of grand unified theory (GUT), which has been ... The role of self-interacting scalar fields in inflationary cosmology in four-dimensional.
Xu, Weimin; Chen, Shi
2018-02-01
Spectral methods provide many advantages for calculating gravity anomalies. In this paper, we derive a kernel function for a three-dimensional (3D) fault model in the wave number domain, and present the full Fortran source code developed for the forward computation of the gravity anomalies and related derivatives obtained from the model. The numerical error and computing speed obtained using the proposed spectral method are compared with those obtained using a 3D rectangular prism model solved in the space domain. The error obtained using the spectral method is shown to be dependent on the sequence length employed in the fast Fourier transform. The spectral method is applied to some examples of 3D fault models, and is demonstrated to be a straightforward and alternative computational approach to enhance computational speed and simplify the procedures for solving many gravitational potential forward problems involving complicated geological models. The proposed method can generate a great number of feasible geophysical interpretations based on a 3D model with only a few variables, and can thereby improve the efficiency of inversion.
Testing a Dilaton Gravity Model Using Nucleosynthesis
International Nuclear Information System (INIS)
Boran, S.; Kahya, E. O.
2014-01-01
Big bang nucleosynthesis (BBN) offers one of the most strict evidences for the Λ-CDM cosmology at present, as well as the cosmic microwave background (CMB) radiation. In this work, our main aim is to present the outcomes of our calculations related to primordial abundances of light elements, in the context of higher dimensional steady-state universe model in the dilaton gravity. Our results show that abundances of light elements (primordial D, 3 He, 4 He, T, and 7 Li) are significantly different for some cases, and a comparison is given between a particular dilaton gravity model and Λ-CDM in the light of the astrophysical observations
Renormalization and asymptotic freedom in quantum gravity
International Nuclear Information System (INIS)
Tomboulis, E.T.
1984-01-01
The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)
Hong, Sungwoo
Warped higher-dimensional compactifications with "bulk'' standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem'' remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement'', with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to all pairs of SM fermions, and a novel channel--decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. We present a detailed phenomenological study of the latter cascade decay processes. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at O(10) TeV, with subdominant resonance decays into a pair of Higgs/top-rich final states, giving the LHC an early "preview'' of the nature of the resolution of the hierarchy
Hidden U$_{q}$(sl(2)) x U$_{q}$(sl(2)) quantum group symmetry in two dimensional gravity
Cremmer, E; Schnittger, J
1997-01-01
In a previous paper, we proposed a construction of U_q(sl(2)) quantum group symmetry generators for 2d gravity, where we took the chiral vertex operators of the theory to be the quantum group covariant ones established in earlier works. The basic idea was that the covariant fields in the spin 1/2 representation themselves can be viewed as generators, as they act, by braiding, on the other fields exactly in the required way. Here we transform this construction to the more conventional description of 2d gravity in terms of Bloch wave/Coulomb gas vertex operators, thereby establishing for the first time its quantum group symmetry properties. A U_q(sl(2))\\otimes U_q(sl(2)) symmetry of a novel type emerges: The two Cartan-generator eigenvalues are specified by the choice of matrix element (bra/ket Verma-modules); the two Casimir eigenvalues are equal and specified by the Virasoro weight of the vertex operator considered; the co-product is defined with a matching condition dictated by the Hilbert space structure of...
Manifestations of quantum gravity in scalar QED phenomena
International Nuclear Information System (INIS)
Elizalde, E.; Odintsov, S.D.; Romeo, A.
1995-01-01
Quantum gravitational corrections to the effective potential, at the one-loop level and in the leading-log approximation, for scalar quantum electrodynamics with higher-derivative gravity, which is taken as an effective theory for quantum gravity (QG), are calculated. We point out the appearance of relevant phenomena caused by quantum gravity, such as dimensional transmutation, QG-driven instabilities of the potential, QG corrections to scalar-to-vector mass ratios, and curvature-induced phase transitions, whose existence is shown by means of analytical and numerical study
Gravity, antigravity and gravitational shielding in (2+1) dimensions
Accioly, Antonio; Helayël-Neto, José; Lobo, Matheus
2009-07-01
Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.
Gravity, antigravity and gravitational shielding in (2+1) dimensions
Energy Technology Data Exchange (ETDEWEB)
Accioly, Antonio; Helayel-Neto, Jose; Lobo, Matheus, E-mail: accioly@cbpf.b, E-mail: helayel@cbpf.b, E-mail: lobo@ift.unesp.b [Group of Field Theory from First Principles, Centro Brasileiro de Pesquisas FIsicas (CBPF), Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)
2009-07-07
Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.
Gravity, antigravity and gravitational shielding in (2+1) dimensions
International Nuclear Information System (INIS)
Accioly, Antonio; Helayel-Neto, Jose; Lobo, Matheus
2009-01-01
Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.
International Nuclear Information System (INIS)
Wiliardy, Abednego; Gunara, Bobby Eka
2016-01-01
An n dimensional flat manifold N is embedded into an n +1 dimensional stationary manifold M. The metric of M is derived from a general form of stationary manifold. By taking several assumption, such as 1) the ambient manifold M to be maximally symmetric space and satisfying a pure gauge condition, and 2) the submanifold is taken to be flat, then we find the solution that satisfies Ricci scalar of N . Moreover, we determine whether the solution is compatible with the Ricci and Riemann tensor of manifold N depending on the dimension. (paper)
Pappas, T.; Kanti, P.; Pappas, N.
2016-01-01
In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de-Sitter black hole as well as on the projected-on-the-brane 4-dimensional background. The scalar fields have also a non-minimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then pro...
Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation
P.W. Hemker (Piet); M.H. van Raalte (Marc)
2002-01-01
textabstractIn this paper we study the convergence of a multigrid method for the solution of a two-dimensional linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods. For the Baumann-Oden and for the symmetric DG method, we give a detailed analysis of the
Faster exact algorithms for computing Steiner trees in higher dimensional Euclidean spaces
DEFF Research Database (Denmark)
Fonseca, Rasmus; Brazil, Marcus; Winter, Pawel
The Euclidean Steiner tree problem asks for a network of minimum total length interconnecting a finite set of points in d-dimensional space. For d ≥ 3, only one practical algorithmic approach exists for this problem --- proposed by Smith in 1992. A number of refinements of Smith's algorithm have...
Dimensional reduction of 10d heterotic string effective lagrangian with higher derivative terms
International Nuclear Information System (INIS)
Lalak, Z.; Pawelczyk, J.
1989-11-01
Dimensional reduction of the 10d Supergravity-Yang-Mills theories containing up to four derivatives is described. Unexpected nondiagonal corrections to 4d gauge kinetic function and negative contributions to scalar potential are found. We analyzed the general structure of the resulting lagrangian and discuss the possible phenomenological consequences. (author)
Uniqueness in some higher order elliptic boundary value problems in n dimensional domains
Directory of Open Access Journals (Sweden)
C.-P. Danet
2011-07-01
Full Text Available We develop maximum principles for several P functions which are defined on solutions to equations of fourth and sixth order (including a equation which arises in plate theory and bending of cylindrical shells. As a consequence, we obtain uniqueness results for fourth and sixth order boundary value problems in arbitrary n dimensional domains.
Testud, Frederik; Gallichan, Daniel; Layton, Kelvin J; Barmet, Christoph; Welz, Anna M; Dewdney, Andrew; Cocosco, Chris A; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim
2015-03-01
PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding. © 2014 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Kuetche, Victor Kamgang; Bouetou, Thomas Bouetou; Kofane, Timoleon Crepin
2010-12-01
We investigate the singularity structure analysis of the higher-dimensional time-gated Manakov system referring to the (2+1)-dimensional coupled nonlinear Schroedinger (CNLS) equations, and we show that these equations are Painleve-integrable. By means of the Weiss et al.'s methodology, we show the arbitrariness of the expansion coefficients and the consistency of the truncation corresponding to a special Baecklund transformation (BT) of these CNLS equations. In the wake of such transformation, following the Hirota's formalism, we derive a one-soliton solution. Besides, by using the Zakharov-Shabat (ZS) scheme which provides a general Lax-representation of an evolution system, we show that the (2+1)-dimensional CNLS system under interests is completely integrable. Furthermore, using the arbitrariness of the above coefficients, we unearth and investigate a typical spectrum of periodic coherent structures while depicting elastic interactions amongst such patterns. (author)
PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity
Capozziello, S.; Troisi, A.
2005-01-01
Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.
Maximal locality and predictive power in higher-dimensional, compactified field theories
International Nuclear Information System (INIS)
Kubo, Jisuke; Nunami, Masanori
2004-01-01
To realize maximal locality in a trivial field theory, we maximize the ultraviolet cutoff of the theory by fine tuning the infrared values of the parameters. This optimization procedure is applied to the scalar theory in D + 1 dimensional (D ≥ 4) with one extra dimension compactified on a circle of radius R. The optimized, infrared values of the parameters are then compared with the corresponding ones of the uncompactified theory in D dimensions, which is assumed to be the low-energy effective theory. We find that these values approximately agree with each other as long as R -1 > approx sM is satisfied, where s ≅ 10, 50, 50, 100 for D = 4,5,6,7, and M is a typical scale of the D-dimensional theory. This result supports the previously made claim that the maximization of the ultraviolet cutoff in a nonrenormalizable field theory can give the theory more predictive power. (author)
International Nuclear Information System (INIS)
Edelen, Dominic G B
2003-01-01
Local action of the fundamental group SO(a, 4 + k - a) is used to show that any solution of an algebraically closed differential system, that is generated from matrix Lie algebra valued 1-forms on a four-dimensional parameter space, will generate families of immersions of four-dimensional spacetimes R 4 in flat (4 + k)-dimensional spaces M 4+k with compatible signature. The algorithm is shown to work with local action of SO(a, 4 + k - a) replaced by local action of GL(4 + k). Immersions generated by local action of the Poincare group on the target spacetime are also obtained. Evaluations of the line elements, immersion loci and connection and curvature forms of these immersions are algebraic. Families of immersions that depend on one or more arbitrary functions are calculated for 1 ≤ k ≤ 4. Appropriate sections of graphs of the conformal factor for two and three interacting line singularities immersed in M 6 are given in appendix A. The local immersion theorem given in appendix B shows that all local solutions of the immersion problem are obtained by use of this method and an algebraic extension in exceptional cases
Higher conservation laws for ten-dimensional supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Abdalla, E.; Forger, M.; Freiburg Univ.; Jacques, M.
1988-01-01
It is shown that ten-dimensional supersymmetric Yang-Mills theories are integrable systems, in the (weak) sense of admitting a (superspace) Lax representation for their equations of motion. This is achieved by means of an explicit proof that the equations of motion are not only a consequence of but in fact fully equivalent to the superspace constraint F αβ =0. Moreover, a procedure for deriving infinite series of non-local conservation laws is outlined. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis; Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2017-02-22
We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.
Late-time tails of wave propagation in higher dimensional spacetimes
International Nuclear Information System (INIS)
Cardoso, Vitor; Yoshida, Shijun; Dias, Oscar J.C.; Lemos, Jose P.S.
2003-01-01
We study the late-time tails appearing in the propagation of massless fields (scalar, electromagnetic, and gravitational) in the vicinities of a D-dimensional Schwarzschild black hole. We find that at late times the fields always exhibit a power-law falloff, but the power law is highly sensitive to the dimensionality of the spacetime. Accordingly, for odd D>3 we find that the field behaves as t -(2l+D-2) at late times, where l is the angular index determining the angular dependence of the field. This behavior is entirely due to D being odd; it does not depend on the presence of a black hole in the spacetime. Indeed this tail is already present in the flat space Green's function. On the other hand, for even D>4 the field decays as t -(2l+3D-8) , and this time there is no contribution from the flat background. This power law is entirely due to the presence of the black hole. The D=4 case is special and exhibits, as is well known, t -(2l+3) behavior. In the extra dimensional scenario for our Universe, our results are strictly correct if the extra dimensions are infinite, but also give a good description of the late-time behavior of any field if the large extra dimensions are large enough
Rasmussen, J.; Skalbeck, J.; Stewart, E.
2017-12-01
The deep sandstone and dolomite aquifer of Wisconsin is the primary source of water in the central, southern, and western portions of the state, as well as a supplier for many high-capacity wells in the eastern portion. This prominent groundwater system is highly impacted by the underlying Precambrian basement, which includes the doubly plunging Baraboo Syncline in Columbia and Sauk Counties. This project is a continuation of previous work done in Dodge and Fond du Lac Counties by the University of Wisconsin-Parkside (UW-P) and the Wisconsin Geological & Natural History Survey (WGNHS). The goal of this project was to produce of an updated Precambrian topographic map of southern Wisconsin, by adding Gravity and Aeromagnetic data to the existing map which is based mainly on sparse outcrop and well data. Gravity and Aeromagnetic data from the United States Geological Survey (USGS) was processed using GM-SYS 3D modeling software in Geosoft Oasis Montaj. Grids of subsurface layers were created from the data and constrained by well and drilling records. The Columbia County basement structure is a complex network of Precambrian granites and rhyolites which is non-conformably overlain by quartzite, slate, and a layer of iron rich sedimentary material. Results from previously collected cores as well as drilling done in neighboring Dodge County, show that the iron rich layer was draped over much of the Baraboo area before being subject to the multitude of folding and faulting events that happened in the region during the late Precambrian. This layer provides telltale signatures that aided in construction of the model due to having an average density of 3.7 g/cm3 and a magnetic susceptibility of 8000 x 10-6 cgs, compared to the average density and susceptibility of the rest of the bedrock being 2.8 g/cm3 and 1500 x 10-6 cgs, respectively. The research done on the Columbia County basement is one part of a larger project aimed at improving groundwater management efforts of the
Metastable gravity on classical defects
International Nuclear Information System (INIS)
Ringeval, Christophe; Rombouts, Jan-Willem
2005-01-01
We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity
Directory of Open Access Journals (Sweden)
H Bagheri
2017-05-01
Full Text Available Introduction Lentil (Lens culinaris medic is an important and highly nutritious crop belonging to the family of legumes. Lentil is cultivated worldwide but competition with weeds is a problem affecting production and can reduce yield by more than 80%. The study on the separation of impurities in bulk lentils (Euphorbia helioscopia weed, Wild oat weed and etc. by a gravity separator has an extreme importance. Since no study has been done to date, in this study, the effects of different parameters of a gravity separator (longitudinal and latitudinal slopes, oscillation frequency and amplitude on the separation of foreign matters in lentil seeds were evaluated. A dimensionless number (v/aω which shows ration of air current velocity blown to lentil to the maximum velocity of table oscillation, was considered in ratio of separation. Materials and Methods In this research, lentil samples were taken from farms in Ardebil Province (Bileh-Savar cultivar. A gravity separator apparatus was also used for separating impurities from lentil seeds. A Laboratory Gravity Separator Type LA-K (Westrup A/S Denmark was used to separate impurities from bulk lentils. In this machine, table settings were as follows; longitudinal slope parameters (1°,1.5°, 1.75°, 2° and 2.5°, latitudinal slope (0.5°, 1°, and 1.5°, frequency of oscillation (380, 400, 420 and 450 cycles min-1, and amplitude of oscillation (5 and 7 mm, these settings were all adjustable. Similarly, the instrument had 5 boxes whereby, through proper adjustment, the heavier material was transferred toward the right side of the table and lighter material moved toward the left side. Through proper adjustment of the main parameters of the instrument, the impurities were separated from bulk lentils. Then using an electronic seed counter, five groups of seed which each group containing 100 seeds were counted and selected. Results and Discussion The results of variance analysis of the factorial design with
Approaches to analysis of data that concentrate near higher-dimensional manifolds
International Nuclear Information System (INIS)
Friedman, J.H.; Tukey, J.W.; Tukey, P.A.
1979-01-01
The need to explore structure in high-dimensional clouds of data points that may concentrate near (possibly nonlinear) manifolds of lower dimension led to the current development of three new approaches. The first is a computer-graphic system (PRIM'79) that facilitates interactive viewing and manipulation of an ensemble of points. The other two are automatic procedures for separating a cloud into more manageable pieces. One of these (BIDEC) performs successive partitioning of the cloud by use of hyperplanes; the other (Cake Maker) explores expanding sequences of neighborhoods. Both procedures provide facilities for examining the resulting pieces and the relationships among them
Kheyfets, Vitaly O; Kieweg, Sarah L
2013-06-01
HIV/AIDS is a growing global pandemic. A microbicide is a formulation of a pharmaceutical agent suspended in a delivery vehicle, and can be used by women to protect themselves against HIV infection during intercourse. We have developed a three-dimensional (3D) computational model of a shear-thinning power-law fluid spreading under the influence of gravity to represent the distribution of a microbicide gel over the vaginal epithelium. This model, accompanied by a new experimental methodology, is a step in developing a tool for optimizing a delivery vehicle's structure/function relationship for clinical application. We compare our model with experiments in order to identify critical considerations for simulating 3D free-surface flows of shear-thinning fluids. Here we found that neglecting lateral spreading, when modeling gravity-induced flow, resulted in up to 47% overestimation of the experimental axial spreading after 90 s. In contrast, the inclusion of lateral spreading in 3D computational models resulted in rms errors in axial spreading under 7%. In addition, the choice of the initial condition for shape in the numerical simulation influences the model's ability to describe early time spreading behavior. Finally, we present a parametric study and sensitivity analysis of the power-law parameters' influence on axial spreading, and to examine the impact of changing rheological properties as a result of dilution or formulation conditions. Both the shear-thinning index (n) and consistency (m) impacted the spreading length and deceleration of the moving front. The sensitivity analysis showed that gels with midrange m and n values (for the ranges in this study) would be most sensitive (over 8% changes in spreading length) to 10% changes (e.g., from dilution) in both rheological properties. This work is applicable to many industrial and geophysical thin-film flow applications of non-Newtonian fluids; in addition to biological applications in microbicide drug delivery.
Fermions in noncommutative emergent gravity
International Nuclear Information System (INIS)
Klammer, D.
2010-01-01
Noncommutative emergent gravity is a novel framework disclosing how gravity is contained naturally in noncommutative gauge theory formulated as a matrix model. It describes a dynamical space-time which itself is a four-dimensional brane embedded in a higher-dimensional space. In noncommutative emergent gravity, the metric is not a fundamental object of the model; rather it is determined by the Poisson structure and by the induced metric of the embedding. In this work the coupling of fermions to these matrix models is studied from the point of view of noncommutative emergent gravity. The matrix Dirac operator as given by the IKKT matrix model defines an appropriate coupling for fermions to an effective gravitational metric of noncommutative four-dimensional spaces that are embedded into a ten-dimensional ambient space. As it turns out this coupling is non-standard due to a spin connection that vanishes in the preferred but unobservable coordinates defined by the model. The purpose of this work is to study the one-loop effective action of this approach. Standard results of the literature cannot be applied due to this special coupling of the fermions. However, integrating out these fields in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the noncommutative structure to the Riemann tensor, and a dilaton-like term. It remains to be understood what the effects of these terms are and whether they can be avoided. In a second step, the existence of a duality between noncommutative gauge theory and gravity which explains the phenomenon of UV/IR mixing as a gravitational effect is discussed. We show how the gravitational coupling of fermions can be interpreted as a coupling of fermions to gauge fields, which suffers then from UV/IR mixing. This explanation does not render the model finite but it reveals why some UV/IR mixing remains even in supersymmetric models, except in the N
Dual geometric-gauge field aspects of gravity
International Nuclear Information System (INIS)
Huei Peng; Wang, K.
1992-01-01
We propose that the geometric and standard gauge field aspects of gravity are equally essential for a complete description of gravity and can be reconciled. We show that this dualism of gravity resolves the dimensional Newtonian constant problem in both quantum gravity and unification schemes involving gravity (i.e., the Newtonian constant is no longer the coupling constant in the gauge aspect of gravity) and reveals the profound similarity between gravity and other fields. 23 refs., 3 tabs
Directory of Open Access Journals (Sweden)
Animesh Mukherjee
1991-01-01
Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.
International Nuclear Information System (INIS)
Giribet, Gaston; Oliva, Julio; Tempo, David; Troncoso, Ricardo
2009-01-01
Asymptotically anti-de Sitter rotating black holes for the Bergshoeff-Hohm-Townsend massive gravity theory in three dimensions are considered. In the special case when the theory admits a unique maximally symmetric solution, apart from the mass and the angular momentum, the black hole is described by an independent 'gravitational hair' parameter, which provides a negative lower bound for the mass. This bound is saturated at the extremal case, and since the temperature and the semiclassical entropy vanish, it is naturally regarded as the ground state. The absence of a global charge associated with the gravitational hair parameter reflects itself through the first law of thermodynamics in the fact that the variation of this parameter can be consistently reabsorbed by a shift of the global charges, giving further support to consider the extremal case as the ground state. The rotating black hole fits within relaxed asymptotic conditions as compared with the ones of Brown and Henneaux, such that they are invariant under the standard asymptotic symmetries spanned by two copies of the Virasoro generators, and the algebra of the conserved charges acquires a central extension. Then it is shown that Strominger's holographic computation for general relativity can also be extended to the Bergshoeff-Hohm-Townsend theory; i.e., assuming that the quantum theory could be consistently described by a dual conformal field theory at the boundary, the black hole entropy can be microscopically computed from the asymptotic growth of the number of states according to Cardy's formula, in exact agreement with the semiclassical result.
Two-dimensional N=(2,2) lattice gauge theories with matter in higher representations
International Nuclear Information System (INIS)
Joseph, Anosh
2014-06-01
We construct two-dimensional N=(2,2) supersymmetric gauge theories on a Euclidean spacetime lattice with matter in the two-index symmetric and anti-symmetric representations of SU(N c ) color group. These lattice theories preserve a subset of the supercharges exact at finite lattice spacing. The method of topological twisting is used to construct such theories in the continuum and then the geometric discretization scheme is used to formulate them on the lattice. The lattice theories obtained this way are gauge-invariant, free from fermion doubling problem and exact supersymmetric at finite lattice spacing. We hope that these lattice constructions further motivate the nonperturbative explorations of models inspired by technicolor, orbifolding and orientifolding in string theories and the Corrigan-Ramond limit.
Higher first Chern numbers in one-dimensional Bose-Fermi mixtures
Knakkergaard Nielsen, Kristian; Wu, Zhigang; Bruun, G. M.
2018-02-01
We propose to use a one-dimensional system consisting of identical fermions in a periodically driven lattice immersed in a Bose gas, to realise topological superfluid phases with Chern numbers larger than 1. The bosons mediate an attractive induced interaction between the fermions, and we derive a simple formula to analyse the topological properties of the resulting pairing. When the coherence length of the bosons is large compared to the lattice spacing and there is a significant next-nearest neighbour hopping for the fermions, the system can realise a superfluid with Chern number ±2. We show that this phase is stable in a large region of the phase diagram as a function of the filling fraction of the fermions and the coherence length of the bosons. Cold atomic gases offer the possibility to realise the proposed system using well-known experimental techniques.
Pappas, T.; Kanti, P.; Pappas, N.
2016-07-01
In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.
International Nuclear Information System (INIS)
Madriz Aguilar, Jose Edgar; Bellini, Mauricio
2009-01-01
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
Madriz Aguilar, José Edgar; Bellini, Mauricio
2009-08-01
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
Energy Technology Data Exchange (ETDEWEB)
Madriz Aguilar, Jose Edgar [Instituto de Fisica de la Universidad de Guanajuato, C.P. 37150, Leon Guanajuato (Mexico); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina)], E-mail: madriz@mdp.edu.ar; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: mbellini@mdp.edu.ar
2009-08-31
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with {omega}=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
International Nuclear Information System (INIS)
Abbagari, Souleymanou; Bouetou, Thomas B.; Kofane, Timoleon C.
2013-01-01
The prolongation structure methodologies of Wahlquist—Estabrook [H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16 (1975) 1] for nonlinear differential equations are applied to a more general set of coupled integrable dispersionless system. Based on the obtained prolongation structure, a Lie-Algebra valued connection of a closed ideal of exterior differential forms related to the above system is constructed. A Lie-Algebra representation of some hidden structural symmetries of the previous system, its Bäcklund transformation using the Riccati form of the linear eigenvalue problem and their general corresponding Lax-representation are derived. In the wake of the previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2 + 1)-dimensional coupled integrable dispersionless system is unveiled along with its inverse scattering formulation, which applications are straightforward in nonlinear optics where additional propagating dimension deserves some attention. (general)
A unidirectional approach for d-dimensional finite element methods for higher order on sparse grids
Energy Technology Data Exchange (ETDEWEB)
Bungartz, H.J. [Technische Universitaet Muenchen (Germany)
1996-12-31
In the last years, sparse grids have turned out to be a very interesting approach for the efficient iterative numerical solution of elliptic boundary value problems. In comparison to standard (full grid) discretization schemes, the number of grid points can be reduced significantly from O(N{sup d}) to O(N(log{sub 2}(N)){sup d-1}) in the d-dimensional case, whereas the accuracy of the approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear basis functions, e. g., an accuracy of the order O(N{sup - 2}(log{sub 2}(N)){sup d-1}) with respect to the L{sub 2}-norm and of the order O(N{sup -1}) with respect to the energy norm has been shown. Furthermore, regular sparse grids can be extended in a very simple and natural manner to adaptive ones, which makes the hierarchical sparse grid concept applicable to problems that require adaptive grid refinement, too. An approach is presented for the Laplacian on a uinit domain in this paper.
Renormalisation in perturbative quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Rodigast, Andreas
2012-07-02
In this thesis, we derive the gravitational one-loop corrections to the propagators and interactions of the Standard Model field. We consider a higher dimensional brane world scenario: Here, gravitons can propagate in the whole D dimensional space-time whereas the matter fields are confined to a d dimensional sub-manifold (brane). In order to determine the divergent part of the one-loop diagrams, we develop a new regularisation scheme which is both sensitive for polynomial divergences and respects the Ward identities of the Yang-Mills theory. We calculate the gravitational contributions to the {beta} functions of non-Abelian gauge theories, the quartic scalar self-interaction and the Yukawa coupling between scalars and fermions. In the physically interesting case of a four dimensional matter brane, the gravitational contributions to the running of the Yang-Mills coupling constant vanish. The leading contributions to the other two couplings are positive. These results do not depend on the number of extra dimensions. We further compute the gravitationally induced one-loop counterterms with higher covariant derivatives for scalars, Dirac fermions and gauge bosons. In is shown that these counterterms do not coincide with the higher derivative terms in the Lee-Wick standard model. A possible connection between quantum gravity and the latter cannot be inferred.
Miyamoto, K.; Hoshino, T.; Hitotsubashi, R.; Yamashita, M.; Ueda, J.
In STS-95 space experiments, etiolated pea seedlings grown under microgravity conditions in space have shown to be automorphosis. Epicotyls were almost straight but the most oriented toward the direction far from their cotyledons with ca. 45 degrees from the vertical line as compared with that on earth. In order to know the mechanism of microgravity conditions in space to induce automorphosis, we introduced simulated microgravity conditions on a 3-dimensional clinostat, resulting in the successful induction of automorphosis-like growth and development. Kinetic studies revealed that epicotyls bent at their basal region or near cotyledonary node toward the direction far from the cotyledons with about 45 degrees in both seedlings grown on 1 g and under simulated microgravity conditions on the clinostat within 48 hrs after watering. Thereafter epicotyls grew keeping this orientation under simulated microgravity conditions on the clinostat, whereas those grown on 1 g changed the growth direction to vertical direction by negative gravitropic response. Automorphosis-like growth and development was induced by the application of auxin polar transport inhibitors (2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid, 9-hydroxyfluorene-9-carboxylic acid), but not an anti-auxin, p-chlorophenoxyisobutyric acid. Automorphosis-like epicotyl bending was also phenocopied by the application of inhibitors of stretch-activated channel, LaCl3 and GdCl3, and by the application of an inhibitor of protein kinase, cantharidin. These results suggest that automorphosis-like growth in epicotyls of etiolated pea seedlings is due to suppression of negative gravitropic responses on 1 g, and the growth and development of etiolated pea seedlings under 1 g conditions requires for normal activities of auxin polar transport and the gravisensing system relating to calcium channels. Possible mechanisms of perception and transduction of gravity signals to induce automorphosis are discussed.
Surface Casimir densities and induced cosmological constant in higher dimensional braneworlds
International Nuclear Information System (INIS)
Saharian, Aram A.
2006-01-01
We investigate the vacuum expectation value of the surface energy-momentum tensor for a massive scalar field with general curvature coupling parameter obeying the Robin boundary conditions on two codimension one parallel branes in a (D+1)-dimensional background spacetime AdS D 1 +1 xΣ with a warped internal space Σ. These vacuum densities correspond to a gravitational source of the cosmological constant type for both subspaces of the branes. Using the generalized zeta function technique in combination with contour integral representations, the surface energies on the branes are presented in the form of the sum of single-brane and second-brane-induced parts. For the geometry of a single brane both regions, on the left and on the right of the brane, are considered. At the physical point the corresponding zeta functions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total zeta function is finite. The renormalization procedure for the surface energies and the structure of the corresponding counterterms are discussed. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation and are investigated in various asymptotic regions of the parameters. In particular, it is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. The total energy of the vacuum including the bulk and boundary contributions is evaluated by the zeta function technique and the energy balance between separate parts is discussed
Topological strings from Liouville gravity
International Nuclear Information System (INIS)
Ishibashi, N.; Li, M.
1991-01-01
We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)
f(Lovelock) theories of gravity
Bueno, Pablo; Cano, Pablo A.; Óscar Lasso, A.; Ramírez, Pedro F.
2016-04-01
f(Lovelock) gravities are simple generalizations of the usual f( R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.
f(Lovelock) theories of gravity
International Nuclear Information System (INIS)
Bueno, Pablo; Cano, Pablo A.; Óscar, Lasso A.; Ramírez, Pedro F.
2016-01-01
f(Lovelock) gravities are simple generalizations of the usual f(R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.
International Nuclear Information System (INIS)
Hall, M.L.; Davis, A.B.
2005-01-01
Accurate modeling of radiative energy transport through cloudy atmospheres is necessary for both climate modeling with GCMs (Global Climate Models) and remote sensing. Previous modeling efforts have taken advantage of extreme aspect ratios (cells that are very wide horizontally) by assuming a 1-D treatment vertically - the Independent Column Approximation (ICA). Recent attempts to resolve radiation transport through the clouds have drastically changed the aspect ratios of the cells, moving them closer to unity, such that the ICA model is no longer valid. We aim to provide a higher-fidelity atmospheric radiation transport model which increases accuracy while maintaining efficiency. To that end, this paper describes the development of an efficient 3-D-capable radiation code that can be easily integrated into cloud resolving models as an alternative to the resident 1-D model. Applications to test cases from the Intercomparison of 3-D Radiation Codes (I3RC) protocol are shown
Higher Dimensional Charged Black Hole Solutions in f(R Gravitational Theories
Directory of Open Access Journals (Sweden)
G. G. L. Nashed
2018-01-01
Full Text Available We present, without any assumption, a class of electric and magnetic flat horizon D-dimension solutions for a specific class of f(R=R+αR2, all of which behave asymptotically as Anti-de-Sitter spacetime. The most interesting property of these solutions is that the higher dimensions black holes, D>4, always have constant electric and magnetic charges in contrast to what is known in the literature. For D=4, we show that the magnetic field participates in the metric on equal foot as the electric field participates. Another interesting result is the fact that the Cauchy horizon is not identical with the event horizon. We use Komar formula to calculate the conserved quantities. We study the singularities and calculate the Hawking temperature and entropy and show that the first law of thermodynamics is always satisfied.
Fundamental and higher two-dimensional resonance modes of an Alpine valley
Ermert, Laura; Poggi, Valerio; Burjánek, Jan; Fäh, Donat
2014-08-01
We investigated the sequence of 2-D resonance modes of the sediment fill of Rhône Valley, Southern Swiss Alps, a strongly overdeepened, glacially carved basin with a sediment fill reaching a thickness of up to 900 m. From synchronous array recordings of ambient vibrations at six locations between Martigny and Sion we were able to identify several resonance modes, in particular, previously unmeasured higher modes. Data processing was performed with frequency domain decomposition of the cross-spectral density matrices of the recordings and with time-frequency dependent polarization analysis. 2-D finite element modal analysis was performed to support the interpretation of processing results and to investigate mode shapes at depth. In addition, several models of realistic bedrock geometries and velocity structures could be used to qualitatively assess the sensitivity of mode shape and particle motion dip angle to subsurface properties. The variability of modal characteristics due to subsurface properties makes an interpretation of the modes purely from surface observations challenging. We conclude that while a wealth of information on subsurface structure is contained in the modal characteristics, a careful strategy for their interpretation is needed to retrieve this information.
International Nuclear Information System (INIS)
Anderson, Gregory W.; Blazek, Tomas
2005-01-01
E 6 is an attractive group for unification model building. However, the complexity of a rank 6 group makes it nontrivial to write down the structure of higher dimensional operators in an E 6 theory in terms of the states labeled by quantum numbers of the standard model gauge group. In this paper, we show the results of our computation of the Clebsch-Gordan coefficients for the products of the 27 with irreducible representations of higher dimensionality: 78, 351, 351 ' , 351, and 351 ' . Application of these results to E 6 model building involving higher dimensional operators is straightforward
Directory of Open Access Journals (Sweden)
Liu Yang
2007-10-01
Full Text Available By using coincidence degree theory of Mawhin, existence results for some higher order resonance multipoint boundary value problems with one dimensional p-Laplacian operator are obtained.
Energy Technology Data Exchange (ETDEWEB)
Lin Kai, E-mail: lk314159@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China); Yang Shuzheng, E-mail: szyangcwnu@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)
2009-10-12
Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the 'tortoise' coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r-t) sector is important to our research. Because we only need to study the (r-t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.
Algebraic definition of topological W gravity
International Nuclear Information System (INIS)
Hosono, S.
1992-01-01
In this paper, the authors propose a definition of the topological W gravity using some properties of the principal three-dimensional subalgebra of a simple Lie algebra due to Kostant. In the authors' definition, structures of the two-dimensional topological gravity are naturally embedded in the extended theories. In accordance with the definition, the authors will present some explicit calculations for the W 3 gravity
Gravitating multidefects from higher dimensions
Giovannini, Massimo
2007-01-01
Warped configurations admitting pairs of gravitating defects are analyzed. After devising a general method for the construction of multidefects, specific examples are presented in the case of higher-dimensional Einstein-Hilbert gravity. The obtained profiles describe diverse physical situations such as (topological) kink-antikink systems, pairs of non-topological solitons and bound configurations of a kink and of a non-topological soliton. In all the mentioned cases the geometry is always well behaved (all relevant curvature invariants are regular) and tends to five-dimensional anti-de Sitter space-time for large asymptotic values of the bulk coordinate. Particular classes of solutions can be generalized to the framework where the gravity part of the action includes, as a correction, the Euler-Gauss-Bonnet combination. After scrutinizing the structure of the zero modes, the obtained results are compared with conventional gravitating configurations containing a single topological defect.
The search for higher symmetry in string theory
Energy Technology Data Exchange (ETDEWEB)
Witten, E [Institute for Advanced Study, Princeton, NJ (USA)
1989-11-17
Some remarks are made about the nature and role of the search for higher symmetry in string theory. These symmetries are most likely to be uncovered in a mysterious 'unbroken phase', for which (2+1)-dimensional gravity provides an interesting and soluble model. New insights about conformal field theory, in which one gets 'out of flatland' to see a wider symmetry from a higher-dimensional vantage point, may offer clues to the unbroken phase of string theory. (author).
Topologically massive gravity and its conformal limit
International Nuclear Information System (INIS)
Ertl, S.
2012-01-01
Three dimensional gravity has been known for some time to be a playground for testing ideas and problems of higher dimensional gravitational theories. Nevertheless its status as a toy model for quantum gravity is still uncertain. Already in 1986 Brown and Henneaux discovered that three dimensional quantum gravity with negative cosmological constant is dual to a two dimensional conformal field theory (CFT) in the sense that the Hilbert space must fall into unitary representation of two copies of the Virasoro algebra. They obtained, in quantizing this theory, an asymptotic Virasoro algebra with central charges c L =c R =(3 l)/(2 G N ), where G N is Newton's constant and ℓ parameterizes the cosmological constant. Almost ten years later black hole solutions for this three dimensional theory were discovered by Banados, Teitelboim and Zanelli. In the same period of time further milestones of relevance for this work have been established: the AdS/CFT correspondence by Maldacena in 1997 and the proposal by Witten in 2007 to define three dimensional quantum gravity in terms of its dual CFT. Over the last few years many attempts have been made to construct gravitational theories in three dimensions that could serve as toy models for quantum gravity. Since a pure Einstein-Hilbert action with a negative cosmological constant lacks additional degrees of freedom one can remedy this by adding a gravitational Chern-Simons term. This results in a theory that exhibits black holes and gravitons and is called topologically massive gravity (TMG). The first part of this thesis deals with finding exact solutions of TMG. This is an interesting problem already at the classical level since non-trivial solutions to the equations of motion are hard to find and only few are known. An efficient way to find solutions is to dimensionally reduce the theory by using two commuting Killing vectors. This results in a (0+1)-dimensional model in which it is then possible to classify all stationary axi
Holographic dark energy from fluid/gravity duality constraint by cosmological observations
Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.
2018-06-01
In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.
Proceeding of the workshop on quantum gravity and topology
International Nuclear Information System (INIS)
Oda, Ichiro
1991-10-01
The workshop on Quantum Gravity and Topology was held at INS on February 21-23, 1991. Several introductory lectures and more than 15 talks were delivered for about 100 participants. The main subjects discussed were i) Topological quantum field theories and topological gravity ii) Low dimensional and four dimensional gravity iii) Topology change iv) Superstring theories etc. (J.P.N.)
Ortín, Tomás
2015-01-01
Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.
Thermodynamic and classical instability of AdS black holes in fourth-order gravity
International Nuclear Information System (INIS)
Myung, Yun Soo; Moon, Taeyoon
2014-01-01
We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermodynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
International Nuclear Information System (INIS)
Hertog, Thomas; Hollands, Stefan
2005-01-01
We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed
Contravariant gravity on Poisson manifolds and Einstein gravity
International Nuclear Information System (INIS)
Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi
2017-01-01
A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)
Massive gravity from bimetric gravity
International Nuclear Information System (INIS)
Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt
2013-01-01
We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)
Topological gravity with minimal matter
International Nuclear Information System (INIS)
Li Keke
1991-01-01
Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)
Institute of Scientific and Technical Information of China (English)
XU Dian-Yan
2003-01-01
The free energy and entropy of Reissner-Nordstrom black holes in higher-dimensional space-time are calculated by the quantum statistic method with a brick wall model. The space-time of the black holes is divided into three regions: region 1, (r > r0); region 2, (r0 > r > n); and region 3, (T-J > r > 0), where r0 is the radius of the outer event horizon, and r, is the radius of the inner event horizon. Detailed calculation shows that the entropy contributed by region 2 is zero, the entropy contributed by region 1 is positive and proportional to the outer event horizon area, the entropy contributed by region 3 is negative and proportional to the inner event horizon area. The total entropy contributed by all the three regions is positive and proportional to the area difference between the outer and inner event horizons. As rt approaches r0 in the nearly extreme case, the total quantum statistical entropy approaches zero.
Energy Technology Data Exchange (ETDEWEB)
Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University,Manipal, Karnataka 576104 (India); Koyama, Yoji [National Center for Theoretical Sciences, National Tsing-Hua University,Hsinchu 30013, Taiwan R.O.C. (China)
2016-06-21
We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.
International Nuclear Information System (INIS)
Furuuchi, Kazuyuki; Koyama, Yoji
2016-01-01
We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.
Quantum gravity effects in Myers-Perry space-times
International Nuclear Information System (INIS)
Litim, Daniel F.; Nikolakopoulos, Konstantinos
2014-01-01
We study quantum gravity effects for Myers-Perry black holes assuming that the leading contributions arise from the renormalization group evolution of Newton’s coupling. Provided that gravity weakens following the asymptotic safety conjecture, we find that quantum effects lift a degeneracy of higher-dimensional black holes, and dominate over kinematical ones induced by rotation, particularly for small black hole mass, large angular momentum, and higher space-time dimensionality. Quantum-corrected space-times display inner and outer horizons, and show the existence of a black hole of smallest mass in any dimension. Ultra-spinning solutions no longer persist. Thermodynamic properties including temperature, specific heat, the Komar integrals, and aspects of black hole mechanics are studied as well. Observing a softening of the ring singularity, we also discuss the validity of classical energy conditions
International Nuclear Information System (INIS)
Quiros, I.
2008-01-01
Full text: An overview of the state of the art in modern astrophysics and cosmology is given, emphasizing the 'Dark Energy Problem', one of the fundamental problems of theoretical physics at present. In particular is analyzed the possibility that the universe could be a three-dimensional membrane embedded in a higher dimensional space. These models known as 'brane worlds' can explain the present accelerated expansion of the Universe as dissipation due to gravity at cosmological scales extra or limit space infrared (IR). However there are many other problems to solve, including the problem of 'ghost' modes that are inevitable in any IR modification of gravity. (author)
Gravity theories in more than four dimensions
International Nuclear Information System (INIS)
Zumino, B.
1985-03-01
String theories suggest particular forms for gravity interactions in higher dimensions. We consider an interesting class of gravity theories in more than four dimensions, clarify their geometric meaning and discuss their special properties. 9 refs
Lovelock gravities from Born–Infeld gravity theory
Directory of Open Access Journals (Sweden)
P.K. Concha
2017-02-01
Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
Lovelock gravities from Born-Infeld gravity theory
Concha, P. K.; Merino, N.; Rodríguez, E. K.
2017-02-01
We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
Directory of Open Access Journals (Sweden)
Barceló Carlos
2005-12-01
Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Alvarez, Enrique
2004-01-01
Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...
Directory of Open Access Journals (Sweden)
Carlos Barceló
2011-05-01
Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Selkirk, Henry B.; Pfister, Leonhard; Chan, K. Roland; Kritz, Mark; Kelly, Ken
1989-01-01
During January and February 1987, as part of the Stratosphere-Troposphere Exchange Project, the NASA ER-2 made 11 flights from Darwin, Australia to investigate dehydration mechanisms in the vicinity of the tropical tropopause. After the monsoon onset in the second week of January, steady easterly flow of 15-25 ms (exp -1) was established in the upper troposphere and lower stratosphere over northern Australia and adjacent seas. Penetrating into this regime were elements of the monsoon convection such as overshooting convective turrets and extensive anvils including cyclone cloud shields. In cases of the latter, the resulting flow obstructions tended to produce mesoscale gravity waves. In several instances the ER- 2 meteorological and trace constituent measurements provide a detailed description of the structure of these gravity waves. Among these was STEP Flight 6, 22-23 January. It is of particular interest to STEP because of the close proximity of ice-laden and dehydrated air on the same isentropic surfaces. Convective events inject large amounts of ice into the upper troposphere and lower stratosphere which may not be completely removed by local precipitation processes. In the present instance, a gravity wave for removed from the source region appears to induce relativity rapid upward motion in the ice-laden air and subsequent dessication. Potential mechanisms for such a localized removal process are under investigation.
Butterfly effect in 3D gravity
Qaemmaqami, Mohammad M.
2017-11-01
We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.
And what if gravity is intrinsically quantic?
International Nuclear Information System (INIS)
Ziaeepour, Houri
2009-01-01
Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, string theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and the former is a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum mechanics (QM) and gravity. Without gravity, QM becomes ambiguous. We consider this observation as the evidence for an intrinsic relation between these fundamental laws of nature. We suggest a quantum role and definition for gravity in the context of a quantum Universe, and present a preliminary formulation for gravity in a system with a finite number of particles.
Energy Technology Data Exchange (ETDEWEB)
Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H., E-mail: jhf3@cornell.edu [Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853 (United States)
2015-06-07
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
International Nuclear Information System (INIS)
Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H.
2015-01-01
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
Kunnummal, Priyesh; Anand, S. P.; Haritha, C.; Rama Rao, P.
2018-05-01
Analysis of high resolution satellite derived free air gravity data has been undertaken in the Greater Maldive Ridge (GMR) (Maldive Ridge, Deep Sea Channel, northern limit of Chagos Bank) segment of the Chagos Laccadive Ridge and the adjoining Arabian and Central Indian Basins. A Complete Bouguer Anomaly (CBA) map was generated from the Indian Ocean Geoidal Low removed Free Air Gravity (hereinafter referred to as "FAG-IOGL") data by incorporating Bullard A, B and C corrections. Using the Parker method, Moho topography was initially computed by inverting the CBA data. From the CBA the Mantle Residual Gravity Anomalies (MRGA) were computed by incorporating gravity effects of sediments and lithospheric temperature and pressure induced anomalies. Further, the MRGA was inverted to get Moho undulations from which the crustal thickness was also estimated. It was found that incorporating the lithospheric thermal and pressure anomaly correction has provided substantial improvement in the computed Moho depths especially in the oceanic areas. But along the GMR, there was not much variation in the Moho thickness computed with and without the thermal and pressure gravity correction implying that the crustal thickness of the ridge does not depend on the oceanic isochrones used for the thermal corrections. The estimated Moho depths in the study area ranges from 7 km to 28 km and the crustal thickness from 2 km to 27 km. The Moho depths are shallower in regions closer to Central Indian Ridge in the Arabian Basin i.e., the region to the west of the GMR is thinner compared to the region in the east (Central Indian Basin). The thickest crust and the deepest Moho are found below the N-S trending GMR segment of the Chagos-Laccadive Ridge. Along the GMR the crustal thickness decreases from north to south with thickness of 27 km below the Maldives Ridge reducing to ∼9 km at 3°S and further increasing towards Chagos Bank. Even though there are similarities in crustal thickness between
International Nuclear Information System (INIS)
Giribet, G E
2005-01-01
Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)
Topological higher gauge theory: From BF to BFCG theory
International Nuclear Information System (INIS)
Girelli, F.; Pfeiffer, H.; Popescu, E. M.
2008-01-01
We study generalizations of three- and four-dimensional BF theories in the context of higher gauge theory. First, we construct topological higher gauge theories as discrete state sum models and explain how they are related to the state sums of Yetter, Mackaay, and Porter. Under certain conditions, we can present their corresponding continuum counterparts in terms of classical Lagrangians. We then explain that two of these models are already familiar from the literature: the ΣΦEA model of three-dimensional gravity coupled to topological matter and also a four-dimensional model of BF theory coupled to topological matter
Moduli space of Chern-Simons gravity
International Nuclear Information System (INIS)
Soda, Jiro; Yamanaka, Yuki
1990-09-01
Conformally invariant (2+1)-dimensional gravity, Chern-Shimons gravity, is studied. Its solution space, moduli space, is investigated using the linearization method. The dimension of moduli space is determined as 18g - 18 for g > 1,6 for g = 1 and 0 for g = 0. We discuss the geometrical meaning of our investigation. (author)
String theory and quantum gravity '92
International Nuclear Information System (INIS)
Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.
1993-01-01
These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs
International Nuclear Information System (INIS)
Hartle, J.B.
1985-01-01
Simplicial approximation and the ideas associated with the Regge calculus provide a concrete way of implementing a sum over histories formulation of quantum gravity. A simplicial geometry is made up of flat simplices joined together in a prescribed way together with an assignment of lengths to their edges. A sum over simplicial geometries is a sum over the different ways the simplices can be joined together with an integral over their edge lengths. The construction of the simplicial Euclidean action for this approach to quantum general relativity is illustrated. The recovery of the diffeomorphism group in the continuum limit is discussed. Some possible classes of simplicial complexes with which to define a sum over topologies are described. In two dimensional quantum gravity it is argued that a reasonable class is the class of pseudomanifolds
State sum models for quantum gravity
Barrett, John W.
2000-01-01
This paper reviews the construction of quantum field theory on a 4-dimensional spacetime by combinatorial methods, and discusses the recent developments in the direction of a combinatorial construction of quantum gravity.
Effective action in multidimensional quantum gravity and spontaneous compactification
International Nuclear Information System (INIS)
Bagrov, V.G.; Bukhbinder, I.L.; Odintsov, S.D.
1987-01-01
One-loop effective action (the Casimir energy) is obtained for a special model of multidimensional quantum gravity and several variants of the d-dimensional quantum R 2 gravity in the space M 4 xT d-4 , where M 4 is the Minkowski space and T d-4 is the (d-4)-dimensional torus. It is shown that the effective action for the conformal gravity and the R 2 gravity without cosmological and Einstein's terms lead to an instability of the classical compactification. A numerical calculation reveals that the effective action for the five-dimensional R 2 gravity with the cosmological term is compatible with a self-consistent spontaneous compactification. The one-loop effective action is also obtained for the five dimensional Einstein gravity with the antisymmetrical torsion in the space M 4 xS 1 , where S 1 is the one-dimensional sphere
Effective action in multidimensional quantum gravity, and spontaneous compactification
International Nuclear Information System (INIS)
Bagrov, V.G.; Bukhbinder, I.L.; Odintsov, S.D.
1987-01-01
The one-loop effective action (Casimir energy) is obtained for a special form of model of multidimensional quantum gravity and for several variants of d-dimensional quantum R 2 -gravity on the space M 4 x T/sub d//sub -4/, where M 4 is Minkowski space and T/sub d//sub -4/ is the (d-4)-dimensional torus. It is shown that the effective action of the model of multidimensional quantum gravity and R 2 -gravity without the cosmological term and Einstein term leads to instability of the classical compactification. By a numerical calculation it is demonstrated that the effective action of five-dimensional R 2 -gravity with the cosmological term admits a self-consistent spontaneous compactification. The one-loop effective action is also found for five-dimensional Einstein gravity with antisymmetric torsion on the space M 4 x S 1 (S 1 is the one-dimensional sphere)
Gravity localization in non-minimally coupled scalar thick braneworlds with a Gauss-Bonnet term
International Nuclear Information System (INIS)
Malagon-Morejon, D; Quiros, I; Herrera-Aguilar, A
2011-01-01
We consider a warped five-dimensional thick braneworld with a four-dimensional Poincare invariant space-time in the framework of scalar matter non-minimally coupled to gravity plus a Gauss-Bonnet term in the bulk. Scalar field and higher curvature corrections to the background equations as well as the perturbed equations are shown. A relationship between 4-dimensional and 5-dimensional Planck masses is studied in general terms. By imposing finiteness of the 4-dimensional Planck mass and regularity of the geometry, the localization properties of the tensor modes of the first order perturbed geometry are analized for an important class of solutions motivated by models with scalar fields which are minimally coupled to gravity. In order to study the gravity localization properties for this model, the normalizability condition for the lowest level of the tensor fluctuations is analized. We see that for the class of solutions examined, gravity in 4 dimensions is recovered if the curvature invariants are regular and Planck masses are finite.
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
F.C. Gruau; J.T. Tromp (John)
1999-01-01
textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on
Higher spin realization of the DS/CFT correspondence
International Nuclear Information System (INIS)
Anninos, Dionysios; Hartman, Thomas; Strominger, Andrew
2017-01-01
We conjecture that Vasiliev’s theory of higher spin gravity in four-dimensional de Sitter space (dS 4 ) is holographically dual to a three-dimensional conformal field theory (CFT 3 ) living on the spacelike boundary of dS 4 at future timelike infinity. The CFT 3 is the Euclidean Sp ( N ) vector model with anticommuting scalars. The free CFT 3 flows under a double-trace deformation to an interacting CFT 3 in the IR. We argue that both CFTs are dual to Vasiliev dS 4 gravity but with different future boundary conditions on the bulk scalar field. Our analysis rests heavily on analytic continuations of bulk and boundary correlators in the proposed duality relating the O ( N ) model with Vasiliev gravity in AdS 4 . (paper)
International Nuclear Information System (INIS)
Nariai, Hidekazu; Ishihara, Hideki.
1983-01-01
Various geometrical properties of Nariai's less-familiar solution of the vacuum Einstein equations R sub( mu nu ) = lambda g sub( mu nu ) is f irst summarized in comparison with de Sitter's well-known solution. Next an extension of both solutions is performed in a six-dimensional space on the supposition that such an extension will in future become useful to elucidate more closely the creation of particles in an inflationary stage of the big-bang universe. For preparation, the behavior of a massive scalar field in the extended space-time is studied in a classical level. (author)
International Nuclear Information System (INIS)
Isham, C.
1989-01-01
Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise
2014-07-01
The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.
On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field
Energy Technology Data Exchange (ETDEWEB)
Nilsson, Bengt E.W. [Fundamental Physics, Chalmers University of Technology,SE-412 96 Göteborg (Sweden)
2016-08-24
We propose field equations for the conformal higher spin system in three dimensions coupled to a conformal scalar field with a sixth order potential. Both the higher spin equation and the unfolded equation for the scalar field have source terms and are based on a conformal higher spin algebra which we treat as an expansion in multi-commutators. Explicit expressions for the source terms are suggested and subjected to some simple tests. We also discuss a cascading relation between the Chern-Simons action for the higher spin gauge theory and an action containing a term for each spin that generalizes the spin 2 Chern-Simons action in terms of the spin connection expressed in terms of the frame field. This cascading property is demonstrated in the free theory for spin 3 but should work also in the complete higher spin theory.
International Nuclear Information System (INIS)
Ambjoern, J.; Bellini, A.; Johnston, D.
1990-10-01
It is clear from both the non-perturbative and perturbative approaches to two-dimensional quantum gravity that a new strong coupling regime is setting in at d=1, independent of the genus of the worldsheet being considered. It has been suggested that a Kosterlitz-Thouless (KT) phase transition in the Liouville theory is the cause of this behaviour. However, it has recently been pointed out that the XY model, which displays a KT transition on the plane and the sphere, is always in the strong coupling, disordered phase on a surface of constant negative curvature. A higher genus worldsheet can be represented as a fundamental region on just such a surface, which might seem to suggest that the KT picture predicts a strong coupling region for arbitrary d, contradicting the known results. We resolve the apparent paradox. (orig.)
Active Response Gravity Offload and Method
Dungan, Larry K. (Inventor); Valle, Paul S. (Inventor); Bankieris, Derek R. (Inventor); Lieberman, Asher P. (Inventor); Redden, Lee (Inventor); Shy, Cecil (Inventor)
2015-01-01
A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.
International Nuclear Information System (INIS)
Gerbert, P.S.
1989-01-01
A review of 2+1-dimensional gravity, and recent results concerning the quantum scattering of Klein-Gordon and Dirac test particles in background of point sources with and without spin are presented. The classical theory and general remarks of 2+1 dimensional gravity are reviewed. The space-time in presence of point sources is described. The classical scattering and applications to (Spinning) cosmic strings are discussed. The quantum theory is considered analysing the two body scattering problem. The scattering of spinless particles is discussed including spin-effects. Some classifying remarks about three-dimensional analogue of hte Weyl tensor and Chern-Simons theories of gravitation are also presented. (M.C.K.)
Is nonrelativistic gravity possible?
International Nuclear Information System (INIS)
Kocharyan, A. A.
2009-01-01
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.
Euclidean and Lorentzian Quantum Gravity – Lessons from Two Dimensions
Ambjørn, J.; Loll, R.; Nielsen, J. L.; Rolf, J.
1998-01-01
No theory of four-dimensional quantum gravity exists as yet. In this situation the two-dimensional theory, which can be analyzed by conventional field-theoretical methods, can serve as a toy model for studying some aspects of quantum gravity. It represents one of the rare settings in a
International Nuclear Information System (INIS)
Spinelly, J.; Mello, E.R. Bezerra de
2008-01-01
In this paper we investigate the vacuum polarization effects associated with quantum fermionic charged fields in a generalized (d+1)-dimensional cosmic string space-times considering the presence of a magnetic flux along the string. In order to develop this analysis we calculate a general expression for the respective Green function, valid for several different values of d, which is expressed in terms of a bispinor associated with the square of the Dirac operator. Adopting this result, we explicitly calculate the renormalized vacuum expectation values of the energy-momentum tensors, (T A B ) Ren. , associated with massless fields. Moreover, for specific values of the parameters which codify the cosmic string and the fractional part of the ratio of the magnetic flux by the quantum one, we were able to present in closed forms the bispinor and the respective Green function for massive fields.
Extension of loop quantum gravity to f(R) theories.
Zhang, Xiangdong; Ma, Yongge
2011-04-29
The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.
Acoustic-gravity nonlinear structures
Directory of Open Access Journals (Sweden)
D. Jovanović
2002-01-01
Full Text Available A catalogue of nonlinear vortex structures associated with acoustic-gravity perturbations in the Earth's atmosphere is presented. Besides the previously known Kelvin-Stewart cat's eyes, dipolar and tripolar structures, new solutions having the form of a row of counter-rotating vortices, and several weakly two-dimensional vortex chains are given. The existence conditions for these nonlinear structures are discussed with respect to the presence of inhomogeneities of the shear flows. The mode-coupling mechanism for the nonlinear generation of shear flows in the presence of linearly unstable acoustic-gravity waves, possibly also leading to intermittency and chaos, is presented.
Ricci cubic gravity in d dimensions, gravitons and SAdS/Lifshitz black holes
Energy Technology Data Exchange (ETDEWEB)
Ghodsi, Ahmad; Najafi, Farzaneh [Ferdowsi University of Mashhad, Department of Physics, Mashhad (Iran, Islamic Republic of)
2017-08-15
A special class of higher curvature theories of gravity, Ricci cubic gravity (RCG), in general d dimensional space-time has been investigated in this paper. We have used two different approaches, the linearized equations of motion and the auxiliary field formalism to study the massive and massless graviton propagating modes of the AdS background. Using the auxiliary field formalism, we have found the renormalized boundary stress tensor to compute the mass of the Schwarzschild-AdS and Lifshitz black holes in RCG theory. (orig.)
International Nuclear Information System (INIS)
Schupp, P.
2007-01-01
Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)
Directory of Open Access Journals (Sweden)
Farhad A. Namin
2016-08-01
Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.
International Nuclear Information System (INIS)
Hooft, G.
2012-01-01
The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)
Cosmic string solution in a Born-Infeld type theory of gravity
International Nuclear Information System (INIS)
Rocha, W.J. da; Guimaraes, M.E.X.
2009-01-01
Full text. Advances in the formal structure of string theory point to the emergence, and necessity, of a scalar-tensorial theory of gravity. It seems that, at least at high energy scales, the Einstein's theory is not enough to explain the gravitational phenomena. In other words, the existence of a scalar (gravitational) field acting as a mediator of the gravitational interaction together with the usual purely rank-2 tensorial field is, indeed, a natural prediction of unification models as supergravity, superstrings and M-theory. This type of modified gravitation was first introduced in a different context in the 60's in order to incorporate the Mach's principle into relativity, but nowadays it acquired different sense in cosmology and gravity theories. Although such unification theories are the most acceptable, they all exist in higher dimensional spaces. The compactification from these higher dimensions to the 4-dimensional physics is not unique and there exist many effective theories of gravity which come from the unification process. Each of them must, of course, satisfy some predictions. Here, in this paper, we will deal with one of them. The so-called NDL theory. One important assumption in General Relativity is that all field interact in the same way with gravity. This is the so called Strong Equivalence Principle (SEP). It is well known, with good accuracy, that this is true when we concern with matter to matter interaction, i.e, the Weak Equivalence Principle(WEP) is tested. But, until now, there is no direct observational confirmation of this affirmation to the gravity to gravity interaction. In an extension of the field theoretical description of General Relativity constructed by is used to propose an alternative field theory of gravity. In this theory gravitons propagate in a different spacetime. The velocity of propagation of the gravitational waves in this theory does not coincide with the General Relativity predictions. (author)
National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...
National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...
Energy Technology Data Exchange (ETDEWEB)
Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)
2017-03-13
The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.
Gravity studies of the Hanford Reservation, Richland, Washington
International Nuclear Information System (INIS)
Richard, B.H.; Lillie, J.T.; Deju, R.A.
1977-07-01
Gravity studies over Hanford added to the understanding of the geology of the Pasco Basin. The Bouguer anomaly indicated the basin is the site of the greatest thickness of Columbia River Basalt. The residual gravity anomaly delineated the major anticlinal and synclinal structures under Hanford. Three-dimensional gravity models characterized these buried folds by indicating their shape and relief. Finally, two-dimensional gravity models further delineated the shape of these buried folds and suggested locations where ancestral rivers may have breached the Umtanum anticlinal folds within the basin. Analysis of the three-dimensional model studies indicates that one-fifth of the original data would have delineated the buried structures. Two- or three-body gravity models produced better results than a poly-body model. Gravity was found to be an effective and rapid reconnaissance method of studying buried bedrock structures
Matter scattering in quadratic gravity and unitarity
Abe, Yugo; Inami, Takeo; Izumi, Keisuke; Kitamura, Tomotaka
2018-03-01
We investigate the ultraviolet (UV) behavior of two-scalar elastic scattering with graviton exchanges in higher-curvature gravity theory. In Einstein gravity, matter scattering is shown not to satisfy the unitarity bound at tree level at high energy. Among some of the possible directions for the UV completion of Einstein gravity, such as string theory, modified gravity, and inclusion of high-mass/high-spin states, we take R_{μν}^2 gravity coupled to matter. We show that matter scattering with graviton interactions satisfies the unitarity bound at high energy, even with negative norm states due to the higher-order derivatives of metric components. The difference in the unitarity property of these two gravity theories is probably connected to that in another UV property, namely, the renormalizability property of the two.
Study of three-dimensional PET and MR image registration based on higher-order mutual information
International Nuclear Information System (INIS)
Ren Haiping; Chen Shengzu; Wu Wenkai; Yang Hu
2002-01-01
Mutual information has currently been one of the most intensively researched measures. It has been proven to be accurate and effective registration measure. Despite the general promising results, mutual information sometimes might lead to misregistration because of neglecting spatial information and treating intensity variations with undue sensitivity. An extension of mutual information framework was proposed in which higher-order spatial information regarding image structures was incorporated into the registration processing of PET and MR. The second-order estimate of mutual information algorithm was applied to the registration of seven patients. Evaluation from Vanderbilt University and authors' visual inspection showed that sub-voxel accuracy and robust results were achieved in all cases with second-order mutual information as the similarity measure and with Powell's multidimensional direction set method as optimization strategy
Ryttov, Thomas A
2007-01-01
We present the conformal windows of SU(N) supersymmetric and nonsupersymmetric gauge theories with vector-like matter transforming according to higher irreducible representations of the gauge group. We determine the fraction of asymptotically free theories expected to develop an infrared fixed point and find that it does not depend on the specific choice of the representation. This result is exact in supersymmetric theories while it is an approximate one in the nonsupersymmetric case. The analysis allows us to size the unparticle world related to the existence of underlying gauge theories developing an infrared stable fixed point. We find that exactly 50 % of the asymptotically free theories can develop an infrared fixed point while for the nonsupersymmetric theories it is circa 25 %. When considering multiple representations, only for the nonsupersymmetric case, the conformal regions quickly dominate over the nonconformal ones. For four representations, 70 % of the asymptotically free space is filled by the ...
Energy Technology Data Exchange (ETDEWEB)
Hirotani, Kouichi [Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei, Taiwan (China)
2015-01-10
We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.
Self Completeness of Einstein Gravity
Dvali, Gia
2010-01-01
We argue, that in Einsteinian gravity the Planck length is the shortest length of nature, and any attempt of resolving trans-Planckian physics bounces back to macroscopic distances due to black hole formation. In Einstein gravity trans-Planckian propagating quantum degrees of freedom cannot exist, instead they are equivalent to the classical black holes that are fully described by lighter infra-red degrees of freedom and give exponentially-soft contribution into the virtual processes. Based on this property we argue that pure-Einstein (super)gravity and its high-dimensional generalizations are self-complete in deep-UV, but not in standard Wilsonian sense. We suggest that certain strong-coupling limit of string theory is built-in in pure Einstein gravity, whereas the role of weakly-coupled string theory limit is to consistently couple gravity to other particle species, with their number being set by the inverse string coupling. We also discuss some speculative ideas generalizing the notion of non-Wilsonian sel...
Physical renormalization schemes and asymptotic safety in quantum gravity
Falls, Kevin
2017-12-01
The methods of the renormalization group and the ɛ -expansion are applied to quantum gravity revealing the existence of an asymptotically safe fixed point in spacetime dimensions higher than two. To facilitate this, physical renormalization schemes are exploited where the renormalization group flow equations take a form which is independent of the parameterisation of the physical degrees of freedom (i.e. the gauge fixing condition and the choice of field variables). Instead the flow equation depends on the anomalous dimensions of reference observables. In the presence of spacetime boundaries we find that the required balance between the Einstein-Hilbert action and Gibbons-Hawking-York boundary term is preserved by the beta functions. Exploiting the ɛ -expansion near two dimensions we consider Einstein gravity coupled to matter. Scheme independence is generically obscured by the loop-expansion due to breaking of two-dimensional Weyl invariance. In schemes which preserve two-dimensional Weyl invariance we avoid the loop expansion and find a unique ultraviolet (UV) fixed point. At this fixed point the anomalous dimensions are large and one must resum all loop orders to obtain the critical exponents. Performing the resummation a set of universal scaling dimensions are found. These scaling dimensions show that only a finite number of matter interactions are relevant. This is a strong indication that quantum gravity is renormalizable.
Newtonian gravity in loop quantum gravity
Smolin, Lee
2010-01-01
We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.
A new vacuum for loop quantum gravity
International Nuclear Information System (INIS)
Dittrich, Bianca; Geiller, Marc
2015-01-01
We construct a new vacuum and representation for loop quantum gravity. Because the new vacuum is based on BF theory, it is physical for (2+1)-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy–flux algebra that is cylindrically consistent with respect to the notion of refinement by time evolution suggested in Dittrich and Steinhaus (2013 arXiv:1311.7565). This supports the proposal for a construction of the physical vacuum made in Dittrich and Steinhaus (2013 arXiv:1311.7565) and Dittrich (2012 New J. Phys. 14 123004), and for (3+1)-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity. (fast track communication)
International Nuclear Information System (INIS)
Ryttov, Thomas A.; Sannino, Francesco
2007-01-01
We present the conformal windows of SU(N) supersymmetric and nonsupersymmetric gauge theories with vectorlike matter transforming according to higher irreducible representations of the gauge group. We determine the fraction of asymptotically free theories expected to develop an infrared fixed point and find that it does not depend on the specific choice of the representation. This result is exact in supersymmetric theories while it is an approximate one in the nonsupersymmetric case. The analysis allows us to size the unparticle world related to the existence of underlying gauge theories developing an infrared stable fixed point. We find that exactly 50% of the asymptotically free theories can develop an infrared fixed point while for the nonsupersymmetric theories it is circa 25%. When considering multiple representations, only for the nonsupersymmetric case, the conformal regions quickly dominate over the nonconformal ones. For four representations, 70% of the asymptotically free space is filled by the conformal region. According to our theoretical landscape survey the unparticle physics world occupies a sizable amount of the particle world, at least in theory space, and before mixing it (at the operator level) with the nonconformal one
A Immirzi-like parameter for 3D quantum gravity
International Nuclear Information System (INIS)
Bonzom, Valentin; Livine, Etera R
2008-01-01
We study an Immirzi-like ambiguity in three-dimensional quantum gravity. It shares some features with the Immirzi parameter of four-dimensional loop quantum gravity: it does not affect the equations of motion, but modifies the Poisson brackets and the constraint algebra at the canonical level. We focus on the length operator and show how to define it through non-commuting fluxes. We compute its spectrum and show the effect of this Immirzi-like ambiguity. Finally, we extend these considerations to 4D gravity and show how the different topological modifications of the action affect the canonical structure of loop quantum gravity
Gauge formulation for higher order gravity
International Nuclear Information System (INIS)
Cuzinatto, R.R.; Medeiros, L.G.; Melo, C.A.M. de; Pompeia, P.J.
2008-01-01
This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained that includes derivatives of the curvature. We analyze the form of the second field strength, G=∂F+fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of F and quadratic contractions of G are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his generalized electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behavior at short distances as well as a meso-large distance modification. (orig.)
The group manifold approach to unified gravity
International Nuclear Information System (INIS)
Regge, T.
1984-01-01
These lectures start with a synopsis of historical results in the construction of unified theories of gravity. The author keeps some mathematical rigour throughout the lectures. He gives a provisional description of supermanifolds and a set of formal rules intended to manipulate superforms or supermanifolds. Super Lie groups are discussed as well as the dimensional reduction of gravity theories, the Kaluza-Klein theory. A formal introduction of supersymmetry is given. (Auth.)
Alishahiha, Mohsen; Naseh, Ali; Shirzad, Ahmad
2014-12-03
We study linearized equations of motion of the newly proposed three dimensional gravity, known as minimal massive gravity, using its metric formulation. We observe that the resultant linearized equations are exactly the same as that of TMG by making use of a redefinition of the parameters of the model. In particular the model admits logarithmic modes at the critical points. We also study several vacuum solutions of the model, specially at a certain limit where the contribution of Chern-Simons term vanishes.
International Nuclear Information System (INIS)
Jones, K.R.W.
1995-01-01
We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs
And what if gravity is intrinsically quantic ?
Ziaeepour, Houri
2009-01-01
Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, sting theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and former a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum ...
Is quantum gravity unpredictable
International Nuclear Information System (INIS)
Gross, D.J.
1984-01-01
An investigation of Hawking's proposal that the inclusion of topologically non-trivial manifolds in the functional integral of quantum gravity leads to the loss of quantum coherence is carried out. We discuss some of the problems associated with Hawking's Dollar-matrix theory, including the breakdown of the connection between symmetry principles and conservation laws. It is proposed to use Kaluza-Klein theories to study this issue, since these theories contain well-defined euclidean instantons. These can be used to perform explicit semiclassical calculations of the effects of space-time foam. A general method is presented for constructing Kaluza-Klein instantons based on solutions of ordinary Yang-Mills theory. It is argued that none of these will lead to a breakdown of quantum mechanics. The physical effects of space-time foam are discussed in some detail using explicit instantons of a four-dimensional Kaluza-Klein theory. (orig.)
Asymptotic behavior of Maxwell fields in higher dimensions
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello
2014-01-01
Roč. 90, č. 12 (2014), s. 124020 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.124020
Asymptotic behaviour of the Weyl tensor in higher dimensions
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravdová, Alena
2014-01-01
Roč. 90, č. 10 (2014), s. 104011 ISSN 1550-7998 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.104011
Asymptotic behavior of Maxwell fields in higher dimensions
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello
2014-01-01
Roč. 90, č. 12 (2014), s. 124020 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals. aps .org/prd/abstract/10.1103/PhysRevD.90.124020
Asymptotic behaviour of the Weyl tensor in higher dimensions
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravdová, Alena
2014-01-01
Roč. 90, č. 10 (2014), s. 104011 ISSN 1550-7998 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals. aps .org/prd/abstract/10.1103/PhysRevD.90.104011
Algorithmic Complexity in Cosmology and Quantum Gravity
Directory of Open Access Journals (Sweden)
D. Singleton
2002-01-01
Full Text Available Abstract: In this article we use the idea of algorithmic complexity (AC to study various cosmological scenarios, and as a means of quantizing the ravitational interaction. We look at 5D and 7D cosmological models where the Universe begins as a higher dimensional Planck size spacetime which fluctuates between Euclidean and Lorentzian signatures. These fluctuations are overned by the AC of the two different signatures. At some point a transition to a 4D Lorentzian signature Universe occurs, with the extra dimensions becoming "frozen" or non-dynamical. We also apply the idea of algorithmic complexity to study composite wormholes, the entropy of black holes, and the path integral for quantum gravity. Some of the physical consequences of the idea presented here are:the birth of the Universe with a fluctuating metric signature; the transition from a fluctuating metric signature to Lorentzian one; "frozen" extra dimensions as a consequence of this transition; quantum handles in the spacetime foam as regions with multidimensional gravity.