WorldWideScience

Sample records for higher coral populations

  1. Chemotaxis by natural populations of coral reef bacteria.

    Science.gov (United States)

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont.

  2. Restoration of coral populations in light of genetic diversity estimates

    Science.gov (United States)

    Shearer, T. L.; Porto, I.; Zubillaga, A. L.

    2009-09-01

    Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using microsatellites. The mean number of alleles per locus across 72 surveyed scleractinian coral populations was 8.27 (±0.75 SE). In addition, population genetic datasets from four species ( Acropora palmata, Montastraea cavernosa, Montastraea faveolata and Pocillopora damicornis) were analyzed to assess the minimum number of donor colonies required to retain specific proportions of the genetic diversity of the population. Rarefaction analysis of the population genetic datasets indicated that using 10 donor colonies randomly sampled from the original population would retain >50% of the allelic diversity, while 35 colonies would retain >90% of the original diversity. In general, scleractinian coral populations are genetically diverse and restoration methods utilizing few clonal genotypes to re-populate a reef will diminish the genetic integrity of the population. Coral restoration strategies using 10-35 randomly selected local donor colonies will retain at least 50-90% of the genetic diversity of the original population.

  3. Static measurements of the resilience of Caribbean coral populations

    Directory of Open Access Journals (Sweden)

    Andrew W. Bruckner

    2012-03-01

    Full Text Available The progressive downward shift in dominance of key reef building corals, coupled with dramatic increases in macroalgae and other nuisance species, fields of unstable coral rubble ,loss of structural relief, and declines of major functional groups of fishes is a common occurrence throughout the Caribbean today. The incorporation of resilience principles into management is a proposed strategy to reverse this trend and ensure proper functioning of coral reefs under predicted scenarios of climate change, yet ecosystem processes and functions that underlie reef resilience are not fully understood. Rapid assessments using the Atlantic and Gulf Rapid Reef Assessment (AGRRA and the IUCN Resilience Assessment protocol can provide baseline information on reef resilience. A key aspect of these surveys focuses on coral population dynamics, including measures of coral cover, size, partial and whole-colony mortality, condition, and recruitment. One challenge is that these represent static measures involving a single assessment. Without following individual corals over time, it is difficult to determine rates of survival and growth of recruits and adult colonies, and differentiation of juveniles from small remnants of older colonies may not be possible, especially when macroalgal cover is high. To address this limitation, corals assessed in Bonaire in July 2010 were subdivided into two categories: 1 colonies on the reef substrate; and 2 colonies colonizing dead corals and exposed skeletal surfaces of living corals. Coral populations in Bonaire exhibited many features indicative of high resilience, including high coral cover (often 30-50%, high levels of recruitment, and a large number of corals that settled on dead corals and survived to larger size-classes. Overall, the skeletal surfaces of 12 species of corals were colonized by 16 species of corals, with up to 12 settlers on each colony, most (67% on M. annularis (complex skeletons. Nevertheless, completely

  4. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    Science.gov (United States)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  5. Coral population trajectories, increased disturbance and management intervention: A sensitivity analysis

    KAUST Repository

    Riegl, Bernhard; Berumen, Michael L.; Bruckner, Andrew

    2013-01-01

    Coral reefs distant from human population were sampled in the Red Sea and one-third showed degradation by predator outbreaks (crown-of-thorns-starfish=COTS observed in all regions in all years) or bleaching (1998, 2010). Models were built to assess future trajectories. They assumed variable coral types (slow/fast growing), disturbance frequencies (5,10,20years), mortality (equal or not), and connectivity (un/connected to un/disturbed community). Known disturbances were used to parameterize models. Present and future disturbances were estimated from remote-sensing chlorophyll and temperature data. Simulations and sensitivity analysis suggest community resilience at >20-year disturbance frequency, but degradation at higher frequency. Trajectories move from fast-grower to slow-grower dominance at intermediate disturbance frequency, then again to fast-grower dominance. A similar succession was observed in the field: Acropora to Porites to Stylophora/Pocillopora dominance on shallow reefs, and a transition from large poritids to small faviids on deep reefs. Synthesis and application: Even distant reefs are impacted by global changes. COTS impacts and bleaching were key driver of coral degradation, coral population decline could be reduced if these outbreaks and bleaching susceptibility were managed by maintaining water quality and by other interventions. Just leaving reefs alone, seems no longer a satisfactory option. 2013 The Authors. Ecology and Evolution.

  6. Coral population trajectories, increased disturbance and management intervention: A sensitivity analysis

    KAUST Repository

    Riegl, Bernhard

    2013-03-07

    Coral reefs distant from human population were sampled in the Red Sea and one-third showed degradation by predator outbreaks (crown-of-thorns-starfish=COTS observed in all regions in all years) or bleaching (1998, 2010). Models were built to assess future trajectories. They assumed variable coral types (slow/fast growing), disturbance frequencies (5,10,20years), mortality (equal or not), and connectivity (un/connected to un/disturbed community). Known disturbances were used to parameterize models. Present and future disturbances were estimated from remote-sensing chlorophyll and temperature data. Simulations and sensitivity analysis suggest community resilience at >20-year disturbance frequency, but degradation at higher frequency. Trajectories move from fast-grower to slow-grower dominance at intermediate disturbance frequency, then again to fast-grower dominance. A similar succession was observed in the field: Acropora to Porites to Stylophora/Pocillopora dominance on shallow reefs, and a transition from large poritids to small faviids on deep reefs. Synthesis and application: Even distant reefs are impacted by global changes. COTS impacts and bleaching were key driver of coral degradation, coral population decline could be reduced if these outbreaks and bleaching susceptibility were managed by maintaining water quality and by other interventions. Just leaving reefs alone, seems no longer a satisfactory option. 2013 The Authors. Ecology and Evolution.

  7. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    Science.gov (United States)

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  8. Assessment of host-associated genetic differentiation among phenotypically divergent populations of a coral-eating gastropod across the Caribbean.

    Directory of Open Access Journals (Sweden)

    Lyza Johnston

    Full Text Available Host-associated adaptation is emerging as a potential driver of population differentiation and speciation for marine organisms with major implications for ecosystem structure and function. Coralliophila abbreviata are corallivorous gastropods that live and feed on most of the reef-building corals in the tropical western Atlantic and Caribbean. Populations of C. abbreviata associated with the threatened acroporid corals, Acropora palmata and A. cervicornis, display different behavioral, morphological, demographic, and life-history characteristics than those that inhabit other coral host taxa, indicating that host-specific selective forces may be acting on C. abbreviata. Here, we used newly developed polymorphic microsatellite loci and mitochondrial cytochrome b sequence data to assess the population genetic structure, connectivity, and demographic history of C. abbreviata populations from three coral host taxa (A. palmata, Montastraea spp., Mycetophyllia spp. and six geographic locations across the Caribbean. Analysis of molecular variance provided some evidence of weak and possibly geographically variable host-associated differentiation but no evidence of differentiation among sampling locations or major oceanographic regions, suggesting high gene flow across the Caribbean. Phylogenetic network and bayesian clustering analyses supported a hypothesis of a single panmictic population as individuals failed to cluster by host or sampling location. Demographic analyses consistently supported a scenario of population expansion during the Pleistocene, a time of major carbonate reef development in the region. Although further study is needed to fully elucidate the interactive effects of host-associated selection and high gene flow in this system, our results have implications for local and regional community interactions and impact of predation on declining coral populations.

  9. Assessment of host-associated genetic differentiation among phenotypically divergent populations of a coral-eating gastropod across the Caribbean.

    Science.gov (United States)

    Johnston, Lyza; Miller, Margaret W; Baums, Iliana B

    2012-01-01

    Host-associated adaptation is emerging as a potential driver of population differentiation and speciation for marine organisms with major implications for ecosystem structure and function. Coralliophila abbreviata are corallivorous gastropods that live and feed on most of the reef-building corals in the tropical western Atlantic and Caribbean. Populations of C. abbreviata associated with the threatened acroporid corals, Acropora palmata and A. cervicornis, display different behavioral, morphological, demographic, and life-history characteristics than those that inhabit other coral host taxa, indicating that host-specific selective forces may be acting on C. abbreviata. Here, we used newly developed polymorphic microsatellite loci and mitochondrial cytochrome b sequence data to assess the population genetic structure, connectivity, and demographic history of C. abbreviata populations from three coral host taxa (A. palmata, Montastraea spp., Mycetophyllia spp.) and six geographic locations across the Caribbean. Analysis of molecular variance provided some evidence of weak and possibly geographically variable host-associated differentiation but no evidence of differentiation among sampling locations or major oceanographic regions, suggesting high gene flow across the Caribbean. Phylogenetic network and bayesian clustering analyses supported a hypothesis of a single panmictic population as individuals failed to cluster by host or sampling location. Demographic analyses consistently supported a scenario of population expansion during the Pleistocene, a time of major carbonate reef development in the region. Although further study is needed to fully elucidate the interactive effects of host-associated selection and high gene flow in this system, our results have implications for local and regional community interactions and impact of predation on declining coral populations.

  10. Genomic variation among populations of threatened coral: Acropora cervicornis.

    Science.gov (United States)

    Drury, C; Dale, K E; Panlilio, J M; Miller, S V; Lirman, D; Larson, E A; Bartels, E; Crawford, D L; Oleksiak, M F

    2016-04-13

    Acropora cervicornis, a threatened, keystone reef-building coral has undergone severe declines (>90 %) throughout the Caribbean. These declines could reduce genetic variation and thus hamper the species' ability to adapt. Active restoration strategies are a common conservation approach to mitigate species' declines and require genetic data on surviving populations to efficiently respond to declines while maintaining the genetic diversity needed to adapt to changing conditions. To evaluate active restoration strategies for the staghorn coral, the genetic diversity of A. cervicornis within and among populations was assessed in 77 individuals collected from 68 locations along the Florida Reef Tract (FRT) and in the Dominican Republic. Genotyping by Sequencing (GBS) identified 4,764 single nucleotide polymorphisms (SNPs). Pairwise nucleotide differences (π) within a population are large (~37 %) and similar to π across all individuals. This high level of genetic diversity along the FRT is similar to the diversity within a small, isolated reef. Much of the genetic diversity (>90 %) exists within a population, yet GBS analysis shows significant variation along the FRT, including 300 SNPs with significant FST values and significant divergence relative to distance. There are also significant differences in SNP allele frequencies over small spatial scales, exemplified by the large FST values among corals collected within Miami-Dade county. Large standing diversity was found within each population even after recent declines in abundance, including significant, potentially adaptive divergence over short distances. The data here inform conservation and management actions by uncovering population structure and high levels of diversity maintained within coral collections among sites previously shown to have little genetic divergence. More broadly, this approach demonstrates the power of GBS to resolve differences among individuals and identify subtle genetic structure

  11. Static measurements of the resilience of Caribbean coral populations

    Directory of Open Access Journals (Sweden)

    Andrew W. Bruckner

    2012-03-01

    Full Text Available The progressive downward shift in dominance of key reef building corals, coupled with dramatic increases in macroalgae and other nuisance species, fields of unstable coral rubble ,loss of structural relief, and declines of major functional groups of fishes is a common occurrence throughout the Caribbean today. The incorporation of resilience principles into management is a proposed strategy to reverse this trend and ensure proper functioning of coral reefs under predicted scenarios of climate change, yet ecosystem processes and functions that underlie reef resilience are not fully understood. Rapid assessments using the Atlantic and Gulf Rapid Reef Assessment (AGRRA and the IUCN Resilience Assessment protocol can provide baseline information on reef resilience. A key aspect of these surveys focuses on coral population dynamics, including measures of coral cover, size, partial and whole-colony mortality, condition, and recruitment. One challenge is that these represent static measures involving a single assessment. Without following individual corals over time, it is difficult to determine rates of survival and growth of recruits and adult colonies, and differentiation of juveniles from small remnants of older colonies may not be possible, especially when macroalgal cover is high. To address this limitation, corals assessed in Bonaire in July 2010 were subdivided into two categories: 1 colonies on the reef substrate; and 2 colonies colonizing dead corals and exposed skeletal surfaces of living corals. Coral populations in Bonaire exhibited many features indicative of high resilience, including high coral cover (often 30-50%, high levels of recruitment, and a large number of corals that settled on dead corals and survived to larger size-classes. Overall, the skeletal surfaces of 12 species of corals were colonized by 16 species of corals, with up to 12 settlers on each colony, most (67% on M. annularis (complex skeletons. Nevertheless, completely

  12. Present limits to heat-adaptability in corals and population-level responses to climate extremes.

    Directory of Open Access Journals (Sweden)

    Bernhard M Riegl

    Full Text Available Climate change scenarios suggest an increase in tropical ocean temperature by 1-3°C by 2099, potentially killing many coral reefs. But Arabian/Persian Gulf corals already exist in this future thermal environment predicted for most tropical reefs and survived severe bleaching in 2010, one of the hottest years on record. Exposure to 33-35°C was on average twice as long as in non-bleaching years. Gulf corals bleached after exposure to temperatures above 34°C for a total of 8 weeks of which 3 weeks were above 35°C. This is more heat than any other corals can survive, providing an insight into the present limits of holobiont adaptation. We show that average temperatures as well as heat-waves in the Gulf have been increasing, that coral population levels will fluctuate strongly, and reef-building capability will be compromised. This, in combination with ocean acidification and significant local threats posed by rampant coastal development puts even these most heat-adapted corals at risk. WWF considers the Gulf ecoregion as "critically endangered". We argue here that Gulf corals should be considered for assisted migration to the tropical Indo-Pacific. This would have the double benefit of avoiding local extinction of the world's most heat-adapted holobionts while at the same time introducing their genetic information to populations naïve to such extremes, potentially assisting their survival. Thus, the heat-adaptation acquired by Gulf corals over 6 k, could benefit tropical Indo-Pacific corals who have <100 y until they will experience a similarly harsh climate. Population models suggest that the heat-adapted corals could become dominant on tropical reefs within ∼20 years.

  13. Is proximity to land-based sources of coral stressors an appropriate measure of risk to coral reefs? An example from the Florida Reef Tract.

    Science.gov (United States)

    Lirman, Diego; Fong, Peggy

    2007-06-01

    Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species

  14. Coral reef degradation is not correlated with local human population density

    Science.gov (United States)

    Bruno, John F.; Valdivia, Abel

    2016-07-01

    The global decline of reef-building corals is understood to be due to a combination of local and global stressors. However, many reef scientists assume that local factors predominate and that isolated reefs, far from human activities, are generally healthier and more resilient. Here we show that coral reef degradation is not correlated with human population density. This suggests that local factors such as fishing and pollution are having minimal effects or that their impacts are masked by global drivers such as ocean warming. Our results also suggest that the effects of local and global stressors are antagonistic, rather than synergistic as widely assumed. These findings indicate that local management alone cannot restore coral populations or increase the resilience of reefs to large-scale impacts. They also highlight the truly global reach of anthropogenic warming and the immediate need for drastic and sustained cuts in carbon emissions.

  15. Population genetic structure of coral reef species Plectorhinchus ...

    African Journals Online (AJOL)

    The population genetic structure and the dispersal ability of Plectorhinchus flavomaculatus from South China Sea were examined with a 464 bp segment of mtDNA control region. A total of 116 individuals were collected from 12 coral reefs in Xisha, Zhongsha and Nansha archipelagos and 22 haplotypes were obtained.

  16. Utilization of mucus from the coral Acropora palmata by the pathogen Serratia marcescens and by environmental and coral commensal bacteria.

    Science.gov (United States)

    Krediet, Cory J; Ritchie, Kim B; Cohen, Matthew; Lipp, Erin K; Sutherland, Kathryn Patterson; Teplitski, Max

    2009-06-01

    In recent years, diseases of corals caused by opportunistic pathogens have become widespread. How opportunistic pathogens establish on coral surfaces, interact with native microbiota, and cause disease is not yet clear. This study compared the utilization of coral mucus by coral-associated commensal bacteria ("Photobacterium mandapamensis" and Halomonas meridiana) and by opportunistic Serratia marcescens pathogens. S. marcescens PDL100 (a pathogen associated with white pox disease of Acroporid corals) grew to higher population densities on components of mucus from the host coral. In an in vitro coculture on mucus from Acropora palmata, S. marcescens PDL100 isolates outgrew coral isolates. The white pox pathogen did not differ from other bacteria in growth on mucus from a nonhost coral, Montastraea faveolata. The ability of S. marcescens to cause disease in acroporid corals may be due, at least in part, to the ability of strain PDL100 to build to higher population numbers within the mucus surface layer of its acroporid host. During growth on mucus from A. palmata, similar glycosidase activities were present in coral commensal bacteria, in S. marcescens PDL100, and in environmental and human isolates of S. marcescens. The temporal regulation of these activities during growth on mucus, however, was distinct in the isolates. During early stages of growth on mucus, enzymatic activities in S. marcescens PDL100 were most similar to those in coral commensals. After overnight incubation on mucus, enzymatic activities in a white pox pathogen were most similar to those in pathogenic Serratia strains isolated from human mucosal surfaces.

  17. Utilization of Mucus from the Coral Acropora palmata by the Pathogen Serratia marcescens and by Environmental and Coral Commensal Bacteria▿ †

    Science.gov (United States)

    Krediet, Cory J.; Ritchie, Kim B.; Cohen, Matthew; Lipp, Erin K.; Sutherland, Kathryn Patterson; Teplitski, Max

    2009-01-01

    In recent years, diseases of corals caused by opportunistic pathogens have become widespread. How opportunistic pathogens establish on coral surfaces, interact with native microbiota, and cause disease is not yet clear. This study compared the utilization of coral mucus by coral-associated commensal bacteria (“Photobacterium mandapamensis” and Halomonas meridiana) and by opportunistic Serratia marcescens pathogens. S. marcescens PDL100 (a pathogen associated with white pox disease of Acroporid corals) grew to higher population densities on components of mucus from the host coral. In an in vitro coculture on mucus from Acropora palmata, S. marcescens PDL100 isolates outgrew coral isolates. The white pox pathogen did not differ from other bacteria in growth on mucus from a nonhost coral, Montastraea faveolata. The ability of S. marcescens to cause disease in acroporid corals may be due, at least in part, to the ability of strain PDL100 to build to higher population numbers within the mucus surface layer of its acroporid host. During growth on mucus from A. palmata, similar glycosidase activities were present in coral commensal bacteria, in S. marcescens PDL100, and in environmental and human isolates of S. marcescens. The temporal regulation of these activities during growth on mucus, however, was distinct in the isolates. During early stages of growth on mucus, enzymatic activities in S. marcescens PDL100 were most similar to those in coral commensals. After overnight incubation on mucus, enzymatic activities in a white pox pathogen were most similar to those in pathogenic Serratia strains isolated from human mucosal surfaces. PMID:19395569

  18. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    Science.gov (United States)

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  19. Restoration of critically endangered elkhorn coral (Acropora palmata populations using larvae reared from wild-caught gametes

    Directory of Open Access Journals (Sweden)

    Valérie F. Chamberland

    2015-07-01

    Full Text Available Elkhorn coral (Acropora palmata populations provide important ecological functions on shallow Caribbean reefs, many of which were lost when a disease reduced their abundance by more than 95% beginning in the mid-1970s. Since then, a lack of significant recovery has prompted rehabilitation initiatives throughout the Caribbean. Here, we report the first successful outplanting and long-term survival of A. palmata settlers reared from gametes collected in the field. A. palmata larvae were settled on clay substrates (substrate units and either outplanted on the reef two weeks after settlement or kept in a land-based nursery. After 2.5 years, the survival rate of A. palmata settlers outplanted two weeks after settlement was 6.8 times higher (3.4% than that of settlers kept in a land-based nursery (0.5%. Furthermore, 32% of the substrate units on the reef still harbored one or more well-developed recruit compared to 3% for substrate units kept in the nursery. In addition to increasing survival, outplanting A. palmata settlers shortly after settlement reduced the costs to produce at least one 2.5-year-old A. palmata individual from $325 to $13 USD. Thus, this study not only highlights the first successful long-term rearing of this critically endangered coral species, but also shows that early outplanting of sexually reared coral settlers can be more cost-effective than the traditional approach of nursery rearing for restoration efforts aimed at rehabilitating coral populations.

  20. The differential effects of increasing frequency and magnitude of extreme events on coral populations.

    Science.gov (United States)

    Fabina, Nicholas S; Baskett, Marissa L; Gross, Kevin

    2015-09-01

    Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additionally explored how coral traits and competition with macroalgae mediate changes in bleaching regimes. Our results predict that severe bleaching events reduce coral persistence more than frequent bleaching. Corals with low adult mortality and high growth rates are successful when bleaching is mild, but bleaching resistance is necessary to persist when bleaching is severe, regardless of frequency. The existence of macroalgae-dominated stable states reduces coral persistence and changes the relative importance of coral traits. Building on previous studies, our results predict that management efforts may need to prioritize protection of "weaker" corals with high adult mortality when bleaching is mild, and protection of "stronger" corals with high bleaching resistance when bleaching is severe. In summary, future reef projections and conservation targets depend on both local bleaching regimes and biodiversity.

  1. Integrating physiological and biomechanical drivers of population growth over environmental gradients on coral reefs.

    Science.gov (United States)

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R

    2012-03-15

    Coral reefs exhibit marked spatial and temporal variability, and coral reef organisms exhibit trade-offs in functional traits that influence demographic performance under different combinations of abiotic environmental conditions. In many systems, trait trade-offs are modelled using an energy and/or nutrient allocation framework. However, on coral reefs, differences in biomechanical vulnerability have major demographic implications, and indeed are believed to play an essential role in mediating species coexistence because highly competitive growth forms are vulnerable to physical dislodgment events that occur with high frequency (e.g. annual summer storms). Therefore, an integrated energy allocation and biomechanics framework is required to understand the effect of physical environmental gradients on species' demographic performance. However, on coral reefs, as in most ecosystems, the effects of environmental conditions on organisms are measured in different currencies (e.g. lipid accumulation, survival and number of gametes), and thus the relative contributions of these effects to overall capacity for population growth are not readily apparent. A comprehensive assessment of links between the environment and the organism, including those mediated by biomechanical processes, must convert environmental effects on individual-level performance (e.g. survival, growth and reproduction) into a common currency that is relevant to the capacity to contribute to population growth. We outline such an approach by considering the population-level performance of scleractinian reef corals over a hydrodynamic gradient, with a focus on the integrating the biomechanical determinants of size-dependent coral colony dislodgment as a function of flow, with the effects of flow on photosynthetic energy acquisition and respiration.

  2. Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata.

    Science.gov (United States)

    Baums, Iliana B; Miller, Margaret W; Hellberg, Michael E

    2005-04-01

    The movements of larvae between marine populations are difficult to follow directly and have been the subject of much controversy, especially in the Caribbean. The debate centres on the degree to which populations are demographically open, such that depleted populations can be replenished by recruitment from distant healthy populations, or demographically closed and thus in need of local management. Given the depressed state of many tropical reef populations, the understanding of these movements now bears critically on the number, placement, and size of marine reserves. Most genetic analyses assume that dispersal patterns have been stable for thousands of generations, thus they commonly reflect past colonization histories more than ongoing dispersal. Recently developed multilocus genotyping approaches, however, have the demonstrated ability to detect both migration and population isolation over far shorter timescales. Previously, we developed five microsatellite markers and demonstrated them to be both Mendelian and coral-specific. Using these markers and Bayesian analyses, we show here that populations of the imperiled reef-building coral, Acropora palmata, have experienced little or no recent genetic exchange between the western and the eastern Caribbean. Puerto Rico is identified as an area of mixing between the two subregions. As a consequence of this regional isolation, populations in the western and eastern Caribbean should have the potential to adapt to local conditions and will require population-specific management strategies.

  3. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    Directory of Open Access Journals (Sweden)

    Federica Costantini

    Full Text Available While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  4. Some rare Indo-Pacific coral species are probable hybrids.

    Directory of Open Access Journals (Sweden)

    Zoe T Richards

    Full Text Available BACKGROUND: Coral reefs worldwide face a variety of threats and many coral species are increasingly endangered. It is often assumed that rare coral species face higher risks of extinction because they have very small effective population sizes, a predicted consequence of which is decreased genetic diversity and adaptive potential. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that some Indo-Pacific members of the coral genus Acropora have very small global population sizes and are likely to be unidirectional hybrids. Whether this reflects hybrid origins or secondary hybridization following speciation is unclear. CONCLUSIONS/SIGNIFICANCE: The interspecific gene flow demonstrated here implies increased genetic diversity and adaptive potential in these coral species. Rare Acropora species may therefore be less vulnerable to extinction than has often been assumed because of their propensity for hybridization and introgression, which may increase their adaptive potential.

  5. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages

    KAUST Repository

    Hoey, Andrew; Pratchett, Morgan S.; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32?S, 159°04?E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m -2), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha -1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. © 2011 Hoey et al.

  6. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages

    KAUST Repository

    Hoey, Andrew

    2011-10-03

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32?S, 159°04?E), the worlds\\' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m -2), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha -1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands\\' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. © 2011 Hoey et al.

  7. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages.

    Directory of Open Access Journals (Sweden)

    Andrew S Hoey

    Full Text Available Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E, the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment, and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4% and fleshy macroalgae (20.9%. Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2, however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1, and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1% with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.

  8. Population connectivity of the plating coral Agaricia lamarcki from southwest Puerto Rico

    Science.gov (United States)

    Hammerman, Nicholas M.; Rivera-Vicens, Ramon E.; Galaska, Matthew P.; Weil, Ernesto; Appledoorn, Richard S.; Alfaro, Monica; Schizas, Nikolaos V.

    2018-03-01

    Identifying genetic connectivity and discrete population boundaries is an important objective for management of declining Caribbean reef-building corals. A double digest restriction-associated DNA sequencing protocol was utilized to generate 321 single nucleotide polymorphisms to estimate patterns of horizontal and vertical gene flow in the brooding Caribbean plate coral, Agaricia lamarcki. Individual colonies ( n = 59) were sampled from eight locations throughout southwestern Puerto Rico from six shallow ( 10-20 m) and two mesophotic habitats ( 30-40 m). Descriptive summary statistics (fixation index, F ST), analysis of molecular variance, and analysis through landscape and ecological associations and discriminant analysis of principal components estimated high population connectivity with subtle subpopulation structure among all sampling localities.

  9. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    2009-11-01

    Full Text Available Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown.The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall, based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies.While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection.

  10. Model suggests potential for Porites coral population recovery after removal of anthropogenic disturbance (Luhuitou, Hainan, South China Sea).

    Science.gov (United States)

    Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang

    2016-09-13

    Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan's coral reefs.

  11. Model suggests potential for Porites coral population recovery after removal of anthropogenic disturbance (Luhuitou, Hainan, South China Sea)

    Science.gov (United States)

    Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang

    2016-09-01

    Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan’s coral reefs.

  12. Coral Community Structure and Recruitment in Seagrass Meadows

    Directory of Open Access Journals (Sweden)

    Kathryn E. Lohr

    2017-11-01

    Full Text Available Coral communities are increasingly found to populate non-reef habitats prone to high environmental variability. Such sites include seagrass meadows, which are generally not considered optimal habitats for corals as a result of limited suitable substrate for settlement and substantial diel and seasonal fluctuations in physicochemical conditions relative to neighboring reefs. Interest in understanding the ability of corals to persist in non-reef habitats has grown, however little baseline data exists on community structure and recruitment of scleractinian corals in seagrass meadows. To determine how corals populate seagrass meadows, we surveyed the established and recruited coral community over 25 months within seagrass meadows at Little Cayman, Cayman Islands. Simultaneous surveys of established and recruited coral communities at neighboring back-reef sites were conducted for comparison. To fully understand the amount of environmental variability to which corals in each habitat were exposed, we conducted complementary surveys of physicochemical conditions in both seagrass meadows and back-reefs. Despite overall higher variability in physicochemical conditions, particularly pH, compared to the back-reef, 14 coral taxa were capable of inhabiting seagrass meadows, and multiple coral families were also found to recruit to these sites. However, coral cover and species diversity, richness, and evenness were lower at sites within seagrass meadows compared to back-reef sites. Although questions remain regarding the processes governing recruitment, these results provide evidence that seagrass beds can serve as functional habitats for corals despite high levels of environmental variability and suboptimal conditions compared to neighboring reefs.

  13. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change.

    Directory of Open Access Journals (Sweden)

    Karen J Miller

    Full Text Available Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS, the mitochondrial ribosomal subunit (16S and mitochondrial control region (MtC to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow 1500 m even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations.

  14. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change.

    Science.gov (United States)

    Miller, Karen J; Rowden, Ashley A; Williams, Alan; Häussermann, Vreni

    2011-01-01

    Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow 1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations.

  15. Human impact on atolls leads to coral loss and community homogenisation: a modeling study.

    Directory of Open Access Journals (Sweden)

    Bernhard M Riegl

    Full Text Available We explore impacts on pristine atolls subjected to anthropogenic near-field (human habitation and far-field (climate and environmental change pressure. Using literature data of human impacts on reefs, we parameterize forecast models to evaluate trajectories in coral cover under impact scenarios that primarily act via recruitment and increased mortality of larger corals. From surveys across the Chagos, we investigate the regeneration dynamics of coral populations distant from human habitation after natural disturbances. Using a size-based mathematical model based on a time-series of coral community and population data from 1999-2006, we provide hind- and forecast data for coral population dynamics within lagoons and on ocean-facing reefs verified against monitoring from 1979-2009. Environmental data (currents, temperatures were used for calibration. The coral community was simplified into growth typologies: branching and encrusting, arboresent and massive corals. Community patterns observed in the field were influenced by bleaching-related mortality, most notably in 1998. Survival had been highest in deep lagoonal settings, which suggests a refuge. Recruitment levels were higher in lagoons than on ocean-facing reefs. When adding stress by direct human pressure, climate and environmental change as increased disturbance frequency and modified recruitment and mortality levels (due to eutrophication, overfishing, pollution, heat, acidification, etc, models suggest steep declines in coral populations and loss of community diversification among habitats. We found it likely that degradation of lagoonal coral populations would impact regeneration potential of all coral populations, also on ocean-facing reefs, thus decreasing reef resilience on the entire atoll.

  16. Behaviourally mediated phenotypic selection in a disturbed coral reef environment.

    Directory of Open Access Journals (Sweden)

    Mark I McCormick

    2009-09-01

    Full Text Available Natural and anthropogenic disturbances are leading to changes in the nature of many habitats globally, and the magnitude and frequency of these perturbations are predicted to increase under climate change. Globally coral reefs are one of the most vulnerable ecosystems to climate change. Fishes often show relatively rapid declines in abundance when corals become stressed and die, but the processes responsible are largely unknown. This study explored the mechanism by which coral bleaching may influence the levels and selective nature of mortality on a juvenile damselfish, Pomacentrus amboinensis, which associates with hard coral. Recently settled fish had a low propensity to migrate small distances (40 cm between habitat patches, even when densities were elevated to their natural maximum. Intraspecific interactions and space use differ among three habitats: live hard coral, bleached coral and dead algal-covered coral. Large fish pushed smaller fish further from the shelter of bleached and dead coral thereby exposing smaller fish to higher mortality than experienced on healthy coral. Small recruits suffered higher mortality than large recruits on bleached and dead coral. Mortality was not size selective on live coral. Survival was 3 times as high on live coral as on either bleached or dead coral. Subtle behavioural interactions between fish and their habitats influence the fundamental link between life history stages, the distribution of phenotypic traits in the local population and potentially the evolution of life history strategies.

  17. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures.

    Science.gov (United States)

    Howells, Emily J; Abrego, David; Meyer, Eli; Kirk, Nathan L; Burt, John A

    2016-08-01

    Understanding the potential for coral adaptation to warming seas is complicated by interactions between symbiotic partners that define stress responses and the difficulties of tracking selection in natural populations. To overcome these challenges, we characterized the contribution of both animal host and symbiotic algae to thermal tolerance in corals that have already experienced considerable warming on par with end-of-century projections for most coral reefs. Thermal responses in Platygyra daedalea corals from the hot Persian Gulf where summer temperatures reach 36°C were compared with conspecifics from the milder Sea of Oman. Persian Gulf corals had higher rates of survival at elevated temperatures (33 and 36°C) in both the nonsymbiotic larval stage (32-49% higher) and the symbiotic adult life stage (51% higher). Additionally, Persian Gulf hosts had fixed greater potential to mitigate oxidative stress (31-49% higher) and their Symbiodinium partners had better retention of photosynthetic performance under elevated temperature (up to 161% higher). Superior thermal tolerance of Persian Gulf vs. Sea of Oman corals was maintained after 6-month acclimatization to a common ambient environment and was underpinned by genetic divergence in both the coral host and symbiotic algae. In P. daedalea host samples, genomewide SNP variation clustered into two discrete groups corresponding with Persian Gulf and Sea of Oman sites. Symbiodinium within host tissues predominantly belonged to ITS2 rDNA type C3 in the Persian Gulf and type D1a in the Sea of Oman contradicting patterns of Symbiodinium thermal tolerance from other regions. Our findings provide evidence that genetic adaptation of both host and Symbiodinium has enabled corals to cope with extreme temperatures in the Persian Gulf. Thus, the persistence of coral populations under continued warming will likely be determined by evolutionary rates in both, rather than single, symbiotic partners. © 2016 John Wiley & Sons Ltd.

  18. Mapping Prevalence and Incidence of Coral Disease in reef-building corals at two Natural Reserves of the Southwest Puerto Rico

    Science.gov (United States)

    Sanchez Viruet, I.; Irizarry-Soto, E.; Ruiz-Valentín, I.

    2016-02-01

    Coral diseases seems to be the main cause of coral reef decline in the Caribbean. Before the bleaching event of 2005, coral reefs in Puerto Rico were dominated by the reef-building taxa: Orbicella annularis, Porites astreoides, Montastrea cavernosa, Agaricia agaracites and Colpophyllia natans. After the event, live-coral cover significantly declined and more than 90% of the scleractinian corals in the U.S. Virgin Islands and Puerto Rico showed signals of thermal stressors. The prevalence of coral diseases in five reef-building coral (Orbicella annularis, Orbicella franksi, Orbicella faveolata, Porites porites and Pseudiploria strigosa) species was assessed by tagging, photographing, and mapping all diseased and healthy colonies within 10 permanent 40m2 band transects at each inshore and mid-shelf reefs of Belvedere and Punta Guaniquilla Natural Reserves using a random stratified sampling method. Maximum and perpendicular diameter was used to assess coral size using Coral Point Count with Excel Extension. Corals were classified into three size class populations (class I: 0-50cm, class II: 50-100cm and class III: >100 cm). Data was used to develop a GIS-based map containing coral species, size and disease presence. Preliminary results of the inshore area showed a higher disease prevalence in Belvedere natural reserve and for P. strigosa (17.1%) and O. annularis (9.3%). Frequency distribution analysis showed a dominance of O. faveolata at Punta Guaniquilla and Belvedere (127 and 88 individuals respectively). Size class I dominates the distribution of each species within the natural reserves with a higher disease prevalence. Future work include continue prevalence surveys of the outer reef shelf on both natural reserves, monitoring and GIS-based mapping of incidence and resilience through time. This study will help in the assessment of the status of the coral reef of the southwest insular platform.

  19. Variation in size frequency distribution of coral populations under different fishing pressures in two contrasting locations in the Indian Ocean.

    Science.gov (United States)

    Grimsditch, G; Pisapia, C; Huck, M; Karisa, J; Obura, D; Sweet, M

    2017-10-01

    This study aimed to assess how the size-frequency distributions of coral genera varied between reefs under different fishing pressures in two contrasting Indian Ocean locations (the Maldives and East Africa). Using generalized linear mixed models, we were able to demonstrate that complex interactions occurred between coral genera, coral size class and fishing pressure. In both locations, we found Acropora coral species to be more abundant in non-fished compared to fished sites (a pattern which was consistent for nearly all the assessed size classes). Coral genera classified as 'stress tolerant' showed a contrasting pattern i.e. were higher in abundance in fished compared to non-fished sites. Site specific variations were also observed. For example, Maldivian reefs exhibited a significantly higher abundance in all size classes of 'competitive' corals compared to East Africa. This possibly indicates that East African reefs have already been subjected to higher levels of stress and are therefore less suitable environments for 'competitive' corals. This study also highlights the potential structure and composition of reefs under future degradation scenarios, for example with a loss of Acropora corals and an increase in dominance of 'stress tolerant' and 'generalist' coral genera. Copyright © 2017. Published by Elsevier Ltd.

  20. Coral bleaching--capacity for acclimatization and adaptation.

    Science.gov (United States)

    Coles, S L; Brown, Barbara E

    2003-01-01

    Coral bleaching, i.e., loss of most of the symbiotic zooxanthellae normally found within coral tissue, has occurred with increasing frequency on coral reefs throughout the world in the last 20 years, mostly during periods of El Nino Southern Oscillation (ENSO). Experiments and observations indicate that coral bleaching results primarily from elevated seawater temperatures under high light conditions, which increases rates of biochemical reactions associated with zooxanthellar photosynthesis, producing toxic forms of oxygen that interfere with cellular processes. Published projections of a baseline of increasing ocean temperature resulting from global warming have suggested that annual temperature maxima within 30 years may be at levels that will cause frequent coral bleaching and widespread mortality leading to decline of corals as dominant organisms on reefs. However, these projections have not considered the high variability in bleaching response that occurs among corals both within and among species. There is information that corals and their symbionts may be capable of acclimatization and selective adaptation to elevated temperatures that have already resulted in bleaching resistant coral populations, both locally and regionally, in various areas of the world. There are possible mechanisms that might provide resistance and protection to increased temperature and light. These include inducible heat shock proteins that act in refolding denatured cellular and structural proteins, production of oxidative enzymes that inactivate harmful oxygen radicals, fluorescent coral pigments that both reflect and dissipate light energy, and phenotypic adaptations of zooxanthellae and adaptive shifts in their populations at higher temperatures. Such mechanisms, when considered in conjunction with experimental and observational evidence for coral recovery in areas that have undergone coral bleaching, suggest an as yet undefined capacity in corals and zooxanthellae to adapt to

  1. Mesopredator trophodynamics on thermally stressed coral reefs

    Science.gov (United States)

    Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.

    2018-03-01

    Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.

  2. Light gradients and optical microniches in coral tissues

    Directory of Open Access Journals (Sweden)

    Daniel eWangpraseurt

    2012-08-01

    Full Text Available Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterise vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with PAR (photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500-700 nm relative to a healthy coral. Photosynthesis peaked around 300 µm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g. ~1000 µm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.

  3. Environmental drivers of recruitment success in Caribbean corals : Applications to aid the recovery of threatened coral populations

    NARCIS (Netherlands)

    Chamberland, V.F.

    2018-01-01

    Caribbean coral reefs are amongst the most threatened marine ecosystems on Earth. About one third of their reef-building coral species (Scleractinia) are currently at risk of extinction due to habitat destruction, overexploitation and climate change. The successful establishment of coral larvae,

  4. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies.

    Science.gov (United States)

    Baums, Iliana B; Devlin-Durante, Meghann K; LaJeunesse, Todd C

    2014-09-01

    The mutualistic symbioses between reef-building corals and micro-algae form the basis of coral reef ecosystems, yet recent environmental changes threaten their survival. Diversity in host-symbiont pairings on the sub-species level could be an unrecognized source of functional variation in response to stress. The Caribbean elkhorn coral, Acropora palmata, associates predominantly with one symbiont species (Symbiodinium 'fitti'), facilitating investigations of individual-level (genotype) interactions. Individual genotypes of both host and symbiont were resolved across the entire species' range. Most colonies of a particular animal genotype were dominated by one symbiont genotype (or strain) that may persist in the host for decades or more. While Symbiodinium are primarily clonal, the occurrence of recombinant genotypes indicates sexual recombination is the source of this genetic variation, and some evidence suggests this happens within the host. When these data are examined at spatial scales spanning the entire distribution of A. palmata, gene flow among animal populations was an order of magnitude greater than among populations of the symbiont. This suggests that independent micro-evolutionary processes created dissimilar population genetic structures between host and symbiont. The lower effective dispersal exhibited by the dinoflagellate raises questions regarding the extent to which populations of host and symbiont can co-evolve during times of rapid and substantial climate change. However, these findings also support a growing body of evidence, suggesting that genotype-by-genotype interactions may provide significant physiological variation, influencing the adaptive potential of symbiotic reef corals to severe selection. © 2014 John Wiley & Sons Ltd.

  5. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella.

    Science.gov (United States)

    Pettay, D Tye; Wham, Drew C; Smith, Robin T; Iglesias-Prieto, Roberto; LaJeunesse, Todd C

    2015-06-16

    Human-induced environmental changes have ushered in the rapid decline of coral reef ecosystems, particularly by disrupting the symbioses between reef-building corals and their photosymbionts. However, escalating stressful conditions enable some symbionts to thrive as opportunists. We present evidence that a stress-tolerant "zooxanthella" from the Indo-Pacific Ocean, Symbiodinium trenchii, has rapidly spread to coral communities across the Greater Caribbean. In marked contrast to populations from the Indo-Pacific, Atlantic populations of S. trenchii contained exceptionally low genetic diversity, including several widespread and genetically similar clones. Colonies with this symbiont tolerate temperatures 1-2 °C higher than other host-symbiont combinations; however, calcification by hosts harboring S. trenchii is reduced by nearly half, compared with those harboring natives, and suggests that these new symbioses are maladapted. Unforeseen opportunism and geographical expansion by invasive mutualistic microbes could profoundly influence the response of reef coral symbioses to major environmental perturbations but may ultimately compromise ecosystem stability and function.

  6. Microsatellite multiplex assay for the coral-eating crown-of-thorns starfish, Acanthaster cf. planci

    KAUST Repository

    Harrison, Hugo B.

    2015-03-20

    Population outbreaks of crown-of-thorns starfish (Acanthaster spp.) represent one of the most significant biological disturbances on Indo-Pacific coral reefs. Here, we combine 15 published and 11 newly isolated polymorphic microsatellite markers from the coral-eating starfish, A. cf. planci and describe their integration into four multiplex PCRs. All markers were polymorphic with a mean of 11.7 ± 1.9 SE alleles per locus and an average observed heterozygosity of 0.619 ± 0.049 SE across 195 genotyped individuals from the Great Barrier Reef. This multiplex assay provides an effective means of investigating the population dynamics of crown-of-thorns starfish and the initiation and spread of population outbreaks.

  7. Microsatellite multiplex assay for the coral-eating crown-of-thorns starfish, Acanthaster cf. planci

    KAUST Repository

    Harrison, Hugo B.; Saenz Agudelo, Pablo; Al-Salamah, Manalle; Messmer, Vanessa; Pratchett, Morgan S.; Berumen, Michael L.

    2015-01-01

    Population outbreaks of crown-of-thorns starfish (Acanthaster spp.) represent one of the most significant biological disturbances on Indo-Pacific coral reefs. Here, we combine 15 published and 11 newly isolated polymorphic microsatellite markers from the coral-eating starfish, A. cf. planci and describe their integration into four multiplex PCRs. All markers were polymorphic with a mean of 11.7 ± 1.9 SE alleles per locus and an average observed heterozygosity of 0.619 ± 0.049 SE across 195 genotyped individuals from the Great Barrier Reef. This multiplex assay provides an effective means of investigating the population dynamics of crown-of-thorns starfish and the initiation and spread of population outbreaks.

  8. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience.

    Directory of Open Access Journals (Sweden)

    Roberta M Bonaldo

    Full Text Available Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70-80% lower, macroalgal cover 4-9 fold higher, macroalgal-coral contacts 5-15 fold more frequent and 23-67 fold more extensive (measured as % of colony margin contacted by macroalgae, and coral cover 51-68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals.

  9. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    Science.gov (United States)

    Aranda, Manuel; DeSalvo, Michael K; Bayer, Till; Medina, Monica; Voolstra, Christian R

    2012-09-21

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization). Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded genes in robust corals. Accordingly, this

  10. Linking social and ecological systems to sustain coral reef fisheries.

    Science.gov (United States)

    Cinner, Joshua E; McClanahan, Timothy R; Daw, Tim M; Graham, Nicholas A J; Maina, Joseph; Wilson, Shaun K; Hughes, Terence P

    2009-02-10

    The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.

  11. Marginal coral populations: the densest known aggregation of Pocillopora in the Galápagos Archipelago is of asexual origin

    Directory of Open Access Journals (Sweden)

    Iliana B Baums

    2014-11-01

    Full Text Available Coral populations at distributional margins frequently experience suboptimal and variable conditions. Recurrent El Niño-Southern Oscillation (ENSO warming events have caused extensive mortality of reef-building corals in the Eastern Pacific, and particularly impacted branching pocilloporid corals in the Galápagos Islands. Pocillopora spp. were previously more common and formed incipient reefs at several locations in the Archipelago but now occur as scattered colonies. Here, we report an unusually concentrated aggregation of colonies and evaluate their current genetic diversity. In particular we focus on a large population of 1614 live Pocillopora colonies found in a volcanic lagoon along the southern shore of Isabela Island. Forty seven colonies were sampled, primarily using a spatially explicit sampling design, and all colonies belonged to Pocillopora mitochondrial open reading frame lineage type 3a. Typing of additional Pocillopora samples (n = 40 from three other islands indicated that this stand is the only known representative of type 3a in the Galápagos Islands. The Isabela Pocillopora type 3a colonies harbored Symbiodinium ITS-2 clade C1d. Multilocus genotyping (n = 6 microsatellites capable of resolving individual clones indicated that this stand is monogenotypic and thus the high density of colonies is a result of asexual reproduction, likely via fragmentation. Colony size distribution, while imperfect, suggested the stand regrew from remnant colonies that survived the 1997/98 ENSO event but may postdate the 1982/83 ENSO. The community of Pocillopora colonies at Isabela is of particular ecological value due to its high density and support of associated organisms such as fish and benthic invertebrates. The Galapagos Pocillopora corals will continue to provide insights into the genetic structure and population dynamics of marginal coral populations.

  12. A restoration genetics guide for coral reef conservation.

    Science.gov (United States)

    Baums, Iliana B

    2008-06-01

    Worldwide degradation of coral reef communities has prompted a surge in restoration efforts. They proceed largely without considering genetic factors because traditionally, coral populations have been regarded as open over large areas with little potential for local adaptation. Since, biophysical and molecular studies indicated that most populations are closed over shorter time and smaller spatial scales. Thus, it is justified to re-examine the potential for site adaptation in corals. There is ample evidence for differentiated populations, inbreeding, asexual reproduction and the occurrence of ecotypes, factors that may facilitate local adaptation. Discovery of widespread local adaptation would influence coral restoration projects mainly with regard to the physical and evolutionary distance from the source wild and/or captive bred propagules may be moved without causing a loss of fitness in the restored population. Proposed causes for loss of fitness as a result of (plant) restoration efforts include founder effects, genetic swamping, inbreeding and/or outbreeding depression. Direct evidence for any of these processes is scarce in reef corals due to a lack of model species that allow for testing over multiple generations and the separation of the relative contributions of algal symbionts and their coral hosts to the overall performance of the coral colony. This gap in our knowledge may be closed by employing novel population genetic and genomics approaches. The use of molecular tools may aid managers in the selection of appropriate propagule sources, guide spatial arrangement of transplants, and help in assessing the success of coral restoration projects by tracking the performance of transplants, thereby generating important data for future coral reef conservation and restoration projects.

  13. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea

    KAUST Repository

    Lozano-Cortes, Diego

    2015-10-29

    Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north–south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea.

  14. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea.

    Science.gov (United States)

    Lozano-Cortés, Diego F; Berumen, Michael L

    2016-04-30

    Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north-south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific.

    Directory of Open Access Journals (Sweden)

    Greta S Aeby

    2011-02-01

    Full Text Available Growth anomalies (GAs are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA (n = 304 surveys and Porites growth anomalies (PGA (n = 602 surveys from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies found on different host genera (Acropora vs. Porites. As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.

  16. Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific

    Science.gov (United States)

    Aeby, Greta S.; Williams, Gareth J.; Franklin, Erik C.; Haapkyla, Jessica; Harvell, C. Drew; Neale, Stephen; Page, Cathie A.; Raymundo, Laurie; Vargas-Angel, Bernardo; Willis, Bette L.; Work, Thierry M.; Davy, Simon K.

    2011-01-01

    Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.

  17. Comparative demography of two common scleractinian corals: Orbicella annularis and Porites astreoides

    Directory of Open Access Journals (Sweden)

    Francisco J. Soto-Santiago

    2017-10-01

    Full Text Available Background Studies directed at understanding the demography and population dynamics of corals are relatively scarce. This limits our understanding of both the dynamics of coral populations and our capacity to develop management and conservation initiatives directed at conserving such ecosystems. Methods From 2012 to 2014, we collected data on the growth, survival, and recruitment rates of two common Caribbean coral species, the stress-tolerant Orbicella annularis and the weedy Porites astreoides. A set of size-based population matrix model was developed for two localities in Northeastern Puerto Rico and used to estimate population growth rates (λ and determine the life cycle transition(s that contribute the most to spatiotemporal differences in λs. The model was parameterized by following the fate of 100 colonies of each species at the two sites for two years. Results Our data indicate that spatial variability in vital rates of both species was higher than temporal variability. During the first year, populations of O. annularis exhibited λs below equilibrium at Carlos Rosario (0.817 and Palomino (0.694, followed by a considerable decline at both sites during the second year (0.700 and 0.667. Populations of P. astreoides showed higher λs than O. annularis during the first census period at Carlos Rosario (0.898 and Palomino (0.894 with a decline at one of the sites (0.681 and 0.893 during the second census period. Colony fate in both species exhibited a significant interaction with respect to location but not to time (G2 = 20.96; df = 3 for O. annularis and G2 = 9.55; df = 3 for P. astreoides. Discussion The similar variability of λs as well as the similar survival rates for both species during the two-year census period (2012–2014 show similar variability on demographic patterns in space and time. Our results suggest that location rather than time is important for the resiliency in coral colonies. Also, P. astreoides will show higher

  18. Response diversity can increase ecological resilience to disturbance in coral reefs.

    Science.gov (United States)

    Baskett, Marissa L; Fabina, Nicholas S; Gross, Kevin

    2014-08-01

    Community-level resilience depends on the interaction between multiple populations that vary in individual responses to disturbance. For example, in tropical reefs, some corals can survive higher stress (resistance) while others exhibit faster recovery (engineering resilience) following disturbances such as thermal stress. While each type will negatively affect the other through competition, each might also benefit the other by reducing the potential for an additional competitor such as macroalgae to invade after a disturbance. To determine how community composition affects ecological resilience, we modeled coral-macroalgae interactions given either a resistant coral, a resilient coral, or both together. Having both coral types (i.e., response diversity) can lead to observable enhanced ecological resilience if (1) the resilient coral is not a superior competitor and (2) disturbance levels are high enough such that the resilient coral would collapse when considered alone. This enhanced resilience occurs through competitor-enabled rescue where each coral increases the potential for the other to recover from disturbance through external recruitment, such that both corals benefit from the presence of each other in terms of total cover and resilience. Therefore, conservation management aimed at protecting resilience under global change requires consideration of both diversity and connectivity between sites experiencing differential disturbance.

  19. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae).

    Science.gov (United States)

    Thornhill, D J; Howells, E J; Wham, D C; Steury, T D; Santos, S R

    2017-05-01

    Symbiodinium is a diverse genus of unicellular dinoflagellate symbionts associating with various marine protists and invertebrates. Although the broadscale diversity and phylogenetics of the Symbiodinium complex is well established, there have been surprisingly few data on fine-scale population structure and biogeography of these dinoflagellates. Yet population-level processes contribute strongly to the biology of Symbiodinium, including how anthropogenic-driven global climate change impacts these symbionts and their host associations. Here, we present a synthesis of population-level characteristics for Symbiodinium, with an emphasis on how phylogenetic affinities, dynamics within and among host individuals, and a propensity towards clonality shape patterns on and across reefs. Major inferences include the following: (i) Symbiodinium populations within individual hosts are comprised mainly of cells belonging to a single or few genetic clones. (ii) Symbiont populations exhibit a mixed mode of reproduction, wherein at least one sexual recombination event occurs in the genealogy between most genotypes, but clonal propagation predominates overall. (iii) Mutualistic Symbiodinium do not perpetually persist outside their hosts, instead undergoing turnover and replacement via the continuous shedding of viable clonal cells from host individuals. (iv) Symbiont populations living in the same host, but on different reefs, are often genetically subdivided, suggesting low connectivity, adaptation to local conditions, or prolific asexual reproduction and low effective population sizes leading to disproportionate success within and among hosts. Overall, this synthesis forms a basis for future investigations of coral symbiosis ecology and evolution as well as delimitation of species boundaries in Symbiodinium and other eukaryotic microorganisms. © 2017 John Wiley & Sons Ltd.

  20. Identification and prevalence of coral diseases on three Western Indian Ocean coral reefs.

    Science.gov (United States)

    Séré, Mathieu G; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2015-06-03

    Coral diseases have caused a substantial decline in the biodiversity and abundance of reef-building corals. To date, more than 30 distinct diseases of scleractinian corals have been reported, which cause progressive tissue loss and/or affect coral growth, reproductive capacity, recruitment, species diversity and the abundance of reef-associated organisms. While coral disease research has increased over the last 4 decades, very little is known about coral diseases in the Western Indian Ocean. Surveys conducted at multiple sites in Reunion, South Africa and Mayotte between August 2010 and June 2012 revealed the presence of 6 main coral diseases: black band disease (BBD), white syndrome (WS), pink line syndrome (PLS), growth anomalies (GA), skeleton eroding band (SEB) and Porites white patch syndrome (PWPS). Overall, disease prevalence was higher in Reunion (7.5 ± 2.2%; mean ± SE) compared to South Africa (3.9 ± 0.8%) and Mayotte (2.7 ± 0.3%). Across locations, Acropora and Porites were the genera most susceptible to disease. Spatial variability was detected in both Reunion and South Africa, with BBD and WS more prevalent on shallow than deep reefs. There was also evidence of seasonality in 2 diseases: the prevalence of BBD and WS was higher in summer than winter. This was the first study to investigate the ecology of coral diseases, providing both qualitative and quantitative data, on Western Indian Ocean reefs, and surveys should be expanded to confirm these patterns.

  1. Evolutionary insights into scleractinian corals using comparative genomic hybridizations

    Directory of Open Access Journals (Sweden)

    Aranda Manuel

    2012-09-01

    Full Text Available Abstract Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization. Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than

  2. Potential for adaptive evolution at species range margins: contrasting interactions between red coral populations and their environment in a changing ocean.

    Science.gov (United States)

    Ledoux, Jean-Baptiste; Aurelle, Didier; Bensoussan, Nathaniel; Marschal, Christian; Féral, Jean-Pierre; Garrabou, Joaquim

    2015-03-01

    Studying population-by-environment interactions (PEIs) at species range margins offers the opportunity to characterize the responses of populations facing an extreme regime of selection, as expected due to global change. Nevertheless, the importance of these marginal populations as putative reservoirs of adaptive genetic variation has scarcely been considered in conservation biology. This is particularly true in marine ecosystems for which the deep refugia hypothesis proposes that disturbed shallow and marginal populations of a given species can be replenished by mesophotic ones. This hypothesis therefore assumes that identical PEIs exist between populations, neglecting the potential for adaptation at species range margins. Here, we combine reciprocal transplant and common garden experiments with population genetics analyses to decipher the PEIs in the red coral, Corallium rubrum. Our analyses reveal partially contrasting PEIs between shallow and mesophotic populations separated by approximately one hundred meters, suggesting that red coral populations may potentially be locally adapted to their environment. Based on the effective population size and connectivity analyses, we posit that genetic drift may be more important than gene flow in the adaptation of the red coral. We further investigate how adaptive divergence could impact population viability in the context of warming and demonstrate differential phenotypic buffering capacities against thermal stress. Our study questions the relevance of the deep refugia hypothesis and highlights the conservation value of marginal populations as a putative reservoir of adaptive genetic polymorphism.

  3. Metagenomic and ecophysiological analysis of biofilms colonizing coral substrates: "Life after death of coral"

    Science.gov (United States)

    Sanchez, A., Sr.; Cerqueda-Garcia, D.; Falcón, L. I.; Iglesias-Prieto, R., Sr.

    2015-12-01

    Coral reefs are the most productive ecosystems on the planet and are the most important carbonated structures of biological origin. However, global warming is affecting the health and functionality of these ecosystems. Specifically, most of the Acropora sp. stony corals have declined their population all over the Mexican Caribbean in more than ~80% of their original coverage, resulting in vast extensions of dead coral rubble. When the coral dies, the skeleton begins to be colonized by algae, sponges, bacteria and others, forming a highly diverse biofilm. We analyzed the metagenomes of the dead A. palmata rubbles from Puerto Morelos, in the Mexican Caribbean. Also, we quantified the elemental composition of biomass and measured nitrogen fixation and emission of greenhouse gases over 24 hrs. This works provides information on how the community is composed and functions after the death of the coral, visualizing a possible picture for a world without coral reefs.

  4. The link between immunity and life history traits in scleractinian corals

    Directory of Open Access Journals (Sweden)

    Jorge H. Pinzón C.

    2014-10-01

    Full Text Available Immunity is an important biological trait that influences the survival of individuals and the fitness of a species. Immune defenses are costly and likely compete for energy with other life-history traits, such as reproduction and growth, affecting the overall fitness of a species. Competition among these traits in scleractinian corals could influence the dynamics and structural integrity of coral reef communities. Due to variability in biological traits within populations and across species, it is likely that coral colonies within population/species adjust their immune system to the available resources. In corals, the innate immune system is composed of various pathways. The immune system components can be assessed in the absence (constitutive levels and/or presence of stressors/pathogens (immune response. Comparisons of the constitutive levels of three immune pathways (melanin synthesis, antioxidant and antimicrobial of closely related species of Scleractinian corals allowed to determine the link between immunity and reproduction and colony growth. First, we explored differences in constitutive immunity among closely related coral species of the genus Meandrina with different reproductive patterns (gonochoric vs. hermaphrodite. We then compared fast-growing branching vs. slow-growing massive Porites to test co-variation between constitutive immunity and growth rates and morphology in corals. Results indicate that there seems to be a relationship between constitutive immunity and sexual pattern with gonochoric species showing significantly higher levels of immunity than hermaphrodites. Therefore, gonochoric species maybe better suited to resist infections and overcome stressors. Constitutive immunity varied in relation with growth rates and colony morphology, but each species showed contrasting trends within the studied immune pathways. Fast-growing branching species appear to invest more in relatively low cost pathways of the immune system than

  5. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton.

    Science.gov (United States)

    Cárdenas, Anny; Neave, Matthew J; Haroon, Mohamed Fauzi; Pogoreutz, Claudia; Rädecker, Nils; Wild, Christian; Gärdes, Astrid; Voolstra, Christian R

    2018-01-01

    Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.

  6. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton

    KAUST Repository

    Cardenas, Anny

    2017-09-12

    Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.

  7. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton

    KAUST Repository

    Cardenas, Anny; Neave, Matthew J.; Haroon, Mohamed; Pogoreutz, Claudia; Radecker, Nils; Wild, Christian; Gä rdes, Astrid; Voolstra, Christian R.

    2017-01-01

    Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.

  8. Review on hard coral recruitment (Cnidaria: Scleractinia in Colombia

    Directory of Open Access Journals (Sweden)

    Luisa F. Dueñas

    2011-12-01

    Full Text Available Recruitment, defined and measured as the incorporation of new individuals (i.e. coral juveniles into a population, is a fundamentalprocess for ecologists, evolutionists and conservationists due to its direct effect on population structure and function. Because most coralpopulations are self-feeding, a breakdown in recruitment would lead to local extinction. Recruitment indirectly affects both renewal andmaintenance of existing and future coral communities, coral reef biodiversity (bottom-up effect and therefore coral reef resilience. This process has been used as an indirect measure of individual reproductive success (fitness and is the final stage of larval dispersal leading to population connectivity. As a result, recruitment has been proposed as an indicator of coral-reef health in marine protected areas, as well as a central aspect of the decision-making process concerning management and conservation. The creation of management plans to promote impact mitigation, rehabilitation and conservation of the Colombian coral reefs is a necessity that requires firstly, a review and integration of existing literature on scleractinian coral recruitment in Colombia and secondly, larger scale field studies. This motivated us to summarize and analyze all existing information on coral recruitment to determine the state of knowledge, isolate patterns, identify gaps, and suggest future lines of research.

  9. Alkalinity to calcium flux ratios for corals and coral reef communities: variances between isolated and community conditions

    Directory of Open Access Journals (Sweden)

    Liana J.A. Murillo

    2014-02-01

    Full Text Available Calcification in reef corals and coral reefs is widely measured using the alkalinity depletion method which is based on the fact that two protons are produced for every mole of CaCO3 precipitated. This assumption was tested by measuring the total alkalinity (TA flux and Ca2+ flux of isolated components (corals, alga, sediment and plankton in reference to that of a mixed-community. Experiments were conducted in a flume under natural conditions of sunlight, nutrients, plankton and organic matter. A realistic hydrodynamic regime was provided. Groups of corals were run separately and in conjunction with the other reef components in a mixed-community. The TA flux to Ca2+ flux ratio (ΔTA: ΔCa2+ was consistently higher in the coral-only run (2.06 ± 0.19 than in the mixed-community run (1.60 ± 0.14, p-value = 0.011. The pH was higher and more stable in the mixed-community run (7.94 ± 0.03 vs. 7.52 ± 0.07, p-value = 3 × 10−5. Aragonite saturation state (Ωarag was also higher in the mixed-community run (2.51 ± 0.2 vs. 1.12 ± 0.14, p-value = 2 × 10−6. The sediment-only run revealed that sediment is the source of TA that can account for the lower ΔTA: ΔCa2+ ratio in the mixed-community run. The macroalgae-only run showed that algae were responsible for the increased pH in the mixed-community run. Corals growing in a mixed-community will experience an environment that is more favorable to calcification (higher daytime pH due to algae photosynthesis, additional TA and inorganic carbon from sediments, higher Ωarag. A paradox is that the alkalinity depletion method will yield a lower net calcification for a mixed-community versus a coral-only community due to TA recycling, even though the corals may be calcifying at a higher rate due to a more optimal environment.

  10. Restoration of critically endangered elkhorn coral (Acropora palmata) populations using larvae reared from wild-caught gametes

    NARCIS (Netherlands)

    Chamberland, V.F.; Vermeij, M.J.A.; Brittsan, M.; Carl, M.; Schick, M.; Snowden, S.; Schrier, A.; Petersen, D.

    2015-01-01

    Elkhorn coral (Acropora palmata) populations provide important ecological functions on shallow Caribbean reefs, many of which were lost when a disease reduced their abundance by more than 95% beginning in the mid-1970s. Since then, a lack of significant recovery has prompted rehabilitation

  11. Effects of human population density and proximity to markets on coral reef fishes vulnerable to extinction by fishing.

    Science.gov (United States)

    Brewer, T D; Cinner, J E; Green, A; Pressey, R L

    2013-06-01

    Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.

  12. Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean

    Science.gov (United States)

    Baums, I. B.; Johnson, M. E.; Devlin-Durante, M. K.; Miller, M. W.

    2010-12-01

    In preparation for a large-scale coral restoration project, we surveyed host population genetic structure and symbiont diversity of two reef-building corals in four reef zones along the Florida reef tract (FRT). There was no evidence for coral population subdivision along the FRT in Acropora cervicornis or Montastraea faveolata based on microsatellite markers. However, in A. cervicornis, significant genetic differentiation was apparent when extending the analysis to broader scales (Caribbean). Clade diversity of the zooxanthellae differed along the FRT. A. cervicornis harbored mostly clade A with clade D zooxanthellae being prominent in colonies growing inshore and in the mid-channel zones that experience greater temperature fluctuations and receive significant nutrient and sediment input. M. faveolata harbored a more diverse array of symbionts, and variation in symbiont diversity among four habitat zones was more subtle but still significant. Implications of these results are discussed for ongoing restoration and conservation work.

  13. CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes.

    Science.gov (United States)

    Dixon, Groves B; Davies, Sarah W; Aglyamova, Galina A; Meyer, Eli; Bay, Line K; Matz, Mikhail V

    2015-06-26

    As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection. Copyright © 2015, American Association for the Advancement of Science.

  14. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  15. Consumption of coral propagules after mass spawning enhances larval quality of damselfish through maternal effects.

    Science.gov (United States)

    McCormick, Mark I

    2003-06-01

    The synchronized spawning of corals in many parts of the Indo-Pacific represents a huge injection of biological material into the waters around reefs. Much of this material is consumed by fishes and filter-feeding invertebrates in the 5 or so days following spawning. The present study is the first to document the effect of the consumption of coral propagules on a population of facultatively planktivorous fish and the transference of physiological condition across generations. The study compares two populations of the damselfish Pomacentrus amboinensis that fed to differing degrees on coral propagules for 5 days after the annual mass spawning of corals at Lizard Island, Great Barrier Reef, Australia. Wind blew coral slicks over the outer lagoon to the inner lagoon some 1.5 km away. While coral propagules were abundant in the water column in the windward location, they were scarce by the time the water mass reached the inner lagoon. Behavioral observations 2-5 days after coral spawning showed that a significantly higher proportion of P. amboinensis was feeding on coral propagules in the windward location than in the inner lagoon location. Windward location females consumed coral propagules almost exclusively and had fuller guts than females from the inner lagoonal location. Five days after the mass coral spawning, windward location females had a higher condition factor and a larger liver mass relative to body mass compared to females within the inner lagoon or females from both locations 2 months later. Fish eggs laid by the windward location females soon after coral spawning yielded larvae that had 25% larger yolk sacs and 100% larger oil globules than did larvae produced from the females from the inner lagoon location, or larvae produced at either location prior to or well after coral spawning in 2 previous years. Larger yolk sacs and oil globules have been shown to have direct survival benefits in the transition from endogenous to exogenous feeding. A feeding

  16. Predicting Heat Stress to Inform Reef Management: NOAA Coral Reef Watch's 4-Month Coral Bleaching Outlook

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2018-03-01

    Full Text Available The U.S. National Oceanic and Atmospheric Administration's (NOAA Coral Reef Watch (CRW operates a global 4-Month Coral Bleaching Outlook system for shallow-water coral reefs in collaboration with NOAA's National Centers for Environmental Prediction (NCEP. The Outlooks are generated by applying the algorithm used in CRW's operational satellite coral bleaching heat stress monitoring, with slight modifications, to the sea surface temperature (SST predictions from NCEP's operational Climate Forecast System Version 2 (CFSv2. Once a week, the probability of heat stress capable of causing mass coral bleaching is predicted for 4-months in advance. Each day, CFSv2 generates an ensemble of 16 forecasts, with nine runs out to 45-days, three runs out to 3-months, and four runs out to 9-months. This results in 28–112 ensemble members produced each week. A composite for each predicted week is derived from daily predictions within each ensemble member. The probability of each of four heat stress ranges (Watch and higher, Warning and higher, Alert Level 1 and higher, and Alert Level 2 is determined from all the available ensemble members for the week to form the weekly probabilistic Outlook. The probabilistic 4-Month Outlook is the highest weekly probability predicted among all the weekly Outlooks during a 4-month period for each of the stress ranges. An initial qualitative skill analysis of the Outlooks for 2011–2015, compared with CRW's satellite-based coral bleaching heat stress products, indicated the Outlook has performed well with high hit rates and low miss rates for most coral reef areas. Regions identified with high false alarm rates will guide future improvements. This Outlook system, as the first and only freely available global coral bleaching prediction system, has been providing critical early warning to marine resource managers, scientists, and decision makers around the world to guide management, protection, and monitoring of coral reefs

  17. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    Science.gov (United States)

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  18. Additive negative effects of anthropogenic sedimentation and warming on the survival of coral recruits.

    Science.gov (United States)

    Fourney, Francesca; Figueiredo, Joana

    2017-09-28

    Corals worldwide are facing population declines due to global climate change and local anthropogenic impacts. Global climate change effects are hard to tackle but recent studies show that some coral species can better handle climate change stress when provided with additional energy resources. The local stressor that most undermines energy acquisition is sedimentation because it impedes coral heterotrophic feeding and their ability to photosynthesize. To investigate if reducing local sedimentation will enable corals to better endure ocean warming, we quantitatively assessed the combined effects of increased temperature and sedimentation (concentration and turbidity) on the survival of coral recruits of the species, Porites astreoides. We used sediment from a reef and a boat basin to mimic natural sediment (coarse) and anthropogenic (fine) sediment (common in dredging), respectively. Natural sediment did not negatively impact coral survival, but anthropogenic sediment did. We found that the capacity of coral recruits to survive under warmer temperatures is less compromised when anthropogenic sedimentation is maintained at the lowest level (30 mg.cm -2 ). Our study suggests that a reduction of US-EPA allowable turbidity from 29 Nephelometric Turbidity Units (NTU) above background to less than 7 NTU near coral reefs would facilitate coral recruit survival under current and higher temperatures.

  19. Establishment of coral-algal symbiosis requires attraction and selection.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamashita

    Full Text Available Coral reef ecosystems are based on coral-zooxanthellae symbiosis. During the initiation of symbiosis, majority of corals acquire their own zooxanthellae (specifically from the dinoflagellate genus Symbiodinium from surrounding environments. The mechanisms underlying the initial establishment of symbiosis have attracted much interest, and numerous field and laboratory experiments have been conducted to elucidate this establishment. However, it is still unclear whether the host corals selectively or randomly acquire their symbionts from surrounding environments. To address this issue, we initially compared genetic compositions of Symbiodinium within naturally settled about 2-week-old Acropora coral juveniles (recruits and those in the adjacent seawater as the potential symbiont source. We then performed infection tests using several types of Symbiodinium culture strains and apo-symbiotic (does not have Symbiodinium cells yet Acropora coral larvae. Our field observations indicated apparent preference toward specific Symbiodinium genotypes (A1 and D1-4 within the recruits, despite a rich abundance of other Symbiodinium in the environmental population pool. Laboratory experiments were in accordance with this field observation: Symbiodinium strains of type A1 and D1-4 showed higher infection rates for Acropora larvae than other genotype strains, even when supplied at lower cell densities. Subsequent attraction tests revealed that three Symbiodinium strains were attracted toward Acropora larvae, and within them, only A1 and D1-4 strains were acquired by the larvae. Another three strains did not intrinsically approach to the larvae. These findings suggest the initial establishment of corals-Symbiodinium symbiosis is not random, and the infection mechanism appeared to comprise two steps: initial attraction step and subsequent selective uptake by the coral.

  20. Coral larvae settle at a higher frequency on red surfaces

    Science.gov (United States)

    Mason, B.; Beard, M.; Miller, M. W.

    2011-09-01

    Although chemical cues serve as the primary determinants of larval settlement and metamorphosis, light is also known to influence the behavior and the settlement of coral planulae. For example, Porites astreoides planulae settle preferentially on unconditioned red substrata. In order to test whether this behavior was a response to color and whether other species also demonstrate color preference, settlement choice experiments were conducted with P. astreoides and Acropora palmata. In these experiments, larvae were offered various types of plastic substrata representing three to seven different color choices. Both species consistently settled on red (or red and orange) substrata at a higher frequency than other colors. In one experiment, P. astreoides settled on 100% of red, plastic cable ties but failed to settle on green or white substrata. In a second experiment, 24% of larvae settled on red buttons, more than settled on six other colors combined. A. palmata settled on 80% of red and of orange cables ties but failed to settle on blue in one experiment and settled on a greater proportion of red acrylic squares than on four other colors or limestone controls in a second experiment. The consistency of the response across a variety of plastic materials suggests the response is related to long-wavelength photosensitivity. Fluorescence and reflectance spectra of experimental substrata demonstrated that the preferred substrata had spectra dominated by wavelengths greater than 550 nm with little or no reflection or emission of shorter wavelengths. These results suggest that some species of coral larvae may use spectral cues for fine-scale habitat selection during settlement. This behavior may be an adaptation to promote settlement in crustose coralline algae (CCA)-dominated habitats facilitating juvenile survival.

  1. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Science.gov (United States)

    Markey, Kathryn L; Abdo, Dave A; Evans, Scott N; Bosserelle, Cyprien

    2016-01-01

    In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI) coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile) compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile). Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011) has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  2. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Directory of Open Access Journals (Sweden)

    Kathryn L Markey

    Full Text Available In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile. Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011 has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  3. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss

    KAUST Repository

    Pratchett, M.S.; Hoey, A.S.; Wilson, S.K.; Messmer, V.; Graham, N.A.J.

    2011-01-01

    Coral reef ecosystems are increasingly subject to severe, large-scale disturbances caused by climate change (e.g., coral bleaching) and other more direct anthropogenic impacts. Many of these disturbances cause coral loss and corresponding changes in habitat structure, which has further important effects on abundance and diversity of coral reef fishes. Declines in the abundance and diversity of coral reef fishes are of considerable concern, given the potential loss of ecosystem function. This study explored the effects of coral loss, recorded in studies conducted throughout the world, on the diversity of fishes and also on individual responses of fishes within different functional groups. Extensive (>60%) coral loss almost invariably led to declines in fish diversity. Moreover, most fishes declined in abundance following acute disturbances that caused >10% declines in local coral cover. Response diversity, which is considered critical in maintaining ecosystem function and promoting resilience, was very low for corallivores, but was much higher for herbivores, omnivores and carnivores. Sustained and ongoing climate change thus poses a significant threat to coral reef ecosystems and diversity hotspots are no less susceptible to projected changes in diversity and function.

  4. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss

    KAUST Repository

    Pratchett, M.S.

    2011-08-12

    Coral reef ecosystems are increasingly subject to severe, large-scale disturbances caused by climate change (e.g., coral bleaching) and other more direct anthropogenic impacts. Many of these disturbances cause coral loss and corresponding changes in habitat structure, which has further important effects on abundance and diversity of coral reef fishes. Declines in the abundance and diversity of coral reef fishes are of considerable concern, given the potential loss of ecosystem function. This study explored the effects of coral loss, recorded in studies conducted throughout the world, on the diversity of fishes and also on individual responses of fishes within different functional groups. Extensive (>60%) coral loss almost invariably led to declines in fish diversity. Moreover, most fishes declined in abundance following acute disturbances that caused >10% declines in local coral cover. Response diversity, which is considered critical in maintaining ecosystem function and promoting resilience, was very low for corallivores, but was much higher for herbivores, omnivores and carnivores. Sustained and ongoing climate change thus poses a significant threat to coral reef ecosystems and diversity hotspots are no less susceptible to projected changes in diversity and function.

  5. The threatened Atlantic elkhorn coral, Acropora palmata : population dynamics and their policy implications

    OpenAIRE

    Vardi, Tali

    2011-01-01

    Fossil data from multiple locations indicates that Atlantic elkhorn coral, Acropora palmata, formed shallow reefs throughout the Caribbean Sea since the Pleistocene. Beginning in the 1980s A. palmata has declined to a small fraction of its formerly vast extent throughout the region. In 2006, elkhorn coral was the first coral, along with its sister species, staghorn coral (Acropora cervicornis), to be included on the U.S. Endangered Species List. We used size-based matrix mod...

  6. Understanding uncertainties in non-linear population trajectories: a Bayesian semi-parametric hierarchical approach to large-scale surveys of coral cover.

    Directory of Open Access Journals (Sweden)

    Julie Vercelloni

    Full Text Available Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.

  7. Natural disease resistance in threatened staghorn corals.

    Directory of Open Access Journals (Sweden)

    Steven V Vollmer

    Full Text Available Disease epidemics have caused extensive damage to tropical coral reefs and to the reef-building corals themselves, yet nothing is known about the abilities of the coral host to resist disease infection. Understanding the potential for natural disease resistance in corals is critically important, especially in the Caribbean where the two ecologically dominant shallow-water corals, Acropora cervicornis and A. palmata, have suffered an unprecedented mass die-off due to White Band Disease (WBD, and are now listed as threatened under the US Threatened Species Act and as critically endangered under the IUCN Red List criteria. Here we examine the potential for natural resistance to WBD in the staghorn coral Acropora cervicornis by combining microsatellite genotype information with in situ transmission assays and field monitoring of WBD on tagged genotypes. We show that six percent of staghorn coral genotypes (3 out of 49 are resistant to WBD. This natural resistance to WBD in staghorn corals represents the first evidence of host disease resistance in scleractinian corals and demonstrates that staghorn corals have an innate ability to resist WBD infection. These resistant staghorn coral genotypes may explain why pockets of Acropora have been able to survive the WBD epidemic. Understanding disease resistance in these corals may be the critical link to restoring populations of these once dominant corals throughout their range.

  8. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Madeleine J.H. van Oppen

    2015-07-01

    Full Text Available Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative

  9. Local stressors reduce coral resilience to bleaching.

    Science.gov (United States)

    Carilli, Jessica E; Norris, Richard D; Black, Bryan A; Walsh, Sheila M; McField, Melanie

    2009-07-22

    Coral bleaching, during which corals lose their symbiotic dinoflagellates, typically corresponds with periods of intense heat stress, and appears to be increasing in frequency and geographic extent as the climate warms. A fundamental question in coral reef ecology is whether chronic local stress reduces coral resistance and resilience from episodic stress such as bleaching, or alternatively promotes acclimatization, potentially increasing resistance and resilience. Here we show that following a major bleaching event, Montastraea faveolata coral growth rates at sites with higher local anthropogenic stressors remained suppressed for at least 8 years, while coral growth rates at sites with lower stress recovered in 2-3 years. Instead of promoting acclimatization, our data indicate that background stress reduces coral fitness and resilience to episodic events. We also suggest that reducing chronic stress through local coral reef management efforts may increase coral resilience to global climate change.

  10. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  11. A trait-based approach to advance coral reef science

    DEFF Research Database (Denmark)

    Madin, Joshua S.; Hoogenboom, Mia O.; Connolly, Sean R.

    2016-01-01

    Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been...... a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems....

  12. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes

    KAUST Repository

    Grupstra, Carsten G. B.

    2017-05-15

    Zooxanthellate corals are threatened by climate change but may be able to escape increasing temperatures by colonizing higher latitudes. To determine the effect of host range expansion on symbiont genetic diversity, we examined genetic variation among populations of Symbiodinium psygmophilum associated with Oculina patagonica, a range-expanding coral that acquires its symbionts through horizontal transmission. We optimized five microsatellite primer pairs for S. psygmophilum and tested them on Oculina spp. samples from the western North Atlantic and the Mediterranean. We then used them to compare symbiont genotype diversity between an Iberian core and an expansion front population of O. patagonica. Only one multilocus S. psygmophilum genotype was identified at the expansion front, and it was shared with the core population, which harbored seven multilocus genotypes. This pattern suggests that O. patagonica range expansion is accompanied by reduced symbiont genetic diversity, possibly due to limited dispersal of symbionts or local selection.

  13. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    Directory of Open Access Journals (Sweden)

    Ashlee Lillis

    2016-10-01

    Full Text Available Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase. These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  14. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs

    International Nuclear Information System (INIS)

    Nugues, Maggy M.; Roberts, Callum M.

    2003-01-01

    Partial mortality and fission on colonies of four common massive coral species were examined at sites differing in their exposure to river sediments in St. Lucia, West Indies. Rates of partial mortality were higher close to the river mouths, where more sediments were deposited, than away from the rivers in two coral species. Frequency of fission showed no significant trend. The percent change in coral cover on reefs from 1995 to 1998 was negatively related to the rate of partial mortality estimated in 1998 in all species. This suggests that partial mortality rates could reflect longer-term temporal changes in coral communities. Similar conclusions could also be reached using a less precise measure and simply recording partial mortality on colonies as <50% and ≥50% dead tissue. We conclude that partial mortality in some species of massive reef corals, expressed as the amount of dead tissue per colony, could provide a rapid and effective means of detecting sediment stress on coral reefs

  15. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    Nugues, Maggy M.; Roberts, Callum M

    2003-03-01

    Partial mortality and fission on colonies of four common massive coral species were examined at sites differing in their exposure to river sediments in St. Lucia, West Indies. Rates of partial mortality were higher close to the river mouths, where more sediments were deposited, than away from the rivers in two coral species. Frequency of fission showed no significant trend. The percent change in coral cover on reefs from 1995 to 1998 was negatively related to the rate of partial mortality estimated in 1998 in all species. This suggests that partial mortality rates could reflect longer-term temporal changes in coral communities. Similar conclusions could also be reached using a less precise measure and simply recording partial mortality on colonies as <50% and {>=}50% dead tissue. We conclude that partial mortality in some species of massive reef corals, expressed as the amount of dead tissue per colony, could provide a rapid and effective means of detecting sediment stress on coral reefs.

  16. Coral recovery may not herald the return of fishes on damaged coral reefs

    KAUST Repository

    Bellwood, David R.; Baird, Andrew Hamilton; Depczynski, Martial R.; Gonzá lez-Cabello, Alonso; Hoey, Andrew; Lefé vre, Carine D.; Tanner, Jennifer K.

    2012-01-01

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals. © 2012 Springer-Verlag.

  17. Coral recovery may not herald the return of fishes on damaged coral reefs

    KAUST Repository

    Bellwood, David R.

    2012-03-25

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals. © 2012 Springer-Verlag.

  18. Age, growth rates, and paleoclimate studies of deep sea corals

    Science.gov (United States)

    Prouty, Nancy G; Roark, E. Brendan; Andrews, Allen; Robinson, Laura; Hill, Tessa; Sherwood, Owen; Williams, Branwen; Guilderson, Thomas P.; Fallon, Stewart

    2015-01-01

    Deep-water corals are some of the slowest growing, longest-lived skeletal accreting marine organisms. These habitat-forming species support diverse faunal assemblages that include commercially and ecologically important organisms. Therefore, effective management and conservation strategies for deep-sea corals can be informed by precise and accurate age, growth rate, and lifespan characteristics for proper assessment of vulnerability and recovery from perturbations. This is especially true for the small number of commercially valuable, and potentially endangered, species that are part of the black and precious coral fisheries (Tsounis et al. 2010). In addition to evaluating time scales of recovery from disturbance or exploitation, accurate age and growth estimates are essential for understanding the life history and ecology of these habitat-forming corals. Given that longevity is a key factor for population maintenance and fishery sustainability, partly due to limited and complex genetic flow among coral populations separated by great distances, accurate age structure for these deep-sea coral communities is essential for proper, long-term resource management.

  19. Productivity and abundance of large sponge populations on Flinders Reef flats, Coral Sea

    Science.gov (United States)

    Wilkinson, Clive R.

    1987-04-01

    Large populations of flattened sponges with cyanobacterial symbionts were observed on the shallow reef-flats of the Flinders Reefs, Coral Sea. Estimates of these populations indicated as many as 60 individuals with a total wet biomass of 1.2 kg per m2 in some areas. Along a metre wide transect across 1.3 km of reef flat the population was estimated at 530 kg wet weight sponge (mean 411 g m-2). The four prominent species had instantaneous P/R ratios between 1.3 and 1.8 at optimum light such that photosynthetic productivity was calculated to provide between 61 and 80% of sponge energy requirements in summer and 48 to 64% in winter. While such sponge beds are a prominent feature of these reefs, they appear to contribute less than 10% of gross reef-flat productivity.

  20. Assessing Coral Response to a Severe Bleaching Event Using Mulimolecular Biomarkers

    Science.gov (United States)

    Babcock-Adams, L.; Minarro, S.; Fitt, W. K.; Medeiros, P. M.

    2016-02-01

    Coral bleaching events occur primarily due to increased seawater temperatures that results in the expulsion and/or reduction of endosymbiotic zooxanthellae. The Adaptive Bleaching Hypothesis suggests that bleaching events allow a different symbiont to populate the host. Specifically, the Symbiodinium clade D has been shown to increase in abundance following a bleaching event. Approximately 40 coral tissue samples (Orbicella annularis and Orbicella faveolata) were collected in the Florida Keys in March, May, August, and November of 2000, and analyzed using GC-MS for molecular biomarkers to determine if a different suite of compounds is produced at different times following the severe bleaching events in 1997 and 1998, and to relate the biomarker composition and levels to the symbiont(s) that were present in the corals. Our preliminary results show a predominant presence of saccharides (e.g., glucose, sucrose) and sterols (e.g., cholesterol, campesterol, brassicasterol), and to a lesser degree saturated (C16:0, C18:0, C20:0) and unsaturated fatty acids (C16:1; C18:1; C18:2; C20:4). The corals with the bleaching resistant clade D symbiont have higher levels of sterols as compared to corals with other non-resistant symbionts that were collected at the same time point. Concentrations of both sterols and saccharides increased throughout time, especially from March to May, which may indicate a recovery of the corals.

  1. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci.

    Science.gov (United States)

    Uthicke, Sven; Pecorino, Danilo; Albright, Rebecca; Negri, Andrew Peter; Cantin, Neal; Liddy, Michelle; Dworjanyn, Symon; Kamya, Pamela; Byrne, Maria; Lamare, Miles

    2013-01-01

    Coral reefs are marine biodiversity hotspots, but their existence is threatened by global change and local pressures such as land-runoff and overfishing. Population explosions of coral-eating crown of thorns sea stars (COTS) are a major contributor to recent decline in coral cover on the Great Barrier Reef. Here, we investigate how projected near-future ocean acidification (OA) conditions can affect early life history stages of COTS, by investigating important milestones including sperm motility, fertilisation rates, and larval development and settlement. OA (increased pCO2 to 900-1200 µatm pCO2) significantly reduced sperm motility and, to a lesser extent, velocity, which strongly reduced fertilization rates at environmentally relevant sperm concentrations. Normal development of 10 d old larvae was significantly lower under elevated pCO2 but larval size was not significantly different between treatments. Settlement of COTS larvae was significantly reduced on crustose coralline algae (known settlement inducers of COTS) that had been exposed to OA conditions for 85 d prior to settlement assays. Effect size analyses illustrated that reduced settlement may be the largest bottleneck for overall juvenile production. Results indicate that reductions in fertilisation and settlement success alone would reduce COTS population replenishment by over 50%. However, it is unlikely that this effect is sufficient to provide respite for corals from other negative anthropogenic impacts and direct stress from OA and warming on corals.

  2. Beyond the Coral Triangle: high genetic diversity and near panmixia in Singapore's populations of the broadcast spawning sea star Protoreaster nodosus.

    Science.gov (United States)

    Tay, Y C; Chng, M W P; Sew, W W G; Rheindt, F E; Tun, K P P; Meier, R

    2016-08-01

    The Coral Triangle is widely considered the most important centre of marine biodiversity in Asia while areas on its periphery such as the South China Sea, have received much less interest. Here, we demonstrate that a small population of the knobbly sea star Protoreaster nodosus in Singapore has similarly high levels of genetic diversity as comparable Indonesian populations from the Coral Triangle. The high genetic diversity of this population is remarkable because it is maintained despite decades of continued anthropogenic disturbance. We postulate that it is probably due to broadcast spawning which is likely to maintain high levels of population connectivity. To test this, we analysed 6140 genome-wide single nucleotide polymorphism (SNP) loci for Singapore's populations and demonstrate a pattern of near panmixia. We here document a second case of high genetic diversity and low genetic structure for a broadcast spawner in Singapore, which suggests that such species have high resilience against anthropogenic disturbances. The study demonstrates the feasibility and power of using genome-wide SNPs for connectivity studies of marine invertebrates without a sequenced genome.

  3. Regulation and control of intracellular algae (= zooxanthellae) in hard corals

    Science.gov (United States)

    Jones, R. J.; Yellowlees, D.

    1997-01-01

    To examine algal (= zooxanthellae) regulation and control, and the factors determining algal densities in hard corals, the zooxanthellae mitotic index and release rates were regularly determined in branch tips from a colony of a staghorn coral, Acropora formosa, recovering from a coral 'bleaching' event (the stress-related dissociation of the coral–algal symbiosis). Mathematical models based upon density-dependent decreases in the algal division frequency and increases in algal release rates during the post-bleaching recovery period accurately predict the observed recovery period (ca. 20 weeks). The models suggest that (i) the colony recovered its algal population from the division of the remaining zooxanthellae, and (ii) the continual loss of zooxanthellae significantly slowed the recovery of the coral. Possible reasons for the 'paradoxical' loss of healthy zooxanthellae from the bleached coral are discussed in terms of endodermal processes occurring in the recovering coral and the redistribution of newly formed zooxanthellae to aposymbiotic host cells. At a steady-state algal density of 2.1 x 106 zooxanthellae cm-2 at the end of the recovery period, the zooxanthellae would have to form a double layer of cells in the coral tissues, consistent with microscopic observations. Neighbouring colonies of A. formosa with inherently higher algal densities possess proportionately smaller zooxanthellae. Results suggest that space availability and the size of the algal symbionts determines the algal densities in the coral colonies. The large increases in the algal densities reported in corals exposed to elevated nutrient concentrations (i.e between a two- and five-fold increase in the algal standing stock) are not consistent with this theory. We suggest that increases of this magnitude are a product of the experimental conditions: reasons for this statement are discussed. We propose that the stability of the coral–algal symbiosis under non-stress conditions, and the

  4. Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs

    Directory of Open Access Journals (Sweden)

    Rafael A. Magris

    2018-04-01

    Full Text Available Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal development, mining, aquaculture, shipping, and global warming. We calculated an index of the risk to cumulative impacts: (i assuming uniform sensitivity of coral reefs to stressors; and (ii using impact weights to reflect varying tolerance levels of coral reefs to each stressor. We also predicted the index in both the presence and absence of global warming. We found that 16% and 37% of coral reefs had high to very high risk of cumulative impacts, without and with information on sensitivity respectively, and 42% of reefs had low risk to cumulative impacts from both local and global stressors. Our outputs are the first comprehensive spatial dataset of cumulative impact on coral reefs in Brazil, and show that areas requiring attention mostly corresponded to those closer to population centres. We demonstrate how the relationships between risks from local and global stressors can be used to derive strategic management actions.

  5. Lower Mesophotic Coral Communities (60-125 m Depth of the Northern Great Barrier Reef and Coral Sea.

    Directory of Open Access Journals (Sweden)

    Norbert Englebert

    Full Text Available Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m, despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60-125 m at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60-80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213 between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve.

  6. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    Science.gov (United States)

    Caballes, Ciemon Frank; Pratchett, Morgan S; Kerr, Alexander M; Rivera-Posada, Jairo A

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  7. In situ Analysis of Coral Recruits Using Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Adi Zweifler

    2017-09-01

    Full Text Available Recruitment is a fundamental process that influences coral population dynamics as well as reef community structure. To date, coral recruitment success rates are poorly quantified because survey methods are labor-intensive and require manual interpretation. Thus, they are prone to human errors and have low repeatability—a gap we aim to bridge in this research. Since both corals and their symbiotic algae contain fluorescent pigments (chlorophyll and fluorescent proteins, we used the non-invasive Fluorescence Imaging System (FluorIS and developed a methodology to acquire daytime fluorescent photographs and identify coral recruits in them. We tested our method by monitoring 20 random quadrats at two sites in the Gulf of Aqaba, Israel. The quadrats were surveyed once a month for 8 months in order to track the settlement, mortality and survival rates of new coral recruits. We demonstrate daytime imaging using our method and identification of coral recruits as small as 1 mm in diameter, in a 20 × 20 cm quadrat. Our results show that this photographic method reduces surveyor errors and improves precision. The surveys revealed that on average, there are ~2 new coral recruit settlements (<2 cm for a quadrat (40 cm2 per month and that 83% of them survive the first month. Our study suggests a relative stability in the Gulf of Aqaba coral population during the survey period. The ability to survey recruits during the day using low-cost, easy-to-use photographic equipment has the potential to contribute significantly to the standardization of coral reef monitoring and management tools, at a time when the world's coral reefs are declining due to local and global stressors.

  8. Vulnerability of Coral Reefs to Bioerosion From Land-Based Sources of Pollution

    Science.gov (United States)

    Prouty, Nancy G.; Cohen, Anne; Yates, Kimberly K.; Storlazzi, Curt D.; Swarzenski, Peter W.; White, Darla

    2017-12-01

    Ocean acidification (OA), the gradual decline in ocean pH and [CO32-] caused by rising levels of atmospheric CO2, poses a significant threat to coral reef ecosystems, depressing rates of calcium carbonate (CaCO3) production, and enhancing rates of bioerosion and dissolution. As ocean pH and [CO32-] decline globally, there is increasing emphasis on managing local stressors that can exacerbate the vulnerability of coral reefs to the effects of OA. We show that sustained, nutrient rich, lower pH submarine groundwater discharging onto nearshore coral reefs off west Maui lowers the pH of seawater and exposes corals to nitrate concentrations 50 times higher than ambient. Rates of coral calcification are substantially decreased, and rates of bioerosion are orders of magnitude higher than those observed in coral cores collected in the Pacific under equivalent low pH conditions but living in oligotrophic waters. Heavier coral nitrogen isotope (δ15N) values pinpoint not only site-specific eutrophication, but also a sewage nitrogen source enriched in 15N. Our results show that eutrophication of reef seawater by land-based sources of pollution can magnify the effects of OA through nutrient driven-bioerosion. These conditions could contribute to the collapse of coastal coral reef ecosystems sooner than current projections predict based only on ocean acidification.Plain Language SummaryWe show that sustained, nutrient rich, lower pH submarine groundwater discharging onto nearshore coral reefs off west Maui lowers the pH of seawater and exposes corals to nitrate concentrations 50 times higher than ambient. Rates of coral calcification are substantially decreased, and rates of bioerosion are orders of magnitude higher than those observed in coral cores collected in the Pacific. With many of Maui's coral reefs in significant decline reducing any stressors at a local scale is important to sustaining future coral reef ecosystems and planning for resiliency.

  9. Exploring individual- to population-level impacts of disease on coral reef sponges: using spatial analysis to assess the fate, dynamics, and transmission of Aplysina Red Band Syndrome (ARBS.

    Directory of Open Access Journals (Sweden)

    Cole G Easson

    Full Text Available Marine diseases are of increasing concern for coral reef ecosystems, but often their causes, dynamics and impacts are unknown. The current study investigated the epidemiology of Aplysina Red Band Syndrome (ARBS, a disease affecting the Caribbean sponge Aplysina cauliformis, at both the individual and population levels. The fates of marked healthy and ARBS-infected sponges were examined over the course of a year. Population-level impacts and transmission mechanisms of ARBS were investigated by monitoring two populations of A. cauliformis over a three year period using digital photography and diver-collected data, and analyzing these data with GIS techniques of spatial analysis. In this study, three commonly used spatial statistics (Ripley's K, Getis-Ord General G, and Moran's Index were compared to each other and with direct measurements of individual interactions using join-counts, to determine the ideal method for investigating disease dynamics and transmission mechanisms in this system. During the study period, Hurricane Irene directly impacted these populations, providing an opportunity to assess potential storm effects on A. cauliformis and ARBS.Infection with ARBS caused increased loss of healthy sponge tissue over time and a higher likelihood of individual mortality. Hurricane Irene had a dramatic effect on A. cauliformis populations by greatly reducing sponge biomass on the reef, especially among diseased individuals. Spatial analysis showed that direct contact between A. cauliformis individuals was the likely transmission mechanism for ARBS within a population, evidenced by a significantly higher number of contact-joins between diseased sponges compared to random. Of the spatial statistics compared, the Moran's Index best represented true connections between diseased sponges in the survey area. This study showed that spatial analysis can be a powerful tool for investigating disease dynamics and transmission in a coral reef ecosystem.

  10. Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Pim Bongaerts

    2010-05-01

    Full Text Available Coral reefs are hotspots of biodiversity, yet processes of diversification in these ecosystems are poorly understood. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however, evidence supporting ecological speciation in corals is sparse. Here, we present data from a widespread coral species that reveals a strong association of host and symbiont lineages with specific habitats, consistent with distinct, sympatric gene pools that are maintained through ecologically-based selection.Populations of a common brooding coral, Seriatopora hystrix, were sampled from three adjacent reef habitats (spanning a approximately 30 m depth range at three locations on the Great Barrier Reef (n = 336. The populations were assessed for genetic structure using a combination of mitochondrial (putative control region and nuclear (three microsatellites markers for the coral host, and the ITS2 region of the ribosomal DNA for the algal symbionts (Symbiodinium. Our results show concordant genetic partitioning of both the coral host and its symbionts across the different habitats, independent of sampling location.This study demonstrates that coral populations and their associated symbionts can be highly structured across habitats on a single reef. Coral populations from adjacent habitats were found to be genetically isolated from each other, whereas genetic similarity was maintained across similar habitat types at different locations. The most parsimonious explanation for the observed genetic partitioning across habitats is that adaptation to the local environment has caused ecological divergence of distinct genetic groups within S. hystrix.

  11. Microbial ecology of corals, sponges, and algae in mesophotic coral environments

    Science.gov (United States)

    Olson, Julie B.; Kellogg, Christina A.

    2010-01-01

    Mesophotic coral ecosystems that occur at depths from 30 to 200 m have historically been understudied and yet appear to support a diverse biological community. The microbiology of these systems is particularly poorly understood, especially with regard to the communities associated with corals, sponges, and algae. This lack of information is partly due to the problems associated with gaining access to these environments and poor reproducibility across sampling methods. To summarize what is known about the microbiology of these ecosystems and to highlight areas where research is urgently needed, an overview of the current state of knowledge is presented. Emphasis is placed on the characterization of microbial populations, both prokaryotic and eukaryotic, associated with corals, sponges, and algae and the factors that influence microbial community structure. In topic areas where virtually nothing is known from mesophotic environments, the knowledge pertaining to shallow-water ecosystems is summarized to provide a starting point for a discussion on what might be expected in the mesophotic zone.

  12. Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitat-forming biota on a tropical coral reef.

    Science.gov (United States)

    Wilson, Shaun K; Depcyznski, Martial; Fisher, Rebecca; Holmes, Thomas H; Noble, Mae M; Radford, Ben T; Rule, Michael; Shedrawi, George; Tinkler, Paul; Fulton, Christopher J

    2018-02-01

    Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large-scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large-scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy-forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO-influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids ( r  = .9), siganids ( r  = .9), and mullids ( r  = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI-juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña-related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat-forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.

  13. Patterns of coral disease across the Hawaiian archipelago: relating disease to environment.

    Directory of Open Access Journals (Sweden)

    Greta S Aeby

    Full Text Available In Hawaii, coral reefs occur across a gradient of biological (host abundance, climatic (sea surface temperature anomalies and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI to the pristine reefs of the northwestern Hawaiian Islands (NWHI. Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora with Porites having the highest prevalence. Porites growth anomalies (PorGAs were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral. All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic. All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and Por

  14. Patterns of coral disease across the Hawaiian Archipelago: Relating disease to environment

    Science.gov (United States)

    Aeby, G.S.; Williams, G.J.; Franklin, E.C.; Kenyon, J.; Cox, E.F.; Coles, S.; Work, Thierry M.

    2011-01-01

    In Hawaii, coral reefs occur across a gradient of biological (host abundance), climatic (sea surface temperature anomalies) and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI) to the pristine reefs of the northwestern Hawaiian Islands (NWHI). Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora) with Porites having the highest prevalence. Porites growth anomalies (PorGAs) were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm) was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS) was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral). All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS) we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic). All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing

  15. Skeletal light-scattering accelerates bleaching response in reef-building corals.

    Science.gov (United States)

    Swain, Timothy D; DuBois, Emily; Gomes, Andrew; Stoyneva, Valentina P; Radosevich, Andrew J; Henss, Jillian; Wagner, Michelle E; Derbas, Justin; Grooms, Hannah W; Velazquez, Elizabeth M; Traub, Joshua; Kennedy, Brian J; Grigorescu, Arabela A; Westneat, Mark W; Sanborn, Kevin; Levine, Shoshana; Schick, Mark; Parsons, George; Biggs, Brendan C; Rogers, Jeremy D; Backman, Vadim; Marcelino, Luisa A

    2016-03-21

    At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as 'microscopic' reduced-scattering coefficient, μ'(S,m)), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-μ'(S,m) corals bleach at higher rate and severity than high-μ'(S,m) corals and the Symbiodinium associated with low-μ'(S,m) corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-μ'(S,m) corals. While symbionts associated with low-[Formula: see text] corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor

  16. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2006-03-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin, by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea. Results The mtDNA surveyed (630 bp of cytochrome oxidase subunit I was invariant among individuals sampled from 18 populations spanning 3000 km of the range of B. elegans, despite high levels of variation and population subdivision for allozymes over these same populations. The synonymous substitution rate between B. elegans and T. coccinea (0.05%/site/106 years is similar to that in most plants, but 50–100 times lower than rates typical for most animals. In addition, while substitutions to mtDNA in most animals exhibit a strong bias toward transitions, mtDNA from these corals does not. Conclusion Slow rates of mitochondrial nucleotide substitution result in low levels of intraspecific mtDNA variation in corals, even when nuclear loci vary. Slow mtDNA evolution appears to be the basal condition among eukaryotes. mtDNA substitution rates switch from slow to fast abruptly and unidirectionally. This switch may stem from the loss of just one or a few mitochondrion-specific DNA repair or replication genes.

  17. Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates

    Science.gov (United States)

    Nakajima, Ryota; Tanaka, Yasuaki; Guillemette, Ryan; Kurihara, Haruko

    2017-12-01

    Exudates derived from hermatypic corals were incubated with dark conditions for 96 h to quantify the growth of both bacteria and HNF in response to coral-derived dissolved organic matter (DOM). The addition of coral-derived DOM caused significantly higher growth rates and production of bacteria and HNF compared to those in control seawater without coral exudates. During the incubation, HNF exhibited their peak in abundance 24-48 h after the peak abundance of bacteria. The growth efficiencies of both bacteria and HNF were significantly higher with coral-derived DOM, suggesting higher transfer efficiency from bacteria that is fueled by coral organic matter to HNF. Therefore, trophic transfer of coral-derived DOM from bacteria to HNF can contribute to efficient carbon flow through the microbial food web.

  18. Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of zooxanthellae in coral tissues

    Science.gov (United States)

    Kuanui, Pataporn; Chavanich, Suchana; Viyakarn, Voranop; Omori, Makoto; Lin, Chiahsin

    2015-06-01

    This study investigated the effects of temperature and salinity on growth, survival, and photosynthetic efficiency of three coral species, namely, Pocillopora damicornis, Acropora millepora and Platygyra sinensis of different ages (6 and 18 months old). The experimental corals were cultivated via sexual propagation. Colonies were exposed to 5 different temperatures (18, 23, 28, 33, and 38°C) and 5 different salinities (22, 27, 32, 37, and 42 psu). Results showed that temperature significantly affected photosynthetic efficiency (Fv/Fm) (p < 0.05) compared to salinity. The maximum quantum yield of corals decreased ranging from 5% to 100% when these corals were exposed to different temperatures and salinities. Temperature also significantly affected coral growth and survival. However, corals exposed to changes in salinity showed higher survivorship than those exposed to changes in temperature. Results in this study also showed that corals of different ages and of different species did not display the same physiological responses to changes in environmental conditions. Thus, the ability of corals to tolerate salinity and temperature stresses depends on several factors.

  19. Divergent evolutionary histories of DNA markers in a Hawaiian population of the coral Montipora capitata

    OpenAIRE

    Hollie M. Putnam; Diane K. Adams; Ehud Zelzion; Nicole E. Wagner; Huan Qiu; Tali Mass; Paul G. Falkowski; Ruth D. Gates; Debashish Bhattacharya

    2017-01-01

    We investigated intra- and inter-colony sequence variation in a population of the dominant Hawaiian coral Montipora capitata by analyzing marker gene and genomic data. Ribosomal ITS1 regions showed evidence of a reticulate history among the colonies, suggesting incomplete rDNA repeat homogenization. Analysis of the mitochondrial genome identified a major (M. capitata) and a minor (M. flabellata) haplotype in single polyp-derived sperm bundle DNA with some colonies containing 2?3 different mtD...

  20. Microbial ecology of four coral atolls in the Northern Line Islands.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Dinsdale

    Full Text Available Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp. and heterotrophs. In contrast, Kiritimati, a large and populated ( approximately 5500 people atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1 oceaonographic and/or hydrographic conditions or 2 human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation

  1. Microbial Ecology of Four Coral Atolls in the Northern Line Islands

    Science.gov (United States)

    Smriga, Steven; Edwards, Robert A.; Angly, Florent; Wegley, Linda; Hatay, Mark; Hall, Dana; Brown, Elysa; Haynes, Matthew; Krause, Lutz; Sala, Enric; Sandin, Stuart A.; Thurber, Rebecca Vega; Willis, Bette L.; Azam, Farooq; Knowlton, Nancy; Rohwer, Forest

    2008-01-01

    Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems

  2. Microbial bioenergetics of coral-algal interactions

    Directory of Open Access Journals (Sweden)

    Ty N.F. Roach

    2017-06-01

    Full Text Available Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify

  3. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    Directory of Open Access Journals (Sweden)

    Ciemon Frank Caballes

    Full Text Available Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides versus non-preferred coral prey (Porites rus and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure and quantity (coral abundance varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  4. Zooxanthellae Harvested by Ciliates Associated with Brown Band Syndrome of Corals Remain Photosynthetically Competent▿

    Science.gov (United States)

    Ulstrup, Karin E.; Kühl, Michael; Bourne, David G.

    2007-01-01

    Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae. PMID:17259357

  5. Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent.

    Science.gov (United States)

    Ulstrup, Karin E; Kühl, Michael; Bourne, David G

    2007-03-01

    Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae.

  6. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    KAUST Repository

    Aranda, Manuel

    2012-09-21

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).

  7. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    KAUST Repository

    Aranda, Manuel; DeSalvo, Michael K; Bayer, Till; Medina, Monica; Voolstra, Christian R.

    2012-01-01

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).

  8. Population genetic structure of coral reef species Plectorhinchus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... 1The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao. 266003 P. R. ... marginal sea of Western Pacific, which was an enclosed inland sea ... coral islands and reefs in South China Sea. There are ..... strong genetic divergence in Southeast Asia (Liu et al., 2006).

  9. Assessing the Effects of Disease and Bleaching on Florida Keys Corals by Fitting Population Models to Data

    Science.gov (United States)

    Coral diseases have increased in frequency over the past few decades and have important influences on the structure and composition of coral reef communities. However, there is limited information on the etiologies of many coral diseases, and pathways via which coral diseases ar...

  10. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    Science.gov (United States)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  11. Control of bleaching in mushroom coral populations (Scleractinia: Fungiidae) in the Java Sea: stress tolerance and interference by life history strategy

    NARCIS (Netherlands)

    Hoeksema, B.W.

    1991-01-01

    Bleaching was studied in populations of phylogenetically closely related species (n = 21) of mushroom corals (Scleractinia: Fungiidae) around Pari Island (Java Sea) during a period of excessive seawater warming in 1983. The interspecific variation in the proportions of affected individuals was

  12. Modeling regional coral reef responses to global warming and changes in ocean chemistry: Caribbean case study

    Science.gov (United States)

    Buddemeier, R.W.; Lane, D.R.; Martinich, J.A.

    2011-01-01

    Climatic change threatens the future of coral reefs in the Caribbean and the important ecosystem services they provide. We used a simulation model [Combo ("COral Mortality and Bleaching Output")] to estimate future coral cover in the part of the eastern Caribbean impacted by a massive coral bleaching event in 2005. Combo calculates impacts of future climate change on coral reefs by combining impacts from long-term changes in average sea surface temperature (SST) and ocean acidification with impacts from episodic high temperature mortality (bleaching) events. We used mortality and heat dose data from the 2005 bleaching event to select historic temperature datasets, to use as a baseline for running Combo under different future climate scenarios and sets of assumptions. Results suggest a bleak future for coral reefs in the eastern Caribbean. For three different emissions scenarios from the Intergovernmental Panel on Climate Change (IPCC; B1, A1B, and A1FI), coral cover on most Caribbean reefs is projected to drop below 5% by the year 2035, if future mortality rates are equivalent to some of those observed in the 2005 event (50%). For a scenario where corals gain an additional 1-1. 5??C of heat tolerance through a shift in the algae that live in the coral tissue, coral cover above 5% is prolonged until 2065. Additional impacts such as storms or anthropogenic damage could result in declines in coral cover even faster than those projected here. These results suggest the need to identify and preserve the locations that are likely to have a higher resiliency to bleaching to save as many remnant populations of corals as possible in the face of projected wide-spread coral loss. ?? 2011 The Author(s).

  13. Threatened corals provide underexplored microbial habitats.

    Directory of Open Access Journals (Sweden)

    Shinichi Sunagawa

    2010-03-01

    Full Text Available Contemporary in-depth sequencing of environmental samples has provided novel insights into microbial community structures, revealing that their diversity had been previously underestimated. Communities in marine environments are commonly composed of a few dominant taxa and a high number of taxonomically diverse, low-abundance organisms. However, studying the roles and genomic information of these "rare" organisms remains challenging, because little is known about their ecological niches and the environmental conditions to which they respond. Given the current threat to coral reef ecosystems, we investigated the potential of corals to provide highly specialized habitats for bacterial taxa including those that are rarely detected or absent in surrounding reef waters. The analysis of more than 350,000 small subunit ribosomal RNA (16S rRNA sequence tags and almost 2,000 nearly full-length 16S rRNA gene sequences revealed that rare seawater biosphere members are highly abundant or even dominant in diverse Caribbean corals. Closely related corals (in the same genus/family harbored similar bacterial communities. At higher taxonomic levels, however, the similarities of these communities did not correlate with the phylogenetic relationships among corals, opening novel questions about the evolutionary stability of coral-microbial associations. Large proportions of OTUs (28.7-49.1% were unique to the coral species of origin. Analysis of the most dominant ribotypes suggests that many uncovered bacterial taxa exist in coral habitats and await future exploration. Our results indicate that coral species, and by extension other animal hosts, act as specialized habitats of otherwise rare microbes in marine ecosystems. Here, deep sequencing provided insights into coral microbiota at an unparalleled resolution and revealed that corals harbor many bacterial taxa previously not known. Given that two of the coral species investigated are listed as threatened under

  14. A Global Estimate of the Number of Coral Reef Fishers.

    Directory of Open Access Journals (Sweden)

    Louise S L Teh

    Full Text Available Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  15. A Global Estimate of the Number of Coral Reef Fishers.

    Science.gov (United States)

    Teh, Louise S L; Teh, Lydia C L; Sumaila, U Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  16. The Ecological Role of Sharks on Coral Reefs.

    Science.gov (United States)

    Roff, George; Doropoulos, Christopher; Rogers, Alice; Bozec, Yves-Marie; Krueck, Nils C; Aurellado, Eleanor; Priest, Mark; Birrell, Chico; Mumby, Peter J

    2016-05-01

    Sharks are considered the apex predator of coral reefs, but the consequences of their global depletion are uncertain. Here we explore the ecological roles of sharks on coral reefs and, conversely, the importance of reefs for sharks. We find that most reef-associated shark species do not act as apex predators but instead function as mesopredators along with a diverse group of reef fish. While sharks perform important direct and indirect ecological roles, the evidence to support hypothesised shark-driven trophic cascades that benefit corals is weak and equivocal. Coral reefs provide some functional benefits to sharks, but sharks do not appear to favour healthier reef environments. Restoring populations of sharks is important and can yet deliver ecological surprise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs

    KAUST Repository

    Bellwood, David R.

    2011-11-16

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. © 2011 The Royal Society.

  18. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs

    KAUST Repository

    Bellwood, David R.; Hoey, Andrew; Hughes, Terence P.

    2011-01-01

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. © 2011 The Royal Society.

  19. Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease

    Science.gov (United States)

    Chong-Seng, K. M.; Cole, A. J.; Pratchett, M. S.; Willis, B. L.

    2011-06-01

    Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes ( Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.

  20. Population pressure on coral atolls: trends and approaching limits.

    Science.gov (United States)

    Rapaport, M

    1990-09-01

    Trends and approaching limits of population pressure on coral atolls is discussed by examining the atoll environment in terms of the physical geography, the production systems, and resource distribution. Atoll populations are grouped as dependent and independent, and demographic trends in population growth, migraiton, urbanization, and political dependency are reviewed. Examination of the carrying capacity includes a dynamic model, the influences of the West, and philopsophical considerations. The carrying capacity is the "maximal population supportable in a given area". Traditional models are criticized because of a lack in accounting for external linkages. The proposed model is dynamic and considers perceived needs and overseas linkages. It also explains regional disparities in population distribution, and provides a continuing model for population movement from outer islands to district centers and mainland areas. Because of increased expectations and perceived needs, there is a lower carrying capacity for outlying areas, and expanded capacity in district centers. This leads to urbanization, emigration, and carrying capacity overshot in regional and mainland areas. Policy intervention is necessary at the regional and island community level. Atolls, which are islands surrounding deep lagoons, exist in archipelagoes across the oceans, and are rich in aquatic life. The balance in this small land area with a vulnerable ecosystem may be easily disturbed by scarce water supplies, barren soils, rising sea levels in the future, hurricanes, and tsunamis. Traditionally, fisheries and horticulture (pit-taro, coconuts, and breadfruit) have sustained populations, but modern influences such as blasting, reef mining, new industrial technologies, population pressure, and urbanization threaten the balance. Population pressure, which has lead to pollution, epidemics, malnutrition, crime, social disintegration, and foreign dependence, is evidenced in the areas of Tuvalu, Kiribati

  1. Chronology of lead pollution contained in banded coral skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, R E; Gilbert, T R

    1984-08-01

    The possibility of the annual skeletal growth bands of reef-building corals containing a record of lead additions to the marine environment was investigated using coral skeletons from St. Croix, Virgin Islands. Concentrations of lead within a coral from a polluted reef averaged 395 ng/g, five fold higher than within a coral from a pristine site, 87 ng/g. The lead chronologies of both corals showed a significant increase in concentration towards the present during the past 26 yr. The increase in lead concentration in the coral from the pristine site is suggested to represent the increase in lead availability from global pollution. Coral skeletons offer the probability of development into tools for long term chemical recorders of levels of lead and possibly other metals or compounds in seawater. 50 references, 3 figures, 1 table.

  2. Colony size-frequency distributions among different populations of the scleractinan coral Siderastrea stellata in Southwestern Atlantic: implications for life history patterns

    Directory of Open Access Journals (Sweden)

    Monica Moraes Lins de Barros

    2006-12-01

    Full Text Available Colony size-frequency distributions of reef corals may be used to infer growth potential and population responses upon environmental changes. The present paper compares the size structure of colonies of Siderastrea stellata Verrill, 1868,among 11 sites, six of them distributed along a gradient of sediment deposition in Abrolhos, Bahia, Brazil (18º S. Results indicated that the population structure is likely to be influenced by local conditions, rather than large scale factors, such as latitude. The 11 distributions, however, showed higher frequencies of small size classes. Class 1 (up to 2.5 cm diameter was always present and the frequency of colonies from size class 3 (10 cm diameter tended to decrease in all sites. Comparison among the six Abrolhos sites showed that S. stellata has advantages at sites with intermediate sedimentation, where colonies attain larger sizes, probably, reflecting a higher survivorship over time. The present study showed that, despite the influence of environmental conditions on parameters of the populations such as size of colony, the life history strategy of S. stellata reflects a local adaptation that allows its development and survivorship in shallow waters and horizontal substrates, sites characterized by high mortality rates.Distribuições de freqüências de classes de tamanho de colônias de corais recifais, associadas a dados de fecundidade e crescimento, podem ser utilizadas para inferir o potencial de crescimento e respostas da população frente às variações ambientais. Apresentamos análise da estrutura de tamanho de colônias do coral Siderastrea stellata Verrill, 1868, em 11 locais, seis desses distribuídos ao longo de um gradiente de sedimentação em Abrolhos, Bahia, Brasil (18ºS. Os resultados demonstraram ausência de um padrão latitudinal, indicando maior influência de fatores locais. Em Abrolhos, locais com taxas de deposição de sedimento intermediárias apresentaram os maiores

  3. Holobiont Diversity in a Reef-Building Coral over Its Entire Depth Range in the Mesophotic Zone

    Directory of Open Access Journals (Sweden)

    Fanny L. Gonzalez-Zapata

    2018-02-01

    Full Text Available Mesophotic reef-building coral communities (~30–120 m depth remain largely unexplored, despite representing roughly three-quarters of the overall depth range at which tropical coral reef ecosystems occur. Although many coral species are restricted to shallow depths, several species occur across large depth ranges, including lower mesophotic depths. Yet, it remains unclear how such species can persist under extreme low-light conditions and how the different symbiotic partners associated with these corals contribute to facilitate such broad depth ranges. We assessed holobiont genetic diversity of the Caribbean coral Agaricia undata over depth in three localities of Colombia: San Andres Island (between 37 and 85 m, Cartagena (between 17 and 45 m and “Parque Nacional Natural Corales de Profundidad” (between 77 and 87 m. We used a population genomics approach (NextRAD for the coral host, and amplicon sequencing for the associated Symbiodinium (non-coding region of the plastid psbA minicircle and prokaryotic (V4 region of the 16S rRNA gene symbiont community. For the coral host, genetic structuring was only observed across geographic regions, but not between depths. Bayesian clustering and discriminant analysis of principal components revealed genetic structuring between the three regions, but not between shallow (<30 m, upper (≥30 and ≤60 m and lower mesophotic (>60 m depths. This pattern was confirmed when evaluating pairwise differentiation (FST between populations, with much higher values between regions (0.0467–0.1034 compared to between depths [within location; −0.0075–(−0.0007]. Symbiotic partners, including seven types of zooxanthellae and 325 prokaryotic OTUs, did not exhibit partitioning across depths. All samples hosted Symbiodinium clade C3 and the type C3psbA_e was present in all depths. Alpha microbial diversity was not significantly different between zones (upper vs. lower, which community composition between coral

  4. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress

    Directory of Open Access Journals (Sweden)

    Jiayuan Liang

    2017-06-01

    Full Text Available It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on. In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.

  5. Understanding Coral's Short-term Adaptive Ability to Changing Environment

    Science.gov (United States)

    Tisthammer, K.; Richmond, R. H.

    2016-02-01

    Corals in Maunalua Bay, Hawaii are under chronic pressures from sedimentation and terrestrial runoffs containing multiple pollutants as a result of large scale urbanization that has taken place in the last 100 years. However, some individual corals thrive despite the prolonged exposure to these environmental stressors, which suggests that these individuals may have adapted to withstand such stressors. A recent survey showed that the lobe coral Porites lobata from the `high-stress' nearshore site had an elevated level of stress ixnduced proteins, compared to those from the `low-stress,' less polluted offshore site. To understand the genetic basis for the observed differential stress responses between the nearshore and offshore P. lobata populations, an analysis of the lineage-scale population genetic structure, as well as a reciprocal transplant experiment were conducted. The result of the genetic analysis revealed a clear genetic differentiation between P. lobata from the nearshore site and the offshore site. Following the 30- day reciprocal transplant experiment, protein expression profiles and other stress-related physiological characteristics were compared between the two populations. The experimental results suggest that the nearshore genotype can cope better with sedimentation/pollutants than the offshore genotype. This indicates that the observed genetic differentiation is due to selection for tolerance to these environmental stressors. Understanding the little-known, linage-scale genetic variation in corals offers a critical insight into their short-term adaptive ability, which is indispensable for protecting corals from impending environmental and climate change. The results of this study also offer a valuable tool for resource managers to make effective decisions on coral reef conservation, such as designing marine protected areas that incorporate and maintain such genetic diversity, and establishing acceptable pollution run-off levels.

  6. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea

    Science.gov (United States)

    Kuang, Weiqi; Li, Jie; Zhang, Si; Long, Lijuan

    2015-01-01

    Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every 3 months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described families and 10 unnamed families were determined in the populations, and 12 genera were firstly detected in corals. The Actinobacteria diversity was significantly different between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by the seawater and coral samples. Redundancy and hierarchical cluster analyses were performed to analyze the correlation between the variations of actinobacteria population within the divergent compartments of P. lutea, seasonal changes, and environmental factors. The actinobacteria communities in the same coral compartment tended to cluster together. Even so, an extremely small fraction of OTUs was common in all three P. lutea compartments. Analysis of the relationship between actinobacteria assemblages and the environmental parameters showed that several genera were closely related to specific environmental factors. This study highlights that coral-associated actinobacteria populations are highly diverse, and spatially structured within P. lutea, and they are distinct from which in the ambient seawater. PMID:26539166

  7. Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa

    Science.gov (United States)

    McAdoo, Brian G.; Ah-Leong, Joyce Samuelu; Bell, Lui; Ifopo, Pulea; Ward, Juney; Lovell, Edward; Skelton, Posa

    2011-07-01

    The coral reef bordering the coastline of Samoa affected by the 29 September 2009 tsunami provides a variety of ecosystem services — from nurseries for fisheries and inshore source of food for local communities, to aesthetics for tourists, and the width of the lagoon may have been a factor in reducing the onshore wave height. To understand the complex interactions between the onshore human population and the offshore coral, we formed an interdisciplinary survey team to document the effects the tsunami had on the nearshore coral reef, and how these changes might affect local inhabitants. The scale of reef damage varied from severe, where piles of freshly-killed coral fragments and mortality were present, to areas that exhibited little impact, despite being overrun by the tsunami. We found that many coral colonies were impacted by tsunami-entrained coral debris, which had been ripped up and deposited on the fore reef by repeated cyclones and storm waves. In other places, large surface area tabular coral sustained damage as the tsunami velocity increased as it was funneled through channels. Areas that lacked debris entrained by the waves as well as areas in the lee of islands came through relatively unscathed, with the exception of the delicate corals that lived on a sandy substrate. In the lagoon on the south coast with its steep topography, coral colonies were damaged by tsunami-generated debris from onshore entrained in the backwash. Despite the potential for severe tsunami-related damage, there were no noticeable decreases in live coral cover between successive surveys at two locations, although algal cover was higher with the increased nutrients mobilized by the tsunami. While there was an immediate decrease in fish takes in the month following the tsunami, when supporting services were likely impacted, both volume and income have rapidly increased to pre-tsunami levels. Long-term monitoring should be implemented to determine if nursery services were affected.

  8. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals.Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR. Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria during winnowing processes as symbioses are fine-tuned.Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are

  9. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    Science.gov (United States)

    Puill-Stephan, Eneour; Seneca, François O; Miller, David J; van Oppen, Madeleine J H; Willis, Bette L

    2012-01-01

    Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further

  10. Demographic Mechanisms of Reef Coral Species Winnowing from Communities under Increased Environmental Stress

    Directory of Open Access Journals (Sweden)

    Bernhard Riegl

    2017-10-01

    Full Text Available Winnowing of poorly-adapted species from local communities causes shifts/declines in species richness, making ecosystems increasingly ecologically depauperate. Low diversity can be associated with marginality of environments, which is increasing as climate change impacts ecosystems globally. This paper demonstrates the demographic mechanisms (size-specific mortality, growth, fertility; and metapopulation connectivity associated with population-level changes due to thermal stress extremes for five zooxanthellate reef-coral species. Effects vary among species, leading to predictable changes in population size and, consequently, community structure. The Persian/Arabian Gulf (PAG is an ecologically marginal reef environment with a subset of Indo-Pacific species, plus endemics. Local heating correlates with changes in coral population dynamics and community structure. Recent population dynamics of PAG corals were quantified in two phases (medium disturbed MD 1998–2010 and 2013–2017, severely disturbed SD 1996/8, 2010/11/12 with two stable states of declining coral frequency and cover. The strongest changes in life-dynamics, as expressed by transition matrices solved for MD and SD periods were in Acropora downingi and Porites harrisoni, which showed significant partial and whole-colony mortality (termed “shrinkers”. But in Dipsastrea pallida, Platygyra daedalea, Cyphastraea microphthalma the changes to life dynamics were more subtle, with only partial tissue mortality (termed “persisters”. Metapopulation models suggested recovery predominantly in species experiencing partial rather than whole-colony mortality. Increased frequency of disturbance caused progressive reduction in coral size, cover, and population fecundity. Also, the greater the frequency of disturbance, the more larval connectivity is required to maintain the metapopulation. An oceanographic model revealed important local larval retention and connectivity primarily between

  11. Early-phase dynamics in coral recovery following cyclone disturbance on the inshore Great Barrier Reef, Australia

    Science.gov (United States)

    Sato, Yui; Bell, Sara C.; Nichols, Cassandra; Fry, Kent; Menéndez, Patricia; Bourne, David G.

    2018-06-01

    Coral recovery (the restoration of abundance and composition of coral communities) after disturbance is a key process that determines the resilience of reef ecosystems. To understand the mechanisms underlying the recovery process of coral communities, colony abundance and size distribution were followed on reefs around Pelorus Island, located in the inshore central region of the Great Barrier Reef, following a severe tropical cyclone in 2011 that caused dramatic loss of coral communities. Permanent quadrats (600 m2) were monitored biannually between 2012 and 2016, and individual coral colonies were counted, sized and categorized into morphological types. The abundance of coral recruits and coral cover were also examined using permanent quadrats and random line intercept transects, respectively. The number of colonies in the smallest size class (4-10 cm) increased substantially during the study period, driving the recovery of coral populations. The total number of coral colonies 5 yr post-cyclone reached between 73 and 122% of pre-cyclone levels though coral cover remained between 16 and 31% of pre-cyclone levels, due to the dominance of small coral colonies in the recovering communities. Temporal transitions of coral demography (i.e., colony-size distributions) illustrated that the number of recently established coral populations overtook communities of surviving colonies. Coral recruits (coral recovery. A shift in morphological composition of coral communities was also observed, with the relative abundance of encrusting corals reduced post-cyclone in contrast to their dominance prior to the disturbance. This study identifies the fine-scale processes involved in the initial recovery of coral reefs, providing insights into the dynamics of coral demography that are essential for determining coral reef resilience following major disturbance.

  12. Coral reproduction in Western Australia

    Science.gov (United States)

    Speed, Conrad W.; Babcock, Russ

    2016-01-01

    Larval production and recruitment underpin the maintenance of coral populations, but these early life history stages are vulnerable to extreme variation in physical conditions. Environmental managers aim to minimise human impacts during significant periods of larval production and recruitment on reefs, but doing so requires knowledge of the modes and timing of coral reproduction. Most corals are hermaphroditic or gonochoric, with a brooding or broadcast spawning mode of reproduction. Brooding corals are a significant component of some reefs and produce larvae over consecutive months. Broadcast spawning corals are more common and display considerable variation in their patterns of spawning among reefs. Highly synchronous spawning can occur on reefs around Australia, particularly on the Great Barrier Reef. On Australia’s remote north-west coast there have been fewer studies of coral reproduction. The recent industrial expansion into these regions has facilitated research, but the associated data are often contained within confidential reports. Here we combine information in this grey-literature with that available publicly to update our knowledge of coral reproduction in WA, for tens of thousands of corals and hundreds of species from over a dozen reefs spanning 20° of latitude. We identified broad patterns in coral reproduction, but more detailed insights were hindered by biased sampling; most studies focused on species of Acropora sampled over a few months at several reefs. Within the existing data, there was a latitudinal gradient in spawning activity among seasons, with mass spawning during autumn occurring on all reefs (but the temperate south-west). Participation in a smaller, multi-specific spawning during spring decreased from approximately one quarter of corals on the Kimberley Oceanic reefs to little participation at Ningaloo. Within these seasons, spawning was concentrated in March and/or April, and October and/or November, depending on the timing of

  13. Coral settlement on a highly disturbed equatorial reef system.

    Science.gov (United States)

    Bauman, Andrew G; Guest, James R; Dunshea, Glenn; Low, Jeffery; Todd, Peter A; Steinberg, Peter D

    2015-01-01

    Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world's most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m(-2) yr(-1)) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March-May and September-November, coinciding with annual coral spawning periods (March-April and October), while the lowest settlement occurred from December-February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure ('others'; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of Singapore's reefs appears relatively constrained, which could lead

  14. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck

    Directory of Open Access Journals (Sweden)

    Allan Joseph Bright

    2016-05-01

    Full Text Available Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI. At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over one year following a series of large swells in March 2008 that fragmented 30 to 93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01 with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006.

  15. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck)

    Science.gov (United States)

    Bright, Allan J.; Rogers, Caroline S.; Brandt, Marilyn E.; Muller, Erinn; Smith, Tyler B.

    2016-01-01

    Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI). At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over 1 year following a series of large swells in March 2008 that fragmented 30–93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01) with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006).

  16. Temporal variation in photosynthetic pigments and UV-absorbing compounds in shallow populations of two Hawaiian reef corals

    Science.gov (United States)

    Kuffner, I.B.

    2005-01-01

    As we seek to understand the physiological mechanisms of coral bleaching, it is important to understand the background temporal variation in photosynthetic pigments and photoprotective compounds that corals exhibit. In this study, reef flat populations of two hermatypic coral species, Montipora capitata (Dana, 1846) and Porites compressa Dana, 1846, were sampled monthly in Kane'ohe Bay, Hawai'i, from January 1998 to March 1999. Surface ultraviolet radiation (UVR) was measured continually during this time period at the same location. High-performance liquid chromatography (HPLC) analysis of photosynthetic pigments and mycosporine-like amino acids (MAAs) revealed temporal changes in concentrations and proportions of these compounds in tissues of both species of coral. Chlorophyll a (chl a), chlorophyll c2 (chl c2), peridinin, and diadinoxanthin concentrations changed on a skeletal weight (M. capitata) or surface area (P. compressa) basis, significantly correlating with seasonal changes in solar input (number of days from the winter solstice). In P. compressa, diadinoxanthin increased in proportion to the total pigment pool during summer months, suggesting an up-regulation of a xanthophyll cycle. In M. capitata, the ratio of chl a: chl c2 decreased during winter months, suggesting photoacclimation to lower light levels. It is surprising that there was not a clear seasonal pattern in total MAA concentration for either species, with the exception of shinorine in P. compressa. The relative stability of MAA concentrations over the course of the year despite a pronounced seasonal trend in UVR suggests either that MAAs are not performing a photoprotective role in these species or that concentrations are kept at a threshold level in the presence of a dynamic light environment. ?? 2005 by University of Hawai'i Press All rights reserved.

  17. Do elevated nutrients and organic carbon on Philippine reefs increase the prevalence of coral disease?

    Science.gov (United States)

    Kaczmarsky, L.; Richardson, L. L.

    2011-03-01

    Characterizations of Philippine coral diseases are very limited. The two most common, ulcerative white spot disease (UWS) and massive Porites growth anomalies (MPGA), target the genus Porites, a dominant reef-building genus. This is the first investigation in the Philippines to detect positive correlations between coral disease, nutrient levels, and organic carbon. A total of 5,843 Porites colonies were examined. Water and sediment samples were collected for analyses of nutrients (total nitrogen and phosphorus) and total organic carbon at 15 sites along a 40.5 km disease gradient, which was previously shown to positively correlate with human population levels. Results suggest that outbreaks of UWS and MPGAs are driven by elevated nutrient and organic carbon levels. Although the variables analyzed could be proxies for other causative agents (e.g., high sediment levels), the results provide quantitative evidence linking relatively higher coral disease prevalence to an anthropogenically impacted environment.

  18. Link between sewage-derived nitrogen pollution and coral disease severity in Guam

    International Nuclear Information System (INIS)

    Redding, Jamey E.; Myers-Miller, Roxanna L.; Baker, David M.; Fogel, Marilyn; Raymundo, Laurie J.; Kim, Kiho

    2013-01-01

    Highlights: • We evaluated sources of nitrogen pollution in coastal waters of Guam. • Stable isotope analyses showed the dominance of sewage-derived nitrogen. • Nitrogen inputs correlated with coral disease severity. • Planned population increase on Guam will exacerbate impact of coral diseases. -- Abstract: The goals of this study were to evaluate the contribution of sewage-derived N to reef flat communities in Guam and to assess the impact of N inputs on coral disease. We used stable isotope analysis of macroalgae and a soft coral, sampled bimonthly, as a proxy for N dynamics, and surveyed Porites spp., a dominant coral taxon on Guam’s reefs, for white syndrome disease severity. Results showed a strong influence of sewage-derived N in nearshore waters, with δ 15 N values varying as a function of species sampled, site, and sampling date. Increases in sewage-derived N correlated significantly with increases in the severity of disease among Porites spp., with δ 15 N values accounting for more than 48% of the variation in changes in disease severity. The anticipated military realignment and related population increase in Guam are expected to lead to increased white syndrome infections and other coral diseases

  19. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience.

    Science.gov (United States)

    Peixoto, Raquel S; Rosado, Phillipe M; Leite, Deborah Catharine de Assis; Rosado, Alexandre S; Bourne, David G

    2017-01-01

    The symbiotic association between the coral animal and its endosymbiotic dinoflagellate partner Symbiodinium is central to the success of corals. However, an array of other microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses) have a complex and intricate role in maintaining homeostasis between corals and Symbiodinium . Corals are sensitive to shifts in the surrounding environmental conditions. One of the most widely reported responses of coral to stressful environmental conditions is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal tissues upon experiencing extended seawater temperatures above their thermal threshold. An array of other environmental stressors can also destabilize the coral microbiome, resulting in compromised health of the host, which may include disease and mortality in the worst scenario. However, the exact mechanisms by which the coral microbiome supports coral health and increases resilience are poorly understood. Earlier studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic relationship exists between corals and their symbiotic microorganisms, selecting for the coral holobiont that is best suited for the prevailing environmental conditions. Here, we discuss the microbial-host relationships within the coral holobiont, along with their potential roles in maintaining coral health. We propose the term BMC (Beneficial Microorganisms for Corals) to define (specific) symbionts that promote coral health. This term and concept are analogous to the term Plant Growth Promoting Rhizosphere (PGPR), which has been widely explored and manipulated in the agricultural industry for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant growth and development through the production of regulatory signals, antibiotics and nutrients. Additionally, we propose and discuss the potential mechanisms of the effects of BMC on corals, suggesting

  20. Bone marrow mesenchymal stem cells differentiation and proliferation on the surface of coral implant

    International Nuclear Information System (INIS)

    Al-Salihi, K.A.; Samsudin, A.R.

    2004-01-01

    This study was designed to evaluate the ability of natural coral implant to provide an environment for marrow cells to differentiate into osteoblasts and function suitable for mineralized tissue formation. DNA content, alkaline phosptatase (ALP) activity, calcium (Ca) content and mineralized nodules, were measured at day 3, day 7 and day 14, in rat bone marrow stromal cells cultured with coral discs glass discs, while cells alone and coral disc alone cultured as control. DNA content, ALP activity, Ca content measurements showed no difference between coral, glass and cells groups at 3 day which were higher than control (coral disc alone), but there were higher asurement at day 7 and 14 in the cell cultured on coral than on glass discs, control cells and control coral discs. Mineralized nodules formation (both in area and number) was more predominant on the coral surface than in control groups. These results showed that natural coral implant provided excellent and favorable situation for marrow cell to differentiate to osteoblasts, lead to large amount of mineralized tissue formation on coral surface. This in vitro result could explain the rapid bone bonding of coral in vivo. (Author)

  1. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae under bleaching and disease stress expands models of coral innate immunity

    Directory of Open Access Journals (Sweden)

    David A. Anderson

    2016-02-01

    Full Text Available Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system.

  2. Microbial Regulation in Gorgonian Corals

    Directory of Open Access Journals (Sweden)

    Laura D. Mydlarz

    2012-06-01

    Full Text Available Gorgonian corals possess many novel natural products that could potentially mediate coral-bacterial interactions. Since many bacteria use quorum sensing (QS signals to facilitate colonization of host organisms, regulation of prokaryotic cell-to-cell communication may represent an important bacterial control mechanism. In the present study, we examined extracts of twelve species of Caribbean gorgonian corals, for mechanisms that regulate microbial colonization, such as antibacterial activity and QS regulatory activity. Ethanol extracts of gorgonians collected from Puerto Rico and the Florida Keys showed a range of both antibacterial and QS activities using a specific Pseudomonas aeruginosa QS reporter, sensitive to long chain AHLs and a short chain N-acylhomoserine lactones (AHL biosensor, Chromobacterium violaceium. Overall, the gorgonian corals had higher antimicrobial activity against non-marine strains when compared to marine strains. Pseudopterogorgia americana, Pseusopterogorgia acerosa, and Pseudoplexuara flexuosa had the highest QS inhibitory effect. Interestingly, Pseudoplexuara porosa extracts stimulated QS activity with a striking 17-fold increase in signal. The stimulation of QS by P. porosa or other elements of the holobiont may encourage colonization or recruitment of specific microbial species. Overall, these results suggest the presence of novel stimulatory QS, inhibitory QS and bactericidal compounds in gorgonian corals. A better understanding of these compounds may reveal insight into coral-microbial ecology and whether a therapeutic potential exists.

  3. Trophodynamics as a Tool for Understanding Coral Reef Ecosystems

    Directory of Open Access Journals (Sweden)

    Stacy L. Bierwagen

    2018-02-01

    Full Text Available The increased frequency of publications concerning trophic ecology of coral reefs suggests a degree of interest in the role species and functional groups play in energy flow within these systems. Coral reef ecosystems are particularly complex, however, and assignment of trophic positions requires precise knowledge of mechanisms driving food webs and population dynamics. Competent analytical tools and empirical analysis are integral to defining ecosystem processes and avoiding misinterpretation of results. Here we examine the contribution of trophodynamics to informing ecological roles and understanding of coral reef ecology. Applied trophic studies of coral reefs were used to identify recent trends in methodology and analysis. Although research is increasing, clear definitions and scaling of studies is lacking. Trophodynamic studies will require more precise spatial and temporal data collection and analysis using multiple methods to fully explore the complex interactions within coral reef ecosystems.

  4. A Trait-Based Approach to Advance Coral Reef Science.

    Science.gov (United States)

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R; Darling, Emily S; Falster, Daniel S; Huang, Danwei; Keith, Sally A; Mizerek, Toni; Pandolfi, John M; Putnam, Hollie M; Baird, Andrew H

    2016-06-01

    Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.; Brewin, Robert J. W.; Zhan, Peng; Dreano, Denis; Pradhan, Yaswant; Nanninga, Gerrit B.; Hoteit, Ibrahim

    2017-01-01

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  6. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.

    2017-08-18

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  7. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    Science.gov (United States)

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  8. Genetic Population Structure of the Coral Reef Sea Star Linckia laevigata in the Western Indian Ocean and Indo-West Pacific.

    Science.gov (United States)

    Otwoma, Levy Michael; Kochzius, Marc

    2016-01-01

    The coral reef sea star Linckia laevigata is common on shallow water coral reefs of the Indo-West Pacific. Its large geographic distribution and comprehensive data from previous studies makes it suitable to examine genetic differentiation and connectivity over large geographical scales. Based on partial sequences of the mitochondrial cytochrome oxidase I (COI) gene this study investigates the genetic population structure and connectivity of L. laevigata in the Western Indian Ocean (WIO) and compares it to previous studies in the Indo-Malay-Philippines Archipelago (IMPA). A total of 138 samples were collected from nine locations in the WIO. AMOVA revealed a low but significant ΦST-value of 0.024 for the WIO populations. In the hierarchical AMOVA, the following grouping rejected the hypothesis of panmixia: (1) Kenya (Watamu, Mombasa, Diani) and Tanzanian Island populations (Misali and Jambiani) and (2) the rest of the WIO sites (mainland Tanzania and Madagascar; ΦCT = 0.03). The genetic population structure was stronger and more significant (ΦST = 0.13) in the comparative analysis of WIO and IMPA populations. Three clades were identified in the haplotype network. The strong genetic differentiation (ΦCT = 0.199, P Indo-West Pacific populations of L. laevigata can be grouped into four biogeographic regions: (1) WIO (2) Eastern Indian Ocean (3) IMPA and (4) Western Pacific. The findings of this study support the existence of a genetic break in the Indo-West Pacific consistent with the effect of lowered sea level during the Pleistocene, which limited gene flow between the Pacific and Indian Ocean.

  9. Long-term impacts of coral bleaching events on the world's warmest reefs.

    Science.gov (United States)

    Burt, John; Al-Harthi, Suaad; Al-Cibahy, Ashraf

    2011-10-01

    The southern Arabian Gulf houses some of the most thermally tolerant corals on earth, but severe bleaching in the late 1990s caused widespread mortality. More than a decade later, corals still dominated benthos (mean: 40 ± 3% cover on 10 sites spanning > 350 km; range: 11.0-65.6%), but coral communities varied spatially. Sites to the west generally had low species richness and coral cover (mean: 3.2 species per transect, 31% cover), with Porites dominated communities (88% of coral) that are distinct from more diverse and higher cover eastern sites (mean: 10.3 species per transect, 62% cover). These patterns reflect both the more extreme bleaching to the west in the late 1990s as well as the higher faviid dominated recruitment to the east in subsequent years. There has been limited recovery of the formerly dominant Acropora, which now represents bleaching can have substantial long-term impacts on coral communities, even in areas with corals tolerant to environmental extremes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth

    International Nuclear Information System (INIS)

    Zhang, Ruijie; Zhang, Ruiling; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Pei, Jiying; Wei, Chaoshuai; Pan, Ziliang; Qin, Zhenjun; Zhang, Gan

    2018-01-01

    Laboratory research has indicated that antibiotics had negative effects on coral growth by disturbing natural microbiota; however, no field studies have reported antibiotic contamination levels and their influence on coral growth in natural coral reef regions (CRRs). This study investigated antibiotic occurrence and sources in the surface water from CRRs that have suffered from rapid coral degradation and evaluated their risk to coral growth. These regions are in the South China Sea, including four coastal and two offshore CRRs. The results show that 13 antibiotics were detected in the coastal CRRs with concentrations ranging from 10 −2 –10 0  ng L −1 , while 5 antibiotics occurred in offshore CRRs (300–950 km from the mainland), with concentrations ranging from 10 −2 to 10 −1  ng L −1 . Their concentrations decreased gradually from the coast to offshore in the transport process. However, Yongxing Island, which is approximately 300 km from the mainland, was an exception with relatively higher concentrations than the surrounding reefs because of the ever-increasing human activity on the island. The presence of anthropogenic contaminants antibiotics in CRRs may be a potential risk to coral growth. - Highlights: • The study first studied antibiotic contamination in seawater from coral reef regions. • Thirteen antibiotics were detected at the level of 10 −2 - 10 0  ng L −1 . • The antibiotic concentrations decreased gradually from the coast to offshore. • Higher concentrations were detected in one offshore reef with more human activities. • Potential risk of the antibiotics to the coral could be ruled out. - Antibiotic contamination level, sources and their potential risk to coral growth were first studied in the surface water of natural coral reef regions.

  11. An integrated ecosystem model for coral reef management where oceanography, ecology and socio-economics meet

    NARCIS (Netherlands)

    Weijerman, M.

    2015-01-01

    Summary

    Widespread coral reef decline, including decline in reef fish populations upon which many coastal human populations depend, have led to phase-shifts from the coral-dominated systems, found desirable by humans, to algal-dominated systems that provide less ecosystem

  12. An integrated ecosystem model for coral reef management where oceanography, ecology and socio-economics meet

    NARCIS (Netherlands)

    Weijerman, Mariska

    2015-01-01

    Widespread coral reef decline, including decline in reef fish populations upon which many coastal human populations depend, have led to phase-shifts from the coral-dominated systems, found desirable by humans, to algal-dominated systems that provide less ecosystem services, and the loss of

  13. Long distance dispersal and connectivity in amphi-Atlantic corals at regional and basin scales.

    Directory of Open Access Journals (Sweden)

    Flavia L D Nunes

    Full Text Available Among Atlantic scleractinian corals, species diversity is highest in the Caribbean, but low diversity and high endemism are observed in various peripheral populations in central and eastern Atlantic islands and along the coasts of Brazil and West Africa. The degree of connectivity between these distantly separated populations is of interest because it provides insight into processes at both evolutionary and ecological time scales, such as speciation, recruitment dynamics and the persistence of coral populations. To assess connectivity in broadly distributed coral species of the Atlantic, DNA sequence data from two nuclear markers were obtained for six coral species spanning their distributional ranges. At basin-wide scales, significant differentiation was generally observed among populations in the Caribbean, Brazil and West Africa. Concordance of patterns in connectivity among co-distributed taxa indicates that extrinsic barriers, such as the Amazon freshwater plume or long stretches of open ocean, restrict dispersal of coral larvae from region to region. Within regions, dispersal ability appears to be influenced by aspects of reproduction and life history. Two broadcasting species, Siderastrea siderea and Montastraea cavernosa, were able to maintain gene flow among populations separated by as much as 1,200 km along the coast of Brazil. In contrast, brooding species, such as Favia gravida and Siderastrea radians, had more restricted gene flow along the Brazilian coast.

  14. Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology.

    Science.gov (United States)

    Pinzón, Jorge H; LaJeunesse, Todd C

    2011-01-01

    Stony corals in the genus Pocillopora are among the most common and widely distributed of Indo-Pacific corals and, as such, are often the subject of physiological and ecological research. In the far Tropical Eastern Pacific (TEP), they are major constituents of shallow coral communities, exhibiting considerable variability in colony shape and branch morphology and marked differences in response to thermal stress. Numerous intermediates occur between morphospecies that may relate to extensive hybridization. The diversity of the Pocillopora genus in the TEP was analysed genetically using nuclear ribosomal (ITS2) and mitochondrial (ORF) sequences, and population genetic markers (seven microsatellite loci). The resident dinoflagellate endosymbiont (Symbiodinium sp.) in each sample was also characterized using sequences of the internal transcribed spacer 2 (ITS2) rDNA and the noncoding region of the chloroplast psbA minicircle. From these analyses, three symbiotically distinct, reproductively isolated, nonhybridizing, evolutionarily divergent animal lineages were identified. Designated types 1, 2 and 3, these groupings were incongruent with traditional morphospecies classification. Type 1 was abundant and widespread throughout the TEP; type 2 was restricted to the Clipperton Atoll; and type 3 was found only in Panama and the Galapagos Islands. Each type harboured a different Symbiodinium'species lineage' in Clade C, and only type 1 associated with the 'stress-tolerant'Symbiodinium glynni (D1). The accurate delineation of species and implementation of a proper taxonomy may profoundly improve our assessment of Pocillopora's reproductive biology, biogeographic distributions, and resilience to climate warming, information that must be considered when planning for the conservation of reef corals. © 2010 Blackwell Publishing Ltd.

  15. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences

    KAUST Repository

    Roder, Cornelia

    2015-06-19

    The significance of bacteria for eukaryotic functioning is increasingly recognized. Coral reef ecosystems critically rely on the relationship between coral hosts and their intracellular photosynthetic dinoflagellates, but the role of the associated bacteria remains largely theoretical. Here, we set out to relate coral-associated bacterial communities of the fungid host species Ctenactis echinata to environmental settings (geographic location, substrate cover, summer/winter, nutrient and suspended matter concentrations) and coral host abundance. We show that bacterial diversity of C. echinata aligns with ecological differences between sites and that coral colonies sampled at the species’ preferred habitats are primarily structured by one bacterial taxon (genus Endozoicomonas) representing more than 60% of all bacteria. In contrast, host microbiomes from lower populated coral habitats are less structured and more diverse. Our study demonstrates that the content and structure of the coral microbiome aligns with environmental differences and denotes habitat adequacy. Availability of a range of coral host habitats might be important for the conservation of distinct microbiome structures and diversity.

  16. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences

    KAUST Repository

    Roder, Cornelia; Bayer, Till; Aranda, Manuel; Kruse, Maren; Voolstra, Christian R.

    2015-01-01

    The significance of bacteria for eukaryotic functioning is increasingly recognized. Coral reef ecosystems critically rely on the relationship between coral hosts and their intracellular photosynthetic dinoflagellates, but the role of the associated bacteria remains largely theoretical. Here, we set out to relate coral-associated bacterial communities of the fungid host species Ctenactis echinata to environmental settings (geographic location, substrate cover, summer/winter, nutrient and suspended matter concentrations) and coral host abundance. We show that bacterial diversity of C. echinata aligns with ecological differences between sites and that coral colonies sampled at the species’ preferred habitats are primarily structured by one bacterial taxon (genus Endozoicomonas) representing more than 60% of all bacteria. In contrast, host microbiomes from lower populated coral habitats are less structured and more diverse. Our study demonstrates that the content and structure of the coral microbiome aligns with environmental differences and denotes habitat adequacy. Availability of a range of coral host habitats might be important for the conservation of distinct microbiome structures and diversity.

  17. Red Light Represses the Photophysiology of the Scleractinian Coral

    NARCIS (Netherlands)

    Wijgerde, T.; van Melis, A.; Silva, C.I.F.; Leal, M.C.; Vogels, L.; Mutter, C.; Osinga, R.

    2014-01-01

    Light spectrum plays a key role in the biology of symbiotic corals, with blue light resulting in higher coral growth, zooxanthellae density, chlorophyll a content and photosynthesis rates as compared to red light. However, it is still unclear whether these physiological processes are blue-enhanced

  18. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both?

    Science.gov (United States)

    Wörheide, Gert; Epp, Laura S; Macis, Luciana

    2008-01-26

    An increasing number of studies demonstrate that genetic differentiation and speciation in the sea occur over much smaller spatial scales than previously appreciated given the wide distribution range of many morphologically defined coral reef invertebrate species and the presumed dispersal-enhancing qualities of ocean currents. However, knowledge about the processes that lead to population divergence and speciation is often lacking despite being essential for the understanding, conservation, and management of marine biodiversity. Sponges, a highly diverse, ecologically and economically important reef-invertebrate taxon, exhibit spatial trends in the Indo-West Pacific that are not universally reflected in other marine phyla. So far, however, processes generating those unexpected patterns are not understood. We unraveled the phylogeographic structure of the widespread Indo-Pacific coral reef sponge Leucetta chagosensis across its known geographic range using two nuclear markers: the rDNA internal transcribed spacers (ITS 1&2) and a fragment of the 28S gene, as well as the second intron of the ATP synthetase beta subunit-gene (ATPSb-iII). This enabled the detection of several deeply divergent clades congruent over both loci, one containing specimens from the Indian Ocean (Red Sea and Maldives), another one from the Philippines, and two other large and substructured NW Pacific and SW Pacific clades with an area of overlap in the Great Barrier Reef/Coral Sea. Reciprocally monophyletic populations were observed from the Philippines, Red Sea, Maldives, Japan, Samoa, and Polynesia, demonstrating long-standing isolation. Populations along the South Equatorial Current in the south-western Pacific showed isolation-by-distance effects. Overall, the results pointed towards stepping-stone dispersal with some putative long-distance exchange, consistent with expectations from low dispersal capabilities. We argue that both founder and vicariance events during the late Pliocene and

  19. Antibacterial Activity of Marine and Black Band Disease Cyanobacteria against Coral-Associated Bacteria

    Science.gov (United States)

    Gantar, Miroslav; Kaczmarsky, Longin T.; Stanić, Dina; Miller, Aaron W.; Richardson, Laurie L.

    2011-01-01

    Black band disease (BBD) of corals is a cyanobacteria-dominated polymicrobial disease that contains diverse populations of heterotrophic bacteria. It is one of the most destructive of coral diseases and is found globally on tropical and sub-tropical reefs. We assessed ten strains of BBD cyanobacteria, and ten strains of cyanobacteria isolated from other marine sources, for their antibacterial effect on growth of heterotrophic bacteria isolated from BBD, from the surface mucopolysaccharide layer (SML) of healthy corals, and three known bacterial coral pathogens. Assays were conducted using two methods: co-cultivation of cyanobacterial and bacterial isolates, and exposure of test bacteria to (hydrophilic and lipophilic) cyanobacterial cell extracts. During co-cultivation, 15 of the 20 cyanobacterial strains tested had antibacterial activity against at least one of the test bacterial strains. Inhibition was significantly higher for BBD cyanobacteria when compared to other marine cyanobacteria. Lipophilic extracts were more active than co-cultivation (extracts of 18 of the 20 strains were active) while hydrophilic extracts had very limited activity. In some cases co-cultivation resulted in stimulation of BBD and SML bacterial growth. Our results suggest that BBD cyanobacteria are involved in structuring the complex polymicrobial BBD microbial community by production of antimicrobial compounds. PMID:22073011

  20. Biology of corals and coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Rajkumar, R.; Parulekar, A.H.

    on the systematic position is presented. The general structure is depicted with illustrations. Physiology part is updated to current knowledge on reproduction, nutrition and excretion of corals. The coral reefs section begins with status of world reefs...

  1. Influence of Eunice norvegica on feeding and calcification in the coral Lophelia pertusa

    Science.gov (United States)

    Mueller, C. E.; van Oevelen, D.; Middelburg, J. J.; Lundälv, T.

    2012-04-01

    Lophelia pertusa is the main framework building cold-water coral in the North Atlantic. It forms complex reef structures, extending up to several km in length and several meters in hight. Many species are attracted by the coral frame work, forming a highly diverse community within the reef. Although most work has focused on the corals, the functioning of the system also depends on interactions between corals and associated species. A particular example is the Polychaete Eunice norvegica that lives in close association with the coral host. The Polychaete builds a thin texture-tube between living coral branches and stimulates the coral to calcify the tube. This process strengthens the reef framwork by thickening and connecting coral brances and thereby acts as a positive feedback on the development of large reef structures. This comes however at an metabolic cost for the coral due to the enhanced calcificationrates. Another negative feedback for cold-water coral may be food related, since aquaria observations have shown that Eunice occasionally steels food from its host coral. In this study we investigated the interactions between the coral and polychaete related to calcification and food partitioning for two food types (algae and Artemia). The uptake of 13C and 15N labeled food sources by the worm and the coral was studied in chambers with only corals, only the polychaete and both species present. After 7 days, corals and worms were analyzed for isotope incorporation in bulk tissue and skeleton samples and specific fatty acids (13C) using GC-c-IRMS (gas-chromatography-combustion-isotope ratio mass spectrometry). Corals that were kept in the presence of Eunice indeed showed a higher calcification rates of 7.4 ug C (day* g dw coral)-1, evidencing the stimulation of calcification by Eunice. Interestingly, food uptake of algae and Artemia was higher in the coral-worm treatment for both species as compared to the single species treatments. These results shed new light on

  2. Effects of herbicides on coral and seasonal distribution in water and sediments collected from rivers and coral reefs of the Ryukyu Archipelago, Japan

    Science.gov (United States)

    Kaneshiro, A.; Fujimura, H.; Oomori, T.; Gima, S.; Suzuki, Y.; Casareto, B. E.; Higuchi, T.; Sagawa, T.

    2011-12-01

    Introduction Coral reefs are subjected to artificial chemicals such as herbicide and pesticides. Diuron [N'-(3, 4-dichlorophenyl)-N, N-dimethylurea] is one of the active constituent contained in a herbicide. Although acute effects of diuron on coral are reported by several researchers, longer-period toxicity with lower level concentration and synergistic effect between the herbicide and soil sedimentation from river water have not been studied. We investigated the concentration level, distribution, seasonal variation and accumulation of several herbicides and pesticides in coral reef and river in Ishigaki Island and Okinawa Island, and estimated the rates of carbon production of calcification and photosynthesis to access the effects of herbicides on coral. Materials and Methods Water and sediment samples were collected from Todoroki river and Shiraho coral reef in Ishigaki Island and several rivers from Okinawa Island in August 2010 to August 2011. Diuron and other active constituents were extracted using a solid-phase column and measured with a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Corals for the experiment were collected from Okinawa Island and incubated in glass bottles. Seawater adjusted several concentrations of herbicide was continuously supplied to the bottles. Coral calcification and photosynthesis were estimated based on the change in total alkalinity and pH during a few hours when we temporary cease the water flow. Results and Discussion Higher diuron of 563 ng/L in water and 26 μg/kg in sediment was detected at the headwater of the Todoroki river in Ishigaki. in June. Sugarcane plantation is prevailing in Todoroki river area and rainwater can tend to gather topographically to upstream of the river. The higher concentration at the headwater decreased to 23 ng/L toward the river mouth. On the whole, the concentrations were higher during summer and lower in the other seasons in Ishigaki. On the other hand, seasonal variation was not

  3. Corals diseases are a major cause of coral death

    Science.gov (United States)

    Corals, like humans, are susceptible to diseases. Some coral diseases are associated with pathogenic bacteria; however, the causes of most remain unknown. Some diseases trigger rapid and extensive mortality, while others slowly cause localized color changes or injure coral tiss...

  4. Potential effects of invasive Pterois volitans in coral reefs

    Directory of Open Access Journals (Sweden)

    Banamali Maji

    2016-01-01

    Full Text Available The invasion of predatory lionfish (Pterois volitans represents a major threat to the western Atlantic coral reef ecosystems. The proliferation of venomous, fast reproducing and aggressive P. volitans in coral reefs causes severe declines in the abundance and diversity of reef herbivores. There is also widespread cannibalism amongst P. volitans populations. A mathematical model is proposed to study the effects of predation on the biomass of herbivorous reef fishes by considering two life stages and intraguild predation of P. volitans population with harvesting of adult P. volitans. The system undergoes a supercritical Hopf bifurcation when the invasiveness of P. volitans crosses a certain critical value. It is observed that cannibalism of P. volitans induces stability in the system even with high invasiveness of adult P. volitans. The dynamic instability of the system due to higher invasiveness of P. volitans can be controlled by increasing the rate of harvesting of P. volitans. It is also proven that P. volitans goes extinct when the harvest rate is greater than some critical threshold value. These results indicate that the dynamical behaviour of the model is very sensitive to the harvesting of P. volitans, which in turn is useful in the conservation of reef herbivores.

  5. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for palaeoceanography

    Science.gov (United States)

    Robinson, Laura F.; Adkins, Jess F.; Frank, Norbert; Gagnon, Alexander C.; Prouty, Nancy G.; Brendan Roark, E.; de Flierdt, Tina van

    2014-01-01

    Deep-sea corals were discovered over a century ago, but it is only over recent years that focused efforts have been made to explore the history of the oceans using the geochemistry of their skeletal remains. They offer a promising archive of past oceanic environments given their global distribution, layered growth patterns, longevity and preservation as well as our ability to date them using radiometric techniques. This paper provides an overview of the current state-of-the-art in terms of geochemical approaches to using deep-sea coral skeletons to explore the history of the ocean. Deep-sea coral skeletons have a wide array of morphologies (e.g. solitary cup corals, branching colonial corals) and materials (calcite, aragonite and proteins). As such their biomineralization strategies are diverse, leading to complex geochemistry within coral skeletons. Notwithstanding these complications, progress has been made on developing methods for reconstructing the oceanographic environment in the past using trace elements and isotopic methods. Promising approaches within certain coral groups include clumped isotopes and Mg/Li for temperature reconstructions, boron isotopes and radiocarbon for carbon cycling, εNd, and radiocarbon for circulation studies and δ15N, P/Ca and Ba/Ca for nutrient tracer studies. Likewise there is now a range of techniques for dating deep-sea corals skeletons (e.g. U-series, radiocarbon), and determining their growth rates (e.g. radiocarbon and 210Pb). Dating studies on historic coral populations in the Atlantic, Southern Ocean and Pacific point to climate and environmental changes being dominant controls on coral populations over millennial and orbital timescales. This paper provides a review of a range of successes and promising approaches. It also highlights areas in which further research would likely provide new insights into biomineralization, palaeoceanography and distribution of past coral populations.

  6. Microscopic observation of symbiotic and aposymbiotic juvenile corals in nutrient-enriched seawater.

    Science.gov (United States)

    Tanaka, Yasuaki; Iguchi, Akira; Inoue, Mayuri; Mori, Chiharu; Sakai, Kazuhiko; Suzuki, Atsushi; Kawahata, Hodaka; Nakamura, Takashi

    2013-03-15

    Symbiotic and aposymbiotic juvenile corals, which were grown in the laboratory from the gametes of the scleractinian coral Acropora digitifera and had settled down onto plastic culture plates, were observed with a microscope under different nutrient conditions. The symbiotic corals successfully removed the surrounding benthic microalgae (BMA), whereas the aposymbiotic corals were in close physical contact with BMA. The areal growth rate of the symbiotic corals was significantly higher than that of the aposymbiotic corals. The addition of nutrients to the culture seawater increased the chlorophyll a content in the symbiotic coral polyps and enhanced the growth of some of the symbiotic corals, however the average growth rate was not significantly affected, most likely because of the competition with BMA. The comparison between the symbiotic and aposymbiotic juvenile corals showed that the establishment of a symbiotic association could be imperative for post-settlement juvenile corals to survive in high-nutrient seawater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Investigating Coral Disease Spread Across the Hawaiian Archipelago

    Science.gov (United States)

    Sziklay, Jamie

    Coral diseases negatively impact reef ecosystems and they are increasing worldwide; yet, we have a limited understanding of the factors that influence disease risk and transmission. My dissertation research investigated coral disease spread for several common coral diseases in the Hawaiian archipelago to understand how host-pathogenenvironment interactions vary across different spatial scales and how we can use that information to improve management strategies. At broad spatial scales, I developed forecasting models to predict outbreak risk based on depth, coral density and temperature anomalies from remotely sensed data (chapter 1). In this chapter, I determined that host density, total coral density, depth and winter temperature variation were important predictors of disease prevalence for several coral diseases. Expanding on the predictive models, I also found that colony size, wave energy, water quality, fish abundance and nearby human population size altered disease risk (chapter 2). Most of the model variation occurred at the scale of sites and coastline, indicating that local coral composition and water quality were key determinants of disease risk. At the reef scale, I investigated factors that influence disease transmission among individuals using a tissue loss disease outbreak in Kane'ohe Bay, O'ahu, Hawai'i as a case study (chapter 3). I determined that host size, proximity to infected neighbors and numbers of infected neighbors were associated with disease risk. Disease transmission events were very localized (within 15 m) and rates changed dramatically over the course of the outbreak: the transmission rate initially increased quickly during the outbreak and then decreased steadily until the outbreak ended. At the colony scale, I investigated disease progression between polyps within individual coral colonies using confocal microscopy (chapter 4). Here, I determined that fragmented florescent pigment distributions appeared adjacent to the disease front

  8. Evaluation of Stony Coral Indicators for Coral Reef ...

    Science.gov (United States)

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for their response to gradients of human disturbance. The purpose of the study was to identify indicators that could be used for regulatory assessments under authority of the Clean Water Act--this requires that indicators distinguish anthropogenic disturbances from natural variation. Stony coral indicators were tested for correlation with human disturbance across gradients located on three different sides of the island. At the most intensely disturbed location, five of eight primary indicators were highly correlated with distance from the source of disturbance: Coral taxa richness, average colony size, the coefficient of variation of colony size (an indicator of colony size heterogeneity), total topographic coral surface area, and live coral surface area. An additional set of exploratory indicators related to rarity, reproductive and spawning mode, and taxonomic identity were also screened for association with disturbance at the same location. For the other two locations, there were no significant changes in indicator values and therefore no discernible effects of human activity. Coral indicators demonstrated sufficient precision to detect levels of change that would be applicable in a regio

  9. Genetic Population Structure of the Coral Reef Sea Star Linckia laevigata in the Western Indian Ocean and Indo-West Pacific.

    Directory of Open Access Journals (Sweden)

    Levy Michael Otwoma

    Full Text Available The coral reef sea star Linckia laevigata is common on shallow water coral reefs of the Indo-West Pacific. Its large geographic distribution and comprehensive data from previous studies makes it suitable to examine genetic differentiation and connectivity over large geographical scales. Based on partial sequences of the mitochondrial cytochrome oxidase I (COI gene this study investigates the genetic population structure and connectivity of L. laevigata in the Western Indian Ocean (WIO and compares it to previous studies in the Indo-Malay-Philippines Archipelago (IMPA. A total of 138 samples were collected from nine locations in the WIO. AMOVA revealed a low but significant ΦST-value of 0.024 for the WIO populations. In the hierarchical AMOVA, the following grouping rejected the hypothesis of panmixia: (1 Kenya (Watamu, Mombasa, Diani and Tanzanian Island populations (Misali and Jambiani and (2 the rest of the WIO sites (mainland Tanzania and Madagascar; ΦCT = 0.03. The genetic population structure was stronger and more significant (ΦST = 0.13 in the comparative analysis of WIO and IMPA populations. Three clades were identified in the haplotype network. The strong genetic differentiation (ΦCT = 0.199, P < 0.001 suggests that Indo-West Pacific populations of L. laevigata can be grouped into four biogeographic regions: (1 WIO (2 Eastern Indian Ocean (3 IMPA and (4 Western Pacific. The findings of this study support the existence of a genetic break in the Indo-West Pacific consistent with the effect of lowered sea level during the Pleistocene, which limited gene flow between the Pacific and Indian Ocean.

  10. Fire coral clones demonstrate phenotypic plasticity among reef habitats.

    Science.gov (United States)

    Dubé, Caroline E; Boissin, Emilie; Maynard, Jeffrey A; Planes, Serge

    2017-08-01

    Clonal populations are often characterized by reduced levels of genotypic diversity, which can translate into lower numbers of functional phenotypes, both of which impede adaptation. Study of partially clonal animals enables examination of the environmental settings under which clonal reproduction is favoured. Here, we gathered genotypic and phenotypic information from 3,651 georeferenced colonies of the fire coral Millepora platyphylla in five habitats with different hydrodynamic regimes in Moorea, French Polynesia. In the upper slope where waves break, most colonies grew as vertical sheets ("sheet tree") making them more vulnerable to fragmentation. Nearly all fire corals in the other habitats are encrusting or massive. The M. platyphylla population is highly clonal (80% of the colonies are clones), while characterized by the highest genotype diversity ever documented for terrestrial or marine populations (1,064 genotypes). The proportion of clones varies greatly among habitats (≥58%-97%) and clones (328 clonal lineages) are distributed perpendicularly from the reef crest, perfectly aligned with wave energy. There are six clonal lineages with clones dispersed in at least two adjacent habitats that strongly demonstrate phenotypic plasticity. Eighty per cent of the colonies in these lineages are "sheet tree" on the upper slope, while 80%-100% are encrusting or massive on the mid slope and back reef. This is a unique example of phenotypic plasticity among reef-building coral clones as corals typically have wave-tolerant growth forms in high-energy reef areas. © 2017 John Wiley & Sons Ltd.

  11. Possibility of high CO{sub 2} fixation rate by coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    K. Yamada; Y. Suzuki; B.E. Casareto; H. Komiyama [Shinshu University, Tokida (Japan). Dept. of Fine Materials Engineering

    2003-07-01

    Previous net rates of CO{sub 2} fixation by coral reef ecosystems have been said to be nearly zero due to a balance between CO{sub 2} fixed by organic carbon production and CO{sub 2} released by both organic carbon decomposition and inorganic carbon formation. But this study, conducted in Bora Bay, Miyako Island, Japan showed net rates of about 7 gC m{sup -2} d{sup -1} inside a coral reef and on a coral reef. It was found by experiment that the photosynthetic rate of coral increased with the increase of the flow rate of seawater. The authors tried to calculate net primary production (= net rates of CO{sub 2} fixation) outside a coral reef with flow rate. A flow rate on the coral reef of the open seaside is much higher than that in a lagoon. As an example, the CO{sub 2} fixation rates at the flow rates of 6 and 30 cm/s are compared. When it is assumed that the length of the whole coral reef facing the ocean is 50,000 km and its width is 100 m, and the flow rate is 30cm/s, the CO{sub 2} fixation rate is calculated to be 6.3 x 10{sup 6} t-C/y (3.5g-C/m{sup 2}d). This value is 2.2 times higher than that at the flow rate of 6 cm/s. This fixation rate is only by the coral itself. It means that the CO{sub 2} fixation rate by coral reef ecosystems can be much higher and the magnitude for worldwide ecosystems can be in the order of 10{sup 6}-10{sup 7} t-C/y. 14 refs., 5 tabs.

  12. A clear human footprint in the coral reefs of the Caribbean.

    Science.gov (United States)

    Mora, Camilo

    2008-04-07

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs.

  13. Loss of live coral compromises predator-avoidance behaviour in coral reef damselfish.

    Science.gov (United States)

    Boström-Einarsson, Lisa; Bonin, Mary C; Munday, Philip L; Jones, Geoffrey P

    2018-05-17

    Tropical reefs have experienced an unprecedented loss of live coral in the past few decades and the biodiversity of coral-dependent species is under threat. Many reef fish species decline in abundance as coral cover is lost, yet the mechanisms responsible for these losses are largely unknown. A commonly hypothesised cause of fish decline is the loss of shelter space between branches as dead corals become overgrown by algae. Here we tested this hypothesis by quantifying changes in predator-avoidance behaviour of a common damselfish, Pomacentrus moluccensis, before and after the death of their coral colony. Groups of P. moluccensis were placed on either healthy or degraded coral colonies, startled using a visual stimulus and their sheltering responses compared over a 7-week period. P. moluccensis stopped sheltering amongst the coral branches immediately following the death of the coral, despite the presence of ample shelter space. Instead, most individuals swam away from the dead coral, potentially increasing their exposure to predators. It appears that the presence of live coral rather than shelter per se is the necessary cue that elicits the appropriate behavioural response to potential predators. The disruption of this link poses an immediate threat to coral-associated fishes on degrading reefs.

  14. CORAL Server and CORAL Server Proxy: Scalable Access to Relational Databases from CORAL Applications

    CERN Document Server

    Valassi, A; Kalkhof, A; Salnikov, A; Wache, M

    2011-01-01

    The CORAL software is widely used at CERN for accessing the data stored by the LHC experiments using relational database technologies. CORAL provides a C++ abstraction layer that supports data persistency for several backends and deployment models, including local access to SQLite files, direct client access to Oracle and MySQL servers, and read-only access to Oracle through the FroNTier web server and cache. Two new components have recently been added to CORAL to implement a model involving a middle tier "CORAL server" deployed close to the database and a tree of "CORAL server proxy" instances, with data caching and multiplexing functionalities, deployed close to the client. The new components are meant to provide advantages for read-only and read-write data access, in both offline and online use cases, in the areas of scalability and performance (multiplexing for several incoming connections, optional data caching) and security (authentication via proxy certificates). A first implementation of the two new c...

  15. Re-shifting the ecological baseline for the overexploited Mediterranean red coral.

    Science.gov (United States)

    Garrabou, J; Sala, E; Linares, C; Ledoux, J B; Montero-Serra, I; Dominici, J M; Kipson, S; Teixidó, N; Cebrian, E; Kersting, D K; Harmelin, J G

    2017-02-15

    Overexploitation leads to the ecological extinction of many oceanic species. The depletion of historical abundances of large animals, such as whales and sea turtles, is well known. However, the magnitude of the historical overfishing of exploited invertebrates is unclear. The lack of rigorous baseline data limits the implementation of efficient management and conservation plans in the marine realm. The precious Mediterranean red coral Corallium rubrum has been intensively exploited since antiquity for its use in jewellery. It shows dramatic signs of overexploitation, with no untouched populations known in shallow waters. Here, we report the discovery of an exceptional red coral population from a previously unexplored shallow underwater cave in Corsica (France) harbouring the largest biomass (by more than 100-fold) reported to date in the Mediterranean. Our findings challenge current assumptions on the pristine state of this emblematic species. Our results suggest that, before intense exploitation, red coral lived in relatively high-density populations with a large proportion of centuries-old colonies, even at very shallow depths. We call for the re-evaluation of the baseline for red coral and question the sustainability of the exploitation of a species that is still common but ecologically (functionally) extinct and in a trajectory of further decline.

  16. Local Stressors, Resilience, and Shifting Baselines on Coral Reefs.

    Science.gov (United States)

    McLean, Matthew; Cuetos-Bueno, Javier; Nedlic, Osamu; Luckymiss, Marston; Houk, Peter

    2016-01-01

    Understanding how and why coral reefs have changed over the last twenty to thirty years is crucial for sustaining coral-reef resilience. We used a historical baseline from Kosrae, a typical small island in Micronesia, to examine changes in fish and coral assemblages since 1986. We found that natural gradients in the spatial distribution of fish and coral assemblages have become amplified, as island geography is now a stronger determinant of species abundance patterns, and habitat forming Acropora corals and large-bodied fishes that were once common on the leeward side of the island have become scarce. A proxy for fishing access best predicted the relative change in fish assemblage condition over time, and in turn, declining fish condition was the only factor correlated with declining coral condition, suggesting overfishing may have reduced ecosystem resilience. Additionally, a proxy for watershed pollution predicted modern coral assemblage condition, suggesting pollution is also reducing resilience in densely populated areas. Altogether, it appears that unsustainable fishing reduced ecosystem resilience, as fish composition has shifted to smaller species in lower trophic levels, driven by losses of large predators and herbivores. While prior literature and anecdotal reports indicate that major disturbance events have been rare in Kosrae, small localized disturbances coupled with reduced resilience may have slowly degraded reef condition through time. Improving coral-reef resilience in the face of climate change will therefore require improved understanding and management of growing artisanal fishing pressure and watershed pollution.

  17. Local Stressors, Resilience, and Shifting Baselines on Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Matthew McLean

    Full Text Available Understanding how and why coral reefs have changed over the last twenty to thirty years is crucial for sustaining coral-reef resilience. We used a historical baseline from Kosrae, a typical small island in Micronesia, to examine changes in fish and coral assemblages since 1986. We found that natural gradients in the spatial distribution of fish and coral assemblages have become amplified, as island geography is now a stronger determinant of species abundance patterns, and habitat forming Acropora corals and large-bodied fishes that were once common on the leeward side of the island have become scarce. A proxy for fishing access best predicted the relative change in fish assemblage condition over time, and in turn, declining fish condition was the only factor correlated with declining coral condition, suggesting overfishing may have reduced ecosystem resilience. Additionally, a proxy for watershed pollution predicted modern coral assemblage condition, suggesting pollution is also reducing resilience in densely populated areas. Altogether, it appears that unsustainable fishing reduced ecosystem resilience, as fish composition has shifted to smaller species in lower trophic levels, driven by losses of large predators and herbivores. While prior literature and anecdotal reports indicate that major disturbance events have been rare in Kosrae, small localized disturbances coupled with reduced resilience may have slowly degraded reef condition through time. Improving coral-reef resilience in the face of climate change will therefore require improved understanding and management of growing artisanal fishing pressure and watershed pollution.

  18. Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress.

    Science.gov (United States)

    Gust, Kurt A; Najar, Fares Z; Habib, Tanwir; Lotufo, Guilherme R; Piggot, Alan M; Fouke, Bruce W; Laird, Jennifer G; Wilbanks, Mitchell S; Rawat, Arun; Indest, Karl J; Roe, Bruce A; Perkins, Edward J

    2014-07-12

    Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5. Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral/zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (i.e. cytochrome P450 and UDP glucuronosyltransferase 2 family) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production

  19. Endangered New Caledonian endemic mushroom coral Cantharellus noumeae in turbid, metal-rich, natural and artificial environments.

    Science.gov (United States)

    Gilbert, Antoine; Heintz, Tom; Hoeksema, Bert W; Benzoni, Francesca; Fernandez, Jean Michel; Fauvelot, Cécile; Andréfouët, Serge

    2015-11-15

    Since its description in 1984, little attention has been paid to the New Caledonian endemic mushroom coral Cantharellus noumeae (Fungiidae), an IUCN Red-listed, endangered coral species. Our study presents the first ever quantitative assessment conducted on C. noumeae populations for two contrasting sites in the same turbid bay. Sites differed by their substrates of artificial or natural origins. Metal concentrations of superficial sediment were measured. C. noumeae was found in high densities in metal-rich and turbid environments at both locations, reaching up to 288 individuals per 50m(2). It was 3.5 times more abundant on natural rock than on artificial substrates. Recruitment was also higher proportionally on rock (47% vs 7-14%). The composition of the associated coral communities included 30-37 species occurring in low densities. Our findings clarify the environmental niche of this species and its colonization potential, in order to eventually better characterize its conservation status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Impacts of the Deepwater Horizon oil spill on deep-sea coral-associated sediment communities

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Cordes, Erik E.; Stamler, Katherine

    2016-01-01

    Cold-water corals support distinct populations of infauna within surrounding sediments that provide vital ecosystem functions and services in the deep sea. Yet due to their sedentary existence, infauna are vulnerable to perturbation and contaminant exposure because they are unable to escape disturbance events. While multiple deep-sea coral habitats were injured by the 2010 Deepwater Horizon (DWH) oil spill, the extent of adverse effects on coral-associated sediment communities is unknown. In 2011, sediments were collected adjacent to several coral habitats located 6 to 183 km from the wellhead in order to quantify the extent of impact of the DWH spill on infaunal communities. Higher variance in macrofaunal abundance and diversity, and different community structure (higher multivariate dispersion) were associated with elevated hydrocarbon concentrations and contaminants at sites closest to the wellhead (MC294, MC297, and MC344), consistent with impacts from the spill. In contrast, variance in meiofaunal diversity was not significantly related to distance from the wellhead and no other community metric (e.g. density or multivariate dispersion) was correlated with contaminants or hydrocarbon concentrations. Concentrations of polycyclic aromatic hydrocarbons (PAH) provided the best statistical explanation for observed macrofaunal community structure, while depth and presence of fine-grained mud best explained meiofaunal community patterns. Impacts associated with contaminants from the DWH spill resulted in a patchwork pattern of infaunal community composition, diversity, and abundance, highlighting the role of variability as an indicator of disturbance. These data represent a useful baseline for tracking post-spill recovery of these deep-sea communities.

  1. Impact of conservation areas on trophic interactions between apex predators and herbivores on coral reefs.

    Science.gov (United States)

    Rizzari, Justin R; Bergseth, Brock J; Frisch, Ashley J

    2015-04-01

    Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top-down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large-bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no-take, and no-entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no-entry zones than in fished and no-take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no-entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top-down forces may not play a strong role in regulating large-bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. © 2014 Society for Conservation Biology.

  2. Calcification by juvenile corals under heterotrophy and elevated CO2

    Science.gov (United States)

    Drenkard, E. J.; Cohen, A. L.; McCorkle, D. C.; de Putron, S. J.; Starczak, V. R.; Zicht, A. E.

    2013-09-01

    Ocean acidification (OA) threatens the existence of coral reefs by slowing the rate of calcium carbonate (CaCO3) production of framework-building corals thus reducing the amount of CaCO3 the reef can produce to counteract natural dissolution. Some evidence exists to suggest that elevated levels of dissolved inorganic nutrients can reduce the impact of OA on coral calcification. Here, we investigated the potential for enhanced energetic status of juvenile corals, achieved via heterotrophic feeding, to modulate the negative impact of OA on calcification. Larvae of the common Atlantic golf ball coral, Favia fragum, were collected and reared for 3 weeks under ambient (421 μatm) or significantly elevated (1,311 μatm) CO2 conditions. The metamorphosed, zooxanthellate spat were either fed brine shrimp (i.e., received nutrition from photosynthesis plus heterotrophy) or not fed (i.e., primarily autotrophic). Regardless of CO2 condition, the skeletons of fed corals exhibited accelerated development of septal cycles and were larger than those of unfed corals. At each CO2 level, fed corals accreted more CaCO3 than unfed corals, and fed corals reared under 1,311 μatm CO2 accreted as much CaCO3 as unfed corals reared under ambient CO2. However, feeding did not alter the sensitivity of calcification to increased CO2; ∆ calcification/∆Ω was comparable for fed and unfed corals. Our results suggest that calcification rates of nutritionally replete juvenile corals will decline as OA intensifies over the course of this century. Critically, however, such corals could maintain higher rates of skeletal growth and CaCO3 production under OA than those in nutritionally limited environments.

  3. Competitive interactions between corals and turf algae depend on coral colony form.

    Science.gov (United States)

    Swierts, Thomas; Vermeij, Mark Ja

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral-turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship.

  4. Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata.

    KAUST Repository

    Polato, Nicholas R

    2010-06-23

    The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.

  5. Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata.

    KAUST Repository

    Polato, Nicholas R; Voolstra, Christian R.; Schnetzer, Julia; DeSalvo, Michael K; Randall, Carly J; Szmant, Alina M; Medina, Mó nica; Baums, Iliana B

    2010-01-01

    The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.

  6. Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia

    KAUST Repository

    Pratchett, Morgan S.; Trapon, Melanie L.; Berumen, Michael L.; Chong-Seng, Karen M.

    2010-01-01

    Coral reefs are often subject to disturbances that can cause enduring changes in community structure and abundance of coral reef organisms. In Moorea, French Polynesia, frequent disturbances between 1979 and 2003 caused marked shifts in taxonomic composition of coral assemblages. This study explores recent changes in live cover and taxonomic structure of coral communities on the north coast of Moorea, French Polynesia, to assess whether coral assemblages are recovering (returning to a previous Acropora-dominated state) or continuing to move towards an alternative community structure. Coral cover declined by 29.7% between July 2003 and March 2009, mostly due to loss of Acropora and Montipora spp. Coral mortality varied among habitats, with highest levels of coral loss on the outer reef slope (7-20 m depth). In contrast, there was limited change in coral cover within the lagoon, and coral cover actually increased on the reef crest. Observed changes in coral cover and composition correspond closely with the known feeding preferences and observed spatial patterns of Acanthaster planci L., though observed coral loss also coincided with at least one episode of coral bleaching, as well as persistent populations of the corallivorous starfish Culcita novaeguineae Muller & Troschel. While climate change poses an important and significant threat to the future structure and dynamics coral reef communities, outbreaks of A. planci remain a significant cause of coral loss in Moorea. More importantly, these recent disturbances have followed long-term shifts in the structure of coral assemblages, and the relative abundance of both Pocillopora and Porites continue to increase due to disproportionate losses of Acropora and Montipora. Moreover, Pocillopora and Porites dominate assemblages of juvenile corals, suggesting that there is limited potential for a return to an Acropora-dominated state, last recorded in 1979. © 2010 Springer-Verlag.

  7. Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia

    KAUST Repository

    Pratchett, Morgan S.

    2010-09-19

    Coral reefs are often subject to disturbances that can cause enduring changes in community structure and abundance of coral reef organisms. In Moorea, French Polynesia, frequent disturbances between 1979 and 2003 caused marked shifts in taxonomic composition of coral assemblages. This study explores recent changes in live cover and taxonomic structure of coral communities on the north coast of Moorea, French Polynesia, to assess whether coral assemblages are recovering (returning to a previous Acropora-dominated state) or continuing to move towards an alternative community structure. Coral cover declined by 29.7% between July 2003 and March 2009, mostly due to loss of Acropora and Montipora spp. Coral mortality varied among habitats, with highest levels of coral loss on the outer reef slope (7-20 m depth). In contrast, there was limited change in coral cover within the lagoon, and coral cover actually increased on the reef crest. Observed changes in coral cover and composition correspond closely with the known feeding preferences and observed spatial patterns of Acanthaster planci L., though observed coral loss also coincided with at least one episode of coral bleaching, as well as persistent populations of the corallivorous starfish Culcita novaeguineae Muller & Troschel. While climate change poses an important and significant threat to the future structure and dynamics coral reef communities, outbreaks of A. planci remain a significant cause of coral loss in Moorea. More importantly, these recent disturbances have followed long-term shifts in the structure of coral assemblages, and the relative abundance of both Pocillopora and Porites continue to increase due to disproportionate losses of Acropora and Montipora. Moreover, Pocillopora and Porites dominate assemblages of juvenile corals, suggesting that there is limited potential for a return to an Acropora-dominated state, last recorded in 1979. © 2010 Springer-Verlag.

  8. Assessing land use, sedimentation, and water quality stressors as predictors of coral reef condition in St. Thomas, U.S. Virgin Islands.

    Science.gov (United States)

    Oliver, L M; Fisher, W S; Fore, L; Smith, A; Bradley, P

    2018-03-13

    Coral reef condition on the south shore of St. Thomas, U.S. Virgin Islands, was assessed at various distances from Charlotte Amalie, the most densely populated city on the island. Human influence in the area includes industrial activity, wastewater discharge, cruise ship docks, and impervious surfaces throughout the watershed. Anthropogenic activity was characterized using a landscape development intensity (LDI) index, sedimentation threat (ST) estimates, and water quality (WQ) impairments in the near-coastal zone. Total three-dimensional coral cover, reef rugosity, and coral diversity had significant negative coefficients for LDI index, as did densities of dominant species Orbicella annularis, Orbicella franksi, Montastraea cavernosa, Orbicella faveolata, and Porites porites. However, overall stony coral colony density was not significantly correlated with stressors. Positive relationships between reef rugosity and ST, between coral diversity and ST, and between coral diversity and WQ were unexpected because these stressors are generally thought to negatively influence coral growth and health. Sponge density was greater with higher disturbance indicators (ST and WQ), consistent with reports of greater resistance by sponges to degraded water quality compared to stony corals. The highest FoRAM (Foraminifera in Reef Assessment and Monitoring) indices indicating good water quality were found offshore from the main island and outside the harbor. Negative associations between stony coral metrics and LDI index have been reported elsewhere in the Caribbean and highlight LDI index potential as a spatial tool to characterize land-based anthropogenic stressor gradients relevant to coral reefs. Fewer relationships were found with an integrated stressor index but with similar trends in response direction.

  9. Assessment of fish populations and habitat on Oculina Bank, a deep-sea coral marine protected area off eastern Florida

    OpenAIRE

    Harter , Stacey L.; Ribera, Marta M.; Shepard, Andrew N.; Reed, John K.

    2009-01-01

    A portion of the Oculina Bank located off eastern Florida is a marine protected area (MPA) preserved for its dense populations of the ivory tree coral (Oculina varicosa), which provides important habitat for fish. Surveys of fish assemblages and benthic habitat were conducted inside and outside the MPA in 2003 and 2005 by using remotely operated vehicle video transects and digital still imagery. Fish species composition, biodiversity, and grouper densities were used to determine w...

  10. ENSO Weather and Coral Bleaching on the Great Barrier Reef, Australia

    Science.gov (United States)

    McGowan, Hamish; Theobald, Alison

    2017-10-01

    The most devastating mass coral bleaching has occurred during El Niño events, with bleaching reported to be a direct result of increased sea surface temperatures (SSTs). However, El Niño itself does not cause SSTs to rise in all regions that experience bleaching. Nor is the upper ocean warming trend of 0.11°C per decade since 1971, attributed to global warming, sufficient alone to exceed the thermal tolerance of corals. Here we show that weather patterns during El Niño that result in reduced cloud cover, higher than average air temperatures and higher than average atmospheric pressures, play a crucial role in determining the extent and location of coral bleaching on the world's largest coral reef system, the World Heritage Great Barrier Reef (GBR), Australia. Accordingly, synoptic-scale weather patterns and local atmosphere-ocean feedbacks related to El Niño-Southern Oscillation (ENSO) and not large-scale SST warming due to El Niño alone and/or global warming are often the cause of coral bleaching on the GBR.

  11. Dynamic stability of coral reefs on the west Australian coast.

    Directory of Open Access Journals (Sweden)

    Conrad W Speed

    Full Text Available Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10-35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (∼28%, although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs.

  12. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae: Founder effects, vicariance, or both?

    Directory of Open Access Journals (Sweden)

    Epp Laura S

    2008-01-01

    Full Text Available Abstract Background An increasing number of studies demonstrate that genetic differentiation and speciation in the sea occur over much smaller spatial scales than previously appreciated given the wide distribution range of many morphologically defined coral reef invertebrate species and the presumed dispersal-enhancing qualities of ocean currents. However, knowledge about the processes that lead to population divergence and speciation is often lacking despite being essential for the understanding, conservation, and management of marine biodiversity. Sponges, a highly diverse, ecologically and economically important reef-invertebrate taxon, exhibit spatial trends in the Indo-West Pacific that are not universally reflected in other marine phyla. So far, however, processes generating those unexpected patterns are not understood. Results We unraveled the phylogeographic structure of the widespread Indo-Pacific coral reef sponge Leucetta chagosensis across its known geographic range using two nuclear markers: the rDNA internal transcribed spacers (ITS 1&2 and a fragment of the 28S gene, as well as the second intron of the ATP synthetase beta subunit-gene (ATPSb-iII. This enabled the detection of several deeply divergent clades congruent over both loci, one containing specimens from the Indian Ocean (Red Sea and Maldives, another one from the Philippines, and two other large and substructured NW Pacific and SW Pacific clades with an area of overlap in the Great Barrier Reef/Coral Sea. Reciprocally monophyletic populations were observed from the Philippines, Red Sea, Maldives, Japan, Samoa, and Polynesia, demonstrating long-standing isolation. Populations along the South Equatorial Current in the south-western Pacific showed isolation-by-distance effects. Overall, the results pointed towards stepping-stone dispersal with some putative long-distance exchange, consistent with expectations from low dispersal capabilities. Conclusion We argue that both

  13. Physiology can contribute to better understanding, management, and conservation of coral reef fishes.

    Science.gov (United States)

    Illing, Björn; Rummer, Jodie L

    2017-01-01

    Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more

  14. Eguchipsammia fistula Microsatellite Development and Population Analysis

    KAUST Repository

    Mughal, Mehreen

    2012-12-01

    Deep water corals are an understudied yet biologically important and fragile ecosystem under threat from recent increasing temperatures and high carbon dioxide emissions. Using 454 sequencing, we develop 14 new microsatellite markers for the deep water coral Eguchipsammia fistula, collected from the Red Sea but found in deep water coral ecosystems globally. We tested these microsatellite primers on 26 samples of this coral collected from a single population. Results show that these corals are highly clonal within this population stemming from a high level of asexual reproduction. Mitochondrial studies back up microsatellite findings of high levels of genetic similarity. CO1, ND1 and ATP6 mitochondrial sequences of E. fistula and 11 other coral species were used to build phylogenetic trees which grouped E. fistula with shallow water coral Porites rather than deep sea L. Petusa.

  15. Raiding the Coral Nurseries?

    Directory of Open Access Journals (Sweden)

    Alison M. Jones

    2011-08-01

    Full Text Available A recent shift in the pattern of commercial harvest in the Keppel Island region of the southern inshore Great Barrier Reef raises concern about the depletion of a number of relatively rare restricted range taxa. The shift appears to be driven by demand from the United States (US for corals for domestic aquaria. Data from the annual status reports from the Queensland Coral Fishery were compared with export trade data to the US from the Convention on International Trade in Endangered Species (CITES. Evidence was found of recent increases in the harvest of species from the Mussidae family (Acanthastrea spp. which appears to be largely driven by demand from the US. On present trends, the industry runs the risk of localized depletion of Blastomussa and Scolymia; evidenced by an increase in the harvest of small specimens and the trend of decreasing harvest despite a concurrent increase in demand. Considering their relatively high sediment tolerance compared to other reef-building species, and the current lack of information about their functional role in reef stability, the trend raises concerns about the impact of the harvest on local coral communities. The recent shift in harvest patterns could have impacts on slow-growing species by allowing harvest beyond the rate of population regeneration. In light of these factors, combined with the value of such species to local tourism, a commercial coral fishery based on uncommon but highly sought-after species may not be ecologically sustainable or economically viable in the Keppels.

  16. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  17. Recent expansion of heat-activated retrotransposons in the coral symbiont Symbiodinium microadriaticum

    KAUST Repository

    Chen, Jit Ern; Cui, Guoxin; Wang, Xin; Liew, Yi Jin; Aranda, Manuel

    2017-01-01

    Rising sea surface temperature is the main cause of global coral reef decline. Abnormally high temperatures trigger the breakdown of the symbiotic association between corals and their photosynthetic symbionts in the genus Symbiodinium. Higher

  18. Habitat degradation and fishing effects on the size structure of coral reef fish communities.

    Science.gov (United States)

    Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C

    2010-03-01

    Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.

  19. The recent decline of Montastraea annularis (complex coral populations in western Curaçao: a cause for concern?

    Directory of Open Access Journals (Sweden)

    A. W Bruckner

    2006-12-01

    Full Text Available Shallow leeward reefs off the western end of Curaçao are dominated by extensive populations of M. annularis (complex. These species are larger in size (mean= 66 cm diameter than all other species, with few small colonies (10 cm observed within transects, and most exhibited low levels of partial mortality (mean= 22.5%. These species were less abundant (38% of all colonies in 2005. Partial mortality among live colonies of M. annularis and M. faveolata increased by 85% (mean = 42% partial mortality and numerous dead colonies of M. faveolata and M. annularis were observed; M. franksi colonies were generally in excellent condition (14% partial tissue mortality. A high prevalence of coral diseases (3-30% was documented among M. annularis and M. faveolata, while all other species were less frequently affected. Yellow band disease (YBD emerged shortly after the 1995 bleaching event, and rapidly spread throughout all depths, with the highest prevalence between 1997-1999. YBD caused slow rates of mortality (=1 cm/month, but multiple focal lesions appeared on individual colonies, and these progressively radiated outward as they killed the colonies. By 2005, 44% of the tagged corals were dead; the remainder exhibited active YBD infections (21% or were in remission (31.6% but were missing on average >90% of their tissue. Although the incidence of YBD has declined since 2000, white plague (WP prevalence was unusually high (4-12% in 2001 and 2005, with affected colonies exhibiting recent mortality of up to 70%. Dead Montastraea spp. surfaces are being colonized by other corals, including poritids, agaricids, and other faviids, while recruits of M. annularis (complex are absent. If diseases and other biotic stressors persist on these reefs, M. annularis and M. faveolata populations may undergo a decline similar to that observed in the 1980s among Caribbean acroporids. Rev. Biol. Trop. 54 (Suppl. 3: 45- 58. Epub 2007 Jan. 15.

  20. The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change.

    Science.gov (United States)

    Berkelmans, Ray; van Oppen, Madeleine J H

    2006-09-22

    The ability of coral reefs to survive the projected increases in temperature due to global warming will depend largely on the ability of corals to adapt or acclimatize to increased temperature extremes over the next few decades. Many coral species are highly sensitive to temperature stress and the number of stress (bleaching) episodes has increased in recent decades. We investigated the acclimatization potential of Acropora millepora, a common and widespread Indo-Pacific hard coral species, through transplantation and experimental manipulation. We show that adult corals, at least in some circumstances, are capable of acquiring increased thermal tolerance and that the increased tolerance is a direct result of a change in the symbiont type dominating their tissues from Symbiodinium type C to D. Our data suggest that the change in symbiont type in our experiment was due to a shuffling of existing types already present in coral tissues, not through exogenous uptake from the environment. The level of increased tolerance gained by the corals changing their dominant symbiont type to D (the most thermally resistant type known) is around 1-1.5 degrees C. This is the first study to show that thermal acclimatization is causally related to symbiont type and provides new insight into the ecological advantage of corals harbouring mixed algal populations. While this increase is of huge ecological significance for many coral species, in the absence of other mechanisms of thermal acclimatization/adaptation, it may not be sufficient to survive climate change under predicted sea surface temperature scenarios over the next 100 years. However, it may be enough to 'buy time' while greenhouse reduction measures are put in place.

  1. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  2. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sö nke; Banguera Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  3. Bacterial profiling of White Plague Disease in a comparative coral species framework.

    KAUST Repository

    Roder, Cornelia

    2014-01-01

    Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.

  4. [Changes in fish communities of coral reefs at Sabana-Camagüey Archipelago, Cuba].

    Science.gov (United States)

    Claro, Rodolfo; Cantelar, Karel; Amargós, Fabián Pina; García-Arteaga, Juan P

    2007-06-01

    A comparison of fish community structure in the Sabana-Camagüey Archipelago (1988-1989 and 2000) using visual census surveys (eight belt transects 2x50 m in each site) suggests a notable decrease on species richness, and a two thirds reduction in fish density and biomass on coral reefs. This decrease in fish populations may be related to the alarming decrease of scleractinian coral cover, and an enormous proliferation of algae, which currently covers 70-80% of the hard substrate, impeding the recovery of corals and other benthic organisms. High coral mortalities occurred between the study periods, which correlate with the high temperatures caused by the ENSO events of 1995, 1997 and 1998. These events caused massive bleaching of corals and subsequent algae overgrowth. Evidence of nutrient enrichment from the inner lagoons and overfishing are also present. Collectively, these effects have provoked a marked degradation of reef habitats. These changes appear to have affected the availability of refuges and food for fishes, and may be constraining individual growth potential and population size.

  5. Red Light Represses the Photophysiology of the Scleractinian Coral Stylophora pistillata

    OpenAIRE

    Wijgerde, Tim; van Melis, Anne; Silva, Catarina I. F.; Leal, Miguel C.; Vogels, Luc; Mutter, Claudia; Osinga, Ronald

    2014-01-01

    Light spectrum plays a key role in the biology of symbiotic corals, with blue light resulting in higher coral growth, zooxanthellae density, chlorophyll a content and photosynthesis rates as compared to red light. However, it is still unclear whether these physiological processes are blue-enhanced or red-repressed. This study investigated the individual and combined effects of blue and red light on the health, zooxanthellae density, photophysiology and colouration of the scleractinian coral S...

  6. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    Science.gov (United States)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  7. Variation of the Symbiodinium Community Composition in Scleractinian Corals along a Cross-shelf and Depth Gradient

    KAUST Repository

    Mejia Restrepo, Alejandro

    2017-12-01

    Corals form a symbiotic relationship with photosynthetic zooxanthellae from the genus Symbiodinium; the breakdown of this symbiosis results in the phenomenon known as coral bleaching. This relationship is especially vulnerable to high temperature stress, although corals may survive if they have resistant types of symbionts, or switch their community composition towards them. To assess the variation of the symbiont community in different environmental conditions, I recorded the temperature and collected samples from six scleractinian coral species and one calcifying hydrozoan, in two inshore, two mid-shelf, and two offshore reefs at 1, 15, and 30m depth, analyzing Symbiodinium diversity using Next Generation Sequencing with the SymPortal profile typing approach. The temperature was very similar for all points in winter, when coral samples were collected, but variation between points increased until a maximum at summer, with the shallower parts of the inshore reefs showing higher temperatures and the points at 30m depth showing the lowest. The Symbiodinium composition was more similar between samples of the same host species than among samples of the same reefs or depths. Coral species from the Pocilloporidae family and Millepora dichotoma showed specific association with different profile types, specifically, intragenomic variants of Symbiodinium type A1, which appears to be dominant in the Red Sea although it has not been reported for these species in other regions. The other species showed specific associations with types previously reported in other regions, mostly from clade C and D, although also having different types and intragenomic variants. For most cases, certain profile types, which can reflect different species or populations, appeared to be dominant in particular environmental conditions, following a distribution related with depth, reef type, or both. In conclusion, this study showed that the Symbiodinium composition depends more on the host species

  8. A clear human footprint in the coral reefs of the Caribbean

    Science.gov (United States)

    Mora, Camilo

    2008-01-01

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs. PMID:18182370

  9. Red coral extinction risk enhanced by ocean acidification.

    Science.gov (United States)

    Cerrano, Carlo; Cardini, Ulisse; Bianchelli, Silvia; Corinaldesi, Cinzia; Pusceddu, Antonio; Danovaro, Roberto

    2013-01-01

    The red coral Corallium rubrum is a habitat-forming species with a prominent and structural role in mesophotic habitats, which sustains biodiversity hotspots. This precious coral is threatened by both over-exploitation and temperature driven mass mortality events. We report here that biocalcification, growth rates and polyps' (feeding) activity of Corallium rubrum are significantly reduced at pCO2 scenarios predicted for the end of this century (0.2 pH decrease). Since C. rubrum is a long-living species (>200 years), our results suggest that ocean acidification predicted for 2100 will significantly increases the risk of extinction of present populations. Given the functional role of these corals in the mesophotic zone, we predict that ocean acidification might have cascading effects on the functioning of these habitats worldwide.

  10. Additive negative effects of anthropogenic sedimentation and warming on the survival of coral recruits

    OpenAIRE

    Fourney, Francesca; Figueiredo, Joana

    2017-01-01

    Corals worldwide are facing population declines due to global climate change and local anthropogenic impacts. Global climate change effects are hard to tackle but recent studies show that some coral species can better handle climate change stress when provided with additional energy resources. The local stressor that most undermines energy acquisition is sedimentation because it impedes coral heterotrophic feeding and their ability to photosynthesize. To investigate if reducing local sediment...

  11. The wicked problem of China's disappearing coral reefs.

    Science.gov (United States)

    Hughes, Terry P; Huang, Hui; Young, Matthew A L

    2013-04-01

    We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10-15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef-management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. © 2012 Society for Conservation Biology.

  12. Population Connectivity Measures of Fishery-Targeted Coral Reef Species to Inform Marine Reserve Network Design in Fiji.

    Science.gov (United States)

    Eastwood, Erin K; López, Elora H; Drew, Joshua A

    2016-01-25

    Coral reef fish serve as food sources to coastal communities worldwide, yet are vulnerable to mounting anthropogenic pressures like overfishing and climate change. Marine reserve networks have become important tools for mitigating these pressures, and one of the most critical factors in determining their spatial design is the degree of connectivity among different populations of species prioritized for protection. To help inform the spatial design of an expanded reserve network in Fiji, we used rapidly evolving mitochondrial genes to investigate connectivity patterns of three coral reef species targeted by fisheries in Fiji: Epinephelus merra (Serranidae), Halichoeres trimaculatus (Labridae), and Holothuria atra (Holothuriidae). The two fish species, E. merra and Ha. trimaculatus, exhibited low genetic structuring and high amounts of gene flow, whereas the sea cucumber Ho. atra displayed high genetic partitioning and predominantly westward gene flow. The idiosyncratic patterns observed among these species indicate that patterns of connectivity in Fiji are likely determined by a combination of oceanographic and ecological characteristics. Our data indicate that in the cases of species with high connectivity, other factors such as representation or political availability may dictate where reserves are placed. In low connectivity species, ensuring upstream and downstream connections is critical.

  13. Coral Bacterial-Core Abundance and Network Complexity as Proxies for Anthropogenic Pollution

    Directory of Open Access Journals (Sweden)

    Deborah C. A. Leite

    2018-04-01

    Full Text Available Acclimatization via changes in the stable (core or the variable microbial diversity and/or abundance is an important element in the adaptation of coral species to environmental changes. Here, we explored the spatial-temporal dynamics, diversity and interactions of variable and core bacterial populations associated with the coral Mussismilia hispida and the surrounding water. This survey was performed on five reefs along a transect from the coast (Reef 1 to offshore (Reef 5, representing a gradient of influence of the river mouth, for almost 12 months (4 sampling times, in the dry and rainy seasons. A clear increasing gradient of organic-pollution proxies (nitrogen content and fecal coliforms was observed from Reef 1 to Reef 5, during both seasons, and was highest at the Buranhém River mouth (Reef 1. Conversely, a clear inverse gradient of the network analysis of the whole bacterial communities also revealed more-complex network relationships at Reef 5. Our data also indicated a higher relative abundance of members of the bacterial core, dominated by Acinetobacter sp., at Reef 5, and higher diversity of site-stable bacterial populations, likely related to the higher abundance of total coliforms and N content (proxies of sewage or organic pollution at Reef 1, during the rainy season. Thus, the less “polluted” areas may show a more-complex network and a high relative abundance of members of the bacterial core (almost 97% in some cases, resulting in a more-homogeneous and well-established bacteriome among sites/samples, when the influence of the river is stronger (rainy seasons.

  14. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    Science.gov (United States)

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  15. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  16. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    NARCIS (Netherlands)

    Santos, Henrique F.; Carmo, Flavia L.; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B.; Rosado, Alexandre S.; van Elsas, Jan Dirk; Peixoto, Raquel S.

    2014-01-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study

  17. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    NARCIS (Netherlands)

    Santos, Henrique F.; Carmo, Flavia L.; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B.; Rosado, Alexandre S.; van Elsas, Jan Dirk; Peixoto, Raquel S.

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study

  18. Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean

    Directory of Open Access Journals (Sweden)

    Phanor Hernando Montoya Maya

    2016-11-01

    Full Text Available The aim of ecological restoration is to establish self-sustaining and resilient systems. In coral reef restoration, transplantation of nursery-grown corals is seen as a potential method to mitigate reef degradation and enhance recovery. The transplanted reef should be capable of recruiting new juvenile corals to ensure long-term resilience. Here, we quantified how coral transplantation influenced natural coral recruitment at a large-scale coral reef restoration site in Seychelles, Indian Ocean. Between November 2011 and June 2014 a total of 24,431 nursery-grown coral colonies from 10 different coral species were transplanted in 5,225 m2 (0.52 ha of degraded reef at the no-take marine reserve of Cousin Island Special Reserve in an attempt to assist in natural reef recovery. We present the results of research and monitoring conducted before and after coral transplantation to evaluate the positive effect that the project had on coral recruitment and reef recovery at the restored site. We quantified the density of coral recruits (spat <1 cm and juveniles (colonies 1-5 cm at the transplanted site, a degraded control site and a healthy control site at the marine reserve. We used ceramic tiles to estimate coral settlement and visual surveys with 1 m2 quadrats to estimate coral recruitment. Six months after tile deployment, total spat density at the transplanted site (123.4 ± 13.3 spat m-2 was 1.8 times higher than at healthy site (68.4 ± 7.8 spat m-2 and 1.6 times higher than at degraded site (78.2 ± 7.17 spat m-2. Two years after first transplantation, the total recruit density was highest at healthy site (4.8 ± 0.4 recruits m-2, intermediate at transplanted site (2.7 ± 0.4 recruits m-2, and lowest at degraded site (1.7 ± 0.3 recruits m-2. The results suggest that large-scale coral restoration may have a positive influence on coral recruitment and juveniles. The effect of key project techniques on the results are discussed. This study supports

  19. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  20. Red Light Represses the Photophysiology of the Scleractinian Coral Stylophora pistillata

    NARCIS (Netherlands)

    Wijgerde, T.H.M.; Melis, A.A.M.; Ferreira Da Silva, C.I.; Leal, M.C.; Vogels, L.; Mutter, C.; Osinga, R.

    2014-01-01

    Light spectrum plays a key role in the biology of symbiotic corals, with blue light resulting in higher coral growth, zooxanthellae density, chlorophyll a content and photosynthesis rates as compared to red light. However, it is still unclear whether these physiological processes are blue-enhanced

  1. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica.

    Science.gov (United States)

    Ainsworth, T D; Fine, M; Roff, G; Hoegh-Guldberg, O

    2008-01-01

    Coral bleaching occurs when the endosymbiosis between corals and their symbionts disintegrates during stress. Mass coral bleaching events have increased over the past 20 years and are directly correlated with periods of warm sea temperatures. However, some hypotheses have suggested that reef-building corals bleach due to infection by bacterial pathogens. The 'Bacterial Bleaching' hypothesis is based on laboratory studies of the Mediterranean invading coral, Oculina patagonica, and has further generated conclusions such as the coral probiotic hypothesis and coral hologenome theory of evolution. We aimed to investigate the natural microbial ecology of O. patagonica during the annual bleaching using fluorescence in situ hybridization to map bacterial populations within the coral tissue layers, and found that the coral bleaches on the temperate rocky reefs of the Israeli coastline without the presence of Vibrio shiloi or bacterial penetration of its tissue layers. Bacterial communities were found associated with the endolithic layer of bleached coral regions, and a community dominance shift from an apparent cyanobacterial-dominated endolithic layer to an algal-dominated layer was found in bleached coral samples. While bacterial communities certainly play important roles in coral stasis and health, we suggest environmental stressors, such as those documented with reef-building corals, are the primary triggers leading to bleaching of O. patagonica and suggest that bacterial involvement in patterns of bleaching is that of opportunistic colonization.

  2. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change

    Science.gov (United States)

    Berkelmans, Ray; van Oppen, Madeleine J.H

    2006-01-01

    The ability of coral reefs to survive the projected increases in temperature due to global warming will depend largely on the ability of corals to adapt or acclimatize to increased temperature extremes over the next few decades. Many coral species are highly sensitive to temperature stress and the number of stress (bleaching) episodes has increased in recent decades. We investigated the acclimatization potential of Acropora millepora, a common and widespread Indo-Pacific hard coral species, through transplantation and experimental manipulation. We show that adult corals, at least in some circumstances, are capable of acquiring increased thermal tolerance and that the increased tolerance is a direct result of a change in the symbiont type dominating their tissues from Symbiodinium type C to D. Our data suggest that the change in symbiont type in our experiment was due to a shuffling of existing types already present in coral tissues, not through exogenous uptake from the environment. The level of increased tolerance gained by the corals changing their dominant symbiont type to D (the most thermally resistant type known) is around 1–1.5 °C. This is the first study to show that thermal acclimatization is causally related to symbiont type and provides new insight into the ecological advantage of corals harbouring mixed algal populations. While this increase is of huge ecological significance for many coral species, in the absence of other mechanisms of thermal acclimatization/adaptation, it may not be sufficient to survive climate change under predicted sea surface temperature scenarios over the next 100 years. However, it may be enough to ‘buy time’ while greenhouse reduction measures are put in place. PMID:16928632

  3. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.

    2017-12-15

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  4. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.; Ziegler, Maren; Radecker, Nils; Buitrago Lopez, Carol; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  5. [Community structure of zooxanthellate corals (Anthozoa: Scleractinia) in Carrizales coral reef, Pacific coast, Mexico].

    Science.gov (United States)

    Reyes-Bonilla, Hector; Escobosa-González, Laura Elena; Cupul-Magaña, Amilcar L; Medina-Rosas, Pedro; Calderón-Aguilera, Luis E

    2013-06-01

    Coral reefs in the Mexican Pacific and notably those of the continental coastline of Colima state are still poorly studied. Fortunately, recent efforts have been carried out by researchers from different Mexican institutions to fill up these information gaps. The aim of this study was to determine the ecological structure of the rich and undisturbed coral building communities of Carrizales by using the point transect interception method (25m-long). For this, three survey expeditions were conducted between June and October 2005 and September 2006; and for comparison purposes, the reef was subdivided according to its position in the bay, and depth (0 to 5 m, and 6 to 10 m). Thirteen coral species were observed in the area, with Pocillopora verrucosa as the most abundant, contributing up to 32.8% of total cover, followed by Porites panamensis and Pocillopora capitata with 11% and 7%, respectively. Other species, Pocillopora damicornis, Pavona gigantea, Pocillopora eydouxi and Pocillopora inflata accounted for 1.5% to 2% of coral cover whereas the remaining five species had cover of less than 1%. Seven of the observed species represented new records for Colima state coastline: Pocillopora eydouxi, P inflata, P meandrina, Pavona duerdeni, P varians, Psammocora stellata and P contigua. This last species is a relevant record, because it has never been observed before in the Eastern Pacific. Although there was no significant difference (ANOVA, p = 0.478) neither in the abundance between the sides of the bay, nor between the depths considered, and the shallow zone observed the higher coral cover. Live coral cover was up to 61%, one of the highest ever reported for the Mexican Pacific, including the Gulf of California. The observed values of diversity (H' = 0.44 +/- 0.02), uniformity (J' = 0.76 +/- 0.02), and taxonomic distinctness index (delta* = 45.87 +/- 3.16), showed that currently this is the most important coral reef of Colima coastline. Currently, this region does not

  6. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals

    Science.gov (United States)

    Shapiro, Orr H.; Kramarsky-Winter, Esti; Gavish, Assaf R.; Stocker, Roman; Vardi, Assaf

    2016-01-01

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral–pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983

  7. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Sarigan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  8. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Guguan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  9. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Tinian, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  10. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Agrihan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  11. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Aguijan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  12. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Maug, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  13. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Saipan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  14. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Alamagan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  15. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Pagan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  16. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Guam, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  17. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Asuncion, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  18. Skeletal mineralogy of coral recruits under high temperature and pCO2

    Science.gov (United States)

    Foster, T.; Clode, P. L.

    2016-03-01

    Aragonite, which is the polymorph of CaCO3 precipitated by modern corals during skeletal formation, has a higher solubility than the more stable polymorph calcite. This higher solubility may leave animals that produce aragonitic skeletons more vulnerable to anthropogenic ocean acidification. It is therefore important to determine whether scleractinian corals have the plasticity to adapt and produce calcite in their skeletons in response to changing environmental conditions. Both high pCO2 and lower Mg / Ca ratios in seawater are thought to have driven changes in the skeletal mineralogy of major marine calcifiers in the past ˜ 540 Ma. Experimentally reduced Mg / Ca ratios in ambient seawater have been shown to induce some calcite precipitation in both adult and newly settled modern corals; however, the impact of high pCO2 on the mineralogy of recruits is unknown. Here we determined the skeletal mineralogy of 1-month-old Acropora spicifera coral recruits grown under high temperature (+3 °C) and pCO2 (˜ 900 µatm) conditions, using X-ray diffraction and Raman spectroscopy. We found that newly settled coral recruits produced entirely aragonitic skeletons regardless of the treatment. Our results show that elevated pCO2 alone is unlikely to drive changes in the skeletal mineralogy of young corals. Not having an ability to switch from aragonite to calcite precipitation may leave corals and ultimately coral reef ecosystems more susceptible to predicted ocean acidification. An important area for prospective research would be the investigation of the combined impact of high pCO2 and reduced Mg / Ca ratio on coral skeletal mineralogy.

  19. Abundance of Corals on Offshore Oil and Gas Platforms in the Gulf of Mexico

    Science.gov (United States)

    Kolian, Stephan R.; Sammarco, Paul W.; Porter, Scott A.

    2017-08-01

    Scleractinian, octocoral, and antipatharian corals have colonized many of the offshore oil and gas platforms in the northern Gulf of Mexico. We surveyed 25 offshore oil and gas platforms for these cnidarians. Few to no corals were detected on inshore, shallow-water structures at data suggest that the offshore platforms located in waters of >25-30 m in the study area are often colonized by these corals. We recommend that structures located in deeper waters should be surveyed for coral and, if the populations are substantial, consider alternate uses for the retired platforms, and leaving them in place, when feasible.

  20. Forecasted coral reef decline in marine biodiversity hotspots under climate change.

    Science.gov (United States)

    Descombes, Patrice; Wisz, Mary S; Leprieur, Fabien; Parravicini, Valerianio; Heine, Christian; Olsen, Steffen M; Swingedouw, Didier; Kulbicki, Michel; Mouillot, David; Pellissier, Loïc

    2015-01-21

    Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low-latitude climatic conditions have no present-day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo-Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change. © 2015 John Wiley & Sons Ltd.

  1. CRED REA Belt Surveys of Coral Population and Disease Assessments at Tinian Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 14 April...

  2. CRED REA Belt Surveys of Coral Population and Disease Assessments at Rota Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 14 April...

  3. CRED REA Belt Surveys of Coral Population and Disease Assessments at Guam Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 14 April...

  4. CRED REA Belt Surveys of Coral Population and Disease Assessments at Tutuila Island, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 17-28 February 2010,...

  5. Comparative study of polycyclic aromatic hydrocarbons in coral tissues and the ambient sediments from Kenting National Park, Taiwan

    International Nuclear Information System (INIS)

    Ko, Fung-Chi; Chang, Chiung-Wen; Cheng, Jing-O.

    2014-01-01

    Surface sediments and corals (Acropora sp. and Montipora sp.) from the coastline of Kenting were analyzed in 2009 and 2010 for content levels of polycyclic aromatic hydrocarbons (PAHs) using gas chromatography-mass spectrometry. The total PAH concentrations (t-PAH) in corasls (143–1715 ng g −1 dw) were significantly higher than in the ambient sediments (2–59 ng g −1 dw) indicating the bioaccumulation of PAHs in corals. The spatial and seasonal variation in PAH levels suggested that land-loaded contaminants may be the main source of PAHs in the Kenting coral reefs. Based on molecular indices, PAHs were substantially of petroleum origin. The major PAH components were phenanthrene, pyrene and fluorine, but PAH congeners in corals and sediments still have characteristic composition patterns which would be altered by the bio/accumulation mechanisms. Further study is essential to assess and understand the impacts of these chemicals on coral reefs. Highlights: • PAH concentrations in Kenting coral reefs ranked minor in the worldwide comparison. • Isomeric ratios of PAHs suggested an important contribution of petrogenic sources. • PAHs have characteristic composition patterns which would be altered by the bio/accumulation mechanisms. • Higher levels of PAHs were found in coral tissues than in sediments (bioaccumulation). • Coral body burdens of PAHs were significantly correlated to adjacent sediments only at the areas with higher levels of PAHs. -- PAH levels in coral tissues were higher than in adjacent sediments (bioaccumulation)

  6. Present status of brachytherapy using Co-RALS in the national hospital and sanatorium in Japan

    International Nuclear Information System (INIS)

    Uno, Takashi; Itami, Jun; Abe, Yoshihisa; Dokiya, Takushi; Yorozu, Atsunori; Nishio, Masamichi; Hata, Yoshihiro; Ogita, Mikio

    1998-01-01

    The present status of brachytherapy using Co-RALS machine in the national hospital and sanatorium were investigated, by a questionnaire method. Questionnaire concerned about the equipment, machine trouble, patient population, together with the stuff of each department. Most of the Co-RALS machines were introduced between 1982 and 1987. Quality of Co-RALS treatment is questionable in several hospitals which lacks radiation therapy personnel. Number of patients treated per year are too small to sustain the cost of Ir-HDR treatment. It is concluded that introduction of Ir-HDR machine should be considered for small number of hospitals where patients population and personnel scale are sufficient. (author)

  7. The cumulative impact of annual coral bleaching can turn some coral species winners into losers.

    Science.gov (United States)

    Grottoli, Andréa G; Warner, Mark E; Levas, Stephen J; Aschaffenburg, Matthew D; Schoepf, Verena; McGinley, Michael; Baumann, Justin; Matsui, Yohei

    2014-12-01

    Mass coral bleaching events caused by elevated seawater temperatures result in extensive coral loss throughout the tropics, and are projected to increase in frequency and severity. If bleaching becomes an annual event later in this century, more than 90% of coral reefs worldwide may be at risk of long-term degradation. While corals can recover from single isolated bleaching and can acclimate to recurring bleaching events that are separated by multiple years, it is currently unknown if and how they will survive and possibly acclimatize to annual coral bleaching. Here, we demonstrate for the first time that annual coral bleaching can dramatically alter thermal tolerance in Caribbean corals. We found that high coral energy reserves and changes in the dominant algal endosymbiont type (Symbiodinium spp.) facilitated rapid acclimation in Porites divaricata, whereas low energy reserves and a lack of algal phenotypic plasticity significantly increased susceptibility in Porites astreoides to bleaching the following year. Phenotypic plasticity in the dominant endosymbiont type of Orbicella faveolata did not prevent repeat bleaching, but may have facilitated rapid recovery. Thus, coral holobiont response to an isolated single bleaching event is not an accurate predictor of its response to bleaching the following year. Rather, the cumulative impact of annual coral bleaching can turn some coral species 'winners' into 'losers', and can also facilitate acclimation and turn some coral species 'losers' into 'winners'. Overall, these findings indicate that cumulative impact of annual coral bleaching could result in some species becoming increasingly susceptible to bleaching and face a long-term decline, while phenotypically plastic coral species will acclimatize and persist. Thus, annual coral bleaching and recovery could contribute to the selective loss of coral diversity as well as the overall decline of coral reefs in the Caribbean. © 2014 John Wiley & Sons Ltd.

  8. CRED REA Belt Surveys of Coral Population and Disease Assessments at Maug Islands, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  9. CRED REA Belt Surveys of Coral Population and Disease Assessments at Asuncion Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  10. CRED REA Belt Surveys of Coral Population and Disease Assessments at Saipan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 7 May 2009,...

  11. CRED REA Belt Surveys of Coral Population and Disease Assessments at Rose Atoll, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 3-5 March 2010, belt...

  12. CRED REA Belt Surveys of Coral Population and Disease Assessments at Pagan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  13. CRED REA Belt Surveys of Coral Population and Disease Assessments at Swains Island, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16-18 March 2010, belt...

  14. CRED REA Belt Surveys of Coral Population and Disease Assessments at Alamagan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  15. CRED REA Belt Surveys of Coral Population and Disease Assessments at Guguan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  16. CRED REA Belt Surveys of Coral Population and Disease Assessments at Sarigan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  17. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    Directory of Open Access Journals (Sweden)

    Jan Tebben

    Full Text Available The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  18. Thermal stress and coral cover as drivers of coral disease outbreaks.

    Directory of Open Access Journals (Sweden)

    John F Bruno

    2007-06-01

    Full Text Available Very little is known about how environmental changes such as increasing temperature affect disease dynamics in the ocean, especially at large spatial scales. We asked whether the frequency of warm temperature anomalies is positively related to the frequency of coral disease across 1,500 km of Australia's Great Barrier Reef. We used a new high-resolution satellite dataset of ocean temperature and 6 y of coral disease and coral cover data from annual surveys of 48 reefs to answer this question. We found a highly significant relationship between the frequencies of warm temperature anomalies and of white syndrome, an emergent disease, or potentially, a group of diseases, of Pacific reef-building corals. The effect of temperature was highly dependent on coral cover because white syndrome outbreaks followed warm years, but only on high (>50% cover reefs, suggesting an important role of host density as a threshold for outbreaks. Our results indicate that the frequency of temperature anomalies, which is predicted to increase in most tropical oceans, can increase the susceptibility of corals to disease, leading to outbreaks where corals are abundant.

  19. Reproductive effects of the water-accommodated fraction of a natural gas condensate in the Indo-Pacific reef-building coral Pocillopora damicornis.

    Science.gov (United States)

    Villanueva, R D; Yap, H T; Montaño, M N E

    2011-11-01

    Toxic effects of the water-accommodated fraction (WAF) of a natural gas condensate on the reproduction of the brooding coral Pocillopora damicornis were studied in short-term (24 h) laboratory experiments. Coral fragments were exposed to varying concentrations of condensate WAF during different reproductive phases: gametogenesis, early embryogenesis, and late embryogenesis (when nighttime planulation occurs). During gametogenesis, exposure to condensate WAF did not inhibit subsequent production of larvae. On the other hand, exposure to >25% WAF of gravid corals, at early and late embryogenesis, resulted in abortion and early release of larvae, respectively, with higher percentages of larvae expelled in fragments treated with higher concentrations of condensate WAF at least 3h after onset of exposure. Aborted larvae during early embryogenesis were 'premature', as they are of small size (0.06±0.03 mm³), low metamorphic competency (54%), and white in coloration, with a pale brown oral end (indicating low density of zooxanthellae). Those larvae released at the latter part of embryogenesis are bigger in size (0.22±0.08 mm³), possess 100% metamorphic competency, and are brown in coloration (high density of zooxanthellae). Aside from direct effects on reproduction, fragment mortality index was higher in samples exposed to higher concentrations of condensate WAF (>25%), hence lowering the number of potentially reproducing polyps. Altogether, exposure to >25% natural gas condensate WAF for at least 3h can potentially disrupt the replenishment of coral populations due to negative effects on reproduction and early life processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Challenges for Managing Fisheries on Diverse Coral Reefs

    Directory of Open Access Journals (Sweden)

    Douglas Fenner

    2012-03-01

    Full Text Available Widespread coral reef decline has included the decline of reef fish populations, and the subsistence and artisanal fisheries that depend on them. Overfishing and destructive fishing have been identified as the greatest local threats to coral reefs, but the greatest future threats are acidification and increases in mass coral bleaching caused by global warming. Some reefs have shifted from dominance by corals to macroalgae, in what are called “phase shifts”. Depletion of herbivores including fishes has been identified as a contributor to such phase shifts, though nutrients are also involved in complex interactions with herbivory and competition. The depletion of herbivorous fishes implies a reduction of the resilience of coral reefs to the looming threat of mass coral mortality from bleaching, since mass coral deaths are likely to be followed by mass macroalgal blooms on the newly exposed dead substrates. Conventional stock assessment of each fish species would be the preferred option for understanding the status of the reef fishes, but this is far too expensive to be practical because of the high diversity of the fishery and poverty where most reefs are located. In addition, stock assessment models and fisheries in general assume density dependent populations, but a key prediction that stocks recover from fishing is not always confirmed. Catch Per Unit Effort (CPUE has far too many weaknesses to be a useful method. The ratio of catch to stock and the proportion of catch that is mature depend on fish catch data, and are heavily biased toward stocks that are in good condition and incapable of finding species that are in the worst condition. Near-pristine reefs give us a reality check about just how much we have lost. Common fisheries management tools that control effort or catch are often prohibitively difficult to enforce for most coral reefs except in developed countries. Ecosystem-based management requires management of impacts of fishing

  1. Coral lipids and environmental stress.

    Science.gov (United States)

    Harriott, V J

    1993-04-01

    Environmental monitoring of coral reefs is presently limited by difficulties in recognising coral stress, other than by monitoring coral mortality over time. A recent report described an experiment demonstrating that a measured lipid index declined in shaded corals. The technique described might have application in monitoring coral health, with a decline in coral lipid index as an indicator of coral stress. The application of the technique as a practical monitoring tool was tested for two coral species from the Great Barrier Reef. Consistent with the previous results, lipid index for Pocillopora damicornis initially declined over a period of three weeks in corals maintained in filtered seawater in the dark, indicating possible utilization of lipid stored as energy reserves. However, lipid index subsequently rose to near normal levels. In contrast, lipid index of Acropora formosa increased after four weeks in the dark in filtered seawater. The results showed considerable variability in lipid content between samples from the same colony. Results were also found to be dependent on fixation times and sample weight, introducing potential error into the practical application of the technique. The method as described would be unsuitable for monitoring environmental stress in corals, but the search for a practical method to monitor coral health should continue, given its importance in coral reef management.

  2. Intergenerational epigenetic inheritance in reef-building corals

    KAUST Repository

    Liew, Yi Jin

    2018-02-22

    The notion that intergenerational or transgenerational inheritance operates solely through genetic means is slowly being eroded: epigenetic mechanisms have been shown to induce heritable changes in gene activity in plants and metazoans. Inheritance of DNA methylation provides a potential pathway for environmentally induced phenotypes to contribute to evolution of species and populations. However, in basal metazoans, it is unknown whether inheritance of CpG methylation patterns occurs across the genome (as in plants) or as rare exceptions (as in mammals). Here, we demonstrate genome-wide intergenerational transmission of CpG methylation patterns from parents to sperm and larvae in a reef-building coral. We also show variation in hypermethylated genes in corals from distinct environments, indicative of responses to variations in temperature and salinity. These findings support a role of DNA methylation in the transgenerational inheritance of traits in corals, which may extend to enhancing their capacity to adapt to climate change.

  3. Intergenerational epigenetic inheritance in reef-building corals

    KAUST Repository

    Liew, Yi Jin; Howells, Emily J.; Wang, Xin; Michell, Craig; Burt, John A.; Idaghdour, Youssef; Aranda, Manuel

    2018-01-01

    The notion that intergenerational or transgenerational inheritance operates solely through genetic means is slowly being eroded: epigenetic mechanisms have been shown to induce heritable changes in gene activity in plants and metazoans. Inheritance of DNA methylation provides a potential pathway for environmentally induced phenotypes to contribute to evolution of species and populations. However, in basal metazoans, it is unknown whether inheritance of CpG methylation patterns occurs across the genome (as in plants) or as rare exceptions (as in mammals). Here, we demonstrate genome-wide intergenerational transmission of CpG methylation patterns from parents to sperm and larvae in a reef-building coral. We also show variation in hypermethylated genes in corals from distinct environments, indicative of responses to variations in temperature and salinity. These findings support a role of DNA methylation in the transgenerational inheritance of traits in corals, which may extend to enhancing their capacity to adapt to climate change.

  4. A new, high-resolution global mass coral bleaching database.

    Directory of Open Access Journals (Sweden)

    Simon D Donner

    Full Text Available Episodes of mass coral bleaching have been reported in recent decades and have raised concerns about the future of coral reefs on a warming planet. Despite the efforts to enhance and coordinate coral reef monitoring within and across countries, our knowledge of the geographic extent of mass coral bleaching over the past few decades is incomplete. Existing databases, like ReefBase, are limited by the voluntary nature of contributions, geographical biases in data collection, and the variations in the spatial scale of bleaching reports. In this study, we have developed the first-ever gridded, global-scale historical coral bleaching database. First, we conducted a targeted search for bleaching reports not included in ReefBase by personally contacting scientists and divers conducting monitoring in under-reported locations and by extracting data from the literature. This search increased the number of observed bleaching reports by 79%, from 4146 to 7429. Second, we employed spatial interpolation techniques to develop annual 0.04° × 0.04° latitude-longitude global maps of the probability that bleaching occurred for 1985 through 2010. Initial results indicate that the area of coral reefs with a more likely than not (>50% or likely (>66% probability of bleaching was eight times higher in the second half of the assessed time period, after the 1997/1998 El Niño. The results also indicate that annual maximum Degree Heating Weeks, a measure of thermal stress, for coral reefs with a high probability of bleaching increased over time. The database will help the scientific community more accurately assess the change in the frequency of mass coral bleaching events, validate methods of predicting mass coral bleaching, and test whether coral reefs are adjusting to rising ocean temperatures.

  5. A new, high-resolution global mass coral bleaching database.

    Science.gov (United States)

    Donner, Simon D; Rickbeil, Gregory J M; Heron, Scott F

    2017-01-01

    Episodes of mass coral bleaching have been reported in recent decades and have raised concerns about the future of coral reefs on a warming planet. Despite the efforts to enhance and coordinate coral reef monitoring within and across countries, our knowledge of the geographic extent of mass coral bleaching over the past few decades is incomplete. Existing databases, like ReefBase, are limited by the voluntary nature of contributions, geographical biases in data collection, and the variations in the spatial scale of bleaching reports. In this study, we have developed the first-ever gridded, global-scale historical coral bleaching database. First, we conducted a targeted search for bleaching reports not included in ReefBase by personally contacting scientists and divers conducting monitoring in under-reported locations and by extracting data from the literature. This search increased the number of observed bleaching reports by 79%, from 4146 to 7429. Second, we employed spatial interpolation techniques to develop annual 0.04° × 0.04° latitude-longitude global maps of the probability that bleaching occurred for 1985 through 2010. Initial results indicate that the area of coral reefs with a more likely than not (>50%) or likely (>66%) probability of bleaching was eight times higher in the second half of the assessed time period, after the 1997/1998 El Niño. The results also indicate that annual maximum Degree Heating Weeks, a measure of thermal stress, for coral reefs with a high probability of bleaching increased over time. The database will help the scientific community more accurately assess the change in the frequency of mass coral bleaching events, validate methods of predicting mass coral bleaching, and test whether coral reefs are adjusting to rising ocean temperatures.

  6. Occurrence of thraustochytrid fungi in corals and coral mucus

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Balasubramanian

    Occurrence of thraustochytrid fungi in corals, fresh coral mucus and floating and attached mucus detritus from the Lakshadweep Islands in the Arabian Sea was studied. Corallochytrium limacisporum Raghukumar, Thraustochytrium motivum Goldstein...

  7. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  8. Turf algae-mediated coral damage in coastal reefs of Belize, Central America.

    Science.gov (United States)

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  9. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian

    2014-09-16

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  10. Mechanisms of Thermal Tolerance in Reef-Building Corals across a Fine-Grained Environmental Mosaic: Lessons from Ofu, American Samoa

    Directory of Open Access Journals (Sweden)

    Luke Thomas

    2018-02-01

    Full Text Available Environmental heterogeneity gives rise to phenotypic variation through a combination of phenotypic plasticity and fixed genetic effects. For reef-building corals, understanding the relative roles of acclimatization and adaptation in generating thermal tolerance is fundamental to predicting the response of coral populations to future climate change. The temperature mosaic in the lagoon of Ofu, American Samoa, represents an ideal natural laboratory for studying thermal tolerance in corals. Two adjacent back-reef pools approximately 500 m apart have different temperature profiles: the highly variable (HV pool experiences temperatures that range from 24.5 to 35°C, whereas the moderately variable (MV pool ranges from 25 to 32°C. Standardized heat stress tests have shown that corals native to the HV pool have consistently higher levels of bleaching resistance than those in the MV pool. In this review, we summarize research into the mechanisms underlying this variation in bleaching resistance, focusing on the important reef-building genus Acropora. Both acclimatization and adaptation occur strongly and define thermal tolerance differences between pools. Most individual corals shift physiology to become more heat resistant when moved into the warmer pool. Lab based tests show that these shifts begin in as little as a week and are equally sparked by exposure to periodic high temperatures as constant high temperatures. Transcriptome-wide data on gene expression show that a wide variety of genes are co-regulated in expression modules that change expression after experimental heat stress, after acclimatization, and even after short term environmental fluctuations. Population genetic scans show associations between a corals' thermal environment and its alleles at 100s to 1000s of nuclear genes and no single gene confers strong environmental effects within or between species. Symbionts also tend to differ between pools and species, and the thermal tolerance

  11. Effects of Protection and Sediment Stress on Coral Reefs in Saint Lucia.

    Science.gov (United States)

    Bégin, Chantale; Schelten, Christiane K; Nugues, Maggy M; Hawkins, Julie; Roberts, Callum; Côté, Isabelle M

    2016-01-01

    The extent to which Marine Protected Areas (MPAs) benefit corals is contentious. On one hand, MPAs could enhance coral growth and survival through increases in herbivory within their borders; on the other, they are unlikely to prevent disturbances, such as terrestrial runoff, that originate outside their boundaries. We examined the effect of spatial protection and terrestrial sediment on the benthic composition of coral reefs in Saint Lucia. In 2011 (10 to 16 years after MPAs were created), we resurveyed 21 reefs that had been surveyed in 2001 and analyzed current benthic assemblages as well as changes in benthic cover over that decade in relation to protection status, terrestrial sediment influence (measured as the proportion of terrigenous material in reef-associated sediment) and depth. The cover of all benthic biotic components has changed significantly over the decade, including a decline in coral and increase in macroalgae. Protection status was not a significant predictor of either current benthic composition or changes in composition, but current cover and change in cover of several components were related to terrigenous content of sediment deposited recently. Sites with a higher proportion of terrigenous sediment had lower current coral cover, higher macroalgal cover and greater coral declines. Our results suggest that terrestrial sediment is an important factor in the recent degradation of coral reefs in Saint Lucia and that the current MPA network should be complemented by measures to reduce runoff from land.

  12. Effects of Protection and Sediment Stress on Coral Reefs in Saint Lucia.

    Directory of Open Access Journals (Sweden)

    Chantale Bégin

    Full Text Available The extent to which Marine Protected Areas (MPAs benefit corals is contentious. On one hand, MPAs could enhance coral growth and survival through increases in herbivory within their borders; on the other, they are unlikely to prevent disturbances, such as terrestrial runoff, that originate outside their boundaries. We examined the effect of spatial protection and terrestrial sediment on the benthic composition of coral reefs in Saint Lucia. In 2011 (10 to 16 years after MPAs were created, we resurveyed 21 reefs that had been surveyed in 2001 and analyzed current benthic assemblages as well as changes in benthic cover over that decade in relation to protection status, terrestrial sediment influence (measured as the proportion of terrigenous material in reef-associated sediment and depth. The cover of all benthic biotic components has changed significantly over the decade, including a decline in coral and increase in macroalgae. Protection status was not a significant predictor of either current benthic composition or changes in composition, but current cover and change in cover of several components were related to terrigenous content of sediment deposited recently. Sites with a higher proportion of terrigenous sediment had lower current coral cover, higher macroalgal cover and greater coral declines. Our results suggest that terrestrial sediment is an important factor in the recent degradation of coral reefs in Saint Lucia and that the current MPA network should be complemented by measures to reduce runoff from land.

  13. Does body type really matter? Relating climate change, coral morphology and resiliency

    Science.gov (United States)

    Camp, M.; Shein, K. A.; Foster, K.; Hendee, J. C.

    2016-02-01

    Average sea temperatures in many tropical regions are rising approximately 1-2˚C per century, and are thought to be a major driver of increased frequency of coral bleaching. However, certain coral morphologies appear to be more resilient to changes in the environment, particularly to sea temperature variations resulting from global climate change. Although branching corals (e.g., Acropora cervicornis, A. palmata) are highly susceptible to coral bleaching, this morphology is commonly used in coral restoration efforts because of its fast growth rate. Massive corals show higher resistance and resilience to elevated temperature events than branching species, but are less common in coral nurseries. The objective of this study was to compare coral resilience among morphology types in Little Cayman, a remote tropical island with <200 inhabitants where it is possible to decouple environmental and anthropogenic stressors. Three morphological groups (branching, intermediary and massive) were surveyed at 17 sites to estimate the percent cover of each group. Temperature profiles were observed at six moorings around the island, allowing for direct comparison between sea surface temperature, sea temperature at the reef depths, and coral cover, per morphology. The relationship between coral morphological coverage and temperature variation at depth was assessed in the context of geographic variation around the island. Understanding the relationship between coral morphology and resilience to temperature variability will enhance current coral restoration practices by identifying which morphologies have the highest chance of long-term survivorship following outplanting, concurrently optimizing cumulative reef survivorship.

  14. Coral Reef Ecosystems under Climate Change and Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Ove Hoegh-Guldberg

    2017-05-01

    Full Text Available Coral reefs are found in a wide range of environments, where they provide food and habitat to a large range of organisms as well as providing many other ecological goods and services. Warm-water coral reefs, for example, occupy shallow sunlit, warm, and alkaline waters in order to grow and calcify at the high rates necessary to build and maintain their calcium carbonate structures. At deeper locations (40–150 m, “mesophotic” (low light coral reefs accumulate calcium carbonate at much lower rates (if at all in some cases yet remain important as habitat for a wide range of organisms, including those important for fisheries. Finally, even deeper, down to 2,000 m or more, the so-called “cold-water” coral reefs are found in the dark depths. Despite their importance, coral reefs are facing significant challenges from human activities including pollution, over-harvesting, physical destruction, and climate change. In the latter case, even lower greenhouse gas emission scenarios (such as Representative Concentration Pathway RCP 4.5 are likely drive the elimination of most warm-water coral reefs by 2040–2050. Cold-water corals are also threatened by warming temperatures and ocean acidification although evidence of the direct effect of climate change is less clear. Evidence that coral reefs can adapt at rates which are sufficient for them to keep up with rapid ocean warming and acidification is minimal, especially given that corals are long-lived and hence have slow rates of evolution. Conclusions that coral reefs will migrate to higher latitudes as they warm are equally unfounded, with the observations of tropical species appearing at high latitudes “necessary but not sufficient” evidence that entire coral reef ecosystems are shifting. On the contrary, coral reefs are likely to degrade rapidly over the next 20 years, presenting fundamental challenges for the 500 million people who derive food, income, coastal protection, and a range of

  15. Patterns of gene expression in a scleractinian coral undergoing natural bleaching.

    Science.gov (United States)

    Seneca, Francois O; Forêt, Sylvain; Ball, Eldon E; Smith-Keune, Carolyn; Miller, David J; van Oppen, Madeleine J H

    2010-10-01

    Coral bleaching is a major threat to coral reefs worldwide and is predicted to intensify with increasing global temperature. This study represents the first investigation of gene expression in an Indo-Pacific coral species undergoing natural bleaching which involved the loss of algal symbionts. Quantitative real-time polymerase chain reaction experiments were conducted to select and evaluate coral internal control genes (ICGs), and to investigate selected coral genes of interest (GOIs) for changes in gene expression in nine colonies of the scleractinian coral Acropora millepora undergoing bleaching at Magnetic Island, Great Barrier Reef, Australia. Among the six ICGs tested, glyceraldehyde 3-phosphate dehydrogenase and the ribosomal protein genes S7 and L9 exhibited the most constant expression levels between samples from healthy-looking colonies and samples from the same colonies when severely bleached a year later. These ICGs were therefore utilised for normalisation of expression data for seven selected GOIs. Of the seven GOIs, homologues of catalase, C-type lectin and chromoprotein genes were significantly up-regulated as a result of bleaching by factors of 1.81, 1.46 and 1.61 (linear mixed models analysis of variance, P coral bleaching response genes. In contrast, three genes, including one putative ICG, showed highly variable levels of expression between coral colonies. Potential variation in microhabitat, gene function unrelated to the stress response and individualised stress responses may influence such differences between colonies and need to be better understood when designing and interpreting future studies of gene expression in natural coral populations.

  16. Large-scale coral recruitment patterns on Mona Island, Puerto Rico: evidence of a transitional community trajectory after massive coral bleaching and mortality

    Directory of Open Access Journals (Sweden)

    Edwin A. Hernández-Delgado

    2014-09-01

    Full Text Available Coral reefs have largely declined across the northeastern Caribbean following the 2005 massive bleaching event. Climate change-related sea surface warming and coral disease outbreaks of a white plague-like syndrome and of yellow band disease (YBD have caused significant coral decline affecting massive reef building species (i.e., Orbicella annularis species complex which show no apparent signs of recovery through larval sexual recruitment. We addressed coral recruit densities across three spur and groove reef locations along the western shelf of remote Mona Island, Puerto Rico: Punta Capitán (PCA, Pasa de Las Carmelitas (PLC, and Las Carmelitas-South (LCS. Data were collected during November 2012 along 93 haphazard transects across three depth zones (<5m, 5-10m, 10-15m. A total of 32 coral species (9 octocorals, 1 hydrocoral, 22 scleractinians were documented among the recruit community. Communities had low densities and dominance by short-lived brooder species seven years after the 2005 event. Mean coral recruit density ranged from 1.2 to 10.5/m2 at PCA, 6.3 to 7.2/m² at LCS, 4.5 to 9.5/m² at PLC. Differences in coral recruit community structure can be attributed to slight variation in percent macroalgal cover and composition as study sites had nearly similar benthic spatial heterogeneity. Dominance by ephemeral coral species was widespread. Recovery of largely declining massive reef-building species such as the O. annularis species complex was limited or non-existent. The lack of recovery could be the combined result of several mechanisms involving climate change, YBD disease, macroalgae, fishing, urchins and Mona Island’s reefs limited connectivity to other reef systems. There is also for rehabilitation of fish trophic structure, with emphasis in recovering herbivore guilds and depleted populations of D. antillarum. Failing to recognize the importance of ecosystem-based management and resilience rehabilitation may deem remote coral reefs

  17. Comparing deep-sea fish fauna between coral and non-coral "megahabitats" in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Gianfranco D'Onghia

    Full Text Available Two experimental longline surveys were carried out in the Santa Maria di Leuca (SML cold-water coral province (Mediterranean Sea during May-June and September-October 2010 to investigate the effect of corals on fish assemblages. Two types of "megahabitat" characterized by the virtual absence of fishing were explored. One was characterized by complex topography including mesohabitats with carbonate mounds and corals. The other type of megahabitat, although characterized by complex topographic features, lacks carbonate mounds and corals. The fishing vessel was equipped with a 3,000 m monofilament longline with 500 hooks and snoods of 2.5 m in length. A total of 9 hauls, using about 4,500 hooks, were carried out both in the coral megahabitat and in the non-coral megahabitat during each survey. The fish Leucoraja fullonica and Pteroplatytrygon violacea represent new records for the SML coral province. The coral by-catch was only obtained in the coral megahabitat in about 55% of the stations investigated in both surveys. The total catches and the abundance indices of several species were comparable between the two habitat typologies. The species contributing most to the dissimilarity between the two megahabitat fish assemblages were Pagellus bogaraveo, Galeus melastomus, Etmopterus spinax and Helicolenus dactylopterus for density and P. bogaraveo, Conger conger, Polyprion americanus and G. melastomus for biomass. P. bogaraveo was exclusively collected in the coral megahabitat, whereas C. conger, H. dactylopterus and P. americanus were found with greater abundance in the coral than in the non-coral megahabitat. Differences in the sizes between the two megahabitats were detected in E. spinax, G. melastomus, C. conger and H. dactylopterus. Although these differences most probably related to the presence-absence of corals, both megahabitats investigated play the role of attraction-refuge for deep-sea fish fauna, confirming the important role of the whole

  18. Stochastic spatio-temporal model of coral cover as a function of herbivorous grazers, water quality, and coral demographics

    Science.gov (United States)

    Neuhausler, R.; Robinson, M.; Bruna, M.

    2017-12-01

    Over the last 60 years we have seen an increased amount of ecological regime shifts in tropical coastal zones, from coral reefs to macroalgae dominated states, as a result of natural and anthropogenic stresses. However, these shifts are not always immediate- macroalgae are generally present in coral reefs, with their distribution regulated by herbivorous fish. This is especially true in Moorea, French Polynesia, where macroalgae are shown to flourish in spaces that provide refuge from roaming herbivores. While there are currently modeling efforts in projecting ecological regime shifts in Moorea, temporal deterministic models have been utilized, which fail to capture metastability between multiple steady states and can have issues when dealing with very small populations. To address these concerns, we build on these models to account for spatial variations and individual organisms, as well as stochasticity. Our model can project the percent cover of coral, macroalgae, and algae turf as a function of herbivorous grazers, water quality, and coral demographics. Grazers, included as individual fish (particles), evolve according to a kinetic model and interact with neighbouring benthic assemblages, represented as nodes. Water quality and coral demographics are input parameters that can vary over time, allowing our model to be run for temporally changing scenarios and to be adjusted for different reefs. We plan to engage with previous Moorea Reef Resilience Models through a comparative analysis of our models' outcomes and existing Moorea data. Coupling projective models with available data is useful for informing environmental policy and advancing the modeling field.

  19. Responses of Coral-Associated Bacterial Communities to Local and Global Stressors

    Directory of Open Access Journals (Sweden)

    Jamie M. McDevitt-Irwin

    2017-08-01

    Full Text Available The microbial contribution to ecological resilience is still largely overlooked in coral reef ecology. Coral-associated bacteria serve a wide variety of functional roles with reference to the coral host, and thus, the composition of the overall microbiome community can strongly influence coral health and survival. Here, we synthesize the findings of recent studies (n = 45 that evaluated the impacts of the top three stressors facing coral reefs (climate change, water pollution and overfishing on coral microbiome community structure and diversity. Contrary to the species losses that are typical of many ecological communities under stress, here we show that microbial richness tends to be higher rather than lower for stressed corals (i.e., in ~60% of cases, regardless of the stressor. Microbial responses to stress were taxonomically consistent across stressors, with specific taxa typically increasing in abundance (e.g., Vibrionales, Flavobacteriales, Rhodobacterales, Alteromonadales, Rhizobiales, Rhodospirillales, and Desulfovibrionales and others declining (e.g., Oceanosprillales. Emerging evidence also suggests that stress may increase the microbial beta diversity amongst coral colonies, potentially reflecting a reduced ability of the coral host to regulate its microbiome. Moving forward, studies will need to discern the implications of stress-induced shifts in microbiome diversity for the coral hosts and may be able to use microbiome community structure to identify resilient corals. The evidence we present here supports the hypothesis that microbial communities play important roles in ecological resilience, and we encourage a focus on the microbial contributions to resilience for future research.

  20. Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata.

    Directory of Open Access Journals (Sweden)

    Nicholas R Polato

    2010-06-01

    Full Text Available The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.To test the hypothesis that larval transcription profiles reflect location-specific responses to thermal stress, symbiont-free gametes from three to four colonies of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico, fertilized, and raised under mean and elevated (up 1 to 2 degrees C above summer mean temperatures. These locations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among 1,310 unigenes were simultaneously characterized using custom cDNA microarrays, allowing investigation of gene expression patterns among larvae generated from wild populations under stress. Results show both conserved and location-specific variation in key processes including apoptosis, cell structuring, adhesion and development, energy and protein metabolism, and response to stress, in embryos of a reef-building coral.These results provide first insights into location-specific variation in gene expression in the face of gene flow, and support the hypothesis that coral host genomes may house adaptive potential needed to deal with changing environmental conditions.

  1. Genetic diversity and connectivity in the threatened staghorn coral (Acropora cervicornis in Florida.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Hemond

    2010-01-01

    Full Text Available Over the past three decades, populations of the dominant shallow water Caribbean corals, Acropora cervicornis and A. palmata, have been devastated by white-band disease (WBD, resulting in the listing of both species as threatened under the U.S. Endangered Species Act. A key to conserving these threatened corals is understanding how their populations are genetically interconnected throughout the greater Caribbean. Genetic research has demonstrated that gene flow is regionally restricted across the Caribbean in both species. Yet, despite being an important site of coral reef research, little genetic data has been available for the Florida Acropora, especially for the staghorn coral, A. cervicornis. In this study, we present new mitochondrial DNA sequence data from 52 A. cervicornis individuals from 22 sites spread across the upper and lower Florida Keys, which suggest that Florida's A. cervicornis populations are highly genetically interconnected (F(ST = -0.081. Comparison between Florida and existing mtDNA data from six regional Caribbean populations indicates that Florida possesses high levels of standing genetic diversity (h = 0.824 relative to the rest of the greater Caribbean (h = 0.701+/-0.043. We find that the contemporary level of gene flow across the greater Caribbean, including Florida, is restricted (Phi(CT = 0.117, but evidence from shared haplotypes suggests the Western Caribbean has historically been a source of genetic variation for Florida. Despite the current patchiness of A. cervicornis in Florida, the relatively high genetic diversity and connectivity within Florida suggest that this population may have sufficient genetic variation to be viable and resilient to environmental perturbation and disease. Limited genetic exchange across regional populations of the greater Caribbean, including Florida, indicates that conservation efforts for A. cervicornis should focus on maintaining and managing populations locally rather than

  2. Genetic diversity and connectivity in the threatened staghorn coral (Acropora cervicornis) in Florida.

    Science.gov (United States)

    Hemond, Elizabeth M; Vollmer, Steven V

    2010-01-11

    Over the past three decades, populations of the dominant shallow water Caribbean corals, Acropora cervicornis and A. palmata, have been devastated by white-band disease (WBD), resulting in the listing of both species as threatened under the U.S. Endangered Species Act. A key to conserving these threatened corals is understanding how their populations are genetically interconnected throughout the greater Caribbean. Genetic research has demonstrated that gene flow is regionally restricted across the Caribbean in both species. Yet, despite being an important site of coral reef research, little genetic data has been available for the Florida Acropora, especially for the staghorn coral, A. cervicornis. In this study, we present new mitochondrial DNA sequence data from 52 A. cervicornis individuals from 22 sites spread across the upper and lower Florida Keys, which suggest that Florida's A. cervicornis populations are highly genetically interconnected (F(ST) = -0.081). Comparison between Florida and existing mtDNA data from six regional Caribbean populations indicates that Florida possesses high levels of standing genetic diversity (h = 0.824) relative to the rest of the greater Caribbean (h = 0.701+/-0.043). We find that the contemporary level of gene flow across the greater Caribbean, including Florida, is restricted (Phi(CT) = 0.117), but evidence from shared haplotypes suggests the Western Caribbean has historically been a source of genetic variation for Florida. Despite the current patchiness of A. cervicornis in Florida, the relatively high genetic diversity and connectivity within Florida suggest that this population may have sufficient genetic variation to be viable and resilient to environmental perturbation and disease. Limited genetic exchange across regional populations of the greater Caribbean, including Florida, indicates that conservation efforts for A. cervicornis should focus on maintaining and managing populations locally rather than relying on larval

  3. Species-specific profiles and risk assessment of perfluoroalkyl substances in coral reef fishes from the South China Sea.

    Science.gov (United States)

    Pan, Chang-Gui; Yu, Ke-Fu; Wang, Ying-Hui; Zhang, Rui-Jie; Huang, Xue-Yong; Wei, Chao-Shuai; Wang, Wei-Quan; Zeng, Wei-Bin; Qin, Zhen-Jun

    2018-01-01

    The contamination profiles of sixteen perfluoroalkyl substances (PFAS) were examined in coral reef fish samples collected from the South China Sea (SCS) where no information about this topic was available in the literature. The results revealed that six PFAS were found in coral reef fish samples from the SCS. Perfluorooctane sulfonate (PFOS) was the most predominant PFAS contaminant detected in most of the samples, with the highest concentration value of 27.05 ng/g wet weight (ww) observed in Cephalopholis urodelus. Perfluoroundecanoic acid (PFUnDA) and Perfluorotridecanoic acid (PFTrDA) were the second and third dominant PFAS, respectively. Mean PFOS concentrations in muscle of seven coral reef fish varied from 0.29 ng/g ww in Lethrinus olivaceus to 10.78 ng/g ww in Cephalopholis urodelus. No significant linear relationship was observed between PFOS levels and coral reef fish traits (length, weight) collected in this region. Average daily intake of PFOS for the seven coral reef fishes ranged from 0.79 ng/kg/d for Lethrinus olivaceus to 29.53 ng/kg/d for Cephalopholis urodelus. The hazard ratio (HR) values for human consumption of PFOS-contaminated coral reef fishes ranged from 0.04 to 1.48, with Cephalopholis urodelus having the highest HR value of 1.18 (higher than 1) among the species, indicating frequent consumption of Cephalopholis urodelus might pose potential health risk to local population. The present work have provided the first hand data of PFAS in coral reef fishes in the SCS and indirectly demonstrated the existence of low level PFAS pollution in the SCS in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Symbiodinium spp. associated with scleractinian corals from Dongsha Atoll (Pratas), Taiwan, in the South China Sea.

    Science.gov (United States)

    Keshavmurthy, Shashank; Tang, Kuo-Hsun; Hsu, Chia-Min; Gan, Chai-Hsia; Kuo, Chao-Yang; Soong, Keryea; Chou, Hong-Nong; Chen, Chaolun Allen

    2017-01-01

    Dongsha Atoll (also known as Pratas) in Taiwan is the northernmost atoll in the South China Sea and a designated marine national park since 2007. The marine park's scope of protection covers the bio-resources of its waters in addition to uplands, so it is important to have data logging information and analyses of marine flora and fauna, including their physiology, ecology, and genetics. As part of this effort, we investigated Symbiodinium associations in scleractinian corals from Dongsha Atoll through surveys carried out at two depth ranges (shallow, 1-5 m; and deep, 10-15 m) in 2009 and during a bleaching event in 2010. Symbiodinium composition was assessed using restriction fragment length polymorphism (RFLP) of 28S nuclear large subunit ribosomal DNA (nlsrDNA). Our results showed that the 796 coral samples from seven families and 20 genera collected in 2009 and 132 coral samples from seven families and 12 genera collected in 2010 were associated with Symbiodinium C, D and C+D. Occurrence of clade D in shallow water (24.5%) was higher compared to deep (14.9%). Due to a bleaching event in 2010, up to 80% of coral species associated with Symbiodinium C underwent moderate to severe bleaching. Using the fine resolution technique of denaturing gradient gel electrophoresis (DGGE) of internal transcribed spacer 2 (ITS2) in 175 randomly selected coral samples, from 2009 and 2010, eight Symbiodinium C types and two Symbiodinium D types were detected. This study is the first baseline survey on Symbiodinium associations in the corals of Dongsha Atoll in the South China Sea, and it shows the dominance of Symbiodinium clade C in the population.

  5. Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs?

    Science.gov (United States)

    Mumby, Peter J.

    2009-09-01

    With coral cover in decline on many Caribbean reefs, any process of coral mortality is of potential concern. While sparisomid parrotfishes are major grazers of Caribbean reefs and help control algal blooms, the fact that they also undertake corallivory has prompted some to question the rationale for their conservation. Here the weight of evidence for beneficial effects of parrotfishes, in terms of reducing algal cover and facilitating demographic processes in corals, and the deleterious effects of parrotfishes in terms of causing coral mortality and chronic stress, are reviewed. While elevated parrotfish density will likely increase the predation rate upon juvenile corals, the net effect appears to be positive in enhancing coral recruitment through removal of macroalgal competitors. Parrotfish corallivory can cause modest partial colony mortality in the most intensively grazed species of Montastraea but the generation and healing of bite scars appear to be in near equilibrium, even when coral cover is low. Whole colony mortality in adult corals can lead to complete exclusion of some delicate, lagoonal species of Porites from forereef environments but is only reported for one reef species ( Porites astreoides), for one habitat (backreef), and with uncertain incidence (though likely zooxanthellae after bleaching events may be retarded. The balance of evidence to date finds strong support for the herbivory role of parrotfishes in facilitating coral recruitment, growth, and fecundity. In contrast, no net deleterious effects of corallivory have been reported for reef corals. Corallivory is unlikely to constrain overall coral cover but contraints upon dwindling populations of the Montastraea annularis species complex are feasible and the role of parrotfishes as a vector of coral disease requires evaluation. However, any assertion that conservation practices should guard against protecting corallivorous parrotfishes appears to be unwarranted at this stage.

  6. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    Science.gov (United States)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  7. Water column productivity and temperature predict coral reef regeneration across the Indo-Pacific.

    Science.gov (United States)

    Riegl, B; Glynn, P W; Wieters, E; Purkis, S; d'Angelo, C; Wiedenmann, J

    2015-02-05

    Predicted increases in seawater temperatures accelerate coral reef decline due to mortality by heat-driven coral bleaching. Alteration of the natural nutrient environment of reef corals reduces tolerance of corals to heat and light stress and thus will exacerbate impacts of global warming on reefs. Still, many reefs demonstrate remarkable regeneration from past stress events. This paper investigates the effects of sea surface temperature (SST) and water column productivity on recovery of coral reefs. In 71 Indo-Pacific sites, coral cover changes over the past 1-3 decades correlated negative-exponentially with mean SST, chlorophyll a, and SST rise. At six monitoring sites (Persian/Arabian Gulf, Red Sea, northern and southern Galápagos, Easter Island, Panama), over half of all corals were <31 years, implying that measured environmental variables indeed shaped populations and community. An Indo-Pacific-wide model suggests reefs in the northwest and central Indian Ocean, as well as the central west Pacific, are at highest risk of degradation, and those at high latitudes the least. The model pinpoints regions where coral reefs presently have the best chances for survival. However, reefs best buffered against temperature and nutrient effects are those that current studies suggest to be most at peril from future ocean acidification.

  8. CRED REA Belt Surveys of Coral Population and Disease Assessments at Maro Reef, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  9. CRED REA Belt Surveys of Coral Population and Disease Assessments at Oahu Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  10. CRED REA Belt Surveys of Coral Population and Disease Assessments at Maui Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  11. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Tutuila, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120401 to 20120426,...

  12. CRED REA Belt Surveys of Coral Population and Disease Assessments at Lanai Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  13. CRED REA Belt Surveys of Coral Population and Disease Assessments at Midway Atoll, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  14. CRED REA Belt Surveys of Coral Population and Disease Assessments at Kauai Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  15. CRED REA Belt Surveys of Coral Population and Disease Assessments at Molokai Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  16. CRED REA Belt Surveys of Coral Population and Disease Assessments at Laysan Island, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  17. CRED REA Belt Surveys of Coral Population and Disease Assessments at Niihau Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  18. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Rose, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120401 to 20120426,...

  19. CRED REA Belt Surveys of Coral Population and Disease Assessments at Lisianski Island, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  20. Recent Advances in Understanding the Effects of Climate Change on Coral Reefs

    Directory of Open Access Journals (Sweden)

    Andrew S. Hoey

    2016-05-01

    Full Text Available Climate change is one of the greatest threats to the persistence of coral reefs. Sustained and ongoing increases in ocean temperatures and acidification are altering the structure and function of reefs globally. Here, we summarise recent advances in our understanding of the effects of climate change on scleractinian corals and reef fish. Although there is considerable among-species variability in responses to increasing temperature and seawater chemistry, changing temperature regimes are likely to have the greatest influence on the structure of coral and fish assemblages, at least over short–medium timeframes. Recent evidence of increases in coral bleaching thresholds, local genetic adaptation and inheritance of heat tolerance suggest that coral populations may have some capacity to respond to warming, although the extent to which these changes can keep pace with changing environmental conditions is unknown. For coral reef fishes, current evidence indicates increasing seawater temperature will be a major determinant of future assemblages, through both habitat degradation and direct effects on physiology and behaviour. The effects of climate change are, however, being compounded by a range of anthropogenic disturbances, which may undermine the capacity of coral reef organisms to acclimate and/or adapt to specific changes in environmental conditions.

  1. Skeletal records of community-level bleaching in Porites corals from Palau

    Science.gov (United States)

    Barkley, Hannah C.; Cohen, Anne L.

    2016-12-01

    Tropical Pacific sea surface temperature is projected to rise an additional 2-3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These "stress bands" are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in

  2. Expanding the population genetic perspective of cnidarian-Symbiodinium symbioses.

    Science.gov (United States)

    Santos, Scott R

    2014-09-01

    understanding of the current genotypic diversity encompassed within and between populations of their keystone species, the scleractinian corals and dinoflagellate symbionts, as they potentially possess functional variation (either singularly or in combination) that may come under selection due to the ongoing and rapid environmental changes they are experiencing. However, such studies, especially for members of the genus Symbiodinium, are sparse. In this issue, Baums et al. (2014) provide a significant contribution by documenting the range-wide population genetics of Symbiodinium 'fitti' (Fig.1 ) in the context of complementary data from its host, the endangered Caribbean elkhorn coral Acropora palmata (Fig. 2). Notable results of this study include a single S. 'fitti' genotype typically dominates an individual A. palmata colony both spatially and temporally, gene flow among coral host populations is a magnitude higher to that of its symbiont populations, and the partners possess disparate patterns of genetic differentiation across the Greater Caribbean. The implications of such findings are discussed herein. © 2014 John Wiley & Sons Ltd.

  3. Variation in Symbiodinium ITS2 sequence assemblages among coral colonies.

    Science.gov (United States)

    Stat, Michael; Bird, Christopher E; Pochon, Xavier; Chasqui, Luis; Chauka, Leonard J; Concepcion, Gregory T; Logan, Dan; Takabayashi, Misaki; Toonen, Robert J; Gates, Ruth D

    2011-01-05

    Endosymbiotic dinoflagellates in the genus Symbiodinium are fundamentally important to the biology of scleractinian corals, as well as to a variety of other marine organisms. The genus Symbiodinium is genetically and functionally diverse and the taxonomic nature of the union between Symbiodinium and corals is implicated as a key trait determining the environmental tolerance of the symbiosis. Surprisingly, the question of how Symbiodinium diversity partitions within a species across spatial scales of meters to kilometers has received little attention, but is important to understanding the intrinsic biological scope of a given coral population and adaptations to the local environment. Here we address this gap by describing the Symbiodinium ITS2 sequence assemblages recovered from colonies of the reef building coral Montipora capitata sampled across Kāne'ohe Bay, Hawai'i. A total of 52 corals were sampled in a nested design of Coral Colony(Site(Region)) reflecting spatial scales of meters to kilometers. A diversity of Symbiodinium ITS2 sequences was recovered with the majority of variance partitioning at the level of the Coral Colony. To confirm this result, the Symbiodinium ITS2 sequence diversity in six M. capitata colonies were analyzed in much greater depth with 35 to 55 clones per colony. The ITS2 sequences and quantitative composition recovered from these colonies varied significantly, indicating that each coral hosted a different assemblage of Symbiodinium. The diversity of Symbiodinium ITS2 sequence assemblages retrieved from individual colonies of M. capitata here highlights the problems inherent in interpreting multi-copy and intra-genomically variable molecular markers, and serves as a context for discussing the utility and biological relevance of assigning species names based on Symbiodinium ITS2 genotyping.

  4. Red Light Represses the Photophysiology of the Scleractinian Coral Stylophora pistillata

    Science.gov (United States)

    Wijgerde, Tim; van Melis, Anne; Silva, Catarina I. F.; Leal, Miguel C.; Vogels, Luc; Mutter, Claudia; Osinga, Ronald

    2014-01-01

    Light spectrum plays a key role in the biology of symbiotic corals, with blue light resulting in higher coral growth, zooxanthellae density, chlorophyll a content and photosynthesis rates as compared to red light. However, it is still unclear whether these physiological processes are blue-enhanced or red-repressed. This study investigated the individual and combined effects of blue and red light on the health, zooxanthellae density, photophysiology and colouration of the scleractinian coral Stylophora pistillata over 6 weeks. Coral fragments were exposed to blue, red, and combined 50/50% blue red light, at two irradiance levels (128 and 256 μmol m−2 s−1). Light spectrum affected the health/survival, zooxanthellae density, and NDVI (a proxy for chlorophyll a content) of S. pistillata. Blue light resulted in highest survival rates, whereas red light resulted in low survival at 256 μmol m−2 s−1. Blue light also resulted in higher zooxanthellae densities compared to red light at 256 μmol m−2 s−1, and a higher NDVI compared to red and combined blue red light. Overall, our results suggest that red light negatively affects the health, survival, symbiont density and NDVI of S. pistillata, with a dominance of red over blue light for NDVI. PMID:24658108

  5. Red light represses the photophysiology of the scleractinian coral Stylophora pistillata.

    Science.gov (United States)

    Wijgerde, Tim; van Melis, Anne; Silva, Catarina I F; Leal, Miguel C; Vogels, Luc; Mutter, Claudia; Osinga, Ronald

    2014-01-01

    Light spectrum plays a key role in the biology of symbiotic corals, with blue light resulting in higher coral growth, zooxanthellae density, chlorophyll a content and photosynthesis rates as compared to red light. However, it is still unclear whether these physiological processes are blue-enhanced or red-repressed. This study investigated the individual and combined effects of blue and red light on the health, zooxanthellae density, photophysiology and colouration of the scleractinian coral Stylophora pistillata over 6 weeks. Coral fragments were exposed to blue, red, and combined 50/50% blue red light, at two irradiance levels (128 and 256 μmol m(-2) s(-1)). Light spectrum affected the health/survival, zooxanthellae density, and NDVI (a proxy for chlorophyll a content) of S. pistillata. Blue light resulted in highest survival rates, whereas red light resulted in low survival at 256 μmol m(-2) s(-1). Blue light also resulted in higher zooxanthellae densities compared to red light at 256 μmol m(-2) s(-1), and a higher NDVI compared to red and combined blue red light. Overall, our results suggest that red light negatively affects the health, survival, symbiont density and NDVI of S. pistillata, with a dominance of red over blue light for NDVI.

  6. Red light represses the photophysiology of the scleractinian coral Stylophora pistillata.

    Directory of Open Access Journals (Sweden)

    Tim Wijgerde

    Full Text Available Light spectrum plays a key role in the biology of symbiotic corals, with blue light resulting in higher coral growth, zooxanthellae density, chlorophyll a content and photosynthesis rates as compared to red light. However, it is still unclear whether these physiological processes are blue-enhanced or red-repressed. This study investigated the individual and combined effects of blue and red light on the health, zooxanthellae density, photophysiology and colouration of the scleractinian coral Stylophora pistillata over 6 weeks. Coral fragments were exposed to blue, red, and combined 50/50% blue red light, at two irradiance levels (128 and 256 μmol m(-2 s(-1. Light spectrum affected the health/survival, zooxanthellae density, and NDVI (a proxy for chlorophyll a content of S. pistillata. Blue light resulted in highest survival rates, whereas red light resulted in low survival at 256 μmol m(-2 s(-1. Blue light also resulted in higher zooxanthellae densities compared to red light at 256 μmol m(-2 s(-1, and a higher NDVI compared to red and combined blue red light. Overall, our results suggest that red light negatively affects the health, survival, symbiont density and NDVI of S. pistillata, with a dominance of red over blue light for NDVI.

  7. Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Caribbean ``bleaching event''

    Science.gov (United States)

    Fitt, William K.; Spero, Howard J.; Halas, John; White, Michael W.; Porter, James W.

    1993-07-01

    Many reef-building corals and other cnidarians lost photosynthetic pigments and symbiotic algae (zooxanthellae) during the coral bleaching event in the Caribbean in 1987. The Florida Reef Tract included some of the first documented cases, with widespread bleaching of the massive coral Montastrea annularis beginning in late August. Phototransects at Carysfort Reef showed discoloration of >90% of colonies of this species in March 1988 compared to 0% in July 1986; however no mortality was observed between 1986 and 1988. Samples of corals collected in February and June 1988 had zooxanthellae densities ranging from 0.1 in the most lightly colored corals, to 1.6x106 cells/cm2 in the darker corals. Minimum densities increased to 0.5x106 cells/cm2 by August 1989. Chlorophyll- a content of zooxanthellae and zooxanthellar mitotic indices were significantly higher in corals with lower densities of zooxanthellae, suggesting that zooxanthellar at low densities may be more nutrientsufficient than those in unbleached corals. Ash-free dry weight of coral tissue was positively correlated with zooxanthellae density at all sample times and was significantly lower in June 1988 compared to August 1989. Proteins and lipids per cm2 were significantly higher in August 1989 than in February or June, 1988. Although recovery of zooxanthellae density and coral pigmentation to normal levels may occur in less than one year, regrowth of tissue biomass and energy stores lost during the period of low symbiont densities may take significantly longer.

  8. CRED REA Belt Surveys of Coral Population and Disease Assessments at Ta'u Island, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12-13, 20 March 2010,...

  9. Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling.

    Directory of Open Access Journals (Sweden)

    Elisa Bayraktarov

    Full Text Available Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34% compared to the exposed site (8%. Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (<10% at both sites was observed, but corals recovered significantly at both sites in the course of upwelling. No differences in water temperatures between sites occurred, but water current exposure and turbidity were significantly higher at the exposed site, suggesting that these variables may be responsible for the observed site-specific mitigation of coral bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs.

  10. Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling.

    Science.gov (United States)

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34%) compared to the exposed site (8%). Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (corals recovered significantly at both sites in the course of upwelling. No differences in water temperatures between sites occurred, but water current exposure and turbidity were significantly higher at the exposed site, suggesting that these variables may be responsible for the observed site-specific mitigation of coral bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs.

  11. A connection between colony biomass and death in Caribbean reef-building corals.

    Directory of Open Access Journals (Sweden)

    Daniel J Thornhill

    Full Text Available Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp. respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994-2007, eleven years in the Exuma Cays, Bahamas (1995-2006, and four years in Puerto Morelos, Mexico (2003-2007. For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1-4 m compared to deeper-dwelling conspecifics (12-15 m. Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels.

  12. A connection between colony biomass and death in Caribbean reef-building corals.

    Science.gov (United States)

    Thornhill, Daniel J; Rotjan, Randi D; Todd, Brian D; Chilcoat, Geoff C; Iglesias-Prieto, Roberto; Kemp, Dustin W; LaJeunesse, Todd C; Reynolds, Jennifer McCabe; Schmidt, Gregory W; Shannon, Thomas; Warner, Mark E; Fitt, William K

    2011-01-01

    Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994-2007), eleven years in the Exuma Cays, Bahamas (1995-2006), and four years in Puerto Morelos, Mexico (2003-2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1-4 m) compared to deeper-dwelling conspecifics (12-15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels. © 2011 Thornhill et al.

  13. Relationship between anthropogenic impacts and bleaching-associated tissue mortality of corals in Curaçao (Netherlands Antilles)

    NARCIS (Netherlands)

    Nagelkerken, I.

    2007-01-01

    Chronic anthropogenic impacts can have a negative effect on coral health and on coral energy budgets needed for regeneration of lesions. I therefore hypothesise that during massive bleaching events, the degree of corals showing bleaching-related tissue mortality is higher in areas subject to chronic

  14. A Study Of Environmental Impacts On The Coral Resources In The Vicinity Of The Saint Martin Island Bangladesh

    Directory of Open Access Journals (Sweden)

    Shaikh Sayed Ahammed

    2015-08-01

    Full Text Available A study of the environmental impacts on the coral resources in the vicinity of the Saint Martin Island Bangladesh was conducted with a view to making an assessment of the current status of coral resources in the island and identifying major natural and anthropogenic environmental threats to the future sustainability of these resources. It is evident that the coral resources have been reduced significantly and currently only 41 coral species are available. The existing environmental condition assessed by pH salinity turbidity and temperature in the island is not found responsible for the survival of the corals. The study also reveals that the major anthropogenic interventions are responsible for the gradual depletion of the coral resources. The major anthropogenic threats to the coral resources are coral collection and overfishing. In addition coral extraction is identified as a potential threat to the future integrity of coral communities in the island. Environmental threats from anthropogenic activities related to sedimentation land erosion and pollution are also the concerns for the coral communities in the island. For the conservation of the coral population no coral monitoring cell has been established in this island.

  15. Evaluation of Stony Coral Indicators for Coral Reef Management.

    Science.gov (United States)

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for ...

  16. Physiological and Biogeochemical Responses of Super-Corals to Thermal Stress from the Northern Gulf of Aqaba, Red Sea

    Directory of Open Access Journals (Sweden)

    Andréa G. Grottoli

    2017-07-01

    Full Text Available Mass coral bleaching is increasing in frequency and severity, leading to the loss of coral abundance and diversity. However, some corals are less susceptible to bleaching than others and can provide a model for identifying the physiological and biogeochemical traits that underlie coral resilience to thermal stress. Corals from Eilat in the Gulf of Aqaba in the northern Red Sea do not bleach unless seawater temperatures are sustained at +6°C or higher above their average summer maximum. This extreme thermal tolerance qualifies these as super-corals, as most corals bleach when exposed to temperatures that are only +1–2°C above their thermal maximum. Here, we conducted a controlled bleaching experiment (+6°C for 37 days (equivalent to 32° heating weeks on three species of corals from Eilat: Stylophora pistillata, Pocillopora damicornis, and Favia favus. To assess the response of the holobiont to thermal stress, the following variables were measured on each coral: endosymbiotic algal cell density, Chlorophyll a, endosymbiotic mitotic cell division, total lipids, protein, carbohydrate, and the stable carbon (δ13C and oxygen (δ18O isotopic composition of the skeleton and the δ13C of the animal host tissue and endosymbiotic algae. While all three species appeared visibly bleached, their physiological and biogeochemical responses were species-specific. S. pistillata catabolized lipids but still maintained total energy reserves and biomass. Increases in both skeletal δ13C and δ18O indicates that calcification declined in this species. P. damicornis was the least affected by bleaching. It maintained its total energy reserves and biomass, and isotopic evidence suggests that it maintained calcification and was not dependent on heterotrophy for meeting metabolic demand when bleached. Finally, F. favus catabolized protein and carbohydrates, and suffered losses in total energy reserves and biomass. Nevertheless, isotopic evidence suggest that

  17. Coral Sr-U Thermometry

    Science.gov (United States)

    DeCarlo, T. M.; Gaetani, G. A.; Cohen, A. L.; Foster, G. L.; Alpert, A.; Stewart, J.

    2016-12-01

    Coral skeletons archive the past two millennia of climate variability in the oceans with unrivaled temporal resolution. However, extracting accurate temperature information from coral skeletons is confounded by "vital effects", which often override the temperature dependence of geochemical proxies. Here, we present a new approach to coral paleothermometry based on results of abiogenic precipitation experiments interpreted within a framework provided by a quantitative model of the coral biomineralization process. We conducted laboratory experiments to test the temperature and carbonate chemistry controls on abiogenic partitioning of Sr/Ca and U/Ca between aragonite and seawater, and we modeled the sensitivity of skeletal composition to processes occurring at the site of calcification. The model predicts that temperature can be accurately reconstructed from coral skeleton by combining Sr/Ca and U/Ca ratios into a new proxy, Sr-U. We tested the model predictions with measured Sr/Ca and U/Ca ratios of fourteen Porites sp. corals collected from the tropical Pacific Ocean and the Red Sea, with a subset also analyzed using the boron isotope (δ11B) pH proxy. Observed relationships among Sr/Ca, U/Ca, and δ11B agree with model predictions, indicating that the model accounts for the key features of the coral biomineralization process. We calibrated Sr-U to instrumental temperature records and found that it captures 93% of mean annual variability (26-30 °C) and predicts temperature within 0.5 °C (1 σ). Conversely, Sr/Ca alone has an error of prediction of 1 °C and often diverges from observed temperature by 3 °C or more. Many of the problems afflicting Sr/Ca - including offsets among neighboring corals and decouplings from temperature during coral stress events - are reconciled by Sr-U. By accounting for the influence of the coral biomineralization process, the Sr-U thermometer may offer significantly improved reliability for reconstructing ocean temperatures from coral

  18. Coral reef assessment and monitoring made easy using Coral Point Count with Excel extensions (CPCe software in Calangahan, Lugait, Misamis Oriental, Philippines

    Directory of Open Access Journals (Sweden)

    S. R. M. Tabugo

    2016-03-01

    Full Text Available Coral reef communities are considered as the most diverse marine ecosystems that provide food, shelter and protection to marine organisms. It provides many important benefits to humans but often a subject to impairment through human activities. Cascading human influences and climate change appeared as a reason behind its decline. Thus, coral reef monitoring methods are substantial. This study utilized Coral Point Count with Excel extensions (CPCe software, as a means to increase efficiency of coral reef monitoring efforts because it automates, facilitates and speeds the process of random point count analysis and can perform image calibration, planar area and length calculations of benthic features. The method was used to estimate community statistics of benthos based on captured still images for every 1m marked across four 50m transect line (total 200 m at 4.6-5.6m depth. Transect images were assigned with 30 spatial random points for identification. Multiple image frames were combined for each transect length supplying datasheet containing header information, statistical parameters species / substrate type (relative abundance, mean and standard deviation and Shannon-Weaver and Simpson's Index calculation for species diversity. Generated transect datasets were statistically analyzed to give quantitative population estimates over the area of interest. Data from individual frames were combined per transect to allow both inter- and intra- site/transect comparisons. This study reports the current status of coral reefs across Calangahan, Lugait, Misamis Oriental, Philippines and proved the efficiency of CPCe as a tool in reef assessment and monitoring. Results showed that most common genera Porites and Acropora were dominant, with Porites lobata as the most abundant coral species in the area. Moreover, results also showed that there were various diseases present affecting corals leading to increased mortality.

  19. Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances

    Science.gov (United States)

    Shedrawi, George; Falter, James L.; Friedman, Kim J.; Lowe, Ryan J.; Pratchett, Morgan S.; Simpson, Christopher J.; Speed, Conrad W.; Wilson, Shaun K.; Zhang, Zhenlin

    2017-09-01

    The movement of water can have a significant influence on the vulnerability of hermatypic corals to environmental disturbances such as cyclone damage, heat stress and anoxia. Here, we explore the relationship between small reef-scale water circulation patterns and measured differences in the abundance, composition and vulnerability of coral assemblages over decades. Changes in coral cover and community structure within Bill's Bay (Ningaloo Reef, Western Australia) over a 22-yr period, during which multiple disturbance events (including mass bleaching, anoxia, and tropical cyclones) have impacted the area, were compared with spatial variation in water residence times (WRT). We found that reef sites associated with longer water residence times (WRT >15 h) experienced higher rates of coral mortality during acute environmental disturbances compared to reef sites with shorter WRT. Shifts in coral community composition from acroporid to faviid-dominated assemblages were also more prominent at sites with long WRT compared to reef sites with shorter WRT, although shifts in community composition were also observed at sites close to shore. Interestingly, these same long-WRT sites also tended to have the fastest recovery rates so that coral cover was returned to original levels of approximately 20% over two decades. This study provides empirical evidence that spatial patterns in water circulation and flushing can influence the resilience of coral communities, thus identifying areas sensitive to emerging threats associated with global climate change.

  20. Osmoadjustment in the Coral Holobiont

    KAUST Repository

    Röthig, Till

    2017-04-01

    Coral reefs are under considerable decline. The framework builders in coral reefs are scleractinian corals, which comprise so-called holobionts, consisting of cnidarian host, algal symbionts (genus Symbiodinium), and other associated microbes. Corals are commonly considered stenohaline osmoconformers, possessing limited capability to adjust to salinity changes. However, corals differ in their ability to cope with different salinities. The underlying mechanisms have not yet been addressed. To further understand putative mechanisms involved, I examined coral holobiont osmoregulation conducting a range of experiments on the coral Fungia granulosa. In my research F. granulosa from the Red Sea exhibited pronounced physiological reactions (decreased photosynthesis, cessation of calcification) upon short-term incubations (4 h) to high salinity (55). However, during a 29-day in situ salinity transect experiment, coral holobiont photosynthesis was unimpaired under high salinity (49) indicating acclimatization. F. granulosa microbiome changes after the 29-day high salinity exposure aligned with a bacterial community restructuring that putatively supports the coral salinity acclimatization (osmolyte synthesis, nutrient fixation/cycling). Long-term incubations (7 d) of cultured Symbiodinium exhibited cell growth even at ‘extreme’ salinity levels of 25 and 55. Metabolic profiles of four Symbiodinium strains exposed to increased (55) and decreased (25) salinities for 4 h indicated distinct carbohydrates and amino acids to be putatively involved in the osmoadjustment. Importantly, under high salinity the osmolyte floridoside was consistently increased. This could be corroborated in the coral model Aiptasia and in corals from the Persian/Arabian Gulf, where floridoside was also markedly increased upon short- (15 h) and long-term (>24 months) exposure to high salinity, confirming an important role of floridoside in the osmoadjustment of cnidarian holobionts. This thesis

  1. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth.

    Science.gov (United States)

    Zhang, Ruijie; Zhang, Ruiling; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Pei, Jiying; Wei, Chaoshuai; Pan, Ziliang; Qin, Zhenjun; Zhang, Gan

    2018-01-01

    Laboratory research has indicated that antibiotics had negative effects on coral growth by disturbing natural microbiota; however, no field studies have reported antibiotic contamination levels and their influence on coral growth in natural coral reef regions (CRRs). This study investigated antibiotic occurrence and sources in the surface water from CRRs that have suffered from rapid coral degradation and evaluated their risk to coral growth. These regions are in the South China Sea, including four coastal and two offshore CRRs. The results show that 13 antibiotics were detected in the coastal CRRs with concentrations ranging from 10 -2 -10 0  ng L -1 , while 5 antibiotics occurred in offshore CRRs (300-950 km from the mainland), with concentrations ranging from 10 -2 to 10 -1  ng L -1 . Their concentrations decreased gradually from the coast to offshore in the transport process. However, Yongxing Island, which is approximately 300 km from the mainland, was an exception with relatively higher concentrations than the surrounding reefs because of the ever-increasing human activity on the island. The presence of anthropogenic contaminants antibiotics in CRRs may be a potential risk to coral growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Net Community Metabolism and Seawater Carbonate Chemistry Scale Non-intuitively with Coral Cover

    Directory of Open Access Journals (Sweden)

    Heather N. Page

    2017-05-01

    Full Text Available Coral cover and reef health have been declining globally as reefs face local and global stressors including higher temperature and ocean acidification (OA. Ocean warming and acidification will alter rates of benthic reef metabolism (i.e., primary production, respiration, calcification, and CaCO3 dissolution, but our understanding of community and ecosystem level responses is limited in terms of functional, spatial, and temporal scales. Furthermore, dramatic changes in coral cover and benthic metabolism could alter seawater carbonate chemistry on coral reefs, locally alleviating or exacerbating OA. This study examines how benthic metabolic rates scale with changing coral cover (0–100%, and the subsequent influence of these coral communities on seawater carbonate chemistry based on mesocosm experiments in Bermuda and Hawaii. In Bermuda, no significant differences in benthic metabolism or seawater carbonate chemistry were observed for low (40% and high (80% coral cover due to large variability within treatments. In contrast, significant differences were detected between treatments in Hawaii with benthic metabolic rates increasing with increasing coral cover. Observed increases in daily net community calcification and nighttime net respiration scaled proportionally with coral cover. This was not true for daytime net community organic carbon production rates, which increased the most between 0 and 20% coral cover and then less so between 20 and 100%. Consequently, diel variability in seawater carbonate chemistry increased with increasing coral cover, but absolute values of pH, Ωa, and pCO2 were not significantly different during daytime. To place the results of the mesocosm experiments into a broader context, in situ seawater carbon dioxide (CO2 at three reef sites in Bermuda and Hawaii were also evaluated; reefs with higher coral cover experienced a greater range of diel CO2 levels, complementing the mesocosm results. The results from this study

  3. Cryobiology of coral fragments.

    Science.gov (United States)

    Hagedorn, Mary; Farrell, Ann; Carter, Virginia L

    2013-02-01

    Around the world, coral reefs are dying due to human influences, and saving habitat alone may not stop this destruction. This investigation focused on the biological processes that will provide the first steps in understanding the cryobiology of whole coral fragments. Coral fragments are a partnership of coral tissue and endosymbiotic algae, Symbiodinium sp., commonly called zooxanthellae. These data reflected their separate sensitivities to chilling and a cryoprotectant (dimethyl sulfoxide) for the coral Pocillopora damicornis, as measured by tissue loss and Pulse Amplitude Modulated fluorometry 3weeks post-treatment. Five cryoprotectant treatments maintained the viability of the coral tissue and zooxanthellae at control values (1M dimethyl sulfoxide at 1.0, 1.5 and 2.0h exposures, and 1.5M dimethyl sulfoxide at 1.0 and 1.5h exposures, P>0.05, ANOVA), whereas 2M concentrations did not (Pzooxanthellae. During the winter when the fragments were chilled, the coral tissue remained relatively intact (∼25% loss) post-treatment, but the zooxanthellae numbers in the tissue declined after 5min of chilling (Pzooxanthellae numbers declined in response to chilling alone (P0.05, ANOVA), but it did not protect against the loss of zooxanthellae (Pzooxanthellae are the most sensitive element in the coral fragment complex and future cryopreservation protocols must be guided by their greater sensitivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress

    Science.gov (United States)

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-12-01

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals’ vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

  5. Global coral disease prevalence associated with sea temperature anomalies and local factors.

    Science.gov (United States)

    Ruiz-Moreno, Diego; Willis, Bette L; Page, A Cathie; Weil, Ernesto; Cróquer, Aldo; Vargas-Angel, Bernardo; Jordan-Garza, Adán Guillermo; Jordán-Dahlgren, Eric; Raymundo, Laurie; Harvell, C Drew

    2012-09-12

    Coral diseases are taking an increasing toll on coral reef structure and biodiversity and are important indicators of declining health in the oceans. We implemented standardized coral disease surveys to pinpoint hotspots of coral disease, reveal vulnerable coral families and test hypotheses about climate drivers from 39 locations worldwide. We analyzed a 3 yr study of coral disease prevalence to identify links between disease and a range of covariates, including thermal anomalies (from satellite data), location and coral cover, using a Generalized Linear Mixed Model. Prevalence of unhealthy corals, i.e. those with signs of known diseases or with other signs of compromised health, exceeded 10% on many reefs and ranged to over 50% on some. Disease prevalence exceeded 10% on 20% of Caribbean reefs and 2.7% of Pacific reefs surveyed. Within the same coral families across oceans, prevalence of unhealthy colonies was higher and some diseases were more common at sites in the Caribbean than those in the Pacific. The effects of high disease prevalence are potentially extensive given that the most affected coral families, the acroporids, faviids and siderastreids, are among the major reef-builders at these sites. The poritids and agaricids stood out in the Caribbean as being the most resistant to disease, even though these families were abundant in our surveys. Regional warm temperature anomalies were strongly correlated with high disease prevalence. The levels of disease reported here will provide a much-needed local reference point against which to compare future change.

  6. Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago.

    Science.gov (United States)

    Mallela, J; Crabbe, M J C

    2009-10-01

    Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p=0.016). Following Hurricane Ivan in 2004 and the 2005-2006 bleaching event, coral recruitment was markedly limited with only 2% (n=6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago's marginal reef systems, albeit in low numbers.

  7. Spectral classifying base on color of live corals and dead corals covered with algae

    Science.gov (United States)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Barille, Laurent; Akbar, A. S. M.; Sawayama, Shuhei; Fitrah, Muh. Nur; Prasyad, Hermansyah

    2016-05-01

    Pigments in the host tissues of corals can make a significant contribution to their spectral signature and can affect their apparent color as perceived by a human observer. The aim of this study is classifying the spectral reflectance of corals base on different color. It is expected that they can be used as references in discriminating between live corals, dead coral covered with algae Spectral reflectance data was collected in three small islands, Spermonde Archipelago, Indonesia by using a hyperspectral radiometer underwater. First and second derivative analysis resolved the wavelength locations of dominant features contributing to reflectance in corals and support the distinct differences in spectra among colour existed. Spectral derivative analysis was used to determine the specific wavelength regions ideal for remote identification of substrate type. The analysis results shown that yellow, green, brown and violet live corals are spectrally separable from each other, but they are similar with dead coral covered with algae spectral.

  8. Assessing Coral Community Recovery from Coral Bleaching by ...

    African Journals Online (AJOL)

    The densities of small colonies were lowest at the northern sites, and small colonies of genera of corals that suffered from high bleaching and mortality during the El Niño Southern Oscillation in 1998 were less abundant in the north. These northern reefs are relatively isolated from sources of coral larvae from reefs in the ...

  9. Coral-bacterial communities before and after a coral mass spawning event on Ningaloo Reef.

    Directory of Open Access Journals (Sweden)

    Janja Ceh

    Full Text Available Bacteria associated with three coral species, Acropora tenuis, Pocillopora damicornis and Tubastrea faulkneri, were assessed before and after coral mass spawning on Ningaloo Reef in Western Australia. Two colonies of each species were sampled before and after the mass spawning event and two additional samples were collected for P. damicornis after planulation. A variable 470 bp region of the 16 S rRNA gene was selected for pyrosequencing to provide an understanding of potential variations in coral-associated bacterial diversity and community structure. Bacterial diversity increased for all coral species after spawning as assessed by Chao1 diversity indicators. Minimal changes in community structure were observed at the class level and data at the taxonomical level of genus incorporated into a PCA analysis indicated that despite bacterial diversity increasing after spawning, coral-associated community structure did not shift greatly with samples grouped according to species. However, interesting changes could be detected from the dataset; for example, α-Proteobacteria increased in relative abundance after coral spawning and particularly the Roseobacter clade was found to be prominent in all coral species, indicating that this group may be important in coral reproduction.

  10. Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata

    Science.gov (United States)

    Tremblay, P.; Grover, R.; Maguer, J. F.; Hoogenboom, M.; Ferrier-Pagès, C.

    2014-03-01

    Reef-building corals live in symbiosis with dinoflagellates that translocate a large proportion of their photosynthetically fixed carbon compounds to their coral host for its own metabolism. The carbon budget and translocation rate, however, vary depending on environmental conditions, coral host species, and symbiont clade. To quantify variability in carbon translocation in response to environmental conditions, this study assessed the effect of two different irradiance levels (120 and 250 μmol photons m-2 s-1) and feeding regimes (fed with Artemia salina nauplii and unfed) on the carbon budget of the tropical coral Stylophora pistillata. For this purpose, H13CO3 --enriched seawater was used to trace the conversion of photosynthetic carbon into symbiont and coral biomass and excrete particulate organic carbon. Results showed that carbon translocation (ca. 78 %) and utilization were similar under both irradiance levels for unfed colonies. In contrast, carbon utilization by fed colonies was dependent on the growth irradiance. Under low irradiance, heterotrophy was accompanied by lower carbon translocation (71 %), higher host and symbiont biomass, and higher calcification rates. Under high irradiance, heterotrophy was accompanied by higher rates of photosynthesis, respiration, and carbon translocation (90 %) as well as higher host biomass. Hence, levels of resource sharing within coral-dinoflagellate symbioses depend critically on environmental conditions.

  11. CORAL Server and CORAL Server Proxy: Scalable Access to Relational Databases from CORAL Applications

    International Nuclear Information System (INIS)

    Valassi, A; Kalkhof, A; Bartoldus, R; Salnikov, A; Wache, M

    2011-01-01

    The CORAL software is widely used at CERN by the LHC experiments to access the data they store on relational databases, such as Oracle. Two new components have recently been added to implement a model involving a middle tier 'CORAL server' deployed close to the database and a tree of 'CORAL server proxies', providing data caching and multiplexing, deployed close to the client. A first implementation of the two new components, released in the summer 2009, is now deployed in the ATLAS online system to read the data needed by the High Level Trigger, allowing the configuration of a farm of several thousand processes. This paper reviews the architecture of the software, its development status and its usage in ATLAS.

  12. Genetic Connectivity in Scleractinian Corals across the Northern Gulf of Mexico: Oil/Gas Platforms, and Relationship to the Flower Garden Banks

    OpenAIRE

    Sammarco, Paul W.; Brazeau, Daniel A.; Sinclair, James

    2012-01-01

    The 3,000 oil/gas structures currently deployed in the northern Gulf of Mexico (GOM) provide hard substratum for marine organisms in a region where such has been rare since the Holocene. The major exception to this are the Flower Garden Banks (FGB). Corals are known to have colonized oil/gas platforms around the FGB, facilitating biogeographic expansion. We ask the question, what are the patterns of genetic affinity in these coral populations. We sampled coral tissue from populations of two s...

  13. Big Data Approaches To Coral-Microbe Symbiosis

    Science.gov (United States)

    Zaneveld, J.; Pollock, F. J.; McMinds, R.; Smith, S.; Payet, J.; Hanna, B.; Welsh, R.; Foster, A.; Ohdera, A.; Shantz, A. A.; Burkepile, D. E.; Maynard, J. A.; Medina, M.; Vega Thurber, R.

    2016-02-01

    Coral reefs face increasing challenges worldwide, threatened by overfishing and nutrient pollution, which drive growth of algal competitors of corals, and periods of extreme temperature, which drive mass coral bleaching. I will discuss two projects that examine how coral's complex relationships with microorganisms affect the response of coral colonies and coral species to environmental challenge. Microbiological studies have documented key roles for coral's microbial symbionts in energy harvest and defense against pathogens. However, the evolutionary history of corals and their microbes is little studied. As part of the Global Coral Microbiome Project, we are characterizing bacterial, archaeal, fungal, and Symbiodinium diversity across >1400 DNA samples from all major groups of corals, collected from 15 locations worldwide. This collection will allow us to ask how coral- microbe associations evolved over evolutionary time, and to determine whether microbial symbiosis helps predict the relative vulnerability of certain coral species to environmental stress. In the second project, we experimentally characterized how the long-term effects of human impacts such as overfishing and nutrient pollution influence coral-microbe symbiosis. We conducted a three-year field experiment in the Florida Keys applying nutrient pollution or simulated overfishing to reef plots, and traced the effects on reef communities, coral microbiomes, and coral health. The results show that extremes of temperature and algal competition destabilize coral microbiomes, increasing pathogen blooms, coral disease, and coral death. Surprisingly, these local stressors interacted strongly with thermal stress: the greatest microbiome disruption, and >80% of coral mortality happened in the hottest periods. Thus, overfishing and nutrient pollution may interact with increased climate-driven episodes of sub-bleaching thermal stress to increase coral mortality by disrupt reef communities down to microbial scales.

  14. Symbiodinium spp. associated with scleractinian corals from Dongsha Atoll (Pratas, Taiwan, in the South China Sea

    Directory of Open Access Journals (Sweden)

    Shashank Keshavmurthy

    2017-01-01

    Full Text Available Dongsha Atoll (also known as Pratas in Taiwan is the northernmost atoll in the South China Sea and a designated marine national park since 2007. The marine park’s scope of protection covers the bio-resources of its waters in addition to uplands, so it is important to have data logging information and analyses of marine flora and fauna, including their physiology, ecology, and genetics. As part of this effort, we investigated Symbiodinium associations in scleractinian corals from Dongsha Atoll through surveys carried out at two depth ranges (shallow, 1–5 m; and deep, 10–15 m in 2009 and during a bleaching event in 2010. Symbiodinium composition was assessed using restriction fragment length polymorphism (RFLP of 28S nuclear large subunit ribosomal DNA (nlsrDNA. Our results showed that the 796 coral samples from seven families and 20 genera collected in 2009 and 132 coral samples from seven families and 12 genera collected in 2010 were associated with Symbiodinium C, D and C+D. Occurrence of clade D in shallow water (24.5% was higher compared to deep (14.9%. Due to a bleaching event in 2010, up to 80% of coral species associated with Symbiodinium C underwent moderate to severe bleaching. Using the fine resolution technique of denaturing gradient gel electrophoresis (DGGE of internal transcribed spacer 2 (ITS2 in 175 randomly selected coral samples, from 2009 and 2010, eight Symbiodinium C types and two Symbiodinium D types were detected. This study is the first baseline survey on Symbiodinium associations in the corals of Dongsha Atoll in the South China Sea, and it shows the dominance of Symbiodinium clade C in the population.

  15. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook

    Science.gov (United States)

    Baker, Andrew C.; Glynn, Peter W.; Riegl, Bernhard

    2008-12-01

    regenerating and recovering coral reefs have originated from broadcast spawning taxa with a potential for asexual growth, relatively long distance dispersal, successful settlement, rapid growth and a capacity for framework construction. Whether or not affected reefs can continue to function as before will depend on: (1) how much coral cover is lost, and which species are locally extirpated; (2) the ability of remnant and recovering coral communities to adapt or acclimatize to higher temperatures and other climatic factors such as reductions in aragonite saturation state; (3) the changing balance between reef accumulation and bioerosion; and (4) our ability to maintain ecosystem resilience by restoring healthy levels of herbivory, macroalgal cover, and coral recruitment. Bleaching disturbances are likely to become a chronic stress in many reef areas in the coming decades, and coral communities, if they cannot recover quickly enough, are likely to be reduced to their most hardy or adaptable constituents. Some degraded reefs may already be approaching this ecological asymptote, although to date there have not been any global extinctions of individual coral species as a result of bleaching events. Since human populations inhabiting tropical coastal areas derive great value from coral reefs, the degradation of these ecosystems as a result of coral bleaching and its associated impacts is of considerable societal, as well as biological concern. Coral reef conservation strategies now recognize climate change as a principal threat, and are engaged in efforts to allocate conservation activity according to geographic-, taxonomic-, and habitat-specific priorities to maximize coral reef survival. Efforts to forecast and monitor bleaching, involving both remote sensed observations and coupled ocean-atmosphere climate models, are also underway. In addition to these efforts, attempts to minimize and mitigate bleaching impacts on reefs are immediately required. If significant reductions in

  16. Coral reefs and eutrophication

    International Nuclear Information System (INIS)

    Stambler, N.

    1999-01-01

    Coral reefs are found in oligotrophic waters, which are poor in nutrients such as nitrogen, phosphate, and possibly iron. In spite of this, coral reefs exhibit high gross primary productivity rates. They thrive in oligotrophic conditions because of the symbiotic relationship between corals and dinoflagellate algae (zooxanthellae) embedded in the coral tissue. In their mutualistic symbiosis, the zooxanthellae contribute their photosynthetic capability as the basis for the metabolic energy of the whole association, and eventually of a great part of the entire reef ecosystem

  17. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata

    Directory of Open Access Journals (Sweden)

    Meghann K. Devlin-Durante

    2017-11-01

    Full Text Available The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata, to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.

  18. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata.

    Science.gov (United States)

    Devlin-Durante, Meghann K; Baums, Iliana B

    2017-01-01

    The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata , to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.

  19. Effects of ocean acidification on the dissolution rates of reef-coral skeletons

    Directory of Open Access Journals (Sweden)

    Robert van Woesik

    2013-11-01

    Full Text Available Ocean acidification threatens the foundation of tropical coral reefs. This study investigated three aspects of ocean acidification: (i the rates at which perforate and imperforate coral-colony skeletons passively dissolve when pH is 7.8, which is predicted to occur globally by 2100, (ii the rates of passive dissolution of corals with respect to coral-colony surface areas, and (iii the comparative rates of a vertical reef-growth model, incorporating passive dissolution rates, and predicted sea-level rise. By 2100, when the ocean pH is expected to be 7.8, perforate Montipora coral skeletons will lose on average 15 kg CaCO3 m−2 y−1, which is approximately −10.5 mm of vertical reduction of reef framework per year. This rate of passive dissolution is higher than the average rate of reef growth over the last several millennia and suggests that reefs composed of perforate Montipora coral skeletons will have trouble keeping up with sea-level rise under ocean acidification. Reefs composed of primarily imperforate coral skeletons will not likely dissolve as rapidly, but our model shows they will also have trouble keeping up with sea-level rise by 2050.

  20. Age accuracy and resolution of Quaternary corals used as proxies for sea level

    Science.gov (United States)

    Edinger, E. N.; Burr, G. S.; Pandolfi, J. M.; Ortiz, J. C.

    2007-01-01

    The accuracy of global eustatic sea level curves measured from raised Quaternary reefs, using radiometric ages of corals at known heights, may be limited by time-averaging, which affects the variation in coral age at a given height. Time-averaging was assessed in uplifted Holocene reef sequences from the Huon Peninsula, Papua New Guinea, using radiocarbon dating of coral skeletons in both horizontal transects and vertical sequences. Calibrated 2σ age ranges varied from 800 to 1060 years along horizontal transects, but weighted mean ages calculated from 15-18 dates per horizon were accurate to a resolution within 154-214 yr. Approximately 40% of the variability in age estimate resulted from internal variability inherent to 14C estimates, and 60% was due to time-averaging. The accuracy of age estimates of sea level change in studies using single dated corals as proxies for sea level is probably within 1000 yr of actual age, but can be resolved to ≤ 250 yr if supported by dates from analysis of a statistical population of corals at each stratigraphic interval. The range of time-averaging among reef corals was much less than that for shelly benthos. Ecological time-averaging dominated over sedimentological time averaging for reef corals, opposite to patterns reported from shelly benthos in siliciclastic environments.

  1. Evolution of body size, vision, and biodiversity of coral-associated organisms: evidence from fossil crustaceans in cold-water coral and tropical coral ecosystems.

    Science.gov (United States)

    Klompmaker, Adiël A; Jakobsen, Sten L; Lauridsen, Bodil W

    2016-06-16

    Modern cold-water coral and tropical coral environments harbor a highly diverse and ecologically important macrofauna of crustaceans that face elevated extinction risks due to reef decline. The effect of environmental conditions acting on decapod crustaceans comparing these two habitats is poorly understood today and in deep time. Here, we compare the biodiversity, eye socket height as a proxy for eye size, and body size of decapods in fossil cold-water and tropical reefs that formed prior to human disturbance. We show that decapod biodiversity is higher in fossil tropical reefs from The Netherlands, Italy, and Spain compared to that of the exceptionally well-preserved Paleocene (Danian) cold-water reef/mound ecosystem from Faxe (Denmark), where decapod diversity is highest in a more heterogeneous, mixed bryozoan-coral habitat instead of in coral and bryozoan-dominated facies. The relatively low diversity at Faxe was not influenced substantially by the preceding Cretaceous/Paleogene extinction event that is not apparent in the standing diversity of decapods in our analyses, or by sampling, preservation, and/or a latitudinal diversity gradient. Instead, the lower availability of food and fewer hiding places for decapods may explain this low diversity. Furthermore, decapods from Faxe are larger than those from tropical waters for half of the comparisons, which may be caused by a lower number of predators, the delayed maturity, and the increased life span of crustaceans in deeper, colder waters. Finally, deep-water specimens of the benthic crab Caloxanthus from Faxe exhibit a larger eye socket size compared to congeneric specimens from tropical reefs, suggesting that dim light conditions favored the evolution of relatively large eyes. The results suggest a strong habitat control on the biodiversity of crustaceans in coral-associated environments and that the diversity difference between deep, cold-water reefs and tropical reefs evolved at least ~63 million years ago

  2. Enhanced susceptibility to predation in corals of compromised condition.

    Science.gov (United States)

    Bright, Allan J; Cameron, Caitlin M; Miller, Margaret W

    2015-01-01

    The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  3. THE CONDITION OF CORAL REEFS IN SOUTH FLORIDA (2000) USING CORAL DISEASE AND BLEACHING AS INDICATORS

    Science.gov (United States)

    The destruction for coral reef habitats is occurring at unprecedented levels. Coral disease epizootics in the Southwestern Atlantic have lead to coral replacement by turf algae, prompting a call to classify some coral species as endangered. In addition, a massive bleaching event ...

  4. Effect of severe hurricanes on biorock coral reef restoration projects in Grand Turk, Turks and Caicos Islands.

    Science.gov (United States)

    Wells, Lucy; Perez, Fernando; Hibbert, Marlon; Clerveaux, Luc; Johnson, Jodi; Goreau, Thomas J

    2010-10-01

    Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5 m deep in Grand Turk, at Oasis (October 2006) and at Governor's Beach (November 2007). Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor's Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor's Beach. After hurricanes Hanna and Ike (September 2008) the Governor's Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure). Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas.

  5. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Hawaii, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  6. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Maui, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  7. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Kauai, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  8. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Niihau, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  9. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Oahu, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  10. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Kure, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  11. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Lisianski, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  12. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Lanai, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  13. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Farallon de Pajaros, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  14. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Ofu & Olosega, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120401 to 20120426,...

  15. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Molokai, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  16. The effects of trophic interactions and spatial competition on algal community composition on Hawaiian coral reefs

    NARCIS (Netherlands)

    Vermeij, M.J.A.; Dailer, M.L.; Walsh, S.M.; Donovan, M.K.; Smith, C.M.

    2010-01-01

    Much of coral reef ecology has focused on how human impacts change coral reefs to macroalgal reefs. However, macroalgae may not always be a good indicator of reef decline, especially on reefs with significant sea urchin populations, as found in Kenya and Hawaii. This study tests the effects of

  17. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral.

    Science.gov (United States)

    Pinzón, Jorge H; Kamel, Bishoy; Burge, Colleen A; Harvell, C Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D

    2015-04-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs.

  18. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral

    Science.gov (United States)

    Pinzón, Jorge H.; Kamel, Bishoy; Burge, Colleen A.; Harvell, C. Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D.

    2015-01-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs. PMID:26064625

  19. [Progress of heterotrophic studies on symbiotic corals].

    Science.gov (United States)

    Yang, Yang-Chu-Qiao; Hong, Wen Ting; Wang, Shu Hong

    2017-12-01

    Heterotrophy of zooxanthellae symbiotic corals refers to the nutrition directly coming from food absorption, not the nutrition obtained from photosynthesis. Most ex situ propagation of symbiotic corals focused on the effects of irradiation, flow rate and water quality on corals, few of them involved in the demand and supply of coral heterotrophic nutrition. This paper reviewed the significance of heterotrophic nutrient supply to symbiotic corals from the sources of coral heterotrophic nutrition, the factors affecting the supply of coral heterotrophic nutrient, and the methods of how to study the coral heterotrophy. In general, the research of coral heterotrophy is just at the beginning stage, and future studies should focus on the inherent mechanism of coral feeding selection and developing more effective research methods.

  20. CRED REA Belt Surveys of Coral Population and Disease Assessments at Wake Island, Pacific Remote Island Areas in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 March - 1 April...

  1. Population Dynamic of Dendronephthya sp.-Associated Bacteria in Natural and Artificial Habitats

    Directory of Open Access Journals (Sweden)

    SUSAN SOKA

    2011-06-01

    Full Text Available Dendronephthya sp. is a soft coral that has huge distribution starting from Indopacific, Tonga, Solomon Islands to Great Barrier Reef in Australia. However, this soft corals survive only in short period after cultivation in artificial habitat (aquarium. Recent study showed that the soft coral Dendronephtya sp. has an association or symbiotic relationship with several bacteria, commonly known as coral associated bacteria (CAB. In this study, we compared the population dynamic of Dendronephthya sp.-associated bacteria in natural and artificial habitat, resulting different bacterial community profiles using terminal restriction fragment length polymorphism (T-RFLP analysis of bacterial community DNA. There were 15 main classes of bacterial population identified along with uncultured microorganism, uncultured organism, uncultured bacteria and unidentified organism. Members of Actinobacteria, Arthrobacteria, Chlorobia, Caldilineae, -proteobacteria and Proteobacteria were predicted to give contributions in the survival ability of both Dendronephthya sp. The cultivation of soft corals after 2 weeks in artificial habitat increases bacterial population similarity on 2 different samples by 10%. Bacterial population similarity in artificial habitat would increase along with the longer cultivation time of soft corals.

  2. Population Dynamic of Dendronephthya sp.-Associated Bacteria in Natural and Artificial Habitats

    Directory of Open Access Journals (Sweden)

    SUSAN SOKA

    2011-06-01

    Full Text Available Dendronephthya sp. is a soft coral that has huge distribution starting from Indopacific, Tonga, Solomon Islands to Great Barrier Reef in Australia. However, this soft corals survive only in short period after cultivation in artificial habitat (aquarium. Recent study showed that the soft coral Dendronephtya sp. has an association or symbiotic relationship with several bacteria, commonly known as coral associated bacteria (CAB. In this study, we compared the population dynamic of Dendronephthya sp.-associated bacteria in natural and artificial habitat, resulting different bacterial community profiles using terminal restriction fragment length polymorphism (T-RFLP analysis of bacterial community DNA. There were 15 main classes of bacterial population identified along with uncultured microorganism, uncultured organism, uncultured bacteria and unidentified organism. Members of Actinobacteria, Arthrobacteria, Chlorobia, Caldilineae, Δ-proteobacteria and Proteobacteria were predicted to give contributions in the survival ability of both Dendronephthya sp. The cultivation of soft corals after 2 weeks in artificial habitat increases bacterial population similarity on 2 different samples by 10%. Bacterial population similarity in artificial habitat would increase along with the longer cultivation time of soft corals.

  3. A unique coral community in the mangroves of Hurricane Hole, St. John, US Virgin Islands

    Science.gov (United States)

    Rogers, Caroline S.

    2017-01-01

    Corals do not typically thrive in mangrove environments. However, corals are growing on and near the prop roots of red mangrove trees in Hurricane Hole, an area within the Virgin Islands Coral Reef National Monument under the protection of the US National Park Service in St. John, US Virgin Islands. This review summarizes current knowledge of the remarkable biodiversity of this area. Over 30 scleractinian coral species, about the same number as documented to date from nearby coral reefs, grow here. No other mangrove ecosystems in the Caribbean are known to have so many coral species. This area may be a refuge from changing climate, as these corals weathered the severe thermal stress and subsequent disease outbreak that caused major coral loss on the island’s coral reefs in 2005 and 2006. Shading by the red mangrove trees reduces the stress that leads to coral bleaching. Seawater temperatures in these mangroves are more variable than those on the reefs, and some studies have shown that this variability results in corals with a greater resistance to higher temperatures. The diversity of sponges and fish is also high, and a new genus of serpulid worm was recently described. Continuing research may lead to the discovery of more new species.

  4. CRED REA Belt Surveys of Coral Population and Disease Assessments at Jarvis Island, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 1-5 April 2010, belt...

  5. CRED REA Belt Surveys of Coral Population and Disease Assessments at Kingman Reef, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 14-19 April 2010, belt...

  6. CRED REA Belt Surveys of Coral Population and Disease Assessments at Farallon De Pajaros Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  7. CRED REA Belt Surveys of Coral Population and Disease Assessments at Palmyra Atoll, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 7-13 April 2010, belt...

  8. Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery [v3; ref status: indexed, http://f1000r.es/2zg

    Directory of Open Access Journals (Sweden)

    Tom C. L. Bridge

    2014-02-01

    Full Text Available Coral bleaching caused by rising sea temperature is a primary cause of coral reef degradation. However, bleaching patterns often show significant spatial variability, therefore identifying locations where local conditions may provide thermal refuges is a high conservation priority. Coral bleaching mortality often diminishes with increasing depth, but clear depth zonation of coral communities and putative limited overlap in species composition between deep and shallow reef habitats has led to the conclusion that deeper reef habitats will provide limited refuge from bleaching for most species. Here, we show that coral mortality following a severe bleaching event diminished sharply with depth. Bleaching-induced mortality of Acropora was approximately 90% at 0-2m, 60% at 3-4 m, yet at 6-8m there was negligible mortality. Importantly, at least two-thirds of the shallow-water (2-3 m Acropora assemblage had a depth range that straddled the transition from high to low mortality. Cold-water upwelling may have contributed to the lower mortality observed in all but the shallowest depths. Our results demonstrate that, in this instance, depth provided a refuge for individuals from a high proportion of species in this Acropora-dominated assemblage. The persistence of deeper populations may provide a critical source of propagules to assist recovery of adjacent shallow-water reefs.

  9. Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery [v2; ref status: indexed, http://f1000r.es/26m

    Directory of Open Access Journals (Sweden)

    Tom C. L. Bridge

    2013-10-01

    Full Text Available Coral bleaching caused by rising sea temperature is a primary cause of coral reef degradation. However, bleaching patterns often show significant spatial variability, therefore identifying locations where local conditions may provide thermal refuges is a high conservation priority. Coral bleaching mortality often diminishes with increasing depth, but clear depth zonation of coral communities and putative limited overlap in species composition between deep and shallow reef habitats has led to the conclusion that deeper reef habitats will provide limited refuge from bleaching for most species. Here, we show that coral mortality following a severe bleaching event diminished sharply with depth. Bleaching-induced mortality of Acropora was approximately 90% at 0-2m, 60% at 3-4 m, yet at 6-8m there was negligible mortality. Importantly, at least two-thirds of the shallow-water (2-3 m Acropora assemblage had a depth range that straddled the transition from high to low mortality. Cold-water upwelling may have contributed to the lower mortality observed in all but the shallowest depths. Our results demonstrate that, in this instance, depth provided a refuge for individuals from a high proportion of species in this Acropora-dominated assemblage. The persistence of deeper populations may provide a critical source of propagules to assist recovery of adjacent shallow-water reefs.

  10. SPATIAL HETEROGENEITY OF PHOTOSYNTHETIC ACTIVITY WITHIN DISEASED CORALS FROM THE GREAT BARRIER REEF

    DEFF Research Database (Denmark)

    Roff, George; Ulstrup, Karin Elizabeth; Fine, Maoz

    2008-01-01

    Morphological diagnosis and descriptions of seven disease-like syndromes affecting scleractinian corals were characterized from the southern Great Barrier Reef (GBR). Chl a fluorescence of PSII was measured using an Imaging-PAM (pulse amplitude modulated) fluorometer, enabling visualization...... with white patch syndrome appeared to impact primarily on the symbiotic dinoflagellates, as evidenced by declines in minimum fluorescence (F0) and maximum quantum yield (Fv/Fm), with no indication of degeneration in the host tissues. Our results suggest that for the majority of coral syndromes from the GBR......, pathogenesis occurs in the host tissue, while the impact on the zooxanthellae populations residing in affected corals is minimal....

  11. Advancing Ocean Monitoring Near Coral Reefs

    Science.gov (United States)

    Heron, Scott F.; Steinberg, Craig R.; Heron, Mal L.; Mantovanelli, Alessandra; Jaffrés, Jasmine B. D.; Skirving, William J.; McAllister, Felicity; Rigby, Paul; Wisdom, Daniel; Bainbridge, Scott

    2010-10-01

    Corals, the foundation of tropical marine ecosystems, exist in a symbiotic relationship with zooxanthellae (algae). The corals obtain much of their energy by consuming compounds derived from photosynthesis by these microorganisms; the microorganisms, which reside in the coral tissue, in turn use waste products from the corals to sustain photosynthesis. This symbiosis is very sensitive to subtle changes in environment, such as increased ocean acidity, temperature, and light. When unduly stressed, the colorful algae are expelled from the corals, causing the corals to “bleach” and potentially die [e.g., van Oppen and Lough, 2009].

  12. Revealing Holobiont Structure and Function of Three Red Sea Deep-Sea Corals

    KAUST Repository

    Yum, Lauren

    2014-12-01

    Deep-sea corals have long been regarded as cold-water coral; however a reevaluation of their habitat limitations has been suggested after the discovery of deep-sea coral in the Red Sea where temperatures exceed 20˚C. To gain further insight into the biology of deep-sea corals at these temperatures, the work in this PhD employed a holotranscriptomic approach, looking at coral animal host and bacterial symbiont gene expression in Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus sp. sampled from the deep Red Sea. Bacterial community composition was analyzed via amplicon-based 16S surveys and cultured bacterial strains were subjected to bioprospecting in order to gauge the pharmaceutical potential of coralassociated microbes. Coral host transcriptome data suggest that coral can employ mitochondrial hypometabolism, anaerobic glycolysis, and surface cilia to enhance mass transport rates to manage the low oxygen and highly oligotrophic Red Sea waters. In the microbial community associated with these corals, ribokinases and retron-type reverse transcriptases are abundantly expressed. In its first application to deep-sea coral associated microbial communities, 16S-based next-generation sequencing found that a single operational taxonomic unit can comprise the majority of sequence reads and that a large number of low abundance populations are present, which cannot be visualized with first generation sequencing. Bioactivity testing of selected bacterial isolates was surveyed over 100 cytological parameters with high content screening, covering several major organelles and key proteins involved in a variety of signaling cascades. Some of these cytological profiles were similar to those of several reference pharmacologically active compounds, which suggest that the bacteria isolates produce compounds with similar mechanisms of action as the reference compounds. The sum of this work offers several mechanisms by which Red Sea deep-sea corals cope with environmental

  13. The genetics of colony form and function in Caribbean Acropora corals.

    Science.gov (United States)

    Hemond, Elizabeth M; Kaluziak, Stefan T; Vollmer, Steven V

    2014-12-17

    Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct "staghorn" versus "elkhorn" morphologies of these two sister species. The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans.

  14. Anti-Pathogenic Activity of Coral Bacteria Againts White Plaque Disease of Coral Dipsastraea from Tengah Island, Karimunjawa

    Science.gov (United States)

    Imam Muchlissin, Sakti; Sabdono, Agus; Permata W, Diah

    2018-02-01

    Coral disease is main factor of degrading coral reefs, such as White Plaque (WP) disease that cause loss of epidermal tissue of corals. The purposes of this research were to identify the bacteria associated with White Plaque Disease of coral Dipsastraea and to investigate coral bacteria that have antipathogenic potency against White Plaque Disease by Coral Dipsastraea. Sampling was carried out by purposive method in Tengah Island, Karimunjawa on March 2015. Streak method was used to isolate and purify coral bacteria, while overlay and agar diffusion method were used to test antibacterial activity. Identification of selected bacteria was conducted by biochemical and molecular methods. Polyphasic identification of bacteria associated with diseased coral White Plague of Dipsastraea. It is found that TFWP1, TFWP2, TFWP3 and TFWP4 were closely related to Bacillus antracis, Virgibacillus olivae, Virgibacillus salarius and Bacillus mojavensis, respectively. While antipathogen activity bacterial isolates, NM1.3, NM1.8 and NM2.3 were closely related to Pseudoalteromonas flavipulchra, Pseudoalteromonas piscicida, and Vibrio azureus, respectively. Phylogenetic data on microbial community composition in coral will help with the knowledge in the biological control of coral diseases.

  15. Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones

    Science.gov (United States)

    Goodbody-Gringley, Gretchen; Wong, Kevin H.; Becker, Danielle M.; Glennon, Keegan; de Putron, Samantha J.

    2018-06-01

    Early life history traits of brooding corals are often affected by the environmental conditions experienced by parental colonies. Such parental effects can impact offspring survival, which influences the overall success of a population as well as resilience to environmental challenges. This study examines the reproductive ecology and early life history traits of the brooding coral Porites astreoides across a depth gradient in Bermuda. Fecundity, larval size, larval Symbiodinium density, and settlement success, as well as post-metamorphic juvenile survival, growth, and Symbiodinium density were compared across three reef sites representing an inshore patch reef (2-5 m), an offshore rim reef (8-10 m), and an upper-mesophotic reef (30-33 m). Although fecundity did not differ across sites, larvae produced by colonies on the patch reef site were smaller, had lower Symbiodinium densities, and had lower rates of settlement and juvenile survival compared to larvae from colonies on the rim and upper-mesophotic reef sites. Larvae produced by colonies from the rim and upper-mesophotic sites did not differ in size or Symbiodinium densities; however, rates of settlement, growth, and survival were higher for larvae from the upper-mesophotic site compared to those from the rim reef site. These results indicate that offspring quality and success vary among sites with differing environmental conditions and may imply higher recruitment potential and resilience for upper-mesophotic corals.

  16. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    Science.gov (United States)

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. © 2016 The Author(s).

  17. Density dependence drives habitat production and survivorship of Acropora cervicornis used for restoration on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Mark C Ladd

    2016-12-01

    Full Text Available AbstractCoral restoration is gaining traction as a viable strategy to help restore degraded reefs. While the nascent field of coral restoration has rapidly progressed in the past decade, significant knowledge gaps remain regarding the drivers of restoration success that may impede our ability to effectively restore coral reef communities. Here, we conducted a field experiment to investigate the influence of coral density on the growth, habitat production, and survival of corals outplanted for restoration. We used nursery-raised colonies of Acropora cervicornis to experimentally establish populations of corals with either 3, 6, 12, or 24 corals within 4m2 plots, generating a gradient of coral densities ranging from 0.75 corals m-2 to 12 corals m-2. After 13 months we found that density had a significant effect on the growth, habitat production, and survivorship of restored corals. We found that coral survivorship increased as colony density decreased. Importantly, the signal of density dependent effects was context dependent. Our data suggest that positive density dependent effects influenced habitat production at densities of 3 corals m-2, but further increases in density resulted in negative density dependent effects with decreasing growth and survivorship of corals. These findings highlight the importance of density dependence for coral restoration planning and demonstrate the need to evaluate the influence of density for other coral species used for restoration. Further work focused on the mechanisms causing density dependence such as increased herbivory, rapid disease transmission, or altered predation rates are important next steps to advance our ability to effectively restore coral reefs.

  18. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; Mueller, C.E.; Struck, U.; Middelburg, J.J.; van Duyl, F.C.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.; Van Oevelen, D.

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and

  19. 210Po and 210Pb activity concentration in the coral bands of Pulau Tuba, Langkawi

    International Nuclear Information System (INIS)

    Lee Jen Nie; Che Abdul Rahim Mohamed; Zaharuddin Ahmad

    2007-01-01

    We examined the concentrations of 210 Po and 210 Pb in each layers of coral banding of coral skeletons. Concentrations of 210 Po and 210 Pb in massive corals (i.e. Porites, Favites, Platygyra and Goniostrea) from Pulau Tuba, Langkawi were measured using the Alpha-Spectrometry. The concentrations of 210 Po were higher than the concentrations of 210 Pb. This may due to continuing source of 210 Po from 210 Pb. Highest concentration on 210 Po in coral banding was 48.30 ± 28.53 Bq/ kg, meanwhile for 210 Pb was 12.86 ± 5.80 Bq/ kg. The ratios of 210 Po/ 210 Pb were in the range of 2.21 to 5.49. The variation activity concentrations of 210 Po and 210 Pb in the coral bands are important to consider in using coral as retrospective study of environmental changes. The coral can represent the total of 210 Po and 210 Pb in the surrounding water for the past few years. (author)

  20. Human activities threaten coral reefs

    International Nuclear Information System (INIS)

    Tveitdal, Svein; Bjoerke, Aake

    2002-01-01

    Research indicates that 58 per cent of the coral reefs of the world are threatened by human activities. Pollution and global heating represent some of the threats. Coral reefs just beneath the surface of the sea are very sensitive to temperature changes. Since 1979, mass death of coral reefs has been reported increasingly often. More than 1000 marine species live in the coral reefs, among these are one fourth of all marine species of fish. It is imperative that the coral reefs be preserved, as coastal communities all over the world depend on them as sources of food and as they are the raw materials for important medicines. The article discusses the threats to the coral reefs in general and does not single out any particular energy-related activity as the principal threat. For instance, the El-Nino phenomenon of the Pacific Ocean is probably involved in mass death of coral reefs and in the North Sea large parts of deep-water reefs have been crushed by heavy beam trawlers fishing for bottom fish

  1. Enhanced susceptibility to predation in corals of compromised condition

    Directory of Open Access Journals (Sweden)

    Allan J. Bright

    2015-09-01

    Full Text Available The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  2. Coexistence of low coral cover and high fish biomass at Farquhar Atoll, Seychelles.

    Science.gov (United States)

    Friedlander, Alan M; Obura, David; Aumeeruddy, Riaz; Ballesteros, Enric; Church, Julie; Cebrian, Emma; Sala, Enric

    2014-01-01

    We report a reef ecosystem where corals may have lost their role as major reef engineering species but fish biomass and assemblage structure is comparable to unfished reefs elsewhere around the world. This scenario is based on an extensive assessment of the coral reefs of Farquhar Atoll, the most southern of the Seychelles Islands. Coral cover and overall benthic community condition at Farquhar was poor, likely due to a combination of limited habitat, localized upwelling, past coral bleaching, and cyclones. Farquhar Atoll harbors a relatively intact reef fish assemblage with very large biomass (3.2 t ha(-1)) reflecting natural ecological processes that are not influenced by fishing or other local anthropogenic factors. The most striking feature of the reef fish assemblage is the dominance by large groupers, snappers, and jacks with large (>1 m) potato cod (Epinephelus tukula) and marbled grouper (E. polyphekadion), commonly observed at many locations. Napoleon wrasse (Cheilinus undulatus) and bumphead parrotfish (Bolbometopon muricatum) are listed as endangered and vulnerable, respectively, but were frequently encountered at Farquhar. The high abundance and large sizes of parrotfishes at Farquhar also appears to regulate macroalgal abundance and enhance the dominance of crustose corallines, which are a necessary condition for maintenance of healthy reef communities. Overall fish biomass and biomass of large predators at Farquhar are substantially higher than other areas within the Seychelles, and are some of the highest recorded in the Indian Ocean. Remote islands like Farquhar Atoll with low human populations and limited fishing pressure offer ideal opportunities for understanding whether reefs can be resilient from global threats if local threats are minimized.

  3. Coexistence of low coral cover and high fish biomass at Farquhar Atoll, Seychelles.

    Directory of Open Access Journals (Sweden)

    Alan M Friedlander

    Full Text Available We report a reef ecosystem where corals may have lost their role as major reef engineering species but fish biomass and assemblage structure is comparable to unfished reefs elsewhere around the world. This scenario is based on an extensive assessment of the coral reefs of Farquhar Atoll, the most southern of the Seychelles Islands. Coral cover and overall benthic community condition at Farquhar was poor, likely due to a combination of limited habitat, localized upwelling, past coral bleaching, and cyclones. Farquhar Atoll harbors a relatively intact reef fish assemblage with very large biomass (3.2 t ha(-1 reflecting natural ecological processes that are not influenced by fishing or other local anthropogenic factors. The most striking feature of the reef fish assemblage is the dominance by large groupers, snappers, and jacks with large (>1 m potato cod (Epinephelus tukula and marbled grouper (E. polyphekadion, commonly observed at many locations. Napoleon wrasse (Cheilinus undulatus and bumphead parrotfish (Bolbometopon muricatum are listed as endangered and vulnerable, respectively, but were frequently encountered at Farquhar. The high abundance and large sizes of parrotfishes at Farquhar also appears to regulate macroalgal abundance and enhance the dominance of crustose corallines, which are a necessary condition for maintenance of healthy reef communities. Overall fish biomass and biomass of large predators at Farquhar are substantially higher than other areas within the Seychelles, and are some of the highest recorded in the Indian Ocean. Remote islands like Farquhar Atoll with low human populations and limited fishing pressure offer ideal opportunities for understanding whether reefs can be resilient from global threats if local threats are minimized.

  4. Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress.

    Science.gov (United States)

    Borell, Esther M; Bischof, Kai

    2008-10-01

    Thermal resistance of the coral-zooxanthellae symbiosis has been associated with chronic photoinhibition, increased antioxidant activity and protein repair involving high demands of nitrogen and energy. While the relative importance of heterotrophy as a source of nutrients and energy for cnidarian hosts, and as a means of nitrogen acquisition for their zooxanthellae, is well documented, the effect of feeding on the thermal sensitivity of the symbiotic association has been so far overlooked. Here we examine the effect of zooplankton feeding versus starvation on the bleaching susceptibility and photosynthetic activity of photosystem II (PSII) of zooxanthellae in the scleractinian coral Stylophora pistillata in response to thermal stress (daily temperature rises of 2-3 degrees C) over 10 days, employing pulse-amplitude-modulated chlorophyll fluorometry. Fed and starved corals displayed a decrease in daily maximum potential quantum yield (F (v)/F (m)) of PSII, effective quantum yield (F/F (m)') and relative electron transport rates over the course of 10 days. However after 10 days of exposure to elevated temperature, F (v)/F (m) of fed corals was still 50-70% higher than F (v)/F (m) of starved corals. Starved corals showed strong signs of chronic photoinhibition, which was reflected in a significant decline in nocturnal recovery rates of PSII relative to fed corals. This was paralleled by the progressive inability to dissipate excess excitation energy via non-photochemical quenching (NPQ). After 10 days, NPQ of starved corals had decreased by about 80% relative to fed corals. Feeding treatment had no significant effect on chlorophyll a and c (2) concentrations and zooxanthellae densities, but the mitotic indices were significantly lower in starved than in fed corals. Collectively the results indicate that exogenous food may reduce the photophysiological damage of zooxanthellae that typically leads to bleaching and could therefore play an important role in mediating the

  5. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots.

    Science.gov (United States)

    Cowman, P F; Bellwood, D R

    2011-12-01

    Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  6. [Coral reefs in the face of ecological threats of XXI century].

    Science.gov (United States)

    Tkachenko, K S

    2015-01-01

    To date, more than a quarter of tropical coral reefs of the World Ocean are believed to be totally de- stroyed. Given the present rates of reefs degradation, this value may be doubled in the nearest 30 years. For the essential part of coastal community, the destruction of coral ecosystems implies the loss of the major food sources, natural protection from storms, and significant (if not the only) revenue from exploi- tation of reefs especially in tourism industry. Finally, the disappearance of low-laying coral islands may threat the local communities by deprivation of living space. Global negative effects include temperature anomalies of sea surface waters and an increase of atmospheric CO2 concentration leading to ocean acidification. Local negative effects are related to in- crease of sedimentation and eutrophication, cyclone and storm passes, coral diseases, chemical pollution, mechanical destruction of corals by humans, anthropogenic depletion of functional groups of fish and invertebrates. An entire set of responses of coral ecosystems to stressful factors on the levels of both separate taxa and ecosystem is discussed. An analysis of published data suggests that with high probability the tropical coral communities will come to collapse stage by the middle of the current century at more than 50% of the area of their biogeographic range, especially in the regions of dense human population. At the most optimistic scenario, complex effect of reviewed negative factors will result in coral ecosystems main- taining in some areas. However, after global transformations, these ecosystems will be dominated by the most resistant taxa, mainly massive and encrusting forms of long-lived species with low growth rates and high competitive ability. Among such taxa, Poritidae demonstrates the highest adaptive capability. At the most pessimistic scenario, scleractinian communities will be replaced by alternative communities of macroalgae and non-calcareous anthozoans.

  7. Effect of severe hurricanes on Biorock Coral Reef Restoration Projects in Grand Turk, Turks and Caicos Islands

    Directory of Open Access Journals (Sweden)

    Lucy Wells

    2010-10-01

    Full Text Available Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5m deep in Grand Turk, at Oasis (October 2006 and at Governor’s Beach (November 2007. Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor’s Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor’s Beach. After hurricanes Hanna and Ike (September 2008 the Governor’s Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure. Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas. Rev. Biol. Trop. 58 (Suppl. 3: 141-149. Epub 2010 October 01.

  8. Massive bleaching of coral reefs induced by the 2010 ENSO, Puerto Cabello, Venezuela.

    Science.gov (United States)

    del Mónaco, Carlos; Haiek, Gerard; Narciso, Samuel; Galindo, Miguel

    2012-06-01

    El Niño Southern Oscillation (ENSO) has generated global coral massive bleaching. The aim of this work was to evaluate the massive bleaching of coral reefs in Puerto Cabello, Venezuela derived from ENSO 2010. We evaluated the bleaching of reefs at five localities both at three and five meter depth. The coral cover and densities of colonies were estimated. We recorded living coral cover, number and diameter of bleached and non-bleached colonies of each coral species. The colonies were classified according to the proportion of bleached area. Satellite images (Modis Scar) were analyzed for chlorophyll-a concentration and temperature in August, September, October and November from 2008-2010. Precipitation, wind speed and air temperature information was evaluated in meteorological data for 2009 and 2010. A total of 58.3% of colonies, belonging to 11 hexacoral species, were affected and the greatest responses were observed in Colpophyllia natans, Montastraea annularis and Montastraeafaveolata. The most affected localities were closer to the mainland and had a bleached proportion up to 62.73+/-36.55%, with the highest proportion of affected colonies, whereas the farthest locality showed 20.25+/-14.00% bleached and the smallest proportion. The salinity in situ varied between 30 and 33ppm and high levels of turbidity were observed. According to the satellite images, in 2010 the surface water temperature reached 31 degree C in August, September and October, and resulted higher than those registered in 2008 and 2009. Regionally, chlorophyll values were higher in 2010 than in 2008 and 2009. The meteorological data indicated that precipitation in November 2010 was three times higher than in November 2009. Massive coral bleaching occurred due to a three month period of high temperatures followed by one month of intense ENSO-associated precipitation. However, this latter factor was likely the trigger because of the bleaching gradient observed.

  9. Responses of two scleractinian corals to cobalt pollution and ocean acidification.

    Directory of Open Access Journals (Sweden)

    Tom Biscéré

    Full Text Available The effects of ocean acidification alone or in combination with warming on coral metabolism have been extensively investigated, whereas none of these studies consider that most coral reefs near shore are already impacted by other natural anthropogenic inputs such as metal pollution. It is likely that projected ocean acidification levels will aggravate coral reef health. We first investigated how ocean acidification interacts with one near shore locally abundant metal on the physiology of two major reef-building corals: Stylophora pistillata and Acropora muricata. Two pH levels (pHT 8.02; pCO2 366 μatm and pHT 7.75; pCO2 1140 μatm and two cobalt concentrations (natural, 0.03 μg L-1 and polluted, 0.2 μg L-1 were tested during five weeks in aquaria. We found that, for both species, cobalt input decreased significantly their growth rates by 28% while it stimulated their photosystem II, with higher values of rETRmax (relative Electron Transport Rate. Elevated pCO2 levels acted differently on the coral rETRmax values and did not affect their growth rates. No consistent interaction was found between pCO2 levels and cobalt concentrations. We also measured in situ the effect of higher cobalt concentrations (1.06 ± 0.16 μg L-1 on A. muricata using benthic chamber experiments. At this elevated concentration, cobalt decreased simultaneously coral growth and photosynthetic rates, indicating that the toxic threshold for this pollutant has been reached for both host cells and zooxanthellae. Our results from both aquaria and in situ experiments, suggest that these coral species are not particularly sensitive to high pCO2 conditions but they are to ecologically relevant cobalt concentrations. Our study reveals that some reefs may be yet subjected to deleterious pollution levels, and even if no interaction between pCO2 levels and cobalt concentration has been found, it is likely that coral metabolism will be weakened if they are subjected to additional

  10. Modeling patterns of coral bleaching at a remote Central Pacific atoll.

    Science.gov (United States)

    Williams, Gareth J; Knapp, Ingrid S; Maragos, James E; Davy, Simon K

    2010-09-01

    A mild bleaching event (9.2% prevalence) at Palmyra Atoll occurred in response to the 2009 ENSO, when mean water temperature reached 29.8-30.1 degrees C. Prevalence among both abundant and sparse taxa varied with no clear pattern in susceptibility relating to coral morphology. Seven taxon-specific models showed that turbidity exacerbated while prior exposure to higher background temperatures alleviated bleaching, with these predictors explaining an average 16.3% and 11.5% variation in prevalence patterns, respectively. Positive associations occurred between bleaching prevalence and both immediate temperature during the bleaching event (average 8.4% variation explained) and increased sand cover (average 3.7%). Despite these associations, mean unexplained variation in prevalence equalled 59%. Lower bleaching prevalence in areas experiencing higher background temperatures suggests acclimation to temperature stress among several coral genera, while WWII modifications may still be impacting the reefs via shoreline sediment re-distribution and increased turbidity, exacerbating coral bleaching susceptibility during periods of high temperature stress. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. The recent decline of Montastraea annularis (complex coral populations in western Curaçao: a cause for concern?

    Directory of Open Access Journals (Sweden)

    A. W Bruckner

    2006-12-01

    Full Text Available Shallow leeward reefs off the western end of Curaçao are dominated by extensive populations of M. annularis (complex. These species are larger in size (mean= 66 cm diameter than all other species, with few small colonies (10 cm observed within transects, and most exhibited low levels of partial mortality (mean= 22.5%. These species were less abundant (38% of all colonies in 2005. Partial mortality among live colonies of M. annularis and M. faveolata increased by 85% (mean = 42% partial mortality and numerous dead colonies of M. faveolata and M. annularis were observed; M. franksi colonies were generally in excellent condition (14% partial tissue mortality. A high prevalence of coral diseases (3-30% was documented among M. annularis and M. faveolata, while all other species were less frequently affected. Yellow band disease (YBD emerged shortly after the 1995 bleaching event, and rapidly spread throughout all depths, with the highest prevalence between 1997-1999. YBD caused slow rates of mortality (=1 cm/month, but multiple focal lesions appeared on individual colonies, and these progressively radiated outward as they killed the colonies. By 2005, 44% of the tagged corals were dead; the remainder exhibited active YBD infections (21% or were in remission (31.6% but were missing on average >90% of their tissue. Although the incidence of YBD has declined since 2000, white plague (WP prevalence was unusually high (4-12% in 2001 and 2005, with affected colonies exhibiting recent mortality of up to 70%. Dead Montastraea spp. surfaces are being colonized by other corals, including poritids, agaricids, and other faviids, while recruits of M. annularis (complex are absent. If diseases and other biotic stressors persist on these reefs, M. annularis and M. faveolata populations may undergo a decline similar to that observed in the 1980s among Caribbean acroporids. Rev. Biol. Trop. 54 (Suppl. 3: 45- 58. Epub 2007 Jan. 15.Los arrecifes someros a sotavento

  12. Fine-Scale Biogeographical Boundary Delineation and Sub-population Resolution in the Symbiodinium thermophilum Coral Symbiont Group From the Persian/Arabian Gulf and Gulf of Oman

    KAUST Repository

    Hume, Benjamin C. C.

    2018-04-24

    The adaptation of tropical coral communities to the world\\'s hottest sea, the Persian/Arabian Gulf (PAG), has recently been associated with ecological selection acting on a group of coral-associated algal symbionts, the Symbiodinium thermophilum group. Previous studies have shown that considerable genetic diversity exists within the group and that group members found within the PAG are significantly differentiated from those found externally, in the Gulf of Oman and wider waters. However, little is known about this genetic diversity. As an initial step towards understanding whether this diversity could represent niche adapted, selectable populations within the S. thermophilum group that may act as natural sources of stress tolerant associations to Indo-Pacific reefs, we investigate whether the diversity is structured between populations and where the location of the internal-external genetic partition lies. We use regions of the nuclear ribosomal DNA (ITS1-5.8S-ITS2) and chloroplastic psbA gene (non-coding region) from >100 S. thermophilum group-harbouring Porites spp. (P. lobata, P. lutea, and P. harrisoni) sampled across steep temperature and salinity gradients to conduct analyses of variance and create maximum parsimony networks to assess genetic structure and (dis)similarity within and between populations of S. thermophilum found within the PAG and externally in the Gulf of Oman. Our analyses resolve a sharp genetic boundary between Symbiodinium populations in the western Strait of Hormuz and identify significant genetic structure between populations with as little as 20 km between them demonstrating that differentiation between populations is likely due to factors other than limited connectivity. Further, we hypothesize that genotypes identified outside of the PAG in the Gulf of Oman existing in near-oceanic salinities, yet thermally challenging waters, putatively represent candidates for stress-tolerant symbionts that could act as natural seed populations of

  13. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization.

    Science.gov (United States)

    Jones, A M; Berkelmans, R; van Oppen, M J H; Mieog, J C; Sinclair, W

    2008-06-22

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.

  14. Bleaching Susceptibility and Recovery of Colombian Caribbean Corals in Response to Water Current Exposure and Seasonal Upwelling

    Science.gov (United States)

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34%) compared to the exposed site (8%). Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs. PMID:24282551

  15. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  16. Linking Terrigenous Sediment Delivery to Declines in Coral ...

    Science.gov (United States)

    Worldwide coral reef conditions continue to decline despite the valuable socioeconomic benefits of these ecosystems. There is growing recognition that quantifying reefs in terms reflecting what stakeholders value is vital for comparing inherent tradeoffs among coastal management decisions. Terrestrial sediment runoff ranks high as a stressor to coral reefs and is a key concern in Puerto Rico where reefs are among the most threatened in the Caribbean. This research aimed to identify the degree to which sediment runoff impacts production of coral reef ecosystem services and the potential for watershed management actions to improve these services. Ecosystem service production functions were applied to map and translate metrics of ecological reef condition into ecosystem service production under a gradient of increasing sediment delivery. We found that higher sediment delivery decreased provisioning of most ecosystem services, including ecosystem integrity, bioprospecting discovery, and reef-based recreational opportunities and fisheries production. However, shoreline protection and services with a strong contribution from non-reef habitats (e.g., mangroves, seagrasses) were higher in locations with high sediment delivery, although there was a strong inshore effect suggesting the influence of distance to shore, depth, and inshore habitats. Differences among services may indicate potential tradeoffs and the need to consider habitat connectivity, nursery habitat, acce

  17. The effects of top-down versus bottom-up control on benthic coral reef community structure.

    Science.gov (United States)

    Smith, Jennifer E; Hunter, Cynthia L; Smith, Celia M

    2010-06-01

    While climate change and associated increases in sea surface temperature and ocean acidification, are among the most important global stressors to coral reefs, overfishing and nutrient pollution are among the most significant local threats. Here we examined the independent and interactive effects of reduced grazing pressure and nutrient enrichment using settlement tiles on a coral-dominated reef via long-term manipulative experimentation. We found that unique assemblages developed in each treatment combination confirming that both nutrients and herbivores are important drivers of reef community structure. When herbivores were removed, fleshy algae dominated, while crustose coralline algae (CCA) and coral were more abundant when herbivores were present. The effects of fertilization varied depending on herbivore treatment; without herbivores fleshy algae increased in abundance and with herbivores, CCA increased. Coral recruits only persisted in treatments exposed to grazers. Herbivore removal resulted in rapid changes in community structure while there was a lag in response to fertilization. Lastly, re-exposure of communities to natural herbivore populations caused reversals in benthic community trajectories but the effects of fertilization remained for at least 2 months. These results suggest that increasing herbivore populations on degraded reefs may be an effective strategy for restoring ecosystem structure and function and in reversing coral-algal phase-shifts but that this strategy may be most effective in the absence of other confounding disturbances such as nutrient pollution.

  18. Intraspecific diversity among partners drives functional variation in coral symbioses.

    Science.gov (United States)

    Parkinson, John Everett; Banaszak, Anastazia T; Altman, Naomi S; LaJeunesse, Todd C; Baums, Iliana B

    2015-10-26

    The capacity of coral-dinoflagellate mutualisms to adapt to a changing climate relies in part on standing variation in host and symbiont populations, but rarely have the interactions between symbiotic partners been considered at the level of individuals. Here, we tested the importance of inter-individual variation with respect to the physiology of coral holobionts. We identified six genetically distinct Acropora palmata coral colonies that all shared the same isoclonal Symbiodinium 'fitti' dinoflagellate strain. No other Symbiodinium could be detected in host tissues. We exposed fragments of each colony to extreme cold and found that the stress-induced change in symbiont photochemical efficiency varied up to 3.6-fold depending on host genetic background. The S. 'fitti' strain was least stressed when associating with hosts that significantly altered the expression of 184 genes under cold shock; it was most stressed in hosts that only adjusted 14 genes. Key expression differences among hosts were related to redox signaling and iron availability pathways. Fine-scale interactions among unique host colonies and symbiont strains provide an underappreciated source of raw material for natural selection in coral symbioses.

  19. Coral Reefs: Beyond Mortality?

    Directory of Open Access Journals (Sweden)

    Charles Sheppard

    2000-01-01

    Full Text Available The scale of the collapse of coral reef communities in 1998 following a warming episode (Wilkinson, 2000 was unprecedented, and took many people by surprise. The Indian Ocean was the worst affected with a coral mortality over 75% in many areas such as the Chagos Archipelago (Sheppard, 1999, Seychelles (Spencer et al., 2000 and Maldives (McClanahan, 2000. Several other locations were affected at least as much, with mortality reaching 100% (to the nearest whole number; this is being compiled by various authors (e.g., CORDIO, in press. For example, in the Arabian Gulf, coral mortality is almost total across many large areas of shallow water (Sheppard, unpublished; D. George and D. John, personal communication. The mortality is patchy of course, depending on currents, location inside or outside lagoons, etc., but it is now possible to swim for over 200 m and see not one remaining living coral or soft coral on some previously rich reefs.

  20. Coral bleaching pathways under the control of regional temperature variability

    Science.gov (United States)

    Langlais, C. E.; Lenton, A.; Heron, S. F.; Evenhuis, C.; Sen Gupta, A.; Brown, J. N.; Kuchinke, M.

    2017-11-01

    Increasing sea surface temperatures (SSTs) are predicted to adversely impact coral populations worldwide through increasing thermal bleaching events. Future bleaching is unlikely to be spatially uniform. Therefore, understanding what determines regional differences will be critical for adaptation management. Here, using a cumulative heat stress metric, we show that characteristics of regional SST determine the future bleaching risk patterns. Incorporating observed information on SST variability, in assessing future bleaching risk, provides novel options for management strategies. As a consequence, the known biases in climate model variability and the uncertainties in regional warming rate across climate models are less detrimental than previously thought. We also show that the thresholds used to indicate reef viability can strongly influence a decision on what constitutes a potential refugia. Observing and understanding the drivers of regional variability, and the viability limits of coral reefs, is therefore critical for making meaningful projections of coral bleaching risk.

  1. Bottlenecks to coral recovery in the Seychelles

    Science.gov (United States)

    Chong-Seng, K. M.; Graham, N. A. J.; Pratchett, M. S.

    2014-06-01

    Processes that affect recovery of coral assemblages require investigation because coral reefs are experiencing a diverse array of more frequent disturbances. Potential bottlenecks to coral recovery include limited larval supply, low rates of settlement, and high mortality of new recruits or juvenile corals. We investigated spatial variation in local abundance of scleractinian corals in the Seychelles at three distinct life history stages (recruits, juveniles, and adults) on reefs with differing benthic conditions. Following widespread coral loss due to the 1998 bleaching event, some reefs are recovering (i.e., relatively high scleractinian coral cover: `coral-dominated'), some reefs have low cover of living macrobenthos and unconsolidated rubble substrates (`rubble-dominated'), and some reefs have high cover of macroalgae (`macroalgal-dominated'). Rates of coral recruitment to artificial settlement tiles were similar across all reef conditions, suggesting that larval supply does not explain differential coral recovery across the three reef types. However, acroporid recruits were absent on macroalgal-dominated reefs (0.0 ± 0.0 recruits tile-1) in comparison to coral-dominated reefs (5.2 ± 1.6 recruits tile-1). Juvenile coral colony density was significantly lower on macroalgal-dominated reefs (2.4 ± 1.1 colonies m-2), compared to coral-dominated reefs (16.8 ± 2.4 m-2) and rubble-dominated reefs (33.1 ± 7.3 m-2), suggesting that macroalgal-dominated reefs have either a bottleneck to successful settlement on the natural substrates or a high post-settlement mortality bottleneck. Rubble-dominated reefs had very low cover of adult corals (10.0 ± 1.7 %) compared to coral-dominated reefs (33.4 ± 3.6 %) despite no statistical difference in their juvenile coral densities. A bottleneck caused by low juvenile colony survivorship on unconsolidated rubble-dominated reefs is possible, or alternatively, recruitment to rubble-dominated reefs has only recently begun. This

  2. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Wake, Pacific Remote Island Areas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110310 to 20110402,...

  3. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at French Frigate, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  4. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Pearl & Hermes, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  5. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Kingman, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120427 to 20120524,...

  6. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Baker, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  7. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Jarvis, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120427 to 20120524,...

  8. CRED REA Belt Surveys of Coral Population and Disease Assessments at Pearl And Hermes Atoll, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  9. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Howland, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  10. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Palmyra, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120427 to 20120524,...

  11. Global habitat suitability for framework-forming cold-water corals.

    Directory of Open Access Journals (Sweden)

    Andrew J Davies

    Full Text Available Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2 global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts, which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine

  12. Projected near-future levels of temperature and pCO2 reduce coral fertilization success.

    Directory of Open Access Journals (Sweden)

    Rebecca Albright

    Full Text Available Increases in atmospheric carbon dioxide (pCO2 are projected to contribute to a 1.1-6.4°C rise in global average surface temperatures and a 0.14-0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C and pCO2 (+400 µatm projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2 and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential.

  13. Coral reef fish assemblages at Clipperton Atoll (Eastern Tropical Pacific and their relationship with coral cover

    Directory of Open Access Journals (Sweden)

    Aurora M. Ricart

    2016-11-01

    Full Text Available Clipperton Atoll, one of the most isolated coral reefs worldwide, is of great scientific interest due to its geomorphology and high levels of endemism. This study explored the reef fish assemblage structure of Clipperton Atoll and its relationship with live coral cover. Nine stations were sampled at three sites and three depths (6, 12 and 20 m around the reef, measuring fish species richness and biomass and hermatypic coral cover (at genus level. We evaluated variation in species richness, biomass and diversity of fish assemblages among sites and depths, as well as the relationship between the entire fish assemblage composition and live coral cover. The results showed that species richness and biomass were similar among sites, but differed across depths, increasing with depth. In contrast, diversity differed among sites but not among depths. Multivariate analyses indicated that fish assemblage composition differed among sites and depths in relation to changes in cover of coral of the genera Pocillopora, Porites, Pavona and Leptoseris, which dominate at different depths. The results showed that fish species richness and diversity were low at Clipperton Atoll and that, in isolated coral reefs with a low habitat heterogeneity and low human disturbance, live coral cover has a significant influence on the spatial variation of the reef fish assemblages. This study highlights the importance of coral habitat structure in shaping coral reef fish assemblages.

  14. Microbial disease and the coral holobiont

    Science.gov (United States)

    Bourne, David G.; Garren, Melissa; Work, Thierry M.; Rosenberg, Eugene; Smith, Garriet W.; Harvell, C. Drew

    2009-01-01

    Tropical coral reefs harbour a reservoir of enormous biodiversity that is increasingly threatened by direct human activities and indirect global climate shifts. Emerging coral diseases are one serious threat implicated in extensive reef deterioration through disruption of the integrity of the coral holobiont – a complex symbiosis between the coral animal, endobiotic alga and an array of microorganisms. In this article, we review our current understanding of the role of microorganisms in coral health and disease, and highlight the pressing interdisciplinary research priorities required to elucidate the mechanisms of disease. We advocate an approach that applies knowledge gained from experiences in human and veterinary medicine, integrated into multidisciplinary studies that investigate the interactions between host, agent and environment of a given coral disease. These approaches include robust and precise disease diagnosis, standardised ecological methods and application of rapidly developing DNA, RNA and protein technologies, alongside established histological, microbial ecology and ecological expertise. Such approaches will allow a better understanding of the causes of coral mortality and coral reef declines and help assess potential management options to mitigate their effects in the longer term.

  15. Coral bleaching, hurricane damage, and benthic cover on coral reefs in St. John, U.S. Virgin Islands: A comparison of surveys with the chain transect method and videography

    Science.gov (United States)

    Rogers, C.S.; Miller, J.

    2001-01-01

    The linear chain transect method and videography were used to quantify the percent cover by corals, macroalgae, gorgonians, other living organisms, and substrate along permanent transects on two fringing reefs off St. John. Both methods were used simultaneously on Lameshur reef in November 1998, and on Newfound reef in March and October 1998. Hurricane Georges passed over St. John in September 1998, and a severe coral bleaching episode began the same month. Both methods gave remarkably similar values for coral cover, while the video method gave consistently higher values for gorgonians and macroalgae. The most dramatic difference was in the quantification of bleaching. At Newfound, the chain method indicated 13.4% (SD = 14.1) of the coral tissues were bleached and the video method, 43.4% (SD = 13.0). Corresponding values at Lameshur were 18.1% (SD = 22.3) and 46.5% (SD = 13.3). Although hurricane damage was conspicuous at Newfound reef, neither method showed significant changes in coral cover or other categories as a result of the storm.

  16. Long-distance dispersal of the coconut palm by migration within the coral atoll ecosystem.

    Science.gov (United States)

    Harries, Hugh C; Clement, Charles R

    2014-03-01

    The location of the original home of the coconut palm, Cocos nucifera, and the extent of its natural dispersal are not known. Proponents of a South American origin must explain why it is not indigenous there and why it shows greatest diversity in southern Asia. Conversely, proponents of an Asian origin must explain why there are no Asian Cocoseae and why the closest botanical relative to Cocos is in South America. Both hypotheses share the common problems of how, when, where and in what directions long-distance dispersal occurred. These difficulties are resolved by accepting that C. nucifera originated and dispersed by populating emerging islands of the coral atoll ecosystem, where establishment conditions impose high selection pressures for survival. When lifted by wave action onto virtually sterile, soilless coralline rocks just above sea level and exposed to the full impact of the sun, seednuts must germinate, root and establish vigorous populations. The cavity within the nut augments the buoyancy provided by the thick husk, which in turn protects the embryo and, by delaying germination, simultaneously extends viability while floating and provides a moisture-retentive rooting medium for the young seedling. These adaptations allow coconuts to disperse widely through the coral atoll ecosystem. The monthly production of fruit and the long floating duration ensure that viable seednuts are always available in the lagoon to replace those destroyed by hurricanes and tsunamis, or to populate newly emerged coral atolls elsewhere. Long-distance dispersal is secondary, because it was the spontaneous, independent migration of coral polyps on a prolonged geological time scale that generated new coral atolls in new areas where the coconuts would be amongst the earliest inhabitants. The coconut palm became an intermittent, itinerant, pioneer endemic there, and also on suitable beaches on volcanic or large islands and continental coastlines.

  17. Integration of coral reef ecosystem process studies and remote sensing: Chapter 5

    Science.gov (United States)

    Brook, John; Yates, Kimberly; Halley, Robert

    2006-01-01

    Worldwide, local-scale anthropogenic stress combined with global climate change is driving shifts in the state of reef benthic communities from coral-rich to micro- or macroalgal-dominated (Knowlton, 1992; Done, 1999). Such phase shifts in reef benthic communities may be either abrupt or gradual, and case studies from diverse ocean basins demonstrate that recovery, while uncertain (Hughes, 1994), typically involves progression through successional stages (Done, 1992). These transitions in benthic community structure involve changes in community metabolism, and accordingly, the holistic evaluation of associated biogeochemical variables is of great intrinsic value (Done, 1992). Effective reef management requires advance prediction of coral reef alteration in the face of anthropogenic stress and change in the global environment (Hatcher, 1997a). In practice, this goal requires techniques that can rapidly discern, at an early stage, sublethal effects that may cause long-term increases in mortality (brown, 1988; Grigg and Dollar, 1990). Such methods would improve our understanding of the differences in the population, community, and ecosystem structure, as well as function, between pristine and degraded reefs. This knowledge base could then support scientifically based management strategies (Done, 1992). Brown (1988) noted the general lack of rigor in the assessment of stress on coral reefs and suggested that more quantitative approaches than currently exist are needed to allow objective understanding of coral reef dynamics. Sensitive techniques for the timely appraisal of pollution effects or generalized endemic stress in coral reefs are sorely lacking (Grigg and Dollar, 1990; Wilkinsin, 1992). Moreover, monitoring methods based on population inventories, sclerochronology, or reproductive biology tend to myopic and may give inconsistent results. Ideally, an improved means of evaluating reef stress would discriminate mortality due to natural causes from morality to

  18. An outbreak of sea cucumbers hinders coral recruitment

    Science.gov (United States)

    Zhang, Yu-Yang; McCook, Laurence; Jiang, Lei; Lian, Jian-Sheng; Liu, Sheng; Huang, Hui

    2018-06-01

    An outbreak of a small sessile sea cucumber, Ocnus sanya, occurred on the degraded Luhuitou coral reef in Sanya Bay, Hainan, China. This study explored the pattern of distribution of O. sanya on the reef and the impacts of the high abundance of O. sanya on post-settlement mortality of Pocillopora damicornis recruits. The density of O. sanya ranged from about 500 to over 2000 individuals m-2 with 10.95-23.69% cover on hard substrate. Terracotta tiles with O. sanya on the surface accumulated 19.7% more surface sediment than those without sea cucumbers. Post-settlement P. damicornis recruits had significantly higher mortality on terracotta tiles with O. sanya than those without O. sanya after 21 d. Overall, O. sanya appears to increase sediment stress and inhibit coral recruitment, exacerbating the degradation of Luhuitou Reef. This study raises the possibility that such novel outbreak species could contribute significant additional stress on coral reefs at larger scales.

  19. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching.

    Science.gov (United States)

    Cramer, Katie L; Jackson, Jeremy B C; Angioletti, Christopher V; Leonard-Pingel, Jill; Guilderson, Thomas P

    2012-06-01

    Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change. © 2012 Blackwell Publishing Ltd/CNRS.

  20. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Manikandan, B.; Ravindran, J.; Shrinivaasu, S.; Marimuthu, N.; Paramasivam, K.

    to the reefs (McClanahan et al. 2006). However, majority of the MPAs lack effective enforcement of laws leading to reef damage and over exploitation (Mora et al. 2006). Climate change and Ocean acidification are chronic processes that exert their effects at a... availability for macroalgal attachment and nutrient enrichment will enhance the algal population in the coral ecosystems (McManus and Polsenberg 2004). Algal domination in a coral ecosystem has severe ecological implications including coral bleaching (Hughes...

  1. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt.

    Science.gov (United States)

    Shlesinger, Tom; Grinblat, Mila; Rapuano, Hanna; Amit, Tal; Loya, Yossi

    2018-02-01

    Mesophotic coral ecosystems (i.e., deep coral reefs at 30-120 m depth) appear to be thriving while many shallow reefs in the world are declining. Amid efforts to understand and manage their decline, it was suggested that mesophotic reefs might serve as natural refuges and a possible source of propagules for the shallow reefs. However, our knowledge of how reproductive performance of corals alters with depth is sparse. Here, we present a comprehensive study of the reproductive phenology, fecundity, and abundance of seven reef-building conspecific corals in shallow and mesophotic habitats. Significant differences were found in the synchrony and timing of gametogenesis and spawning between shallow and mesophotic coral populations. Thus, mesophotic populations exhibited delayed or protracted spawning events, which led to spawning of the mesophotic colonies in large proportions at times where the shallow ones had long been depleted of reproductive material. All species investigated demonstrated a substantial reduction in fecundity and/or oocyte sizes at mesophotic depths (40-60 m). Two species (Seriatopora hystrix and Galaxea fascicularis) displayed a reduction in both fecundity and oocyte size at mesophotic depths. Turbinaria reniformis had only reduced fecundity and Acropora squarrosa and Acropora valida only reduced oocyte size. In Montipora verrucosa, reduced fecundity was found during one annual reproductive season while, in the following year, only reduced oocyte size was found. In contrast, reduced oocyte size in mesophotic populations of Acropora squarrosa was consistent along three studied years. One species, Acropora pharaonis, was found to be infertile at mesophotic depths along two studied years. This indicates that reproductive performance decreases with depth; and that although some species are capable of reproducing at mesophotic depths, their contribution to the replenishment of shallow reefs may be inconsequential. Reduced reproductive performance

  2. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs.

    Science.gov (United States)

    Pollock, F Joseph; Lamb, Joleah B; Field, Stuart N; Heron, Scott F; Schaffelke, Britta; Shedrawi, George; Bourne, David G; Willis, Bette L

    2014-01-01

    In recent decades, coral reef ecosystems have declined to the extent that reefs are now threatened globally. While many water quality parameters have been proposed to contribute to reef declines, little evidence exists conclusively linking specific water quality parameters with increased disease prevalence in situ. Here we report evidence from in situ coral health surveys confirming that chronic exposure to dredging-associated sediment plumes significantly increase the prevalence of white syndromes, a devastating group of globally important coral diseases. Coral health surveys were conducted along a dredging-associated sediment plume gradient to assess the relationship between sedimentation, turbidity and coral health. Reefs exposed to the highest number of days under the sediment plume (296 to 347 days) had two-fold higher levels of disease, largely driven by a 2.5-fold increase in white syndromes, and a six-fold increase in other signs of compromised coral health relative to reefs with little or no plume exposure (0 to 9 days). Multivariate modeling and ordination incorporating sediment exposure level, coral community composition and cover, predation and multiple thermal stress indices provided further confirmation that sediment plume exposure level was the main driver of elevated disease and other compromised coral health indicators. This study provides the first evidence linking dredging-associated sedimentation and turbidity with elevated coral disease prevalence in situ. Our results may help to explain observed increases in global coral disease prevalence in recent decades and suggest that minimizing sedimentation and turbidity associated with coastal development will provide an important management tool for controlling coral disease epizootics.

  3. AUTOMATING THE MEASUREMENT OF RED CORAL IN SITU USING UNDERWATER PHOTOGRAMMETRY AND CODED TARGETS

    Directory of Open Access Journals (Sweden)

    P. Drap

    2013-07-01

    Full Text Available A photogrammetry tool dedicated to the monitoring of red coral populations in situ has been developed by LSIS in Marseille (France. This tool is used to collect in an efficient and precise manner key data for the study of the population dynamics of red coral. In selected red coral populations, scuba-divers obtain a series of photographs from the permanent plots (about 2 m2 on an annual basis. To facilitate the photographic sampling and measurements, the scuba-divers use a 20 x 20 cm quadrat to cover the permanent plots. The analysis of the photographs provides reliable measurements on colony sizes (basal diameter and maximum height, occurrence of breakage of colonies and the occurrence of necrosis. To minimize the divers' tasks during the acquisition phase, we opted for stereoscopic acquisition using a single device to easily adapt the measurement procedure to the scene configuration. The material is quite light, one camera and two electronic strobes and a simple procedure with two photographs taken for each site. To facilitate the measurement phase of colony sizes; the exploitation of photographs consists of four key steps: orientation, scaling, measurement of the characteristic points of coral colonies and result validation (checking measurement consistency to detect possible errors in measurement or interpretation. Since the context of the shooting can vary widely, dominant colors, contrast, etc. may often change. In order to have a stable and common reference in all photographs independently of the site, we decided to always include a quadrat in the scene which then will be used for the orientation and scaling phases. The automation of orientation and the lack of constraints to adapt the analytical technique to the features of each site offer the possibility to multiply field surveys and to measure hundreds of quadrats from several different populations in a very efficient manner. The measurement results are exported into a spreadsheet

  4. Temporal and taxonomic contrasts in coral growth at Davies Reef, central Great Barrier Reef, Australia

    Science.gov (United States)

    Anderson, Kristen D.; Cantin, Neal E.; Heron, Scott F.; Lough, Janice M.; Pratchett, Morgan S.

    2018-06-01

    Demographic processes, such as growth, can have an important influence on the population and community structure of reef-building corals. Importantly, ongoing changes in environmental conditions (e.g. ocean warming) are expected to affect coral growth, contributing to changes in the structure of coral populations and communities. This study quantified contemporary growth rates (linear extension and calcification) for the staghorn coral, Acropora muricata, at Davies Reef, central Great Barrier Reef, Australia. Growth rates were measured at three different depths (5, 10, and 15 m) over 2 yr (2012-2014) assessing both seasonal and inter-annual variability. Results of this study were compared to equivalent measurements made in 1980-1982 at the same location. To assist in understanding inter-annual variability in coral growth, we also examined annual growth bands from massive Porites providing continuous growth and records of flooding history for Davies Reef over the period 1979-2012. Linear extension rates of A. muricata were substantially (11-62%) lower in 2012-2014 compared to 1980-1982, especially at 10 and 15 m depths. These declines in growth coincide with a + 0.14 °C change in annual mean temperature. For massive Porites, however, calcification rates were highly variable among years and there was no discernible long-term change in growth despite sustained increases in temperature of 0.064 °C per decade. Apparent differences in the growth rates of Acropora between 1980-1982 and 2012-2014 may reflect inter-annual variation in coral growth (as seen for massive Porites), though it is known branching Acropora is much more sensitive to changing environmental conditions than massive corals. There are persistent issues in assessing the sensitivities of branching corals to environmental change due to limited capacity for retrospective analyses of growth, but given their disproportionate contribution to habitat complexity and reef structure, it is critical to ascertain

  5. Coral mass bleaching and reef temperatures at Navassa Island, 2006

    Science.gov (United States)

    Miller, M. W.; Piniak, G. A.; Williams, D. E.

    2011-01-01

    Bleaching and associated mortality is an extreme threat to the persistence of coral populations in the projected warming regime of the next few decades. Recent evidence indicates that thermal bleaching thresholds may be affected by water quality gradients. The unexpected encounter of a coral mass bleaching event at a remote, uninhabited Caribbean island (Navassa) during a routine reef assessment cruise in November 2006 provided the opportunity to characterize bleaching responses and thermal exposure in an oceanic area with negligible continental influence or human impact on water quality. The coral taxa most susceptible to bleaching were Agaricia spp. and Montastraea faveolata. Siderastraea siderea, Diploria spp. and Porites porites were intermediately affected, while Porites astreoides and Montastraea cavernosa were minimally affected and negligible bleaching was observed in Acropora palmata. Bleaching prevalence (colonies > 4 cm diameter) ranged from 0.16 to 0.63 among sites. Deeper sites (between 18 and 37 m) had significantly higher prevalence of bleaching than shallow sites (<10 m). This general pattern of more bleaching in deeper sites also occurred within species. Though exposure to high-temperature stress was not greater at deeper sites, water motion, which may bolster bleaching resistance, was likely less. In situ loggers indicated temperatures over 30 °C initiated at shallow sites in mid-August, at deeper sites in early September, and were persistent at all sites until mid-October. Long term (1983-2007) climatologies constructed from AVHRR SSTs suggest that the mass bleaching event observed at Navassa in 2006 corresponded with greater intensity and duration of warm temperature anomalies than occurred in 2005, for which no in situ observations (bleaching nor temperature) are available.

  6. Linking coral river runoff proxies with climate variability, hydrology and land-use in Madagascar catchments.

    Science.gov (United States)

    Maina, Joseph; de Moel, Hans; Vermaat, Jan E; Bruggemann, J Henrich; Guillaume, Mireille M M; Grove, Craig A; Madin, Joshua S; Mertz-Kraus, Regina; Zinke, Jens

    2012-10-01

    Understanding the linkages between coastal watersheds and adjacent coral reefs is expected to lead to better coral reef conservation strategies. Our study aims to examine the main predictors of environmental proxies recorded in near shore corals and therefore how linked near shore reefs are to the catchment physical processes. To achieve these, we developed models to simulate hydrology of two watersheds in Madagascar. We examined relationships between environmental proxies derived from massive Porites spp. coral cores (spectral luminescence and barium/calcium ratios), and corresponding time-series (1950-2006) data of hydrology, climate, land use and human population growth. Results suggest regional differences in the main environmental drivers of reef sedimentation: on annual time-scales, precipitation, river flow and sediment load explained the variability in coral proxies of river discharge for the northeast region, while El Niño-Southern Oscillation (ENSO) and temperature (air and sea surface) were the best predictors in the southwest region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The Paradoxical Roles of Climate Stressors on Disturbance and Recovery of Coral Reef Ecosystems

    Science.gov (United States)

    Manfrino, C.; Foster, G.; Camp, E.

    2013-05-01

    translocation of nutrients, amino acids and essential minerals to the coral reef habitats provided the necessary raw materials for rapid cellular repair. Indeed, the observed step-change in coral recovery followed an increase in Tropical Storms and Hurricanes. In this scenario, hurricanes expedited recovery by translocating the necessary materials otherwise unavailable to the presumably autotrophic corals occupying the clear waters surrounding Little Cayman. This scenario is reinforced by the observation that corals with higher littoral drift transports epiphytic detritus from adjacent seagrass beds and may lead to a greater recovery. Corals directly adjacent to areas with higher inputs of suspeniods suffered the same levels of mortality to thermal stress but showed incremental recovery in the ensuing years. Future studies of metabolic budgets will reveal the relative roles of autotrophy and heterotrophy of conspecifics in the recovery of corals. Such findings will illustrate the role of local hydrology and suspenoids as it pertains to recovery from climate- stress with global applications for coral reefs.

  8. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Science.gov (United States)

    Freeman, Lauren A

    2015-01-01

    Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  9. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Directory of Open Access Journals (Sweden)

    Lauren A Freeman

    Full Text Available Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  10. Environmental assessment of metal exposure to corals living in Castle Harbour, Bermuda

    Science.gov (United States)

    Prouty, N.G.; Goodkin, N.F.; Jones, R.; Lamborg, C.H.; Storlazzi, C.D.; Hughen, K.A.

    2013-01-01

    Environmental contamination in Castle Harbour, Bermuda, has been linked to the dissolution and leaching of contaminants from the adjacent marine landfill. This study expands the evidence for environmental impact of leachate from the landfill by quantitatively demonstrating elevated metal uptake over the last 30 years in corals growing in Castle Harbour. Coral Pb/Ca, Zn/Ca and Mn/Ca ratios and total Hg concentrations are elevated relative to an adjacent control site in John Smith's Bay. The temporal variability in the Castle Harbour coral records suggests that while the landfill has increased in size over the last 35 years, the dominant input of metals is through periodic leaching of contaminants from the municipal landfill and surrounding sediment. Elevated contaminants in the surrounding sediment suggest that resuspension is an important transport medium for transferring heavy metals to corals. Increased winds, particularly during the 1990s, were accompanied by higher coral metal composition at Castle Harbour. Coupled with wind-induced resuspension, interannual changes in sea level within the Harbour can lead to increased bioavailability of sediment-bound metals and subsequent coral metal assimilation. At John Smith's Bay, large scale convective mixing may be driving interannual metal variability in the coral record rather than impacts from land-based activities. Results from this study provide important insights into the coupling of natural variability and anthropogenic input of contaminants to the nearshore environment.

  11. Fitness consequences of habitat variability, trophic position, and energy allocation across the depth distribution of a coral-reef fish

    Science.gov (United States)

    Goldstein, E. D.; D'Alessandro, E. K.; Sponaugle, S.

    2017-09-01

    Environmental clines such as latitude and depth that limit species' distributions may be associated with gradients in habitat suitability that can affect the fitness of an organism. With the global loss of shallow-water photosynthetic coral reefs, mesophotic coral ecosystems ( 30-150 m) may be buffered from some environmental stressors, thereby serving as refuges for a range of organisms including mobile obligate reef dwellers. Yet habitat suitability may be diminished at the depth boundary of photosynthetic coral reefs. We assessed the suitability of coral-reef habitats across the majority of the depth distribution of a common demersal reef fish ( Stegastes partitus) ranging from shallow shelf (SS, restrict foraging. Fish in MP environments had a broader diet niche, higher trophic position, and higher muscle C:N ratios compared to shallower environments. High C:N ratios suggest increased tissue lipid content in fish in MP habitats that coincided with higher investment in reproduction based on gonado-somatic index. These results suggest that peripheral MP reefs are suitable habitats for demersal reef fish and may be important refuges for organisms common on declining shallow coral reefs.

  12. Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

    Science.gov (United States)

    Guest, James R.; Baird, Andrew H.; Maynard, Jeffrey A.; Muttaqin, Efin; Edwards, Alasdair J.; Campbell, Stuart J.; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Background Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Methodology/Principal Findings Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pSingapore, where only 5% and 12% of colonies died. Conclusions/Significance The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments. PMID:22428027

  13. Effects of habitat structure on the epifaunal community in Mussismilia corals: does coral morphology influence the richness and abundance of associated crustacean fauna?

    Science.gov (United States)

    Nogueira, Marcos M.; Neves, Elizabeth; Johnsson, Rodrigo

    2015-06-01

    Coral habitat structures increase abundance and richness of organisms by providing niches, easy access to resources and refuge from predators. Corals harbor a great variety of animals; the variation in coral species morphology contributes to the heterogeneity and complexity of habitat types. In this report, we studied the richness and abundance of crustaceans (Decapoda, Copepoda, Peracarida and Ostracoda) associated with three species of Mussismilia exhibiting different growth morphologies, in two different coral reefs of the Bahia state (Caramuanas and Boipeba-Moreré, Brazil). Mussismilia hispida is a massive coral; M. braziliensis also has a massive growth pattern, but forms a crevice in the basal area of the corallum; M. harttii has a meandroid pattern. PERMANOVA analysis suggests significant differences in associated fauna richness among Mussismilia species, with higher values for M. harttii, followed by M. braziliensis and later by M. hispida. The same trend was observed for density, except that the comparison of M. braziliensis and M. hispida did not show differences. Redundancy and canonical correspondence analysis indicated that almost all of the crustacean species were more associated with the M. harttii colonies that formed a group clearly separated from colonies of M. braziliensis and M. hispida. We also found that the internal volume of interpolyp space, only present in M. harttii, was the most important factor influencing richness and abundance of all analyzed orders of crustaceans.

  14. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago

    Directory of Open Access Journals (Sweden)

    Richard L. Pyle

    2016-10-01

    Full Text Available Although the existence of coral-reef habitats at depths to 165 m in tropical regions has been known for decades, the richness, diversity, and ecological importance of mesophotic coral ecosystems (MCEs has only recently become widely acknowledged. During an interdisciplinary effort spanning more than two decades, we characterized the most expansive MCEs ever recorded, with vast macroalgal communities and areas of 100% coral cover between depths of 50–90 m extending for tens of km2 in the Hawaiian Archipelago. We used a variety of sensors and techniques to establish geophysical characteristics. Biodiversity patterns were established from visual and video observations and collected specimens obtained from submersible, remotely operated vehicles and mixed-gas SCUBA and rebreather dives. Population dynamics based on age, growth and fecundity estimates of selected fish species were obtained from laser-videogrammetry, specimens, and otolith preparations. Trophic dynamics were determined using carbon and nitrogen stable isotopic analyses on more than 750 reef fishes. MCEs are associated with clear water and suitable substrate. In comparison to shallow reefs in the Hawaiian Archipelago, inhabitants of MCEs have lower total diversity, harbor new and unique species, and have higher rates of endemism in fishes. Fish species present in shallow and mesophotic depths have similar population and trophic (except benthic invertivores structures and high genetic connectivity with lower fecundity at mesophotic depths. MCEs in Hawai‘i are widespread but associated with specific geophysical characteristics. High genetic, ecological and trophic connectivity establish the potential for MCEs to serve as refugia for some species, but our results question the premise that MCEs are more resilient than shallow reefs. We found that endemism within MCEs increases with depth, and our results do not support suggestions of a global faunal break at 60 m. Our findings enhance

  15. Contrasting patterns of changes in abundance following a bleaching event between juvenile and adult scleractinian corals

    Science.gov (United States)

    Álvarez-Noriega, Mariana; Baird, Andrew H.; Bridge, Tom C. L.; Dornelas, Maria; Fontoura, Luisa; Pizarro, Oscar; Precoda, Kristin; Torres-Pulliza, Damaris; Woods, Rachael M.; Zawada, Kyle; Madin, Joshua S.

    2018-06-01

    Coral bleaching events have caused extensive mortality on reefs around the world. Juvenile corals are generally less affected by bleaching than their conspecific adults and therefore have the potential to buffer population declines and seed recovery. Here, we use juvenile and adult abundance data at 20 sites encircling Lizard Island, Great Barrier Reef, before and after the 2016 bleaching event to quantify: (1) correlates of changes in juvenile abundance following a bleaching event; (2) differences in susceptibility to extreme thermal stress between juveniles and adults. Declines in juvenile abundance were lower at sites closer to the 20-m-depth contour and higher for Acropora and Pocillopora juveniles than for other taxa. Juveniles of Acropora and Goniastrea were less susceptible to bleaching than adults, but the opposite was true for Pocillopora spp. and taxa in the family Merulinidae. Our results indicate that the potential of the juvenile life stage to act as a buffer during bleaching events is taxon-dependent.

  16. Dietary shift in juvenile coral trout ( Plectropomus maculatus) following coral reef degradation from a flood plume disturbance

    Science.gov (United States)

    Wen, Colin K. C.; Bonin, Mary C.; Harrison, Hugo B.; Williamson, David H.; Jones, Geoffrey P.

    2016-06-01

    Acute environmental disturbances impact on habitat quality and resource availability, which can reverberate through trophic levels and become apparent in species' dietary composition. In this study, we observed a distinct dietary shift of newly settled and juvenile coral trout ( Plectropomus maculatus) following severe coral reef habitat degradation after a river flood plume affected the Keppel Islands, Australia. Hard coral cover declined by ~28 % in the 2 yr following the 2010-2011 floods, as did the abundance of young coral trout. Gut contents analysis revealed that diets had shifted from largely crustacean-based to non-preferred prey fishes following the disturbances. These results suggest that newly settled and juvenile coral trout modify their diet and foraging strategy in response to coral habitat degradation. This bottom-up effect of habitat degradation on the diet of a top coral reef predator may incur a metabolic cost, with subsequent effects on growth and survival.

  17. Responses of Cryptofaunal Species Richness and Trophic Potential to Coral Reef Habitat Degradation

    Directory of Open Access Journals (Sweden)

    Derek P. Manzello

    2012-02-01

    Full Text Available Coral reefs are declining worldwide as a result of many anthropogenic disturbances. This trend is alarming because coral reefs are hotspots of marine biodiversity and considered the ‘rainforests of the sea. As in the rainforest, much of the diversity on a coral reef is cryptic, remaining hidden among the cracks and crevices of structural taxa. Although the cryptofauna make up the majority of a reef’s metazoan biodiversity, we know little about their basic ecology or how these communities respond to reef degradation. Emerging research shows that the species richness of the motile cryptofauna is higher among dead (framework vs. live coral substrates and, surprisingly, increases within successively more eroded reef framework structures, ultimately reaching a maximum in dead coral rubble. Consequently, the paradigm that abundant live coral is the apex of reef diversity needs to be clarified. This provides guarded optimism amidst alarming reports of declines in live coral cover and the impending doom of coral reefs, as motile cryptic biodiversity should persist independent of live coral cover. Granted, the maintenance of this high species richness is contingent on the presence of reef rubble, which will eventually be lost due to physical, chemical, and biological erosion if not replenished by live coral calcification and mortality. The trophic potential of a reef, as inferred from the abundance of cryptic organisms, is highest on live coral. Among dead framework substrates, however, the density of cryptofauna reaches a peak at intermediate levels of degradation. In summary, the response of the motile cryptofauna, and thus a large fraction of the reef’s biodiversity, to reef degradation is more complex and nuanced than currently thought; such that species richness may be less sensitive than overall trophic function.

  18. Coral reef fish predator maintains olfactory acuity in degraded coral habitats.

    Directory of Open Access Journals (Sweden)

    Michael Natt

    Full Text Available Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may

  19. Coral reef bleaching: ecological perspectives

    Science.gov (United States)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  20. Snapping shrimp sound production patterns on Caribbean coral reefs: relationships with celestial cycles and environmental variables

    Science.gov (United States)

    Lillis, Ashlee; Mooney, T. Aran

    2018-06-01

    The rich acoustic environment of coral reefs, including the sounds of a variety of fish and invertebrates, is a reflection of the structural complexity and biological diversity of these habitats. Emerging interest in applying passive acoustic monitoring and soundscape analysis to measure coral reef habitat characteristics and track ecological patterns is hindered by a poor understanding of the most common and abundant sound producers on reefs—the snapping shrimp. Here, we sought to address several basic biophysical drivers of reef sound by investigating acoustic activity patterns of snapping shrimp populations on two adjacent coral reefs using a detailed snap detection analysis routine to a high-resolution 2.5-month acoustic dataset from the US Virgin Islands. The reefs exhibited strong diel and lunar periodicity in snap rates and clear spatial differences in snapping levels. Snap rates peaked at dawn and dusk and were higher overall during daytime versus nighttime, a seldom-reported pattern in earlier descriptions of diel snapping shrimp acoustic activity. Small differences between the sites in snap rate rhythms were detected and illustrate how analyses of specific soundscape elements might reveal subtle between-reef variation. Snap rates were highly correlated with environmental variables, including water temperature and light, and were found to be sensitive to changes in oceanographic forcing. This study further establishes snapping shrimp as key players in the coral reef chorus and provides evidence that their acoustic output reflects a combination of environmental conditions, celestial influences, and spatial habitat variation. Effective application of passive acoustic monitoring in coral reef habitats using snap rates or snapping-influenced acoustic metrics will require a mechanistic understanding of the underlying spatial and temporal variation in snapping shrimp sound production across multiple scales.

  1. Contrasting responses in the niches of two coral reef herbivores along a gradient of habitat disturbance in the Spermonde Archipelago, Indonesia

    DEFF Research Database (Denmark)

    Plass-Johnson, Jeremiah Grahm; Bednarz, Vanessa N.; Hill, Jaclyn M.

    2018-01-01

    Habitat modification of coral reefs is becoming increasingly common due to increases in coastal urban populations. Coral reef fish are highly dependent on benthic habitat; however, information on species-specific responses to habitat change, in particular with regard to trophic strategies, remains...... scarce. This study identifies variation in the trophic niches of two herbivorous coral reef fishes with contrasting trophic strategies, using Stable Isotopes Bayesian Ellipses in R, along a spatial gradient of changing coral reef habitats. In the parrotfish Chlorurus bleekeri, a roving consumer...

  2. The effects of habitat on coral bleaching responses in Kenya.

    Science.gov (United States)

    Grimsditch, Gabriel; Mwaura, Jelvas M; Kilonzo, Joseph; Amiyo, Nassir

    2010-06-01

    This study examines the bleaching responses of scleractinian corals at four sites in Kenya (Kanamai, Vipingo, Mombasa and Nyali) representing two distinct lagoon habitats (relatively shallow and relatively deep). Bleaching incidence was monitored for the whole coral community, while zooxanthellae densities and chlorophyll levels were monitored for target species (Pocillopora damicornis, Porites lutea, and Porites cylindrica) during a non-bleaching year (2006) and a year of mild-bleaching (2007). Differences in bleaching responses between habitats were observed, with shallower sites Kanamai and Vipingo exhibiting lower bleaching incidence than deeper sites Nyali and Mombasa. These shallower lagoons display more fluctuating thermal and light environments than the deeper sites, suggesting that corals in the shallower lagoons have acclimatized and/or adapted to the fluctuating environmental conditions they endure on a daily basis and have become more resistant to bleaching stress. In deeper sites that did exhibit higher bleaching (Mombasa and Nyali), it was found that coral recovery occurred more quickly in the protected area than in the non-protected area.

  3. Effects of cold-water corals on fish diversity and density (European continental margin: Arctic, NE Atlantic and Mediterranean Sea): Data from three baited lander systems

    Science.gov (United States)

    Linley, T. D.; Lavaleye, M.; Maiorano, P.; Bergman, M.; Capezzuto, F.; Cousins, N. J.; D'Onghia, G.; Duineveld, G.; Shields, M. A.; Sion, L.; Tursi, A.; Priede, I. G.

    2017-11-01

    Autonomous photographic landers are a low-impact survey method for the assessment of mobile fauna in situations where methods such as trawling are not feasible or ethical. Three institutions collaborated through the CoralFISH project, each using differing lander systems, to assess the effects of cold-water corals on fish diversity and density. The Biogenic Reef Ichthyofauna Lander (BRIL, Oceanlab), Autonomous Lander for Biological Experiments (ALBEX, NIOZ) and the Marine Environment MOnitoring system (MEMO, CoNISMa) were deployed in four CoralFISH European study regions covering the Arctic, NE Atlantic and Mediterranean, namely Northern Norway (275-310 m depth), Belgica Mound Province (686-1025 m depth), the Bay of Biscay (623-936 m depth), and Santa Maria di Leuca (547-670 m depth). A total of 33 deployments were carried out in the different regions. Both the time of first arrival (Tarr) and the maximum observed number of fish (MaxN) were standardised between the different lander systems and compared between coral and reference stations as indicators of local fish density. Fish reached significantly higher MaxN at the coral stations than at the reference stations. Fish were also found to have significantly lower Tarr in the coral areas in data obtained from the BRIL and MEMO landers. All data indicated that fish abundance is higher within the coral areas. Fish species diversity was higher within the coral areas of Atlantic Ocean while in Northern Norway and Santa Maria di Leuca coral areas, diversity was similar at coral and reference stations but a single dominant species (Brosme brosme and Conger conger respectively) showed much higher density within the coral areas. Indicating that, while cold-water coral reefs have a positive effect on fish diversity and/or abundance, this effect varies across Europe's reefs.

  4. Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease

    KAUST Repository

    Daniels, Camille Arian

    2015-09-11

    White Plague Disease (WPD) is implicated in coral reef decline in the Caribbean and is characterized by microbial community shifts in coral mucus and tissue. Studies thus far have focused on assessing microbial communities or the identification of specific pathogens, yet few have addressed holobiont response across metaorganism compartments in coral disease. Here, we report on the first metatranscriptomic assessment of the coral host, algal symbiont, and microbial compartment in order to survey holobiont structure and function in healthy and diseased samples from Orbicella faveolata collected at reef sites off Puerto Rico. Our data indicate holobiont-wide as well as compartment-specific responses to WPD. Gene expression changes in the diseased coral host involved proteins playing a role in innate immunity, cytoskeletal integrity, cell adhesion, oxidative stress, chemical defense, and retroelements. In contrast, the algal symbiont showed comparatively few expression changes, but of large magnitude, of genes related to stress, photosynthesis, and metal transport. Concordant with the coral host response, the bacterial compartment showed increased abundance of heat shock proteins, genes related to oxidative stress, DNA repair, and potential retroelement activity. Importantly, analysis of the expressed bacterial gene functions establishes the participation of multiple bacterial families in WPD pathogenesis and also suggests a possible involvement of viruses and/or phages in structuring the bacterial assemblage. In this study, we implement an experimental approach to partition the coral holobiont and resolve compartment- and taxa-specific responses in order to understand metaorganism function in coral disease.

  5. Metatranscriptome analysis of the reef-buidling coral Orbicella faveolata indicates holobiont response to coral disease

    Directory of Open Access Journals (Sweden)

    Camille eDaniels

    2015-09-01

    Full Text Available White Plague Disease (WPD is implicated in coral reef decline in the Caribbean and is characterized by microbial community shifts in coral mucus and tissue. Studies thus far have focused on assessing microbial communities or the identification of specific pathogens, yet few have addressed holobiont response across metaorganism compartments in coral disease. Here, we report on the first metatranscriptomic assessment of the coral host, algal symbiont, and microbial compartment in order to survey holobiont structure and function in healthy and diseased samples from Orbicella faveolata collected at reef sites off Puerto Rico. Our data indicate metaorganism-wide as well as compartment-specific responses to WPD. Gene expression changes in the diseased coral host involved proteins playing a role in innate immunity, cytoskeletal integrity, cell adhesion, oxidative stress, chemical defense, and retroelements. In contrast, the algal symbiont showed comparatively few expression changes, but of large magnitude, of genes related to stress, photosynthesis, and metal transport. Concordant with the coral host response, the bacterial compartment showed increased abundance of heat shock proteins, genes related to oxidative stress, DNA repair, and potential retroelement activity. Importantly, analysis of the expressed bacterial gene functions establishes the participation of multiple bacterial families in WPD pathogenesis and also suggests a possible involvement of viruses and/or phages in structuring the bacterial assemblage. In this study, we implement an experimental approach to partition the coral holobiont and resolve compartment- and taxa-specific responses in order to understand metaorganism function in coral disease.

  6. Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease

    KAUST Repository

    Daniels, Camille Arian; Baumgarten, Sebastian; Yum, Lauren; Michell, Craig; Bayer, Till; Arif, Chatchanit; Roder, Cornelia; Weil, Ernesto; Voolstra, Christian R.

    2015-01-01

    White Plague Disease (WPD) is implicated in coral reef decline in the Caribbean and is characterized by microbial community shifts in coral mucus and tissue. Studies thus far have focused on assessing microbial communities or the identification of specific pathogens, yet few have addressed holobiont response across metaorganism compartments in coral disease. Here, we report on the first metatranscriptomic assessment of the coral host, algal symbiont, and microbial compartment in order to survey holobiont structure and function in healthy and diseased samples from Orbicella faveolata collected at reef sites off Puerto Rico. Our data indicate holobiont-wide as well as compartment-specific responses to WPD. Gene expression changes in the diseased coral host involved proteins playing a role in innate immunity, cytoskeletal integrity, cell adhesion, oxidative stress, chemical defense, and retroelements. In contrast, the algal symbiont showed comparatively few expression changes, but of large magnitude, of genes related to stress, photosynthesis, and metal transport. Concordant with the coral host response, the bacterial compartment showed increased abundance of heat shock proteins, genes related to oxidative stress, DNA repair, and potential retroelement activity. Importantly, analysis of the expressed bacterial gene functions establishes the participation of multiple bacterial families in WPD pathogenesis and also suggests a possible involvement of viruses and/or phages in structuring the bacterial assemblage. In this study, we implement an experimental approach to partition the coral holobiont and resolve compartment- and taxa-specific responses in order to understand metaorganism function in coral disease.

  7. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes

    KAUST Repository

    Grupstra, Carsten G. B.; Coma, Rafel; Ribes, Marta; Leydet, Karine Posbic; Parkinson, John Everett; McDonald, Kelly; Catllà , Marc; Voolstra, Christian R.; Hellberg, Michael E.; Coffroth, Mary Alice

    2017-01-01

    among populations of Symbiodinium psygmophilum associated with Oculina patagonica, a range-expanding coral that acquires its symbionts through horizontal transmission. We optimized five microsatellite primer pairs for S. psygmophilum and tested them

  8. 75 FR 39917 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the...

    Science.gov (United States)

    2010-07-13

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the Southern Atlantic... regulations implementing the Fishery Management Plan for Coral, Coral Reefs, and Live/Hardbottom Habitat of... Cancer Institute (http:// [[Page 39918

  9. Multiple mechanisms of transmission of the Caribbean coral disease white plague

    Science.gov (United States)

    Clemens, E.; Brandt, M. E.

    2015-12-01

    White plague is one of the most devastating coral diseases in the Caribbean, and yet important aspects of its epidemiology, including how the disease transmits, remain unknown. This study tested potential mechanisms and rates of transmission of white plague in a laboratory setting. Transmission mechanisms including the transport of water, contact with macroalgae, and predation via corallivorous worms and snails were tested on the host species Orbicella annularis. Two of the tested mechanisms were shown to transmit disease: water transport and the corallivorous snail Coralliophila abbreviata. Between these transmission mechanisms, transport of water between a diseased coral and a healthy coral resulted in disease incidence significantly more frequently in exposed healthy corals. Transmission via water transport also occurred more quickly and was associated with higher rates of tissue loss (up to 3.5 cm d-1) than with the corallivorous snail treatment. In addition, water that was in contact with diseased corals but was filtered with a 0.22-μm filter prior to being introduced to apparently healthy corals also resulted in the transmission of disease signs, but at a much lower rate than when water was not filtered. This study has provided important information on the transmission potential of Caribbean white plague disease and highlights the need for a greater understanding of how these processes operate in the natural environment.

  10. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host.

    Science.gov (United States)

    Banin, E; Israely, T; Fine, M; Loya, Y; Rosenberg, E

    2001-05-15

    Vibrio shiloi, the causative agent of bleaching the coral Oculina patagonica in the Mediterranean Sea, adheres to its coral host by a beta-D-galactopyranoside-containing receptor on the coral surface. The receptor is present in the coral mucus, since V. shiloi adhered avidly to mucus-coated ELISA plates. Adhesion was inhibited by methyl-beta-D-galactopyranoside. Removal of the mucus from O. patagonica resulted in a delay in adhesion of V. shiloi to the coral, corresponding to regeneration of the mucus. DCMU inhibited the recovery of adhesion of the bacteria to the mucus-depleted corals, indicating that active photosynthesis by the endosymbiotic zooxanthellae was necessary for the synthesis or secretion of the receptor. Further evidence of the role of the zooxanthellae in producing the receptor came from a study of adhesion of V. shiloi to different species of corals. The bacteria failed to adhere to bleached corals and white (azooxanthellate) O. patagonica cave corals, both of which lacked the algae. In addition, V. shiloi adhered to two Mediterranean corals (Madracis and Cladocora) that contained zooxanthellae and did not adhere to two azooxanthellate Mediterranean corals (Phyllangia and Polycyathus). V. shiloi demonstrated positive chemotaxis towards the mucus of O. patagonica. The data demonstrate that endosymbiotic zooxanthellae contribute to the production of coral mucus and that V. shiloi infects only mucus-containing, zooxanthellate corals.

  11. Algae as reservoirs for coral pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Sweet

    Full Text Available Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS in the Indo-Pacific and Yellow Band Disease (YBD in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively. Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is

  12. Variation in the transcriptional response of threatened coral larvae to elevated temperatures.

    Science.gov (United States)

    Polato, Nicholas R; Altman, Naomi S; Baums, Iliana B

    2013-03-01

    Coral populations have declined worldwide largely due to increased sea surface temperatures. Recovery of coral populations depends in part upon larval recruitment. Many corals reproduce during the warmest time of year when further increases in temperature can lead to low fertilization rates of eggs and high larval mortality. Microarray experiments were designed to capture and assess variability in the thermal stress responses of Acropora palmata larvae from Puerto Rico. Transcription profiles showed a striking acceleration of normal developmental gene expression patterns with increased temperature. The transcriptional response to heat suggested rapid depletion of larval energy stores via peroxisomal lipid oxidation and included key enzymes that indicated the activation of the glyoxylate cycle. High temperature also resulted in expression differences in key developmental signalling genes including the conserved WNT pathway that is critical for pattern formation and tissue differentiation in developing embryos. Expression of these and other important developmental and thermal stress genes such as ferritin, heat shock proteins, cytoskeletal components, cell adhesion and autophagy proteins also varied among larvae derived from different parent colonies. Disruption of normal developmental and metabolic processes will have negative impacts on larval survival and dispersal as temperatures rise. However, it appears that variation in larval response to high temperature remains despite the dramatic population declines. Further research is needed to determine whether this variation is heritable or attributable to maternal effects. © 2013 Blackwell Publishing Ltd.

  13. Patterns of species range evolution in Indo-Pacific reef assemblages reveal the Coral Triangle as a net source of transoceanic diversity.

    Science.gov (United States)

    Evans, Sean M; McKenna, Caroline; Simpson, Stephen D; Tournois, Jennifer; Genner, Martin J

    2016-06-01

    The Coral Triangle in the Indo-Pacific is a region renowned for exceptional marine biodiversity. The area could have acted as a 'centre of origin' where speciation has been prolific or a 'centre of survival' by providing refuge during major environmental shifts such as sea-level changes. The region could also have acted as a 'centre of accumulation' for species with origins outside of the Coral Triangle, owing to it being at a central position between the Indian and Pacific oceans. Here, we investigated support for these hypotheses using population-level DNA sequence-based reconstructions of the range evolution of 45 species (314 populations) of Indo-Pacific reef-associated organisms. Our results show that populations undergoing the most ancient establishment were significantly more likely to be closer to the centre of the Coral Triangle than to peripheral locations. The data are consistent with the Coral Triangle being a net source of coral-reef biodiversity for the Indo-Pacific region, suggesting that the region has acted primarily as a centre of survival, a centre of origin or both. These results provide evidence of how a key location can influence the large-scale distributions of biodiversity over evolutionary timescales. © 2016 The Authors.

  14. Hawaiʻi Coral Disease database (HICORDIS: species-specific coral health data from across the Hawaiian archipelago

    Directory of Open Access Journals (Sweden)

    Jamie M. Caldwell

    2016-09-01

    Full Text Available The Hawaiʻi Coral Disease database (HICORDIS houses data on colony-level coral health condition observed across the Hawaiian archipelago, providing information to conduct future analyses on coral reef health in an era of changing environmental conditions. Colonies were identified to the lowest taxonomic classification possible (species or genera, measured and assessed for visual signs of health condition. Data were recorded for 286,071 coral colonies surveyed on 1819 transects at 660 sites between 2005 and 2015. The database contains observations for 60 species from 22 genera with 21 different health conditions. The goals of the HICORDIS database are to: i provide open access, quality controlled and validated coral health data assembled from disparate surveys conducted across Hawaiʻi; ii facilitate appropriate crediting of data; and iii encourage future analyses of coral reef health. In this article, we describe and provide data from the HICORDIS database. The data presented in this paper were used in the research article “Satellite SST-based Coral Disease Outbreak Predictions for the Hawaiian Archipelago” (Caldwell et al., 2016 [1]. Keywords: Marine biology, Coral, Reefs, Disease, Hawaii

  15. Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology

    KAUST Repository

    Ziegler, Maren

    2015-02-06

    Mesophotic coral ecosystems receive increasing attention owing to their potential as deep coral refuges in times of global environmental change. Here, the mechanisms of coral holobiont photoacclimatization over a 60 m depth gradient in the central Red Sea were examined for the four coral genera Porites, Leptoseris, Pachyseris, and Podabacia. General acclimatization strategies were common to all host-symbiont combinations, e.g., Symbiodinium cell densities and photoprotective (PP) to light-harvesting pigment ratios both significantly decreased with water depth. Porites harbored Symbiodinium type C15 over the whole 60 m depth range, while Pachyseris and Podabacia had limited vertical distributions and hosted mainly Symbiodinium type C1. Symbiodinium type C15 had generally higher xanthophyll de-epoxidation rates and lower maximum quantum yields than C1, and also exhibited a strong photoacclimatory signal over depth that relates to the large distribution range of Porites. Interestingly, the coral host had an effect on Symbiodinium pigment composition. When comparing Symbiodinium type C1 in Podabacia and Pachyseris, the ß-carotene chl a−1, the peridinin chl a−1, and diadinoxanthin chl a−1 ratios were significantly different between host species. Our data support a view that depth acclimatization of corals in the mesophotics is facilitated by Symbiodinium physiology, which in turn is host-specific.

  16. Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology

    KAUST Repository

    Ziegler, Maren; Roder, Cornelia; Bü chel, Claudia; Voolstra, Christian R.

    2015-01-01

    Mesophotic coral ecosystems receive increasing attention owing to their potential as deep coral refuges in times of global environmental change. Here, the mechanisms of coral holobiont photoacclimatization over a 60 m depth gradient in the central Red Sea were examined for the four coral genera Porites, Leptoseris, Pachyseris, and Podabacia. General acclimatization strategies were common to all host-symbiont combinations, e.g., Symbiodinium cell densities and photoprotective (PP) to light-harvesting pigment ratios both significantly decreased with water depth. Porites harbored Symbiodinium type C15 over the whole 60 m depth range, while Pachyseris and Podabacia had limited vertical distributions and hosted mainly Symbiodinium type C1. Symbiodinium type C15 had generally higher xanthophyll de-epoxidation rates and lower maximum quantum yields than C1, and also exhibited a strong photoacclimatory signal over depth that relates to the large distribution range of Porites. Interestingly, the coral host had an effect on Symbiodinium pigment composition. When comparing Symbiodinium type C1 in Podabacia and Pachyseris, the ß-carotene chl a−1, the peridinin chl a−1, and diadinoxanthin chl a−1 ratios were significantly different between host species. Our data support a view that depth acclimatization of corals in the mesophotics is facilitated by Symbiodinium physiology, which in turn is host-specific.

  17. Otolith growth of Springer's demoiselle, Chrysiptera springeri (Pomacentridae, Allen & Lubbock), on a protected and non-protected coral reef

    DEFF Research Database (Denmark)

    Retzel, A.; Hansen, A.D.; Grønkjær, P.

    2007-01-01

    The structural complexity of coral reefs is important for their function as shelter and feeding habitats for coral reef fishes, but physical disturbance by human activities often reduce complexity of the reefs by selectively destroying fragile and more complex coral species. The damselfish Springer......'s demoiselle Chrysiptera springeri primarily utilize complex coral heads for shelter and are hence vulnerable to human disturbance. In order to evaluate the potential effect of habitat degradation on juvenile fish growth, coral reef cover, fish age at settling and otolith growth, juvenile Springer's demoiselle...... was investigated on a protected and non-protected coral reef in Darvel Bay, Borneo. The protected reef had higher coverage of complex branching corals and exhibited a more complex 3-dimensional structure than the non-protected reef. Springer's demoiselle settled at the same age on non-protected and protected reefs...

  18. Metabolic rates and tissue composition of the coral Pocillopora verrucosa over 12 latitudes in the Red Sea characterized by strong temperature and nutrient gradient, supplement to: Sawall, Yvonne; Al-Sofyani, A; Hohn, S; Banguera-Hinestroza, E; Voolstra, Christian R; Wahl, Martin (2015): Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Scientific Reports, 5, 8940

    KAUST Repository

    Sawall, Yvonne

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals

  19. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-01-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  20. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-02-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  1. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  2. Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean.

    Science.gov (United States)

    Davies, S W; Treml, E A; Kenkel, C D; Matz, M V

    2015-01-01

    Understanding how genetic diversity is maintained across patchy marine environments remains a fundamental problem in marine biology. The Coral Triangle, located in the Indo-West Pacific, is the centre of marine biodiversity and has been proposed as an important source of genetic diversity for remote Pacific reefs. Several studies highlight Micronesia, a scattering of hundreds of small islands situated within the North Equatorial Counter Current, as a potentially important migration corridor. To test this hypothesis, we characterized the population genetic structure of two ecologically important congeneric species of reef-building corals across greater Micronesia, from Palau to the Marshall Islands. Genetic divergences between islands followed an isolation-by-distance pattern, with Acropora hyacinthus exhibiting greater genetic divergences than A. digitifera, suggesting different migration capabilities or different effective population sizes for these closely related species. We inferred dispersal distance using a biophysical larval transport model, which explained an additional 15-21% of the observed genetic variation compared to between-island geographical distance alone. For both species, genetic divergence accumulates and genetic diversity diminishes with distance from the Coral Triangle, supporting the hypothesis that Micronesian islands act as important stepping stones connecting the central Pacific with the species-rich Coral Triangle. However, for A. hyacinthus, the species with lower genetic connectivity, immigration from the subequatorial Pacific begins to play a larger role in shaping diversity than input from the Coral Triangle. This work highlights the enormous dispersal potential of broadcast-spawning corals and identifies the biological and physical drivers that influence coral genetic diversity on a regional scale. © 2014 John Wiley & Sons Ltd.

  3. Phylogenetic diversity of actinobacteria associated with soft coral Alcyonium gracllimum and stony coral Tubastraea coccinea in the East China Sea.

    Science.gov (United States)

    Yang, Shan; Sun, Wei; Tang, Cen; Jin, Liling; Zhang, Fengli; Li, Zhiyong

    2013-07-01

    Actinobacteria are widely distributed in the marine environment. To date, few studies have been performed to explore the coral-associated Actinobacteria, and little is known about the diversity of coral-associated Actinobacteria. In this study, the actinobacterial diversity associated with one soft coral Alcyonium gracllimum and one stony coral Tubastraea coccinea collected from the East China Sea was investigated using both culture-independent and culture-dependent approaches. A total of 19 actinobacterial genera were detected in these two corals, among which nine genera (Corynebacterium, Dietzia, Gordonia, Kocuria, Microbacterium, Micrococcus, Mycobacterium, Streptomyces, and Candidatus Microthrix) were common, three genera (Cellulomonas, Dermatophilus, and Janibacter) were unique to the soft coral, and seven genera (Brevibacterium, Dermacoccus, Leucobacter, Micromonospora, Nocardioides, Rhodococcus, and Serinicoccus) were unique to the stony coral. This finding suggested that highly diverse Actinobacteria were associated with different types of corals. In particular, five actinobacterial genera (Cellulomonas, Dermacoccus, Gordonia, Serinicoccus, and Candidatus Microthrix) were recovered from corals for the first time, extending the known diversity of coral-associated Actinobacteria. This study shows that soft and stony corals host diverse Actinobacteria and can serve as a new source of marine actinomycetes.

  4. Bleaching Susceptibility and Recovery of Colombian Caribbean Corals in Response to Water Current Exposure and Seasonal Upwelling

    OpenAIRE

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an u...

  5. Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea.

    Science.gov (United States)

    Tkachenko, Konstantin S; Soong, Keryea

    2017-06-01

    Dongsha Atoll (also known as the Pratas Islands), the northernmost atoll in the South China Sea, experiences two contrasting physical phenomena: repetitive anomalies of the sea surface temperature exceeding the coral bleaching threshold and regular effects of the world's strongest internal waves resulting in the rhythmic upwelling of cold deep waters at the outer reef slopes of the atoll. This unique combination may result in significant differences in coral species composition and structure between the lagoon and forereef. Surveys conducted in August-September 2016 at 12 study sites in the 2-15 m depth range at Dongsha Atoll revealed a clear spatial separation between 'thermally-susceptible' stony coral genera, including Acropora, Pocillopora and Montipora, which mainly inhabited the forereef, and 'thermally-resistant' genera, including massive Porites, foliaceous Echinopora, Pavona and Turbinaria, which mainly resided in the lagoon. The mean coral cover and species richness on the forereef were respectively 1.8 and 1.4 times higher than those in the lagoon (61.3% and 98 species on the forereef vs. 34.2% and 69 species in the lagoon). Coral mortality rates, expressed as the ratio of dead to live stony corals, showed the same pattern (0.4 in the lagoon vs. 0.009 on the forereef). Furthermore, in a laboratory experiment, 'thermally-susceptible' taxa from the lagoon, (e.g. Pocillopora verrucosa and P. damicornis), exhibited higher resistance to bleaching than did their counterparts from the forereef. The present findings indicate that Dongsha Atoll is a potential thermal refuge for reef-building corals in the northern South China Sea and reveal the development of resilience and resistance to bleaching in coral communities of the lagoon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Direct and indirect effects of a new disease of alcyonacean soft corals

    Science.gov (United States)

    Slattery, M.; Renegar, D. A.; Gochfeld, D. J.

    2013-09-01

    Alcyonacean soft corals form major components of the biomass and biodiversity on many shallow Indo-Pacific reefs. In spite of the observed increase in marine diseases worldwide, disease has rarely been reported from this taxonomic group. Here, we describe a chronic tissue loss disease affecting soft corals of the genus Sinularia on reefs in Guam. The disease presents as a diffuse wrinkling of the otherwise smooth fingers, followed by tissue sloughing, necrosis, and disintegration. Until a cause has been confirmed, we propose the name Sinularia Tissue Loss Disease. This disease was first observed at low prevalence (Disease prevalence is now significantly greater in the hybrid (11-12 %) than in either parent species (2-3 %). Histological examination of healthy and affected tissues of hybrid soft corals demonstrates a loss of structural integrity, increased densities of amoebocytes and inclusion of unidentified foreign eukaryotic cells that resemble oocysts, in the diseased tissues. The presence of disease is associated with reduced concentrations of cellular protein levels, although lipids and carbohydrates were unaffected. Results from a common garden transplant experiment indicate that disease also has an indirect effect on hybrid soft corals by increasing rates of butterflyfish predation over the levels found on healthy hybrids or on healthy and diseased parent species. Our results indicate that interactions between the parent and hybrid soft coral populations are more dynamic than previously reported. Loss of hybrid soft corals on already degraded back-reefs of Guam could have significant repercussions for these reef communities.

  7. The Biology and Economics of Coral Growth

    NARCIS (Netherlands)

    Osinga, R.; Schutter, M.; Griffioen, B.; Wijffels, R.H.; Verreth, J.A.J.; Shafit, S.; Henard, S.; Taruffi, M.; Gili, C.; Lavorano, S.

    2011-01-01

    To protect natural coral reefs, it is of utmost importance to understand how the growth of the main reef-building organisms-the zooxanthellate scleractinian corals-is controlled. Understanding coral growth is also relevant for coral aquaculture, which is a rapidly developing business. This review

  8. Phage and Nucleocytoplasmic Large Viral Sequences Dominate Coral Viromes from the Arabian Gulf.

    Science.gov (United States)

    Mahmoud, Huda; Jose, Liny

    2017-01-01

    Corals that naturally thrive under extreme conditions are gaining increasing attention due to their importance as living models to understand the impact of global warming on world corals. Here, we present the first metagenomic study of viral communities in corals thriving in a thermally variable water body in which the temperature fluctuates between 11 and 39°C in different seasons. The viral assemblages of two of the most abundant massive ( Porites harrisoni ) and branching ( Acropora downingi ) corals in offshore and inshore reef systems in the northern Arabian Gulf were investigated. Samples were collected from five reef systems during summer, autumn and winter of 2011/2012. The two coral viromes contain 12 viral families, including 10 dsDNA viral families [Siphoviridae, Podoviridae, Myoviridae, Phycodnaviridae, Baculoviridae, Herpesviridae, Adenoviridae, Alloherpesviridae, Mimiviridae and one unclassified family], one-ssDNA viral family (Microviridae) and one RNA viral family (Retroviridae). Overall, sequences significantly similar to Podoviridae were the most abundant in the P. harrisoni and A. downingi viromes. Various morphological types of virus-like particles (VLPs) were confirmed in the healthy coral tissue by transmission electron microscopy, including large tailless VLPs and electron-dense core VLPs. Tailed bacteriophages were isolated from coral tissue using a plaque assay. Higher functional gene diversity was recorded in A. downingi than in P. harrisoni , and comparative metagenomics revealed that the Gulf viral assemblages are functionally distinct from Pacific Ocean coral viral communities.

  9. Phage and Nucleocytoplasmic Large Viral Sequences Dominate Coral Viromes from the Arabian Gulf

    Directory of Open Access Journals (Sweden)

    Huda Mahmoud

    2017-10-01

    Full Text Available Corals that naturally thrive under extreme conditions are gaining increasing attention due to their importance as living models to understand the impact of global warming on world corals. Here, we present the first metagenomic study of viral communities in corals thriving in a thermally variable water body in which the temperature fluctuates between 11 and 39°C in different seasons. The viral assemblages of two of the most abundant massive (Porites harrisoni and branching (Acropora downingi corals in offshore and inshore reef systems in the northern Arabian Gulf were investigated. Samples were collected from five reef systems during summer, autumn and winter of 2011/2012. The two coral viromes contain 12 viral families, including 10 dsDNA viral families [Siphoviridae, Podoviridae, Myoviridae, Phycodnaviridae, Baculoviridae, Herpesviridae, Adenoviridae, Alloherpesviridae, Mimiviridae and one unclassified family], one-ssDNA viral family (Microviridae and one RNA viral family (Retroviridae. Overall, sequences significantly similar to Podoviridae were the most abundant in the P. harrisoni and A. downingi viromes. Various morphological types of virus-like particles (VLPs were confirmed in the healthy coral tissue by transmission electron microscopy, including large tailless VLPs and electron-dense core VLPs. Tailed bacteriophages were isolated from coral tissue using a plaque assay. Higher functional gene diversity was recorded in A. downingi than in P. harrisoni, and comparative metagenomics revealed that the Gulf viral assemblages are functionally distinct from Pacific Ocean coral viral communities.

  10. Genetic connectivity of the broadcast spawning reef coral Platygyra sinensis on impacted reefs, and the description of new microsatellite markers

    Science.gov (United States)

    Tay, Y. C.; Noreen, A. M. E.; Suharsono; Chou, L. M.; Todd, P. A.

    2015-03-01

    As tropical coral reef habitats continue to be lost or degraded, understanding the genetic diversity and connectivity among populations is essential for making informed management decisions. This is particularly important in rapidly developing, land-scarce nations (such as Singapore) that require targeted conservation efforts. Sixty percentage of Singapore's coral cover has been lost over the past five decades, and with further coastal reclamation underway, it is imperative to understand the effects of development on coral connectivity. In this study, we used seven microsatellite markers, of which six are newly described here, to investigate the genetic diversity and connectivity of the massive hard coral Platygyra sinensis at nine sites in Singapore and three in the nearby Indonesian island of Bintan. Our results show that P. sinensis currently retains large effective population sizes, high genetic diversity, as well as high connectivity among sites within each locality, which suggest that these populations have good potential for continued survival provided that there are no island-wide disturbances. However, the Singapore Strait appears to be a mild barrier to gene flow, which may lead to an increased reliance on self-seeding at either location. We suggest some directions for their management based on these potential population boundaries, which can help pave the path for marine conservation planning in Singapore.

  11. Hypoxia tolerance in coral-reef triggerfishes (Balistidae)

    Science.gov (United States)

    Wong, Corrie C.; Drazen, Jeffrey C.; Callan, Chatham K.; Korsmeyer, Keith E.

    2018-03-01

    Despite high rates of photosynthetic oxygen production during the day, the warm waters of coral reefs are susceptible to hypoxia at night due to elevated respiration rates at higher temperatures that also reduce the solubility of oxygen. Hypoxia may be a challenge for coral-reef fish that hide in the reef to avoid predators at night. Triggerfishes (Balistidae) are found in a variety of reef habitats, but they also are known to find refuge in reef crevices and holes at night, which may expose them to hypoxic conditions. The critical oxygen tension ( P crit) was determined as the point below which oxygen uptake could not be maintained to support standard metabolic rate (SMR) for five species of triggerfish. The triggerfishes exhibited similar levels of hypoxia tolerance as other coral-reef and coastal marine fishes that encounter low oxygen levels in their environment. Two species, Rhinecanthus rectangulus and R. aculeatus, had the lowest P crit ( 3.0 kPa O2), comparable to the most hypoxia-tolerant obligate coral-dwelling gobies, while Odonus niger and Sufflamen bursa were moderately tolerant to hypoxia ( P crit 4.5 kPa), and Xanthichthys auromarginatus was intermediate ( P crit 3.7 kPa). These differences in P crit were not due to differences in oxygen demand, as all the species had a similar SMR once mass differences were taken into account. The results suggest that triggerfish species are adapted for different levels of hypoxia exposure during nocturnal sheltering within the reef.

  12. New Insights into the Carbon Isotope Variations in Coral Skeletons (Invited)

    Science.gov (United States)

    Swart, P. K.

    2010-12-01

    The origin of the carbon isotopic composition of coral skeletons has been a subject of speculation and controversy since the first stable C and O isotopic measurements were made on corals in the 1960s and the first models of fractionation were proposed by Weber and coworkers. Early models focused on the interactions between the zooxanthellae and the coral organism and the relationship with insolation. Models were proposed that linked higher levels of photosynthesis to both 13C enriched and 13C depleted skeletal material. While the model which showed elevated 13C values related to enhanced photosynthesis generally has found favor and fits the majority of the data from experimental and field studies, more recent work has also shown the importance of the natural variability of the δ13C of the dissolved inorganic carbon on interannual and longer time scales. This variability can overwhelm photosynthetic induced variability. For example, changes over the time period of 100s of years, caused by the addition of fossil fuel CO2 to the atmosphere, has resulted in a general decline in the δ13C of coral skeletons since ~1800. These changes are even larger in instances in which local variations in δ13C are related to land use changes and the openness of the environment. Recently there has been concern regarding the decrease in the pH of the oceans related to increases in oceanic pCO2. This also has potential to changes the δ13C of the coral skeleton. Finally there are seasonal variations in the types of organic compounds being oxidized by the coral. This may be related to the types of materials being translocated between the zooxanthellae and the coral. All these factors make changes in the δ13C of coral skeletons much more than a reflection of the influence of insolation.

  13. NOAA's Coral Reef Conservation Program: 2016 projects to address coral reef conservation issues

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2016 the following projects will take place to address aspects of coral reef conservation: Enhancing Management of Pacific ESA-listed Corals with Improved Utility...

  14. Global warming and coral reefs. Chikyu ondanka to sangosho

    Energy Technology Data Exchange (ETDEWEB)

    Kayane, H [Geological Survey of Japan, Tokyo (Japan)

    1991-09-01

    A summary is described with respect to the relation of the global warming with coral reefs on the environmental estimation based on the sea level rise, and the development of counter-technologies utilizing the CO{sub 2} fixing capability of coral reefs. if no measures are taken to reduce discharge of greenhouse effective gases, the air temperature will rise by 1{degree}C by the year 2025, and 3{degree}C by 2100. The thermal expansion of sea water and partial melting of land ice caused from the said temperature rise will cause the annual sea level rising speed to climb to 6 mm in the next century. It is estimated that the sea level will be elevated higher by 25 cm by the year 2025, 65 cm by 2100, and the maximum of 1 m than the present level. The upward growth rate of reef ridges is between 1m and 4m in 1000 years, and the growth of reef rides as the frameworks of coral reefs and lime alga ridges can not catch up the sea level rise of 6 mm/year. This may cause a possibility of sea water erosion or inundation. As a possible contermeasure, an expectation is placed on structuring coral reef eco-factories which may be possible as a result of elucidating the CO{sub 2} fixing mechanism in coral reefs and utilizing the capability to its maximum. 23 refs., 7 figs., 1 tab.

  15. Temporal Sampling of White Band Disease Infected Corals Reveals Complex and Dynamic Bacterial Communities

    Science.gov (United States)

    Gignoux-Wolfsohn, S.; Vollmer, S. V.; Aronson, F. M.

    2016-02-01

    White band disease (WBD) is a coral disease that is currently decimating populations of the endangered staghorn coral, Acropora cervicornis and elkhorn coral, A. palmata across the Caribbean. Since it was first reported in 1979, WBD has killed 95% of these critical reef-building Caribbean corals. WBD is infectious; it can be transmitted through the water column or by a corallivorous snail. While previous research shows that WBD is likely caused by bacteria, identification of a specific pathogen or pathogens has remained elusive. Much of the difficulty of understanding the etiology of the disease comes from a lack of information about how existing bacterial communities respond to disease and separating initial from secondary colonizers. In order to address this lack of information, we performed a fully-crossed tank infection experiment. We exposed healthy corals from two different sites to disease and healthy (control) homogenates from both sites, replicating genotype across tanks. We sampled every coral at three time points: before inoculation with the homogenate, after inoculation, and when the coral showed signs of disease. We then performed 16S rRNA gene sequencing on the Illumina HiSeq 2000. We saw significant differences between time points and disease state. Interestingly, at the first time point (time one) we observed differences between genotypes: every fragment from some genotypes was dominated by Endozoicomonas, while other genotypes were not dominated by one family. At time two we saw an increase in abundance of Alteromonadaceae and Flavobacteriaceae in all corals, and a larger increase in disease-exposed corals. At time three, we saw another increase in Flavobacteriaceae abundance in diseased corals, as well as an introduction of Francisella to diseased corals. While Flavobacteriaceae and Francisella were proposed as potential pathogens, their increase at time three suggests they may be secondary colonizers or opportunists. In genotypes that were

  16. Coral calcification and ocean acidification

    Science.gov (United States)

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    Over 60 years ago, the discovery that light increased calcification in the coral plant-animal symbiosis triggered interest in explaining the phenomenon and understanding the mechanisms involved. Major findings along the way include the observation that carbon fixed by photosynthesis in the zooxanthellae is translocated to animal cells throughout the colony and that corals can therefore live as autotrophs in many situations. Recent research has focused on explaining the observed reduction in calcification rate with increasing ocean acidification (OA). Experiments have shown a direct correlation between declining ocean pH, declining aragonite saturation state (Ωarag), declining [CO32_] and coral calcification. Nearly all previous reports on OA identify Ωarag or its surrogate [CO32] as the factor driving coral calcification. However, the alternate “Proton Flux Hypothesis” stated that coral calcification is controlled by diffusion limitation of net H+ transport through the boundary layer in relation to availability of dissolved inorganic carbon (DIC). The “Two Compartment Proton Flux Model” expanded this explanation and synthesized diverse observations into a universal model that explains many paradoxes of coral metabolism, morphology and plasticity of growth form in addition to observed coral skeletal growth response to OA. It is now clear that irradiance is the main driver of net photosynthesis (Pnet), which in turn drives net calcification (Gnet), and alters pH in the bulk water surrounding the coral. Pnet controls [CO32] and thus Ωarag of the bulk water over the diel cycle. Changes in Ωarag and pH lag behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet, rather than concentration-based parameters (e.g., Ωarag, [CO3 2], pH and [DIC]:[H+] ratio) is the primary driver of Gnet. Daytime coral metabolism rapidly removes DIC from the bulk seawater. Photosynthesis increases the bulk seawater pH while providing the energy that drives

  17. DIVERSITY OF REEF FISH FUNGSIONAL GROUPS IN TERMS OF CORAL REEF RESILIENCES

    Directory of Open Access Journals (Sweden)

    Isa Nagib edrus

    2017-01-01

    Full Text Available Infrastructure development in the particular sites of  Seribu Islands as well as those in main land of Jakarta City increased with coastal population this phenomenon is likely to increase the effects to the adjacent coral waters of Seribu Islands.  Chemical pollutants, sedimentation, and domestic wastes are the common impact and threatening, the survival of coral reef ecosystem. Coral reef resiliences naturaly remained on their processes under many influences of supporting factors. One of the major factor is the role of reef fish functional groups on controling algae growth to recolonize coral juveniles. The  aim of this study to obtain data of a herbivory and other fish functional groups of reef fishes in the Pari Islands that are resilience indicators, or that may indicate the effectiveness of management actions. A conventional scientific approach on fish diversity and abundance data gathering was conducted by the underwater visual cencus. Diversity values of the reef fish functional groups, such as the abundance of individual fish including species, were collected and tabulated by classes and weighted as a baseline to understand the resilience of coral reed based on Obura and Grimsditch (2009 techniques. The results succesfully identified several fish functional groups such as harbivores (21 species, carnivores (13 species and fish indicator (5 species occurred in the area. Regarding the aspects of fish density and its diversity, especially herbivorous fish functional group, were presumably in the state of rarely available to support the coral reef resiliences. Resilience indices ranged from 1 (low level to 3 (moderate level and averages of the quality levels ranged from 227 to 674. These levels were inadequate to support coral reef recolonization.

  18. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids.

    Science.gov (United States)

    Papina, M; Meziane, T; van Woesik, R

    2003-07-01

    We compared the fatty acid composition of the host-coral Montipora digitata with the fatty acid composition in the coral's endosymbiotic dinoflagellates (zooxanthellae). Fatty acids as methyl esters were determined using gas chromatography (GC) and verified by GC-mass spectrometry. We found the main difference between the fatty acids in the host and their symbionts were that zooxanthellae supported higher proportions of polyunsaturated fatty acids. The presence of fatty acids specific to dinoflagellates (i.e. 18:4omega3, 22:5omega3 and 22:6omega3) in the host tissue suggests that zooxanthellae provide the coral host not only with saturated fatty acids, but also with diverse polyunsaturated fatty acids.

  19. Fungi and their role in corals and coral reef ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Ravindran, J.

    fungal hyphae have on corals, their mechanism of penetration and the role their enzymes play in this process. 3.2. Fungi as pathogens in reef ecosystems Besides natural disasters and climate warming, diseases have contributed to coral decline... defence mechanisms against predation, biofouling, diseases, environmental perturbations and other stressors. These chemicals are either synthesized by the organisms themselves or their endobiontic microorganisms. If these valuable compounds...

  20. Transcriptomic variation in a coral reveals pathways of clonal organisation

    DEFF Research Database (Denmark)

    K Bay, Line; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    A microarray study was undertaken to examine the potential for clonal gene expression variation in a branching reef building coral, Acropora millepora. The role of small-scale gradients in light and water flow was examined by comparing gene expression levels between branch elevation (tip and base......) and position (centre and edge) of replicate coral colonies (n=3). Analyses of variance revealed that almost 60% of variation in gene expression was present between colonies and 34 genes were considered differentially expressed between colonies (minimum P=6.5 x 10(-4)). These genes are associated with energy...... of corymbose-like branching coral colonies such as A. millepora. Four genes were differentially expressed between the tip and base of branches (P=3.239 x 10(-4)) and were associated with lysosome lipase activity and fluorescence, suggesting that branch tips may encounter higher pathogen loads or levels...