WorldWideScience

Sample records for higher charge density

  1. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  2. Contributions of charge-density research to medicinal chemistry

    Directory of Open Access Journals (Sweden)

    Birger Dittrich

    2014-11-01

    Full Text Available This article reviews efforts in accurate experimental charge-density studies with relevance to medicinal chemistry. Initially, classical charge-density studies that measure electron density distribution via least-squares refinement of aspherical-atom population parameters are summarized. Next, interaction density is discussed as an idealized situation resembling drug–receptor interactions. Scattering-factor databases play an increasing role in charge-density research, and they can be applied both to small-molecule and macromolecular structures in refinement and analysis; software development facilitates their use. Therefore combining both of these complementary branches of X-ray crystallography is recommended, and examples are given where such a combination already proved useful. On the side of the experiment, new pixel detectors are allowing rapid measurements, thereby enabling both high-throughput small-molecule studies and macromolecular structure determination to higher resolutions. Currently, the most ambitious studies compute intermolecular interaction energies of drug–receptor complexes, and it is recommended that future studies benefit from recent method developments. Selected new developments in theoretical charge-density studies are discussed with emphasis on its symbiotic relation to crystallography.

  3. Charge density waves in solids

    CERN Document Server

    Gor'kov, LP

    2012-01-01

    The latest addition to this series covers a field which is commonly referred to as charge density wave dynamics.The most thoroughly investigated materials are inorganic linear chain compounds with highly anisotropic electronic properties. The volume opens with an examination of their structural properties and the essential features which allow charge density waves to develop.The behaviour of the charge density waves, where interesting phenomena are observed, is treated both from a theoretical and an experimental standpoint. The role of impurities in statics and dynamics is considered and an

  4. Do plasma proteins distinguish between liposomes of varying charge density?

    KAUST Repository

    Capriotti, Anna Laura

    2012-03-01

    Cationic liposomes (CLs) are one of the most employed nonviral nanovector systems in gene therapy. However, their transfection efficiency is strongly affected by interactions with plasma components, that lead to the formation of a "protein corona" onto CL surface. The interactions between nanoparticles entering the body and biomolecules have an essential role for their biodistribution. Because the knowledge of proteins adsorbed onto vector surface could be useful in the screening of new, more efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry, and quantified with label-free spectral counting strategy. Fibrinogen displayed higher association with CLs with high membrane charge density, while apolipoproteins and C4b-binding protein with CLs with low membrane charge density. These results are discussed in terms of the different lipid compositions of CLs and may have a deep biological impact for in vivo applications. Surface charge of nanoparticles is emerging as a relevant factor determining the corona composition after interaction with plasma proteins. Remarkably, it is also shown that the charge of the protein corona formed around CLs is strongly related to their membrane charge density. © 2012 Elsevier B.V.

  5. Charge-density study of crystalline beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R F [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1977-01-01

    The X-ray structure factors for crystalline beryllium measured by Brown (Phil. Mag. (1972), 26, 1377) have been analyzed with multipole deformation functions for charge-density information. Single exponential radial functions were used for the valence charge density. A valence monopole plus the three harmonics, P/sup 3//sub 5/(cos theta) sin 3phi, P/sub 6/(cos theta) and P/sup 3//sub 7/(cos theta) sin 3phi, provide a least-squares fit to the data with Rsub(w)=0.0081. The superposition of these density functions describes a bonding charge density between Be atoms along the c axis through the tetrahedral vacancy. The results reported here are in qualitative agreement with a recent pseudo-potential calculation of metallic beryllium. The final residuals in the analysis are largest at high sin theta/lambda values. This suggests that core charge deformation is present and/or anharmonic motion of the nuclei is appreciable.

  6. Transition density of charge-exchange processes

    International Nuclear Information System (INIS)

    Lovas, R.G.

    1983-01-01

    The transition density between parent and analogue states is studied with special reference to its role in charge-exchange nuclear reactions. The structure of the target nucleus is described in a perturbative approach, in which the Coulomb and asymmetry potentials mix the eigenstates of a charge-independent single-particle Hamiltonian. In this model formulae are derived for the transition density, the Coulomb displacement energy and the neutron-proton density difference, and their relationship is used to estimate the transition density. This estimate shows that: the largest contribution comes from the density of the excess neutrons; the weight of the Coulomb-mixing effect is small up to excess neutron number 10, and grows rapidly beyond; the weight of the core polarization term induced by the excess neutrons is modest and is the same for all nuclei. It is indicated that the Coulomb effect may explain the departure from the Lane model of nucleon charge-exchange scattering found for heavy nuclei, whereas the core polarization may account for the observed anomalous dependence of the deg 0 pion charge-exchange cross section on the number of excess neutrons. (author)

  7. Charge and transition densities of samarium isotopes in the interacting Boson model

    International Nuclear Information System (INIS)

    Moinester, M.A.; Alster, J.; Dieperink, A.E.L.

    1982-01-01

    The interacting boson approximation (IBA) model has been used to interpret the ground-state charge distributions and lowest 2 + transition charge densities of the even samarium isotopes for A = 144-154. Phenomenological boson transition densities associated with the nucleons comprising the s-and d-bosons of the IBA were determined via a least squares fit analysis of charge and transition densities in the Sm isotopes. The application of these boson trasition densities to higher excited 0 + and 2 + states of Sm, and to 0 + and 2 + transitions in neighboring nuclei, such as Nd and Gd, is described. IBA predictions for the transition densities of the three lowest 2 + levels of 154 Gd are given and compared to theoretical transition densities based on Hartree-Fock calculations. The deduced quadrupole boson transition densities are in fair agreement with densities derived previously from 150 Nd data. It is also shown how certain moments of the best fit boson transition densities can simply and sucessfully describe rms radii, isomer shifts, B(E2) strengths, and transition radii for the Sm isotopes. (orig.)

  8. Studies on density dependence of charge separation in a direct energy converter using slanted Cusp magnetic field

    International Nuclear Information System (INIS)

    Munakata, Yoshiro; Kawaguchi, Takashi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Ichimura, Kazuya; Nakashima, Yousuke

    2012-01-01

    In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)

  9. Isovector coupling channel and central properties of the charge density distribution in heavy spherical nuclei

    International Nuclear Information System (INIS)

    Haddad, S.

    2010-01-01

    The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)

  10. How good are Hartree-Fock charge densities

    International Nuclear Information System (INIS)

    Campi, X.

    1975-01-01

    The principle characteristics of Hartree-Fock charge densities (mean square radius, surface thickness, quantum fluctuation) calculated using different effective interactions are discussed in terms of their nuclear matter properties (Fermi momentum, effective mass, incompressibility). A comparison with the experimental charge distributions is made. Differences between the charge densities of neighbouring nuclei (isotope and isotone shifts) are also considered and the main factors governing these effects are discussed [fr

  11. Determination of critical density of charge

    International Nuclear Information System (INIS)

    Vila, F.

    1992-11-01

    In this work is given a full theoretically treatment of the problem how to determine the critical density of charge on nonconductive rectangular charged surfaces placed near a small spherical conductive and earthed surface. (author). 11 refs, 2 figs

  12. Central depression of nuclear charge density distribution

    International Nuclear Information System (INIS)

    Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang

    2010-01-01

    The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of 46 Ar and 44 S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in 46 Ar and 44 S prefer to occupy the 1d 3/2 state rather than the 2s 1/2 state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of 46 Ar and 44 S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.

  13. Electron scattering by nuclei and transition charge densities

    International Nuclear Information System (INIS)

    Gul'karov, I.S.

    1988-01-01

    Transition charge densities for states of electric type, for nuclei with A≤40--50 as obtained from data on inelastic electron scattering, are studied. The formalism of electroexcitation of nuclei is considered, together with various models (macroscopic and microscopic) used to calculate form factors, transition charge densities, and the moments of these densities: B(Eλ) and R/sub λ/ . The macroscopic models are derived microscopically, and it is shown that the model-independent sum rules lead to the same transition densities as calculations based on various hydrodynamic models. The sum rules with and without allowance for the Skyrme exchange interaction are discussed. The results of the calculations are compared with the experimental form factors of electron scattering by nuclei from 12 C to 48 Ca with excitation in them of normal-parity states with I/sup π/ = 0 + , 1 - , 2 + , 3 - , 4 + , 5 - and T = 0. The model-independent transition charge densities for the weakly collectivized excitations differ strongly from the model-dependent densities. The influence of neutrons on the transition charge densities of the nuclear isotopes 16 /sup ,/ 18 O, 32 /sup ,/ 34 S, and 40 /sup ,/ 48 Ca is considered

  14. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  15. Modern charge-density analysis

    CERN Document Server

    Gatti, Carlo

    2012-01-01

    Focusing on developments from the past 10-15 years, this volume presents an objective overview of the research in charge density analysis. The most promising methodologies are included, in addition to powerful interpretative tools and a survey of important areas of research.

  16. General theory to determine the critical charge density

    International Nuclear Information System (INIS)

    Vila, Floran

    2000-09-01

    In this work we determine theoretically the critical charge density in the system grounded metallic sphere, uniformly charged dielectric plane, in the presence of grounded surfaces, in a more general case. Special attention is paid to the influence of the system geometry in determining the most optimal conditions for obtaining the minimum critical charge density. This is a situation frequently encountered in industrial condition and is important in evaluating the danger of the electrostatic discharges. (author)

  17. DETERMINATION OF SURFACE CHARGE DENSITY OF α ...

    African Journals Online (AJOL)

    a

    The whole set up was interfaced with a computer for easy data acquisition. It was observed that ... parameters. KEY WORDS: Alumina, Surface charge density, Acid-base titration, Point of zero charge ... For instance, Al2(SO4)3 is used in water ...

  18. Charge densities and charge noise in mesoscopic conductors

    Indian Academy of Sciences (India)

    This generalization leads to a local Wigner–Smith life-time matrix. Keywords. Density ... Of interest is the charge distribution in such a conductor and ..... is the transmission probability of the scattering problem without absorption if .... as a voltage probe which has its potential adjusted in such a way that there is no net current.

  19. Mining for elastic constants of intermetallics from the charge density landscape

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chang Sun; Broderick, Scott R. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Jones, Travis E. [Molecular Theory Group, Colorado School of Mines, Golden, CO 80401 (United States); Loyola, Claudia [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Eberhart, Mark E. [Molecular Theory Group, Colorado School of Mines, Golden, CO 80401 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)

    2015-02-01

    There is a significant challenge in designing new materials for targeted properties based on their electronic structure. While in principle this goal can be met using knowledge of the electron charge density, the relationships between the density and properties are largely unknown. To help overcome this problem we develop a quantitative structure–property relationship (QSPR) between the charge density and the elastic constants for B2 intermetallics. Using a combination of informatics techniques for screening all the potentially relevant charge density descriptors, we find that C{sub 11} and C{sub 44} are determined solely from the magnitude of the charge density at its critical points, while C{sub 12} is determined by the shape of the charge density at its critical points. From this reduced charge density selection space, we develop models for predicting the elastic constants of an expanded number of intermetallic systems, which we then use to predict the mechanical stability of new systems. Having reduced the descriptors necessary for modeling elastic constants, statistical learning approaches may then be used to predict the reduced knowledge-based required as a function of the constituent characteristics.

  20. Charges in nonlinear higher-spin theory

    Energy Technology Data Exchange (ETDEWEB)

    Didenko, V.E. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Misuna, N.G. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Moscow Institute of Physics and Technology,Institutsky lane 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)

    2017-03-30

    Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS{sub 4} Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.

  1. Charges in nonlinear higher-spin theory

    International Nuclear Information System (INIS)

    Didenko, V.E.; Misuna, N.G.; Vasiliev, M.A.

    2017-01-01

    Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS 4 Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.

  2. Planar density of vacuum charge induced by a supercritical Coulomb potential

    Directory of Open Access Journals (Sweden)

    V.R. Khalilov

    2017-06-01

    Full Text Available Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.

  3. Planar density of vacuum charge induced by a supercritical Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Khalilov, V.R., E-mail: khalilov@phys.msu.ru; Mamsurov, I.V.

    2017-06-10

    Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.

  4. Theory to determine the critical charge density

    International Nuclear Information System (INIS)

    Vila, F.

    1997-08-01

    In this paper we theoretically determine the critical charge density in the system earthed metallic sphere-uniformly charged dielectric plane, in presence of earthed surfaces. This is a situation frequently encountered in industrial condition and has a great importance to evaluate the danger of the electrostatic discharges. (author)

  5. Orthogonal bases of radial functions for charge density refinements

    International Nuclear Information System (INIS)

    Restori, R.

    1990-01-01

    Charge density determination from X-ray measurements necessitates the evaluation of the Fourier-Bessel transforms of the radial functions used to expand the charge density. Analytical expressions are given here for four sets of orthogonal functions which can substitute for the 'traditional exponential functions' set in least-squares refinements. (orig.)

  6. Bond index: relation to second-order density matrix and charge fluctuations

    International Nuclear Information System (INIS)

    Giambiagi, M.S. de; Giambiagi, M.; Jorge, F.E.

    1985-01-01

    It is shown that, in the same way as the atomic charge is an invariant built from the first-order density matrix, the closed-shell generalized bond index is an invariant associated with the second-order reduced density matrix. The active charge of an atom (sum of bond indices) is shown to be the sum of all density correlation functions between it and the other atoms in the molecule; similarly, the self-charge is the fluctuation of its total charge. (Author) [pt

  7. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Krtous, Pavel

    2011-01-01

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  8. Charge density of GaxAl1− xSb

    Indian Academy of Sciences (India)

    Charge density calculations and electronic band structures for GaAl1- = 1.0, 0.5 and 0.0 are presented in this work. The calculations are performed using the empirical pseudopotential method. The charge density is computed for a number of planes, i.e. = 0:0, 0.125 and 0.25 0 by generating the potential through a ...

  9. Nanoscale smoothing and the analysis of interfacial charge and dipolar densities

    International Nuclear Information System (INIS)

    Junquera, Javier; Cohen, Morrel H; Rabe, Karin M

    2007-01-01

    The interface properties of interest in multilayers include interfacial charge densities, dipole densities, band offsets, and screening lengths, among others. Most such properties are inaccessible to direct measurements, but are key to understanding the physics of the multilayers. They are contained within first-principles electronic structure computations but are buried within the vast amount of quantitative information those computations generate. Thus far, they have been extracted from the numerical data by heuristic nanosmoothing procedures which do not necessarily provide results independent of the smoothing process. In the present paper we develop the theory of nanosmoothing, establishing procedures for both unpolarized and polarized systems which yield interfacial charge and dipole densities and band offsets invariant to the details of the smoothing procedures when the criteria we have established are met. We show also that dipolar charge densities, i.e. the densities of charge transferred across the interface, and screening lengths are not invariant. We illustrate our procedure with a toy model in which real, transversely averaged charge densities are replaced by sums of Gaussians. (topical review)

  10. Possibilities of increasing coal charge density by adding fuel oil

    Directory of Open Access Journals (Sweden)

    M. Fröhlichová

    2010-01-01

    Full Text Available The requirement of all coke-making facilities is to achieve the highest possible production of high quality coke from a chamber. It can be achieved by filling the effective capacity of the chamber with the highest possible amount of coal. One of the possibilities of meeting this requirement is to increase the charge density in the coke chamber. In case of a coke battery operating on bulk coal there are many methods to increase the charge density including the use of wetting agents in the charge. This article presents the results of the laboratory experiments aiming at the increase of the charge density using fuel oil as a wetting agent. The experiments were carried out by means of the Pitin’s device using 3 coal charges with various granularity composition and moisture content of 7, 8, 9 and 10 %.

  11. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density.

    Science.gov (United States)

    Filip, Jaroslav; Andicsová-Eckstein, Anita; Vikartovská, Alica; Tkac, Jan

    2017-03-15

    Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (k S ) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm -2 and the highest Γ of (23.6±0.9)pmolcm -2 were obtained on BOD-GO composite having the same moderate negative charge density, but the highest k S of (79.4±4.6)s -1 was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Superconducting and charge density wave transition in single crystalline LaPt2Si2

    Science.gov (United States)

    Gupta, Ritu; Dhar, S. K.; Thamizhavel, A.; Rajeev, K. P.; Hossain, Z.

    2017-06-01

    We present results of our comprehensive studies on single crystalline LaPt2Si2. Pronounced anomaly in electrical resistivity and heat capacity confirms the bulk nature of superconductivity (SC) and charge density wave (CDW) transition in the single crystals. While the charge density wave transition temperature is lower, the superconducting transition temperature is higher in single crystal compared to the polycrystalline sample. This result confirms the competing nature of CDW and SC. Another important finding is the anomalous temperature dependence of upper critical field H C2(T). We also report the anisotropy in the transport and magnetic measurements of the single crystal.

  13. Gravity dual of spin and charge density waves

    Science.gov (United States)

    Jokela, Niko; Järvinen, Matti; Lippert, Matthew

    2014-12-01

    At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.

  14. Sum rules for charge transition density

    Energy Technology Data Exchange (ETDEWEB)

    Gul' karov, I S [Tashkentskij Politekhnicheskij Inst. (USSR)

    1979-01-01

    The form factors of the quadrupole and octupole oscillations of the /sup 12/C nucleus are compared with the predictions of the sum rules for the charge transition density (CTD). These rules allow one to obtain various CTDs which contain the components k: r/sup lambda + 2k-2/rho(r) and r/sup lambda + 2k-1)(drho(r)/dr) (k = 0, 1, 2...) and can be applied to analyze the inelastic scattering of high energy particles by nuclei. It is shown that the CTD under consideration have different radius dependence and describe the data essentially better (though ambiguously) than the Tassy and Steinwedel-Jensen models do. Recurrence formulas are derived for the ratios of the higher-order transition matrix elements and CTD. These formulas can be used to predict the CTD behavior for highly excited nuclear states.

  15. Charge-density-shear-moduli relationships in aluminum-lithium alloys.

    Science.gov (United States)

    Eberhart, M

    2001-11-12

    Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.

  16. Efficient mixing scheme for self-consistent all-electron charge density

    Science.gov (United States)

    Shishidou, Tatsuya; Weinert, Michael

    2015-03-01

    In standard ab initio density-functional theory calculations, the charge density ρ is gradually updated using the ``input'' and ``output'' densities of the current and previous iteration steps. To accelerate the convergence, Pulay mixing has been widely used with great success. It expresses an ``optimal'' input density ρopt and its ``residual'' Ropt by a linear combination of the densities of the iteration sequences. In large-scale metallic systems, however, the long range nature of Coulomb interaction often causes the ``charge sloshing'' phenomenon and significantly impacts the convergence. Two treatments, represented in reciprocal space, are known to suppress the sloshing: (i) the inverse Kerker metric for Pulay optimization and (ii) Kerker-type preconditioning in mixing Ropt. In all-electron methods, where the charge density does not have a converging Fourier representation, treatments equivalent or similar to (i) and (ii) have not been described so far. In this work, we show that, by going through the calculation of Hartree potential, one can accomplish the procedures (i) and (ii) without entering the reciprocal space. Test calculations are done with a FLAPW method.

  17. Real-space calculations of nonspherically averaged charge densities for substitutionally disordered alloys

    International Nuclear Information System (INIS)

    Singh, P.P.; Gonis, A.

    1993-01-01

    Based on screening transformations of muffin-tin orbitals introduced by Andersen and Jepsen [Phys. Rev. Lett. 53, 2571 (1984)], we have developed a formalism for calculating the nonspherically averaged charge densities of substitutionally disordered alloys using the Korringa-Kohn-Rostoker coherent-potential-approximation (KKR CPA) method in the atomic-sphere approximation (ASA). We have validated our method by calculating charge densities for ordered structures, where we find that our approach yields charge densities that are essentially indistinguishable from the results of full-potential methods. Calculations and comparisons are reported for Si, Al, and Li. For substitutionally disordered alloys, where full-potential methods have not been implemented so far, our approach can be used to calculate reliable nonspherically averaged charge densities from spherically symmetric one-electron potentials obtained from the KKR-ASA CPA. We report on our study of differences in charge density between ordered AlLi in the L1 0 phase and substitutionally disordered Al 0.5 Li 0.5 on a face-centered-cubic lattice

  18. Solitons in one-dimensional charge density wave systems

    International Nuclear Information System (INIS)

    Su, W.P.

    1981-01-01

    Theoretical research on one dimensional charge density wave systems is outlined. A simple coupled electron-photon Hamiltonian is studied including a Green's function approach, molecular dynamics, and Monte Carlo path integral method. As in superconductivity, the nonperturbative nature of the system makes the physical ground states and low energy excitations drastically different from the bare electrons and phonons. Solitons carry quantum numbers which are entirely different from those of the bare electrons and holes. The fractional charge character of the solitons is an example of this fact. Solitons are conveniently generated by doping material with donors or acceptors or by photon absorption. Most predictions of the theory are in qualitative agreement with experiments. The one dimensional charge density wave system has potential technological importance and a possible role in uncovering phenomena which might have implications in relativistic field theory and elementary particle physics

  19. Effects of fibre dimension and charge density on nanocellulose gels.

    Science.gov (United States)

    Mendoza, Llyza; Gunawardhana, Thilina; Batchelor, Warren; Garnier, Gil

    2018-04-18

    Carboxylated cellulose nanofibres can produce gels at low concentrations. The effect of pulp source on the nanocellulose fibre dimension and gel rheology are studied. It is hypothesised that fibre length and surface charge influence aspects of the gel rheological properties. TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)- mediated oxidised cellulose nanofibres from never-dried hardwood and softwood pulp and containing different charge levels were produced and characterized. Steady-state and dynamic rheological studies were performed to ascertain the effects of pulp type on gel behavior and properties. Nanocellulose fibres extracted from softwood (SW-TOCN) and hardwood (HW-TOCN) pulp exhibit similar widths but different length dimensions as shown via AFM analysis. Rheological measurements show that the dynamic moduli (G' and G'') of nanocellulose gels are independent of pulp source and are mostly influenced by fibre concentration. Differences in the steady-state behavior (i.e. viscosity) at constant surface charge can be attributed to differences in fibre length. Increasing the surface charge density influences the critical strain and the viscosity at the percolation concentration (0.1 wt%) due to higher electrostatic interactions. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  20. Density and energy distribution of epithermal secondary electrons in a plasma with fast charged particles

    International Nuclear Information System (INIS)

    Jayakumar, R.; Fleischmann, H.H.

    1989-01-01

    The production of intermediate energy secondary electrons in plasmas through collisions with fast charged particles is investigated. The density and the distribution of the secondary electrons are obtained by calculating the generation, slow down and diffusion rates, using basic Rutherford collision cross sections. It is shown that the total density of secondaries is much smaller than the fast particle density and that the energy distribution has roughly a 1/√E dependence. The higher generation secondary populations are also obtained. (orig.)

  1. Exploring effective interactions through transition charge density ...

    Indian Academy of Sciences (India)

    tematics like reduced transition probabilities B(E2) and static quadrupole moments Q(2) ... approximations of solving large scale shell model problems in Monte Carlo meth- ... We present the theoretical study of transition charge densities.

  2. The effect of polymer charge density and charge distribution on the formation of multilayers

    CERN Document Server

    Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V

    2003-01-01

    Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.

  3. On sum rules for charge transition density

    International Nuclear Information System (INIS)

    Gul'karov, I.S.

    1979-01-01

    The form factors of the quadrupole and octupole oscillations of the 12 C nucleus are compared with the predictions of the sum rules for the charge transition density (CTD). These rules allow to obtain various CTD which contain the components k: rsup(lambda+2k-2)rho(r) and rsup(lambda+2k-1)(drho(r)/dr) (k=0, 1, 2...) and can be applied to analyze the inelastic scattering of high energy particles by nuclei. It is shown that the CTD under consideration have different radius dependence and describe the data essentially better (though ambiguously) than the Tassy and Steinwedel-Jensen models do. The recurrent formulas are derived for the ratios of the higher order transition matrix elements and CTD. These formulas can be used to predict the CTD behaviour for highly excited nuclear states

  4. Charged gravastars in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S., E-mail: shnkghosh122@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, B. Garden, Howrah 711103, West Bengal (India); Rahaman, F., E-mail: rahaman@associates.iucaa.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Guha, B.K., E-mail: bkguhaphys@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, B. Garden, Howrah 711103, West Bengal (India); Ray, Saibal, E-mail: saibal@associates.iucaa.in [Department of Physics, Government College of Engineering and Ceramic Technology, 73 A.C.B. Lane, Kolkata 700010, West Bengal (India)

    2017-04-10

    We explore possibility to find out a new model of gravastars in the extended D-dimensional Einstein–Maxwell space–time. The class of solutions as obtained by Mazur and Mottola of a neutral gravastar have been observed as a competent alternative to D-dimensional versions of the Schwarzschild–Tangherlini black hole. The outer region of the charged gravastar model therefore corresponds to a higher dimensional Reissner–Nordström black hole. In connection to this junction conditions, therefore we have formulated mass and the related Equation of State of the gravastar. It has been shown that the model satisfies all the requirements of the physical features. However, overall observational survey of the results also provide probable indication of non-applicability of higher dimensional approach for construction of a gravastar with or without charge from an ordinary 4-dimensional seed as far as physical ground is concerned.

  5. Effective Area and Charge Density of Iridium Oxide Neural Electrodes

    International Nuclear Information System (INIS)

    Harris, Alexander R.; Paolini, Antonio G.; Wallace, Gordon G.

    2017-01-01

    The effective electrode area and charge density of iridium metal and anodically activated iridium has been measured by optical and electrochemical techniques. The degree of electrode activation could be assessed by changes in electrode colour. The reduction charge, activation charge, number of activation pulses and charge density were all strongly correlated. Activated iridium showed slow electron transfer kinetics for reduction of a dissolved redox species. At fast voltammetric scan rates the linear diffusion electroactive area was unaffected by iridium activation. At slow voltammetric scan rates, the steady state diffusion electroactive area was reduced by iridium activation. The steady state current was consistent with a ring electrode geometry, with lateral resistance reducing the electrode area. Slow electron transfer on activated iridium would require a larger overpotential to reduce or oxidise dissolved species in tissue, limiting the electrodes charge capacity but also reducing the likelihood of generating toxic species in vivo.

  6. Full charge-density calculation of the surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt

    1994-01-01

    of a spherically symmetrized charge density, while the Coulomb and exchange-correlation contributions are calculated by means of the complete, nonspherically symmetric charge density within nonoverlapping, space-filling Wigner-Seitz cells. The functional is used to assess the convergence and the accuracy......We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by means...... of the linear-muffin-tin-orbitals (LMTO) method and the ASA in surface calculations. We find that the full charge-density functional improves the agreement with recent full-potential LMTO calculations to a level where the average deviation in surface energy over the 4d series is down to 10%....

  7. Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation

    International Nuclear Information System (INIS)

    Hoeng, Fanny; Denneulin, Aurore; Neuman, Charles; Bras, Julien

    2015-01-01

    Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol–gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension

  8. Experimental Evidence for Static Charge Density Waves in Iron Oxypnictides

    KAUST Repository

    Martinelli, A.; Manfrinetti, P.; Provino, A.; Genovese, Alessandro; Caglieris, F.; Lamura, G.; Ritter, C.; Putti, M.

    2017-01-01

    In this Letter we report high-resolution synchrotron x-ray powder diffraction and transmission electron microscope analysis of Mn-substituted LaFeAsO samples, demonstrating that a static incommensurate modulated structure develops across the low-temperature orthorhombic phase, whose modulation wave vector depends on the Mn content. The incommensurate structural distortion is likely originating from a charge-density-wave instability, a periodic modulation of the density of conduction electrons associated with a modulation of the atomic positions. Our results add a new component in the physics of Fe-based superconductors, indicating that the density wave ordering is charge driven.

  9. Experimental Evidence for Static Charge Density Waves in Iron Oxypnictides

    KAUST Repository

    Martinelli, A.

    2017-02-01

    In this Letter we report high-resolution synchrotron x-ray powder diffraction and transmission electron microscope analysis of Mn-substituted LaFeAsO samples, demonstrating that a static incommensurate modulated structure develops across the low-temperature orthorhombic phase, whose modulation wave vector depends on the Mn content. The incommensurate structural distortion is likely originating from a charge-density-wave instability, a periodic modulation of the density of conduction electrons associated with a modulation of the atomic positions. Our results add a new component in the physics of Fe-based superconductors, indicating that the density wave ordering is charge driven.

  10. High density thermite mixture for shaped charge ordnance disposal

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-10-01

    Full Text Available The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using cold iso-static pressing technique, which exhibited relatively high density and high burning rate thermite mixture. The produced green product compacted powder mixture was tested against small caliber shaped charge bomblet for neutralization. Theoretical and experimental results showed that the prepared thermite mixture containing 33% of aluminum as a fuel with ferric oxide can be successfully used for shaped charge ordnance disposal.

  11. Density functional theory calculations of charge transport properties ...

    Indian Academy of Sciences (India)

    ZIRAN CHEN

    2017-08-04

    Aug 4, 2017 ... properties of 'plate-like' coronene topological structures ... Keywords. Organic semiconductors; density functional theory; charge carrier mobility; ambipolar transport; ..... nology Department of Sichuan Province (Grant Number.

  12. Singular charge density at the center of the pion?

    International Nuclear Information System (INIS)

    Miller, Gerald A.

    2009-01-01

    We relate the three-dimensional infinite momentum frame spatial charge density of the pion to its electromagnetic form factor F π (Q 2 ). Diverse treatments of the measured form factor data including phenomenological fits, nonrelativistic quark models, the application of perturbative quantum chromodynamics (QCD), QCD sum rules, holographic QCD, and the Nambu-Jona-Lasinio (NJL) model all lead to the result that the charge density at the center of the pion has a logarithmic divergence. Relativistic constituent quark models do not display this singularity. Future measurements planned for larger values of Q 2 may determine whether or not a singularity actually occurs.

  13. Selective Coherent Excitation of Charged Density Waves

    NARCIS (Netherlands)

    Tsvetkov, A.A.; Sagar, D.M.; Loosdrecht, P.H.M. van; Marel, D. van der

    2003-01-01

    Real time femtosecond pump-probe spectroscopy is used to study collective and single particle excitations in the charge density wave state of the quasi-1D metal, blue bronze. Along with the previously observed collective amplitudon excitation, the spectra show several additional coherent features.

  14. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    Science.gov (United States)

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  15. Kaon transverse charge density from space- and timelike data

    Science.gov (United States)

    Mecholsky, N. A.; Meija-Ott, J.; Carmignotto, M.; Horn, T.; Miller, G. A.; Pegg, I. L.

    2017-12-01

    We used the world data on the kaon form factor to extract the transverse kaon charge density using a dispersion integral of the imaginary part of the kaon form factor in the timelike region. Our analysis includes recent data from e+e- annihiliation measurements extending the kinematic reach of the data into the region of high momentum transfers conjugate to the region of short transverse distances. To calculate the transverse density we created a superset of both timelike and spacelike data and developed an empirical parameterization of the kaon form factor. The spacelike set includes two new data points we extracted from existing cross section data. We estimate the uncertainty on the resulting transverse density to be 5% at b =0.025 fm and significantly better at large distances. New kaon data planned with the 12 GeV Jefferson Lab may have a significant impact on the charge density at distances of b <0.1 fm.

  16. Breakdown of the Siegert theorem and the many-body charge density operators

    International Nuclear Information System (INIS)

    Hyuga, H.; Ohtsubo, H.

    1978-01-01

    The exchange charge density operator is studied in the two-boson exchange model with consistent treatment of the exchange current and nuclear wave functions. A non-vanishing exchange charge density operator even in the static limit, which leads to the breakdown of the Siegert theorem, is found. (Auth.)

  17. Challenging chemical concepts through charge density of molecules and crystals

    International Nuclear Information System (INIS)

    Gatti, Carlo

    2013-01-01

    Narrating my scientific career, I show in this paper how, starting as a computational and theoretical chemist, I got naturally involved with x-ray crystallographers because of the common interest in charge density and in the study of chemical bonds based on such an observable. The tools I devised and the conceptual developments I made to facilitate a profitable encounter between x-ray charge density and computational chemistry researchers are illustrated, with a special focus on the proposal and applications of the Source Function concept. (comment)

  18. Charge-density depinning at metal contacts of graphene field-effect transistors

    OpenAIRE

    Nouchi, Ryo; Tanigaki, Katsumi

    2010-01-01

    An anomalous distortion is often observed in the transfer characteristics of graphene field-effect transistors. We fabricate graphene transistors with ferromagnetic metal electrodes, which reproducibly display distorted transfer characteristics, and show that the distortion is caused by metal-graphene contacts with no charge-density pinning effect. The pinning effect, where the gate voltage cannot tune the charge density of graphene at the metal electrodes, has been experimentally observed; h...

  19. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    Science.gov (United States)

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  20. Charge density study of two FeS2 polymorphs

    DEFF Research Database (Denmark)

    Schmøkel, Mette Stokkebro; Jørgensen, Mads Ry Vogel; Bjerg, Lasse

    Experimental charge density studies of inorganic solids have proven to be a difficult task due to systematic errors related to data collection such as absorption and extinction; however, the use of synchrotron radiation has the potential to minimize these problems. [1] One of the pioneering...... experimental electron density studies of an inorganic solid containing a transition metal was presented by Stevens et al. [2] who investigated the effect of crystal-field splitting of the partially filled iron d-orbitals in the pyrite structure of FeS2. Other studies of various FeS2 structures, including...... pyrite, has been performed by Gibbs et al. [3], however, these are all based on theoretical calculations rather than experiment. In the current study we revisit FeS2 through an experimental charge density study of the two low-spin iron FeS2 structures, pyrite and marcasite. High-quality, low...

  1. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    Science.gov (United States)

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  2. Static and dynamical valence-charge-density properties of GaAs

    International Nuclear Information System (INIS)

    Pietsch, U.

    1993-01-01

    Owing to the close neighbourhood of Ga and As in Mendeleev's table, GaAs shows two fundamental classes of X-ray structure amplitudes distinguished by their extremely different scattering power. They are differently sensitive to the valence electron density (VED) redistribution caused by the chemical bond and must be measured by different experimental methods. Using such data, both the VED and the difference electron densities (DED) are calculated here. Comparison with theoretical densities shows that the VED is characterized by covalent, ionic and metallic contributions. The DED constructed from GaAs and Ge data demonstrates the electronic response caused by a ''protonic'' charge transfer between both f.c.c. sublattices as well as the transition from a purely covalent to a mixed covalent-ionic bond. Especially the charge-density accumulation between nearest neighbours (bond charge (BC)) depends on the distance between the bonding atoms and changes under the influence of any lattice deformation. This phenomenon is described by a BC-transfer model. Its direct experimental proof is given by measuring the variation of the scattering power of weak reflections under the influence of an external electric field. This experiment demonstrates that the ionicity of the bond changes in addition to the BC variation. (orig.)

  3. Acceleration of high charge density electron beams in the SLAC linac

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Clendenin, J.E.; Jobe, R.K.; Lueth, V.G.; Millich, A.; Ross, M.C.; Seeman, J.T.; Stiening, R.F.

    1984-01-01

    The SLAC Linear Collider (SLC) will require both electron and positron beams of very high charge density and low emittance to be accelerated to about 50 GeV in the SLAC 3-km linac. The linac is in the process of being improved to meet this requirement. The program to accelerate an electron beam of high charge density through the first third of the SLC linac is described and the experimental results are discussed. 7 references, 5 figures

  4. Charge-scaling effect in ionic liquids from the charge-density analysis of N,N'-dimethylimidazolium methylsulfate.

    Science.gov (United States)

    Beichel, Witali; Trapp, Nils; Hauf, Christoph; Kohler, Oliver; Eickerling, Georg; Scherer, Wolfgang; Krossing, Ingo

    2014-03-17

    The charge scaling effect in ionic liquids was explored on the basis of experimental and theoretical chargedensity analyses of [C1MIM][C1SO4] employing the quantum theory of atoms in molecules (QTAIM) approach. Integrated QTAIM charges of the experimental (calculated) charge density of the cation and anion resulted in non-integer values of ±0.90 (±0.87) e. Efficient charge transfer along the bond paths of the hydrogen bonds between the imidazolium ring and the anion was considered as the origin of these reduced charges. In addition, a detailed QTAIM analysis of the bonding situation in the [C1SO4]- anion revealed the presence of negative πO→σ*S-O hyperconjugation.

  5. Central depression of the charge density distributions in lead isotopes

    International Nuclear Information System (INIS)

    Haddad, S.

    2008-01-01

    The central-depression parameters is determined by fitting the charge density distributions in lead isotopes to a three-parameter Fermi distribution. The central-depression parameter increases with the number of neutrons due to the isovector coupling channel of the nuclear interaction and its dependency on density. (author)

  6. Central depression of the charge density distributions in lead isotopes

    International Nuclear Information System (INIS)

    Haddad, S.

    2007-01-01

    The central-depression parameter is determined by fitting the charge density distributions in lead isotopes to a three-parameter Fermi distribution. The central-depression parameter increases with the number of neutrons due to the isovector coupling channel of the nuclear interaction and its dependency on density. (author)

  7. Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment

    Science.gov (United States)

    Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano

    2012-01-01

    An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…

  8. Helical patterns of magnetization and magnetic charge density in iron whiskers

    Science.gov (United States)

    Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.

    2018-05-01

    Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.

  9. The number density of a charged relic

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C.F. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics]|[California Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics; Covi, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kraml, S. [CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Palorini, F. [Lyon Univ., UCBL, CNRS/IN2P3, Villeurbanne (France). IPN de Lyon

    2008-07-15

    We investigate scenarios in which a charged, long-lived scalar particle decouples from the primordial plasma in the Early Universe. We compute the number density at time of freeze-out considering both the cases of abelian and non-abelian interactions and including the effect of Sommerfeld enhancement at low initial velocity. We also discuss as extreme case the maximal cross section that fulfils the unitarity bound. We then compare these number densities to the exotic nuclei searches for stable relics and to the BBN bounds on unstable relics and draw conclusions for the cases of a stau or stop NLSP in supersymmetric models with a gravitino or axino LSP. (orig.)

  10. The number density of a charged relic

    International Nuclear Information System (INIS)

    Berger, C.F.; Kraml, S.; Palorini, F.

    2008-07-01

    We investigate scenarios in which a charged, long-lived scalar particle decouples from the primordial plasma in the Early Universe. We compute the number density at time of freeze-out considering both the cases of abelian and non-abelian interactions and including the effect of Sommerfeld enhancement at low initial velocity. We also discuss as extreme case the maximal cross section that fulfils the unitarity bound. We then compare these number densities to the exotic nuclei searches for stable relics and to the BBN bounds on unstable relics and draw conclusions for the cases of a stau or stop NLSP in supersymmetric models with a gravitino or axino LSP. (orig.)

  11. Higher charges in dynamical spin chains for SYM theory

    International Nuclear Information System (INIS)

    Agarwal, Abhishek; Ferretti, Gabriele

    2005-01-01

    We construct, to the first two non-trivial orders, the next conserved charge in the su(2|3) sector of N = 4 Super Yang-Mills theory. This represents a test of integrability in a sector where the interactions change the number of sites of the chain. The expression for the charge is completely determined by the algebra and can be written in a diagrammatic form in terms of the interactions already present in the hamiltonian. It appears likely that this diagrammatic expression remains valid in the full theory and can be generalized to higher loops and higher charges thus helping in establishing complete integrability for these dynamical chains

  12. C library for topological study of the electronic charge density.

    Science.gov (United States)

    Vega, David; Aray, Yosslen; Rodríguez, Jesús

    2012-12-05

    The topological study of the electronic charge density is useful to obtain information about the kinds of bonds (ionic or covalent) and the atom charges on a molecule or crystal. For this study, it is necessary to calculate, at every space point, the electronic density and its electronic density derivatives values up to second order. In this work, a grid-based method for these calculations is described. The library, implemented for three dimensions, is based on a multidimensional Lagrange interpolation in a regular grid; by differentiating the resulting polynomial, the gradient vector, the Hessian matrix and the Laplacian formulas were obtained for every space point. More complex functions such as the Newton-Raphson method (to find the critical points, where the gradient is null) and the Cash-Karp Runge-Kutta method (used to make the gradient paths) were programmed. As in some crystals, the unit cell has angles different from 90°, the described library includes linear transformations to correct the gradient and Hessian when the grid is distorted (inclined). Functions were also developed to handle grid containing files (grd from DMol® program, CUBE from Gaussian® program and CHGCAR from VASP® program). Each one of these files contains the data for a molecular or crystal electronic property (such as charge density, spin density, electrostatic potential, and others) in a three-dimensional (3D) grid. The library can be adapted to make the topological study in any regular 3D grid by modifying the code of these functions. Copyright © 2012 Wiley Periodicals, Inc.

  13. The effect of the charge density on the dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.; Germano, J.S.E.

    1986-01-01

    The results of the calculation, using the Variational Cellular Method (VCM), of the electric dipole moment of several diatomic molecules are improved. In previous calculations, the electronic charge density was treated like a spherically symmetric function in the inscribed sphere within each cell and as being the same constant value for all intercellular regions. Since the results obtained with such an approximation have not been satisfactory, an improved approximation for the charge density in the intercellular regions is needed. It is considered that the charge density is still constant outside the inscribed sphere but with different values in each intercellular region. A new expression for the dipole moment is obtained, and applied to the diatomic molecules HF, CO, BF and CS. In addition, the corresponding dipole moment curves, potential energy curves and spectroscopic constants are calculated taking into consideration our approximation and the traditional approximation for the charge density. The results of the two models are compared with each other and with experimental results for all the molecules considered. (Author) [pt

  14. Extraction Compression and Acceleration of High Line Charge Density Ion Beams

    CERN Document Server

    Henestroza, Enrique; Grote, D P; Peters, Craig; Yu, Simon

    2005-01-01

    HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2

  15. Batteries. Higher energy density than gasoline?

    International Nuclear Information System (INIS)

    Fischer, Michael; Werber, Mathew; Schwartz, Peter V.

    2009-01-01

    The energy density of batteries is two orders of magnitude below that of liquid fuels. However, this information alone cannot be used to compare batteries to liquid fuels for automobile energy storage media. Because electric motors have a higher energy conversion efficiency and lower mass than combustion engines, they can provide a higher deliverable mechanical energy density than internal combustion for most transportation applications. (author)

  16. Effects of charge density and hydrophobicity of poly(amido amine)s for non-viral gene delivery

    NARCIS (Netherlands)

    Piest, Martin; Engbersen, Johannes F.J.

    2010-01-01

    High cationic charge densities in polymeric vectors result in tight DNA condensation, leading to small highly positively charged polyplexes which show generally high cellular uptake in vitro. However, high cationic charge densities also introduce membrane-disruptive properties to the polymers,

  17. Determination of Charge-Carrier Mobility in Disordered Thin-Film Solar Cells as a Function of Current Density

    Science.gov (United States)

    Mäckel, Helmut; MacKenzie, Roderick C. I.

    2018-03-01

    Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.

  18. Accurate Charge Densities from Powder Diffraction

    DEFF Research Database (Denmark)

    Bindzus, Niels; Wahlberg, Nanna; Becker, Jacob

    Synchrotron powder X-ray diffraction has in recent years advanced to a level, where it has become realistic to probe extremely subtle electronic features. Compared to single-crystal diffraction, it may be superior for simple, high-symmetry crystals owing to negligible extinction effects and minimal...... peak overlap. Additionally, it offers the opportunity for collecting data on a single scale. For charge densities studies, the critical task is to recover accurate and bias-free structure factors from the diffraction pattern. This is the focal point of the present study, scrutinizing the performance...

  19. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Directory of Open Access Journals (Sweden)

    Yongjun Ahn

    Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive

  20. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Science.gov (United States)

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  1. Emergence of charge density waves and a pseudogap in single-layer TiTe2.

    Science.gov (United States)

    Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C

    2017-09-11

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.

  2. A method for determination of the superficial charge density

    International Nuclear Information System (INIS)

    Vila, F.

    1992-10-01

    In this article is presented a new methodism for determination of superficial charge density in nonconducting materials which is based in the combination of laboratory calibrated experiments in conducting surfaces with theoretical calculations for nonconducting surfaces. (author). 19 refs, 7 figs, 1 tab

  3. Investigation of charges carrier density in phosphorus and boron doped SiNx:H layers for crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Paviet-Salomon, B.; Gall, S.; Slaoui, A.

    2013-01-01

    Highlights: ► We investigate the properties of phosphorus and boron-doped silicon nitride films. ► Phosphorus-doped layers yield higher lifetimes than undoped ones. ► The fixed charges density decreases when increasing the films phosphorus content. ► Boron-doped films feature very low lifetimes. ► These doped layers are of particular interest for crystalline silicon solar cells. -- Abstract: Dielectric layers are of major importance in crystalline silicon solar cells processing, especially as anti-reflection coatings and for surface passivation purposes. In this paper we investigate the fixed charge densities (Q fix ) and the effective lifetimes (τ eff ) of phosphorus (P) and boron (B) doped silicon nitride layers deposited by plasma-enhanced chemical vapour deposition. P-doped layers exhibit a higher τ eff than standard undoped layers. In contrast, B-doped layers exhibit lower τ eff . A strong Q fix decrease is to be seen when increasing the P content within the film. Based on numerical simulations we also demonstrate that the passivation obtained with P- and B-doped layers are limited by the interface states rather than by the fixed charges

  4. Do plasma proteins distinguish between liposomes of varying charge density?

    KAUST Repository

    Capriotti, Anna Laura; Caracciolo, Giulio; Cavaliere, Chiara; Foglia, Patrizia; Pozzi, Daniela; Samperi, Roberto; Laganà , Aldo

    2012-01-01

    efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry

  5. Spatial charge motion on an uniform density matrix-general equations in opened and closed circuits

    International Nuclear Information System (INIS)

    Aguiar Monsanto, S. de.

    1983-01-01

    The motion of a space charge cloud embedded in a matrix of constant immobile charge density is studied in open as well as in closed circuit. In the first case, open circuit, the solution is almost trivial as compared as the other one in which, after some work, the problem is reduced to an ordinary differential equation. The method of solution is parallel to that employed in the study of monopolar free space charge motion. The voltage and the current produced by a system with no net charge but with unbalanced local charge density were calculated using the general equations derived in the first part of the work. (Author) [pt

  6. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    Science.gov (United States)

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase

  7. The density functional theory and the charged fluid molecular dynamics

    International Nuclear Information System (INIS)

    Hansen, J.P.; Zerah, G.

    1993-01-01

    Car and Parrinello had the idea of combining the density functional theory (Hohenberg, Kohn and Sham) to the 'molecular dynamics' numerical modelling method, in order to simulate metallic or co-valent solids and liquids from the first principles. The objective of this paper is to present a simplified version of this method ab initio, applicable to classical and quantal charged systems. The method is illustrated with recent results on charged colloidal suspensions and highly correlated electron-proton plasmas. 1 fig., 21 refs

  8. Interplay of charge density wave and spin density wave in high-Tc superconductors

    International Nuclear Information System (INIS)

    Pradhan, B.; Raj, B.K.; Rout, G.C.

    2008-01-01

    We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T c cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters

  9. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav

    2011-11-28

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  10. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav; Mantega, Mauro; Rungger, Ivan; Sanvito, Stefano; Boland, John J.

    2011-01-01

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  11. Transverse charge and magnetization densities in the nucleon's chiral periphery

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [JLAB Newport News, VA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01

    In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.

  12. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  13. Strain Tuning of the Charge Density Wave in Monolayer and Bilayer 1T-TaS2

    KAUST Repository

    Gan, Liyong; Zhang, Lihong; Zhang, Qingyun; Guo, Chunsheng; Schwingenschlö gl, Udo; Zhao, Yong

    2015-01-01

    By first-principles calculations, we investigate the strain effects on the charge density wave states of monolayer and bilayer 1T-TaS2. The modified stability of the charge density wave in the monolayer is understood in terms of the strain dependent

  14. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  15. Optical properties of two-dimensional charge density wave materials

    Science.gov (United States)

    Sayers, Charles; Karbassi, Sara; Friedemann, Sven; da Como, Enrico

    Titanium diselenide (TiSe2) is a member of the layered transition metal dichalcogenide (TMD) materials. It exhibits unusual chiral charge ordering below 190 K after undergoing an initial phase transition to a commensurate (2 x 2 x 2) charge density wave (CDW) at 200 K which is enhanced further in the monolayer. Recently, the first evidence of chirality in a CDW system was discovered in this material by scanning tunneling microscopy and time-resolved reflectivity experiments, where separate left and right handed charge-ordered domains were found to exist within a single sample. We have prepared single crystals of 1T-TiSe2 using iodine vapour transport, and confirmed their quality by x-ray analysis and charge transport measurements. Using a combination of polarised optical spectroscopy techniques in the mid to far infrared (4 to 700 meV photon energy), we have measured an anisotropy relating to the CDW gap. We discuss the results on the basis of chiral domains with different handedness and the nature of the CDW transition.

  16. Exploring charge density analysis in crystals at high pressure: data collection, data analysis and advanced modelling.

    Science.gov (United States)

    Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero

    2017-08-01

    The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.

  17. 20 CFR 655.173 - Setting meal charges; petition for higher meal charges.

    Science.gov (United States)

    2010-04-01

    ... the 12 month percentage change for the Consumer Price Index for all Urban Consumers for Food between... may begin charging the higher rate upon receipt of a favorable decision from the CO unless the CO sets a later effective date in the decision. (c) Appeal rights. In the event the employer's petition for...

  18. Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2

    Science.gov (United States)

    Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude

    2018-03-01

    Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.

  19. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  20. Pair-density waves, charge-density waves, and vortices in high-Tc cuprates

    Science.gov (United States)

    Dai, Zhehao; Zhang, Ya-Hui; Senthil, T.; Lee, Patrick A.

    2018-05-01

    A recent scanning tunneling microscopy (STM) experiment reports the observation of a charge-density wave (CDW) with a period of approximately 8a in the halo region surrounding the vortex core, in striking contrast to the approximately 4a period CDWs that are commonly observed in the cuprates. Inspired by this work, we study a model where a bidirectional pair-density wave (PDW) with period 8 is at play. This further divides into two classes: (1) where the PDW is a competing state of the d -wave superconductor and can exist only near the vortex core where the d -wave order is suppressed and (2) where the PDW is the primary order, the so-called "mother state" that persists with strong phase fluctuations to high temperature and high magnetic field and lies behind the pseudogap phenomenology. We study the charge-density wave structures near the vortex core in these models. We emphasize the importance of the phase winding of the d -wave order parameter. The PDW can be pinned by the vortex core due to this winding and become static. Furthermore, the period-8 CDW inherits the properties of this winding, which gives rise to a special feature of the Fourier transform peak, namely, it is split in certain directions. There is also a line of zeros in the inverse Fourier transform of filtered data. We propose that these are key experimental signatures that can distinguish between the PDW-driven scenario from the more mundane option that the period-8 CDW is primary. We discuss the pro's and con's of the options considered above. Finally, we attempt to place the STM experiment in the broader context of pseudogap physics of underdoped cuprates and relate this observation to the unusual properties of x-ray scattering data on CDW carried out to very high magnetic field.

  1. Stable SU(5) monopoles with higher magnetic charge

    International Nuclear Information System (INIS)

    Miyamoto, S.; Sato, H.; Tomohiro, S.

    1985-01-01

    Taking into account the electroweak breaking effects, some multiply charged monopoles were shown to be stable by Gardner and Harvey. We give the explicit Ansa$uml: tze for finite-energy, nonsingular solutions of these stable higher-strength monopoles with eg = 1,(3/2),3. We also give the general stability conditions and the detailed behavior of the interaction potentials between two monopoles which produce the stable higher-strength monopoles

  2. Higher-Dimensional Solitons Stabilized by Opposite Charge

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper it is shown how higher-dimensional solitons can be stabilized by a topological phase gradient, a field-induced shift in effective dimensionality. As a prototype, two instable 2-dimensional radial symmetric Sine-Gordon extensions (pulsons) are coupled by a sink/source term such, that one becomes a stable 1d and the other a 3d wave equation. The corresponding physical process is identified as a polarization that fits perfectly to preliminary considerations regarding the nature of electric charge and background of 1/137. The coupling is iterative with convergence limit and bifurcation at high charge. It is driven by the topological phase gradient or non-local Gauge potential that can be mapped to a local oscillator potential under PSL(2,R).

  3. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis

    Science.gov (United States)

    Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.

    2017-12-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  4. Injection space charge: enlargements of flux density functioning point choice

    International Nuclear Information System (INIS)

    Ropert, A.

    In Saturne, injection consists of a synchrobetatron filling of the chamber, with the goal of providing a beam with the following characteristics circulating in the machine: horizontal flux density 90 πmm mrd, vertical flux density 210 πmm mrd, dispersion in moments +- 7 x 10 -3 , and number of particles 2 x 10 12 . The determination of the principal injection parameters was made by means of GOC calculation programs. The goal of this study is to show a certain number of phenomena induced by the forces due to space charge and left suspended up to this point: variations in the intensity injectable into the machine extension of the beam occupation zone in the ν/sub x'/ ν/sub z/ diagram, and turn-turn interactions. The effects of the space charge lead to a deterioration of the injected beam for certain functioning points leading to the selection of a zone in the ν/sub x'/ ν/sub z/ diagram that is particularly suitable for beam injection

  5. On the mechanism of charge transport in low density polyethylene

    Science.gov (United States)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  6. Charge-density-wave instabilities expected in monophosphate tungsten bronzes

    International Nuclear Information System (INIS)

    Canadell, E.; Whangbo, M.

    1991-01-01

    On the basis of tight-binding band calculations, we examined the electronic structures of the tungsten oxide layers found in the monophosphate tungsten bronze (MPTB) phases. The Fermi surfaces of these MPTB phases consist of five well-nested one- and two-dimensional pieces. We calculated the nesting vectors of these Fermi surfaces and discussed the expected charge-density-wave instabilities

  7. Mode locking in overdamped charge-density-wave systems

    International Nuclear Information System (INIS)

    Alstroem, P.; Levinsen, M.T.

    1988-01-01

    We show that the rich mode-locking structure observed in overdamped charge-density-wave (CDW) systems can be understood in terms of a simple model of driven damped 'particles' without inertia in a non-sinusoidal periodic potential. The analysis shows that the nonchaotic system of a driven overdamped CDW without inertia in general has a 'close-to-chaotic' behavior in an appropriate frequency range. Our results also provide a natural basis for studies of spatially extended CDW systems. (orig.)

  8. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.

    Science.gov (United States)

    Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus

    2007-10-25

    The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.

  9. Dimensional Crossover in a Charge Density Wave Material Probed by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Nicholson, C. W.; Berthod, C.; Puppin, M.; Berger, H.; Wolf, M.; Hoesch, M.; Monney, C.

    2017-05-01

    High-resolution angle-resolved photoemission spectroscopy data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe3 . In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in one dimension. From the warping of the quasi-1D Fermi surface at low temperatures, we extract the energy scale of the dimensional crossover. This is corroborated by a detailed analysis of the density of states, which reveals a change in dimensional behavior dependent on binding energy. Our results offer an important insight into the dimensionality of excitations in quasi-1D materials.

  10. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    International Nuclear Information System (INIS)

    Buividovich, P.V.; Kalaydzhyan, T.; Polikarpov, M.I.

    2011-11-01

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  11. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2011-11-15

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  12. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).

    Science.gov (United States)

    Gaus, Michael; Cui, Qiang; Elstner, Marcus

    2012-04-10

    The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.

  13. Lateral diffusion of the topological charge density in stochastic optical fields

    CSIR Research Space (South Africa)

    Roux, FS

    2010-01-01

    Full Text Available Stochastic (i.e. random and quasi-random) optical fields may contain distributions of optical vortices that are represented by non-uniform topological charge densities. Numerical simulations are used to investigate the evolution under free...

  14. Precise charge density studies by maximum entropy method

    CERN Document Server

    Takata, M

    2003-01-01

    For the production research and development of nanomaterials, their structural information is indispensable. Recently, a sophisticated analytical method, which is based on information theory, the Maximum Entropy Method (MEM) using synchrotron radiation powder data, has been successfully applied to determine precise charge densities of metallofullerenes and nanochannel microporous compounds. The results revealed various endohedral natures of metallofullerenes and one-dimensional array formation of adsorbed gas molecules in nanochannel microporous compounds. The concept of MEM analysis was also described briefly. (author)

  15. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Science.gov (United States)

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  16. Describing long-range charge-separation processes with subsystem density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de [Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster (Germany); Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, 73 Warren St., Newark, New Jersey 07102 (United States)

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants in Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.

  17. Describing long-range charge-separation processes with subsystem density-functional theory

    International Nuclear Information System (INIS)

    Solovyeva, Alisa; Neugebauer, Johannes; Pavanello, Michele

    2014-01-01

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants in Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states

  18. Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Noritake, T.; Nozaki, H.; Aoki, M.; Towata, S.; Kitahara, G.; Nakamori, Y.; Orimo, S.

    2005-01-01

    Complex hydrides, such as lithium amide (LiNH 2 ) and lithium imide (Li 2 NH), have recently been noticed as one of the most promising materials for reversible hydrogen storage. In this paper, we reveal the bonding nature of hydrogen in Li 2 NH crystal by synchrotron powder X-ray diffraction measurement at room temperature. The crystal structure was refined by Rietveld method and the charge density distribution was analyzed by maximum entropy method (MEM). The Li 2 NH crystal is anti-fluorite type structure (space group Fm3-bar m) consisting of Li and NH. Hydrogen atom occupies randomly the 48h (Wyckoff notation) sites around N atom. The refined lattice constant is a=5.0742(2)A. The charge density distribution around NH anion in Li 2 NH is almost spherical. The number of electrons within the sphere around the Li and NH is estimated from the obtained charge density distribution. As the result, the ionic charge is expressed as [Li 0.99+ ] 2 [NH] 1.21- . Therefore, it is confirmed experimentally that Li 2 NH is ionically bonded

  19. Pseudorapidity density of charged particles p-Pb collisions at $\\sqrt{s_{NN}}$ = 5.02 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahn, Sang Un; Ahn, Sul-Ah; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Francesco; Blanco, F; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Busch, Oliver; Buthelezi, Edith Zinhle; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Wisla; Carena, Francesco; Carlin Filho, Nelson; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Collu, Alberto; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Kushal; Das, Indranil; Das, Supriya; Das, Debasish; Dash, Sadhana; Dash, Ajay Kumar; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, Mihir Ranjan; Dutta Majumdar, AK; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Smbat; Grigoryan, Ara; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Harton, Austin; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Innocenti, Pier Giorgio; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Vladimir; Ivanov, Andrey; Ivanov, Marian; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jang, Haeng Jin; Janik, Rudolf; Janik, Malgorzata Anna; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Kamal Hussain; Khan, Palash; Khan, Mohisin Mohammed; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Taesoo; Kim, Beomkyu; Kim, Jonghyun; Kim, Jin Sook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Dong Jo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kour, Ravjeet; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Vasily; Kushpil, Svetlana; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz; Lee, Ki Sang; Lee, Sung Chul; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Ke; Ma, Rongrong; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mizuno, Sanshiro; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Vladimir; Nikulin, Sergey; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Pastircak, Blahoslav; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Paul, Biswarup; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santagati, Gianluca; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schuster, Tim; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Sharma, Rohini; Shigaki, Kenta; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Trubnikov, Victor; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Yury; Vinogradov, Leonid; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Vladimir; Wagner, Boris; Wan, Renzhuo; Wang, Yaping; Wang, Mengliang; Wang, Dong; Wang, Yifei; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilk, Alexander; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Shiming; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Fengchu; Zhou, Daicui; Zhou, You; Zhu, Jianhui; Zhu, Hongsheng; Zhu, Jianlin; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-01-18

    The charged-particle pseudorapidity density measured over 4 units of pseudorapidity in non-single-diffractive (NSD) p-Pb collisions at a centre-of-mass energy per nucleon pair $\\sqrt{s_{NN}}$ = 5.02 TeV is presented. The average value at midrapidity is measured to be 16.81 $\\pm$ 0.71 (syst.), which corresponds to 2.14 $\\pm$ 0.17 (syst.) per participating nucleon. This is 16% lower than in NSD pp collisions interpolated to the same collision energy, and 84% higher than in d-Au collisions at $\\sqrt{s_{NN}}$ = 0.2 TeV. The measured pseudorapidity density in p-Pb collisions is compared to model predictions, and provides new constraints on the description of particle production in high-energy nuclear collisions.

  20. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  1. Method of measuring a profile of the density of charged particles in a particle beam

    International Nuclear Information System (INIS)

    Hyman, L.G.; Jankowski, D.J.

    1975-01-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam

  2. Mapping Charge Carrier Density in Organic Thin-Film Transistors by Time-Resolved Photoluminescence Lifetime Studies

    DEFF Research Database (Denmark)

    Leißner, Till; Jensen, Per Baunegaard With; Liu, Yiming

    2017-01-01

    The device performance of organic transistors is strongly influenced by the charge carrier distribution. A range of factors effect this distribution, including injection barriers at the metal-semiconductor interface, the morphology of the organic film, and charge traps at the dielectric/organic...... interface or at grain boundaries. In our comprehensive experimental and analytical work we demonstrate a method to characterize the charge carrier density in organic thin-film transistors using time-resolved photoluminescence spectroscopy. We developed a numerical model that describes the electrical...... and optical responses consistently. We determined the densities of free and trapped holes at the interface between the organic layer and the SiO2 gate dielectric by comparison to electrical measurements. Furthermore by applying fluorescence lifetime imaging microscopy we determine the local charge carrier...

  3. Modeling charged defects inside density functional theory band gaps

    International Nuclear Information System (INIS)

    Schultz, Peter A.; Edwards, Arthur H.

    2014-01-01

    Density functional theory (DFT) has emerged as an important tool to probe microscopic behavior in materials. The fundamental band gap defines the energy scale for charge transition energy levels of point defects in ionic and covalent materials. The eigenvalue gap between occupied and unoccupied states in conventional DFT, the Kohn–Sham gap, is often half or less of the experimental band gap, seemingly precluding quantitative studies of charged defects. Applying explicit and rigorous control of charge boundary conditions in supercells, we find that calculations of defect energy levels derived from total energy differences give accurate predictions of charge transition energy levels in Si and GaAs, unhampered by a band gap problem. The GaAs system provides a good theoretical laboratory for investigating band gap effects in defect level calculations: depending on the functional and pseudopotential, the Kohn–Sham gap can be as large as 1.1 eV or as small as 0.1 eV. We find that the effective defect band gap, the computed range in defect levels, is mostly insensitive to the Kohn–Sham gap, demonstrating it is often possible to use conventional DFT for quantitative studies of defect chemistry governing interesting materials behavior in semiconductors and oxides despite a band gap problem

  4. The interaction between theory and experiment in charge density analysis

    International Nuclear Information System (INIS)

    Coppens, Phillip

    2013-01-01

    The field of x-ray charge density analysis has gradually morphed into an area benefiting from the strong interactions between theoreticians and experimentalists, leading to new concepts on chemical bonding and of intermolecular interactions in condensed phases. Some highlights of the developments culminating in the 2013 Aminoff Award are described in this paper. (comment)

  5. High density thermite mixture for shaped charge ordnance disposal

    OpenAIRE

    Tamer Elshenawy; Salah Soliman; Ahmed Hawass

    2017-01-01

    The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using col...

  6. Rendering high charge density of states in ionic liquid-gated MoS 2 transistors

    NARCIS (Netherlands)

    Lee, Y.; Lee, J.; Kim, S.; Park, H.S.

    2014-01-01

    We investigated high charge density of states (DOS) in the bandgap of MoS2 nanosheets with variable temperature measurements on ionic liquid-gated MoS2 transistors. The thermally activated charge transport indicates that the electrical current in the two-dimensional MoS 2 nanosheets under high

  7. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  8. Interplay of charge density wave and spin density wave in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, B. [Government Science College, Malkangiri 764 048 (India)], E-mail: brunda@iopb.res.in; Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C. [Condensed Matter Physics Group, P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)], E-mail: gcr@iopb.res.in

    2008-12-01

    We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T{sub c} cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters.

  9. Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim

    2001-01-01

    .5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...

  10. Gravitational collapse in higher-dimensional charged-Vaidya space ...

    Indian Academy of Sciences (India)

    time. We show that singularities arising in a charged null fluid in higher dimension are always naked violating ... of matter is one of the most active field of research in the contemporary general relativity. ... The main open issue ..... [3] A Papapetrou, in A random walk in relativity and cosmology edited by N Dadhich, J K Rao,.

  11. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  12. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.

    Science.gov (United States)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-27

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  13. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality

    Science.gov (United States)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  14. Structure of the charge density wave in cuprate superconductors: Lessons from NMR

    Science.gov (United States)

    Atkinson, W. A.; Ufkes, S.; Kampf, A. P.

    2018-03-01

    Using a mix of numerical and analytic methods, we show that recent NMR 17O measurements provide detailed information about the structure of the charge-density wave (CDW) phase in underdoped YBa2Cu3O6 +x . We perform Bogoliubov-de Gennes (BdG) calculations of both the local density of states and the orbitally resolved charge density, which are closely related to the magnetic and electric quadrupole contributions to the NMR spectrum, using a microscopic model that was shown previously to agree closely with x-ray experiments. The BdG results reproduce qualitative features of the experimental spectrum extremely well. These results are interpreted in terms of a generic "hot-spot" model that allows one to trace the origins of the NMR line shapes. We find that four quantities—the orbital character of the Fermi surface at the hot spots, the Fermi surface curvature at the hot spots, the CDW correlation length, and the magnitude of the subdominant CDW component—are key in determining the line shapes.

  15. Metallicity at interphase boundaries due to polar catastrophe induced by charge density discontinuity

    KAUST Repository

    Albar, Arwa

    2018-02-09

    The electronic properties of interphase boundaries are of basic importance for most materials, particularly when those properties deviate strongly from the bulk behavior. We introduce a mechanism that can result in metallicity at stoichiometric interphase boundaries between semiconductors based on the idea of polar catastrophe, which is usually considered only in the context of heterostructures. To this end, we perform ab initio calculations within density functional theory to investigate the electronic states at stoichiometric SnO/SnO2 (110) interphase boundaries. In this system, one would not expect polar catastrophe to have a role according to state-of-the-art theory because the interface lacks formal charge discontinuity. However, we observe the formation of a hole gas between the semiconductors SnO and SnO2. To explain these findings, we provide a generalized theory based on the idea that the charge density discontinuity between SnO and SnO2, a consequence of lattice mismatch, drives a polar catastrophe scenario. As a result, SnO/SnO2 (110) interphase boundaries can develop metallicity depending on the grain size. The concept of metallicity due to polar catastrophe induced by charge density discontinuity is of general validity and applies to many interphase boundaries with lattice mismatch.

  16. Conformations of polyelectrolyte macromolecules with different charge density in solutions of different ionic strengths

    International Nuclear Information System (INIS)

    Dommes, O A; Okatova, O V; Pavlov, G M

    2016-01-01

    Studies of charged polymer chains are interesting in both fundamental and applied aspects. Especially, polyelectrolytes attract huge attention of researchers due to their ability to form interpolymer complexes with synthetic and biopolymers. The study was carried out on the fractions of hydrophilic copolymers of N-methyl-N-vinyl acetamide and N-methyl-N-vinyl amine hydrochloride of different degrees of polymerization and of different charge density using methods of molecular hydrodynamics. Hydrodynamic and conformational characteristics as well as molar masses of isolated molecules were estimated. In addition, the intrinsic viscosity of fractions was studied at the extreme ionic strengths - in distilled water (∼10 -6 M) and in 6M NaCl. Scaling relations for intrinsic viscosity, sedimentation and translational diffusion coefficients with molar mass were obtained. Conformational behavior of macromolecules with different linear charge density was compared. (paper)

  17. Transversely driven charge density waves in NbSe3

    International Nuclear Information System (INIS)

    Markovic, N.; Dohmen, M.A.H.; Zant, H.S.J. van der

    1999-01-01

    We have studied the charge density wave (CDW) transport in the presence of a single-particle current flowing transversely to the sliding direction of the CDW. The depinning threshold field was found to decrease exponentially with the transverse current, allowing the CDWs to slide even at very low bias fields. The CDW transport is ohmic in this novel, nonequilibrium regime. The results from thin NbSe 3 crystals are in excellent agreement with recent theoretical predictions. (orig.)

  18. Critical Phenomena in Higher Curvature Charged AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Arindam Lala

    2013-01-01

    Full Text Available In this paper, we have studied the critical phenomena in higher curvature charged AdS black holes. We have considered Lovelock-Born-Infeld-AdS black hole as an example. The thermodynamics of the black hole have been studied which reveals the onset of a higher-order phase transition in the black hole in the canonical ensemble (fixed charge ensemble framework. We have analytically derived the critical exponents associated with these thermodynamic quantities. We find that our results fit well with the thermodynamic scaling laws and consistent with the mean field theory approximation. The suggestive values of the other two critical exponents associated with the correlation function and correlation length on the critical surface have been derived.

  19. TRIGA research reactors with higher power density

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1994-01-01

    The recent trend in new or upgraded research reactors is to higher power densities (hence higher neutron flux levels) but not necessarily to higher power levels. The TRIGA LEU fuel with burnable poison is available in small diameter fuel rods capable of high power per rod (≅48 kW/rod) with acceptable peak fuel temperatures. The performance of a 10-MW research reactor with a compact core of hexagonal TRIGA fuel clusters has been calculated in detail. With its light water coolant, beryllium and D 2 O reflector regions, this reactor can provide in-core experiments with thermal fluxes in excess of 3 x 10 14 n/cm 2 ·s and fast fluxes (>0.1 MeV) of 2 x 10 14 n/cm 2 ·s. The core centerline thermal neutron flux in the D 2 O reflector is about 2 x 10 14 n/cm 2 ·s and the average core power density is about 230 kW/liter. Using other TRIGA fuel developed for 25-MW test reactors but arranged in hexagonal arrays, power densities in excess of 300 kW/liter are readily available. A core with TRIGA fuel operating at 15-MW and generating such a power density is capable of producing thermal neutron fluxes in a D 2 O reflector of 3 x 10 14 n/cm 2 ·s. A beryllium-filled central region of the core can further enhance the core leakage and hence the neutron flux in the reflector. (author)

  20. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2008-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site

  1. Nonlocal and Nonadiabatic Effects in the Charge-Density Response of Solids: A Time-Dependent Density-Functional Approach

    Science.gov (United States)

    Panholzer, Martin; Gatti, Matteo; Reining, Lucia

    2018-04-01

    The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.

  2. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    DEFF Research Database (Denmark)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...

  3. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2009-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states. The energy difference between the peaks of the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice we

  4. Relating saturation capacity to charge density in strong cation exchangers.

    Science.gov (United States)

    Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo

    2017-07-21

    In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Accretion onto a charged higher-dimensional black hole

    International Nuclear Information System (INIS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  6. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  7. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    Science.gov (United States)

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  8. The influence of oxidation on space charge formation in gamma-irradiated low-density polyethylene

    CERN Document Server

    Chen, G; Xie, H K; Banford, H M; Davies, A E

    2003-01-01

    The research presented in this paper investigates the role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene after being electrically stressed under dc voltage. Polyethylene plaques both with and without antioxidant were irradiated up to 500 kGy using a sup 6 sup 0 Co gamma source and space charge distributions were measured using the piezoelectric induced pressure wave propagation method. It has been found that a large amount of positive charge evolved adjacent to the cathode in the sample without antioxidant and was clearly associated with oxidation of the surface. The amount of charge formed for a given applied stress increased with the dose absorbed by the material. A model has been proposed to explain the formation of space charge and its profile. The charge decay after the removal of the external applied stress is dominated by a process being controlled by the cathode interfacial stress (charge injection) rather than a conventional RC circuit model. On the other ...

  9. Spectrum of hydrodynamic volumes and sizes of macromolecules of linear polyelectrolytes versus their charge density in salt-free aqueous solutions.

    Science.gov (United States)

    Pavlov, Georges M; Dommes, Olga A; Okatova, Olga V; Gavrilova, Irina I; Panarin, Evgenii F

    2018-04-18

    Molecular characteristics of statistical copolymers based on hydrophilic poly(N-methyl-N-vinylacetamide) have been monitored throughout the entire possible range of charge density from 1.5 to 39 mol%. Different trends in the dependence of intrinsic viscosity on the average charge density of polymer chains at minimal ionic strength were revealed. A new parameter, lqq/Abare, describing this behavior was proposed (lqq is the average distance between the neighboring charges along the chain, and Abare is the statistical segment length of a non-charged homologue). For polyelectrolyte chains, this parameter allows the regions of charge density values where electrostatic long-range or short-range interactions dominate to be indicated. Two homologous series of copolymers were characterized by methods of molecular hydrodynamics under conditions of suppressed charge effects. Intrinsic viscosity in salt-free solutions characterizing an individual macromolecule was estimated by a method proposed earlier [Pavlov et al., Russ. J. Appl. Chem., 2006, 79, 1407-1412].

  10. Charge density wave instabilities and incommensurate structural phase transformations

    International Nuclear Information System (INIS)

    Axe, J.D.

    1977-10-01

    Incommensurate structural phase transformations involve the appearance of modulated atomic displacements with spatial periodicity unrelated to the fundamental periodicity of the basic lattice. In the case of some quasi one- or two-dimensional metals such transformations are the result of Fermi-surface instabilities that also produce electronic charge density waves (CDW's) and soft phonon modes due to metallic electron screening singularities. Incommensurate soft mode instabilities have been found in insulators as well. Recent neutron scattering studies of both the statics and dynamics of incommensurate structural instabilities will be reviewed

  11. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    Science.gov (United States)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  12. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  13. Resonant soft x-ray scattering and charge density waves in correlated systems

    NARCIS (Netherlands)

    Rusydi, Andrivo

    2006-01-01

    Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu

  14. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    International Nuclear Information System (INIS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  15. Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves

    DEFF Research Database (Denmark)

    Wang, Z.Z.; Gorard, J.C.; Pasquier, C.

    2003-01-01

    Charge density waves (CDWs) have been studied at the surface of a cleaved tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) single crystal using a low temperature scanning tunneling microscope (STM) under ultrahigh-vacuum conditions, between 300 and 33 K with molecular resolution. All CDW...

  16. Charge density wave crossover at low fillings in the fractional quantum Hall regime

    International Nuclear Information System (INIS)

    Cabo, A.; Claro, F.; Perez, A.; Maze, J.

    2006-08-01

    We show that besides the Wigner Crystal, the lowest Landau level supports a state with the same crystalline symmetry but qualitatively different charge density distribution at low densities. Instead of periodic peaks the new state forms percolating ridges that may favor an energy decrease through correlated ring exchange contributions. For the case of half electron per cell a crossover is found close to filling 1/7 between this new state and the Wigner-like solid, showing that transitions may occur from one to the other as the electron density is varied. This result is consistent with recent experimental findings. (author)

  17. Exchange correlation effects on plasmons and on charge-density wave instability in narrow-band quasi-one-dimensional metals

    International Nuclear Information System (INIS)

    Nobile, A.; Tosatti, E.

    1979-05-01

    The coexistence of tight-binding and exchange-correlation effects inside each chain of a model quasi-one-dimensional metal, on both plasmon and charge density wave properties have been studied. The results, while in qualitative agreement with other treatments of the problem at long wavelengths, indicate a strong tendency for plasmons to turn into excitons at larger momenta, and to exhibit an ''excitonic'' charge-density wave instability at k approximately 2ksub(F). The nature of the plasmon branches and of the excitonic charge distortion is examined. Relevance to existing quasi-one-dimensional materials is also discussed. (author)

  18. Modeling the Electric Potential and Surface Charge Density near Charged Thunderclouds

    Science.gov (United States)

    Neel, Matthew Stephen

    2018-01-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and…

  19. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    Science.gov (United States)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  20. Characterization of surface charge and mechanical properties of chitosan/alginate based biomaterials

    International Nuclear Information System (INIS)

    Verma, Devendra; Desai, Malav S.; Kulkarni, Namrata; Langrana, Noshir

    2011-01-01

    This study aims to examine mechanical properties and surface charge characteristics of chitosan/alginate-based films for biomedical applications. By varying the concentrations of chitosan and alginate, we have developed films with varying surface charge densities and mechanical characteristics. The surface charge densities of these films were determined by applying an analytical model on force curves derived from an atomic force microscope (AFM). The average surface charge densities of films containing 60% chitosan and 80% chitosan were found to be - 0.46 mC/m 2 and - 0.32 mC/m 2 , respectively. The surface charge density of 90% chitosan containing films was found to be neutral. The elastic moduli and the water content were found to be decreasing with increasing chitosan concentration. The films with 60%, 80% and 90% chitosan gained 93.5 ± 6.6%, 217.1 ± 22.1% and 396.8 ± 67.5% of their initial weight, respectively. Their elastic moduli were found to be 2.6 ± 0.14 MPa, 1.9 ± 0.27 MPa and 0.93 ± 0.12 MPa, respectively. The trend observed in the mechanical response of these films has been attributed to the combined effect of the concentration of polyelectrolyte complexes (PEC) and the amount of water absorbed. The Fourier transform infrared spectroscopy experiments indicate the presence of higher alginate on the surface of the films compared to the bulk in all films. The presence of higher alginate on surface is consistent with negative surface charge densities of these films, determined from AFM experiments. Highlights: → Chitosan/alginate based fibrous polyelectrolyte complex films were developed. → The average surface charge density of the films was determined using AFM. → Elastic modulus of the films increased with increase in PEC content. → FTIR analysis indicated higher alginate content on surface compared to bulk.

  1. Nonequilibrium response of an electron-mediated charge density wave ordered material to a large dc electric field

    Science.gov (United States)

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-01-01

    Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.

  2. Persistent Charge-Density-Wave Order in Single-Layer TaSe2.

    Science.gov (United States)

    Ryu, Hyejin; Chen, Yi; Kim, Heejung; Tsai, Hsin-Zon; Tang, Shujie; Jiang, Juan; Liou, Franklin; Kahn, Salman; Jia, Caihong; Omrani, Arash A; Shim, Ji Hoon; Hussain, Zahid; Shen, Zhi-Xun; Kim, Kyoo; Min, Byung Il; Hwang, Choongyu; Crommie, Michael F; Mo, Sung-Kwan

    2018-02-14

    We present the electronic characterization of single-layer 1H-TaSe 2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.

  3. Moment approach to charged particle beam dynamics

    International Nuclear Information System (INIS)

    Channell, P.J.

    1983-01-01

    We have derived the hierarchy of moment equations that describes the dynamics of charged-particle beams in linear accelerators and can truncate the hierarchy at any level either by discarding higher moments or by a cumulant expansion discarding only correlation functions. We have developed a procedure for relating the density expansion linearly to the moments to any order. The relation of space-charge fields to the density has been derived; and an accurate, systematic, and computationally convenient expansion of the resultant integrals has been developed

  4. Full charge-density scheme with a kinetic-energy correction: Application to ground-state properties of the 4d metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J.; Skriver, Hans Lomholt

    1997-01-01

    defined within nonoverlapping, space-filling Wigner-Seitz cells; the exchange-correlation energy is evaluated by means of the local-density approximation or the generalized gradient approximation applied to the complete charge-density; and the ASA kinetic energy is corrected for the nonspherically...... symmetric charge density by a gradient expansion. The technique retains most of the simplicity and the computational efficiency of the LMTO-ASA method, and calculations of atomic volumes and elastic constants of the 4d elements show that it has the accuracy of full-potential methods....

  5. Strain Tuning of the Charge Density Wave in Monolayer and Bilayer 1T-TaS2

    KAUST Repository

    Gan, Liyong

    2015-12-07

    By first-principles calculations, we investigate the strain effects on the charge density wave states of monolayer and bilayer 1T-TaS2. The modified stability of the charge density wave in the monolayer is understood in terms of the strain dependent electron localization, which determines the distortion amplitude. On the other hand, in the bilayer the effect of strain on the interlayer interaction is also crucial. The rich phase diagram under strain opens new venues for applications of 1T-TaS2. We interpret the experimentally observed insulating state of bulk 1T-TaS2 as inherited from the monolayer by effective interlayer decoupling.

  6. New density estimation methods for charged particle beams with applications to microbunching instability

    International Nuclear Information System (INIS)

    Terzic, B.; Bassi, G.

    2011-01-01

    In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)G. Bassi and B. Terzic, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043), designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)), and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.

  7. Charge density of 58Ni, by scattering of electrons at high moment transfer

    International Nuclear Information System (INIS)

    Turck, Sylvaine

    1976-01-01

    Due to the unique electromagnetic interaction involved, electron elastic scattering allows a nuclear structure to be tested through nucleus magnetisation and charge distribution. In a first part, this research thesis reports experiments performed on the Saclay Linear Accelerator (ALS) with the 58 Ni nucleus, a well closed magic nucleus which allows a qualitative comparison between experiments and Hartree-Fock calculations to be performed. The author presents the experimental set-up, describes data acquisition, data reduction and corrections. The second part proposes a theoretical introduction to electron scattering, discusses the analysis without model, and theoretical predictions of charge density

  8. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS2

    Science.gov (United States)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    2017-11-01

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW → NCCDW transition.

  9. Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves

    Science.gov (United States)

    Heydari-Fard, M.; Hasani, S. N.

    We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.

  10. Phase slip process and charge density wave dynamics in a one dimensional conductor

    Science.gov (United States)

    Habiballah, N.; Zouadi, M.; Arbaoui, A.; Qjani, M.; Dumas, J.

    In this paper, we study the phase slip effect on the charge density wave (CDW) dynamics in a one-dimensional conductor in the weak pinning limit. A considerable enhancement of JCDW is observed in the presence of phase slips. In addition, a spatial dependence of the CDW current density JCDW is also studied showing that a decrease of JCDW with distance from the current contact occurs. The results are discussed in terms the relationship between additional phase slips and the mobility of phase dislocations nucleated at electrical contacts.

  11. Experimental surface charge density of the Si (100)-2x1H surface

    DEFF Research Database (Denmark)

    Ciston, J.; Marks, L.D.; Feidenhans'l, R.

    2006-01-01

    We report a three-dimensional charge density refinement from x-ray diffraction intensities of the Si (100) 2x1H surface. By paying careful attention to parameterizing the bulk Si bonding, we are able to locate the hydrogen atoms at the surface, which could not be done previously. In addition, we...

  12. Determination of charge carrier mobility in doped low density polyethylene using DC transients

    DEFF Research Database (Denmark)

    Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens

    1989-01-01

    Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...

  13. Studies of the pressure dependence of the charge density distribution in cerium phosphide by the maximum-entropy method

    CERN Document Server

    Ishimatsu, N; Takata, M; Nishibori, E; Sakata, M; Hayashi, J; Shirotani, I; Shimomura, O

    2002-01-01

    The physical properties relating to 4f electrons in cerium phosphide, especially the temperature dependence and the isomorphous transition that occurs at around 10 GPa, were studied by means of x-ray powder diffraction and charge density distribution maps derived by the maximum-entropy method. The compressibility of CeP was exactly determined using a helium pressure medium and the anomaly that indicated the isomorphous transition was observed in the compressibility. We also discuss the anisotropic charge density distribution of Ce ions and its temperature dependence.

  14. Diffusive charge transport in graphene

    Science.gov (United States)

    Chen, Jianhao

    The physical mechanisms limiting the mobility of graphene on SiO 2 are studied and printed graphene devices on a flexible substrate are realized. Intentional addition of charged scattering impurities is used to study the effects of charged impurities. Atomic-scale defects are created by noble-gas ions irradiation to study the effect of unitary scatterers. The results show that charged impurities and atomic-scale defects both lead to conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates. While charged impurities cause intravalley scattering and induce a small change in the minimum conductivity, defects in graphene scatter electrons between the valleys and suppress the minimum conductivity below the metallic limit. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a small resistivity which is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity. Graphene is also made into high mobility transparent and flexible field effect device via the transfer-printing method. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime, and show the promise of graphene as a novel electronic material that have potential applications not only on conventional inorganic substrates, but also on flexible substrates.

  15. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun

    2014-08-06

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  16. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun; Gan, Liyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  17. The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2013-01-01

    A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)

  18. Surface-plasmon dispersion relation for the inhomogeneous charge-density medium

    International Nuclear Information System (INIS)

    Harsh, O.K.; Agarwal, B.K.

    1989-01-01

    The surface-plasmon dispersion relation is derived for the plane-bounded electron gas when there is an inhomogeneous charge-density distribution in the plasma. The hydrodynamical model is used. Both cphi and dcphi/dx are taken to be continuous at the surface of the slab, where cphi is the scalar potential. The dispersion relation is compared with the theoretical works of Stern and Ferrell and of Harsh and Agarwal. It is also compared with the observations of Kunz. A dispersion relation for the volume-plasmon oscillations is derived which resembles the well-known relation of Bohm and Pines

  19. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Astakhov, Oleksandr; Carius, Reinhard; Finger, Friedhelm; Petrusenko, Yuri; Borysenko, Valery; Barankov, Dmytro

    2009-01-01

    The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparing intrinsic amorphous and microcrystalline silicon, it is found that the relationship between defect density and photoconductivity is different in both undoped materials, while a similar strong influence of the position of the Fermi level on photoconductivity via the charge carrier lifetime is found in the doped materials. The latter allows a quantitative determination of the value of the transport gap energy in microcrystalline silicon. The photoconductivity in intrinsic microcrystalline silicon is, on one hand, considerably less affected by the bombardment but, on the other hand, does not generally recover with annealing of the defects and is independent from the spin density which itself can be annealed back to the as-deposited level. For amorphous silicon and material prepared close to the crystalline growth regime, the results for nonequilibrium transport fit perfectly to a recombination model based on direct capture into neutral dangling bonds over a wide range of defect densities. For the heterogeneous microcrystalline silicon, this model fails completely. The application of photoconductivity spectroscopy in the constant photocurrent mode (CPM) is explored for the entire structure composition range over a wide variation in defect densities. For amorphous silicon previously reported linear correlation between the spin density and the subgap absorption is confirmed for defect densities below 10 18 cm -3 . Beyond this defect level, a sublinear relation is found i.e., not

  20. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.

    Science.gov (United States)

    Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A

    2018-06-13

    Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.

  1. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density.

    Science.gov (United States)

    He, Xianming; Guo, Hengyu; Yue, Xule; Gao, Jun; Xi, Yi; Hu, Chenguo

    2015-02-07

    Nanogenerators with capacitor structures based on piezoelectricity, pyroelectricity, triboelectricity and electrostatic induction have been extensively investigated. Although the electron flow on electrodes is well understood, the maximum efficiency-dependent structure design is not clearly known. In this paper, a clear understanding of triboelectric generators with capacitor structures is presented by the investigation of polydimethylsiloxane-based composite film nanogenerators, indicating that the generator, in fact, acts as both an energy storage and output device. Maximum energy storage and output depend on the maximum charge density on the dielectric polymer surface, which is determined by the capacitance of the device. The effective thickness of polydimethylsiloxane can be greatly reduced by mixing a suitable amount of conductive nanoparticles into the polymer, through which the charge density on the polymer surface can be greatly increased. This finding can be applied to all the triboelectric nanogenerators with capacitor structures, and it provides an important guide to the structural design for nanogenerators. It is demonstrated that graphite particles with sizes of 20-40 nm and 3.0% mass mixed into the polydimethylsiloxane can reduce 34.68% of the effective thickness of the dielectric film and increase the surface charges by 111.27% on the dielectric film. The output power density of the triboelectric nanogenerator with the composite polydimethylsiloxane film is 3.7 W m(-2), which is 2.6 times as much as that of the pure polydimethylsiloxane film.

  2. Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations

    Science.gov (United States)

    Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.

    2017-10-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

  3. Nonuniversal critical behaviour in a model for charge density wave dynamics

    International Nuclear Information System (INIS)

    Ritala, R.K.; Hertz, J.A.

    1986-02-01

    We have studied short range fluctuations around the infinite-range model of charge density wave (CDW) dynamics. We find that the inhomogeneity of the local field, which is neglected in the infinite-range approximation has a dramatic effect on the transition. In the Bethe approximation the critical behaviour is nonuniversal. In particular, the current exponent is ζ = 3/2 log(z-1)/[log(z)]+log(1+f/J)], where z is the number of neighbors, f the pinning strength, and J the elastic coupling. (orig.)

  4. A Raman study of the charge-density-wave state in A(0.3)MoO(3) (A = K, Rb)

    NARCIS (Netherlands)

    Sagar, D. M.; Fausti, D.; Yue, S.; Kuntscher, C. A.; van Smaalen, S.; van Loosdrecht, P. H. M.

    2008-01-01

    We report a comparative Raman spectroscopic study of the quasi-one-dimensional charge-density-wave (CDW) systems A(0.3)MoO(3) (A = K, Rb). Temperature- and polarization-dependent experiments reveal charge-coupled vibrational Raman features. The strongly temperature-dependent collective amplitudon

  5. Charge density glass dynamics - Soft potentials and soft modes

    Energy Technology Data Exchange (ETDEWEB)

    Biljakovic, K., E-mail: katica@ifs.hr [Institute of Physics, HR-10001, Zagreb, P.O. Box 304 (Croatia); Staresinic, D., E-mail: damirs@ifs.hr [Institute of Physics, HR-10001, Zagreb, P.O. Box 304 (Croatia); Lasjaunias, J.C., E-mail: jean-claude.lasjaunias@pop3.grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Remenyi, G., E-mail: Gyorgy.Remenyi@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Melin, R., E-mail: Regis.Melin@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Monceau, P., E-mail: pierre.monceau@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Sahling, S., E-mail: sven.olaf@gmail.com [Institut fuer Festkoerperphysik, Universitaet Dresden, D-01062, Dresden (Germany)

    2012-06-01

    An universal fingerprint of glasses has been found in low-temperature thermodynamic properties of charge/spin density wave (C/SDW) systems. Deviations from the well-known Debye, elastic continuum prediction for specific heat (flat C{sub p}/T{sup 3} plot) appear as two anomalies; the upturn below 1 K and a broad bump at T{approx}10 K (named Boson peak in glasses). The first one, inherent of localized two level systems within the shalow corrugated phase space, exhibits slow relaxation with the complex dynamics. The second one, 'Boson peak-like peak' was attributed to the pinned mode and incomplete softening of CDW superstructural mode. We discuss similar C{sub p}(T) features found also in incommensurate dielectrics with well documented soft-mode anomalies.

  6. Application of double-hybrid density functionals to charge transfer in N-substituted pentacenequinones.

    Science.gov (United States)

    Sancho-García, J C

    2012-05-07

    A set of N-heteroquinones, deriving from oligoacenes, have been recently proposed as n-type organic semiconductors with high electron mobilities in thin-film transistors. Generally speaking, this class of compounds self-assembles in neighboring π-stacks linked by weak hydrogen bonds. We aim at theoretically characterizing here the sequential charge transport (hopping) process expected to take place across these arrays of molecules. To do so, we need to accurately address the preferred packing of these materials simultaneously to single-molecule properties related to charge-transfer events, carefully employing dispersion-corrected density functional theory methods to accurately extract the key molecular parameters governing this phenomenon at the nanoscale. This study confirms the great deal of interest around these compounds, since controlled functionalization of model molecules (i.e., pentacene) allows to efficiently tune the corresponding charge mobilities, and the capacity of modern quantum-chemical methods to predict it after rationalizing the underlying structure-property relationships.

  7. Charge and spin density in s-stable rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Graaf, H. de.

    1982-01-01

    This thesis deals with a study of the electronic structure of rare earth intermetallic compounds, in particular the electronic charge and spin density distribution. These are closely related to the properties of the rare earth ions, which carry the partly filled 4f shell. In chapter 1 a survey of the theory of hyperfine interaction as far as it has a bearing on the Moessbauer effect of 155 Gd and 151 Eu is given. Also some details of the Moessbauer spectra, which have practical importance are discussed. In chapter 2 the experimental set-up is described. Special attention is paid to the gamma radiation source and gamma detection requirements. In chapter 3 the author introduces the theoretical framework which will be used to interpret the measurements. In chapter 4 the results of the 155 Gd Moessbauer measurements are presented. Also it is discussed how the result can be understood in terms of the charge and spin density in rare earth intermetallic compounds. In order to lend support to the picture emerging from the previous chapter, in chapter 5 the conduction electron band structure of some representative Gd intermetallics is computed with an approximate semi-empirical LCAO method. The results are compared with those from chapter 4. Finally, in chapter 6, the 151 Eu resonance is used to investigate the temperature dependence of the hyperfine field and line width in the Eu intermetallic compounds Eu 2 Mg 17 and EuMg 5 . (Auth.)

  8. Revisiting conserved charges in higher curvature gravitational theories

    Science.gov (United States)

    Ghodrati, M.; Hajian, K.; Setare, M. R.

    2016-12-01

    Restricting the covariant gravitational phase spaces to the manifold of parametrized families of solutions, the mass, angular momenta, entropies, and electric charges can be calculated by a single and simple method. In this method, which has been called the "solution phase space method," conserved charges are unambiguous and regular. Moreover, assuming the generators of the charges to be exact symmetries, entropies and other conserved charges can be calculated on almost arbitrary surfaces, not necessarily horizons or asymptotics. Hence, the first law of thermodynamics would be a local identity relating the exact symmetries to which the mass, angular momentum, electric charge, and entropy are attributed. In this paper, we apply this powerful method to the f( R) gravitational theories accompanied by the terms quadratic in the Riemann and Ricci tensors. Furthermore, conserved charges and the first law of thermodynamics for some of their black hole solutions are exemplified. The examples include warped AdS_3, charged static BTZ, and 3-dimensional z=3 Lifshitz black holes.

  9. Random distribution of background charge density for numerical simulation of discharge inception

    International Nuclear Information System (INIS)

    Grange, F.; Loiseau, J.F.; Spyrou, N.

    1998-01-01

    The models of electric streamers based on a uniform background density of electrons may appear not to be physical, as the number of electrons in the small active region located in the vicinity of the electrode tip under regular conditions can be less than one. To avoid this, the electron background is modelled by a random density distribution such that, after a certain time lag, at least one electron is present in the grid close to the point electrode. The modelling performed shows that the streamer inception is not very sensitive to the initial location of the charged particles; the ionizing front, however, may be delayed by several tens of nanoseconds, depending on the way the electron has to drift before reaching the anode. (J.U.)

  10. Flocculation of Clay Colloids Induced by Model Polyelectrolytes: Effects of Relative Charge Density and Size.

    Science.gov (United States)

    Sakhawoth, Yasine; Michot, Laurent J; Levitz, Pierre; Malikova, Natalie

    2017-10-06

    Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Revisiting conserved charges in higher curvature gravitational theories

    Energy Technology Data Exchange (ETDEWEB)

    Ghodrati, M. [University of Michigan, Michigan Center for Theoretical Physics, Randall Laboratory of Physics, Ann Arbor, MI (United States); Hajian, K. [Institute for Research in Fundamental Sciences (IPM), School of Physics, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Campus of Bijar, Bijar (Iran, Islamic Republic of)

    2016-12-15

    Restricting the covariant gravitational phase spaces to the manifold of parametrized families of solutions, the mass, angular momenta, entropies, and electric charges can be calculated by a single and simple method. In this method, which has been called the ''solution phase space method,'' conserved charges are unambiguous and regular. Moreover, assuming the generators of the charges to be exact symmetries, entropies and other conserved charges can be calculated on almost arbitrary surfaces, not necessarily horizons or asymptotics. Hence, the first law of thermodynamics would be a local identity relating the exact symmetries to which the mass, angular momentum, electric charge, and entropy are attributed. In this paper, we apply this powerful method to the f(R) gravitational theories accompanied by the terms quadratic in the Riemann and Ricci tensors. Furthermore, conserved charges and the first law of thermodynamics for some of their black hole solutions are exemplified. The examples include warped AdS{sub 3}, charged static BTZ, and 3-dimensional z = 3 Lifshitz black holes. (orig.)

  12. Revisiting conserved charges in higher curvature gravitational theories

    International Nuclear Information System (INIS)

    Ghodrati, M.; Hajian, K.; Setare, M.R.

    2016-01-01

    Restricting the covariant gravitational phase spaces to the manifold of parametrized families of solutions, the mass, angular momenta, entropies, and electric charges can be calculated by a single and simple method. In this method, which has been called the ''solution phase space method,'' conserved charges are unambiguous and regular. Moreover, assuming the generators of the charges to be exact symmetries, entropies and other conserved charges can be calculated on almost arbitrary surfaces, not necessarily horizons or asymptotics. Hence, the first law of thermodynamics would be a local identity relating the exact symmetries to which the mass, angular momentum, electric charge, and entropy are attributed. In this paper, we apply this powerful method to the f(R) gravitational theories accompanied by the terms quadratic in the Riemann and Ricci tensors. Furthermore, conserved charges and the first law of thermodynamics for some of their black hole solutions are exemplified. The examples include warped AdS 3 , charged static BTZ, and 3-dimensional z = 3 Lifshitz black holes. (orig.)

  13. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT and Time-Dependent Density Functional Theory (TD-DFT Study

    Directory of Open Access Journals (Sweden)

    Guo-Jun Kang

    2016-11-01

    Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.

  14. Higher glandular trichome density in tomato leaflets and repellence to spider mites

    International Nuclear Information System (INIS)

    Maluf, Wilson Roberto; Inoue, Irene Fumi; Ferreira, Raphael de Paula Duarte; Gomes, Luiz Antonio Augusto; Castro, Evaristo Mauro de; Cardoso, Maria das Gracas

    2007-01-01

    The objective of this work was to evaluate the feasibility of selection for higher glandular trichome densities, as an indirect criterion of selection for increasing repellence to spider mites Tetranychus urticae, in tomato populations derived from an interspecific cross between Lycopersicon esculentum x L. hirsutum var. glabratum PI 134417. Trichome densities were evaluated in 19 genotypes, including 12 from advanced backcross populations, derived from the original cross L. esculentum x L. hirsutum var. glabratum PI 134417. Counts were made both on the adaxial and abaxial leaf surfaces, and trichomes were classified into glandular types IV and VI, other glandular types (types I+VII), and nonglandular types. Mite repellence was measured by distances walked by mites onto the tomato leaf surface after 20, 40 and 60 min. Spider mite repellence biotests indicated that higher densities of glandular trichomes (especially type VI) decreased the distances walked by the mites onto the tomato leaf surface. Selection of plants with higher densities of glandular trichomes can be an efficient criterion to obtain tomato genotypes with higher resistance (repellence) to spider mites. (author)

  15. A comparative study of Dirac quasinormal modes of charged black holes in higher dimensions

    International Nuclear Information System (INIS)

    Chakrabarti, Sayan K.

    2009-01-01

    In this work we study the Dirac quasinormal modes of higher dimensional charged black holes. Higher dimensional Reissner-Nordstroem type black holes as well as charged black holes in Einstein-Gauss-Bonnet theories are studied for fermionic perturbations using WKB method. A comparative study of the quasinormal modes in the two different theories of gravity has been performed. The behavior of the frequencies with the variation of black hole parameters as well as with the variation of space-time dimensions is studied. We also study the large multipole number limit of the black hole potential in order to look for an analytic expression for the frequencies. (orig.)

  16. The deduction of low-Z ion temperature and densities in the JET tokamak using charge exchange recombination spectroscopy

    International Nuclear Information System (INIS)

    Boileau, A.; Hellermann, M. von; Horton, L.D.; Spence, J.; Summers, H.P.

    1989-01-01

    A charge exchange recombination spectroscopy (CXRS) diagnostic has been established on JET to study fully stripped low-Z species. Ion temperature in the plasma centre is measured from visible lines of helium, carbon and oxygen excited by charge exchange with heating neutral beam particles. Coincident cold components produced at the plasma edge are apparent on helium and carbon spectra and most spectra are subject to accidental blending from other species' edge plasma emission. The charge exchange feature can be isolated from the various composite lines and all three impurities agree on the same temperature within experimental error. Observed column emissivities are converted into absolute impurity densities using a neutral beam attenuation code and charge exchange effective rate coefficients. Comprehensive new calculations have been performed to obtain the effective rate coefficients. The models take detailed account of cascading and the influence of the plasma environment in causing l-mixing, and allow the n-dependence of the rate coefficients to be addressed experimentally. The effective ion charge reconstructed from simultaneous measurements of the densities of dominant impurities shows good agreement with the value inferred from visible Bremsstrahlung. Some illustrative results are shown for helium (helium discharge or minority r.f.. heating), carbon and oxygen concentrations monitored during characteristic operating regimes. (author)

  17. Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: a partially perturbative density functional theory study.

    Science.gov (United States)

    Peng, Bo; Yu, Yang-Xin

    2009-10-07

    The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.

  18. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    Science.gov (United States)

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Transverse charge and magnetization densities: Improved chiral predictions down to b=1 fms

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Jose Manuel [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hiller Blin, Astrid N. [Johannes Gutenberg Univ., Mainz (Germany); Vicente Vacas, Manuel J. [Spanish National Research Council (CSIC), Valencia (Spain). Univ. of Valencia (UV), Inst. de Fisica Corpuscular; Weiss, Christian [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-03-01

    The transverse charge and magnetization densities provide insight into the nucleon’s inner structure. In the periphery, the isovector components are clearly dominant, and can be computed in a model-independent way by means of a combination of chiral effective field theory (cEFT) and dispersion analysis. With a novel N=D method, we incorporate the pion electromagnetic formfactor data into the cEFT calculation, thus taking into account the pion-rescattering effects and r-meson pole. As a consequence, we are able to reliably compute the densities down to distances b1 fm, therefore achieving a dramatic improvement of the results compared to traditional cEFT calculations, while remaining predictive and having controlled uncertainties.

  20. Topological defect and quasi-particle dynamics in charge density waves

    International Nuclear Information System (INIS)

    Hayashi, Masahiko; Ebisawa, Hiromichi

    2010-01-01

    The dynamics of topological defects (dislocations) in charge density waves (CDW's) is largely affected by the quasi-particle dynamics in the cores of the dislocations. The dislocations mediate the conversion of the electron number between condensate and quasi-particle sub-systems. This is especially important in the sliding conduction of CDW. In this work we propose a simple model, which is obtained by extending the Ginzburg-Landau theory partially taking into account the quasi-particle dynamics in the sense of two-fluid model. We perform the numerical simulation of sliding conduction of CDW based on our model. Using this model we may clarify the detailed process of dislocation nucleation and annihilation near the contacts.

  1. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids.

    Science.gov (United States)

    Lian, Cheng; Zhao, Shuangliang; Liu, Honglai; Wu, Jianzhong

    2016-11-28

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this work, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the duration of charging. Furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.

  2. Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at sNN=5.02 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam

    2017-09-01

    Full Text Available We present the charged-particle pseudorapidity density in Pb–Pb collisions at sNN=5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from −3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0–5% collisions we find 21400±1300, while for the most peripheral (80–90% we find 230±38. This corresponds to an increase of (27±4% over the results at sNN=2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations — none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.

  3. Azimuthal asymmetries of the charged particle densities in EAS in the range of KASCADE-Grande

    International Nuclear Information System (INIS)

    Sima, O.; Morariu, C.; Manailescu, C.; Rebel, H.; Haungs, A.

    2009-03-01

    The reconstruction of Extended Air Showers (EAS) observed by ground level particle detectors is based on the characteristics of observables like particle lateral density (PLD), arrival time signals etc. Lateral densities, inferred from detector data, are usually parameterized by applying various lateral distribution functions (LDF). The LDFs are used in turn for evaluating quantities like the total number of particles, the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the particle lateral density from this assumption are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. In this report we discuss the origin of the asymmetry: geometric, attenuation and geomagnetic effects. Geometric effects occur in the case of inclined showers, due to the fact that the observations are made in a plane different from the intrinsic shower plane. Hence the projection procedure from the observational plane to the relevant normal shower plane plays a significant role. Attenuation effects arise from the differences between the distances travelled by particles that reach the ground at the same radial coordinate but with various azimuthal positions in the case of inclined showers. The influence of the geomagnetic field distorts additionally the charged particle distributions in a way specific to the geomagnetic location. Based on dedicated CORSIKA simulations we have evaluated the magnitude of the effects. Focused to geometric and attenuation effects, procedures for minimizing the effects of the azimuthal asymmetry of lateral density in the intrinsic shower plane were developed. The consequences of the reconstruction of the charge particle sizes determined with the Grande array are also discussed and a procedure for practical application of restoring the azimuthal symmetry

  4. Comparison of the Volume Charge Density of Nanofiltration Membranes Obtained from Retention and Conductivity Experiments

    DEFF Research Database (Denmark)

    Benavente, J.; Silva, V.; Pradanos, P.

    2010-01-01

    A version of the Donnan steric-partitioning pore model with dielectrical exclusion (DSPM-DE) has been used to get information on the pore size and charge density of a commercial membrane, NF45 from FilmTec, from its retention of KCl solutions. The conductivity inside the pores has been measured b...

  5. Diffusive charge transport in graphene on SiO 2

    Science.gov (United States)

    Chen, J.-H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S.

    2009-07-01

    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO 2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density ( σ(n)∝n) in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates; increased dielectric screening reduces the scattering from charged impurities, but increases the scattering from short-range scatterers. We evaluate the effects of the corrugations (ripples) of graphene on SiO 2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity that is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO 2 substrate give rise to an activated, carrier density-dependent resistivity. Together the results paint a complete picture of charge carrier transport in graphene on SiO 2 in the diffusive regime.

  6. Superconductor (Nb)-charge density wave (NbSe sub 3) point-contact spectroscopy

    CERN Document Server

    Sinchenko, A A

    2003-01-01

    Measurements of differential current-voltage (I-V) characteristics of point contacts between Nb and the charge density wave (CDW) conductor NbSe sub 3 formed along the conducting chain direction are reported. Below the superconducting transition of Nb, we have clearly observed Andreev reflection of the gapless electrons of NbSe sub 3. Analysis of the spectra obtained indicates that when the energy of injected particles exceeds the superconducting energy gap, the superconductivity near the S-CDW interface is suppressed because of non-equilibrium effects.

  7. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rak, Zs.; Rost, C. M.; Lim, M.; Maria, J.-P.; Brenner, D. W. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States); Sarker, P.; Toher, C.; Curtarolo, S. [Department of Mechanical Engineering and Materials Science and Center for Materials Genomics, Duke University, Durham, North Carolina 27708 (United States)

    2016-09-07

    Density functional theory calculations were carried out for three entropic rocksalt oxides, (Mg{sub 0.1}Co{sub 0.1}Ni{sub 0.1}Cu{sub 0.1}Zn{sub 0.1})O{sub 0.5}, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved density of states (DOS) for Co{sup +3} in J14 + Li are very different from Co{sup +2}, while for Cu and Ni the Bader charges form continuous distributions and the two DOS are similar for the two oxidation states. Experimental detection of different oxidation states may therefore be challenging for Cu and Ni compared to Co. Based on these results, empirical stability parameters for these entropic oxides may be more complicated than those for non-oxide entropic solids.

  8. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    Science.gov (United States)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.

    2017-10-01

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

  9. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS2

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, USA; Luican-Mayer, Adina [Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Bhattacharya, Anand [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2017-11-27

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.

  10. BULK THERMODYNAMICS AND CHARGE FLUCTUATIONS AT NON-VANISHING BARYON DENSITY

    International Nuclear Information System (INIS)

    MIAO, C.; SCHMIDT, C.

    2007-01-01

    We present results on bulk thermodynamic quantities as well as net baryon number, strangeness and electric charge fluctuations in QCD at non-zero density and temperature obtained from lattice calculations with almost physical quark masses for two values of the lattice cut-off aT = 1/4 and 1/6. We show that with our improved p4fa3-action the cut-off effects are under control when using lattices with a temporal extent of 6 or larger and that the contribution to the equation of state, which is due to a finite chemical potential is small for μ q /T < 1. Moreover, at vanishing chemical potential, i.e. under conditions almost realized at RHIC and the LHC, quartic fluctuations of net baryon number and strangeness are large in a narrow temperature interval characterizing the transition region from the low to high temperature phase. At non-zero baryon number density, strangeness fluctuations are enhanced and correlated to fluctuations of the net baryon number. If strangeness is furthermore forced to vanish, as it may be the case in systems created in heavy ion collisions, strangeness fluctuations are significantly smaller than baryon number fluctuations

  11. Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

    International Nuclear Information System (INIS)

    Hahn, Herwig; Kalisch, Holger; Vescan, Andrei; Pécz, Béla; Kovács, András; Heuken, Michael

    2015-01-01

    In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 10 13  cm –2 allowing to considerably shift the threshold voltage to more positive values

  12. Charge density wave behavior and order-disorder in the antiferromagnetic metallic series Eu (Ga1 -xAlx)4

    Science.gov (United States)

    Stavinoha, Macy; Cooley, Joya A.; Minasian, Stefan G.; McQueen, Tyrel M.; Kauzlarich, Susan M.; Huang, C.-L.; Morosan, E.

    2018-05-01

    The solid solution Eu (Ga1-xAlx) 4 was grown in single crystal form to reveal a rich variety of crystallographic, magnetic, and electronic properties that differ from the isostructural end compounds EuGa4 and EuAl4, despite the similar covalent radii and electronic configurations of Ga and Al. Here we report the onset of magnetic spin reorientation and metamagnetic transitions for x =0 -1 evidenced by magnetization and temperature-dependent specific heat measurements. TN changes nonmonotonously with x , and it reaches a maximum around 20 K for x =0.50 , where the a lattice parameter also shows an extreme (minimum) value. Anomalies in the temperature-dependent resistivity consistent with charge density wave behavior exist only for x =0.50 and 1. Density functional theory calculations show increased polarization between the Ga-Al covalent bonds in the x =0.50 structure compared to the end compounds, such that crystallographic order and chemical pressure are proposed as the causes of the charge density wave behavior.

  13. The scaling dimension of low lying Dirac eigenmodes and of the topological charge density

    CERN Document Server

    Aubin, C.; Gottlieb, Steven; Gregory, E.B.; Heller, Urs M.; Hetrick, J.E.; Osborn, J.; Sugar, R.; Toussaint, D.; de Forcrand, Ph.; Jahn, Oliver

    2005-01-01

    As a quantitative measure of localization, the inverse participation ratio of low lying Dirac eigenmodes and topological charge density is calculated on quenched lattices over a wide range of lattice spacings and volumes. Since different topological objects (instantons, vortices, monopoles, and artifacts) have different co-dimension, scaling analysis provides information on the amount of each present and their correlation with the localization of low lying eigenmodes.

  14. Revealing Extremely Low Energy Amplitude Modes in the Charge-Density-Wave Compound LaAgSb_{2}.

    Science.gov (United States)

    Chen, R Y; Zhang, S J; Zhang, M Y; Dong, T; Wang, N L

    2017-03-10

    Using infrared spectroscopy and ultrafast pump probe measurement, we have studied the two charge-density-wave (CDW) instabilities in the layered compound LaAgSb_{2}. The development of CDW energy gaps was clearly observed by optical spectroscopy, which removed most of the free carrier spectral weight. More interestingly, our time-resolved measurements revealed two coherent oscillations that softened by approaching the two phase transition temperatures, respectively. We addressed that these two oscillations come from the amplitude modes of CDW collective excitations, the surprisingly low energies (0.12 THz and 0.34 THz for the higher and lower temperature ones, respectively) of which are associated with the extremely small nesting wave vectors. Additionally, the amplitude and relaxation time of photoinduced reflectivity of LaAgSb_{2} single crystals stayed unchanged across the CDW phase transitions, which is quite rare and deserves further investigation.

  15. "3"1P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP

    International Nuclear Information System (INIS)

    Fan Guo-Zhi; Luo Jian-Lin; Chen Rong-Yan; Wang Nan-Lin

    2015-01-01

    We perform "3"1P nuclear magnetic resonance (NMR) measurements on a single crystal of RuP. The anomalies in resistivity at about T_A = 270 K and T_B = 330 K indicate that two phase transitions occur. The line shape of "3"1P NMR spectra in different temperature ranges is attributed to the charge density distribution. The Knight shift and spin-lattice relaxation rate 1/T_1T are measured from 10 K to 300 K. At about T_A = 270 K, they both decrease abruptly with the temperature reduction, which reveals the gap-opening behavior. Well below T_A, they act like the case of normal metal. Charge-density-wave phase transition is proposed to interpret the transition occurring at about T_A. (paper)

  16. Flavor structure of the nucleon electromagnetic form factors and transverse charge densities in the chiral quark-soliton model

    Science.gov (United States)

    Silva, António; Urbano, Diana; Kim, Hyun-Chul

    2018-02-01

    We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.

  17. Diverging strains near threshold: Breakdown of the elastic description of a charge density wave model

    International Nuclear Information System (INIS)

    Mungan, M.; Coppersmith, S.; Vinokur, V.M.

    1999-01-01

    We analyze the strains near threshold in 1-d charge density wave models at zero temperature and strong pinning. We show that in these models local strains diverge near the depinning threshold and characterize the scaling behavior of the phenomenon. This helps quantify when the underlying elastic description breaks down and plastic effects have to be included

  18. Microtubule Protofilament Number Is Modulated in a Step-Wise Fashion By the Charge of Density of An Enveloping Layer

    International Nuclear Information System (INIS)

    Raviv, U.; Nguyen, T.; Ghafouri, R.; Needleman, D.J.; Li, Y.; Miller, H.P.; Wilson, L.; Bruinsma, R.F.; Safinya, C.R.; UC, Santa Barbara; UCLA

    2007-01-01

    Microtubules are able to adjust their protofilament (PF) number and, as a consequence, their dynamics and function, to the assembly conditions and presence of cofactors. However, the principle behind such variations is poorly understood. Using synchrotron x-ray scattering and transmission electron microscopy, we studied how charged membranes, which under certain conditions can envelop preassembled MTs, regulate the PF number of those MTs. We show that the mean PF number, , is modulated primarily by the charge density of the membranes. decreases in a stepwise fashion with increasing membrane charge density. does not depend on the membrane-protein stoichiometry or the solution ionic strength. We studied the effect of taxol and found that increases logarithmically with taxol/tubulin stoichiometry. We present a theoretical model, which by balancing the electrostatic and elastic interactions in the system accounts for the trends in our findings and reveals an effective MT bending stiffness of order 10-100 k B T/nm, associated with the observed changes in PF number

  19. Effect of nonuniform radial density distribution on the space charge dominated beam bunching

    International Nuclear Information System (INIS)

    Sing Babu, P.; Goswami, A.; Pandit, V. S.

    2011-01-01

    Beam dynamics of a space charge dominated beam during the bunch compression is studied self consistently for the case of fixed shape non-uniform bell shape and hollow shape density distributions in the transverse direction. We have used thick slices at different parts of the beam to account for variation in the beam radius in the study of the transverse dynamics. The longitudinal dynamics has been studied using the disc model. The axial variation of the radius of the slices and emittance growth arising from the phase dependence of the transverse rf forces are also included in the simulation. We have modified the beam envelope equation to take into account the longitudinal space charge effect on the transverse motion which arises due to the finite bunch size. To demonstrate the application of the theoretical formulations developed, we have studied a sinusoidal beam bunching system and presented detailed numerical results.

  20. The Phase Transition of Higher Dimensional Charged Black Holes

    International Nuclear Information System (INIS)

    Li, Huaifan; Zhao, Ren; Zhang, Lichun; Guo, Xiongying

    2016-01-01

    We have studied phase transitions of higher dimensional charge black hole with spherical symmetry. We calculated the local energy and local temperature and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters (Q,Φ) of black hole thermodynamic system, in accordance with considering the state parameters (P,V) of van der Waals system, respectively. We obtain the critical point of black hole thermodynamic system and find that the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime and is intrinsic property of black hole thermodynamic system.

  1. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    Science.gov (United States)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  2. Impurity-induced modulations in PdxNbSe3 coupled to charge-density-wave formation

    Science.gov (United States)

    Xue, Q.; Gong, Y.; Drake, D. L.; Qian, J.; Coleman, R. V.

    1996-01-01

    Very dilute amounts of Pd in PdxNbSe3 introduce long-range electronic modulations of wavelength 7b0, 4b0, 3b0, and 2b0 at room temperature as the Pd concentration increases in the range x=0.002 to x=0.02 while the low-temperature charge-density waves (CDW's) initially remain unchanged. For x>=0.02 the low-temperature CDW's are quenched while the NbSe3 structure remains intact, and the high-temperature modulations disappear, indicating a clear correlation between the two effects. The magnetoquantum oscillations due to magnetic breakdown first detect the band-structure shift followed by the sudden quenching of the nested Fermi surface sheets. The atomic force microscope scans show substantial charge transfer between chains caused by the Pd doping.

  3. Numerical investigation of space charge electric field for a sheet ...

    Indian Academy of Sciences (India)

    One of the problems in scaling high power vacuum and plasma microwave sources to higher frequencies is the need to transport beams with higher space charge density, since the radio frequency circuit transverse dimensions tend to decrease with wavelength. The use of sheet electron beams can alleviate this difficulty ...

  4. Spatially-resolved studies of charge-density-wave phase slip and dynamics in NbSe3

    International Nuclear Information System (INIS)

    Lemay, S.G.; Adelman, T.L.; Zaitsev-Zotov, S.V.; Thorne, R.E.

    1999-01-01

    We review our spatially and temporally resolved studies of charge-density-wave (CDW) phase slip and dynamics in NbSe 3 . Measurements of the steady-state CDW current, phase slip and strain profiles and their transient evolutions in response to a change in current direction provide a detailed picture of the interplay between elastic deformations and plasticity in this material. (orig.)

  5. Origin of the charge density wave in 1T-TiSe2

    KAUST Repository

    Zhu, Zhiyong

    2012-06-27

    All-electron ab initio calculations are used to study the microscopic origin of the charge density wave (CDW) in 1T-TiSe2. A purely electronic picture is ruled out as a possible scenario, indicating that the CDW transition in the present system is merely a structural phase transition. The CDW instability is the result of a symmetry lowering by electron correlations occurring with electron localization. Suppression of the CDW in pressurized and in Cu-intercalated 1T-TiSe2 is explained by a delocalization of the electrons, which weakens the correlations and counteracts the symmetry lowering.

  6. Origin of the charge density wave in 1T-TiSe2

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    All-electron ab initio calculations are used to study the microscopic origin of the charge density wave (CDW) in 1T-TiSe2. A purely electronic picture is ruled out as a possible scenario, indicating that the CDW transition in the present system is merely a structural phase transition. The CDW instability is the result of a symmetry lowering by electron correlations occurring with electron localization. Suppression of the CDW in pressurized and in Cu-intercalated 1T-TiSe2 is explained by a delocalization of the electrons, which weakens the correlations and counteracts the symmetry lowering.

  7. Partition coefficients of methylated DNA bases obtained from free energy calculations with molecular electron density derived atomic charges.

    Science.gov (United States)

    Lara, A; Riquelme, M; Vöhringer-Martinez, E

    2018-05-11

    Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model

  8. Interactions Between Charged Macroions Mediated by Molecules with Rod-like Charged Structures

    Directory of Open Access Journals (Sweden)

    Bohinc, K.

    2014-03-01

    Full Text Available A short review of recent theoretical advances in studies of the interaction between highly charged systems embedded in a solution of rod-like molecules is presented. The system is theoretically described by the functional density theory, where the correlations within the rod-like molecules are accounted for. We show that for sufficiently long molecules and large surface charge densities, an attractive force between like-charged surfaces arises due to the spatially distributed charges within the molecules. The added salt has an influence on the condition for the attractive force between like-charged surfaces. The theoretical results are compared with Monte Carlo simulations. Many phenomena motivate the study of the interaction between like-charged surfaces (DNA condensation, virus aggregation, yeast flocculation, cohesion of cement paste.

  9. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    International Nuclear Information System (INIS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  10. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Feng, Zhong-Wen [China West Normal University, College of Physics and Space Science, Nanchong (China); Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China)

    2018-01-15

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  11. Density functional calculations of potential energy surface and charge transfer integrals in molecular triphenylene derivative HAT6

    NARCIS (Netherlands)

    Zbiri, M.; Johnson, M.R.; Kearley, G.J.; Mulder, F.M.

    2009-01-01

    We investigate the effect of structural fluctuations on charge transfer integrals, overlap integrals, and site energies in a system of two stacked molecular 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6), which is a model system for conducting devices in organic photocell applications. A density

  12. Metal-charge density wave coexistence in TTF[Ni(dmit){sub 2}]{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kaddour, W. [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Laboratoire de Physique de la Matière Condensée, Campus Universitaire, Université de Tunis El-Manar, Tunis 2092 (Tunisia); Auban-Senzier, P.; Raffy, H.; Monteverde, M.; Pouget, J.-P. [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Pasquier, C.R., E-mail: pasquier@lps.u-psud.fr [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Alemany, P. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Canadell, E. [Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra (Spain); Valade, L. [Laboratoire de Chimie de Coordination, Route de Narbonne F-31077 Toulouse (France)

    2015-03-01

    We have established a new pressure–temperature phase diagram of TTF[Ni(dmit){sub 2}]{sub 2} based on longitudinal and transverse resistivity measurements under pressure up to 30 kbar. We were able to identify three different charge density wave (CDW) states which all coexist with a metallic state in a wide temperature range and superconductivity at the lowest temperatures. At low pressure, two successive CDW transitions have been clearly identified. These two transitions merge into a single one at 12 kbar. A maximum of this unique CDW transition temperature is observed at 19 kbar.

  13. Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Aamodt, Kenneth; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad Masoodi, A; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, S; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Ban, Jaroslav; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdermann, Eleni; Berdnikov, Yaroslav; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biolcati, Emanuele; Blanc, Aurelien Joseph; Blanco, F; Blanco, F; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Nicolas; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Bombonati, Carlo; Book, Julian; Borel, Herve; Bortolin, Claudio; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Bottger, Stefan; Boyer, Bruno Alexandre; Braun-Munzinger, Peter; Bravina, Larisa; Bregant, Marco; Breitner, Timo Gunther; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Caselle, Michele; Castillo Castellanos, Javier Ernesto; Catanescu, Vasile; Cavicchioli, Costanza; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Coffin, Jean-Pierre Michel; Coli, S; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Azevedo Moregula, Andrea; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Remigis, R; de Rooij, Raoul Stefan; Delagrange, Hugues; Delgado Mercado, Ydalia; Dellacasa, Giuseppe; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Dryha, Olha; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evrard, Sebastien; Eyyubova, Gyulnara; Fabjan, Christian; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Fekete, Vladimir; Felea, Daniel; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figueredo, Marcel; Filchagin, Sergey; Fini, Rosa Anna; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Fragkiadakis, Michail; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furano, Fabrizio; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gadrat, Sebastien Gabriel; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Ganoti, Paraskevi; Garabatos, Jose; Gemme, Roberto; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Girard, Martin Robert; Giraudo, G; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Santos, Humberto; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Gotovac, Sven; Grabski, Varlen; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Hartig, Matthias; Hasch, Delia; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heide, Markus Ansgar; Heinz, Mark Thomas; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Hernandez, C; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Huber, Sebastian Bernd; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Innocenti, Pier Giorgio; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jancurova, Lucia; Jangal, Swensy Gwladys; Janik, Rudolf; Jayarathna, S P; Jena, Satyajit; Jirden, Lennart; Jones, Goronwy Tudor; Jones, Peter Graham; Jovanovic, P.; Jung, Hyung Taik; Jung, Won Woong; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalisky, Matus; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kamermans, Rene; Kanaki, Kalliopi; Kang, Eunggil; Kang, Ju Hwan; Kaplin, Vladimir; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Dong Jo; Kim, Dong Soo; Kim, Do Won; Kim, Hyang Nam; Kim, Jonghyun; Kim, Jin Sook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Seon Hee; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Klovning, Arne; Kluge, Alexander; Knichel, Michael Linus; Koch, Kathrin; Kohler, Markus; Kolevatov, Rodion; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kornas, Ewelina; Kottachchi Kankanamge Don, Chamath; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kozlov, Konstantin; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Kretz, Matthias; Krivda, Marian; Krumbhorn, Dirk Uwe Wilhelm; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Rocca, Paola; Ladron de Guevara, Pedro; Lafage, Vincent Claude; Lara, Camilo Ernesto; Larsen, Dag Toppe; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Levai, Peter; Li, Xiaomei; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, C; Lopez, Xavier Bernard; Lopez Noriega, Mercedes; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Ke; Ma, Rongrong; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mazza, G; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mendez Lorenzo, Patricia; Mercado Perez, Jorge; Mereu, P; Miake, Yasuo; Midori, Jumpei; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Muller, Hans; Munhoz, Marcelo; Munoz, Jose Lorenzo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Navach, Franco; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nendaz, Fabien; Newby, Jason Robert; Nicassio, Maria; Nielsen, Borge Svane; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Obayashi, Hideyuki; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otterlund, Ingvar; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Pappalardo, Giuseppe; Park, Woo Jin; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Peters, Andreas Joachim; Petracek, Vojtech; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Platt, Richard John; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Pop, Amalia; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Rademakers, Ornella; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Rammler, Markus; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Ricaud, Helene; Riccati, Lodovico; Ricci, Renato Angelo; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, A; Rodriguez Cahuantzi, Mario; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosinsky, Peter; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Rousseau, Sylvain Jean Henry; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Rusanov, Ivan Rusalinov; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saiz, Pablo; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Samanta, Tapas; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Saturnini, Pierre; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siemiarczuk, Teodor; Silenzi, Alessandro; Silvermyr, David Olle Rickard; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soloviev, Andrey; Soltz, Ron Ariel; Son, Hyungsuk; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Emil; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Stenlund, Evert Anders; Steyn, Gideon Francois; Stocco, Diego; Stock, Reinhard; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sumbera, Michal; Susa, Tatjana; Swoboda, Detlef; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szostak, Artur Krzysztof; Tagridis, Christos; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tavlet, Marc; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Thomas, Jim; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Tosello, Flavio; Traczyk, Tomasz; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tumkin, Alexandr; Turrisi, Rosario; Turvey, Andrew John; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vacchi, A; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, G; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yuan, Xianbao; Yushmanov, Igor; Zabrodin, Evgeny; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zenin, Anton; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Xiaoming; Zhou, Daicui; Zhu, Xiangrong; Zichichi, Antonino; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo

    2011-01-01

    The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.

  14. Modeling on oxide dependent 2DEG sheet charge density and threshold voltage in AlGaN/GaN MOSHEMT

    Science.gov (United States)

    Panda, J.; Jena, K.; Swain, R.; Lenka, T. R.

    2016-04-01

    We have developed a physics based analytical model for the calculation of threshold voltage, two dimensional electron gas (2DEG) density and surface potential for AlGaN/GaN metal oxide semiconductor high electron mobility transistors (MOSHEMT). The developed model includes important parameters like polarization charge density at oxide/AlGaN and AlGaN/GaN interfaces, interfacial defect oxide charges and donor charges at the surface of the AlGaN barrier. The effects of two different gate oxides (Al2O3 and HfO2) are compared for the performance evaluation of the proposed MOSHEMT. The MOSHEMTs with Al2O3 dielectric have an advantage of significant increase in 2DEG up to 1.2 × 1013 cm-2 with an increase in oxide thickness up to 10 nm as compared to HfO2 dielectric MOSHEMT. The surface potential for HfO2 based device decreases from 2 to -1.6 eV within 10 nm of oxide thickness whereas for the Al2O3 based device a sharp transition of surface potential occurs from 2.8 to -8.3 eV. The variation in oxide thickness and gate metal work function of the proposed MOSHEMT shifts the threshold voltage from negative to positive realizing the enhanced mode operation. Further to validate the model, the device is simulated in Silvaco Technology Computer Aided Design (TCAD) showing good agreement with the proposed model results. The accuracy of the developed calculations of the proposed model can be used to develop a complete physics based 2DEG sheet charge density and threshold voltage model for GaN MOSHEMT devices for performance analysis.

  15. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    Science.gov (United States)

    Hiemstra, Tjisse; Van Riemsdijk, Willem H.

    2009-08-01

    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (˜2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ˜ 101 ± 2 g/mol Fe, a reduced mass density of ˜3.5 ± 0.1 g/cm 3, both relatively to the mineral core. The specific surface area is ˜650 m 2/g. Six-line Fh (5-6 nm) has a molar mass of M ˜ 94 ± 2 g/mol, a mass density of ˜3.9 ± 0.1 g/cm 3, and a surface area of ˜280 ± 30 m 2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ˜ 89 g/mol. The mineral core has a mass density around ˜4.15 ± 0.1 g/cm 3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (˜6.0 ± 0.5 nm -2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (˜2.5 nm -2) or are present at a single corner (˜3.5 nm -2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of

  16. Splitting of the Ti-3d bands of TiSe{sub 2} in the charge-density wave phase

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, A., E-mail: aa.ghafari@gmail.com [Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, I-34149, Trieste (Italy); Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin (Germany); Petaccia, L. [Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, I-34149, Trieste (Italy); Janowitz, C. [Institute of Physics, Humboldt-University of Berlin, Newtonst. 15, D-12489, Berlin (Germany)

    2017-02-28

    Highlights: • Angle resolved photoemission spectroscopy (ARPES). • Charge density wave (CDW). • TiSe{sub 2}- Splitting of the conduction bands. Horizontal and vertical polarizations. Temperature dependence. - Abstract: Very high resolution angular resolved photoemission (ARPES) spectra on TiSe{sub 2} in two distinct polarization geometries (vertical and horizontal) at temperatures between 300 K and 22 K enabled the observation of details of bands near the Fermi level not reported so far. Calculations of the electronic band structure based on density functional theory (DFT) using B3LYP hybrid functional and MBJ potential (with and without spin-orbit coupling) were performed to obtain the orbital symmetry and dispersion. Two degenerate conduction bands (CB’s) were observed at the Γ-point, a weak CB- emission at the A-point, and two non degenerate CB’s (i.e. splitting of CB) at the M/L-point of the Brillouin Zone (BZ). The splitting was detected at L for both polarizations, while at M remarkably only for horizontal polarization. These results cannot be fully accounted for by current theories for the charge density wave (CDW) and point to a reduced symmetry of the electronic states, possibly due to the chiral CDW.

  17. Interference effects in the nonlinear charge density wave dynamics

    International Nuclear Information System (INIS)

    Jelcic, D.; Batistic, I.; Bjelis, A.

    1987-12-01

    The main features of the nonlinear charge density wave transport in the external dc-ac field are shown to be the natural consequences of resonant phase slip diffusion. This process is treated numerically within the time dependent Landau-Ginzburg model, developed by Gor'kov. The resonances in the ac field are manifested as Shapiro steps in I-V characteristics, present at all rational ratios of internal frequency of current oscillations and external ac frequency. The origin of Shapiro steps, as well as their forms and heights, are cosidered in detail. In particular, it is shown that close to resonances the phase slip voltage acquires a highly nonsinusoidal modulation which leads to the appearance of low frequency and satellite peaks in the Fourier spectrum. Taking into account the interference of adjacent phase slips and the segment or domain structure of physical samples, we interpret the finite width of steps, side wings, synchronization, incomplete and complete mode locking and some other effects observed in numerous experiments on NbSe 3 and other CDW materials. (author). 36 refs, 12 figs

  18. Impurity-induced modulations in PdxNbSe3 coupled to charge-density-wave formation

    International Nuclear Information System (INIS)

    Xue, Q.; Gong, Y.; Drake, D.L.; Qian, J.; Coleman, R.V.

    1996-01-01

    Very dilute amounts of Pd in Pd x NbSe 3 introduce long-range electronic modulations of wavelength 7b 0 , 4b 0 , 3b 0 , and 2b 0 at room temperature as the Pd concentration increases in the range x=0.002 to x=0.02 while the low-temperature charge-density waves (CDW close-quote s) initially remain unchanged. For x≥0.02 the low-temperature CDW close-quote s are quenched while the NbSe 3 structure remains intact, and the high-temperature modulations disappear, indicating a clear correlation between the two effects. The magnetoquantum oscillations due to magnetic breakdown first detect the band-structure shift followed by the sudden quenching of the nested Fermi surface sheets. The atomic force microscope scans show substantial charge transfer between chains caused by the Pd doping. copyright 1996 The American Physical Society

  19. Configurational entropy of charged AdS black holes

    Directory of Open Access Journals (Sweden)

    Chong Oh Lee

    2017-09-01

    Full Text Available When we consider charged AdS black holes in higher dimensional spacetime and a molecule number density along coexistence curves is numerically extended to higher dimensional cases. It is found that a number density difference of a small and large black holes decrease as a total dimension grows up. In particular, we find that a configurational entropy is a concave function of a reduced temperature and reaches a maximum value at a critical (second-order phase transition point. Furthermore, the bigger a total dimension becomes, the more concave function in a configurational entropy while the more convex function in a reduced pressure.

  20. Higher-order terms in the nuclear-energy-density functional

    International Nuclear Information System (INIS)

    Carlsson, B. G.; Borucki, M.; Dobaczewski, J.

    2009-01-01

    One of the current projects at the Department of Physics in the University of Jyvaeskylae is to explore more general forms of the Skyrme energy-density functional (EDF). The aim is to find new phenomenological terms which are sensitive to experimental data. In this context we have extended the Skyrme functional by including terms which contain higher orders of derivatives allowing for a better description of finite range effects. This was done by employing an expansion in derivatives in a spherical-tensor formalism [1] motivated by ideas of the density-matrix expansion. The resulting functionals have different number of free parameters depending on the order in derivatives and assumed symmetries, see Fig. 1. The usual Skyrme EDF is obtained as a second order expansion while we keep terms up to sixth order.(author)

  1. Impact of CLAS and COMPASS data on polarized parton densities and higher twist

    International Nuclear Information System (INIS)

    Leader, Elliot; Sidorov, Aleksander V.; Stamenov, Dimiter B.

    2007-01-01

    We have reanalyzed the world data on inclusive polarized deep inelastic scattering (DIS) including the very precise CLAS proton and deuteron data, as well as the latest COMPASS data on the asymmetry A 1 d , and have studied the impact of these data on polarized parton densities and higher twist effects. We demonstrate that the low Q 2 CLAS data improve essentially our knowledge of higher twist corrections to the spin structure function g 1 , while the large Q 2 COMPASS data influence mainly the strange quark density. In our new analysis we find that a negative polarized gluon density, or one that changes sign as a function of x, cannot be ruled out on the basis of the present DIS data

  2. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  3. X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field

    DEFF Research Database (Denmark)

    Blackburn, E.; Chang, J.; Hücker, M.

    2013-01-01

    X-ray diffraction measurements show that the high-temperature superconductor YBa2Cu3O6.54, with ortho-II oxygen order, has charge-density-wave order in the absence of an applied magnetic field. The dominant wave vector of the charge density wave is qCDW=(0,0.328(2),0.5), with the in-plane component...

  4. Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Abbas, Ehab; Adam, Jaroslav; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Nicola; Bianchi, Livio; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carlin Filho, Nelson; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio; Colella, Domenico; Collu, Alberto; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cruz Albino, Rigoberto; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Dalsgaard, Hans Hjersing; Dang, Ruina; Danu, Andrea; Das, Kushal; Das, Indranil; Das, Supriya; Das, Debasish; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanuel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Ramni; Gupta, Anik; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Harton, Austin; Hatzifotiadou, Despoina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Vladimir; Ivanov, Andrey; Ivanov, Marian; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Kamal Hussain; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Minwoo; Kim, Se Yong; Kim, Beomkyu; Kim, Taesoo; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Mimae; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kompaniets, Mikhail; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz; Lee, Sung Chul; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Ke; Ma, Rongrong; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mizuno, Sanshiro; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Paul, Biswarup; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauch, Wolfgang; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rogochaya, Elena; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Pradip Kumar; Roy, Christelle Sophie; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Santoro, Romualdo; Sarkamo, Juho Jaako; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Hans Rudolf; Schmidt, Christian Joachim; Schuchmann, Simone; Schukraft, Jurgen; Schuster, Tim; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca; Scott, Patrick Aaron; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Sharma, Rohni; Shigaki, Kenta; Shtejer, Katherin; Sibiriak, Yury; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Ter-Minasyan, Astkhik; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Trubnikov, Victor; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vande Vyvre, Pierre; Van Hoorne, Jacobus Willem; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Yury; Vinogradov, Leonid; Vinogradov, Alexander; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Volkl, Martin Andreas; Voloshin, Sergey; Voloshin, Kirill; Volpe, Giacomo; von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Yaping; Wang, Mengliang; Wang, Yifei; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Shiming; Yang, Ping; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Hongsheng; Zhu, Jianlin; Zhu, Xiangrong; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-11-04

    We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, -5.0 < $\\eta$ < 5.5, and employing a special analysis technique based on collisions arising from LHC ' satellite' bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{ch}$ = 17165 +/- 772 for the 0-5% most central collisions). From the measured d$N_{ch}$/d$\\eta$ distribution we derive the rapidity density distribution, d$N_{ch}$/dy, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model, which reproduce data well at RHIC energies. We assess the validity of longitudinal sca...

  5. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H-NbSe2.

    Science.gov (United States)

    Arguello, C J; Rosenthal, E P; Andrade, E F; Jin, W; Yeh, P C; Zaki, N; Jia, S; Cava, R J; Fernandes, R M; Millis, A J; Valla, T; Osgood, R M; Pasupathy, A N

    2015-01-23

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe2 that we measure by scanning tunneling spectroscopic imaging. We show, from the momentum and energy dependence of the quasiparticle interference, that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe2. We demonstrate that, by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wave vector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiology and the interactions. In 2H-NbSe2, we use this combination to confirm that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the charge density wave ordering wave vector.

  6. Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces

    KAUST Repository

    Van Regemorter, Tanguy; Guillaume, Maxime; Sini, Gjergji; Sears, John S.; Geskin, Victor; Bré das, Jean-Luc; Beljonne, David; Cornil, Jé rô me

    2012-01-01

    In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.

  7. Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces

    KAUST Repository

    Van Regemorter, Tanguy

    2012-09-15

    In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.

  8. Prediction and Experimental Evidence for Thermodynamically Stable Charged Orbital Domain Walls

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing’an; Gray, K. E.; Wilkins, S. B.; Garcia Fernandez, M.; Rosenkranz, S.; Zheng, H.; Mitchell, J. F.

    2014-08-01

    The quest for miniaturization is prevalent in many fields of modern science and technology. The ultimate limit for conduction would be a one-dimensional (1D) chain of atoms and, for example, carbon nanotubes are a notable approximation to this ideal. Here we present strong evidence for an unexpected phenomenon—a sliding charge-density wave along pseudo-1D, atomically homogeneous orbital domain walls (ODWs) in insulating bilayer manganite crystals. At a threshold electric field, crystals exhibit abrupt transformations to higher conductance, while x-ray diffraction confirms that these are not due to heating or melting of charge order. The conductance data resemble those of well-known pseudo-1D sliding-charge-density waves, in particular the presence of a depinning voltage. The vital link is our theoretical insight that ODWs must be partially charged due to competition between orbital-induced strain and Coulomb repulsion. The ideas found here embody a new principle for creating ultra-nano conductive paths in other materials and devices.

  9. Higher insulin sensitivity in vegans is not associated with higher mitochondrial density.

    Science.gov (United States)

    Gojda, J; Patková, J; Jaček, M; Potočková, J; Trnka, J; Kraml, P; Anděl, M

    2013-12-01

    Vegans have a lower incidence of insulin resistance (IR)-associated diseases and a higher insulin sensitivity (IS) compared with omnivores. The aim of this study was to examine whether the higher IS in vegans relates to markers of mitochondrial biogenesis and to intramyocellular lipid (IMCL) content. Eleven vegans and 10 matched (race, age, sex, body mass index, physical activity and energy intake) omnivorous controls were enrolled in a case-control study. Anthropometry, bioimpedance (BIA), ultrasound measurement of visceral and subcutaneous fat layer, parameters of glucose and lipid homeostasis, hyperinsulinemic euglycemic clamp and muscle biopsies were performed. Citrate synthase (CS) activity, mitochondrial DNA (mtDNA) and IMCL content were assessed in skeletal muscle samples. Both groups were comparable in anthropometric and BIA parameters, physical activity and protein-energy intake. Vegans had significantly higher glucose disposal (M-value, vegans 8.11±1.51 vs controls 6.31±1.57 mg/kg/min, 95% confidence interval: 0.402 to 3.212, P=0.014), slightly lower IMCL content (vegans 13.91 (7.8 to 44.0) vs controls 17.36 (12.4 to 78.5) mg/g of muscle, 95% confidence interval: -7.594 to 24.550, P=0.193) and slightly higher relative muscle mtDNA amount (vegans 1.36±0.31 vs controls 1.13±0.36, 95% confidence interval:-0.078 to 0.537, P=0.135). No significant differences were found in CS activity (vegans 18.43±5.05 vs controls 18.16±5.41 μmol/g/min, 95% confidence interval: -4.503 to 5.050, P=0.906). Vegans have a higher IS, but comparable mitochondrial density and IMCL content with omnivores. This suggests that a decrease in whole-body glucose disposal may precede muscle lipid accumulation and mitochondrial dysfunction in IR development.

  10. Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Aamodt, K; Abrahantes Quintana, A; Adamova, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaraz Avina, E; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anson, C; Anticic, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshauser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Aysto, J; Azmi, M D; Bach, M; Badala, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldini-Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Ban, J; Barbera, R; Barile, F; Barnafoldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Beole, S; Berceanu, I; Bercuci, A; Berdermann, E; Berdnikov, Y; Bergmann, C; Betev, L; Bhasin, A; Bhati, A K; Bianchi, L; Bianchi, N; Bianchin, C; Bielcik, J; Bielcikova, J; Bilandzic, A; Biolcati, E; Blanc, A; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Bogdanov, A; Boggild, H; Bogolyubsky, M; Boldizsar, L; Bombara, M; Bombonati, C; Book, J; Borel, H; Borissov, A; Bortolin, C; Bose, S; Bossu, F; Botje, M; Bottger, S; Boyer, B; Braun-Munzinger, P; Bravina, L; Bregant, M; Breitner, T; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bugaiev, K; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Diaz, A; Caselle, M; Castillo Castellanos, J; Catanescu, V; Cavicchioli, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Coffin, J P; Coli, S; Conesa Balbastre, G; Conesa del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortes Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cuautle, E; Cunqueiro, L; D'Erasmo, G; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, A; Dash, S; De, S; De Azevedo Moregula, A; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Remigis, R; de Rooij, R; Debski, P R; Del Castillo Sanchez, E; Delagrange, H; Delgado Mercado, Y; Dellacasa, G; Deloff, A; Demanov, V; Denes, E; Deppman, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Dietel, T; Divia, R; Djuvsland, O; Dobrin, A; Dobrowolski, T; Dominguez, I; Donigus, B; Dordic, O; Driga, O; Dubey, A K; Dubuisson, J; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evrard, S; Eyyubova, G; Fabjan, C W; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Fekete, V; Felea, D; Feofilov, G; Fernandez Tellez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Fini, R; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Fuchs, U; Furano, F; Furget, C; Fusco Girard, M; Gaardhoje, J J; Gadrat, S; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Ganti, M S; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gemme, R; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giraudo, G; Giubellino, P; Gladysz-Dziadus, E; Glassel, P; Gomez, R; Ferreiro, E G; Gonzalez Santos, H; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Gotovac, S; Grabski, V; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, O; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Harris, J W; Hartig, M; Hasch, D; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heide, M; Heinz, M; Helstrup, H; Herghelegiu, A; Hernandez, C; Herrera Corral, G; Herrmann, N; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hrivnacova, I; Huang, M; Huber, S; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Jacholkowski, A; Jacobs, P M; Jancurova, L; Jangal, S; Janik, R; Jena, S; Jirden, L; Jones, G T; Jones, P G; Jovanovic, P; Jung, H; Jung, W; Jusko, A; Kalcher, S; Kalinak, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kamermans, R; Kanaki, K; Kang, E; Kang, J H; Kaplin, V; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D J; Kim, D S; Kim, D W; Kim, H N; Kim, J H; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, S H; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bosing, C; Kliemant, M; Klovning, A; Kluge, A; Knichel, M L; Koch, K; Kohler, M; Kolevatov, R; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskih, A; Kornas, E; Kottachchi Kankanamge Don, C; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kozlov, K; Kral, J; Kralik, I; Kramer, F; Kraus, I; Krawutschke, T; Kretz, M; Krivda, M; Krizek, F; Krumbhorn, D; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; La Rocca, P; Ladron de Guevara, P; Lafage, V; Lara, C; Lardeux, A; Larsen, D T; Lazzeroni, C; Le Bornec, Y; Lea, R; Lee, K S; Lee, S C; Lefevre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; Leon Monzon, I; Leon Vargas, H; Levai, P; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Loizides, C; Loo, K K; Lopez, X; Lopez Noriega, M; Lopez Torres, E; Lovhoiden, G; Lu, X G; Luettig, P; Lunardon, M; Luparello, G; Luquin, L; Luzzi, C; Ma, K; Ma, R; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Mal'Kevich, D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Mares, J; Margagliotti, G V; Margotti, A; Marin, A; Markert, C; Martashvili, I; Martinengo, P; Martinez, M I; Martinez Davalos, A; Martinez Garcia, G; Martynov, Y; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mendez Lorenzo, P; Menis, I; Mercado Perez, J; Meres, M; Mereu, P; Miake, Y; Midori, J; Milano, L; Milosevic, J; Mischke, A; Miskowiec, D; Mitu, C; Mlynarz, J; Mohanty, A K; Mohanty, B; Molnar, L; Montano Zetina, L; Monteno, M; Montes, E; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Muller, H; Munhoz, M G; Munoz, J; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Navach, F; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nendaz, F; Newby, J; Nicassio, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Obayashi, H; Ochirov, A; Oeschler, H; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otterlund, I; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Jayarathna, S P; Paic, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Pappalardo, G S; Park, W J; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Peresunko, D; Perez Lara, C E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Peters, A J; Petracek, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Piyarathna, D B; Platt, R; Ploskon, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polak, K; Polichtchouk, B; Pop, A; Porteboeuf, S; Pospisil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pulvirenti, A; Punin, V; Putis, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Rademakers, O; Radomski, S; Raiha, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramirez Reyes, A; Rammler, M; Raniwala, R; Raniwala, S; Rasanen, S S; Read, K F; Real, J; Redlich, K; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J P; Reygers, K; Ricaud, H; Riccati, L; Ricci, R A; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodriguez Cahuantzi, M; Rohr, D; Rohrich, D; Romita, R; Ronchetti, F; Rosinsky, P; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Rousseau, S; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Rivetti, A; Rusanov, I; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safarik, K; Sahoo, R; Sahu, P K; Saini, J; Saiz, P; Sakai, S; Sakata, D; Salgado, C A; Samanta, T; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sandor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Saturnini, P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Sgura, I; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siemiarczuk, T; Silenzi, A; Silvermyr, D; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R; Sogaard, C; Soloviev, A; Soltz, R; Son, H; Song, J; Song, M; Soos, C; Soramel, F; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stocco, D; Stock, R; Stokkevag, C H; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vasquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sumbera, M; Susa, T; Swoboda, D; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szostak, A; Tagridis, C; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tavlet, M; Tejeda Munoz, G; Telesca, A; Terrevoli, C; Thader, J; Thomas, D; Thomas, J H; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Tosello, F; Traczyk, T; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Turvey, A J; Tveter, T S; Ulery, J; Ullaland, K; Uras, A; Urban, J; Urciuoli, G M; Usai, G L; Vacchi, A; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; van Leeuwen, M; Vande Vyvre, P; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernekohl, D C; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Ovrebekk, G; Vrlakova, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yokoyama, H; Yoo, I K; Yu, W; Yuan, X; Yushmanov, I; Zabrodin, E; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Zavada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zenin, A; Zgura, I; Zhalov, M; Zhang, X; Zhou, D; Zichichi, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M

    2010-01-01

    The first measurement of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at a centre-of-mass energy per nucleon pair sqrt(sNN) = 2.76 TeV is presented. For an event sample corresponding to the most central 5% of the hadronic cross section the pseudo-rapidity density of primary charged particles at mid-rapidity is 1584 +- 4 (stat) +- 76 (sys.), which corresponds to 8.3 +- 0.4 (sys.) per participating nucleon pair. This represents an increase of about a factor 1.9 relative to pp collisions at similar collision energies, and about a factor 2.2 to central Au-Au collisions at sqrt(sNN) = 0.2 TeV. This measurement provides the first experimental constraint for models of nucleus-nucleus collisions at LHC energies.

  11. Ab initio full charge-density study of the atomic volume of α-phase Fr, Ra, Ac, Th, Pa, U, Np, and Pu

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J.; Skriver, Hans Lomholt

    1997-01-01

    We have used a full charge-density technique based on the linear muffin-tin orbitals method in first-principles calculations of the atomic volumes of the light actinides including Fr, Ra, and Ac in their low-temperature crystallographic phases. The good agreement between the theoretical and exper......We have used a full charge-density technique based on the linear muffin-tin orbitals method in first-principles calculations of the atomic volumes of the light actinides including Fr, Ra, and Ac in their low-temperature crystallographic phases. The good agreement between the theoretical...... and experimental values along the series support the picture of itinerant 5f electronic states in Th to Pu. The increased deviation between theory and experiment found in Np and Pu may be an indication of correlation effects not included in the local density approximation....

  12. Exploring the Binding of Barbital to a Synthetic Macrocyclic Receptor; a Charge Density Study

    DEFF Research Database (Denmark)

    Du, Jonathan J.; Hanrahan, Jane Rouse; Solomon, V. Raja

    2018-01-01

    Experimental charge density distribution studies, complemented by quantum mechanical theoretical calculations, of a host-guest system comprised of a macrocycle (1) and barbital (2) in a 1:1 ratio (3) have been carried out via high resolution single crystal X-ray diffraction. The data was modelled...... molecule. Visual comparison of the conformations of the macrocyclic ring shows the rotation by 180° of an amide bond attributed to competitive hydrogen bonding. It was found the intraannular and extraannular molecules inside were orientated to maximise the number of hydrogen bonds present...

  13. 20 CFR 655.211 - Petition for higher meal charges.

    Science.gov (United States)

    2010-04-01

    ... relation to food service operations, such as wages of cooks and restaurant supervisors; fuel, water, electricity, and other utilities used for the food service operations; other costs directly related to the food service operation. Charges for transportation, depreciation, overhead, and similar charges may not...

  14. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67

    DEFF Research Database (Denmark)

    Chang, J.; Blackburn, E.; Holmes, A. T.

    2012-01-01

    Superconductivity often emerges in the proximity of, or in competition with, symmetry-breaking ground states such as antiferromagnetism or charge density waves (CDW). A number of materials in the cuprate family, which includes the high transition-temperature (high-Tc) superconductors, show spin...... and charge density wave order. Thus a fundamental question is to what extent do these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy X-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc= 67 K......). This sample has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity in this typical high-Tc material are competing orders with similar energy...

  15. Surface charge density determines the efficiency of cationic gemini surfactant based lipofection.

    Science.gov (United States)

    Ryhänen, Samppa J; Säily, Matti J; Paukku, Tommi; Borocci, Stefano; Mancini, Giovanna; Holopainen, Juha M; Kinnunen, Paavo K J

    2003-01-01

    The efficiencies of the binary liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and cationic gemini surfactant, (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide as transfection vectors, were measured using the enhanced green fluorescent protein coding plasmid and COS-1 cells. Strong correlation between the transfection efficiency and lipid stoichiometry was observed. Accordingly, liposomes with X(SR-1) > or = 0.50 conveyed the enhanced green fluorescent protein coding plasmid effectively into cells. The condensation of DNA by liposomes with X(SR-1) > 0.50 was indicated by static light scattering and ethidium bromide intercalation assay, whereas differential scanning calorimetry and fluorescence anisotropy of diphenylhexatriene revealed stoichiometry dependent reorganization in the headgroup region of the liposome bilayer, in alignment with our previous Langmuir-balance study. Surface charge density and the organization of positive charges appear to determine the mode of interaction of DNA with (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide/1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes, only resulting in DNA condensation when X(SR-1) > 0.50. Condensation of DNA in turn seems to be required for efficient transfection.

  16. Determination of surface charge density of α-alumina by acid-base titration

    Directory of Open Access Journals (Sweden)

    Justin W. Ntalikwa

    2007-04-01

    Full Text Available The surface charge density (σo of colloidal alpha alumina suspended in various 1:1 electrolytes was measured using acid-base titration. An autotitrator capable of dispensing accurately 25 plus or minus 0.1 μL of titrant was used. The pH and temperature in the titration cell were monitored using single junction electrodes and platinum resistance thermometers, respectively. A constant supply of nitrogen gas in the cell was used to maintain inert conditions. The whole set up was interfaced with a computer for easy data acquisition. It was observed that the material exhibits a point of zero charge (PZC, this occurred at pH of 7.8 plus or minus 0.1, 7.6 plus or minus 0.2, 8.5 plus or minus 0.1, 8.3 plus or minus 0.1 for NaCl, NaNO3, CsCl and CsNO3 systems, respectively. It was also observed that below PZC, σo increases with increase in electrolyte concentration (Co whereas above PZC, σo decreases with increase in Co. It was concluded that σo of this material is a function of pH and Co and that its polarity can be varied through zero by varying these parameters.

  17. High charge carrier density at the NaTaO3/SrTiO3 hetero-interface

    KAUST Repository

    Nazir, Safdar

    2011-08-05

    The formation of a (quasi) two-dimensional electron gas between the band insulators NaTaO3 and SrTiO3 is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions points to only small changes in the chemical bonding at the interface. Both the p-type (NaO)−/(TiO2)0 and n-type (TaO2)+/(SrO)0 interfaces are found to be metallic with high charge carrier densities. The effects of O vacancies are discussed. Spin-polarized calculations point to the formation of isolated O 2pmagnetic moments, located in the metallic region of the p-type interface.

  18. Narrowband noise study of sliding charge density waves in NbSe3 nanoribbons

    Science.gov (United States)

    Onishi, Seita; Jamei, Mehdi; Zettl, Alex

    2017-02-01

    Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n c , reflective of the CDW order parameter Δ. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Δ decreases dramatically with decreasing sample thickness.

  19. Electron-beam-charged dielectrics: Internal charge distribution

    Science.gov (United States)

    Beers, B. L.; Pine, V. W.

    1981-01-01

    Theoretical calculations of an electron transport model of the charging of dielectrics due to electron bombardment are compared to measurements of internal charge distributions. The emphasis is on the distribution of Teflon. The position of the charge centroid as a function of time is not monotonic. It first moves deeper into the material and then moves back near to the surface. In most time regimes of interest, the charge distribution is not unimodal, but instead has two peaks. The location of the centroid near saturation is a function of the incident current density. While the qualitative comparison of theory and experiment are reasonable, quantitative comparison shows discrepancies of as much as a factor of two.

  20. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis.

    Science.gov (United States)

    Takeuchi, Issei; Kobayashi, Shiori; Hida, Yukari; Makino, Kimiko

    2017-07-01

    Postmenopausal osteoporosis among older women, which occurs by an ovarian hormone deficiency, is one of the major public health problems. 17 β-estradiol (E2) is used to prevent and treat this disease as a drug of hormone replacement therapy. In oral administration, E2 is significantly affected by first-pass hepatic metabolism, and high dose administration must be needed to obtain drug efficacy. Therefore, alternative administration route is needed, and we have focused on the transdermal drug delivery system. In this study, we have prepared E2-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles for osteoporosis by using a combination of an antisolvent diffusion method with preferential solvation. The average particle diameter of the nanoparticles was 110.0±41.0nm and the surface charge number density was 82 times higher than that of conventional E2-loaded PLGA nanoparticles. Therapeutic evaluation of E2-loaded PLGA nanoparticles was carried out using ovariectomized female rats. Therapeutic efficacy was evaluated to measure bone mineral density of cancellous bone using an X-ray CT system. When the E2-loaded PLGA nanoparticles were administrated once a week, bone mineral density was significantly higher than that of the non-treated group at 60days after the start of treatment. Also, in the group administered this nanoparticle twice a week, the bone mineral density increased significantly at 45days after the start of treatment. From these results, it was revealed that E2-loaded PLGA nanoparticles with iontophoresis were useful to recover bone mineral density of cancellous bone, and it was also suggested that they extend the dosing interval of E2. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  2. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Petri Tanska

    2013-01-01

    Full Text Available The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior.

  3. Robust statistical reconstruction for charged particle tomography

    Science.gov (United States)

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  4. Hawking radiation of five-dimensional charged black holes with scalar fields

    Directory of Open Access Journals (Sweden)

    Yan-Gang Miao

    2017-09-01

    Full Text Available We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  5. Effect of high magnetic fields on the charge density wave properties of KMo 6O 17

    Science.gov (United States)

    Rötger, A.; Dumas, J.; Marcus, J.; Schlenker, C.; Ulmet, J. P.; Audouard, A.; Askenazy, S.

    1992-03-01

    The electrical resistivity of the purple bronze KMo 6O 17 has been studied between 2 and 88 K with pulsed magnetic fields up to 35 T. Several anomalies are found on the curves Δρ/ρ(B) at different temperatures. The low field results are compared with previous measurements of susceptibility and magnetization. A phase diagram which may show a field displaced charge density wave instability and field induced transitions is proposed.

  6. Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals

    Science.gov (United States)

    Sibeck, David G.; Allen, R.; Aryan, H.; Bodewits, D.; Brandt, P.; Branduardi-Raymont, G.; Brown, G.; Carter, J. A.; Collado-Vega, Y. M.; Collier, M. R.; Connor, H. K.; Cravens, T. E.; Ezoe, Y.; Fok, M.-C.; Galeazzi, M.; Gutynska, O.; Holmström, M.; Hsieh, S.-Y.; Ishikawa, K.; Koutroumpa, D.; Kuntz, K. D.; Leutenegger, M.; Miyoshi, Y.; Porter, F. S.; Purucker, M. E.; Read, A. M.; Raeder, J.; Robertson, I. P.; Samsonov, A. A.; Sembay, S.; Snowden, S. L.; Thomas, N. E.; von Steiger, R.; Walsh, B. M.; Wing, S.

    2018-06-01

    Both heliophysics and planetary physics seek to understand the complex nature of the solar wind's interaction with solar system obstacles like Earth's magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1-2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles. The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ

  7. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    Science.gov (United States)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  8. Origin of Superconductivity and Latent Charge Density Wave in NbS2

    Science.gov (United States)

    Heil, Christoph; Poncé, Samuel; Lambert, Henry; Schlipf, Martin; Margine, Elena R.; Giustino, Feliciano

    2017-08-01

    We elucidate the origin of the phonon-mediated superconductivity in 2 H -NbS2 using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2 H -NbS2 , and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ - and K -centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.

  9. On the contact values of the density profiles in an electric double layer using density functional theory

    Directory of Open Access Journals (Sweden)

    L.B. Bhuiyan

    2012-06-01

    Full Text Available A recently proposed, local second contact value theorem [Henderson D., Boda D., J. Electroanal. Chem., 2005, Vol. 582, 16] for the charge profile of an electric double layer is used in conjunction with existing Monte Carlo data from the literature to assess the contact behavior of the electrode-ion distributions predicted by the density functional theory. The results for the contact values of the co- and counterion distributions and their product are obtained for the symmetric valency, restricted primitive model planar double layer for a range of electrolyte concentrations and temperatures. Overall the theoretical results satisfy the second contact value theorem reasonably well the agreement with the simulations being semi-quantitative or better. The product of the co- and counterion contact values as a function of the electrode surface charge density is qualitative with the simulations with increasing deviations at higher concentrations.

  10. Electronic response and longitudinal phonons of a charge-density-wave distorted linear chain

    International Nuclear Information System (INIS)

    Giuliani, G.

    1978-01-01

    The longitudinal-phonon spectrum of an incommensurate charge-density-wave distorted linear chain at T = 0 K are calculated. This is done by direct numerical evaluation of the full static-electronic-response matrix. The electronic band structure assumed for this purpose is that of a mean-field theory 1-D Peierls insulator. The present results show how, within this simplified, but self-consistent picture, the phase and amplitude modes connect to, and interact with, the ordinary longitudinal-phonon branch. Effects due to our inclusion of (0,2ksub(F)) scattering along with the usual (-2ksub(F), 2ksub(F)) are also pointed out. An alternative approximate expression for the 1-D electronic-response matrix is also given. (author)

  11. First study of the negative binomial distribution applied to higher moments of net-charge and net-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Tarnowsky, Terence J.; Westfall, Gary D.

    2013-01-01

    A study of the first four moments (mean, variance, skewness, and kurtosis) and their products (κσ 2 and Sσ) of the net-charge and net-proton distributions in Au + Au collisions at √(s NN )=7.7–200 GeV from HIJING simulations has been carried out. The skewness and kurtosis and the collision volume independent products κσ 2 and Sσ have been proposed as sensitive probes for identifying the presence of a QCD critical point. A discrete probability distribution that effectively describes the separate positively and negatively charged particle (or proton and anti-proton) multiplicity distributions is the negative binomial (or binomial) distribution (NBD/BD). The NBD/BD has been used to characterize particle production in high-energy particle and nuclear physics. Their application to the higher moments of the net-charge and net-proton distributions is examined. Differences between κσ 2 and a statistical Poisson assumption of a factor of four (for net-charge) and 40% (for net-protons) can be accounted for by the NBD/BD. This is the first application of the properties of the NBD/BD to describe the behavior of the higher moments of net-charge and net-proton distributions in nucleus–nucleus collisions

  12. Charge Density Waves and the Hidden Nesting of Purple Bronze KMo6O17

    Science.gov (United States)

    Su, Lei; Pereira, Vitor

    The layered purple bronze KMo6O17, with its robust triple CDW phase up to high temperatures, became the emblematic example of the ''hidden nesting'' concept. Recent experiments suggest that, on the surface layers, its CDW phase can be stabilized at much higher temperatures, and with a tenfold increase in the electronic gap in comparison with the bulk. Despite such interesting fermiology and properties, the K and Na purple bronzes remain largely unexplored systems, most particularly so at the theoretical level. We introduce the first multi-orbital effective tight-binding model to describe the effect of electron-electron interactions in this system. Upon fixing all the effective hopping parameters in the normal state against an ab-initio band structure, and with only the overall scale of the interactions as sole adjustable parameter, we find that a self-consistent Hartree-Fock solution reproduces extremely well the experimental behavior of the charge density wave (CDW) order parameter in the full range 0 < T < Tc , as well as the precise reciprocal space locations of the partial gap opening and Fermi arc development. The interaction strengths extracted from fitting to the experimental CDW gap are consistent with those derived from an independent Stoner-type analysis This work was supported by the Singapore National Research Foundation under Grant NRF-CRP6-2010-05.

  13. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  14. Negative plates for dry-charged lead storage batteries. [higher charging capacity when impregnated with tannin solution

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, V; Malikova, V; Weber, H

    1970-09-15

    Impregnation of negative plates with acid solutions of sulfomethylated tannins was found to improve the charging properties at low temperatures. Methods for synthesizing tannins are described. Charging capacity at 0/sup 0/ was 7.3A. (RWR)

  15. Discharge current measurements on Venera 13 & 14 - Evidence for charged aerosols in the Venus lower atmosphere?

    Science.gov (United States)

    Lorenz, Ralph D.

    2018-06-01

    Measurements of discharge currents on the Venera 13 and 14 landers during their descent in the lowest 35 km of the Venus atmosphere are interpreted as driven either by an ambient electric field, or by deposition of charge from aerosols. The latter hypothesis is favored (`triboelectric charging' in aeronautical parlance), and would entail an aerosol opacity and charge density somewhat higher than that observed in Saharan dust transported over long distances on Earth.

  16. Higher conserved charges and integrability for spinning strings in AdS5 x S5

    International Nuclear Information System (INIS)

    Engquist, Johan

    2004-01-01

    We demonstrate the existence of an infinite number of local commuting charges for classical solutions of the string sigma model on AdS 5 x S 5 associated with a certain circular three-spin solution spinning with large angular momenta in three orthogonal directions on the five-sphere. Using the AdS/CFT correspondence we find agreement to one-loop with the tower of conserved higher charges in planar N = 4 super Yang-Mills theory associated with the dual composite single-trace operator in the highest weight representation (J 1 ,J 2 ,J 2 ) of SO(6). The agreement can be explained by the presence of integrability on both sides of the duality. (author)

  17. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    Science.gov (United States)

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  18. Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures

    Science.gov (United States)

    Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng

    2018-03-01

    Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.

  19. Charge-density matching in organic-inorganic uranyl compounds

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.

    2007-01-01

    Single crystals of [C 10 H 26 N 2 ][(UO 2 )(SeO 4 ) 2 (H 2 O)](H 2 SeO 4 ) 0.85 (H 2 O) 2 (1), [C 10 H 26 N 2 ][(UO 2 )(SeO 4 ) 2 ] (H 2 SeO 4 ) 0.50 (H 2 O) (2), and [C 8 H 20 N] 2 [(UO 2 )(SeO 4 ) 2 (H 2 O)] (H 2 O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO 7 and SeO 4 polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO 2 (SeO 4 ) 2 (H 2 O)] 2- chains are separated by mixed organic-inorganic layers comprising from [NH 3 (CH 2 ) 10 NH 3 ] 2+ molecules, H 2 O molecules, and disordered electroneutral (H 2 SeO 4 ) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO 2 (SeO 4 ) 2 ] 2- sheet. The structure of 3 does not contain disordered (H 2 SeO 4 ) groups but is based upon alternating [UO 2 (SeO 4 ) 2 (H 2 O)] 2- sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH 3 (CH 2 ) 7 CH 3 ] + . The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in general, actinyl) chemistry, it requires specific additional mechanisms: (a) in long-chain-amine-templated compounds, protonated amine molecules inter-digitate; (b) in long-chain-diamine-templated compounds, incorporation of acid-water interlayers into

  20. Repulsion between oppositely charged planar macroions.

    Directory of Open Access Journals (Sweden)

    YongSeok Jho

    Full Text Available The repulsive interaction between oppositely charged macroions is investigated using Grand Canonical Monte Carlo simulations of an unrestricted primitive model, including the effect of inhomogeneous surface charge and its density, the depth of surface charge, the cation size, and the dielectric permittivity of solvent and macroions, and their contrast. The origin of the repulsion is a combination of osmotic pressure and ionic screening resulting from excess salt between the macroions. The excess charge over-reduces the electrostatic attraction between macroions and raises the entropic repulsion. The magnitude of the repulsion increases when the dielectric constant of the solvent is lowered (below that of water and/or the surface charge density is increased, in good agreement with experiment. Smaller size of surface charge and the cation, their discreteness and mobility are other factors that enhance the repulsion and charge inversion phenomenons.

  1. Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb–Pb collisions at sNN=2.76 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam

    2016-03-01

    Full Text Available The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb–Pb collisions at sNN=2.76 TeV over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the overall shape of charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. The broad pseudorapidity range (−3.5<η<5 allows precise estimates of the total number of produced charged particles which we find to range from 162±22(syst. to 17170±770(syst. in 80–90% and 0–5% central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. The results are compared to models which describe dNch/dη at mid-rapidity in the most central Pb–Pb collisions and it is found that these models do not capture all features of the distributions.

  2. Charge states of ions, and mechanisms of charge ordering transitions

    Science.gov (United States)

    Pickett, Warren E.; Quan, Yundi; Pardo, Victor

    2014-07-01

    To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n-1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.

  3. Specific effect of the linear charge density of the acid polysaccharide on thermal aggregation/ disaggregation processes in complex carrageenan/lysozyme systems

    NARCIS (Netherlands)

    Antonov, Y.; Zhuravleva, I.; Cardinaels, R.M.; Moldenaers, P.

    2017-01-01

    We study thermal aggregation and disaggregation processes in complex carrageenan/lysozyme systems with a different linear charge density of the sulphated polysaccharide. To this end, we determine the temperature dependency of the turbidity and the intensity size distribution functions in complex

  4. Ab initio computation of the transition temperature of the charge density wave transition in TiS e2

    Science.gov (United States)

    Duong, Dinh Loc; Burghard, Marko; Schön, J. Christian

    2015-12-01

    We present a density functional perturbation theory approach to estimate the transition temperature of the charge density wave transition of TiS e2 . The softening of the phonon mode at the L point where in TiS e2 a giant Kohn anomaly occurs, and the energy difference between the normal and distorted phase are analyzed. Both features are studied as functions of the electronic temperature, which corresponds to the Fermi-Dirac distribution smearing value in the calculation. The transition temperature is found to be 500 and 600 K by phonon and energy analysis, respectively, in reasonable agreement with the experimental value of 200 K.

  5. Subthreshold slope as a measure of interfacial trap density in pentacene films

    International Nuclear Information System (INIS)

    Kwon, Yongwoo; Park, Byoungnam

    2016-01-01

    Electrical properties in organic field effect transistors (FETs) are dominated by charge transport in the accumulation layer, few molecular layers close to the gate dielectric. Through comparison of the subthreshold slope between monolayer (ML) and thick pentacene FETs, formation of the second layer islands on top of the complete first layer is found to be crucial in determining the charge transport in ML pentacene FETs. It is demonstrated that a pentacene ML field effect transistor (FET) is an excellent probe that can detect electronic states of organic semiconductors interfacing with the gate dielectric at nanometer scale. Far higher sub-threshold slope in ML FETs, as a measure of interfacial charge trap density, than that in thick pentacene FETs is translated that the path of the induced carriers in ML FETs is limited into the molecular layer interfacing with the gate dielectric with a high density of charge traps, while carriers in thicker films have alternative pathways through more electrically conductive layer above the first layer with much less trap density. - Highlights: • Sub-threshold slope is demonstrated to be a measure of interface traps. • For application to sensors, effective charge transport layer should be chosen. • Monolayer transistors can be used as a platform for probing localized states.

  6. Subthreshold slope as a measure of interfacial trap density in pentacene films

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yongwoo; Park, Byoungnam, E-mail: metalpbn@hongik.ac.kr

    2016-01-29

    Electrical properties in organic field effect transistors (FETs) are dominated by charge transport in the accumulation layer, few molecular layers close to the gate dielectric. Through comparison of the subthreshold slope between monolayer (ML) and thick pentacene FETs, formation of the second layer islands on top of the complete first layer is found to be crucial in determining the charge transport in ML pentacene FETs. It is demonstrated that a pentacene ML field effect transistor (FET) is an excellent probe that can detect electronic states of organic semiconductors interfacing with the gate dielectric at nanometer scale. Far higher sub-threshold slope in ML FETs, as a measure of interfacial charge trap density, than that in thick pentacene FETs is translated that the path of the induced carriers in ML FETs is limited into the molecular layer interfacing with the gate dielectric with a high density of charge traps, while carriers in thicker films have alternative pathways through more electrically conductive layer above the first layer with much less trap density. - Highlights: • Sub-threshold slope is demonstrated to be a measure of interface traps. • For application to sensors, effective charge transport layer should be chosen. • Monolayer transistors can be used as a platform for probing localized states.

  7. Improved charge-coupled device detectors for high-speed, charge exchange spectroscopy studies on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Burrell, K.H.; Gohil, P.; Groebner, R.J.; Kaplan, D.H.; Robinson, J.I.; Solomon, W.M.

    2004-01-01

    Charge exchange spectroscopy is one of the key ion diagnostics on the DIII-D tokamak. It allows determination of ion temperature, poloidal and toroidal velocity, impurity density, and radial electric field E r throughout the plasma. For the 2003 experimental campaign, we replaced the intensified photodiode array detectors on the central portion of the DIII-D charge exchange spectroscopy system with advanced charge-coupled device (CCD) detectors mounted on faster (f/4.7) Czerny-Turner spectrometers equipped with toroidal mirrors. The CCD detectors are improved versions of the ones installed on our edge system in 1999. The combination improved the photoelectron signal level by about a factor of 20 and the signal to noise by a factor of 2-8, depending on the absolute signal level. The new cameras also allow shorter minimum integration times while archiving to PC memory: 0.552 ms for the slower, lower-read noise (15 e) readout mode and 0.274 ms in the faster, higher-read noise (30 e) mode

  8. Effects of Discrete Charge Clustering in Simulations of Charged Interfaces.

    Science.gov (United States)

    Grime, John M A; Khan, Malek O

    2010-10-12

    A system of counterions between charged surfaces is investigated, with the surfaces represented by uniform charged planes and three different arrangements of discrete surface charges - an equispaced grid and two different clustered arrangements. The behaviors of a series of systems with identical net surface charge density are examined, with particular emphasis placed on the long ranged corrections via the method of "charged slabs" and the effects of the simulation cell size. Marked differences are observed in counterion distributions and the osmotic pressure dependent on the particular representation of the charged surfaces; the uniformly charged surfaces and equispaced grids of discrete charge behave in a broadly similar manner, but the clustered systems display a pronounced decrease in osmotic pressure as the simulation size is increased. The influence of the long ranged correction is shown to be minimal for all but the very smallest of system sizes.

  9. Second harmonic generation study of malachite green adsorption at the interface between air and an electrolyte solution: observing the effect of excess electrical charge density at the interface.

    Science.gov (United States)

    Song, Jinsuk; Kim, Mahn Won

    2010-03-11

    Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.

  10. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes

    KAUST Repository

    Zhang, Yongyou

    2017-10-17

    Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective excitations of electron singlets, while the accompanying spin density wave is due to those of electron triplets. The Tomonaga–Luttinger liquid parameter and density–density interaction are extrapolated from the first-principles excitation energies. We show that the density–density interaction increases with the length of the nanotube. The singlet and triplet excitation energies, on the other hand, decrease for increasing length of the nanotube. Their ratio is used to establish a first-principles approach for deriving the Tomonaga–Luttinger parameter (in excellent agreement with experimental data). Time evolution analysis of the charge and spin line densities evidences that the charge and spin density waves are elementary excitations of metallic carbon nanotubes. Their dynamics show no dependence on each other.

  11. Positive column of a glow discharge in neon with charged dust grains (a review)

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.

  12. Positive column of a glow discharge in neon with charged dust grains (a review)

    International Nuclear Information System (INIS)

    Polyakov, D. N.; Shumova, V. V.; Vasilyak, L. M.

    2017-01-01

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.

  13. Amplitude modulation of charge-density-wave domains in 1T-TaS2 at 300 K

    International Nuclear Information System (INIS)

    Coleman, R.V.; McNairy, W.W.; Slough, C.G.

    1991-01-01

    Measurements of the charge-density-wave (CDW) amplitude modulation in 1T-TaS 2 at room temperature have been made using a scanning tunneling microscope (STM) operating in the constant current mode. The amplitude profiles are in good agreement with the profile predicated by the CDW domain model of Nakanishi and Shiba. Interference effects between the atomic and CDW lattices have been analyzed and do not modify these profiles significantly. They represent the true CDW amplitude variation connected with the CDW domain structure

  14. Total Ionizing Dose Effects on Threshold Switching in 1T-Tantalum Disulfide Charge-Density-Wave Devices

    OpenAIRE

    Liu, G.; Zhang, E. X.; Liang, C. D.; Bloodgood, M. A.; Salguero, T. T.; Fleetwood, D. M.; Balandin, A. A.

    2017-01-01

    The 1T polytype of TaS2 exhibits voltage-triggered threshold switching as a result of a phase transition from nearly commensurate to incommensurate charge density wave states. Threshold switching, persistent above room temperature, can be utilized in a variety of electronic devices, e.g., voltage controlled oscillators. We evaluated the total-ionizing-dose response of thin film 1T-TaS2 at doses up to 1 Mrad(SiO2). The threshold voltage changed by less than 2% after irradiation, with persisten...

  15. Charge orders in organic charge-transfer salts

    International Nuclear Information System (INIS)

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  16. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  17. Communication: a density functional with accurate fractional-charge and fractional-spin behaviour for s-electrons.

    Science.gov (United States)

    Johnson, Erin R; Contreras-García, Julia

    2011-08-28

    We develop a new density-functional approach combining physical insight from chemical structure with treatment of multi-reference character by real-space modeling of the exchange-correlation hole. We are able to recover, for the first time, correct fractional-charge and fractional-spin behaviour for atoms of groups 1 and 2. Based on Becke's non-dynamical correlation functional [A. D. Becke, J. Chem. Phys. 119, 2972 (2003)] and explicitly accounting for core-valence separation and pairing effects, this method is able to accurately describe dissociation and strong correlation in s-shell many-electron systems. © 2011 American Institute of Physics

  18. Electrolyte effects in a model of proton discharge on charged electrodes

    Science.gov (United States)

    Wiebe, Johannes; Kravchenko, Kateryna; Spohr, Eckhard

    2015-01-01

    We report results on the influence of NaCl electrolyte dissolved in water on proton discharge reactions from aqueous solution to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include NaCl solutions with several different concentrations of cations and anions, both stoichiometric (1:1) compositions and non-stoichiometric ones with an excess of cations. The latter solutions partially screen the electrostatic potential from the surface charge of the negatively charged electrode. 500-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred, or for at most 1.5 ns. The results show a strong dependence on ionic strength, but only a weak dependence on the screening behavior, when comparing stoichiometric and non-stoichiometric solutions. Overall, the Na+ cations exert a more dominant effect on the discharge reaction, which we argue is likely due to the very rigid arrangements of the cations on the negatively polarized electrode surface. Thus, our model predicts, for the given and very high negative surface charge densities, the fastest discharge reaction for pure water, but obviously cannot take into account the fact that such high charge densities are even more out of reach experimentally than for higher electrolyte concentrations.

  19. Phonon Dispersion and the Competition between Pairing and Charge Order

    Science.gov (United States)

    Costa, N. C.; Blommel, T.; Chiu, W.-T.; Batrouni, G.; Scalettar, R. T.

    2018-05-01

    The Holstein model describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge-density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature Tcdw for CDW order and also uncover several novel features of diagonal long-range order in the phase diagram, including a competition between charge patterns at momenta q =(π ,π ) and q =(0 ,π ) which lends insight into the relationship between Fermi surface nesting and the wave vector at which charge order occurs. We also demonstrate SC order at half filling in situations where a nonzero bandwidth sufficiently suppresses Tcdw.

  20. Charge Energy Transport in Hopping Systems with Rapidly Decreasing Density of States

    Science.gov (United States)

    Mendels, Dan; Organic Electronics Group Technion Team

    2014-03-01

    An accurate description of the carrier hopping topology in the energy domain of hopping systems incorporating a rapidly decreasing density of states and the subsequent energetic position of these systems' so called effective conduction band is crucial for rationalizing and quantifying these systems' thermo-electric properties, doping related phenomena and carrier gradient effects such as the emergence of the General Einstein Relation under degenerate conditions. Additionally, as will be shown, the 'mobile' carriers propagating through the system can have excess energies reaching 0.3eV above the system quasi-Fermi energy. Hence, since these mobile carriers are most prone to reach systems interfaces and interact with oppositely charged carriers, their excess energy should be considered in determining the efficiencies of energy dependent processes such as carrier recombination and exciton dissociation. In light of the stated motivations, a comprehensive numerical and analytical study of the topology of hopping in the energetic density of such systems (i.e. the statistics regarding which energy values carriers visit most and in what manner) was implemented and the main statistical features of the hopping process that determine the position in energy of the system's effective conduction band were distilled. The obtained results also help shed light on yet to be elucidated discrepancies between predictions given by the widely employed transport energy concept and Monte Carlo simulations.

  1. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO 6O 17

    Science.gov (United States)

    Dumas, Jean; Guyot, Hervé; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-04-01

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.

  2. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO6O17

    International Nuclear Information System (INIS)

    Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-01-01

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6 O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations

  3. Energy gaps, valence and conduction charge densities and optical properties of GaAs1‑xPx

    Science.gov (United States)

    Al-Hagan, O. A.; Algarni, H.; Bouarissa, N.; Alhuwaymel, T. F.; Ajmal Khan, M.

    2018-04-01

    The electronic structure and its derived valence and conduction charge distributions along with the optical properties of zinc-blende GaAs1‑xPx ternary alloys have been studied. The calculations are performed using a pseudopotential approach under the virtual crystal approximation (VCA) which takes into account the compositional disorder effect. Our findings are found to be generally in good accord with experiment. The composition dependence of direct and indirect bandgaps showed a clear bandgap bowing. The nature of the gap is found to depend on phosphorous content. The bonding and ionicity of the material of interest have been examined in terms of the anti-symmetric gap and charge densities. The variation in the optical constants versus phosphorous concentration has been discussed. The present investigation may give a useful applications in infrared and visible spectrum light emitters.

  4. Tunnel field-effect transistor charge-trapping memory with steep subthreshold slope and large memory window

    Science.gov (United States)

    Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2018-04-01

    Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.

  5. Spectral function from Reduced Density Matrix Functional Theory

    Science.gov (United States)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  6. Limitations of threshold voltage engineering of AlGaN/GaN heterostructures by dielectric interface charge density and manipulation by oxygen plasma surface treatments

    Science.gov (United States)

    Lükens, G.; Yacoub, H.; Kalisch, H.; Vescan, A.

    2016-05-01

    The interface charge density between the gate dielectric and an AlGaN/GaN heterostructure has a significant impact on the absolute value and stability of the threshold voltage Vth of metal-insulator-semiconductor (MIS) heterostructure field effect transistor. It is shown that a dry-etching step (as typically necessary for normally off devices engineered by gate-recessing) before the Al2O3 gate dielectric deposition introduces a high positive interface charge density. Its origin is most likely donor-type trap states shifting Vth to large negative values, which is detrimental for normally off devices. We investigate the influence of oxygen plasma annealing techniques of the dry-etched AlGaN/GaN surface by capacitance-voltage measurements and demonstrate that the positive interface charge density can be effectively compensated. Furthermore, only a low Vth hysteresis is observable making this approach suitable for threshold voltage engineering. Analysis of the electrostatics in the investigated MIS structures reveals that the maximum Vth shift to positive voltages achievable is fundamentally limited by the onset of accumulation of holes at the dielectric/barrier interface. In the case of the Al2O3/Al0.26Ga0.74N/GaN material system, this maximum threshold voltage shift is limited to 2.3 V.

  7. Charge density waves as the origin of dip-hump structures in the differential tunneling conductance of cuprates: The case of d-wave superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gabovich, Alexander M., E-mail: gabovich@iop.kiev.ua; Voitenko, Alexander I., E-mail: voitenko@iop.kiev.ua

    2014-08-15

    Highlights: • d-Wave superconductivity and charge-density waves compete for the Fermi surface. • Charge-density waves induce pseudogaps and peak-dip-hump structures in cuprates. • Tunnel spectra are non-symmetric due to the dielectric order-parameter phase fixation. • Scatter of the dielectric order parameter smears the tunnel spectra peculiarities. - Abstract: Quasiparticle differential current–voltage characteristics (CVCs) G(V) of non-symmetric tunnel junctions between d-wave superconductors with charge-density waves (CDWs) and normal metals were calculated. The dependences G(V) were shown to have a V-like form at small voltages V and low temperatures, and to be asymmetric at larger V owing to the presence of CDW peak in either of the V-branches. The spatial scatter of the dielectric (CDW) order parameter smears the CDW peak into a hump and induces a peak-dip-hump structure (PDHS) typical of CVCs observed for such junctions. At temperatures larger than the superconducting critical one, the PDHS evolves into a pseudogap depression. The results agree well with the scanning tunneling microscopy data for Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} and YBa{sub 2}Cu{sub 3}O{sub 7−δ}. The results differ substantially from those obtained earlier for CDW s-wave superconductors.

  8. Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion

    Science.gov (United States)

    Sen, Swati; Kundagrami, Arindam

    2017-11-01

    We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.

  9. Ion association at discretely-charged dielectric interfaces: Giant charge inversion

    Science.gov (United States)

    Wang, Zhi-Yong; Wu, Jianzhong

    2017-07-01

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  10. The effect of pressure on the charge-density wave and superconductivity in ZrTe sub 3

    CERN Document Server

    Yamaya, K; Yasuzuka, S; Okajima, Y; Tanda, S

    2002-01-01

    The charge-density-wave (CDW) transition temperature, T sub C sub D sub W , of ZrTe sub 3 is found to increase for pressures up to 0.6 GPa, while the superconducting transition temperature, T sub c , decreases with increasing pressure. According to a band calculation, it is found that the pressure-induced enhancement of the CDW and suppression of the superconductivity are not simply explained by the effect of nesting of the Fermi surface, suggesting the possibility of a new relation for the competition between the CDW and superconductivity.

  11. Atomic origin of the scanning tunneling microscopy images of charge-density-waves on 1T-TaSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stoltz, D. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)], E-mail: stoltz@physics.leidenuniv.nl; Bielmann, M.; Schlapbach, L. [Swiss Federal Lab for Materials Science and Technology (EMPA), CH-8600 Duebendorf (Switzerland); Bovet, M. [Institut de Physique, Universite de Neuchatel, CH-2000 Neuchatel (Switzerland); Berger, H. [Institut de Physique Appliquee, EPF, 1015 Lausanne (Switzerland); Goethelid, M. [Materialfysik, MAP, KTH-Electrum, SE-16440 Kista (Sweden); Stoltz, S.E. [MAX-Lab, Lund University, SE-22100 Lund (Sweden); Starnberg, H.I. [Department of Physics, Goeteborg University and Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2008-07-01

    We show atomically resolved scanning tunneling microscopy (STM) images of charge density waves (CDWs) at room temperature together with angle-resolved photoelectron band-mapping of 1T-TaSe{sub 2}. By comparing the results of these two techniques, we demonstrate the atomic structure of the CDW-features observed by the STM and atomic origin of the reconstructed band-structure in this material.

  12. Electronic structure of SnF{sub 3}: An example of valence skipper which forms charge density wave

    Energy Technology Data Exchange (ETDEWEB)

    Hase, I., E-mail: i.hase@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568 (Japan); Yanagisawa, T. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568 (Japan); Kawashima, K. [IMRA Material R& D Co., LTD., Kariya, Aichi 448-0032 (Japan)

    2016-11-15

    Highlights: • We calculated the electronic structure of SnF{sub 3} and BaBiO{sub 3} from first principles. • As for SnF{sub 3}, charge-density-wave (CDW) is found, which agrees with the experiment. • As for BaBiO{sub 3}, CDW is not found, contrary to the experiment. • We conclude that the CDW is hard in SnF{sub 3} and is soft in BaBiO{sub 3}. - Abstract: In the present study we calculated the electronic structure of the valence skipping compound SnF{sub 3} and BaBiO{sub 3} from first-principles. We confirmed that the charge-density-wave (CDW) is formed in SnF{sub 3}, and the Sn atoms in two crystallographic different sites take the valence Sn{sup 2+} and Sn{sup 4+}. Structure optimization study reveals that this CDW is stable, though the atomic position is slightly different from the experimental data. This behavior is in contrast with the case of BaBiO{sub 3}, where the structure optimization leads to the uniform state, which means that two Bi sites are equivalent. The CDW state is hard in SnF{sub 3}, which means that the CDW gap is large enough and it is difficult to melt this CDW order.

  13. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  14. Three-dimensional calculations of charge neutralization by neutral gas release

    International Nuclear Information System (INIS)

    Mandell, M.J.; Jongeward, G.A.; Katz, I.

    1993-01-01

    There have been numerous observations of high rocket or spacecraft potentials, both positive and negative, and both naturally and artificially induced, being neutralized during thruster firings. Two current studies, CHARGE-2B (positive polarity) and SPEAR3 (negative polarity), attempt a more systematic exploration of this phenomenon. The authors present here calculations performed in support of the SPEAR-3 program. (1) Conventional phenomenology of breakdown is applied to the three-dimensional system formed by the electrostatic potential and plume density fields. Using real cross sections, they calculate the paths along which the nozzle plume can support breakdown. This leads to a recommendation that the higher flow rate on SPEAR-3 be 2 g/s of argon, equal to the CHARGE-2B flow rate. (2) In a laboratory chamber, conditions (pressure of ∼ 2 x 10 - 5 torr) favor breakdown of the positive (electron-collecting) sheath for SPEAR-3 geometry. Three-dimensional calculations illustrate the evolution of the space charge and potential structure during the breakdown process. These calculations demonstrate the ability to apply accepted phenomenology to real systems with three dimensional electrostatic potential fields, space charge fields, and neutral density fields, including magnetic field effects and real cross-section data

  15. Higher-moment measurements of net-kaon, net-charge and net-proton multiplicity distributions at STAR

    International Nuclear Information System (INIS)

    Sarkar, Amal

    2014-01-01

    In this paper, we report the measurements of the various moments, such as mean, standard deviation (σ), skewness (S) and kurtosis (κ) of the net-kaon, net-charge and net-proton multiplicity distributions at mid-rapidity in Au + Au collisions from √(s NN )=7.7 to 200 GeV with the STAR experiment at RHIC. This work has been done with the aim to locate the critical point on the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as well as to the correlation length of the system which diverges in an ideal infinite thermodynamic system at the critical point. For a finite system, existing for a finite time, a non-monotonic behavior of these variables would indicate the presence of the critical point. Furthermore, we also present the moment products Sσ, κσ 2 of net-kaon, net-charge and net-proton multiplicity distributions as a function of collision centrality and energy. The energy and the centrality dependence of higher moments and their products have been compared with different models

  16. Spin-charge separation in quantum wires

    International Nuclear Information System (INIS)

    Yacoby, A.

    2004-01-01

    Full Text:Using momentum resolved tunneling between two clean parallel quantum wires in a AlGaAs/GaAs heterostructure we directly measure the dispersion of the quantum many-body modes in ballistic wires and follow their dependence on Coulomb interactions by varying the electron density. We find clear signatures of three excitation modes in the data: The anti-symmetric charge mode of the coupled wire system and two spin modes. The density dependence of the anti-symmetric charge mode agrees well with Luttinger-liquid theory. As the density of electrons is lowered, the Coulomb interaction is seen to become increasingly dominant leading to excitation velocities that are up to 2.5 times faster than the bare Fermi velocity, determined experimentally from the carrier density. The symmetric charge excitation, also expected from theory, is, however, not visible in the data. The observed spin velocities are found to be 25% slower than the bare Fermi velocities and depend linearly on carrier density. The dispersions are mapped down to a critical density at which spontaneous localization is observed. Some of the experimental findings concerning this phase will be discussed

  17. Annealed scaling for a charged polymer in dimensions two and higher

    Science.gov (United States)

    Berger, Q.; den Hollander, F.; Poisat, J.

    2018-02-01

    This paper considers an undirected polymer chain on {Z}d , d ≥slant 2 , with i.i.d. random charges attached to its constituent monomers. Each self-intersection of the polymer chain contributes an energy to the interaction Hamiltonian that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The object of interest is the annealed free energy per monomer in the limit as the length n of the polymer chain tends to infinity. We show that there is a critical curve in the parameter plane spanned by the charge bias and the inverse temperature separating an extended phase from a collapsed phase. We derive the scaling of the critical curve for small and for large charge bias and the scaling of the annealed free energy for small inverse temperature. We argue that in the collapsed phase the polymer chain is subdiffusive, namely, on scale \

  18. Nanographene charge trapping memory with a large memory window

    International Nuclear Information System (INIS)

    Meng, Jianling; Yang, Rong; Zhao, Jing; He, Congli; Wang, Guole; Shi, Dongxia; Zhang, Guangyu

    2015-01-01

    Nanographene is a promising alternative to metal nanoparticles or semiconductor nanocrystals for charge trapping memory. In general, a high density of nanographene is required in order to achieve high charge trapping capacity. Here, we demonstrate a strategy of fabrication for a high density of nanographene for charge trapping memory with a large memory window. The fabrication includes two steps: (1) direct growth of continuous nanographene film; and (2) isolation of the as-grown film into high-density nanographene by plasma etching. Compared with directly grown isolated nanographene islands, abundant defects and edges are formed in nanographene under argon or oxygen plasma etching, i.e. more isolated nanographene islands are obtained, which provides more charge trapping sites. As-fabricated nanographene charge trapping memory shows outstanding memory properties with a memory window as wide as ∼9 V at a relative low sweep voltage of ±8 V, program/erase speed of ∼1 ms and robust endurance of >1000 cycles. The high-density nanographene charge trapping memory provides an outstanding alternative for downscaling technology beyond the current flash memory. (paper)

  19. Fractional equivalent Lagrangian densities for a fractional higher-order equation

    International Nuclear Information System (INIS)

    Fujioka, J

    2014-01-01

    In this communication we show that the equivalent Lagrangian densities (ELDs) of a fractional higher-order nonlinear Schrödinger equation with stable soliton-like solutions can be related in a hitherto unknown way. This new relationship is described in terms of a new fractional operator that includes both left- and right-sided fractional derivatives. Using this operator it is possible to generate new ELDs that contain different fractional parts, in addition to the already known ELDs, which only differ by a sum of first-order partial derivatives of two arbitrary functions. (fast track communications)

  20. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  1. Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates

    Science.gov (United States)

    Miao, H.; Ishikawa, D.; Heid, R.; Le Tacon, M.; Fabbris, G.; Meyers, D.; Gu, G. D.; Baron, A. Q. R.; Dean, M. P. M.

    2018-01-01

    While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La1.875 Ba0.125 CuO4 . We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior shows that "214"-type cuprates can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa2 Cu3 O6 +δ . This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.

  2. Phase coexistence and pinning of charge density waves by interfaces in chromium

    Science.gov (United States)

    Singer, A.; Patel, S. K. K.; Uhlíř, V.; Kukreja, R.; Ulvestad, A.; Dufresne, E. M.; Sandy, A. R.; Fullerton, E. E.; Shpyrko, O. G.

    2016-11-01

    We study the temperature dependence of the charge density wave (CDW) in a chromium thin film using x-ray diffraction. We exploit the interference between the CDW satellite peaks and Laue oscillations to determine the amplitude, the phase, and the period of the CDW. We find discrete half-integer periods of CDW in the film and switching of the number of periods by one upon cooling/heating with a thermal hysteresis of 20 K. The transition between different CDW periods occurs over a temperature range of 30 K, slightly larger than the width of the thermal hysteresis. A comparison with simulations shows that the phase transition occurs as a variation of the volume fraction of two distinct phases with well-defined periodicities. The phase of the CDW is constant for all temperatures, and we attribute it to strong pinning of the CDW by the mismatch-induced strain at the film-substrate interface.

  3. Phase transitions to dipolar clusters and charge density waves in high T_c superconductors

    International Nuclear Information System (INIS)

    Saarela, M.; Kusmartsev, F.V.

    2017-01-01

    We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.

  4. Bond charge approximation for valence electron density in elemental semiconductors

    International Nuclear Information System (INIS)

    Bashenov, V.K.; Gorbachov, V.E.; Marvakov, D.I.

    1985-07-01

    The spatial valence electron distribution in silicon and diamond is calculated in adiabatic bond charge approximation at zero temperature when bond charges have the Gaussian shape and their tensor character is taken into account. An agreement between theory and experiment has been achieved. For this purpose Xia's ionic pseudopotentials and Schulze-Unger's dielectric function are used. By two additional parameters Asub(B) and Zsub(B)sup(') we describe the spatial extent of the bond charge and local-field corrections, respectively. The parameter Zsub(B)sup(') accounts for the ratio between the Coulomb and exchange correlation interactions of the valence electrons and its silicon and diamond values have different signs. (author)

  5. Density-dependent coupling constants and charge symmetry breaking

    International Nuclear Information System (INIS)

    Barreiro, L.A.

    2001-01-01

    The effect of the medium in the coupling constants implicate in a charge symmetry breaking on nuclear interactions. The amount of energy due to this modification can explain the Nolen-Schiffer anomaly. (author)

  6. Local Atomic Structure and Discommensurations in the Charge Density Wave of CeTe3

    International Nuclear Information System (INIS)

    Kim, H.J.; Tomic, A.T.; Tessmer, S.H.; Billinge, S.J.L.; Malliakas, C.D.; Kanatzidis, M.G.

    2006-01-01

    The local structure of CeTe 3 in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function analysis of x-ray diffraction data. Local atomic distortions in the Te nets due to the CDW are larger than observed crystallographically, resulting in distinct short and long Te-Te bonds. Observation of different distortion amplitudes in the local and average structures is explained by the discommensurated nature of the CDW, since the pair distribution function is sensitive to the local displacements within the commensurate regions, whereas the crystallographic result averages over many discommensurated domains. The result is supported by STM data. This is the first quantitative local structural study within the commensurate domains in an IC-CDW system

  7. Form factors and transition charge density of 16O and 18O nuclei

    International Nuclear Information System (INIS)

    Gul'karov, I.S.; Vakil', R.Kh.

    1986-01-01

    A formula is obtained for the transition density of charge (TDC) in the Helm model. The form factors are analysed for inelastic scattering of electrons On the 16 O isotopes (O 1 + , 6.052 MeV; 2 1 + , 6.917 MeV) and on the 18 O isotopes (0 1 + , 3.630 MeV; 2 1 + , 1.982 MeV; 0 2 + , 3.919 MeV; 2 3 + , 5.250 MeV; 4 1 + , 3.553 MeV; 4 2 + , 7.114 MeV). For monopole transitions the TDC is of the volume kind, but for L=2 and 4 transitions the TDC has a maximum at approximately R (R is the nuclear surface radius). There are as well obtained the first TDC moments, i.e. the reduced transition probabilities and transition radii of 16 O and 18 O

  8. Long plasma source for heavy ion beam charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Grant Logan, Larry B.; Seidl, Peter A.; Waldron, William

    2009-01-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO 3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage (∼8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO 3 source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5x10 10 cm -3 density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios ∼120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high-energy-density physics applications.

  9. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  10. Higher Dimensional Charged Black Hole Solutions in f(R Gravitational Theories

    Directory of Open Access Journals (Sweden)

    G. G. L. Nashed

    2018-01-01

    Full Text Available We present, without any assumption, a class of electric and magnetic flat horizon D-dimension solutions for a specific class of f(R=R+αR2, all of which behave asymptotically as Anti-de-Sitter spacetime. The most interesting property of these solutions is that the higher dimensions black holes, D>4, always have constant electric and magnetic charges in contrast to what is known in the literature. For D=4, we show that the magnetic field participates in the metric on equal foot as the electric field participates. Another interesting result is the fact that the Cauchy horizon is not identical with the event horizon. We use Komar formula to calculate the conserved quantities. We study the singularities and calculate the Hawking temperature and entropy and show that the first law of thermodynamics is always satisfied.

  11. Investigation of the energy loss and the charge state of high energy heavy ions in a hydrogen plasma

    International Nuclear Information System (INIS)

    Dietrich, K.G.

    1991-07-01

    For heavy ions with energy of 1.4 to 5.9 MeV/u the energy loss and charge state after transmission through a totally ionized hydrogen plasma are investigated. Plasma target was a Z-pinch device incorporated in the beam optics of the accelerator by a pumping system. In the 20 cm long pinch hydrogen plasmas with densities up to 1.5x10 19 cm -3 and temperatures above 5 eV are produced, with ionization efficiency higher than 99%. The ions pass the plasma on the symmetry axis of the plasma column through small apertures in the electrodes. The energy loss was measured by time-of-flight method, the plasma density by interferometry along the pinch axis. For the first time the ion charge after transmission through the plasma has been determined by a charge spectrometer being a combination of a dipole magnet and a position sensitive detector with high time resolution. A growth of the average charge of heavy ions in plasma higher than the equilibrium charge in cold gas was discovered, caused by a reduction of electron capture by fast heavy ions in ionized matter. The electron loss rates in plasma and cold gas are equal. (orig./AH) [de

  12. Scanning-tunneling microscope imaging of single-electron solitons in a material with incommensurate charge-density waves.

    Science.gov (United States)

    Brazovskii, Serguei; Brun, Christophe; Wang, Zhao-Zhong; Monceau, Pierre

    2012-03-02

    We report on scanning-tunneling microscopy experiments in a charge-density wave (CDW) system allowing visually capturing and studying in detail the individual solitons corresponding to the self-trapping of just one electron. This "Amplitude Soliton" is marked by vanishing of the CDW amplitude and by the π shift of its phase. It might be the realization of the spinon--the long-sought particle (along with the holon) in the study of science of strongly correlated electronic systems. As a distinct feature we also observe one-dimensional Friedel oscillations superimposed on the CDW which develop independently of solitons.

  13. Benchmarking lithium amide versus amine bonding by charge density and energy decomposition analysis arguments.

    Science.gov (United States)

    Engelhardt, Felix; Maaß, Christian; Andrada, Diego M; Herbst-Irmer, Regine; Stalke, Dietmar

    2018-03-28

    Lithium amides are versatile C-H metallation reagents with vast industrial demand because of their high basicity combined with their weak nucleophilicity, and they are applied in kilotons worldwide annually. The nuclearity of lithium amides, however, modifies and steers reactivity, region- and stereo-selectivity and product diversification in organic syntheses. In this regard, it is vital to understand Li-N bonding as it causes the aggregation of lithium amides to form cubes or ladders from the polar Li-N covalent metal amide bond along the ring stacking and laddering principle. Deaggregation, however, is more governed by the Li←N donor bond to form amine adducts. The geometry of the solid state structures already suggests that there is σ- and π-contribution to the covalent bond. To quantify the mutual influence, we investigated [{(Me 2 NCH 2 ) 2 (C 4 H 2 N)}Li] 2 ( 1 ) by means of experimental charge density calculations based on the quantum theory of atoms in molecules (QTAIM) and DFT calculations using energy decomposition analysis (EDA). This new approach allows for the grading of electrostatic Li + N - , covalent Li-N and donating Li←N bonding, and provides a way to modify traditional widely-used heuristic concepts such as the -I and +I inductive effects. The electron density ρ ( r ) and its second derivative, the Laplacian ∇ 2 ρ ( r ), mirror the various types of bonding. Most remarkably, from the topological descriptors, there is no clear separation of the lithium amide bonds from the lithium amine donor bonds. The computed natural partial charges for lithium are only +0.58, indicating an optimal density supply from the four nitrogen atoms, while the Wiberg bond orders of about 0.14 au suggest very weak bonding. The interaction energy between the two pincer molecules, (C 4 H 2 N) 2 2- , with the Li 2 2+ moiety is very strong ( ca. -628 kcal mol -1 ), followed by the bond dissociation energy (-420.9 kcal mol -1 ). Partitioning the interaction energy

  14. Single-crystal study of the charge density wave metal LuNiC2

    Science.gov (United States)

    Steiner, S.; Michor, H.; Sologub, O.; Hinterleitner, B.; Höfenstock, F.; Waas, M.; Bauer, E.; Stöger, B.; Babizhetskyy, V.; Levytskyy, V.; Kotur, B.

    2018-05-01

    We report on single-crystal growth, single-crystal x-ray diffraction, physical properties, and density functional theory (DFT) electronic structure as well as Fermi surface calculations for two ternary carbides, LuCoC2 and LuNiC2. Electrical resistivity measurements reveal for LuNiC2 a charge density wave (CDW) transition at TCDW≃450 K and, for T >TCDW , a significant anisotropy of the electrical resistivity, which is lowest along the orthorhombic a axis. The analysis of x-ray superstructure reflections suggest a commensurate CDW state with a Peierls-type distortion of the Ni atom periodicity along the orthorhombic a axis. DFT calculations based on the CDW modulated monoclinic structure model of LuNiC2 as compared to results of the orthorhombic parent type reveal the formation of a partial CDW gap at the Fermi level which reduces the electronic density of states from N (EF)=1.03 states/eV f.u. without CDW to N (EF)=0.46 states/eV f.u. in the CDW state. The corresponding bare DFT Sommerfeld value of the latter, γDFTCDW=0.90 mJ/mol K2, reaches reasonable agreement with the experimental value γ =0.83 (5 ) mJ/mol K2 of LuNiC2. LuCoC2 displays a simple metallic behavior with neither CDW ordering nor superconductivity above 0.4 K. Its experimental Sommerfeld coefficient, γ =5.9 (1) mJ/mol K2, is in realistic correspondence with the calculated, bare Sommerfeld coefficient, γDFT=3.82 mJ/mol K2, of orthorhombic LuCoC2.

  15. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes

    KAUST Repository

    Zhang, Yongyou; Zhang, Qingyun; Schwingenschlö gl, Udo

    2017-01-01

    Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective

  16. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  17. Charge-density matching in organic-inorganic uranyl compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krivovichev, S.V. [Saint Petersburg State Univ., Dept. of Crystallography, Faculty of Geology (Russian Federation); Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F. [Russian Academy of Sciences, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow (Russian Federation)

    2007-10-15

    Single crystals of [C{sub 10}H{sub 26}N{sub 2}][(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}SeO{sub 4}){sub 0.85}(H{sub 2}O){sub 2} (1), [C{sub 10}H{sub 26}N{sub 2}][(UO{sub 2})(SeO{sub 4}){sub 2}] (H{sub 2}SeO{sub 4}){sub 0.50}(H{sub 2}O) (2), and [C{sub 8}H{sub 20}N]{sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (H{sub 2}O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO{sub 7} and SeO{sub 4} polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO{sub 2}(SeO{sub 4}){sub 2}(H{sub 2}O)]{sup 2-} chains are separated by mixed organic-inorganic layers comprising from [NH{sub 3}(CH{sub 2}){sub 10}NH{sub 3}]{sup 2+} molecules, H{sub 2}O molecules, and disordered electroneutral (H{sub 2}SeO{sub 4}) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO{sub 2}(SeO{sub 4}){sub 2}]{sup 2-} sheet. The structure of 3 does not contain disordered (H{sub 2}SeO{sub 4}) groups but is based upon alternating [UO{sub 2}(SeO{sub 4}){sub 2}(H{sub 2}O)]{sup 2-} sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH{sub 3}(CH{sub 2}){sub 7}CH{sub 3}]{sup +}. The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in

  18. Centrality dependence of charged particle multiplicity at midrapidity in Au+Au collisions at (sNN)=130 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Heintzelman, G. A.; Henderson, C.; Hołyński, R.; Hofman, D. J.; Holzman, B.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Stephans, G. S.; Steinberg, P.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-03-01

    We present a measurement of the pseudorapidity density of primary charged particles near midrapidity in Au+Au collisions at (sNN)=130 GeV as a function of the number of participating nucleons. The pseudorapidity density, dNch/dη\\|\\|η\\|), rises from 2.87+/-0.21 in peripheral events (~83) to 3.45+/-0.18 in central events (~353), which is 53+/-8% higher than pp&; collisions at a similar center-of-mass energy. This is consistent with an additional contribution to charged particle production that scales with the number of binary nucleon-nucleon collisions (Ncoll).

  19. Obesity-related eating behaviors are associated with higher food energy density and higher consumption of sugary and alcoholic beverages: a cross-sectional study.

    Science.gov (United States)

    Muñoz-Pareja, Maritza; Guallar-Castillón, Pilar; Mesas, Arthur E; López-García, Esther; Rodríguez-Artalejo, Fernando

    2013-01-01

    Obesity-related eating behaviors (OREB) are associated with higher energy intake. Total energy intake can be decomposed into the following constituents: food portion size, food energy density, the number of eating occasions, and the energy intake from energy-rich beverages. To our knowledge this is the first study to examine the association between the OREB and these energy components. Data were taken from a cross-sectional study conducted in 2008-2010 among 11,546 individuals representative of the Spanish population aged ≥ 18 years. Information was obtained on the following 8 self-reported OREB: not planning how much to eat before sitting down, eating precooked/canned food or snacks bought at vending machines or at fast-food restaurants, not choosing low-energy foods, not removing visible fat from meat or skin from chicken, and eating while watching TV. Usual diet was assessed with a validated diet history. Analyses were performed with linear regression with adjustment for main confounders. Compared to individuals with ≤ 1 OREB, those with ≥ 5 OREB had a higher food energy density (β 0.10; 95% CI 0.08, 0.12 kcal/g/day; p-trendassociated with higher intake of dairy products and red meat, and with lower consumption of fresh fruit, oily fish and white meat. No association was found between the number of OREB and food portion size or the number of eating occasions. OREB were associated with higher food energy density and higher consumption of sugary and alcoholic beverages. Avoiding OREB may prove difficult because they are firmly socially rooted, but these results may nevertheless serve to palliate the undesirable effects of OREB by reducing the associated energy intake.

  20. Study Of Higher Moments Of Net-Electric Charge & Net-Proton Number Fluctuations In Pb+Pb Collisions At $\\sqrt{s_{NN}}$=2.76 TeV In ALICE At LHC

    CERN Document Server

    Behera, Nirbhay Kumar

    Lattice QCD predicts that at extreme temperature and energy density, QCD matter will undergo a phase transition from hadronic matter to partonic matter called as QGP. One of the fundamental goals of heavy ion collision experiments to map the QCD phase diagram as a function of temperature (T) and baryo-chemical potential ($\\mu_{B}$). There are many proposed experimental signatures of QGP and fluctuations study are regarded as sensitive tool for it. It is proposed that fluctuation of conserved quantities like net-charge and net-proton can be used to map the QCD phase diagram. The mean ($\\mu$), sigma ($\\sigma$), skewness (S) and kurtosis ($\\kappa$) of the distribution of net charge and net proton are believed to be sensitive probes in fluctuation analysis. It has been argued that critical phenomena are signaled with increase and divergence of correlation length. The dependence of $n^{th}$ order higher moments (cumulants, $c_{n}$) with the correlation length $\\xi$ is as $c_{n}\\sim\\xi^{2.5n-3}$. At LHC energy, the...

  1. Measurement of chirality of charge-density-waves in TiSe2 by using STM

    International Nuclear Information System (INIS)

    Ishioka, J.; Liu, Y.H.; Shimatake, K.; Kurosawa, T.; Ichimura, K.; Toda, Y.; Oda, M.; Tanda, S.

    2010-01-01

    We report the chirality of charge density waves (CDW) in 1T-TiSe 2 by using scanning tunneling microscopy (STM) measurements. We found that the CDW intensity becomes Ia 1 :Ia 2 :Ia 3 =1:0.7±0.1:0.5±0.1, where Ia i (i=1, 2, 3) is the amplitude of the tunneling current contributed by the CDWs. We found two states, in which the three intensity peaks of the CDW decrease clockwise and anticlockwise when we index each nesting vector in order of intensity in the Fourier transformation of the STM images. We found that this difference arises from CDW stacking along the c-axis at intervals of 2c 0 /3. This chirality is attributed to the helical stacking such as cholesteric liquid crystals.

  2. Obesity-related eating behaviors are associated with higher food energy density and higher consumption of sugary and alcoholic beverages: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Maritza Muñoz-Pareja

    Full Text Available Obesity-related eating behaviors (OREB are associated with higher energy intake. Total energy intake can be decomposed into the following constituents: food portion size, food energy density, the number of eating occasions, and the energy intake from energy-rich beverages. To our knowledge this is the first study to examine the association between the OREB and these energy components.Data were taken from a cross-sectional study conducted in 2008-2010 among 11,546 individuals representative of the Spanish population aged ≥ 18 years. Information was obtained on the following 8 self-reported OREB: not planning how much to eat before sitting down, eating precooked/canned food or snacks bought at vending machines or at fast-food restaurants, not choosing low-energy foods, not removing visible fat from meat or skin from chicken, and eating while watching TV. Usual diet was assessed with a validated diet history. Analyses were performed with linear regression with adjustment for main confounders.Compared to individuals with ≤ 1 OREB, those with ≥ 5 OREB had a higher food energy density (β 0.10; 95% CI 0.08, 0.12 kcal/g/day; p-trend<0.001 and a higher consumption of sugary drinks (β 7; 95% CI -7, 20 ml/day; p-trend<0.05 and of alcoholic beverages (β 24; 95% CI 10, 38 ml/day; p-trend<0.001. Specifically, a higher number of OREB was associated with higher intake of dairy products and red meat, and with lower consumption of fresh fruit, oily fish and white meat. No association was found between the number of OREB and food portion size or the number of eating occasions.OREB were associated with higher food energy density and higher consumption of sugary and alcoholic beverages. Avoiding OREB may prove difficult because they are firmly socially rooted, but these results may nevertheless serve to palliate the undesirable effects of OREB by reducing the associated energy intake.

  3. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction

    DEFF Research Database (Denmark)

    Forgan, E.M.; Blackburn, E.; Holmes, A.T.

    2015-01-01

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6...... oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states...

  4. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO{sub 6}O{sub 17}

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-04-30

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo{sub 6}O{sub 17} . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.

  5. Changes in charge density vs changes in formal oxidation states: The case of Sn halide perovskites and their ordered vacancy analogues

    Energy Technology Data Exchange (ETDEWEB)

    Dalpian, Gustavo M.; Liu, Qihang; Stoumpos, Constantinos C.; Douvalis, Alexios P.; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G.; Zunger, Alex

    2017-07-01

    Shifting the Fermi energy in solids by doping, defect formation, or gating generally results in changes in the charge density distribution, which reflect the ability of the bonding pattern in solids to adjust to such external perturbations. In the traditional chemistry textbook, such changes are often described by the formal oxidation states (FOS) whereby a single atom type is presumed to absorb the full burden of the perturbation (change in charge) of the whole compound. In the present paper, we analyze the changes in the position-dependence charge density due to shifts of the Fermi energy on a general physical basis, comparing with the view of the FOS picture. We use the halide perovskites CsSnX3 (X = F, Cl, Br, I) as examples for studying the general principle. When the solar absorber CsSnI3 (termed 113) loses 50% of its Sn atoms, thereby forming the ordered vacancy compound Cs2SnI6 (termed 216), the Sn is said in the FOS picture to change from Sn(II) to Sn(IV). To understand the electronic properties of these two groups we studied the 113 and 216 compound pairs CsSnCl3 and Cs2SnCl6, CsSnBr3 and Cs2SnBr6, and CsSnI3 and Cs2SnI6, complementing them by CsSnF3 and Cs2SnF6 in the hypothetical cubic structure for completing the chemical trends. These materials were also synthesized by chemical routes and characterized by x-ray diffraction, 119Sn-Mössbauer spectroscopy, and K-edge x-ray absorption spectroscopy. We find that indeed in going from 113 to 216 (equivalent to the introduction of two holes per unit) there is a decrease in the s charge on Sn, in agreement with the FOS picture. However, at the same time, we observe an increase of the p charge via downshift of the otherwise unoccupied p level, an effect that tends to replenish much of the lost s charge. At the end, the change in the charge on the Sn site as a result of adding two holes to the unit cell is rather small. This effect is theoretically explained as a “self-regulating response” [Raebiger, Lany

  6. Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density

    International Nuclear Information System (INIS)

    Espejel-Morales, R; Murguía-Romero, G; Calles, A; Cabrera-Bravo, E; Morán-López, J L

    2016-01-01

    We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell -like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder. (paper)

  7. Extended Opacity Tables with Higher Temperature-Density-Frequency Resolution

    Science.gov (United States)

    Schillaci, Mark; Orban, Chris; Delahaye, Franck; Pinsonneault, Marc; Nahar, Sultana; Pradhan, Anil

    2015-05-01

    Theoretical models for plasma opacities underpin our understanding of radiation transport in many different astrophysical objects. These opacity models are also relevant to HEDP experiments such as ignition scale experiments on NIF. We present a significantly expanded set of opacity data from the widely utilized Opacity Project, and make these higher resolution data publicly available through OSU's portal with dropbox.com. This expanded data set is used to assess how accurate the interpolation of opacity data in temperature-density-frequency dimensions must be in order to adequately model the properties of most stellar types. These efforts are the beginning of a larger project to improve the theoretical opacity models in light of experimental results at the Sandia Z-pinch showing that the measured opacity of Iron disagrees strongly with all current models.

  8. Cosmology of a charged universe

    International Nuclear Information System (INIS)

    Barnes, A.

    1979-01-01

    The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A charged intergalactic (and intragalactic) medium of this kind could contain enough energy to be of cosmological importance. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the decleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been much more rapid than in conventional ''big bang'' cosmologies, too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3 K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe, a condition of special significance in certain cosmological theories

  9. Two interesting cases in spatial charge movement

    International Nuclear Information System (INIS)

    Novellino, R.A.

    1983-01-01

    The relation between current and voltage in a dielectric under radiation is obtained, assuming only one carrier to be mobile, recombination and injection of the mobile charge from the electrode. For this last boundary condition a constant charge density at the electrode-dielectric interface was chosen. The other problem treated is a generalization of the classic transient problem studied by Many-Rakavy, using the constant charge density boundary condition. Analytic solutions were obtained during the first transit time and computed ones for larger times. Some attention was given to the damped current oscilations approaching the steady state value. (Author) [pt

  10. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K., E-mail: paul.hurley@tyndall.ie [Tyndall National Institute, University College Cork, Dyke Parade, Cork (Ireland)

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  11. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek; Saadat, Irfan; Saraswat, Krishna; Nayfeh, Ammar

    2017-01-01

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  12. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek

    2017-10-19

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  13. Phase transitions to dipolar clusters and charge density waves in high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Saarela, M., E-mail: Mikko.Saarela@oulu.fi [Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Kusmartsev, F.V. [Department of Physics, Loughborough University, LE11 3TU (United Kingdom)

    2017-02-15

    We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.

  14. Electrostatic charges generated on aerosolisation of dispersions

    International Nuclear Information System (INIS)

    Wang, Yanyang

    2001-01-01

    by increasing the liquid delivery speed so that a jet is formed. The streaming current is monitored in this case. It is found that the streaming current is always negative for water and increases linearly in magnitude as flow rate increases. With salt solutions, the streaming current is negative at dilute solution, decreases in magnitude as the concentration of electrolytes increases and finally reverses the sign of streaming current at approximately 1 M - streaming current becomes positive. Then similar experiments are carried out with model propellant 2H, 3H-Decafluoropentane (HPFP). The streaming current is negative and firstly increases linearly, then increases dramatically and finally reaches another linear relationship with the flow rate. Furthermore the effects of pressure inside a can and concentration of salts on jet charge density are investigated using aqueous solutions and HPFP. It is shown that the magnitude of jet charge density increases as the can pressure increases and the charge sign changes from negative to positive as the salt concentration increases from 0.01M to 0.1M. Finally jet charge density of pure HFA134a, HFA227ea and their Formoterol formulations are examined. Similar experiments are carried out with pure HFAs and their respective Formoterol MDIs. The spray charge simulation experiments are carried out for both aqueous solutions and HPFP with standard plastic actuators at different pressures inside cans and different concentrations of salt solutions. It is shown that the charge sign also changes as the concentration increases from 10 -5 M to 1M, but the polarity is the opposite of the charge on the jet. It means that the actuator actually changes the charge polarity of the spray. The spray charge density on pure HFA 134a, HFA227ea and their Formoterol formulations MDIs with both aluminium and plastic actuators are investigated. Charge that occurs when liquid splashes against different materials is measured. The effects of air blow rate

  15. Interfacial electronic charge transfer and density of states in short period Cu/Cr multilayers; TOPICAL

    International Nuclear Information System (INIS)

    Barbee, T W; Bello, A F; Klepeis, J E; Van Buuren, T

    1999-01-01

    Nanometer period metallic multilayers are ideal structures to investigate electronic phenomena at interfaces between metal films since interfacial atoms comprise a large atomic fraction of the samples. The Cu/Cr binary pair is especially suited to study the interfaces in metals since these elements are mutually insoluble, thus eliminating mixing effects and compound formation and the lattice mismatch is very small. This allows the fabrication of high structural quality Cu/Cr multilayers that have a structure which can be approximated in calculations based on idealized atomic arrangements. The electronic structure of the Cu and the Cr layers in several samples of thin Cu/Cr multilayers were studied using x-ray absorption spectroscopy (XAS). Total electron yield was measured and used to study the white lines at the Cu L(sub 2) and L(sub 3) absorption edges. The white lines at the Cu absorption edges are strongly related to the unoccupied d-orbitals and are used to calculate the amount of charge transfer between the Cr and Cu atoms in interfaces. Analysis of the Cu white lines show a charge transfer of 0.026 electrons/interfacial Cu atom to the interfacial Cr atoms. In the Cu XAS spectra we also observe a van Hove singularity between the L(sub 2) and L(sub 3) absorption edges as expected from the structural analysis. The absorption spectra are compared to partial density of states obtained from a full-potential linear muffin-tin orbital calculation. The calculations support the presence of charge transfer and indicate that it is localized to the first two interfacial layers in both Cu and Cr

  16. The influence of hydrogen intercalation on inner pressure of Ni/MH battery during fast charge

    Science.gov (United States)

    Shi, Jianzhen; Wu, Feng; Hu, Daozhong; Chen, Shi; Mao, Licai; Wang, Guoqing

    Gaseous hydrogen is confirmed to be the main component and primarily responsible for the inner pressure rise inside the 8-Ah Ni/MH batteries during fast charge. Based on a temperature-dependent pressure model proposed in this work, the kinetic characteristics of the hydrogen evolution were investigated. The overpotential and exchange current density were obtained by fitting the presented equation to the experimental data. Moreover, the profiles of hydrogen concentration during fast charge was further modeled and calculated according to the proposed mathematical model of hydrogen intercalation. It is indicated that diffusion step controls the fast charge performances and the higher the charge rate is, the more quickly the negative electrode attains to the maximum surface intercalation fraction, and however, the calculated results also show that further charge can reduce the difference of charge efficiency among the various rate during fast charge. Numerical investigations also reveal that the increase of diffusion coefficient and decrease of the particle size can efficiently improve the characteristics of fast charge, respectively.

  17. Density dependent hadron field theory

    International Nuclear Information System (INIS)

    Fuchs, C.; Lenske, H.; Wolter, H.H.

    1995-01-01

    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state

  18. Transportable charge in a periodic alternating gradient system

    International Nuclear Information System (INIS)

    Lee, E.P.; Fessenden, T.J.; Laslett, L.J.

    1985-05-01

    A simple set of formulas is derived which relate emittance, line charge density, matched maximum and average envelope radii, occupancy factors, and the (space charge) depressed and vacuum values of tune. This formulation is an improvement on the smooth limit approximation; deviations from exact (numerically determined) relations are on the order of +-2%, while the smooth limit values are in error by up to +-30%. This transport formalism is used to determine the limits of transportable line charge density in an electrostatic quadrupole array, with specific application to the low energy portion of the High Temperature Experiment of Heavy Ion Fusion Accelerator Research. The line charge density limit is found to be essentially proportional to the voltage on the pole faces and the fraction of occupied aperture area. A finite injection energy (greater than or equal to 2 MeV) is required to realize this limit, independent of particle mass

  19. Electron beam charge state amplifier (EBQA)--a conceptual evaluation

    International Nuclear Information System (INIS)

    Dooling, J. C.

    1998-01-01

    A concept is presented for stripping low-energy, radioactive ions from 1+ to higher charge states. Referred to as an Electron Beam Charge State Amplifier (EBQA), this device accepts a continuous beam of singly-charged, radioactive ions and passes them through a high-density electron beam confined by a solenoidal magnetic field. Singly-charged ions may be extracted from standard Isotope-Separator-Online (ISOL) sources. An EBQA is potentially useful for increasing the charge state of ions prior to injection into post-acceleration stages at ISOL radioactive beam facilities. The stripping efficiency from q=1+ to 2+ (η 12 ) is evaluated as a function of electron beam radius at constant current with solenoid field, injected ion energy, and ion beam emittance used as parameters. Assuming a 5 keV, 1 A electron beam, η 12 = 0.38 for 0.1 keV, 132 Xe ions passing through an 8 Tesla solenoid, 1 m in length. Multi-pass configurations to achieve 3+ or 4+ charge states are also conceivable. The calculated efficiencies depend inversely on the initial ion beam emittances. The use of a helium-buffer-gas, ion-guide stage to improve the brightness of the 1+ beams [1] may enhance the performance of an EBQA

  20. X-ray electron charge density distribution in silicon

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    During the last two years new highly accurate X-ray structure amplitudes for silicon have been published. Also the scattering phases of some 'forbidden' reflections have been determined using the X-ray three-beam case. This allows the construction of most precise valence and difference electron density plots and the comparison with those calculated on the basis of the Aldret-Hart X-ray pendelloesung data or theoretically. The density plots are discussed in details of both, the bond and the atomic site. The contributions of various Fourier components and the influence of different temperature factors on the difference density are studied. (author)

  1. Composite space charge density functions for the calculation of gamma sensitivity of self-powered neutron detectors, using Warren's model

    Science.gov (United States)

    Mahant, A. K.; Rao, P. S.; Misra, S. C.

    1994-07-01

    In the calculational model developed by Warren and Shah for the computation of the gamma sensitivity ( Sγ) it has been observed that the computed Sγ value is quite sensitive to the space charge distribution function assumed for the insulator region and the energy of the gamma photons. The Sγ of SPNDs with Pt, Co and V emitters (manufactured by Thermocoax, France) has been measured at 60Co photon energy and a good correlation between the measured and computed values has been obtained using a composite space charge density function (CSCD), the details of which are presented in this paper. The arguments are extended for evaluating the Sγ values of several SPNDs for which Warren and Shah reported the measured values for a prompt fission gamma spectrum obtained in a swimming pool reactor. These results are also discussed.

  2. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    Science.gov (United States)

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  3. Local Atomic Structure and Discommensurations in the Charge Density Wave of CeTe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H J; Tomic, A T; Tessmer, S H; Billinge, S J.L. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Malliakas, C D; Kanatzidis, M G [Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States)

    2006-06-09

    The local structure of CeTe{sub 3} in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function analysis of x-ray diffraction data. Local atomic distortions in the Te nets due to the CDW are larger than observed crystallographically, resulting in distinct short and long Te-Te bonds. Observation of different distortion amplitudes in the local and average structures is explained by the discommensurated nature of the CDW, since the pair distribution function is sensitive to the local displacements within the commensurate regions, whereas the crystallographic result averages over many discommensurated domains. The result is supported by STM data. This is the first quantitative local structural study within the commensurate domains in an IC-CDW system.

  4. Monte Carlo studies of diamagnetism and charge density wave order in the cuprate pseudogap regime

    Science.gov (United States)

    Hayward Sierens, Lauren; Achkar, Andrew; Hawthorn, David; Melko, Roger; Sachdev, Subir

    2015-03-01

    The pseudogap regime of the hole-doped cuprate superconductors is often characterized experimentally in terms of a substantial diamagnetic response and, from another point of view, in terms of strong charge density wave (CDW) order. We introduce a dimensionless ratio, R, that incorporates both diamagnetic susceptibility and the correlation length of CDW order, and therefore reconciles these two fundamental characteristics of the pseudogap. We perform Monte Carlo simulations on a classical model that considers angular fluctuations of a six-dimensional order parameter, and compare our Monte Carlo results for R with existing data from torque magnetometry and x-ray scattering experiments on YBa2Cu3O6+x. We achieve qualitative agreement, and also propose future experiments to further investigate the behaviour of this dimensionless ratio.

  5. Impact of electron delocalization on the nature of the charge-transfer states in model pentacene/C60 Interfaces: A density functional theory study

    KAUST Repository

    Yang, Bing

    2014-12-04

    Electronic delocalization effects have been proposed to play a key role in photocurrent generation in organic photovoltaic devices. Here, we study the role of charge delocalization on the nature of the charge-transfer (CT) states in the case of model complexes consisting of several pentacene molecules and one fullerene (C60) molecule, which are representative of donor/acceptor heterojunctions. The energies of the CT states are examined by means of time-dependent density functional theory (TD-DFT) using the long-range-corrected functional, ωB97X, with an optimized range-separation parameter, ω. We provide a general description of how the nature of the CT states is impacted by molecular packing (i.e., interfacial donor/acceptor orientations), system size, and intermolecular interactions, features of importance in the understanding of the charge-separation mechanism.

  6. Low-temperature specific heat of the quasi-two-dimensional charge-density wave compound KMo6O17

    Science.gov (United States)

    Wang, Junfeng; Xiong, Rui; Yin, Di; Li, Changzhen; Tang, Zheng; Wang, Ququan; Shi, Jing; Wang, Yue; Wen, Haihu

    2006-05-01

    Low temperature specific heat (Cp) of quasi-two-dimensional charge-density wave (CDW) compound KMo6O17 has been studied by a relaxation method from 2to48K under zero and 12T magnetic fields. The results show that no specific heat anomaly is found at 16K under both zero and 12T magnetic fields, although an anomaly is clearly observed in the resistivity and magnetoresistance measurements. From the data between 2 and 4K , the density of states at Fermi level is estimated as 0.2eV-1permolecule and the Debye temperature is extracted to be 418K . A bump appearing in Cp/T3 is found between 4 and 48K centered around 12.5-15K , indicating that the phason excitations contribute to the total specific heat similarly as in quasi-one-dimensional CDW conductors. Using a modified Debye model, a pinning frequency of 0.73THz for KMo6O17 is estimated from the phason contribution.

  7. Charge imbalance: its relaxation, diffusion and oscillation

    International Nuclear Information System (INIS)

    Pethick, C.J.

    1981-01-01

    In this article, the authors use a model for charge density based on two charge components: the normal quasiparticle component and the superfluid/condensate component. Based on the quasiparticle Boltzmann equation, this two-component model, when used in nonequilibrium contexts, is fruitful in describing a variety of charge-imbalance phenomena in superconductors. The authors discuss various methods of generating charge-imbalances, charge-imbalance relaxation processes (such as phonons, impurity scattering and magnetic impurities) and applications of the two-component model of charge imbalance to spatially inhomogeneous conditions

  8. Duality of quasilocal gravitational energy and charges with nonorthogonal boundaries

    International Nuclear Information System (INIS)

    Kim, Sung-Won; Kim, Won Tae; Oh, John J.; Yee, Ki Hyuk

    2003-01-01

    We study the duality of quasilocal energy and charges with nonorthogonal boundaries in the (2+1)-dimensional low-energy string theory. Quasilocal quantities shown in previous work and also some new variables arising from considering the nonorthogonal boundaries are presented, and the boost relations between these quantities are discussed. Moreover, we show that the dual properties of quasilocal variables, such as quasilocal energy density, momentum densities, surface stress densities, dilaton pressure densities, and Neveu-Schwarz charge density, are still valid in the moving observer's frame

  9. Ion association at discretely-charged dielectric interfaces: Giant charge inversion [Dielectric response controlled ion association at physically heterogeneous surfaces: Giant charge reversal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi -Yong [Chongqing Univ. of Technology, Chongqing (China); Univ. of California, Riverside, CA (United States); Wu, Jianzhong [Univ. of California, Riverside, CA (United States)

    2017-07-11

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  10. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  11. Microscopic origin of the charge transfer in single crystals based on thiophene derivatives: A combined NEXAFS and density functional theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Chernenkaya, A., E-mail: chernenk@uni-mainz.de [Graduate School Materials Science in Mainz, 55128 Mainz (Germany); Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Morherr, A.; Witt, S.; Krellner, C. [Physikalisches Institut, Goethe-Universität, 60438 Frankfurt am Main (Germany); Backes, S.; Popp, W.; Jeschke, H. O.; Valentí, R. [Institut für Theoretische Physik, Goethe-Universität, 60438 Frankfurt am Main (Germany); Kozina, X.; Nepijko, S. A.; Elmers, H. J.; Schönhense, G. [Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bolte, M. [Institut für Anorganische Chemie, Goethe-Universität, 60438 Frankfurt am Main (Germany); Medjanik, K.; Öhrwall, G. [MAX-IV Laboratory, Lund University, 22100 Lund (Sweden); Baumgarten, M. [Max-Planck-Institut für Polymerforschung, 55021 Mainz (Germany)

    2016-07-21

    We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F{sub 4}TCNQ (where DTBDT is dithieno[2,3-d;2′,3′-d′] benzo[1,2-b;4,5-b′]dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F{sub 4} TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.

  12. Terahertz spectra revealing the collective excitation mode in charge-density-wave single crystal LuFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiumei; Jin, Zuanming; Lin, Xian; Ma, Guohong [Department of Physics, Shanghai University (China); Cheng, Zhenxiang [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW (Australia); Balakrishnan, Geetha [Department of Physics, University of Warwick, Coventry (United Kingdom)

    2017-09-15

    A low-energy collective excitation mode in charge-ordered multiferroic LuFe{sub 2}O{sub 4} is reported via terahertz time-domain spectroscopy. Upon cooling from 300 to 40 K, the central resonance frequency showed a pronounced hardening from 0.85 to 1.15 THz. In analogy to the well-known low-energy optical properties of LuFe{sub 2}O{sub 4}, this emerging resonance was attributed to the charge-density-wave (CDW) collective excitations. By using the Drude-Lorentz model fitting, the CDW collective mode becomes increasingly damped with the increasing temperature. Furthermore, the kinks of the CDW collective mode at the magnetic transition temperature are analyzed, which indicate the coupling of spin order with electric polarization. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Higher Dietary Energy Density is Associated with Stunting but not Overweight and Obesity in a Sample of Urban Malaysian Children.

    Science.gov (United States)

    Shariff, Zalilah Mohd; Lin, Khor Geok; Sariman, Sarina; Siew, Chin Yit; Yusof, Barakatun Nisak Mohd; Mun, Chan Yoke; Lee, Huang Soo; Mohamad, Maznorila

    2016-01-01

    Although diets with high energy density are associated with increased risk of overweight and obesity, it is not known whether such diets are associated with undernutrition. This study assessed the relationship between dietary energy density (ED) and nutritional status of 745 urban 1- to 10-year-old children. Dietary intakes were obtained using food recall and record for two days. Dietary energy density was based on food and caloric beverages. Higher dietary ED was associated with lower intakes of carbohydrate, sugar, vitamins C and D, and calcium but higher fat, fiber, iron, and folate intakes. While intakes of fruits and milk/dairy products decreased, meat, fish, and legume intakes increased with higher dietary ED. Stunting, but not other growth problems, was associated with higher dietary ED. Future studies should confirm the cause-and-effect relationship between higher dietary ED and stunting.

  14. Equilibrium charge distribution on a finite straight one-dimensional wire

    Science.gov (United States)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed

    2017-09-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.

  15. Equilibrium charge distribution on a finite straight one-dimensional wire

    International Nuclear Information System (INIS)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Farouk, Ahmed; Alkhambashi, Majid

    2017-01-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges. (paper)

  16. Key performance indicators of charging infrastructure

    NARCIS (Netherlands)

    Helmus, J.; van den Hoed, R.

    2016-01-01

    The Netherlands are one of the frontrunners in stimulating electric mobility in Europe when it comes to the charging infrastructure density and electric vehicle adoption. Municipalities play an instrumental role in the rollout of public charging infrastructure while they have little insight in the

  17. Multiple charge-density waves in R.sub.5./sub.Ir.sub.4 ./sub.Si.sub.10./sub. (R=Ho, Er, Tm, and Lu)

    Czech Academy of Sciences Publication Activity Database

    van Smaalen, S.; Shaz, M.; Palatinus, Lukáš; Daniels, P.; Galli, F.; Nieuwenhuys, G.J.; Mydosh, J.A.

    2004-01-01

    Roč. 69, č. 1 (2004), 014103/1-014103/11 ISSN 0163-1829 Grant - others:DFG a FCI(DE) XX Institutional research plan: CEZ:AV0Z1010914 Keywords : charge-density wave * rare-earth silicide * incommensurate phase Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  18. Voltage-Dependent Charge Storage in Cladded Zn0.56Cd0.44Se Quantum Dot MOS Capacitors for Multibit Memory Applications

    Science.gov (United States)

    Khan, J.; Lingalugari, M.; Al-Amoody, F.; Jain, F.

    2013-11-01

    As conventional memories approach scaling limitations, new storage methods must be utilized to increase Si yield and produce higher on-chip memory density. Use of II-VI Zn0.56Cd0.44Se quantum dots (QDs) is compatible with epitaxial gate insulators such as ZnS-ZnMgS. Voltage-dependent charging effects in cladded Zn0.56Cd0.44Se QDs are presented in a conventional metal-oxide-semiconductor capacitor structure. Charge storage capabilities in Si and ZnMgS QDs have been reported by various researchers; this work is focused on II-VI material Zn0.56Cd0.44Se QDs nucleated using photoassisted microwave plasma metalorganic chemical vapor deposition. Using capacitance-voltage hysteresis characterization, the multistep charging and discharging capabilities of the QDs at room temperature are presented. Three charging states are presented within a 10 V charging voltage range. These characteristics exemplify discrete charge states in the QD layer, perfect for multibit, QD-functionalized high-density memory applications. Multiple charge states with low operating voltage provide device characteristics that can be used for multibit storage by allowing varying charges to be stored in a QD layer based on the applied "write" voltage.

  19. High magnetic field magnetoresistance anomalies in the charge density wave state of the quasi-two dimensional bronze KMo6O{17}

    Science.gov (United States)

    Guyot, H.; Dumas, J.; Marcus, J.; Schlenker, C.; Vignolles, D.

    2005-12-01

    We report high magnetic field magnetoresistance measurements performed in pulsed fields up to 55 T on the quasi-two dimensional charge density wave conductor KMo{6}O{17}. Magnetoresistance curves show several anomalies below 28 T. First order transitions to smaller gap states take place at low temperature above 30 T. A phase diagram T(B) has been obtained. The angular dependence of the anomalies is reported.

  20. X-ray Spectroscopic Characterization of Plasma for a Charged-Particle Energy-Loss Experiment

    Science.gov (United States)

    Hoffman, Nm; Lee, Cl; Wilson, Dc; Barnes, Cris W.; Petrasso, Rd; Li, C.; Hicks, D.

    2000-10-01

    We are pursuing an approach to a charged-particle energy-loss experiment in which charged fusion products from an imploded ICF capsule travel through a well characterized, spatially separate plasma. For this purpose, a fully ionized, uniform, nearly steady-state carbon-hydrogen plasma will be created by laser irradiation of a plastic foil. The temperature and density structure of this plasma must be determined accurately in order to relate observed energy losses to predictions of theory. Various methods for diagnosing the plasma are possible, including Thomson scattering. Alternatively, if a small admixture of higher-Z material such as chlorine is included in the plastic, x-ray spectroscopic techniques will allow the plasma's temperature and density to be determined. Electron temperature is inferred from the ratios of line strengths of various chlorine ion stages, while electron density is determined from the spectra of lithium-like satellite lines near the He beta line of helium-like chlorine. We present results from detailed-configuration accounting (DCA) models of line emission from C+H+Cl plasmas, and estimate the accuracy with which such plasmas can be characterized.

  1. A comparison of different methods to implement higher order derivatives of density functionals

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, Hubertus J.J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-18

    Density functional theory is the dominant approach in electronic structure methods today. To calculate properties higher order derivatives of the density functionals are required. These derivatives might be implemented manually,by automatic differentiation, or by symbolic algebra programs. Different authors have cited different reasons for using the particular method of their choice. This paper presents work where all three approaches were used and the strengths and weaknesses of each approach are considered. It is found that all three methods produce code that is suffficiently performanted for practical applications, despite the fact that our symbolic algebra generated code and our automatic differentiation code still have scope for significant optimization. The automatic differentiation approach is the best option for producing readable and maintainable code.

  2. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D.

    Science.gov (United States)

    Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  3. New Method for Shallow and Deep Trap Distribution Analysis in Oil Impregnated Insulation Paper Based on the Space Charge Detrapping

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2018-01-01

    Full Text Available Space charge has close relation with the trap distribution in the insulation material. The phenomenon of charges trapping and detrapping has attracted significant attention in recent years. Space charge and trap parameters are effective parameters for assessing the ageing condition of the insulation material qualitatively. In this paper, a new method for calculating trap distribution based on the double exponential fitting analysis of charge decay process and its application on characterizing the trap distribution of oil impregnated insulation paper was investigated. When compared with the common first order exponential fitting analysis method, the improved dual-level trap method could obtain the energy level range and density of both shallow traps and deep traps, simultaneously. Space charge decay process analysis of the insulation paper immersed with new oil and aged oil shows that the improved trap distribution calculation method can distinguish the physical defects and chemical defects. The trap density shows an increasing trend with the oil ageing, especially for the deep traps mainly related to chemical defects. The greater the energy could be filled by the traps, the larger amount of charges could be trapped, especially under higher electric field strength. The deep trap energy level and trap density could be used to characterize ageing. When one evaluates the ageing condition of oil-paper insulation using trap distribution parameters, the influence of oil performance should not be ignored.

  4. Higher Mellin moments for charged current DIS

    International Nuclear Information System (INIS)

    Rogal, M.; Moch, S.

    2007-06-01

    We report on our recent results for deep-inelastic neutrino(ν)-proton(P) scattering. We have computed the perturbative QCD corrections to three loops for the charged current structure functions F 2 , F L and F 3 for the combination νP- anti νP. In leading twist approximation we have calculated the first six odd-integer Mellin moments in the case of F 2 and F L and the first six even-integer moments in the case of F 3 . As a new result we have obtained the coefficient functions to O(α 3 s ) and we have found the corresponding anomalous dimensions to agree with known results in the literature. (orig.)

  5. Kapton charging characteristics: Effects of material thickness and electron-energy distribution

    Science.gov (United States)

    Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.

    1985-01-01

    Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.

  6. Charged dopants in neutral supercells through substitutional donor (acceptor): nitrogen donor charging of the nitrogen-vacancy center in diamond

    Science.gov (United States)

    Löfgren, Robin; Pawar, Ravinder; Öberg, Sven; Larsson, J. Andreas

    2018-02-01

    Charged defects are traditionally computed by adding (subtracting) electrons for negative (positive) impurities. When using periodic boundary conditions this results in artificially charged supercells that also require a compensating background charge of the opposite sign, which makes slab supercells problematic because of an arbitrary dependence on the vacuum thickness. In this work, we test the method of using neutral supercells through the use of a substitutional electron donor (acceptor) to describe charged systems. We use density functional theory (DFT) to compare the effects of charging the well-studied NV-center in diamond by a substitutional donor nitrogen. We investigate the influence of the donor-N on the NV-center properties as a function of the distance between them, and find that they converge toward those obtained when adding an electron. We analyze the spin density and conclude that the donor-N has a zero magnetic moment, and thus, will not be seen in electron spin resonance. We validate our DFT energies through comparison to GW simulations. Charging the NV-center with a substitutional donor-N enables accurate calculations of slabs, without the ambiguity of using charged supercells. Implantation of donor-N atoms opens up the possibility to engineer NV-centers with the desired charge state for future ICT and sensor applications.

  7. Measurement of the forward charged particle pseudorapidity density in pp collisions at √s = 8 TeV using a displaced interaction point

    CERN Document Server

    Antchev, G.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Brücken, E.; Buzzo, A.; Cafagna, F.S.; Catanesi, M.G.; Covault, C.; Csanád, M.; Csörgő, T.; Deile, M.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Hammerbauer, J.; Heino, J.; Hilden, T.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lippmaa, J.; Lokajíček, M.V.; Losurdo, L.; Lo Vetere, M.; Lucas Rodriguez, F.; Macrí, M.; Mäki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Peroutka, Z.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sodzawiczny, T.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Whitmore, J.; Wyszkowski, P.; Zielinski, K.

    2015-01-01

    The the pseudorapidity density of charged particles dN$_{ch}$/d$\\eta$ is measured by the TOTEM experiment in pp collisions at √s = 8 TeV within the range 3.9 0 MeV/c, produced in inelastic interactions with at least one charged particle in −7 < $\\eta$ < −6 or 3.7< $\\eta$ < 4.8. The dN$_{ch}$/d$\\eta$ has been found to decrease with |$\\eta$|, from 5.11 ± 0.73 at $\\eta$ =3.95 to 1.81 ± 0.56 at $\\eta$ = −6.925. Several MC generators are compared to the data and are found to be within the systematic uncertainty of the measurement.

  8. Collective excitations in semiconductor superlattices and plasma modes of a two-dimensional electron gas with spatially modulated charge density

    International Nuclear Information System (INIS)

    Eliasson, G.L.

    1987-01-01

    The theory of collective excitations in semiconductor superlattices is formulated by using linear response theory. Different kinds of collective excitations in type I (GaAs-GaAlAs) and type II (GaSb-InAs) superlattices are surveyed. Special attention is paid to the presence of surface and finite-size effects. In calculating the dielectric matrix, the effect of different approximations of the system is discussed. The theory for inelastic length scattering (Raman scattering), and for Electron Energy Loss (EEL) due to collective excitations, is formulated. Calculations for several model systems are presented and the main features of the spectra are discussed. In part II the theory of collective excitations of a two-dimensional electron gas with a spatially periodic equilibrium density is formulated. As a first example a periodic array of two-dimensional electron gas strips with constant equilibrium density is studied. The integral equation that describes the charge fluctuations on the strips is derived and solved numerically. The spatial dependence of the density fluctuation across a single strip can be in the form of either propagating or evanescent waves

  9. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen

    2013-11-17

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  10. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen; Albrecht, Steve N.; Hoke, Eric T.; Graham, Kenneth; Widmer, Johannes; Douglas, Jessica D.; Schubert, Marcel; Mateker, William R.; Bloking, Jason T.; Burkhard, George F.; Sellinger, Alan; Frechet, Jean; Amassian, Aram; Riede, Moritz Kilian; McGehee, Michael D.; Neher, Dieter; Salleo, Alberto

    2013-01-01

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  11. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas.

    Science.gov (United States)

    Barriga-Carrasco, Manuel D; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Q(eq). This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Q(eff) is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Q(eff) is larger than the equilibrium charge state Q(eq) due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ∼42-62.5% and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ∼38.8-57.4%, where higher values correspond to a fully ionized carbon plasma.

  12. Features of destruction of solids by laser radiation in process of formation of multiply charged ions

    International Nuclear Information System (INIS)

    Bedilov, R.M.; Bedilov, M.R.; Sabitov, M.M.; Matnazarov, A.; Niyozov, B.

    2004-01-01

    Full text: It is known, under interaction of laser radiation with solid surface a power density q > 0.01 W/cm 2 are observed destruction of a solid and issue of electrons, ions, neutrals, neutrons, plasmas, and also radiation in a wide ranges of a spectra. Despite of a plenty of works, devoted to study of processes of interaction, the studies of feature of destruction of solids by laser beam in process of formation multiply charged ions are insufficiently investigated. The results of study feature of destruction of solids by laser radiation in process of formation multiply charged ions are given in this work. In our experiments, we used the mass spectrometer with single-channel laser radiation. The laser installation had the following parameters: a power density of laser radiation q=(0.1-50) GW/cm 2 ; the angle of incidence a=18 deg. to the target surface Al, (W). It was obtained experimentally dynamics of morphology of destruction and also mass - charge and energy spectra of multiply charged ions formed under interaction of laser radiation with Al (W) in the intensity range q=(0.1-50) GW/cm 2 . These studies showed features of destruction Al(W) by laser radiation, i.e. invariable of value evaporation mass from a surface of a solid increase as the laser intensity q. But thus temperature a pair increases in accordance with increase of flow density of a laser radiation. Increase of temperature the pair gives in formation of multiply charged plasma. It is typical that, as q of the laser increases the maximum charge number of ions in laser plasma considerably increase and their energy spectra extend toward higher energies. For example, under q=0.1 GW/cm 2 and 50 GW/cm 2 the maximum charge number of ions Al (W) are equal to Z max = 1 and 7, respectively. From the experimental data obtained, we can conclude that, the formed multiply charged plasma practically completely absorption laser radiation and 'shielding' a target surface for various metals at power densities

  13. J/ψ production as a function of charged-particle pseudorapidity density in p–Pb collisions at sNN=5.02TeV

    Directory of Open Access Journals (Sweden)

    D. Adamová

    2018-01-01

    Full Text Available We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.

  14. J/ψ production as a function of charged-particle pseudorapidity density in p–Pb collisions at √sNN = 5.02 TeV

    NARCIS (Netherlands)

    Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altsybeev, I.; Alves Garcia Prado, C.; Janssen, M M; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C. D.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.C.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.|info:eu-repo/dai/nl/411263188; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.|info:eu-repo/dai/nl/371577810; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.|info:eu-repo/dai/nl/371578248; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Iga Buitron, S. A.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.|info:eu-repo/dai/nl/411885812; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A R; Ceballos Sanchez, C.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, Sukhee; Chochula, P.; Choi, K.; Chojnacki, M.|info:eu-repo/dai/nl/411888056; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; Dasgupta, S. S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. Derradi; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, O.; Dobrin, A.|info:eu-repo/dai/nl/372618715; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.|info:eu-repo/dai/nl/355502488; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; De Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L. C.; Grelli, A.|info:eu-repo/dai/nl/326052577; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.W.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L.D.|info:eu-repo/dai/nl/370530780; Keil, M.; Ketzer, B.; Mohisin Khan, M.; Khan, P.M.; Khan, Shfaqat A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.-S.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.|info:eu-repo/dai/nl/371571227; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.L.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.|info:eu-repo/dai/nl/362845670; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.|info:eu-repo/dai/nl/074064975; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, Seema; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.|info:eu-repo/dai/nl/355080192; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.|info:eu-repo/dai/nl/411295721; Strunz-Lehner, Christine; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.|info:eu-repo/dai/nl/355080400; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.|info:eu-repo/dai/nl/412461684; Marín, Alicia; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martinez, J. A. L.; Martínez, Isabel M.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.|info:eu-repo/dai/nl/325781435; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.|info:eu-repo/dai/nl/369405870; Mohanty, B.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, Rajiv; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal Da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.|info:eu-repo/dai/nl/07051349X; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.|info:eu-repo/dai/nl/323375618; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, J.-W.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.|info:eu-repo/dai/nl/413319628; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H.P.|info:eu-repo/dai/nl/413332993; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q. Y.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J.M.|info:eu-repo/dai/nl/165585781; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, J. S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.|info:eu-repo/dai/nl/412860996; Van Hoorne, J. W.; van Leeuwen, M.|info:eu-repo/dai/nl/250599171; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.|info:eu-repo/dai/nl/413533751; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.|info:eu-repo/dai/nl/369509307; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C S; Windelband, B.; Winn, M.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I. K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.

    2018-01-01

    We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at √sNN = 5.02 TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive

  15. Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in Pb-Pb Collisions at sNN=5.02TeV

    NARCIS (Netherlands)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.|info:eu-repo/dai/nl/411263188; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.|info:eu-repo/dai/nl/371578248; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.|info:eu-repo/dai/nl/355079615; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.|info:eu-repo/dai/nl/411885812; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.|info:eu-repo/dai/nl/372618715; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.|info:eu-repo/dai/nl/355502488; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.|info:eu-repo/dai/nl/326052577; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-oetringhaus, J. F.; Grossiord, J.-y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.|info:eu-repo/dai/nl/370530780; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, J. S.; Kim, M.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein-bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kostarakis, P.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Kubera, A. M.; Kučera, V.; Kuijer, P. G.|info:eu-repo/dai/nl/074064975; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron De Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.|info:eu-repo/dai/nl/411295721; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal’kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.|info:eu-repo/dai/nl/412461684; Marín, A.; Markert, C.; Marquard, M.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.|info:eu-repo/dai/nl/325781435; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.|info:eu-repo/dai/nl/369405870; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal Da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.|info:eu-repo/dai/nl/07051349X; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.|info:eu-repo/dai/nl/323375618; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Pereira Da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poonsawat, W.; Pop, A.; Porteboeuf-houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-p.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.|info:eu-repo/dai/nl/413319628; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.|info:eu-repo/dai/nl/165585781; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; De Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.|info:eu-repo/dai/nl/412860996; Van Hoorne, J. W.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.|info:eu-repo/dai/nl/413533751; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.|info:eu-repo/dai/nl/330542133; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.|info:eu-repo/dai/nl/369509307; Wang, M.; Watanabe, D.; Watanabe, Y.; Weiser, D. F.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yano, S.; Yasar, C.; Yokoyama, H.; Yoo, I.-k.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, C.; Zhao, C.; Zhigareva, N.; Zhou, Z.; Zhu, H.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-01-01

    The pseudorapidity density of charged particles, dN ch /dη , at midrapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of s NN − − − − √ =5.02  TeV . For the 5% most central collisions, we measure a value of 1943±54 . The rise in dN ch /dη as a function of s NN

  16. The influence of hydrogen intercalation on inner pressure of Ni/MH battery during fast charge

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianzhen; Wu, Feng; Hu, Daozhong; Chen, Shi; Mao, Licai; Wang, Guoqing [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081 (China)

    2006-10-20

    Gaseous hydrogen is confirmed to be the main component and primarily responsible for the inner pressure rise inside the 8-Ah Ni/MH batteries during fast charge. Based on a temperature-dependent pressure model proposed in this work, the kinetic characteristics of the hydrogen evolution were investigated. The overpotential and exchange current density were obtained by fitting the presented equation to the experimental data. Moreover, the profiles of hydrogen concentration during fast charge was further modeled and calculated according to the proposed mathematical model of hydrogen intercalation. It is indicated that diffusion step controls the fast charge performances and the higher the charge rate is, the more quickly the negative electrode attains to the maximum surface intercalation fraction, and however, the calculated results also show that further charge can reduce the difference of charge efficiency among the various rate during fast charge. Numerical investigations also reveal that the increase of diffusion coefficient and decrease of the particle size can efficiently improve the characteristics of fast charge, respectively. (author)

  17. Lateral phase drift of the topological charge density in stochastic optical fields

    CSIR Research Space (South Africa)

    Roux, FS

    2012-03-01

    Full Text Available The statistical distributions of optical vortices or topological charge in stochastic optical fields can be inhomogeneous in both transverse directions. Such two-dimensional inhomogeneous vortex or topological charge distributions evolve in a...

  18. Neutron-Induced Charged Particle Studies at LANSCE

    Science.gov (United States)

    Lee, Hye Young; Haight, Robert C.

    2014-09-01

    Direct measurements on neutron-induced charged particle reactions are of interest for nuclear astrophysics and applied nuclear energy. LANSCE (Los Alamos Neutron Science Center) produces neutrons in energy of thermal to several hundreds MeV. There has been an effort at LANSCE to upgrade neutron-induced charged particle detection technique, which follows on (n,z) measurements made previously here and will have improved capabilities including larger solid angles, higher efficiency, and better signal to background ratios. For studying cross sections of low-energy neutron induced alpha reactions, Frisch-gridded ionization chamber is designed with segmented anodes for improving signal-to-noise ratio near reaction thresholds. Since double-differential cross sections on (n,p) and (n,a) reactions up to tens of MeV provide important information on deducing nuclear level density, the ionization chamber will be coupled with silicon strip detectors (DSSD) in order to stop energetic charged particles. In this paper, we will present the status of this development including the progress on detector design, calibrations and Monte Carlo simulations. This work is funded by the US Department of Energy - Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  19. Charge density wave fluctuations in La{sub 2-x}Sr{sub x}CuO{sub 4} and their competition with superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Croft, Thomas; Lester, Christopher; Hayden, Stephen [H.H. Wills Physics Laboratory, University of Bristol (United Kingdom); Bombardi, Alessandro; Senn, Mark [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire (United Kingdom)

    2015-07-01

    The recent observations of charge and stripe correlations in YBa{sub 2}Cu{sub 3}O{sub 6+x} and La{sub 2-x}Ba{sub x}CuO{sub 4} has reinvigorated interest in their role in influencing the superconductivity of the cuprates. However, structural complications of these systems makes it difficult to isolate the effect the lattice has in inducing the charge order. Here, we report hard X-ray diffraction measurements on three compositions (x=0.11,0.12,0.13) of the high-temperature superconductor La{sub 2-x}Sr{sub x}CuO{sub 4}, a canonical example of HTS with T{sub c} ∼ 35 K and a simple crystal structure. All samples show charge-density-wave (CDW) order with onset temperatures in the range 51-80 K and ordering wavevectors close to (0.23,0,0.5). We present a phase diagram of La{sub 2-x}Sr{sub x}CuO{sub 4} including the pseudogap phase, CDW and magnetic order.

  20. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    Science.gov (United States)

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  1. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    International Nuclear Information System (INIS)

    Zhao, Mingtian; Li, Baohui; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai

    2015-01-01

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG) 5 /(KGKG) 5 , (EEGG) 5 /(KKGG) 5 , and (EEGG) 5 /(KGKG) 5 , in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight

  2. Space-Charge Effect

    International Nuclear Information System (INIS)

    Chauvin, N

    2013-01-01

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented. (author)

  3. Space-Charge Effect

    CERN Document Server

    Chauvin, N.

    2013-12-16

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  4. Evaluation of the density of the charge trapped in organic ferroelectric capacitors based on the Mott-Schottky model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Ho [Samsung Display Co. Ltd., Yongin (Korea, Republic of); Kwon, Jin-Hyuk; Park, Gyeong-Tae; Kim, Jae-Hyun; Bae, Jin-Hyuk [Kyungpook National University, Daegu (Korea, Republic of); Zhang, Xue; Park, Jae-Hoon [Hallym University, Chuncheon (Korea, Republic of)

    2014-09-15

    Organic ferroelectric capacitors were fabricated using pentacene and poly (vinylidene fluoride trifluoroethylene) (PVDF-TrFE) as an organic semiconductor and a ferroelectric material, respectively. A paraelectric poly(vinyl cinnamate) layer was adopted as an interlayer between the PVDFTrFE layer and the bottom electrode. The paraelectric interlayer induced a depolarization field opposite to the direction of the polarization formed in the ferroelectric PVDF-TrFE insulator, thereby suppressing spontaneous polarization. As a result, the Mott-Schottky model could be used to evaluate, from the extracted flat-band voltages, the density of the charge trapped in the organic ferroelectric capacitors.

  5. Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)

    2017-05-15

    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)

  6. Fast-Rate Capable Electrode Material with Higher Energy Density than LiFePO4: 4.2V LiVPO4F Synthesized by Scalable Single-Step Solid-State Reaction.

    Science.gov (United States)

    Kim, Minkyung; Lee, Seongsu; Kang, Byoungwoo

    2016-03-01

    Use of compounds that contain fluorine (F) as electrode materials in lithium ion batteries has been considered, but synthesizing single-phase samples of these compounds is a difficult task. Here, it is demonstrated that a simple scalable single-step solid-state process with additional fluorine source can obtain highly pure LiVPO 4 F. The resulting material with submicron particles achieves very high rate capability ≈100 mAh g -1 at 60 C-rate (1-min discharge) and even at 200 C-rate (18 s discharge). It retains superior capacity, ≈120 mAh g -1 at 10 C charge/10 C discharge rate (6-min) for 500 cycles with >95% retention efficiency. Furthermore, LiVPO 4 F shows low polarization even at high rates leading to higher operating potential >3.45 V (≈3.6 V at 60 C-rate), so it achieves high energy density. It is demonstrated for the first time that highly pure LiVPO 4 F can achieve high power capability comparable to LiFePO 4 and much higher energy density (≈521 Wh g -1 at 20 C-rate) than LiFePO 4 even without nanostructured particles. LiVPO 4 F can be a real substitute of LiFePO 4.

  7. Lie n-algebras of BPS charges

    Energy Technology Data Exchange (ETDEWEB)

    Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)

    2017-03-16

    We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.

  8. Raman scattering evidence for a cascade-like evolution of the charge-density-wave collective amplitude mode

    Energy Technology Data Exchange (ETDEWEB)

    Eiter, Hans-Martin; Tassini, Leonardo; Muschler, Bernhard; Hackl, Rudi [Walther Meissner Institute, Bavarian Academy of Sciences and Humanities, 85748 Garching (Germany); Lavagnini, Michela; Degiorgi, Leonardo [Laboratorium fuer Festkoerperphysik, ETH - Zuerich, CH-8093 Zuerich (Switzerland); Chu, Jiun-Haw; Ru, Nancy; Fisher, Ian R. [GLAM, Stanford University, CA 94304 (United States)

    2010-07-01

    We report results of Raman scattering experiments as a function of temperature on the charge-density-wave (CDW) systems DyTe{sub 3} and on LaTe{sub 3} at 6 GPa applied pressure. We clearly identify the unidirectional collective CDW amplitude excitation and follow their temperature dependence in the range from 6 K to 311 K. Surprisingly, we discover that the amplitude mode develops as a succession of two mean-field, BCS-like transitions at two different temperatures. Tri-tellurides with heavier rare-earth atoms (i.e. Tm, Er, Ho, Dy) undergo another phase transition to a bidirectional CDW at low temperatures. In DyTe{sub 3} we find spectroscopic evidence for the amplitude mode excitation associated with the bidirectional CDW occuring below 50 K.

  9. Position Reconstruction and Charge Distribution in LHCb VELO Silicon Sensors

    CERN Document Server

    Versloot, TW; Akiba, K; Artuso, M; Van Beuzekom, M; Borel, J; Bowcock, TJV; Buytaert, J; Collins, P; Dumps, R; Dwyer, L; Eckstein, D; Eklund, L; Ferro-Luzzi, M; Frei, R; Gersabek M; Haefeli, G; Hennessy, K; Huse, T; Jans, E; John, M; Ketel, TJ; Keune, A; Lastoviicka, T; Mountain, R; Neufeld, N; Parkes, C; Stone, S; Szumlak, T; Tobin, M; Van Lysebetten, A; Viret, S; De Vries, H; Wang, J

    2007-01-01

    In 2006, a partially equipped LHCb VELO detector half was characterised in a test beam experiment (Alignment Challenge and Detector Commissioning, ACDC3). The position reconstruction and resolution for 2-strip R-sensor clusters was studied as a function of strip pitch and track inclination on the sensor surface. The Charge Density Distribution (CDD) is derived from the weighted charge distribution. It becomes asymmetric for tracks non-perpendicular to the strip surface. It is shown that the asymmetric broadening of the CDD around the track intercept position results in a linear eta-function at higher angles (>6 degrees). The sensor spatial resolution is determined both using a linear weighted mean of strip charges, as well as a third-order polynomial approximation via a eta-correction. The experimental results are in agreement with previous simulations. Future studies are underway to determine the angle and pitch dependent parameters which will be implemented in the LHCb VELO cluster position software tools.

  10. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-01-01

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  11. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Science.gov (United States)

    Wang, X. L.; Xu, Z. Y.; Luo, W.; Lu, H. Y.; Zhu, Z. C.; Yan, X. Q.

    2017-09-01

    Photo-transmutation of long-lived nuclear waste induced by a high-charge relativistic electron beam (e-beam) from a laser plasma accelerator is demonstrated. A collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 1011 per laser shot. Taking a long-lived radionuclide 126Sn as an example, the resulting transmutation reaction yield is the order of 109 per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, a tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.

  12. Recent Advances in Two-Dimensional Materials with Charge Density Waves: Synthesis, Characterization and Applications

    Directory of Open Access Journals (Sweden)

    Mongur Hossain

    2017-10-01

    Full Text Available Recently, two-dimensional (2D charge density wave (CDW materials have attracted extensive interest due to potential applications as high performance functional nanomaterials. As other 2D materials, 2D CDW materials are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into layers of single unit cell thickness. Although bulk CDW materials have been studied for decades, recent developments in nanoscale characterization and device fabrication have opened up new opportunities allowing applications such as oscillators, electrodes in supercapacitors, energy storage and conversion, sensors and spinelectronic devices. In this review, we first outline the synthesis techniques of 2D CDW materials including mechanical exfoliation, liquid exfoliation, chemical vapor transport (CVT, chemical vapor deposition (CVD, molecular beam epitaxy (MBE and electrochemical exfoliation. Then, the characterization procedure of the 2D CDW materials such as temperature-dependent Raman spectroscopy, temperature-dependent resistivity, magnetic susceptibility and scanning tunneling microscopy (STM are reviewed. Finally, applications of 2D CDW materials are reviewed.

  13. Microscopic gate-modulation imaging of charge and field distribution in polycrystalline organic transistors

    Science.gov (United States)

    Matsuoka, Satoshi; Tsutsumi, Jun'ya; Kamata, Toshihide; Hasegawa, Tatsuo

    2018-04-01

    In this work, a high-resolution microscopic gate-modulation imaging (μ-GMI) technique is successfully developed to visualize inhomogeneous charge and electric field distributions in operating organic thin-film transistors (TFTs). We conduct highly sensitive and diffraction-limit gate-modulation sensing for acquiring difference images of semiconducting channels between at gate-on and gate-off states that are biased at an alternate frequency of 15 Hz. As a result, we observe unexpectedly inhomogeneous distribution of positive and negative local gate-modulation (GM) signals at a probe photon energy of 1.85 eV in polycrystalline pentacene TFTs. Spectroscopic analyses based on a series of μ-GMI at various photon energies reveal that two distinct effects appear, simultaneously, within the polycrystalline pentacene channel layers: Negative GM signals at 1.85 eV originate from the second-derivative-like GM spectrum which is caused by the effect of charge accumulation, whereas positive GM signals originate from the first-derivative-like GM spectrum caused by the effect of leaked gate fields. Comparisons with polycrystalline morphologies indicate that grain centers are predominated by areas with high leaked gate fields due to the low charge density, whereas grain edges are predominantly high-charge-density areas with a certain spatial extension as associated with the concentrated carrier traps. Consequently, it is reasonably understood that larger grains lead to higher device mobility, but with greater inhomogeneity in charge distribution. These findings provide a clue to understand and improve device characteristics of polycrystalline TFTs.

  14. On the calculation of the structure of charge-stabilized colloidal dispersions using density-dependent potentials

    International Nuclear Information System (INIS)

    Castañeda-Priego, R; Lobaskin, V; Mixteco-Sánchez, J C; Rojas-Ochoa, L F; Linse, P

    2012-01-01

    The structure of charge-stabilized colloidal dispersions has been studied through a one-component model using a Yukawa potential with density-dependent parameters examined with integral equation theory and Monte Carlo simulations. Partial thermodynamic consistency was guaranteed by considering the osmotic pressure of the dispersion from the approximate mean-field renormalized jellium and Poisson-Boltzmann cell models. The colloidal structures could be accurately described by the Ornstein-Zernike equation with the Rogers-Young closure by using the osmotic pressure from the renormalized jellium model. Although we explicitly show that the correct effective pair-potential obtained from the inverse Monte Carlo method deviates from the Yukawa shape, the osmotic pressure constraint allows us to have a good description of the colloidal structure without losing information on the system thermodynamics. Our findings are corroborated by primitive model simulations of salt-free colloidal dispersions. (paper)

  15. Ultrafast dynamics in CeTe{sub 3} near the pressure-induced charge-density-wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Tauch, Jonas; Obergfell, Manuel [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Schaefer, Hanjo [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Demsar, Jure [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Institute of Physics, Johannes Gutenberg-University Mainz (Germany); Giraldo, Paula; Fisher, Ian R. [Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University (United States); Pashkin, Alexej [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2015-07-01

    Femtosecond pump-probe spectroscopy is an efficient tool for studying ultrafast dynamics in strongly correlated electronic systems, in particular, compounds with a charge-density-wave (CDW) order. Application of external pressure often leads to a suppression of a CDW state due to an impairment of the Fermi surface nesting. We combine time-resolved optical spectroscopy and diamond anvil cell technology to study electron and lattice dynamics in tri-telluride compound CeTe{sub 3}. Around pressures of 4 GPa we observe a gradual vanishing of the relaxation process related to the recombination of the photoexcited quasiparticles. The coherent oscillations of the phonon modes coupled to the CDW order parameter demonstrate even more dramatic suppression with increasing pressure. These observations clearly indicate a transition into the metallic state of CeTe{sub 3} induced by the external pressure.

  16. The screening of charged impurities in bilayer graphene

    International Nuclear Information System (INIS)

    Zhang Wenjing; Li, Lain-Jong

    2010-01-01

    Positively charged impurities were introduced into a bilayer graphene (BLG) transistor by n-doping with dimethylformamide. Subsequent exposure of the BLG device to moisture resulted in a positive shift of the Dirac point and an increase of hole mobility, suggesting that moisture could reduce the scattering strength of the existing charged impurities. In other words, moisture screened off the 'effective density' of charged impurities. At the early stage of moisture screening the scattering of hole carriers is dominated by long-range Coulomb scatter, but an alternative scattering mechanism should also be taken into consideration when the effective density of impurities is further lowered on moisture exposure.

  17. Cellulose nanocrystals with tunable surface charge for nanomedicine

    Science.gov (United States)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For

  18. Bifunctional electrode performance for zinc-air flow cells with pulse charging

    International Nuclear Information System (INIS)

    Pichler, Birgit; Weinberger, Stephan; Reščec, Lucas; Grimmer, Ilena; Gebetsroither, Florian; Bitschnau, Brigitte; Hacker, Viktor

    2017-01-01

    Highlights: •Manufacture of bi-catalyzed bifunctional air electrodes via scalable process. •Direct synthesis of NiCo 2 O 4 on carbon nanofibers or nickel powder support. •450 charge and discharge cycles over 1000 h at 50 mA cm −2 demonstrated. •Pulse charging with 150 mA cm −2 is successfully applied on air electrodes. •Charge and discharge ΔV of <0.8 V at 50 mA cm −2 when supplied with O 2. -- Abstract: Bifunctional air electrodes with tuned composition consisting of two precious metal-free oxide catalysts are manufactured for application in rechargeable zinc-air flow batteries and electrochemically tested via long-term pulse charge and discharge cycling experiments at 50 mA cm −2 (mean). NiCo 2 O 4 spinel, synthesized via direct impregnation on carbon nanofibers or nickel powder and characterized by energy dispersive X-ray spectroscopy and X-ray diffraction experiments, shows high activity toward oxygen evolution reaction with low charge potentials of < 2.0 V vs. Zn/Zn 2+ . La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 perovskite exhibits bifunctional activity and outperforms the NiCo 2 O 4 spinel in long-term stability tenfold. By combining the catalysts in one bi-catalyzed bifunctional air electrode, stable performances of more than 1000 h and 450 cycles are achieved when supplied with oxygen and over 650 h and 300 cycles when supplied with synthetic air. In addition, the pulse charging method, which is beneficial for compact zinc deposition, is successfully tested on air electrodes during long-term operation. The oxygen evolution potentials during pulse, i.e. at tripled charge current density of 150 mA cm −2 , are only 0.06–0.08 V higher compared to constant charging current densities. Scanning electron microscopy confirms that mechanical degradation caused by bubble formation during oxygen evolution results in slowly decreasing discharge potentials.

  19. Child-Langmuir flow in a planar diode filled with charged dust impurities

    International Nuclear Information System (INIS)

    Tang Xiaoyan; Shukla, Padma Kant

    2008-01-01

    The Child-Langmuir (CL) flow in a planar diode in the presence of stationary charged dust particles is studied. The limiting electron current density and other diode properties, such as the electrostatic potential, the electron flow speed, and the electron number density, are calculated analytically. A comparison of the results with the case without dust impurities reveals that the diode parameters mentioned above decrease with the increase of the dust charge density. Furthermore, it is found that the classical scaling of D -2 (the gap spacing D) for the CL current density remains exactly valid, while the scaling of V 3/2 (the applied gap voltage V) can be a good approximation for low applied gap voltage and for low dust charge density

  20. Geometric interpretation of density displacements and charge ...

    Indian Academy of Sciences (India)

    Unknown

    The “geometric” interpretation of the electronic density displacements in the Hilbert space is ... an attitude is also close to the chemical thinking ..... These vectors explicitly define the corresponding ..... chain-rule for implicit functionals: p p. N p.

  1. Detailed study of nuclear charge and mass densities. Pt. 1

    International Nuclear Information System (INIS)

    Berdichevsky, D.; Mosel, U.

    1982-01-01

    Theoretical and experimental densities are analyzed and compared in detail, in particular in the surface region. For this purpose nuclear size parameters are discussed and new sets of surface parameters are proposed. It is shown that the densities are very close to the error function in the external part of the surface and can be characterized there by two new parameters. For very large r the densities show an exponential behaviour which is analyzed in terms of single-particle density distributions. Furthermore, the effects of the asymmetry, spin-orbit and Coulomb forces on the density distributions are discussed. (orig.)

  2. Density functional theory and parallel processing

    International Nuclear Information System (INIS)

    Ward, R.C.; Geist, G.A.; Butler, W.H.

    1987-01-01

    The authors demonstrate a method for obtaining the ground state energies and charge densities of a system of atoms described within density functional theory using simulated annealing on a parallel computer

  3. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-Tc superconductors

    International Nuclear Information System (INIS)

    Creager, W.N.

    1991-09-01

    The far infrared reflectance and conductivity of (Ta 1-x Nb x Se 4 ) 2 I and TaS 3 have been measured to determine the origin of a huge infrared resonance that dominates the charge density wave (CDW) dynamics along with the pinned acoustic phason mode in the related materials (TaSe 4 ) 2 I and K 0. 3 MoO 3 . The measurements cover frequencies from 3 to 700cm -1 and the temperature range from 15K to 300K. In the niobium-doped alloys (Ta 1-x Nb x Se 4 ) 2 I, the size and frequency of the giant infrared mode remain nearly constant as the impurity concentration x is increased. For TaS 3 , the pinned acoustic phason near 0.5cm -1 dominates var-epsilon(ω) and an additional small mode lies near 9cm -1 . The latter mode is much smaller than the infrared mode in other CDW materials. These results rule out several models of a ''generic infrared mode'' in CDW excitations. They are compared in detail to the predictions of a recent theory attributing the infrared mode to a bound collective mode localized at impurity sites within the crystal. The transmittance of K 0.3 MoO 3 has been measured at 1.2K with a strong dc electric field applied across the crystal. Under these conditions, the charge density wave depins abruptly and carries large currents with near-zero differential resistance. For some samples, the low-frequency transmittance is enhanced slightly when the CDW depins. The magnitude of the oxygen isotope effect in the high-T c superconductor YBa 2 Cu 3 O 7 has been determined by substitution of 18 O for 16 O. A series of cross-exchanges was performed on high-quality polycrystalline specimens to eliminate uncertainties due to sample heat treatments and sample inhomogeneities

  4. Form factors and transition charge densities for the quadrupole and hexadecupole electroexcitation of some 2p-1f shell nuclei

    International Nuclear Information System (INIS)

    Raina, P.K.; Sharma, S.K.

    1986-12-01

    A microscopic description of the recent data on the inelastic electron scattering form factors for the O + → 2 + as well as O + → 4 + transitions in some doubly even Ti, Cr, Fe, Ni and Zn isotopes is attempted in terms of the projected Hartree-Fock-Bogolubov wave functions resulting from realistic effective interactions operating in the 2p-1f shell. It turns out that the available form factor data out to about 2.5fm -1 can be reproduced in most of the cases in a fairly satisfactory manner in terms of reasonable values of effective charges. It is seen that the empirical transition charge densities in Ni and Zn isotopes extracted from the form factor data via the Fourier-Bessel analysis play a decisive role vis-a-vis the choice of a model of core-polarization contributions. (author). 28 refs, 8 figs, 2 tabs

  5. Charge regulation at semiconductor-electrolyte interfaces.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Irreversible mean-field model of the critical behavior of charge-density waves below the threshold for sliding

    Science.gov (United States)

    Sornette, Didier

    1993-05-01

    A mean-field (MF) model of the critical behavior of charge-density waves below the threshold for sliding is proposed, which replaces the combined effect of the pinning force and of the forces exerted by the neighbors on a given particle n by an effective force threshold Xn. It allows one to rationalize the numerical results of Middleton and Fisher [Phys. Rev. Lett. 66 (1991) 92] on the divergence of the polarization and of the largest correlation length and of Pla and Nori [Phys. Rev. Lett. 67 (1991) 919] on the distribution D( d) of sliding bursts of size d, measured in narrow intervals of driving fields E at a finite distance below the threshold Ec.

  7. Charged Analogues of Henning Knutsen Type Solutions in General Relativity

    Science.gov (United States)

    Gupta, Y. K.; Kumar, Sachin; Pratibha

    2011-11-01

    In the present article, we have found charged analogues of Henning Knutsen's interior solutions which join smoothly to the Reissner-Nordstrom metric at the pressure free interface. The solutions are singularity free and analyzed numerically with respect to pressure, energy-density and charge-density in details. The solutions so obtained also present the generalization of A.L. Mehra's solutions.

  8. Band dependence of charge density wave in quasi-one-dimensional Ta2NiSe7 probed by orbital magnetoresistance

    Science.gov (United States)

    He, Jiaming; Zhang, Yiran; Wen, Libin; Yang, Yusen; Liu, Jinyu; Wu, Yueshen; Lian, Hailong; Xing, Hui; Wang, Shun; Mao, Zhiqiang; Liu, Ying

    2017-07-01

    Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structures. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray, and electron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here, we report our results of the magnetoresistance (MR) on Ta2NiSe7. A breakdown of Kohler's rule is found upon entering the CDW state. Concomitantly, a clear change in curvature in the field dependence of MR is observed. We show that the curvature change is well described by the two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the p orbitals from Se atoms dominate the change in transport through CDW transition.

  9. Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

    Directory of Open Access Journals (Sweden)

    Maike Martini

    2016-09-01

    Full Text Available Polyelectrolyte hydrogels play an important role in tissue engineering and can be produced from natural polymers, such as the glycosaminoglycan hyaluronan. In order to control charge density and mechanical properties of hyaluronan-based hydrogels, we developed cross-linkers with a neutral or positively charged triazole core with different lengths of spacer arms and two terminal maleimide groups. These cross-linkers react with thiolated hyaluronan in a fast, stoichiometric thio-Michael addition. Introducing a positive charge on the core of the cross-linker enabled us to compare hydrogels with the same interconnectivity, but a different charge density. Positively charged cross-linkers form stiffer hydrogels relatively independent of the size of the cross-linker, whereas neutral cross-linkers only form stable hydrogels at small spacer lengths. These novel cross-linkers provide a platform to tune the hydrogel network charge and thus the mechanical properties of the network. In addition, they might offer a wide range of applications especially in bioprinting for precise design of hydrogels.

  10. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    International Nuclear Information System (INIS)

    Roest, Steven; Mei, Henny C. van der; Loontjens, Ton J.A.; Busscher, Henk J.

    2015-01-01

    Highlights: • Cationic charge density does not reflect bacterial contact-killing by QUAT coatings. • Charge carrier and density reflect bacterial killing by QUAT coatings. • Fluorescein staining cannot distinguish charge carriers in cationic coatings. • Charge carrier and density of QUAT coatings are reflected in the N401.3 eV XPS peak. • The at.% N401.3 eV should be more than 0.45% for effective bacterial contact-killing. - Abstract: Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 10 14 cm −2 . Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 10 16 cm −2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its

  11. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Steven [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands); Mei, Henny C. van der, E-mail: h.c.van.der.mei@umcg.nl [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands); Loontjens, Ton J.A. [University of Groningen, Zernike Institute for Advanced Materials, Department of Polymer Chemistry, Nijenborgh 4, 9747 AG Groningen (Netherlands); Busscher, Henk J. [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands)

    2015-11-30

    Highlights: • Cationic charge density does not reflect bacterial contact-killing by QUAT coatings. • Charge carrier and density reflect bacterial killing by QUAT coatings. • Fluorescein staining cannot distinguish charge carriers in cationic coatings. • Charge carrier and density of QUAT coatings are reflected in the N401.3 eV XPS peak. • The at.% N401.3 eV should be more than 0.45% for effective bacterial contact-killing. - Abstract: Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 10{sup 14} cm{sup −2}. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 10{sup 16} cm{sup −2} and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both

  12. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2012-01-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young's modulus suggests that Li

  13. Water-induced charge transport in tablets of microcrystalline cellulose of varying density: dielectric spectroscopy and transient current measurements

    International Nuclear Information System (INIS)

    Nilsson, Martin; Alderborn, Goeran; Stroemme, Maria

    2003-01-01

    Room temperature dielectric frequency response data taken over 13 decades in frequency on microcrystalline cellulose (MCC) tablets of varying density are presented. The frequency response shows on three different processes: the first one is a high-frequency relaxation process whose magnitude increases and reaches a plateau as the tablet density increases. This process is associated with orientational motions of local chain segments via glycosidic bonds. The second relaxation process, related to the presence of water in the MCC matrix, is insensitive to changes in tablet density. At lower frequencies, dc-like imperfect charge transport dominates the dielectric spectrum. The dc conductivity was found to decrease with increasing tablet density and increase exponentially with increasing humidity. Transient current measurements indicated that two different ionic species, protons and OH - ions, lied behind the observed conductivity. At ambient humidity of 22%, only one in a billion of the water molecules present in the tablet matrix participated in long range dc conduction. The diffusion coefficient of the protons and OH - ions were found to be of the order of 10 -9 cm 2 /s, which is the same as for small salt building ions in MCC. This shows that ionic drugs leaving a tablet matrix may diffuse in the same manner as the constituent ions of water and, thus, elucidates the necessity to understand the water transport properties of excipient materials to be able to tailor the drug release process from pharmaceutical tablets

  14. Possible impact of multi-electron loss events on the average beam charge state in an HIF target chamber and a neutral beam approach

    Science.gov (United States)

    Grisham, L. R.

    2001-05-01

    Experiments were carried out during the early 1980s to assess the obtainable atomic neutralization of energetic beams of negative ions ranging from lithium to silicon. The experiments found (Grisham et al. Rev. Sci. Instrum. 53 (1982) 281; Princeton Plasma Physics Laboratory Report PPPL-1857, 1981) that, for higher atomic number elements than lithium, it appeared that a substantial fraction of the time more than one electron was being lost in a single collision. This result was inferred from the existence of more than one ionization state in the product beam for even the thinnest line densities at which any electron removal took place. Because of accelerator limitations, these experiments were limited to maximum energies of 7 MeV. However, based upon these results, it is possible that multi-electron loss events may also play a significant role in determining the average ion charge state of the much higher Z and more energetic beams traversing the medium in an heavy ion fusion chamber. This could result in the beam charge state being considerably higher than previously anticipated, and might require designers to consider harder vacuum ballistic focusing approaches, or the development of additional space charge neutralization schemes. This paper discusses the measurements that gave rise for these concerns, as well as a description of further measurements that are proposed to be carried out for atomic numbers and energies per amu which would be closer to those required for heavy ion fusion drivers. With a very low current beam of a massive, but low charge state energetic ion, the charge state distribution emerging from a target gas cell could be measured as a function of line density and medium composition. Varying the line density would allow one to simulate the charge state evolution of the beam as a function of distance into the target chamber. This paper also briefly discusses a possible alternative driver approach using photodetachment-neutralized atomic beams

  15. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroanilin

    DEFF Research Database (Denmark)

    Eriksen, J.J.; Sauer, S.P.A.; Mikkelsen, K.V.

    2013-01-01

    We investigate the failure of Time{Dependent Density Functional Theory (TDDFT) with the CAM{B3LYP exchange{correlation (xc) functional coupled to the Polarizable Embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge{transfer excitation in para...... the electric dipole moments in the gas phase and for 100 solvent congurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic...... to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge{transfer excitations in molecular systems similar to pNA against higher{level ab initio wave function methods, like, e.g., CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure...

  16. Probing the Surface Charge on the Basal Planes of Kaolinite Particles with High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I

    2017-12-19

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.

  17. On cracking of charged anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M. [Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan); Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com [Department of Mathematics, University of the Management and Technology, C-II, Johar Town, Lahore-54590 (Pakistan)

    2017-01-01

    Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.

  18. J/ψ production as a function of charged-particle pseudorapidity density in p-Pb collisions at √{sNN } = 5.02TeV

    Science.gov (United States)

    Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration<

    2018-01-01

    We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch / dη in p-Pb collisions at √{sNN } = 5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch / dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.

  19. Hidden charged dark matter

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches

  20. Correction of the deterministic part of space–charge interaction in momentum microscopy of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Schönhense, G., E-mail: schoenhense@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität, 55128 Mainz (Germany); Medjanik, K. [Institut für Physik, Johannes Gutenberg-Universität, 55128 Mainz (Germany); Tusche, C. [Max-Planck-Institut für Mikrostrukturphysik, 06120 Halle (Germany); Loos, M. de; Geer, B. van der [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Scholz, M.; Hieke, F.; Gerken, N. [Physics Department and Center for Free-Electron Laser Science, Univ. Hamburg, 22761 Hamburg (Germany); Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, 06120 Halle (Germany); Wurth, W. [Physics Department and Center for Free-Electron Laser Science, Univ. Hamburg, 22761 Hamburg (Germany); DESY Photon Science, 22607 Hamburg (Germany)

    2015-12-15

    Ultrahigh spectral brightness femtosecond XUV and X-ray sources like free electron lasers (FEL) and table-top high harmonics sources (HHG) offer fascinating experimental possibilities for analysis of transient states and ultrafast electron dynamics. For electron spectroscopy experiments using illumination from such sources, the ultrashort high-charge electron bunches experience strong space–charge interactions. The Coulomb interactions between emitted electrons results in large energy shifts and severe broadening of photoemission signals. We propose a method for a substantial reduction of the effect by exploiting the deterministic nature of space–charge interaction. The interaction of a given electron with the average charge density of all surrounding electrons leads to a rotation of the electron distribution in 6D phase space. Momentum microscopy gives direct access to the three momentum coordinates, opening a path for a correction of an essential part of space–charge interaction. In a first experiment with a time-of-flight momentum microscope using synchrotron radiation at BESSY, the rotation in phase space became directly visible. In a separate experiment conducted at FLASH (DESY), the energy shift and broadening of the photoemission signals were quantified. Finally, simulations of a realistic photoemission experiment including space–charge interaction reveals that a gain of an order of magnitude in resolution is possible using the correction technique presented here. - Highlights: • Photoemission spectromicroscopy with high-brightness pulsed sources is examined. • Deterministic interaction of an electron with the average charge density can be corrected. • Requires a cathode-lens type microscope optimized for best k-resolution in reciprocal plane. • Extractor field effectively separates pencil beam of secondary electrons from true signal. • Simulations reveal one order of magnitude gain in resolution.

  1. Charge exchange of muons in gases

    International Nuclear Information System (INIS)

    Turner, R.E.; Senba, M.

    1983-06-01

    The effects of the charge exchange process on muon spin dynamics have been investigated using a density operator formalism with special interest placed upon the diamagnetic muon and paramagnetic muonium signals observed after thermalization. In the charge exchange region the dynamics of the spin density operator is assumed to be determined by the muonium hyperfine interaction and by electron capture and loss processes for muons. Analytical expressions are obtained for the amplitudes and phases of the diamagnetic muon and paramagnetic muonium signals as a function of the duration of the charge exchange region, tsub(c), which is inversely proportional to the number density of the moderating gas. The theoretical signals exhibit three features which have, as yet, to be experimentally observed, namely: i) that the amplitudes associated with the muonium Larmor frequency and with the hyperfine frequency are not, in general, equal, ii) that all the amplitudes are, in general, damped oscillatory functions of tsub(c) (temperature/pressure) and iii) that phase jumps occur when an amplitude decreases to zero and then increases with falling pressure. Fits to the experimental argon data are discussed in light of the above points

  2. Principal parameters of classical multiply charged ion sources

    International Nuclear Information System (INIS)

    Winter, H.; Wolf, B.H.

    1974-01-01

    A review is given of the operational principles of classical multiply charged ion sources (operating sources for intense beams of multiply charged ions using discharge plasmas; MCIS). The fractional rates of creation of multiply charged ions in MCIS plasmas cannot be deduced from the discharge parameters in a simple manner; they depend essentially on three principal parameters, the density and energy distribution of the ionizing electrons, and the confinement time of ions in the ionization space. Simple discharge models were used to find relations between principal parameters, and results of model calculations are compared to actually measured charge state density distributions of extracted ions. Details of processes which determine the energy distribution of ionizing electrons (heating effects), confinement times of ions (instabilities), and some technical aspects of classical MCIS (cathodes, surface processes, conditioning, life time) are discussed

  3. Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Keith H., E-mail: keith.hughes@bangor.ac.uk [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Cahier, Benjamin [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martinazzo, Rocco [Dipartimento di Chimica Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Tamura, Hiroyuki [WPI-Advanced Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany)

    2014-10-17

    Highlights: • Quantum dynamical study of exciton dissociation at a heterojunction interface. • The non-Markovian quantum dynamics involves a highly structured spectral density. • Spectral density is reconstructed from an effective mode transformation of the Hamiltonian. • The dynamics is studied using the hierarchical equations of motion approach. • It was found that the temperature has little effect on the charge transfer. - Abstract: We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene–fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway.

  4. MOHOS-type memory performance using HfO2 nanoparticles as charge trapping layer and low temperature annealing

    International Nuclear Information System (INIS)

    Molina, Joel; Ortega, Rafael; Calleja, Wilfrido; Rosales, Pedro; Zuniga, Carlos; Torres, Alfonso

    2012-01-01

    Highlights: ► HfO 2 nanoparticles used as charge trapping layer in MOHOS memory devices. ► Increasing HfO 2 nanoparticles concentration enhances charge injection and trapping. ► Enhancement of memory performance with low temperature annealing. ► Charge injection is done without using any hot-carrier injection mechanism. ► Using injected charge density is better for comparison of scaled memory devices. - Abstract: In this work, HfO 2 nanoparticles (np-HfO 2 ) are embedded within a spin-on glass (SOG)-based oxide matrix and used as a charge trapping layer in metal–oxide–high-k–oxide–silicon (MOHOS)-type memory applications. This charge trapping layer is obtained by a simple sol–gel spin coating method after using different concentrations of np-HfO 2 and low temperature annealing (down to 425 °C) in order to obtain charge–retention characteristics with a lower thermal budget. The memory's charge trapping characteristics are quantized by measuring both the flat-band voltage shift of MOHOS capacitors (writing/erasing operations) and their programming retention times after charge injection while correlating all these data to np-HfO 2 concentration and annealing temperature. Since a large memory window has been obtained for our MOHOS memory, the relatively easy injection/annihilation (writing/erasing) of charge injected through the substrate opens the possibility to use this material as an effective charge trapping layer. It is shown that by using lower annealing temperatures for the charge trapping layer, higher densities of injected charge are obtained along with enhanced retention times. In conclusion, by using np-HfO 2 as charge trapping layer in memory devices, moderate programming and retention characteristics have been obtained by this simple and yet low-cost spin-coating method.

  5. Charged particle density distributions in Au + Au collisions at ...

    Indian Academy of Sciences (India)

    Charged particle pseudorapidity distributions have been measured in Au + Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of the collision centrality and the center of mass energy. They are compared to the predictions of different parton scattering models and the important role of ...

  6. Interplay of multiple charge-density-waves and superconductivity in DyTe{sub 3} at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Zocco, Diego A. [Institute for Solid State Physics, Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany); Department of Physics, University of California, San Diego, CA 92093 (United States); Kapuvari, Andreas; Sauer, Aaron; Weber, Frank [Institute for Solid State Physics, Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany); Paraskevas, Parisiadis; Garbarino, Gaston [European Synchrotron Radiation Facility, F-38043 Grenoble Cedex (France); Fisher, Ian [Department of Applied Physics, Stanford University, CA 94305 (United States); Hamlin, James; Maple, Brian [Department of Physics, University of California, San Diego, CA 92093 (United States)

    2015-07-01

    DyTe{sub 3} is a quasi-two-dimensional system in which two successive incommensurate charge-density-wave (CDW) states appear upon cooling at ambient pressure (T{sub CDW,1} = 306 K, T{sub CDW,2} = 49 K). The suppression with pressure of the CDW order is followed by the emergence of superconductivity above 1 GPa and below 1.5 K, as shown by our measurements of electrical resistivity and ac-susceptibility. X-ray diffraction (XRD) experiments under pressure indicate that the lower CDW state merges with the upper one at an intermediate pressure, suggesting that the double-CDW state could be accessed directly below a single T{sub CDW}(P) line. The phase diagram obtained from XRD is compared with the results of our recent electrical resistivity experiments.

  7. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    Science.gov (United States)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-12-01

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  8. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo [Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Peng, Yingquan, E-mail: yqpeng@lzu.edu.cn [Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2013-12-28

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  9. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    International Nuclear Information System (INIS)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-01-01

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs

  10. Thermoluminescence study of the trapped charge at an alumina surface electrode in different dielectric barrier discharge regimes

    Energy Technology Data Exchange (ETDEWEB)

    Ambrico, P F; Ambrico, M; Dilecce, G; De Benedictis, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Inorganiche e dei Plasmi UOS Bari-c/o Dipartimento di Chimica, Universita degli Studi di Bari ' Aldo Moro' , via Orabona, 4, 70126 Bari (Italy); Colaianni, A [Dipartimento di Geologia e Geofisica, Universita degli Studi di Bari ' Aldo Moro' , via Orabona, 4, 70126 Bari (Italy); Schiavulli, L, E-mail: paolofrancesco.ambrico@cnr.i [Dipartimento Interateneo di Fisica, Universita degli Studi di Bari ' Aldo Moro' , via Orabona, 4, 70126 Bari (Italy)

    2010-08-18

    In this study, the charge trapping effect in alumina dielectric surfaces has been deeply investigated by means of a dedicated dielectric barrier discharge apparatus in different discharge regimes and gas mixtures. This work further validates our previous findings in the case of air discharges in a filamentary regime. Long lasting charge trapping has been evidenced by ex situ thermoluminescence characterizations of alumina dielectric barrier plates exposed to a plasma. The density of trapped surface charges was found to be higher in the glow discharge with respect to pseudo-glow and filamentary regimes, and for all regimes the minimum trap activation temperature was 390 K and the trap energy was less than or around 1 eV. This implies that in the case of glow discharges a higher reservoir of electrons is present. Also, the effect was found to persist for several days after running the discharge.

  11. Thermoluminescence study of the trapped charge at an alumina surface electrode in different dielectric barrier discharge regimes

    International Nuclear Information System (INIS)

    Ambrico, P F; Ambrico, M; Dilecce, G; De Benedictis, S; Colaianni, A; Schiavulli, L

    2010-01-01

    In this study, the charge trapping effect in alumina dielectric surfaces has been deeply investigated by means of a dedicated dielectric barrier discharge apparatus in different discharge regimes and gas mixtures. This work further validates our previous findings in the case of air discharges in a filamentary regime. Long lasting charge trapping has been evidenced by ex situ thermoluminescence characterizations of alumina dielectric barrier plates exposed to a plasma. The density of trapped surface charges was found to be higher in the glow discharge with respect to pseudo-glow and filamentary regimes, and for all regimes the minimum trap activation temperature was 390 K and the trap energy was less than or around 1 eV. This implies that in the case of glow discharges a higher reservoir of electrons is present. Also, the effect was found to persist for several days after running the discharge.

  12. X-ray electron density distribution of GaAs

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    Using ten X-ray structure amplitudes of strong reflections and nine weak reflections both, the valence electron and the difference electron density distribution of GaAs, are calculated. The experimental data are corrected for anomalous dispersion using a bond charge model. The calculated plots are compared with up to now published band structure-based and semiempirically calculated density plots. Taking into account the experimental data of germanium, measured on the same absolute scale, the difference density between GaAs and Ge is calculated. This exhibits the charge transfer between both the f.c.c.-sublattices as well as both, the shift and the decrease of the bond charge, quite closely connected to the theoretical results published by Baur et al. (author)

  13. Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale

    Directory of Open Access Journals (Sweden)

    Nikolaus Knorr

    2011-06-01

    Full Text Available Though triboelectric charging of insulators is common, neither its mechanism nor the nature of the charge is well known. Most research has focused on the integral amount of charge transferred between two materials upon contact, establishing, e.g., a triboelectric series. Here, the charge distribution of tracks on insulating polymer films rubbed by polymer-covered pointed swabs is investigated in high resolution by Kelvin probe force microscopy. Pronounced bipolar charging was observed for all nine rubbing combinations of three different polymers, with absolute surface potentials of up to several volts distributed in streaks along the rubbing direction and varying in polarity on μm-length scales perpendicular to the rubbing direction. Charge densities increased considerably for rubbing in higher relative humidity, for higher rubbing loads, and for more hydrophilic polymers. The ends of rubbed tracks had positively charged rims. Surface potential decay with time was strongly accelerated in increased humidity, particularly for polymers with high water permeability. Based on these observations, a mechanism is proposed of triboelectrification by extrusions of prevalently hydrated protons, stemming from adsorbed and dissociated water, along pressure gradients on the surface by the mechanical action of the swab. The validity of this mechanism is supported by explanations given recently in the literature for positive streaming currents of water at polymer surfaces and by reports of negative charging of insulators tapped by accelerated water droplets and of potential built up between the front and the back of a rubbing piece, observations already made in the 19th century. For more brittle polymers, strongly negatively charged microscopic abrasive particles were frequently observed on the rubbed tracks. The negative charge of those particles is presumably due in part to triboemission of electrons by polymer chain scission, forming radicals and negatively

  14. Measurement of the forward charged particle pseudorapidity density in pp collisions at √s=8 TeV using a displaced interaction point

    Energy Technology Data Exchange (ETDEWEB)

    Antchev, G. [INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia (Bulgaria); Aspell, P. [CERN, Geneva (Switzerland); Atanassov, I. [CERN, Geneva (Switzerland); INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia (Bulgaria); Avati, V.; Baechler, J. [CERN, Geneva (Switzerland); and others

    2015-03-17

    The pseudorapidity density of charged particles dN{sub ch}/dη is measured by the TOTEM experiment in proton–proton collisions at √s=8 TeV within the range 3.9<η<4.7 and -6.95<η<-6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96–97 % of the inelastic proton–proton interactions. The measurement reported here considers charged particles with p{sub T}>0 MeV/c, produced in inelastic interactions with at least one charged particle in -7<η<-6 or 3.7<η<4.8. The dN{sub ch}/dη has been found to decrease with |η|, from 5.11 ± 0.73 at η=3.95 to 1.81 ± 0.56 at η=-6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement.

  15. Measurement of the forward charged particle pseudorapidity density in pp collisions at √(s) = 8 TeV using a displaced interaction point

    Energy Technology Data Exchange (ETDEWEB)

    Antchev, G. [Bulgarian Academy of Sciences, INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Aspell, P. [CERN, Geneva (Switzerland); Atanassov, I. [CERN, Geneva (Switzerland); Bulgarian Academy of Sciences, INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Avati, V. [CERN, Geneva (Switzerland); Baechler, J. [CERN, Geneva (Switzerland); Berardi, V. [INFN Sezione di Bari, Bari (Italy); Dipartimento Interateneo di Fisica di Bari, Bari (Italy); Berretti, M. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); CERN, Geneva (Switzerland); Bossini, E. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); Bottigli, U. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); Bozzo, M. [INFN Sezione di Genova, Genoa (Italy); Universita degli Studi di Genova, Genoa (Italy); Bruecken, E. [Helsinki Institute of Physics, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Buzzo, A. [INFN Sezione di Genova, Genoa (Italy); Cafagna, F.S. [INFN Sezione di Bari, Bari (Italy); Catanesi, M.G. [INFN Sezione di Bari, Bari (Italy); Covault, C. [Case Western Reserve University, Department of Physics, Cleveland, OH (United States); Csanad, M. [MTA Wigner Research Center, RMKI, Budapest (Hungary); Eoetvoes University, Department of Atomic Physics, Budapest (Hungary); Csoergo, T. [MTA Wigner Research Center, RMKI, Budapest (Hungary); Deile, M. [CERN, Geneva (Switzerland); Doubek, M. [Czech Technical University, Prague (Czech Republic); Eggert, K. [Case Western Reserve University, Department of Physics, Cleveland, OH (United States); Eremin, V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg (Russian Federation); Ferro, F. [INFN Sezione di Genova, Genoa (Italy); Fiergolski, A. [INFN Sezione di Bari, Bari (Italy); Warsaw University of Technology, Warsaw (Poland); Garcia, F. [Helsinki Institute of Physics, Helsinki (Finland); Georgiev, V. [University of West Bohemia, Plzen (Czech Republic); Giani, S. [CERN, Geneva (Switzerland); Grzanka, L. [AGH University of Science and Technology, Krakow (Poland); Polish Academy of Science, Institute of Nuclear Physics, Krakow (Poland); Hammerbauer, J. [University of West Bohemia, Plzen (Czech Republic); Heino, J. [Helsinki Institute of Physics, Helsinki (Finland); Hilden, T. [Helsinki Institute of Physics, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Karev, A. [CERN, Geneva (Switzerland); Kaspar, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); CERN, Geneva (Switzerland); Kopal, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); CERN, Geneva (Switzerland); Kundrat, V. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Lami, S. [INFN Sezione di Pisa, Pisa (Italy); Latino, G. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); Lauhakangas, R. [Helsinki Institute of Physics, Helsinki (Finland); Leszko, T. [Warsaw University of Technology, Warsaw (Poland); Lippmaa, E. [National Institute of Chemical Physics and Biophysics NICPB, Tallinn (Estonia); Lippmaa, J. [National Institute of Chemical Physics and Biophysics NICPB, Tallinn (Estonia); Lokajicek, M.V. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Losurdo, L. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Lo Vetere, M. [INFN Sezione di Genova, Genoa (IT); Universita degli Studi di Genova, Genoa (IT); Lucas Rodriguez, F. [CERN, Geneva (CH); Macri, M. [INFN Sezione di Genova, Genoa (IT); Maeki, T. [Helsinki Institute of Physics, Helsinki (FI); Mercadante, A. [INFN Sezione di Bari, Bari (IT); Minafra, N. [Dipartimento Interateneo di Fisica di Bari, Bari (IT); CERN, Geneva (CH); Minutoli, S. [INFN Sezione di Genova, Genoa (IT); Nemes, F. [MTA Wigner Research Center, RMKI, Budapest (HU); Eoetvoes University, Department of Atomic Physics, Budapest (HU); Niewiadomski, H. [CERN, Geneva (CH); Oliveri, E. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Oljemark, F. [Helsinki Institute of Physics, Helsinki (FI); University of Helsinki, Department of Physics, Helsinki (FI); Orava, R. [Helsinki Institute of Physics, Helsinki (FI); University of Helsinki, Department of Physics, Helsinki (FI); Oriunno, M. [SLAC National Accelerator Laboratory, Stanford, CA (US); Oesterberg, K. [Helsinki Institute of Physics, Helsinki (FI); University of Helsinki, Department of Physics, Helsinki (FI); Palazzi, P. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Peroutka, Z. [University of West Bohemia, Plzen (CZ); Prochazka, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (CZ); Quinto, M. [INFN Sezione di Bari, Bari (IT); Dipartimento Interateneo di Fisica di Bari, Bari (IT); Radermacher, E. [CERN, Geneva (CH); Radicioni, E. [INFN Sezione di Bari, Bari (IT); Ravotti, F. [CERN, Geneva (CH); Robutti, E. [INFN Sezione di Genova, Genoa (IT); Ropelewski, L. [CERN, Geneva (CH); Ruggiero, G. [CERN, Geneva (CH); Saarikko, H. [Helsinki Institute of Physics, Helsinki (FI); University of Helsinki, Department of Physics, Helsinki (FI); Scribano, A. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Smajek, J. [CERN, Geneva (CH); Snoeys, W. [CERN, Geneva (CH); Sodzawiczny, T. [CERN, Geneva (CH); Sziklai, J. [MTA Wigner Research Center, RMKI, Budapest (HU); Taylor, C. [Case Western Reserve University, Department of Physics, Cleveland, OH (US); Turini, N. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Vacek, V. [Czech Technical University, Prague (CZ); Welti, J. [Helsinki Institute of Physics, Helsinki (FI); University of Helsinki, Department of Physics, Helsinki (FI); Whitmore, J. [Penn State University, Department of Physics, University Park, PA (US); Wyszkowski, P. [AGH University of Science and Technology, Krakow (PL); Zielinski, K. [AGH University of Science and Technology, Krakow (PL); Collaboration: TOTEM Collaboration

    2015-03-01

    The pseudorapidity density of charged particles dN{sub ch}/dη is measured by the TOTEM experiment in proton-proton collisions at √(s) = 8 TeV within the range 3.9 < η < 4.7 and -6.95 < η < -6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96-97 % of the inelastic proton-proton interactions. The measurement reported here considers charged particles with p{sub T} > 0 MeV/c, produced in inelastic interactions with at least one charged particle in -7 < η < -6 or 3.7 < η < 4.8. The dN{sub ch}/dη has been found to decrease with vertical stroke η vertical stroke, from 5.11 ± 0.73 at η = 3.95 to 1.81 ± 0.56 at η = -6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement. (orig.)

  16. Measurement of the forward charged particle pseudorapidity density in pp collisions at √(s) = 8 TeV using a displaced interaction point

    International Nuclear Information System (INIS)

    Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Bruecken, E.; Buzzo, A.; Cafagna, F.S.; Catanesi, M.G.; Covault, C.; Csanad, M.; Csoergo, T.; Deile, M.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Hammerbauer, J.; Heino, J.; Hilden, T.; Karev, A.; Kaspar, J.; Kopal, J.; Kundrat, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lippmaa, J.; Lokajicek, M.V.; Losurdo, L.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Maeki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Oesterberg, K.; Palazzi, P.; Peroutka, Z.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sodzawiczny, T.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Whitmore, J.; Wyszkowski, P.; Zielinski, K.

    2015-01-01

    The pseudorapidity density of charged particles dN ch /dη is measured by the TOTEM experiment in proton-proton collisions at √(s) = 8 TeV within the range 3.9 < η < 4.7 and -6.95 < η < -6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96-97 % of the inelastic proton-proton interactions. The measurement reported here considers charged particles with p T > 0 MeV/c, produced in inelastic interactions with at least one charged particle in -7 < η < -6 or 3.7 < η < 4.8. The dN ch /dη has been found to decrease with vertical stroke η vertical stroke, from 5.11 ± 0.73 at η = 3.95 to 1.81 ± 0.56 at η = -6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement. (orig.)

  17. Energy storage device with large charge separation

    Science.gov (United States)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.

    2018-04-03

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  18. Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions

    International Nuclear Information System (INIS)

    Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A.; Fitzgerald, R.

    2010-01-01

    Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this issue (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, 'lower limit', 'nominal value' and 'upper limit' of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters μ and σ at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rate probability density functions directly in a stellar model code for studies of stellar energy generation and nucleosynthesis. For each reaction, the Monte Carlo reaction rate probability density functions, together with their lognormal approximations, are displayed graphically for selected temperatures in order to provide a visual impression. Our new reaction rates are appropriate for bare nuclei in the laboratory. The nuclear physics input used to derive our reaction rates is presented in the subsequent paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.

  19. Investigating the effect of acene-fusion and trifluoroacetyl substitution on the electronic and charge transport properties by density functional theory

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2016-05-01

    Full Text Available We designed novel derivatives of 4,6-di(thiophen-2-ylpyrimidine (DTP. Two benchmark strategies including mesomerically deactivating group, as well as the extension of π-conjugation bridge (acene-fusion have been employed to enhance the electrical and charge transport properties. The density functional theory (DFT and time dependent DFT methods have been used to get optimized geometries in ground and first excited state, respectively. The structural properties (geometric parameters, electronic properties (frontier molecular orbitals; highest occupied and lowest unoccupied molecular orbitals, photophysical properties (absorption, fluorescence and phosphorescence, and important charge transport properties are discussed to establish a molecular level structure–property relationship among these derivatives. Our calculated electronic spectra i.e., absorption, fluorescence and phosphorescence have been found in good semi-quantitative agreement with available experimental data. All the newly designed derivatives displayed significantly improved electron injection ability than those of the parent molecule. The values of reorganization energy and transfer integral elucidate that DTP is a potential hole transport material. Based on our present investigation, it is expected that the naphtho and anthra derivatives of DTP are better hole transporters than those of some well-known charge transporter materials like naphthalene, anthracene, tetracene and pentacene.

  20. Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: effect of surface charge and composition probed by second harmonic generation.

    Science.gov (United States)

    Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung

    2005-03-17

    Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.

  1. Characterization of cable gun plasma with a charge collector array

    International Nuclear Information System (INIS)

    Chen Yulan; Zeng Zhengzhong; Sun Fengju; Kuai Bin; Qiu Aici; Yin Jiahui; Cong Peitian; Liang Tianxue

    2003-01-01

    The density, drift velocity and reproducibility of the plasma produced by a cable plasma gun array have been measured with a charge collector array. The plasma is used to prefill a coaxial plasma-opening switch with a conducting time approaching 0.4 μs. The reproducibility of the plasma source in subsequent shots is better than 5%. Near the gun nozzle and the opposite electrode, the plasma density amounts to 10 15 cm -3 , which is 2 times to 3 times that in the gap between the two coaxial electrodes. A plasma drift velocity of about 2.4 cm/μs is observed from the time of flight of the charged particles. Both plasma density and drift velocity increase almost linearly with the rise in charge voltage

  2. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    Science.gov (United States)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of

  3. MOHOS-type memory performance using HfO{sub 2} nanoparticles as charge trapping layer and low temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Joel, E-mail: jmolina@inaoep.mx [National Institute of Astrophysics, Optics and Electronics. Electronics Department, Luis Enrique Erro 1, Tonantzintla, Puebla 72000 (Mexico); Ortega, Rafael; Calleja, Wilfrido; Rosales, Pedro; Zuniga, Carlos; Torres, Alfonso [National Institute of Astrophysics, Optics and Electronics. Electronics Department, Luis Enrique Erro 1, Tonantzintla, Puebla 72000 (Mexico)

    2012-09-20

    Highlights: Black-Right-Pointing-Pointer HfO{sub 2} nanoparticles used as charge trapping layer in MOHOS memory devices. Black-Right-Pointing-Pointer Increasing HfO{sub 2} nanoparticles concentration enhances charge injection and trapping. Black-Right-Pointing-Pointer Enhancement of memory performance with low temperature annealing. Black-Right-Pointing-Pointer Charge injection is done without using any hot-carrier injection mechanism. Black-Right-Pointing-Pointer Using injected charge density is better for comparison of scaled memory devices. - Abstract: In this work, HfO{sub 2} nanoparticles (np-HfO{sub 2}) are embedded within a spin-on glass (SOG)-based oxide matrix and used as a charge trapping layer in metal-oxide-high-k-oxide-silicon (MOHOS)-type memory applications. This charge trapping layer is obtained by a simple sol-gel spin coating method after using different concentrations of np-HfO{sub 2} and low temperature annealing (down to 425 Degree-Sign C) in order to obtain charge-retention characteristics with a lower thermal budget. The memory's charge trapping characteristics are quantized by measuring both the flat-band voltage shift of MOHOS capacitors (writing/erasing operations) and their programming retention times after charge injection while correlating all these data to np-HfO{sub 2} concentration and annealing temperature. Since a large memory window has been obtained for our MOHOS memory, the relatively easy injection/annihilation (writing/erasing) of charge injected through the substrate opens the possibility to use this material as an effective charge trapping layer. It is shown that by using lower annealing temperatures for the charge trapping layer, higher densities of injected charge are obtained along with enhanced retention times. In conclusion, by using np-HfO{sub 2} as charge trapping layer in memory devices, moderate programming and retention characteristics have been obtained by this simple and yet low-cost spin-coating method.

  4. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    Science.gov (United States)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  5. Holographic QCD with topologically charged domain-wall/membranes

    International Nuclear Information System (INIS)

    Lin Fengli; Wu Shangyu

    2008-01-01

    We study the thermodynamical phase structures of holographic QCD with nontrivial topologically charged domain-wall/membranes which are originally related to the multiple θ-vacua in the large N c limit. We realize the topologically charged membranes as the holographic D6-brane fluxes in the Sakai-Sugimoto model. The D6-brane fluxes couple to the probe D8-D8-bar via Chern-Simon term, and act as the source for the baryonic current density of QCD. We find rich phase structures of the dual meson system by varying asymptotic separation of D8 and D8-bar. Especially, there can be a thermodynamically favored and stable phase of finite baryonic current density. This provides the supporting evidence for the discovery of the topologically charged membranes found in the lattice QCD calculations. We also find a crossover phase with the limiting baryonic current density and temperature which suggest a Hagedorn-like phase transition of meson dissociation.

  6. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    Directory of Open Access Journals (Sweden)

    Fröhlich E

    2012-11-01

    Full Text Available Eleonore FröhlichCenter for Medical Research, Medical University of Graz, Graz, AustriaAbstract: Many types of nanoparticles (NPs are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.Keywords: endocytosis, plasma membrane, lysosomes, polystyrene particles, quantum dots, dendrimers

  7. Insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor devices with Al2O3 or AlTiO gate dielectrics

    Science.gov (United States)

    Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu

    2018-01-01

    We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.

  8. Assessment of fixed charge density in regenerated cartilage by Gd-DTPA-enhanced MRI

    International Nuclear Information System (INIS)

    Miyata, Shogo; Homma, Kazuhiro; Numano, Tomokazu; Furukawa, Katsuko; Tateishi, Tetsuya; Ushida, Takashi

    2006-01-01

    Applying regenerated cartilage in a clinical setting requires noninvasive evaluation to detect the maturity of cartilage tissue. Magnetic resonance (MR) imaging of articular cartilage is well accepted and has been applied clinically in recent years. We attempt to establish a noninvasive method to evaluate the maturity of regenerated cartilage tissue using gadolinium-enhanced MR imaging. To reconstruct cartilaginous tissue, we embedded articular chondrocytes harvested from bovine humeral head in agarose gel and cultured the cells in vitro up to 4 weeks. The fixed charge density (FCD) of the cartilage was determined using MRI gadolinium exclusion method. The sulfated glycosaminoglycan (sGAG) content was determined by dimethylmethylene blue dye-binding assay. The sGAG content and FCD of the regenerated cartilage increased with duration of culture. In the T 1 Gd maps, the [Gd-DTPA 2- ] in the specimen decreased, and the boundary between the sample disk and the bath solution of phosphate buffered saline (PBS) became clearer as time in culture increased. In the linear regression analysis, FCD and sGAG content correlated significantly. Gadolinium-enhanced MR imaging measurements can be useful predictors of the degree of cartilaginous tissue formation. (author)

  9. Charge-carrier mobilities in disordered semiconducting polymers : effects of carrier density and electric field

    NARCIS (Netherlands)

    Meisel, K.D.; Pasveer, W.F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P.A.; Blom, P.W.M.; Leeuw, D.M. de; Michels, M.A.J.

    2006-01-01

    We model charge transport in disordered semiconducting polymers by hopping of charge carriers on a square lattice of sites with Gaussian on-site energy disorder, using Fermi-Dirac statistics. From numerically exact solutions of the Master equation, we study the dependence of the charge-carrier

  10. Theory of the surface dipole layer and of surface tension in liquids of charged particles

    International Nuclear Information System (INIS)

    Senatore, G.; Tosi, M.P.

    1980-01-01

    The problem of the surface density profiles and of the surface tension of a two-component liquid of charged particles in equilibrium with its vapour is examined. The exact equilibrium conditions for the profiles are given in terms of the inverse response functions of the inhomogeneous fluid, and alternative exact expressions for the surface tension are derived. The use of a density gradient expansion reduces the problem to knowledge of properties of a homogeneous charged fluid on a uniform neutralizing background, in which the total particle density and the charge density are independent variables. Additional simplifications are discussed for special cases for which a perturbative treatment of the surface charge density profile can be developed, and in particular for nearly symmetric ionic liquids and for simple liquid metals. (author)

  11. Computational investigation of the effects of perfluorination on the charge-transport properties of polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Cardia, R.; Malloci, G.; Bosin, A.; Serra, G.; Cappellini, G.

    2016-01-01

    We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.

  12. Computational investigation of the effects of perfluorination on the charge-transport properties of polyaromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardia, R. [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Istituto Officina dei Materiali (CNR – IOM), UOS di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari (Italy); Malloci, G., E-mail: giuliano.malloci@dsf.unica.it [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Bosin, A.; Serra, G. [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Cappellini, G., E-mail: giancarlo.cappellini@dsf.unica.it [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Istituto Officina dei Materiali (CNR – IOM), UOS di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari (Italy)

    2016-10-20

    We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.

  13. Effects of acid concentration on intramolecular charge transfer ...

    Indian Academy of Sciences (India)

    rate. Time-dependent density functional theory calculations have been performed to understand the observed spectroscopic results. Keywords. Intramolecular charge transfer; absorption and fluorescence; time resolved fluorescence measurements; acid concentration dependence; time-dependent density functional theory.

  14. Restricted primitive model for electrolyte solutions in slit-like pores with grafted chains: microscopic structure, thermodynamics of adsorption, and electric properties from a density functional approach.

    Science.gov (United States)

    Pizio, Orest; Sokołowski, Stefan

    2013-05-28

    We apply a density functional theory to describe properties of a restricted primitive model of an ionic fluid in slit-like pores. The pore walls are modified by grafted chains. The chains are built of uncharged or charged segments. We study the influence of modification of the pore walls on the structure, adsorption, ion selectivity, and the electric double layer capacitance of ionic fluid under confinement. The brush built of uncharged segments acts as a collection of obstacles in the walls vicinity. Consequently, separation of charges requires higher voltages, in comparison to the models without brushes. At high grafting densities the formation of crowding-type structure is inhibited. The double layer structure becomes more complex in various aspects, if the brushes are built of charged segments. In particular, the evolution of the brush height with the bulk fluid density and with the charge on the walls depends on the length of the blocks of charged spheres as well as on the distribution of charged species along chains. We also investigated how the dependence of the double layer capacitance on the electrostatic potential (or on the charge on the walls) changes with grafting density, the chain length, distribution of charges along the chain, the bulk fluid density, and, finally, with the pore width. The shape of the electric double layer capacitance vs. voltage changes from a camel-like to bell-like shape, if the bulk fluid density changes from low to moderate and high. If the bulk density is appropriately chosen, it is possible to alter the shape of this curve from the double hump to single hump by changing the grafting density. Moreover, in narrow pores one can observe the capacitance curve with even three humps for a certain set of parameters describing brush. This behavior illustrates how strong the influence of brushes on the electric double layer properties can be, particularly for ionic fluids in narrow pores.

  15. Space charge in nanostructure resonances

    Science.gov (United States)

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  16. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  17. Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qinghe [Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China; Zhao, Donglin [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Goldey, Matthew B. [Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Filatov, Alexander S. [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Sharapov, Valerii [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Colón, Yamil J. [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Cai, Zhengxu [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Chen, Wei [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; de Pablo, Juan [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Galli, Giulia [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Yu, Luping [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States

    2018-03-02

    Two types of electron acceptors were synthesized by coupling two kinds of electron-rich cores with four equivalent perylene diimides (PDIs) at the a position. With fully aromatic cores, TPB and TPSe have pi-orbitals spread continuously over the whole aromatic conjugated backbone, unlike TPC and TPSi, which contain isolated PDI units due to the use of a tetrahedron carbon or silicon linker. Density functional theory calculations of the projected density of states showed that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for TPB are localized in separate regions of space. Further, the LUMO of TPB shows a greater contribution from the orbitals belonging to the connective core of the molecules than that of TPC. Overall, the properties of the HOMO and LUMO point at increased intra-molecular delocalization of negative charge carriers for TPB and TPSe than for TPC and TPSi and hence at a more facile intra-molecular charge transfer for the former. The film absorption and emission spectra showed evidences for the inter -molecular electron delocalization in TPB and TPSe, which is consistent with the network structure revealed by X-ray diffraction studies on single crystals of TPB. These features benefit the formation of charge transfer states and/or facilitate charge transport. Thus, higher electron mobility and higher charge dissociation probabilities under J(sc) condition were observed in blend films of TPB:PTB7-Th and TPSe:PTB7-Th than those in TPC:PTB7Th and TPSi:PTB7-Th blend films. As a result, the J(sc) and fill factor values of 15.02 mA/cm(2), 0.58 and 14.36 mA/cm(2), 0.55 for TPB- and TPSe-based solar cell are observed, whereas those for TPC and TPSi are 11.55 mA/cm2, 0.47 and 10.35 mA/cm(2), 0.42, respectively.

  18. Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities

    Science.gov (United States)

    Harrison, Neil [Santa Fe, NM; Singleton, John [Los Alamos, NM; Migliori, Albert [Santa Fe, NM

    2008-08-05

    A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

  19. Gamow-Jordan vectors and non-reducible density operators from higher-order S-matrix poles

    International Nuclear Information System (INIS)

    Bohm, A.; Loewe, M.; Maxson, S.; Patuleanu, P.; Puentmann, C.; Gadella, M.

    1997-01-01

    In analogy to Gamow vectors that are obtained from first-order resonance poles of the S-matrix, one can also define higher-order Gamow vectors which are derived from higher-order poles of the S-matrix. An S-matrix pole of r-th order at z R =E R -iΓ/2 leads to r generalized eigenvectors of order k=0,1,hor-ellipsis,r-1, which are also Jordan vectors of degree (k+1) with generalized eigenvalue (E R -iΓ/2). The Gamow-Jordan vectors are elements of a generalized complex eigenvector expansion, whose form suggests the definition of a state operator (density matrix) for the microphysical decaying state of this higher-order pole. This microphysical state is a mixture of non-reducible components. In spite of the fact that the k-th order Gamow-Jordan vectors has the polynomial time-dependence which one always associates with higher-order poles, the microphysical state obeys a purely exponential decay law. copyright 1997 American Institute of Physics

  20. Transition densities with electron scattering

    International Nuclear Information System (INIS)

    Heisenberg, J.

    1985-01-01

    This paper reviews the ground state and transition charge densities in nuclei via electron scattering. Using electrons as a spectroscopic tool in nuclear physics, these transition densities can be determined with high precision, also in the nuclear interior. These densities generally ask for a microscopic interpretation in terms of contributions from individual nucleons. The results for single particle transitions confirm the picture of particle-phonon coupling. (Auth.)

  1. The experimental charge-density approach in the evaluation of intermolecular interactions. Application of a new module of the XD programming package to several solids including a pentapeptide.

    Science.gov (United States)

    Abramov, Y A; Volkov, A; Wu, G; Coppens, P

    2000-11-01

    A new module interfaced to the XD programming package has been used in the evaluation of intermolecular interactions and lattice energies of the crystals of p-nitroaniline, L-asparagine monohydrate and the pentapeptide Boc-Gln-D-Iva-Hyp-Ala-Phol (Boc = butoxycarbonyl, Iva = isovaline = ethylalanine, Phol = phenylalaninol). The electrostatic interactions are evaluated with the atom-centered distributed multipoles from KRMM (kappa'-restricted multipole model) refinements, using the Buckingham expression for non-overlapping charge densities. Results for p-nitroaniline are compared with Hartree-Fock (HF), density functional (DFT) and Moller-Plesset (MP2) supermolecular calculations and with HF and DFT periodic calculations. The HF and DFT methods fail to predict the stability of the p-nitroaniline crystal but the results of the experimental charge-density approach (ECDA) are in good agreement with both MP2 interaction energies and the experimental lattice energy. ECDA results for L-asparagine monohydrate compare well with those from DFT supermolecular and periodic HF calculations. The disorder of the terminal group in the pentapeptide, which persists at the experimental temperature of 20 K, corresponds to an energy difference of only 0.35 kJ mol(-1), which is too small to be reproduced with current methods.

  2. Higher order effects of pseudoparticles in QCD

    International Nuclear Information System (INIS)

    Hietarinta, J.; Palmer, W.F.

    1977-01-01

    Gauge invariant Green's functions of quark-antiquark bilinear densities in massless, two-color QCD are studied. Nonzero-energy fermion modes, pseudoparticle solutions with topological charge absolute value ν > 1, and n-point functions with n > 2. Some general properties of the O(Dirac constant) approximation are developed, enabling one to isolate and define the terms which contribute to a general n-point function. The higher effects it is found preserve the symmetry breakdown found earlier in the 2-point function (U(2) x U(2) → SU(2) x SU(2) x U(1)). It is shown that a previous 2-point function analysis is exact to order Dirac constant

  3. State of charge monitoring of vanadium redox flow batteries using half cell potentials and electrolyte density

    Science.gov (United States)

    Ressel, Simon; Bill, Florian; Holtz, Lucas; Janshen, Niklas; Chica, Antonio; Flower, Thomas; Weidlich, Claudia; Struckmann, Thorsten

    2018-02-01

    The operation of vanadium redox flow batteries requires reliable in situ state of charge (SOC) monitoring. In this study, two SOC estimation approaches for the negative half cell are investigated. First, in situ open circuit potential measurements are combined with Coulomb counting in a one-step calibration of SOC and Nernst potential which doesn't need additional reference SOCs. In-sample and out-of-sample SOCs are estimated and analyzed, estimation errors ≤ 0.04 are obtained. In the second approach, temperature corrected in situ electrolyte density measurements are used for the first time in vanadium redox flow batteries for SOC estimation. In-sample and out-of-sample SOC estimation errors ≤ 0.04 demonstrate the feasibility of this approach. Both methods allow recalibration during battery operation. The actual capacity obtained from SOC calibration can be used in a state of health model.

  4. Injection of an electron beam into a plasma and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Kan, J.R.

    1987-01-01

    Injection of a nonrelativistic electron beam into a fully ionized plasma from a spacecraft including the effect of charging has been studied using a one-dimensional particle simulation model. It is found that the spacecraft charging remains negligible and the beam can propagate into a plasma, if the beam density is much smaller than the ambient density. When the injection current is increased by increasing the beam density, significant spacecraft charging takes place and the reflection of beam electrons back to the spacecraft reduces the beam current significantly. On the other hand, if the injection current is increased by increasing the beam energy, spacecraft charging remains negligible and a beam current much larger than the thermal return current can be injected. It is shown that the electric field caused by the beam--plasma instability accelerates the ambient electrons toward the spacecraft thereby enhancing the return current

  5. Plasma density calculation based on the HCN waveform data

    International Nuclear Information System (INIS)

    Chen Liaoyuan; Pan Li; Luo Cuiwen; Zhou Yan; Deng Zhongchao

    2004-01-01

    A method to improve the plasma density calculation is introduced using the base voltage and the phase zero points obtained from the HCN interference waveform data. The method includes making the signal quality higher by putting the signal control device and the analog-to-digit converters in the same location and charging them by the same power, and excluding the noise's effect according to the possible changing rate of the signal's phase, and to make the base voltage more accurate by dynamical data processing. (authors)

  6. Higher-accuracy van der Waals density functional

    DEFF Research Database (Denmark)

    Lee, Kyuho; Murray, Éamonn D.; Kong, Lingzhu

    2010-01-01

    We propose a second version of the van der Waals density functional of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], employing a more accurate semilocal exchange functional and the use of a large-N asymptote gradient correction in determining the vdW kernel. The predicted binding energy...

  7. Nonlinear space charge effect of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao

    1992-02-01

    The nonlinear space charge effect due to the nonuniform particle density distribution in bunched beam of a linac is discussed. The formulae of nonlinear space charge effect and nonlinear focusing forces were derived for the bunched beam with Kapchinskij-Vladimirskij (K-V) distribution, waterbag (WB) distribution, parabolic (PA) distribution, and Gauss (GA) distribution in both of the space charge disk model and space charge cylinder model in the waveguide of a linac

  8. Electronic structure, Born effective charges and spontaneous polarization in magnetoelectric gallium ferrite

    International Nuclear Information System (INIS)

    Roy, Amritendu; Garg, Ashish; Mukherjee, Somdutta; Gupta, Rajeev; Prasad, Rajendra; Auluck, Sushil

    2011-01-01

    We present a theoretical study of the structure-property correlation in gallium ferrite, based on first-principles calculations followed by a subsequent comparison with experiments. The local spin density approximation (LSDA + U) of the density functional theory has been used to calculate the ground state structure, electronic band structure, density of states and Born effective charges. The calculations reveal that the ground state structure is orthorhombic Pc 2 1 n having A-type antiferromagnetic spin configuration, with lattice parameters matching well with those obtained experimentally. Plots of the partial density of states of constituent ions exhibit noticeable hybridization of Fe 3d, Ga 4s, Ga 4p and O 2p states. However, the calculated charge density and electron localization function show a largely ionic character of the Ga/Fe-O bonds which is also supported by a lack of any significant anomaly in the calculated Born effective charges with respect to the corresponding nominal ionic charges. The calculations show a spontaneous polarization of ∼ 59 μC cm -2 along the b-axis which is largely due to asymmetrically placed Ga1, Fe1, O1, O2 and O6 ions.

  9. Chiral Spin-Density Wave, Spin-Charge-Chern Liquid, and d+id Superconductivity in 1/4-Doped Correlated Electronic Systems on the Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Shenghan Jiang

    2014-09-01

    Full Text Available Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring anomalous quantum Hall effect and the d+id superconductor—were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method, and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and the t-J model on the honeycomb lattice at 1/4 doping. The main advantage of our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems (up to 32 sites to sharply distinguish different quantum phases. Our results show that for 1≲U/t<40 in the Hubbard model and for 0.1density wave state or a spin-charge-Chern liquid, but not a d+id superconductor. However, in the t-J model, upon increasing J, the system goes through a first-order phase transition at J/t=0.80(2 into the d+id superconductor. Here, the spin-charge-Chern liquid state is a new type of topologically ordered quantum phase with Abelian anyons and fractionalized excitations. Experimental signatures of these quantum phases, such as tunneling conductance, are calculated. These results are discussed in the context of 1/4-doped graphene systems and other correlated electronic materials on the honeycomb lattice.

  10. Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux

    Science.gov (United States)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2007-01-01

    We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.

  11. Calibration of the RPC charge readout in the ARGO-YBJ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aielli, G. [Dipartimento di Fisica dell& #x27; Universita & #x27; Tor Vergata& #x27; , via della Ricerca Scientifica 1, 00133 Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Bacci, C. [Dipartimento di Fisica dell& #x27; Universita & #x27; Roma Tre& #x27; , via della Vasca Navale 84, 00146 Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Roma3, via della Vasca Navale 84, 00146 Roma (Italy); Bartoli, B. [Dipartimento di Fisica dell& #x27; Universita di Napoli, Complesso Universitario di Monte Sant& #x27; Angelo, via Cintia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte Sant& #x27; Angelo, via Cintia, 80126 Napoli (Italy); Bernardini, P. [Dipartimento di Fisica dell& #x27; Universita del Salento, via per Arnesano, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Bi, X.J. [Key Laboratory of Particle Astrophyics, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918, 100049 Beijing (China); Bleve, C. [Dipartimento di Fisica dell& #x27; Universita del Salento, via per Arnesano, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Branchini, P.; Budano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma3, via della Vasca Navale 84, 00146 Roma (Italy); and others

    2012-01-01

    The charge readout of Resistive Plate Chambers (RPCs) is implemented in the ARGO-YBJ experiment to measure the charged particle density of the shower front up to 10{sup 4}/m{sup 2}, enabling the study of the primary cosmic rays with energies in the 'knee' region. As the first time for RPCs being used this way, a telescope with RPCs and scintillation detectors is setup to calibrate the number of charged particles hitting a RPC versus its charge readout. Air shower particles are taken as the calibration beam. The telescope was tested at sea level and then moved to the ARGO-YBJ site for coincident operation with the ARGO-YBJ experiment. The charge readout shows good linearity with the particle density in the dynamic range (up to 200/m{sup 2}).

  12. Charge polarization effects and hole spectra characteristics in AlxGa1-xN/GaN superlattices

    International Nuclear Information System (INIS)

    Assaoui, Fatna; Pereyra, Pedro

    2001-10-01

    We study the effects of charge polarization on the extended physical properties of superlattices, such as transmission coefficients and valence band structure. We consider both linear and parabolic modulation of the band edge. Based on the theory of finite periodic systems (TFPS), analytic expressions and high precision calculations of the relevant physical quantities for n-cell systems are obtained. New and also well-known features of these systems are identified. Besides the well-known energy bandstructure, we also have the field bandstructure, with interesting characteristics. Wider field gaps at stronger internal electric fields and higher density of field bands for larger layer widths are some of these characteristics. Well defined level density asymmetries identify the minibands induced by charge polarization or the so-called Quantum Confining Stark Effect. We present the n-cell transmission amplitudes, transmission coefficients and miniband structures for different values of the relevant parameters. (author)

  13. 50V All-PMOS Charge Pumps Using Low-Voltage Capacitors

    KAUST Repository

    Emira, Ahmed

    2012-10-06

    In this work, two high-voltage charge pumps are introduced. In order to minimize the area of the pumping capacitors, which dominates the overall area of the charge pump, high density capacitors have been utilized. Nonetheless, these high density capacitors suffer from low breakdown voltage which is not compatible with the targeted high voltage application. To circumvent the breakdown limitation, a special clocking scheme is used to limit the maximum voltage across any pumping capacitor. The two charge pump circuits were fabricated in a 0:6m CMOS technology with poly0-poly1 capacitors. The output voltage of the two charge pumps reached 42:8V and 51V while the voltage across any capacitor did not exceed the value of the input voltage. Compared to other designs reported in the literature, the proposed charge pump provides the highest output voltage which makes it more suitable for tuning MEMS devices.

  14. 50V All-PMOS Charge Pumps Using Low-Voltage Capacitors

    KAUST Repository

    Emira, Ahmed; AbdelGhany, M.; Elsayed, M.; Elshurafa, Amro M.; Sedky, S.; Salama, Khaled N.

    2012-01-01

    In this work, two high-voltage charge pumps are introduced. In order to minimize the area of the pumping capacitors, which dominates the overall area of the charge pump, high density capacitors have been utilized. Nonetheless, these high density capacitors suffer from low breakdown voltage which is not compatible with the targeted high voltage application. To circumvent the breakdown limitation, a special clocking scheme is used to limit the maximum voltage across any pumping capacitor. The two charge pump circuits were fabricated in a 0:6m CMOS technology with poly0-poly1 capacitors. The output voltage of the two charge pumps reached 42:8V and 51V while the voltage across any capacitor did not exceed the value of the input voltage. Compared to other designs reported in the literature, the proposed charge pump provides the highest output voltage which makes it more suitable for tuning MEMS devices.

  15. Charge transport in polycrystalline alumina materials: application to the optimization of dielectric breakdown strength; Transport de charges dans les alumines polycristallines: application a l'optimisation de la rigidite dielectrique

    Energy Technology Data Exchange (ETDEWEB)

    Touzin, M.

    2005-12-15

    Dielectric breakdown constitutes an important limitation in the use of insulating materials under high-tension since it leads to the local fusion and the sublimation of material. The microstructure (average grain size, intergranular phase) has a great influence on the ability of material to resist this catastrophic phenomenon. Indeed, the interfaces between the various phases constitute potential sites of trapping for the charges. The optimization of the dielectric breakdown strength of a polycrystalline alumina sintered with a liquid phase passes necessarily through the control of the microstructural parameters. Thus, it is shown that by controlling the conditions of the process (rate of sintering aids, powder grain size and thermal cycle), it is possible to control the density (by the average grain size) but also the nature (by the crystallization or not of anorthite) of the grain boundaries. The study of the influence of these two parameters as well temperature on the properties of charge transport and storage was carried out by methods ICM and SEMME. The results, interpreted in light of the numerical simulation of the charge transport in bulk alumina sample during electron beam irradiation, allowed to highlight behaviors, and the corresponding microstructures, favourable to the dielectric breakdown resistance according to the considered temperature. Thus, at room temperature a high density of interfaces (low grain size and crystallized intergranular phase) makes it possible material to durably trap a great amount of charges, which leads to a high dielectric strength. On the other hand, at higher temperature, the presence of shallow traps (vitreous intergranular phase) supports the charge diffusion and makes it possible to delay breakdown. (author)

  16. Measurement of the forward charged particle pseudorapidity density in $pp$ collisions at $\\sqrt{s} = 7$ TeV with the TOTEM experiment.

    CERN Document Server

    Berretti, Mirko; Scribano, Angelo

    The TOTEM experiment at the LHC is dedicated to the precise measurement of the total $pp$ cross section, to the study of the elastic scattering and of the diffractive interactions. The TOTEM T2 telescope, composed of triple GEM chambers, provides the tracking of the charged particles produced by the inelastic $pp$ interactions in the pseudorapidity range 5.3$<$$|\\eta|$$<$6.5. In this thesis the offline procedures developed for the event reconstruction in the T2 telescope are reported. They include the tuning of the detector simulation, the track reconstruction algorithm and their characterisation in terms of physics performance. The detector alignment algorithms are also described and the uncertainties on the misalignment parameters are quantified. The thesis is then focused on the measurement of the charged particle pseudorapidity density ($dN_{ch}/d\\eta$) obtained in T2 for inelastic $pp$ collisions at $\\sqrt{s}=$ 7 TeV. This extends the analogous measurement performed by the other LHC experiments to...

  17. Charge Density Wave in the New Polymorphs of RE 2 Ru 3 Ge 5 ( RE = Pr, Sm, Dy)

    Energy Technology Data Exchange (ETDEWEB)

    Bugaris, Daniel E.; Malliakas, Christos D.; Han, Fei; Calta, Nicholas P.; Sturza, Mihai; Krogstad, Matthew J.; Osborn, Raymond; Rosenkranz, Stephan; Ruff, Jacob P. C.; Trimarchi, Giancarlo; Bud’ko, Sergey L.; Balasubramanian, Mahalingam; Chung, Duck Young; Kanatzidis, Mercouri G.

    2017-02-16

    A new polymorph of the RE2Ru3Ge5 (RE = Pr, Sm, Dy) compounds has been grown as single crystals via an indium flux. These compounds crystallize in tetragonal space group P4/mnc with the Sc2Fe3Si5-type structure, having lattice parameters a = 11.020(2) Å and c = 5.853(1) Å for RE = Pr, a = 10.982(2) Å and c = 5.777(1) Å for RE = Sm, and a = 10.927(2) Å and c = 5.697(1) Å for RE = Dy. These materials exhibit a structural transition at low temperature, which is attributed to an apparent charge density wave (CDW). Both the high-temperature average crystal structure and the low-temperature incommensurately modulated crystal structure (for Sm2Ru3Ge5 as a representative) have been solved. The charge density wave order is manifested by periodic distortions of the onedimensional zigzag Ge chains. From X-ray diffraction, charge transport (electrical resistivity, Hall effect, magnetoresistance), magnetic measurements, and heat capacity, the ordering temperatures (TCDW) observed in the Pr and Sm analogues are ~200 and ~175 K, respectively. The charge transport measurement results indicate an electronic state transition happening simultaneously with the CDW transition. X-ray absorption near-edge spectroscopy (XANES) and electronic band structure results are also reported.

  18. Charging Graphene for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  19. Development of high-current-density LAB6 thermionic emitters for a space-charge-limited electron gun

    International Nuclear Information System (INIS)

    Herniter, M.E.; Getty, W.D.

    1987-01-01

    An electron gun has been developed for investigation of high current density, space charge limited operation of a lenthanum hexaboride (LaB 6 ) thermionic cathode. The 2.8 cm 2 cathode disk is heated by electron bombardment from a tungsten filament. For LaB 6 cathode temperatures greater than 1600 0 C it has been found that evaporation from the LaB 6 causes an increase in the tungsten filament emission, leading to an instability in the bombardment heating system. This instability has been investigated and eliminated by using a graphite disk in place of the LaB 6 cathode or by shielding the filament from the LaB 6 cathode by placing the LaB 6 in a graphite cup and bombarding the cup. The graphite disk has been heated to 1755 0 C with 755 W of heating power, and the shielded LaB 6 cathode has been heated to 1695 0 C. This temperature range is required for emission current densities in the 30 Acm 2 range. It is believed that the evaporation of lanthanum lowers the tungsten work function. In electron-gun use, the LaB 6 cathode has been operated up to 6.7 Acm 2 at 36 kV. A 120 kV Marx generator has been built to allow operation up to 40 Acm 2

  20. Ab initio study of charge transfer between lithium and aromatic hydrocarbons. Can the results be directly transferred to the lithium-graphene interaction?

    Science.gov (United States)

    Sadlej-Sosnowska, N

    2014-08-28

    We have used electronic density calculations to study neutral complexes of Li with aromatic hydrocarbons. The charge transferred between a Li atom and benzene, coronene, circumcoronene, and circumcircumcoronene has been studied by ab initio methods (at the HF and MP2 level). Toward this aim, the method of integrating electron density in two cuboid fragments of space was applied. One of the fragments was constructed so that it enclosed the bulk of the electron density of lithium; the second, the bulk of the electron density of hydrocarbon. It was found that for each complex two conformations were identified: the most stable with a greater vertical Li-hydrocarbon distance, on the order of 2.5 Å, and another of higher energy with a corresponding distance less than 2 Å. In all cases the transfer of a fractional number, 0.1-0.3 electrons, between Li and hydrocarbon was found; however, the direction of the transfer was not the same in all complexes investigated. The structures of complexes of the first configuration could be represented as Li(σ-)···AH(σ+), whereas the opposite direction of charge transfer was found for complexes of the second configuration, with higher energy. The directions of the dipole moments in the complexes supported these conclusions because they directly measure the redistribution of electron density in a complex with respect to substrates.