WorldWideScience

Sample records for higher cell seeding

  1. Improved endothelial cell seeding with cultured cells and fibronectin-coated grafts

    International Nuclear Information System (INIS)

    Seeger, J.M.; Klingman, N.

    1985-01-01

    A possible approach to the low seeding efficiency of endothelial cells into prosthetic grafts is to increase the number of cells to be seeded in cell culture and improve seeding efficiency by graft precoating with fibronectin. The effect of cell culture on cell adhesion is unknown, however, and fibronectin also binds fibrin, which may increase the thrombogenicity of the graft luminal surface. To investigate these questions, freshly harvested canine jugular vein endothelial cells from six animals and similar cells harvested from six primary and eight secondary cell cultures were labeled with 111 Indium and seeded into 5 cm, 4 mm PTFE grafts coated with fibronectin, using similar uncoated PTFE grafts as controls. Platelet accumulation and distribution on six similar coated and uncoated grafts placed in canine carotid, external jugular arterial venous shunts for 2 hr were also determined using autogenous 111 Indium-labeled platelets. Significant differences between group means were determined using the paired Student's t test. Results reveal that seeding efficiency is significantly better in all groups of coated grafts compared to uncoated grafts (P less than 0.01). Cells derived from cell culture also had significantly higher seeding efficiencies than freshly harvested cells when seeded into coated grafts (P less than 0.05) and tended to have higher seeding efficiencies than harvested cells when seeded into uncoated grafts (P = 0.53). Fibronectin coating increased mean platelet accumulation on the entire graft luminal surface, but not to a statistically significant degree (P greater than 0.1). Whether this increased seeding efficiency will improve graft endothelialization remains to be investigated

  2. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P R Anil [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Varma, H K [Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Kumary, T V [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India)

    2007-03-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  3. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Kumar, P R Anil; Varma, H K; Kumary, T V

    2007-01-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function

  4. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Shimizu, Kazunori; Ito, Akira; Honda, Hiroyuki

    2007-09-01

    Bone tissue engineering has been investigated as an alternative strategy for autograft transplantation. In the process of tissue engineering, cell seeding into three-dimensional (3-D) scaffolds is the first step for constructing 3-D tissues. We have proposed a methodology of cell seeding into 3-D porous scaffolds using magnetic force and magnetite nanoparticles, which we term Mag-seeding. In this study, we applied this Mag-seeding technique to bone tissue engineering using bone marrow stromal cells (BMSCs) and 3-D hydroxyapatite (HA) scaffolds. BMSCs were magnetically labeled with our original magnetite cationic liposomes (MCLs) having a positive surface charge to improve adsorption to cell surface. Magnetically labeled BMSCs were seeded onto a scaffold, and a 1-T magnet was placed under the scaffold. By using Mag-seeding, the cells were successfully seeded into the internal space of scaffolds with a high cell density. The cell seeding efficiency into HA scaffolds by Mag-seeding was approximately threefold larger than that by static-seeding (conventional method, without a magnet). After a 14-d cultivation period using the osteogenic induction medium by Mag-seeding, the level of two representative osteogenic markers (alkaline phosphatase and osteocalcin) were significantly higher than those by static-seeding. These results indicated that Mag-seeding of BMSCs into HA scaffolds is an effective approach to bone tissue engineering.

  5. Static versus vacuum cell seeding on high and low porosity ceramic scaffolds

    NARCIS (Netherlands)

    Buizer, Arina T.; Veldhuizen, Albert G.; Bulstra, Sjoerd K.; Kuijer, Roelof

    An adequate cell seeding technique is essential for effective bone regeneration on cell seeded constructs of porous tricalcium phosphates. In previous studies, dynamic cell seeding, in which an external force is applied to seed cells on a biomaterial, resulted in more homogeneous cell seeding in low

  6. Invasive acacias experience higher ant seed removal rates at the invasion edges

    Directory of Open Access Journals (Sweden)

    D. Montesinos

    2012-06-01

    Full Text Available Seed dispersal is a key process for the invasion of new areas by exotic species. Introduced plants often take advantage of native generalist dispersers. Australian acacias are primarily dispersed by ants in their native range and produce seeds bearing a protein and lipid rich reward for ant mutualists (elaiosome. Nevertheless, the role of myrmecochory in the expansion of Australian acacias in European invaded areas is still not clear. We selected one European population of Acacia dealbata and another of A. longifolia and offered elaiosome-bearing and elaiosome-removed seeds to local ant communities. For each species, seeds were offered both in high-density acacia stands and in low-density invasion edges. For both acacia species, seed removal was significantly higher at the low-density edges. For A. longifolia, manual elimination of elaiosomes reduced the chance of seed removal by 80% in the low-density edges, whereas it made no difference on the high-density stands. For A. dealbata, the absence of elaiosome reduced seed removal rate by 52%, independently of the acacia density. Our data suggests that invasive acacias have found effective ant seed dispersers in Europe and that the importance of such dispersers is higher at the invasion edges.

  7. Ectopic bone formation in bone marrow stem cell seeded calcium phosphate scaffolds as compared to autograft and (cell seeded allograft

    Directory of Open Access Journals (Sweden)

    J O Eniwumide

    2007-08-01

    Full Text Available Improvements to current therapeutic strategies are needed for the treatment of skeletal defects. Bone tissue engineering offers potential advantages to these strategies. In this study, ectopic bone formation in a range of scaffolds was assessed. Vital autograft and devitalised allograft served as controls and the experimental groups comprised autologous bone marrow derived stem cell seeded allograft, biphasic calcium phosphate (BCP and tricalcium phosphate (TCP, respectively. All implants were implanted in the back muscle of adult Dutch milk goats for 12 weeks. Micro-computed tomography (µCT analysis and histomorphometry was performed to evaluate and quantify ectopic bone formation. In good agreement, both µCT and histomorphometric analysis demonstrated a significant increase in bone formation by cell-seeded calcium phosphate scaffolds as compared to the autograft, allograft and cell-seeded allograft implants. An extensive resorption of the autograft, allograft and cell-seeded allograft implants was observed by histology and confirmed by histomorphometry. Cell-seeded TCP implants also showed distinct signs of degradation with histomorphometry and µCT, while the degradation of the cell-seeded BCP implants was negligible. These results indicate that cell-seeded calcium phosphate scaffolds are superior to autograft, allograft or cell-seeded allograft in terms of bone formation at ectopic implantation sites. In addition, the usefulness of µCT for the efficient and non-destructive analysis of mineralised bone and calcium phosphate scaffold was demonstrated.

  8. Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine.

    Science.gov (United States)

    Song, Shikui; Hou, Wensheng; Godo, Itamar; Wu, Cunxiang; Yu, Yang; Matityahu, Ifat; Hacham, Yael; Sun, Shi; Han, Tianfu; Amir, Rachel

    2013-04-01

    Soybean seeds provide an excellent source of protein for human and livestock nutrition. However, their nutritional quality is hampered by a low concentration of the essential sulfur amino acid, methionine (Met). In order to study factors that regulate Met synthesis in soybean seeds, this study used the Met-insensitive form of Arabidopsis cystathionine γ-synthase (AtD-CGS), which is the first committed enzyme of Met biosynthesis. This gene was expressed under the control of a seed-specific promoter, legumin B4, and used to transform the soybean cultivar Zigongdongdou (ZD). In three transgenic lines that exhibited the highest expression level of AtD-CGS, the level of soluble Met increased significantly in developing green seeds (3.8-7-fold). These seeds also showed high levels of other amino acids. This phenomenon was more prominent in two transgenic lines, ZD24 and ZD91. The total Met content, which including Met incorporated into proteins, significantly increased in the mature dry seeds of these two transgenic lines by 1.8- and 2.3-fold, respectively. This elevation was accompanied by a higher content of other protein-incorporated amino acids, which led to significantly higher total protein content in the seeds of these two lines. However, in a third transgenic line, ZD01, the level of total Met and the level of other amino acids did not increase significantly in the mature dry seeds. This line also showed no significant change in protein levels. This suggests a positive connection between high Met content and the synthesis of other amino acids that enable the synthesis of more seed proteins.

  9. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    Science.gov (United States)

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  10. Endothelial cell seeding on crosslinked collagen : Effects of crosslinking on endothelial cell proliferation and functional parameters

    NARCIS (Netherlands)

    Wissink, MJB; van Luyn, MJA; Dijk, F; Poot, AA; Engbers, GHM; Beugeling, T; van Aken, WG; Feijen, J

    Endothelial cell seeding, a promising method to improve the performance of small-diameter vascular grafts, requires a suitable substrate, such as crosslinked collagen. Commonly used crosslinking agents such as glutaraldehyde and formaldehyde cause, however, cytotoxic reactions and thereby hamper

  11. Development of a cell-seeded modified small intestinal submucosa for urethroplasty

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-03-01

    Conclusions: A modified 3D porous SIS scaffold seeded with UC and treated with PAA produces better urethroplasty results than cell-seeded untreated SIS scaffolds, or unseeded PAA treated SIS scaffolds.

  12. seeds

    African Journals Online (AJOL)

    Owner

    peptidohydrolase (8.0%) from mung bean seedlings. (Baumgartner and Chrispeels, 1977), EP-HG (4.5%) from horse gram seedlings ( Rajeswari, 1997), acidic protease (15%) from germinating winged-bean seeds. (Usha and Singh, 1996) and EP-1 (1.6%) from barley seedlings and GA3-induced cysteine protease (3.38%).

  13. Comparison of Cuminaldehyde Contents from Cell Suspension Cultures and Seeds of [Bunium persicum (Boiss. B. Fedtsch.

    Directory of Open Access Journals (Sweden)

    Sara KHOSRAVINIA

    2012-11-01

    Full Text Available The cell suspension culture and seed samples of Bunium persicum were extracted by supercritical fluid, hydrodistillation and solvent methods and analyzed by Gas Chromatography. In this study to compare the different methods of extractions, cuminaldehyde was targeted as one of the Black zira essential oil constitute. For callus induction the germinated seeds were cultured as explants on Murashige and Skoog medium supplemented with 2 mg/l 2,4-dichlorophenoxy acetic acid and 0.5 mg/l kinetin (treatment A as well as 2 mg/l ?-naphthalene acetic acid and 0.5 mg/l 6-benzyl aminopurine (treatment B and followed by cells suspension cultures establishment for the first time. The results of cell culture showed that cells from treatment B have a growth rate higher than A. All extracts were dissolved in 1 ml hexane and analyzed by Gas Chromatography. According to the Gas Chromatography analysis, cuminaldehyde was not detected in the supercritical fluid samples, while it was present in hydrodistillation and solvent extract. Cuminaldehyde percentage in cell and seed solvent extracts was 4.65% and 18.61% respectively. Gas Chromatography results also showed that no cuminaldehyde is present in media extracts, means no cuminaldehyde has been secreted into the medium.

  14. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle.

    Science.gov (United States)

    De Micco, V; De Pascale, S; Paradiso, R; Aronne, G

    2014-01-01

    Human inhabitation of Space requires the efficient realisation of crop cultivation in bioregenerative life-support systems (BLSS). It is well known that plants can grow under Space conditions; however, perturbations of many biological phenomena have been highlighted due to the effect of altered gravity and its possible interactions with other factors. The mechanisms priming plant responses to Space factors, as well as the consequences of such alterations on crop productivity, have not been completely elucidated. These perturbations can occur at different stages of plant life and are potentially responsible for failure of the completion of the seed-to-seed cycle. After brief consideration of the main constraints found in the most recent experiments aiming to produce seeds in Space, we focus on two developmental phases in which the plant life cycle can be interrupted more easily than in others also on Earth. The first regards seedling development and establishment; we discuss reasons for slow development at the seedling stage that often occurs under microgravity conditions and can reduce successful establishment. The second stage comprises gametogenesis and pollination; we focus on male gamete formation, also identifying potential constraints to subsequent fertilisation. We finally highlight how similar alterations at cytological level can not only be common to different processes occurring at different life stages, but can be primed by different stress factors; such alterations can be interpreted within the model of 'stress-induced morphogenic response' (SIMR). We conclude by suggesting that a systematic analysis of all growth and reproductive phases during the plant life cycle is needed to optimise resource use in plant-based BLSS. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  17. Higher seed size and germination rate may favour autotetraploids of Vicia cracca L. (Fabaceae)

    Czech Academy of Sciences Publication Activity Database

    Eliášová, A.; Münzbergová, Zuzana

    2014-01-01

    Roč. 113, č. 1 (2014), s. 57-73 ISSN 0024-4066 Institutional support: RVO:67985939 Keywords : Vicia * autotetraploid * seed size * germination Subject RIV: EF - Botanics Impact factor: 2.264, year: 2014

  18. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    Science.gov (United States)

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  19. Bystander effects of exposure to low-dose-rate 125I seeds on human lung cancers cells in vitro

    International Nuclear Information System (INIS)

    Jia Rongfei; Chen Honghong; Yu Lei; Zhao Meijia; Shao Chunlin; Cheng Wenying

    2007-01-01

    The bystander effects induced by continuous low-dose-rate (LDR) 125 I seeds radiation on damage of human lung cancer cells were investigated. Human adenocarcinoma cell line A549 and human small cell lung cancer cell line NCI-H446, which have different sensitivities to high-dose rate (HDR) external irradiation, were exposed directly to 125 I seeds in vitro and co-cultured with unirradiated cells for 24 h. Using cytokinesis-blocking micronucleus method and γ H2AX fluorescence immunoassay, bystander effects induced by 2Gy and 4Gy 125 I seed irradiation on micronucleus formation and DNA double-strand breaks (DSBs) of human lung cancer cells were detected and evaluated. The results showed that irradiation with 125 I seeds can induce medium-mediated bystander effects in A549 cells and NCI-H446 cells, exhibiting that both micronuclei formation and γ H2AX focus formation in bystander cells were increased significantly compared with non-irradiated cells. The extent of DNA damage induced by bystander effects was correlated with accumulated radiation dose and radiosensitive of tumor cells. NCI-H446 cells that were sensitive to HDR γ irradiation were more sensitive to continuous LDR irradiation and bystander effects than A549. However, a comparison between the bystander effects and direct effects elicits the intensity of bystander responses of A549 cells was higher than that of NCI-H446 cells. A dose-related reduction in bystander responses was observed both in A549 cells and NCI-H446 cells, suggesting that the signaling factors involved in the bystander signaling pathways may decrease with the increase of cell damages. (authors)

  20. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs.

    LENUS (Irish Health Repository)

    Lyons, Frank G

    2010-12-01

    One of the key challenges in tissue engineering is to understand the host response to scaffolds and engineered constructs. We present a study in which two collagen-based scaffolds developed for bone repair: a collagen-glycosaminoglycan (CG) and biomimetic collagen-calcium phosphate (CCP) scaffold, are evaluated in rat cranial defects, both cell-free and when cultured with MSCs prior to implantation. The results demonstrate that both cell-free scaffolds showed excellent healing relative to the empty defect controls and somewhat surprisingly, to the tissue engineered (MSC-seeded) constructs. Immunological analysis of the healing response showed higher M1 macrophage activity in the cell-seeded scaffolds. However, when the M2 macrophage response was analysed, both groups (MSC-seeded and non-seeded scaffolds) showed significant activity of these cells which are associated with an immunomodulatory and tissue remodelling response. Interestingly, the location of this response was confined to the construct periphery, where a capsule had formed, in the MSC-seeded groups as opposed to areas of new bone formation in the non-seeded groups. This suggests that matrix deposited by MSCs during in vitro culture may adversely affect healing by acting as a barrier to macrophage-led remodelling when implanted in vivo. This study thus improves our understanding of host response in bone tissue engineering.

  1. Plated copper front side metallization on printed seed-layers for silicon solar cells

    OpenAIRE

    Kraft, Achim

    2015-01-01

    A novel copper front side metallization architecture for silicon solar cells based on a fine printed silver seed-layer, plated with nickel, copper and silver, is investigated. The work focuses on the printing of fine seed-layers with low silver consumption, the corrosion of the printed seed-layers by the interaction with electrolyte solutions and the encapsulation material on module level and on the long term stability of the cells due to copper migration. The investigation of the correlation...

  2. Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs

    Directory of Open Access Journals (Sweden)

    Sarah L. Tao

    2010-03-01

    Full Text Available One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.

  3. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells

    Directory of Open Access Journals (Sweden)

    Harpa Marius Mihai

    2015-12-01

    Full Text Available Background: We hypothesized that an ideal heart valve replacement would be acellular valve root scaffolds seeded with autologous stem cells. To test this hypothesis, we prepared porcine acellular pulmonary valves, seeded them with autologous adipose derived stem cells (ADSCs and implanted them in sheep and compared them to acellular valves.

  4. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli Cells Artificially Internalized into Vegetable Seeds during Germination.

    Science.gov (United States)

    Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru

    2018-01-01

    Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important

  5. Model-based strategy for cell culture seed train layout verified at lab scale.

    Science.gov (United States)

    Kern, Simon; Platas-Barradas, Oscar; Pörtner, Ralf; Frahm, Björn

    2016-08-01

    Cell culture seed trains-the generation of a sufficient viable cell number for the inoculation of the production scale bioreactor, starting from incubator scale-are time- and cost-intensive. Accordingly, a seed train offers potential for optimization regarding its layout and the corresponding proceedings. A tool has been developed to determine the optimal points in time for cell passaging from one scale into the next and it has been applied to two different cell lines at lab scale, AGE1.HN AAT and CHO-K1. For evaluation, experimental seed train realization has been evaluated in comparison to its layout. In case of the AGE1.HN AAT cell line, the results have also been compared to the formerly manually designed seed train. The tool provides the same seed train layout based on the data of only two batches.

  6. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells.

    Science.gov (United States)

    Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E; Du, Jiang; Jin, Sungho; Grogan, Shawn P; D'Lima, Darryl D

    2016-03-01

    The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling "longitudinal tears" were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears.

  7. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    Science.gov (United States)

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  8. A functional analysis of cell cycle events in developing and germinating tomato seeds

    NARCIS (Netherlands)

    Castro, de R.D.

    1998-01-01

    Seeds are complex biological structures and the primary dispersal units of higher plants. They consist of nutrient reserve storage tissue(s), an embryo and encapsulating structures designated for protection and that may also regulate germination. Seeds have developed mechanisms of

  9. Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering.

    Science.gov (United States)

    Diao, Yinze; Ma, Qingjun; Cui, Fuzhai; Zhong, Yanfeng

    2009-10-01

    Mesenchymal stem cells (MSCs) are ideal seed cells for bone tissue engineering. However, intrinsic deficiencies exist for the autologous transplantation strategy of constructing artificial bone with MSCs derived from bone marrow of patients. In this study, MSCs-like cells were isolated from human umbilical cords and were expanded in vitro. Flow cytometric analysis revealed that cells from the fourth passage were positive for CD29, CD44, CD71, CD73, CD90, and CD105 whereas they were negative for CD14, CD34, CD45, and CD117. Furthermore, these cells expressed HLA-A, B, C (MHC-I), but not HLA-DP, DQ, DR (MHC-II), or costimulatory molecules such as CD80 and CD86. Following incubation in specific inductive media for 3 weeks, cultured cells were shown to possess potential to differentiate into adipogenic, osteogenic or chondrogenic lineages in vitro. The umbilical cord-derived MSCs (UC-MSCs) were loaded with a biomimetic artificial bone scaffold material before being implanted subcutaneously in the back of Balb/c nude mice for four to twelve weeks. Our results revealed that UC-MSCs loaded with the scaffold displayed capacity of osteogenic differentiation leading to osteogenesis with human origin in vivo. As a readily available source of seed cells for bone tissue engineering, UC-MSCs should have broad application prospects.

  10. Bystander Effects Induced by Continuous Low-Dose-Rate 125I Seeds Potentiate the Killing Action of Irradiation on Human Lung Cancer Cells In Vitro

    International Nuclear Information System (INIS)

    Chen, H.H.; Jia, R.F.; Yu, L.; Zhao, M.J.; Shao, C.L.; Cheng, W.Y.

    2008-01-01

    Purpose: To investigate bystander effects of low-dose-rate (LDR) 125 I seed irradiation on human lung cancer cells in vitro. Methods and Materials: A549 and NCI-H446 cell lines of differing radiosensitivity were directly exposed to LDR 125 I seeds irradiation for 2 or 4 Gy and then cocultured with nonirradiated cells for 24 hours. Induction of micronucleus (MN), γH2AX foci, and apoptosis were assayed. Results: After 2 and 4 Gy irradiation, micronucleus formation rate (MFR) and apoptotic rate of A549 and NCI-H446 cells were increased, and the MFR and apoptotic rate of NCI-H446 cells was 2.1-2.8 times higher than that of A549 cells. After coculturing nonirradiated bystander cells with 125 I seed irradiated cells for 24 hours, MFR and the mean number of γH2AX foci/cells of bystander A549 and NCI-H446 cells were similar and significantly higher than those of control (p 125 I seeds could induce bystander effects, which potentiate the killing action on tumor cells and compensate for the influence of nonuniform distribution of radiation dosage on therapeutic outcomes

  11. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds

    Directory of Open Access Journals (Sweden)

    Zhenguo Ma

    2017-12-01

    Full Text Available During germination of barley (Hordeum vulgare L. seeds, important morphological and physiological changes take place, including development of organs and tissues and activation of metabolic pathways. Germination and dormancy of seeds are regulated by abscisic acid, gibberellins, reactive oxygen species (ROS, reactive nitrogen species (RNS and several other factors. Activities of ascorbate–glutathione cycle enzymes, responsible for scavenging ROS, strongly increase. Catalase and superoxide dismutase activities, also scavenging ROS, decrease at the onset of seed germination and then increase. With the increase in aerobic metabolism after radicle protrusion, the activities of the fermentation enzymes lactate and alcohol dehydrogenase decline rapidly. The RNS-scavenging activity of S-nitrosoglutathione reductase decreases in the course of seed germination, in concert with elevation of nitric oxide production and protein nitrosylation. This activity supports the role of RNS in regulating seed germination. Transcription of various genes at different phases of seed germination exhibits phase-specific changes. During imbibition, genes involved in cell wall metabolism are highly expressed; in the middle phase of seed germination before radicle protrusion, genes involved in amino acid synthesis, protein synthesis, and transport and nucleic acid synthesis are upregulated significantly, and after radicle protrusion, genes involved in photosynthetic metabolism are induced. In summary, signal transduction and metabolic regulation of seed germination involve diverse reactions and complex regulation at different levels of metabolic organization. Keywords: Seed germination, Reactive oxygen species, Reactive nitrogen species, Signal transduction, Gene expression

  12. Effects of cell-to-collagen ratio in stem cell-seeded constructs for Achilles tendon repair.

    Science.gov (United States)

    Juncosa-Melvin, Natalia; Boivin, Gregory P; Galloway, Marc T; Gooch, Cindi; West, John R; Butler, David L

    2006-04-01

    The objective of the present study was to test the hypotheses that implantation of cell-seeded constructs in a rabbit Achilles tendon defect model would 1) improve repair biomechanics and matrix organization and 2) result in higher failure forces than measured in vivo forces in normal rabbit Achilles tendon (AT) during an inclined hopping activity. Autogenous tissue-engineered constructs were fabricated in culture between posts in the wells of silicone dishes at four cell-to-collagen ratios by seeding mesenchymal stem cells (MSC) from 18 adult rabbits at each of two seeding densities (0.1 x 10(6) and 1 x 10(6) cell/mL) in each of two collagen concentrations (1.3 and 2.6 mg/mL). After 5 days of contraction, constructs having the two highest ratios (0.4 and 0.8 M/mg) were damaged by excessive cell traction forces and could not be used in subsequent in vivo studies. Constructs at the lower ratios (0.04 and 0.08 M/mg) were implanted in bilateral, 2 cm long gap defects in the rabbit's lateral Achilles tendon. At 12 weeks after surgery, both repair tissues were isolated and either failed in tension (n = 13) to determine their biomechanical properties or submitted for histological analysis (n = 5). No significant differences were observed in any structural or mechanical properties or in histological appearance between the two repair conditions. However, the average maximum force and maximum stress of these repairs achieved 50 and 85% of corresponding values for the normal AT and exceeded the largest peak in vivo forces (19% of failure) previously recorded in the rabbit AT. Average stiffness and modulus were 60 and 85% of normal values, respectively. New constructs with lower cell densities and higher scaffold stiffness that do not excessively contract and tear in culture and that further improve the repair stiffness needed to withstand various levels of expected in vivo loading are currently being investigated.

  13. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Elodie Angot

    Full Text Available Several people with Parkinson's disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10-22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology.

  14. Cranberry and Grape Seed Extracts Inhibit the Proliferative Phenotype of Oral Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Kourt Chatelain

    2011-01-01

    Full Text Available Proanthocyanidins, compounds highly concentrated in dietary fruits, such as cranberries and grapes, demonstrate significant cancer prevention potential against many types of cancer. The objective of this study was to evaluate cranberry and grape seed extracts to quantitate and compare their anti-proliferative effects on the most common type of oral cancer, oral squamous cell carcinoma. Using two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC25, assays were performed to evaluate the effects of cranberry and grape seed extract on phenotypic behaviors of these oral cancers. The proliferation of both oral cancer cell lines was significantly inhibited by the administration of cranberry and grape seed extracts, in a dose-dependent manner. In addition, key regulators of apoptosis, caspase-2 and caspase-8, were concomitantly up-regulated by these treatments. However, cranberry and grape seed extracts elicited differential effects on cell adhesion, cell morphology, and cell cycle regulatory pathways. This study represents one of the first comparative investigations of cranberry and grape seed extracts and their anti-proliferative effects on oral cancers. Previous findings using purified proanthocyanidin from grape seed extract demonstrated more prominent growth inhibition, as well as apoptosis-inducing, properties on CAL27 cells. These observations provide evidence that cranberry and grape seed extracts not only inhibit oral cancer proliferation but also that the mechanism of this inhibition may function by triggering key apoptotic regulators in these cell lines. This information will be of benefit to researchers interested in elucidating which dietary components are central to mechanisms involved in the mediation of oral carcinogenesis and progression.

  15. Bone marrow cells other than stem cells seed the bone marrow after rescue transfusion of fatally irradiated mice

    International Nuclear Information System (INIS)

    Cronkite, E.P.; Inoue, T.; Bullis, J.E.

    1987-01-01

    In a previous publication, iodinated deoxyuridine ( 125 IUdR) incorporation data were interpreted as indicating that spleen colony-forming units (CFU-S) in DNA synthesis preferentially seeded bone marrow. In the present studies, the CFU-S content of marrow from irradiated, bone-marrow transfused mice was directly determined. Pretreatment of the transfused cells with cytocidal tritiated thymidine resulted in an insignificant diminution in CFU-S content when compared with nontritiated thymidine pretreatment, implying that there is no preferential seeding. The 125 IUdR incorporation data have been reinterpreted as being a result of the proliferation of other progenitor cells present that have seeded the bone marrow

  16. The Seeds of Discontent: Examining Youth Perceptions of Higher Education in Syria

    Science.gov (United States)

    Buckner, Elizabeth

    2013-01-01

    This article examines young Syrians' perceptions of higher education after the 2001 reforms, which expanded access to higher education and permitted the establishment of private universities. Data come from in-depth interviews conducted with 22 Syrians residing in Damascus, aged 18-32 in 2009. Analysis indicates youth are critical of the higher…

  17. Behavior of Jatropha curcas L. seeds under osmotic stress: germination and cell cycle activity

    Directory of Open Access Journals (Sweden)

    Cristiane Dantas de Brito

    2015-08-01

    Full Text Available Jatropha curcas is an oil-rich Euphorbiaceae seed species renowned for its apparent tolerance to environmental stresses. It is considered a promising source of renewable feedstock for biodiesel production in the Brazilian semiarid region where crop establishment requires a better understanding of the mechanisms leading to proper seed and plant behavior under water restrictive conditions. This study describes physiological and cytological profiles of J. curcas seeds imbibed in water restriction conditions by means of osmotic stress or osmoconditioning. Seeds were characterized by size, weight, moisture content and dry mass, germinability, and cell cycle activation by means of tubulin and microtubule cytoskeleton accumulation. Osmoconditioning at -0.8 MPa did not induce priming effects as it did not improve the physiological quality of the seed lots. Western blotting and immunocytochemical analysis revealed an increasing accumulation of tubulin and microtubule cytoskeleton in seeds imbibed in water for 48h onwards, culminating in the onset of mitotic configurations after germination. Only cortical microtubules were observed during seed osmoconditioning, whereas mitotic microtubules only occurred after re-imbibition of osmoconditioned seeds in water and subsequent germination.

  18. In vitro model for human endothelial cell seeding of a small diameter vascular graft

    International Nuclear Information System (INIS)

    Kent, K.C.; Oshima, A.; Ikemoto, T.; Whittemore, A.D.

    1988-01-01

    A precise system was devised to measure the kinetics of attachment of human venous endothelium to a variety of materials and substrates. Cells were labelled in a postconfluent state with tritiated thymidine, harvested, and a cell suspension seeded into a 4 mm PTFE graft. After a 90 minute incubation period, one half of the graft segment was sacrificed and the remaining portion placed in a perfusion system (225 cc/min) for 1 hour. Graft segments, effluents, and seeding suspension were assayed in a beta scintillation counter. The percentage of cells that attached pre- and postperfusion were determined, as well as the retrieval of tritium from the system. Initially, 71% of seeded cells attached to grafts coated with fibronectin, with significantly less (60%) remaining attached after perfusion. Only 10% of cells initially attached to uncoated grafts, with 4% retained postperfusion. Retrieval of tritium averaged 102 +/- 10% for all experiments. This system determines both pre- and postperfusion attachment of human endothelial cells to vascular grafts following manipulation of numerous variables, including graft material, substrate, incubation time, and seeding density. An optimal seeding protocol for human trials can thus be determined

  19. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    Science.gov (United States)

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  20. Two bee-pollinated plant species show higher seed production when grown in gardens compared to arable farmland.

    Directory of Open Access Journals (Sweden)

    John Cussans

    2010-07-01

    Full Text Available Insect pollinator abundance, in particular that of bees, has been shown to be high where there is a super-abundance of floral resources; for example in association with mass-flowering crops and also in gardens where flowering plants are often densely planted. Since land management affects pollinator numbers, it is also likely to affect the resultant pollination of plants growing in these habitats. We hypothesised that the seed or fruit set of two plant species, typically pollinated by bumblebees and/or honeybees might respond in one of two ways: 1 pollination success could be reduced when growing in a floriferous environment, via competition for pollinators, or 2 pollination success could be enhanced because of increased pollinator abundance in the vicinity.We compared the pollination success of experimental plants of Glechoma hederacea L. and Lotus corniculatus L. growing in gardens and arable farmland. On the farms, the plants were placed either next to a mass-flowering crop (oilseed rape, Brassica napus L. or field beans, Vicia faba L. or next to a cereal crop (wheat, Triticum spp.. Seed set of G. hederacea and fruit set of L. corniculatus were significantly higher in gardens compared to arable farmland. There was no significant difference in pollination success of G. hederacea when grown next to different crops, but for L. corniculatus, fruit set was higher in the plants growing next to oilseed rape when the crop was in flower.The results show that pollination services can limit fruit set of wild plants in arable farmland, but there is some evidence that the presence of a flowering crop can facilitate their pollination (depending on species and season. We have also demonstrated that gardens are not only beneficial to pollinators, but also to the process of pollination.

  1. DISE: A Seed-Dependent RNAi Off-Target Effect That Kills Cancer Cells.

    Science.gov (United States)

    Putzbach, William; Gao, Quan Q; Patel, Monal; Haluck-Kangas, Ashley; Murmann, Andrea E; Peter, Marcus E

    2018-01-01

    Off-target effects (OTEs) represent a significant caveat for RNAi caused by substantial complementarity between siRNAs and unintended mRNAs. We now discuss the existence of three types of seed-dependent OTEs (sOTEs). Type I involves unintended targeting through the guide strand seed of an siRNA. Type II is caused by the activity of the seed on the designated siRNA passenger strand when loaded into the RNA-induced silencing complex (RISC). Both type I and II sOTEs will elicit unpredictable cellular responses. By contrast, in sOTE type III the guide strand seed preferentially targets essential survival genes resulting in death induced by survival gene elimination (DISE). In this Opinion article, we discuss DISE as a consequence of RNAi that may preferentially affect cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effect of 125I seeds and 103Pd stents on proliferation of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zhu Jun; Zhu Ruisen

    2004-01-01

    To establish the theoretical and practical base for implementing radioactive stents aft PTCA in order to prevent restenosis, in vitro observation was taken over the effects of 12 '5I-seeds and 103 Pd-implanted stents on the vascular smooth muscle cell (VSMC) proliferation. In vitro VSMC model from guinea-pig aortic arteries was established using adherent cell culture methods. The effects of 125 I-seeds and 103 Pd-implanted stents on the VSMC proliferation, with or without fetal bovine serum (FCS), were investigated through cell counting methods and 3 H-TDR implementation tests. It was shown that (1) 10% FCS significantly promoted the DNA synthesis of VSMC (P 125 I-seeds and 103 Pd-implanted stents inhibited the VSMC DNA synthesis in dose-dependent manner, regardless of 10% FCS inducement. At lower radioactive doses, neither 125 I-seeds (18.5-74 kBq) nor 103 Pd-implanted stents (1.48-2.96 MBq) exhibited distinctive effects on the VSMC DNA synthesis (P>0.05); and (3) 48 hour exposure from 125 I-seeds at 128 kBq or 10 '3Pd-implanted stents at 7.4 MBq did not result in VSMC morphological alteration, but 125 I-seeds at 370 kBq caused cells' morphological changes. Therefore both 125 I-seeds and 103 Pd-implanted stents inhibit the in vitro VSMC DNA synthesis, and the inhibition effects are significantly related to their exposure duration and doses. (authors)

  3. The durative use of suspension cells and callus for volatile oil by comparative with seeds and fruits in Capparis spinosa L.

    Directory of Open Access Journals (Sweden)

    Yongtai Yin

    Full Text Available Capparis spinosa is one of the most important eremophytes among the medicinal plants, and continued destruction of these plants poses a major threat to species survival. The development of methods to extract compounds, especially those of medicinal value, without harvesting the whole plant is an issue of considerable socioeconomic importance. On the basis of an established system for culture of suspension cells and callus in vitro, Gas Chromatograph-Mass Spectrometer (GC-MS was used for the volatile oil composition analyzing in seed, fruit, suspension cells and callus. Fatty acids were the major component, and the highest content of alkanes was detected in seed, with <1.0% in suspension cells and callus. Esters, olefins and heterocyclic compounds were significantly higher in fruit than in the other materials. The content of acid esters in the suspension cells and callus was significantly higher than in seed and fruit. This indicated that the suspension cells and callus could be helpful for increasing the value of volatile oil and replacing seeds and fruit partially as a source of some compounds of the volatile oil and may also produce some new medical compounds. The above results give valuable information for sustainable use of C. spinosa and provide a foundation for use of the C. spinosa suspension cells and callus as an ongoing medical resource.

  4. Enhanced photovoltaic performance of ZnO nanorod-based dye-sensitized solar cells by using Ga doped ZnO seed layer

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Yuanyao [State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044 (China); Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 (China); Wu, Fang, E-mail: fang01234@163.com [State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044 (China); Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 (China); Mao, Caiying [Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 (China); Fang, Liang, E-mail: lfang@cqu.edu.cn [State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044 (China); Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 (China); Guo, Shengchun [Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 (China); Zhou, Miao [State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044 (China)

    2015-06-05

    Highlights: • ZnO nanorods were grown on Ga-doped ZnO seed layers using hydrothermal method. • Using the ZnO nanorods as photoanodes for fabricated dye-sensitized solar cells. • The highest η of 1.23% can be achieved in a DSSC with 3 at.% Ga-doped in seeds. • The effects of ZnO seed layers on electron transport properties were investigated. • The enhancement performance of DSSCs contributed to higher dye loading and η{sub cc}. - Abstract: Zinc oxide (ZnO) nanorod arrays were grown on FTO substrates with a Ga-doped ZnO (GZO) seed layer by a hydrothermal method. GZO seed layers were obtained via sol–gel technology with Ga concentration in the range of 0–4 at.%. The dye sensitized solar cells (DSSCs) using ZnO nanorod arrays as the photoanode layers were prepared. The effect of Ga dopant concentrations in ZnO seed layer on the morphology features of ZnO nanorod arrays and the performance of DSSCs were systematically investigated. Results indicate that the average diameter and density of ZnO nanorod arrays decrease with increasing Ga concentration, but their length shows an opposite trend. The photocurrent density–voltage (J–V) characteristics reveal that the DSSCs with GZO seed layer exhibit significantly improved photovoltaic performance. In particular, the highest energy conversion efficiency (η) of 1.23% can be achieved in a DSSC with 3 at.% Ga doping, which is increased by 86.36% compared with that of the undoped DSSC. The external quantum efficiency (EQE) spectra and electrochemical impedance spectroscopy (EIS) were employed to explore the photon-to-electron conversion process in DSSCs. It is demonstrated that the performance enhancement of DSSCs based on GZO seed layer can be attributed to higher amount of dye loading, more efficient electron transportation and better electrons collection efficiency.

  5. Cytotoxic Effects of Alcoholic Extract of Dorema Glabrum Seed on Cancerous Cells Viability

    Directory of Open Access Journals (Sweden)

    Maryam Bannazadeh Amirkhiz

    2013-08-01

    Full Text Available Purpose: In the present study cytotoxic effects of the alcoholic extract of Dorema Glabrum seed on viability of WEHI-164 cells, mouse Fibrosarcoma cell line and L929 normal cells were compared with the cytotoxic effects of Taxol (anticancer and apoptosis inducer drug. Methods: To find out the plant extract cytotoxic effects, MTT test and DNA fragmentation assay, the biochemical hallmark of apoptosis were performed on cultured and treated cells. Results: According to the findings the alcoholic extract of Dorema Glabrum seed can alter cells morphology and because of chromatin condensation and other changes they shrink and take a spherical shape, and lose their attachment too. So the plant extract inhibits cell growth albeit in a time and dose dependent manner and results in degradation of chromosomal DNA. Conclusion: Our data well established the anti-proliferative effect of methanolic extract of Dorema Glabrum seed and clearly showed that the plant extract can induce apoptosis and not necrosis in vitro, but the mechanism of its activities remained unknown. These results demonstrated that Dorema Glabrum seed might be a novel and attractive therapeutic candidate for tumor treatment in clinical practices.

  6. Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures.

    Science.gov (United States)

    Fernández-Pascual, E; Jiménez-Alfaro, B; Bueno, Á

    2017-01-01

    Seed germination traits in alpine grasslands are poorly understood, despite the sensitivity of these communities to climate change. We hypothesise that germination traits predict species occurrence along the alpine-subalpine elevation gradient. Phylogenetic comparative analyses were performed using fresh seeds of 22 species from alpine and subalpine grasslands (1600-2400 m) of the Cantabrian Mountains, Spain (43° N, 5° W). Laboratory experiments were conducted to characterise germinability, optimum germination temperature and effect of cold and warm stratification on dormancy breaking. Variability in these traits was reduced by phylogenetic principal component analysis (phyl.PCA). Phylogenetic generalised least squares regression (PGLS) was used to fit a model in which species average elevation was predicted from their position on the PCA axes. Most subalpine species germinated in snow-like conditions, whereas most alpine species needed accumulation of warm temperatures. Phylogenetic signal was low. PCA1 ordered species according to overall germinability, whilst PCA2 ordered them according to preference for warm or cold germination. PCA2 significantly predicted species occurrence in the alpine-subalpine gradient, as higher elevation species tended to have warmer germination preferences. Our results show that germination traits in high-mountain grasslands are closely linked to the alpine-subalpine gradient. Alpine species, especially those from stripped and wind-edge communities, prefer warmer germination niches, suggesting that summer emergence prevents frost damage during seedling establishment. In contrast, alpine snowfield and subalpine grassland plants have cold germination niches, indicating that winter emergence may occur under snow to avoid drought stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering

    OpenAIRE

    Wrobel, Sandra; Serra, Sofia Cristina; Samy, S. M.; Sousa, Nuno; Heimann, Claudia; Barwig, Christina; Grothe, Claudia; Salgado, A. J.; Talini, Kirsten Haastert

    2014-01-01

    Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)-immortalized, neonatal, and adult-as well as rat bone-marrow-derived mesenchymal stromal cells (BMSC...

  8. Evaluation of Posterolateral Lumbar Fusion in Sheep Using Mineral Scaffolds Seeded with Cultured Bone Marrow Cells

    Directory of Open Access Journals (Sweden)

    María D. Cuenca-López

    2014-12-01

    Full Text Available The objective of this study is to investigate the efficacy of hybrid constructs in comparison to bone grafts (autograft and allograft for posterolateral lumbar fusion (PLF in sheep, instrumented with transpedicular screws and bars. Hybrid constructs using cultured bone marrow (BM mesenchymal stem cells (MSCs have shown promising results in several bone healing models. In particular, hybrid constructs made by calcium phosphate-enriched cells have had similar fusion rates to bone autografts in posterolateral lumbar fusion in sheep. In our study, four experimental spinal fusions in two animal groups were compared in sheep: autograft and allograft (reference group, hydroxyapatite scaffold, and hydroxyapatite scaffold seeded with cultured and osteoinduced bone marrow MSCs (hybrid construct. During the last three days of culture, dexamethasone (dex and beta-glycerophosphate (β-GP were added to potentiate osteoinduction. The two experimental situations of each group were tested in the same spinal segment (L4–L5. Spinal fusion and bone formation were studied by clinical observation, X-ray, computed tomography (CT, histology, and histomorphometry. Lumbar fusion rates assessed by CT scan and histology were higher for autograft and allograft (70% than for mineral scaffold alone (22% and hybrid constructs (35%. The quantity of new bone formation was also higher for the reference group, quite similar in both (autograft and allograft. Although the hybrid scaffold group had a better fusion rate than the non-hybrid scaffold group, the histological analysis revealed no significant differences between them in terms of quantity of bone formation. The histology results suggested that mineral scaffolds were partly resorbed in an early phase, and included in callus tissues. Far from the callus area the hydroxyapatite alone did not generate bone around it, but the hybrid scaffold did. In nude mice, labeled cells were induced to differentiate in vivo and monitored

  9. Cell Seeding Densities in Autologous Chondrocyte Implantation Techniques for Cartilage Repair.

    Science.gov (United States)

    Foldager, Casper Bindzus; Gomoll, Andreas H; Lind, Martin; Spector, Myron

    2012-04-01

    Cartilage repair techniques have been among the most intensively investigated treatments in orthopedics for the past decade, and several different treatment modalities are currently available. Despite the extensive research effort within this field, the generation of hyaline cartilage remains a considerable challenge. There are many parameters attendant to each of the cartilage repair techniques that can affect the amount and types of reparative tissue generated in the cartilage defect, and some of the most fundamental of these parameters have yet to be fully investigated. For procedures in which in vitro-cultured autologous chondrocytes are implanted under a periosteal or synthetic membrane cover, or seeded onto a porous membrane or scaffold, little is known about how the number of cells affects the clinical outcome. Few published clinical studies address the cell seeding density that was employed. The principal objective of this review is to provide an overview of the cell seeding densities used in cell-based treatments currently available in the clinic for cartilage repair. Select preclinical studies that have informed the use of specific cell seeding densities in the clinic are also discussed.

  10. Depth of dormancy in tomato seeds is related to the progression of the cell cycle prior to its induction

    NARCIS (Netherlands)

    Castro, de R.D.; Lammeren, van A.A.M.; Groot, S.P.C.; Bino, R.J.; Hilhorst, H.W.M.

    2001-01-01

    Cell cycle activities are initiated following imbibition of non-dormant seeds. However, it is not known whether cell cycle related events other than DNA replication also remain suppressed in imbibed dormant seeds. The objective of this study was to demonstrate that the transitions between the

  11. Do rice suspension-cultured cells treated with abscisic acid mimic developing seeds?

    Science.gov (United States)

    Matsuno, Koya; Fujimura, Tatsuhito

    2015-08-01

    Starch synthesis is activated in the endosperm during seed development and also in rice suspension cells cultured with abscisic acid. In the anticipation that the mechanisms of starch synthesis are similar between the endosperm and the suspension cells cultured with abscisic acid, expression of genes involved in starch synthesis was evaluated in the suspension cells after abscisic acid treatment. However, it was found that the regulatory mechanism of starch synthesis in the suspension cells cultured with abscisic acid was different from that in developing seeds. Expression analyses of genes involved in oil bodies, which accumulate in the embryo and aleurone layer, and seed storage proteins, which accumulate mainly in the endosperm, showed that the former were activated in the suspension cells cultured with abscisic acid, but the latter were not. Master regulators for embryogenesis, OsVP1 (homologue of AtABI3) and OsLFL1 (homologue of AtFUS3 or AtLFL2), were expressed in the suspension cells at levels comparable to those in the embryo. From these results, it is suggested that interactions between regulators and abscisic acid control the synthesis of phytic acid and oil bodies in the cultured cells and embryo. We suggest that the system of suspension cells cultured with abscisic acid helps to reveal the mechanisms of phytic acid and oil body synthesis in embryo.

  12. [Construction of a capsular tissue-engineered ureteral stent seeded with autologous urothelial cells].

    Science.gov (United States)

    Tan, Haisong; Fu, Weijun; Li, Jianqiang; Wang, Zhongxin; Li, Gang; Ma, Xin; Dong, Jun; Gao, Jiangping; Wang, Xiaoxiong; Zhang, Xu

    2013-01-01

    To investigate the feasibility of constructing a capsular poly L-lactic acid (PLLA) ureteral stent seeded with autologous urothelial cells using tissue engineering methods. The capsular ureteral stent was constructed by subcutaneously embedding PLLA ureteral stent in the back of beagles for 3 weeks to induce the formation of connective tissue on the surfaces. After decellularization of the stent, the expanded autologous urothelial cells were seeded on the stent. The surface structure and cell adhesion of the stent were observed using HE staining, scanning electron microscope (SEM) and immunocytochemical staining. MTT assay was used to evaluate urothelial cell proliferation on the capsular PLLA ureteral stent and on circumferential small intestinal submucosa graft. HE staining and VIII factor immunohistochemistry revealed numerous capillaries in the connective tissue encapsulating the stent without obvious local inflammatory response. The results of SEM and immunocytochemical staining showed that the capsule contained rich collagenic fibers forming three-dimensional structures, and the seeded autologous urothelial cells could adhere and well aligned on the surface. MTT assay showed normal growth of the cells on the stent as compared with the cells grown on circumferential small intestinal submucosa graft. The capsular PLLA ureteral stent allows adhesion and proliferation of autologous urothelial cells and shows a potential in applications of constructing tissue-engineered ureter.

  13. Seed dormancy and germination.

    Science.gov (United States)

    Penfield, Steven

    2017-09-11

    Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    Science.gov (United States)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  15. Effect of 211At treating pollen and stigma on generative cells and seed setting of rice

    International Nuclear Information System (INIS)

    Jin Jiannan; Mo Shangwu; Liu Ning; Zhou Maolun; Zhang Shuyuan; Chen Fang; Zhang Yizheng; Gao Maoguo

    1998-01-01

    Low specific radioactivity (7.4 kBq/ml) 211 At treating pollen and stigma can obviously affect morphological structures and physiological functions of pollen, stigma and ovule or embryo sac cells, and cause injury. Results showed that because of the radiation effects the seed setting rate of rice was decreased, and the development of some embryos were affected and others became abnormal

  16. Construction of ureteral grafts by seeding urothelial cells and bone marrow mesenchymal stem cells into polycaprolactone-lecithin electrospun fibers.

    Science.gov (United States)

    Shen, Jie; Fu, Xiaoling; Ou, Lailiang; Zhang, Min; Guan, Yong; Wang, Kai; Che, Yongzhe; Kong, Deling; Steinhof, Gustav; Li, Wenzhong; Yu, Yaoting; Ma, Nan

    2010-03-01

    The aim of the present study was to investigated the construction of polycaprolactone-lecithin (PCL-L) electrospun fibers as a novel scaffold material for a tissue-engineered ureter. The effect of bone marrow mesenchymal stem cells (BM-MSCs) on the neovascularization of the scaffolds and the viability of planted urothelial cells (UCs) on PCL-L were also studied. UCs were obtained from New Zealand rabbit bladders, cultured and then seeded onto the lumen of the tubular scaffolds before being subcutaneously transplanted into the space of nude mice. The cultured UCs showed vacuolar degeneration after 7 days of transplantation and they gradually degraded thereafter. To facilitate the regeneration of the tissue-engineered ureter and the survival of UCs in the implant, MSCs were seeded into the tubular grafts by rolling up the nanofibrous membrane, followed by the seeding of UCs. This facilitated the survival of the UCs, which formed several cellular layers after 30 days. The mean microvessel density was significantly increased in tissues seeded with MSCs. Cell-tracking experiments revealed that the transplanted MSCs did not integrate directly into capillaries for angiogenesis. Our results demonstrated that the PCL-L electrospun fibrous scaffold has a high potential for a tissue-engineered ureter especially when seeded with BM-MSCs, which enhanced angiogenesis.

  17. Fabrication of dye-sensitized solar cell (DSSC) using annato seeds (Bixa orellana Linn)

    Energy Technology Data Exchange (ETDEWEB)

    Haryanto, Ditia Allindira; Landuma, Suarni; Purwanto, Agus [Department of Chemical Engineering, Sebelas Maret University, Surakarta 632112 (Indonesia)

    2014-02-24

    The Fabrication of dye sensitized solar cell (DSSC) using Annato seeds has been conducted in this study. Annato seeds (Bixa orellana Linn) used as a sensitizer for dye sensitized solar cell. The experimental parameter was concentration of natural dye. Annato seeds was extracted using etanol solution and the concentration was controlled by varying mass of Annato seeds. A semiconductor TiO{sub 2} was prepared by a screen printing method for coating glass use paste of TiO{sub 2}. Construction DSSC used layered systems (sandwich) consists of working electrode (TiO{sub 2} semiconductor-dye) and counter electrode (platina). Both are placed on conductive glass and electrolytes that occur electrons cycle. The characterization of thin layer of TiO{sub 2} was conducted using SEM (Scanning Electron Microscpy) analysis showed the surface morphology of TiO{sub 2} thin layer and the cross section of a thin layer of TiO{sub 2} with a thickness of 15–19 μm. Characterization of natural dye extract was determined using UV-Vis spectrometry analysis shows the wavelength range annato seeds is 328–515 nm, and the voltage (V{sub oc}) and electric current (I{sub sc}) resulted in keithley test for 30 gram, 40 gram, and 50 gram were 0,4000 V; 0,4251 V; 0,4502 V and 0,000074 A; 0,000458 A; 0,000857 A, respectively. The efficiencies of the fabricated solar cells using annato seeds as senstizer for each varying mass are 0,00799%, 0,01237%, and 0,05696%.

  18. Beneficial Effect of Jojoba Seed Extracts on Hyperglycemia-Induced Oxidative Stress in RINm5f Beta Cells.

    Science.gov (United States)

    Belhadj, Sahla; Hentati, Olfa; Hamdaoui, Ghaith; Fakhreddine, Khaskhoussi; Maillard, Elisa; Dal, Stéphanie; Sigrist, Séverine

    2018-03-20

    Hyperglycemia occurs during diabetes and insulin resistance. It causes oxidative stress by increasing reactive oxygen species (ROS) levels, leading to cellular damage. Polyphenols play a central role in defense against oxidative stress. In our study, we investigated the antioxidant properties of simmondsin, a pure molecule present in jojoba seeds, and of the aqueous extract of jojoba seeds on fructose-induced oxidative stress in RINm5f beta cells. The exposure of RINm5f beta cells to fructose triggered the loss of cell viability (-48%, p jojoba seed extract makes jojoba a powerful agent to prevent the destruction of RINm5f beta cells induced by hyperglycemia.

  19. Fish kidney cells show higher tolerance to hyperosmolality than amphibian

    Directory of Open Access Journals (Sweden)

    Lang Gui

    2018-05-01

    Full Text Available In contrast to fish, amphibians inhabit both aquatic and terrestrial environments. To better understand osmoregulation in fish and amphibian, we have investigated the morphological changes in kidney cells to osmotic stress. To address this, kidney cell line isolated from the freshwater grass carp (CIK and Chinese giant salamander (GSK were challenged to different mediums with distinct osmotic pressures (100, 300 and 700 mOsm. Morphological alterations of the fish and amphibian cells were compared by optical and electron microscopy. Following hyposmotic treatment (100 mOsm, both CIK and GSK cells became unhealthy and show condensed chromatin, swollen mitochondria and cytoplasmic vacuole. Meanwhile, after hyperosmotic treatment (700 mOsm, shrunken CIK cells with multipolar shape, pale or lightly stained cytoplasm, condensed chromatin, vacuoles and swollen mitochondria were detected. GSK cells were seriously damaged and most were completely lysed. The results suggest that fish kidney cells show a higher degree of tolerance to hyperosmoticity by comparing to amphibians and provide novel insights on the osmoregulatory capacity and adaptability of kidney cells between the two animal groups.

  20. Schwann cell seeded guidance tubes restore erectile function after ablation of cavernous nerves in rats.

    Science.gov (United States)

    May, F; Weidner, N; Matiasek, K; Caspers, C; Mrva, T; Vroemen, M; Henke, J; Lehmer, A; Schwaibold, H; Erhardt, W; Gänsbacher, B; Hartung, R

    2004-07-01

    Dissection of the cavernous nerves eliminates spontaneous erections. We evaluated the ability of Schwann cell seeded nerve guidance tubes to restore erections after bilateral cavernous nerve resection in rats. Sections (5 mm) of the cavernous nerve were excised bilaterally, followed by immediate bilateral microsurgical reconstruction. In 10 animals per group (20 study nerves) reconstruction was performed by genitofemoral nerve interposition, interposition of silicone tubes or interposition of silicone tubes seeded with homologous Schwann cells. As the control 10 animals (20 study nerves) underwent sham operation (positive control) and bilateral nerve ablation (without reconstruction) was performed in a further 10 (negative control). Erectile function was evaluated 3 months postoperatively by relaparotomy, electrical nerve stimulation and intracavernous pressure recording. After 3 months neurostimulation resulted in an intact erectile response in 90% (18 of 20) of Schwann cell grafts, while treatment with autologous nerves (30% or 6 of 20) or tubes only (50% or 10 of 20) was less successful (p Schwann cell grafts compared to results in the other treatment groups (p Schwann cell grafts. Schwann cell seeded guidance tubes restore erectile function after the ablation of cavernous nerves in rats and they are superior to autologous nerve grafts.

  1. Study on apoptosis of prostate cancer cell induced by 125I seed irradiation

    International Nuclear Information System (INIS)

    Liao Anyan; Wang Junjie; Wang Jidong; Zhuang Hongqing; Zhao Yong

    2007-01-01

    Objective: To explore the mechanism of apoptosis induced by 125 I seed irradiation on PC3 cells. Methods: Human prostate cancer cell line PC3 was treated by irradiation of 125 I (2.77 cGy/h) with various dose. Agarose gel electrophoresis of DNA and flows cytometry were used to detect the apoptosis of PC3 cells and indirect immunofluorescence assay was used to detect the expression of Bcl-2. The activity of Caspase-3 was measured by Caspase Colorimetric Assay Kits. Results: Apoptosis of PC3 cells could be efficiently induced by 125 I seed irradiation. The apoptotic peaks were found by flow cytometry and DNA ladder appeared on 1.8% agarose gel. The activity of Caspase-3 on PC3 cells treated by 125 I seed irradiation was not changed significantly. Bcl-2 gene expression was down-regulated with the sample concentration increased. Conclusion: 125 I irradiation can induce the apoptosis of PC3 cells and the mechanism of apoptosis is related with down regulation of Bcl-2 gene expression and is not related with Caspase-3 activity. (authors)

  2. Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter.

    Science.gov (United States)

    Al-Anizi, Ali Adnan; Hellyer, Maria Theresa; Zhang, Dayi

    2014-06-01

    Moringa oleifera has been used as a coagulation reagent for drinking water purification, especially in developing countries such as Malawi. This research revealed the cytoxicity and genotoxicity of M. oleifera by Acinetobacter bioreporter. The results indicated that significant cytoxicity effects were observed when the powdered M. oleifera seeds concentration is from 1 to 50 mg/L. Through direct contact, ethanolic-water extraction and hexane extraction, the toxic effects of hydrophobic and hydrophilic components in M. oleifera seeds were distinguished. It suggested that the hydrophobic lipids contributed to the dominant cytoxicity, consequently resulting in the dominant genotoxicity in the water-soluble fraction due to limited dissolution when the M. oleifera seeds granule concentration was from 10 to 1000 mg/L. Based on cytoxicity and genotoxicity model, the LC50 and LC90 of M. oleifera seeds were 8.5 mg/L and 300 mg/L respectively and their genotoxicity was equivalent to 8.3 mg mitomycin C per 1.0 g dry M. oleifera seed. The toxicity of M. oleifera has also remarkable synergistic effects, suggesting whole cell bioreporter as an appropriate and complementary tool to chemical analysis for environmental toxicity assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Bone repair by periodontal ligament stem cell-seeded nanohydroxyapatite-chitosan scaffold

    Directory of Open Access Journals (Sweden)

    Ge S

    2012-10-01

    Full Text Available Shaohua Ge,1 Ning Zhao,1 Lu Wang,1 Meijiao Yu,1 Hong Liu,2 Aimei Song,1 Jing Huang,1 Guancong Wang,2 Pishan Yang11Key Laboratory of Oral Biomedicine of Shandong Province, Department of Periodontology, School of Stomatology, 2Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, ChinaBackground: A nanohydroxyapatite-coated chitosan scaffold has been developed in recent years, but the effect of this composite scaffold on the viability and differentiation of periodontal ligament stem cells (PDLSCs and bone repair is still unknown. This study explored the behavior of PDLSCs on a new nanohydroxyapatite-coated genipin-chitosan conjunction scaffold (HGCCS in vitro as compared with an uncoated genipin-chitosan framework, and evaluated the effect of PDLSC-seeded HGCCS on bone repair in vivo.Methods: Human PDLSCs were cultured and identified, seeded on a HGCCS and on a genipin-chitosan framework, and assessed by scanning electron microscopy, confocal laser scanning microscopy, MTT, alkaline phosphatase activity, and quantitative real-time polymerase chain reaction at different time intervals. Moreover, PDLSC-seeded scaffolds were used in a rat calvarial defect model, and new bone formation was assessed by hematoxylin and eosin staining at 12 weeks postoperatively.Results: PDLSCs were clonogenic and positive for STRO-1. They had the capacity to undergo osteogenic and adipogenic differentiation in vitro. When seeded on HGCCS, PDLSCs exhibited significantly greater viability, alkaline phosphatase activity, and upregulated the bone-related markers, bone sialoprotein, osteopontin, and osteocalcin to a greater extent compared with PDLSCs seeded on the genipin-chitosan framework. The use of PDLSC-seeded HGCCS promoted calvarial bone repair.Conclusion: This study demonstrates the potential of HGCCS combined with PDLSCs as a promising tool for bone regeneration.Keywords: periodontal ligament, stem

  4. Cloning higher plants from aseptically cultured tissues and cells

    Science.gov (United States)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  5. The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells

    Directory of Open Access Journals (Sweden)

    Zhuang Hong-Qing

    2009-01-01

    Full Text Available Abstract Background To investigate the effectiveness and mechanism of 125I seed continuous low-dose-rate irradiation on colonic cell line CL187 in vitro. Methods The CL187 cell line was exposed to radiation of 60Coγ ray at high dose rate of 2 Gy/min and 125I seed at low dose rate of 2.77 cGy/h. Radiation responses to different doses and dose rates were evaluated by colony-forming assay. Under 125I seed low dose rate irradiation, a total of 12 culture dishes were randomly divided into 4 groups: Control group, and 2, 5, and 10 Gy irradiation groups. At 48 h after irradiation, apoptosis was detected by Annexin and Propidium iodide (PI staining. Cell cycle arrests were detected by PI staining. In order to investigate the influence of low dose rate irradiation on the MAPK signal transduction, the expression changes of epidermal growth factor receptor (EGFR and Raf under continuous low dose rate irradiation (CLDR and/or EGFR monoclonal antibodies were determined by indirect immunofluorescence. Results The relative biological effect (RBE for 125I seeds compared with 60Co γ ray was 1.41. Apoptosis rates of CL187 cancer cells were 13.74% ± 1.63%, 32.58% ± 3.61%, and 46.27% ± 3.82% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 1.67% ± 0.19%. G2/M cell cycle arrests of CL187 cancer cells were 42.59% ± 3.21%, 59.84% ± 4.96%, and 34.61% ± 2.79% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 26.44% ± 2.53%. P 2/M cell cycle arrest. After low dose rate irradiation, EGFR and Raf expression increased, but when EGFR was blocked by a monoclonal antibody, EGFR and Raf expression did not change. Conclusion 125I seeds resulted in more effective inhibition than 60Co γ ray high dose rate irradiation in CL187 cells. Apoptosis following G2/M cell cycle arrest was the main mechanism of cell-killing effects under low dose rate irradiation. CLDR could

  6. Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels

    Directory of Open Access Journals (Sweden)

    AH Huang

    2012-07-01

    Full Text Available The primary goal of cartilage tissue engineering is to recapitulate the functional properties and structural features of native articular cartilage. While there has been some success in generating near-native compressive properties, the tensile properties of cell-seeded constructs remain poor, and key features of cartilage, including inhomogeneity and anisotropy, are generally absent in these engineered constructs. Therefore, in an attempt to instill these hallmark properties of cartilage in engineered cell-seeded constructs, we designed and characterized a novel sliding contact bioreactor to recapitulate the mechanical stimuli arising from physiologic joint loading (two contacting cartilage layers. Finite element modeling of this bioreactor system showed that tensile strains were direction-dependent, while both tensile strains and fluid motion were depth-dependent and highest in the region closest to the contact surface. Short-term sliding contact of mesenchymal stem cell (MSC-seeded agarose improved chondrogenic gene expression in a manner dependent on both the axial strain applied and transforming growth factor-β supplementation. Using the optimized loading parameters derived from these short-term studies, long-term sliding contact was applied to MSC-seeded agarose constructs for 21 d. After 21 d, sliding contact significantly improved the tensile properties of MSC-seeded constructs and elicited alterations in type II collagen and proteoglycan accumulation as a function of depth; staining for these matrix molecules showed intense localization in the surface regions. These findings point to the potential of sliding contact to produce engineered cartilage constructs that begin to recapitulate the complex mechanical features of the native tissue.

  7. Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    Directory of Open Access Journals (Sweden)

    Stephen D Thorpe

    Full Text Available Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC. Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.

  8. Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    Science.gov (United States)

    Thorpe, Stephen D; Nagel, Thomas; Carroll, Simon F; Kelly, Daniel J

    2013-01-01

    Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC) differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC). Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin) deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.

  9. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  10. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    2010-09-01

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  11. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    Science.gov (United States)

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga

    , et al., (2006), BioEssays, 28, p. 1091). Microfluidic cell culture enables in vitro experiments to approach in vivo conditions. Combining microfluidics with the Lab-On-a-Chip concept allows implementing a wide range of assays for real-time monitoring of effects in a biological system of factors...... such as concentration of selected compounds, external pH, oxygen consumption, redox state and cell viability. The aleurone layer of the barley seed is a 2-3 single cell type thick tissue that can be dissected from the embryo and starchy endosperm. During incubation in vitro this mechanically very robust maintains...

  13. Nano-Micelle of Moringa Oleifera Seed Oil Triggers Mitochondrial Cancer Cell Apoptosis

    Science.gov (United States)

    Abd-Rabou, Ahmed A; Zoheir, Khairy M A; Kishta, Mohamed S; Shalby, Aziza B; Ezzo, Mohamed I

    2016-01-01

    Cancer, a worldwide epidemic disease with diverse origins, involves abnormal cell growth with the potential to invade other parts of the body. Globally, it is the main cause of mortality and morbidity. To overcome the drawbacks of the commercially available chemotherapies, natural products-loaded nano-composites are recommended to improve cancer targetability and decrease the harmful impact on normal cells. This study aimed at exploring the anti-cancer impacts of Moringa oleifera seed oil in its free- (MO) and nano-formulations (MOn) through studying whether it mechanistically promotes mitochondrial apoptosis-mediating cell death. Mitochondrial-based cytotoxicity and flow cytometric-based apoptosis analyses were performed on cancer HepG2, MCF7, HCT 116, and Caco-2 cell lines against normal kidney BHK-21 cell line. The present study resulted that MOn triggered colorectal cancer Caco-2 and HCT 116 cytotoxicity via mitochondrial dysfunction more powerful than its free counterpart (MO). On the other side, MOn and MO remarkably induces HCT 116 mitochondrial apoptosis, while sparing normal BHK-21 cells with minimal cytotoxic effect. The present results concluded that nano-micelle of Moringa oleifera seed oil (MOn) can provide a novel therapeutic approach for colorectal and breast cancers via mitochondrial-mediated apoptosis, while sparing normal and even liver cancer cells a bit healthy or with minimal harmful effect. Intriguingly, MOn induced breast cancer not hepatocellular carcinoma cell death. PMID:28032498

  14. Soybean farm-saved seed viability and vigor as influenced by agro ...

    African Journals Online (AJOL)

    SARAH

    2016-05-31

    May 31, 2016 ... Journal of Applied Biosciences 101:9634 – 9642. ISSN 1997–5902 .... electrode dip type cell (Fisons Scientific Equipment). The ... agroecology UM2 (10.0%) had significantly higher seed ..... Seed Testing International. 131:32.

  15. Cytological changes of root tip cells of alfalfa seeds after space flight

    International Nuclear Information System (INIS)

    Ren Weibo; Xu Zhu; Chen Libo; Guo Huiqin; Wang Mi; Zhao Liang

    2008-01-01

    To understand the cytological effects of space flight on alfalfa seeds, dry seeds of three lines (Line 1, Line 2 and Line 4) were selected and loaded onto 'Shijian No.8' satellite for space flight. After returning to the ground, root tips of alfalfa were clipped and chromosome aberrations were observed by microscope. Data showed that space flight had two types of effect on cell mitotic: one was positive (Line 2, Line 4) and the other was negative (Line 1). Such chromosome aberrations were observed as micronucleus, chromosome bridge, fragments, lagging and so on. The frequency of aberration varied with the different materials. Conclusion was that space flight had significant effect on root tip cells, which mainly showed as the chromosome aberrations. (authors)

  16. CIGS cells with metallized front contact: Longer cells and higher efficiency

    NARCIS (Netherlands)

    Deelen, J. van; Frijters, C.

    2017-01-01

    We have investigated the benefit of a patterned metallization on top of a transparent conductive oxide in CIGS thin-film solar panels. It was found that cells with a grid have a higher efficiency compared to cells with only a TCO. This was observed for all cell lengths used. Furthermore, metallic

  17. Antiproliferative effect of isolated isoquinoline alkaloid from Mucuna pruriens seeds in hepatic carcinoma cells.

    Science.gov (United States)

    Kumar, Pranesh; Rawat, Atul; Keshari, Amit K; Singh, Ashok K; Maity, Siddhartha; De, Arnab; Samanta, Amalesh; Saha, Sudipta

    2016-01-01

    The present study was undertaken to investigate the antiproliferative action of isolated M1 (6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) from Mucuna pruriens seeds using human hepatic carcinoma cell line (Huh-7 cells). Initially, docking studies was performed to find out the binding affinities of M1 to caspase-3 and 8 enzymes. Later, cytotoxic action of M1 was measured by cell growth inhibition (MTT), followed by caspase-3 and 8 enzymes assay colorimetrically. Our results collectively suggested that M1 had strong binding affinity to caspase-8 in molecular modelling. M1 possessed antiproliferative activity on Huh-7 cells (EC50 = 13.97 μM) and also inhibited the action of caspase-8 enzyme, signified process of apoptosis. M1 was active against Huh-7 cells that may be useful for future hepatic cancer treatment.

  18. Antileukemic Potential of Momordica charantia Seed Extracts on Human Myeloid Leukemic HL60 Cells

    Directory of Open Access Journals (Sweden)

    Ramani Soundararajan

    2012-01-01

    Full Text Available Momordica charantia (bitter gourd has been used in the traditional system of medicine for the treatment of various diseases. Anticancer activity of M. charantia extracts has been demonstrated by numerous in vitro and in vivo studies. In the present study, we investigated the differentiation inducing potential of fractionated M. charantia seed extracts in human myeloid HL60 cells. We found that the HL60 cells treated with the fractionated seed extracts differentiated into granulocytic lineage as characterized by NBT staining, CD11b expression, and specific esterase activity. The differentiation inducing principle was found to be heat-stable, and organic in nature. The differentiation was accompanied by a downregulation of c-myc transcript, indicating the involvement of c-myc pathway, at least in part, in differentiation. Taken together these results indicate that fractionated extracts of M. charantia seeds possess differentiation inducing activity and therefore can be evaluated for their potential use in differentiation therapy for leukemia in combination with other inducers of differentiation.

  19. Antileukemic Potential of Momordica charantia Seed Extracts on Human Myeloid Leukemic HL60 Cells

    Science.gov (United States)

    Soundararajan, Ramani; Prabha, Punit; Rai, Umesh; Dixit, Aparna

    2012-01-01

    Momordica charantia (bitter gourd) has been used in the traditional system of medicine for the treatment of various diseases. Anticancer activity of M. charantia extracts has been demonstrated by numerous in vitro and in vivo studies. In the present study, we investigated the differentiation inducing potential of fractionated M. charantia seed extracts in human myeloid HL60 cells. We found that the HL60 cells treated with the fractionated seed extracts differentiated into granulocytic lineage as characterized by NBT staining, CD11b expression, and specific esterase activity. The differentiation inducing principle was found to be heat-stable, and organic in nature. The differentiation was accompanied by a downregulation of c-myc transcript, indicating the involvement of c-myc pathway, at least in part, in differentiation. Taken together these results indicate that fractionated extracts of M. charantia seeds possess differentiation inducing activity and therefore can be evaluated for their potential use in differentiation therapy for leukemia in combination with other inducers of differentiation. PMID:22654956

  20. Deleterious effects on MDAMB-231 breast adenocarcinoma cell lineage submitted to Ho-166 radioactive seeds at very low activity

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Patricia L.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Sarmento, Eduardo V. [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Cuperschmid, Ethel M. [Universidade Federal de Minas Gerais (CEMEMOR/UFMG), Belo Horizonte, BR (Brazil). Fac. de Medicina. Centro de Memoria da Medicina

    2011-07-01

    Herein, the deleterious effect of ionizing radiation provided by Ho-166 radioactive seeds at low activity were addressed, based on experimental in vitro assays at the MDA MB231 cell lineage, a breast adenocarcinoma, compared to PBMC - peripheral blood cells. The methodology involves of the MDBMB-231 and PBMC expansion in culture in suitable environment in 30mm well plates and T-25 flasks. Seeds were synthesized with Ho-165 incorporated and characterized previously. Activation was processed at IPR1 reactor at the peripheral table, at 8h exposition. Three groups of seeds were tested: 0,34 mCi, 0,12 mCi activity, and control group. Such seeds were placed on culture and held to a period of 05 half-lives of the radionuclide. The biological responses at these exposure were documented by inverse microscopic photographic in time. Also, MTT essay were performed. A fast response in producing deleterious effects at cancer cell was observed even if for the low activity seeds. Also, a biological response dependent to a radial distance of the seed was observed. At conclusion, viability clonogenic control of MDAMB231 is identified at the exposition to Ho-166 ceramic seeds, even if at low activity of 0,1 to 0,3mCi. (author)

  1. Deleterious effects on MDAMB-231 breast adenocarcinoma cell lineage submitted to Ho-166 radioactive seeds at very low activity

    International Nuclear Information System (INIS)

    Falcao, Patricia L.; Campos, Tarcisio P.R.; Cuperschmid, Ethel M.

    2011-01-01

    Herein, the deleterious effect of ionizing radiation provided by Ho-166 radioactive seeds at low activity were addressed, based on experimental in vitro assays at the MDA MB231 cell lineage, a breast adenocarcinoma, compared to PBMC - peripheral blood cells. The methodology involves of the MDBMB-231 and PBMC expansion in culture in suitable environment in 30mm well plates and T-25 flasks. Seeds were synthesized with Ho-165 incorporated and characterized previously. Activation was processed at IPR1 reactor at the peripheral table, at 8h exposition. Three groups of seeds were tested: 0,34 mCi, 0,12 mCi activity, and control group. Such seeds were placed on culture and held to a period of 05 half-lives of the radionuclide. The biological responses at these exposure were documented by inverse microscopic photographic in time. Also, MTT essay were performed. A fast response in producing deleterious effects at cancer cell was observed even if for the low activity seeds. Also, a biological response dependent to a radial distance of the seed was observed. At conclusion, viability clonogenic control of MDAMB231 is identified at the exposition to Ho-166 ceramic seeds, even if at low activity of 0,1 to 0,3mCi. (author)

  2. Exploring the Anticancer Activity of Grape Seed Extract on Skin Cancer Cell Lines A431

    Directory of Open Access Journals (Sweden)

    V. Mohansrinivasan

    2015-08-01

    Full Text Available In this study, grape seeds were extracted using ethyl acetate and petroleum ether by solvent-solvent extraction method. The phytochemical tests were performed to identify different phytochemical compounds present in the grape seed extract (GSE. Antibacterial activity of the GSE was determined using agar diffusion method against Gram- positive and Gram-negative bacteria. Gas chromatography-mass spectrometry (GC-MS and Fourier transform infrared spectroscopy (FTIR analysis was done to identify the presence of bioactive compounds and their functional groups. The GC-MS results revealed a total of four compounds, known to have potent activity against cancer cells, viz, squalene, the most potent compound found in ethyl acetate extract and diethyl phthalate, ethyl-9- cis -11- trans octadecadienoate and (R-(--14,-methyl-8-Hexadecyn-1-ol in petroleum ether extract. Cytotoxic activity of the GSE was observed against skin cancer cell lines A4321 using 3-(4, 5-dimethylthiazol-2-yl-2-5-diphenyl tetrazolium bromide MTT assay. The IC50 value of the GSE against A431 skin cancer cell line was 480 µg/mL. This is first such report against A4321 cell lines. The study gives the overall perception about importance of GSE in medicine and nutraceuticals purposes.

  3. Biological activity of Xanthium strumarium seed extracts on different cancer cell lines and Aedes caspius, Culex pipiens (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Fahd A. Al-Mekhlafi

    2017-05-01

    Full Text Available Effects of methanol extracts of Xanthium strumarium on different cancer cell lines and on the mortality rates of Aedes caspius, Culex pipiens (Diptera: Culicidae were investigated. Among the cell lines tested, the Jurkat cell line was the most sensitive to the methanol extract and ethyl acetate fraction, with reported LC50 values of 50.18 and 48.73 μg/ml respectively. Conversely, methanol extracts were not that toxic to the A549 cell line though the toxicity increased on further purification. The percentage of growth inhibition was dose dependent for the methanol extract and ethyl acetate fraction. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The results showed that methanol extracts of plant seeds caused 100% mortality of mosquito larvae at a concentration of 1000 μg/ml after 24 h of treatment. The LC50 and LC90 values of X. strumarium were found to be 531.07 and 905.95 μg/ml against Ae. caspius and 502.32 and 867.63 μg/ml against Cx. Pipiens, respectively. From the investigations, it was concluded that the crude extract of X. strumarium showed a weak potential for controlling the larval instars of Ae. caspius and Cx. pipiens. However, on further purification the extract lost the larvicidal activity. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The ethyl acetate fraction investigated in this study appears to have a weak larvicidal activity but a promising cytotoxic activity. Future studies will include purification and investigation in further detail of the action of X. strumarium on Cancer Cell Lines and mosquitoes.

  4. Biological activity of Xanthium strumarium seed extracts on different cancer cell lines and Aedes caspius, Culex pipiens (Diptera: Culicidae).

    Science.gov (United States)

    Al-Mekhlafi, Fahd A; Abutaha, Nael; Mashaly, Ashraf M A; Nasr, Fahd A; Ibrahim, Khalid E; Wadaan, Mohamed A

    2017-05-01

    Effects of methanol extracts of Xanthium strumarium on different cancer cell lines and on the mortality rates of Aedes caspius, Culex pipiens (Diptera: Culicidae) were investigated. Among the cell lines tested, the Jurkat cell line was the most sensitive to the methanol extract and ethyl acetate fraction, with reported LC 50 values of 50.18 and 48.73 μg/ml respectively. Conversely, methanol extracts were not that toxic to the A549 cell line though the toxicity increased on further purification. The percentage of growth inhibition was dose dependent for the methanol extract and ethyl acetate fraction. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The results showed that methanol extracts of plant seeds caused 100% mortality of mosquito larvae at a concentration of 1000 μg/ml after 24 h of treatment. The LC 50 and LC 90 values of X. strumarium were found to be 531.07 and 905.95 μg/ml against Ae. caspius and 502.32 and 867.63 μg/ml against Cx. Pipiens, respectively. From the investigations, it was concluded that the crude extract of X. strumarium showed a weak potential for controlling the larval instars of Ae. caspius and Cx. pipiens . However, on further purification the extract lost the larvicidal activity. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The ethyl acetate fraction investigated in this study appears to have a weak larvicidal activity but a promising cytotoxic activity. Future studies will include purification and investigation in further detail of the action of X. strumarium on Cancer Cell Lines and mosquitoes.

  5. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing.

    Science.gov (United States)

    Kaisang, Lin; Siyu, Wang; Lijun, Fan; Daoyan, Pan; Xian, Cory J; Jie, Shen

    2017-09-01

    Chronic nonhealing wound is a multifactorial complication of diabetes that results specifically as a consequence of impaired angiogenesis and currently lacks in effective treatments. Although a stem cell-based therapy may provide a novel treatment to augment diabetic wound healing, inferior cell survival at the diabetic skin wound is one of the key causes that are responsible for the low efficacy of the stem cell therapy. In this work, we used an injectable, biocompatible, and thermosensitive hydrogel Pluronic F-127 to encapsulate allogeneic nondiabetic adipose-derived stem cells (ADSCs) and topically applied the cells to a full-thickness cutaneous wound in the streptozotocin-induced diabetic model in rats. The cells seeded in the hydrogel enhanced angiogenesis (CD31 marker) and promoted the cell proliferation (Ki67 marker) at the wound site and significantly accelerated wound closure, which was accompanied by facilitated regeneration of granulation tissue. Consistently, levels of the messenger RNA expression of key angiogenesis growth factor, vascular endothelial growth factor, and key wound healing growth factor, transforming growth factor beta 1, were also upregulated in the cell-treated wounds when compared with untreated wounds. The results indicated that the transplantation of allogeneic ADSCs via the hydrogel improves the efficiency of cell delivery and optimizes the performance of ADSCs for augmenting diabetic wound healing. In conclusion, this ADSC-based therapy may provide a novel therapeutic strategy for the treatment of nonhealing diabetic foot ulcers. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds

    International Nuclear Information System (INIS)

    Favi, Pelagie M.; Benson, Roberto S.; Neilsen, Nancy R.; Hammonds, Ryan L.; Bates, Cassandra C.; Stephens, Christopher P.; Dhar, Madhu S.

    2013-01-01

    The culture of multipotent mesenchymal stem cells on natural biopolymers holds great promise for treatments of connective tissue disorders such as osteoarthritis. The safety and performance of such therapies relies on the systematic in vitro evaluation of the developed stem cell-biomaterial constructs prior to in vivo implantation. This study evaluates bacterial cellulose (BC), a biocompatible natural polymer, as a scaffold for equine-derived bone marrow mesenchymal stem cells (EqMSCs) for application in bone and cartilage tissue engineering. An equine model was chosen due to similarities in size, load and types of joint injuries suffered by horses and humans. Lyophilized and critical point dried BC hydrogel scaffolds were characterized using scanning electron microscopy (SEM) to confirm nanostructure morphology which demonstrated that critical point drying induces fibre bundling unlike lyophilisation. EqMSCs positively expressed the undifferentiated pluripotent mesenchymal stem cell surface markers CD44 and CD90. The BC scaffolds were shown to be cytocompatible, supporting cellular adhesion and proliferation, and allowed for osteogenic and chondrogenic differentiation of EqMSCs. The cells seeded on the BC hydrogel were shown to be viable and metabolically active. These findings demonstrate that the combination of a BC hydrogel and EqMSCs are promising constructs for musculoskeletal tissue engineering applications. - Highlights: ► Critical point drying induces fibre bundling unlike lyophilisation. ► Cells positively expressed undifferentiated pluripotent stem cell markers. ► BCs were cytocompatible, supported cell adhesion, proliferation and differentiation ► Cells seeded on BC scaffolds were viable and metabolically active. ► Findings demonstrate that BC and EqMSCs are promising tissue engineered constructs

  7. Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Favi, Pelagie M.; Benson, Roberto S. [Department of Materials Science and Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Neilsen, Nancy R. [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Hammonds, Ryan L. [Department of Materials Science and Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Bates, Cassandra C. [Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Stephens, Christopher P. [Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Center for Materials Processing, University of Tennessee, Knoxville, TN 37996 (United States); Dhar, Madhu S., E-mail: mdhar@utk.edu [Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-05-01

    The culture of multipotent mesenchymal stem cells on natural biopolymers holds great promise for treatments of connective tissue disorders such as osteoarthritis. The safety and performance of such therapies relies on the systematic in vitro evaluation of the developed stem cell-biomaterial constructs prior to in vivo implantation. This study evaluates bacterial cellulose (BC), a biocompatible natural polymer, as a scaffold for equine-derived bone marrow mesenchymal stem cells (EqMSCs) for application in bone and cartilage tissue engineering. An equine model was chosen due to similarities in size, load and types of joint injuries suffered by horses and humans. Lyophilized and critical point dried BC hydrogel scaffolds were characterized using scanning electron microscopy (SEM) to confirm nanostructure morphology which demonstrated that critical point drying induces fibre bundling unlike lyophilisation. EqMSCs positively expressed the undifferentiated pluripotent mesenchymal stem cell surface markers CD44 and CD90. The BC scaffolds were shown to be cytocompatible, supporting cellular adhesion and proliferation, and allowed for osteogenic and chondrogenic differentiation of EqMSCs. The cells seeded on the BC hydrogel were shown to be viable and metabolically active. These findings demonstrate that the combination of a BC hydrogel and EqMSCs are promising constructs for musculoskeletal tissue engineering applications. - Highlights: ► Critical point drying induces fibre bundling unlike lyophilisation. ► Cells positively expressed undifferentiated pluripotent stem cell markers. ► BCs were cytocompatible, supported cell adhesion, proliferation and differentiation ► Cells seeded on BC scaffolds were viable and metabolically active. ► Findings demonstrate that BC and EqMSCs are promising tissue engineered constructs.

  8. Modulating and modeling aggregation of cell-seeded microcarriers in stirred culture system for macrotissue engineering.

    Science.gov (United States)

    Mei, Yang; Luo, Houyong; Tang, Qiang; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2010-11-01

    A recently developed protocol, "microtissue assembly" holds great promise to address the issue of limited mass transfer within engineered large tissue replacements (macrotissues), wherein small "building blocks" (microtissues) are prepared and then assembled into macrotissues. Previous studies suggested that aggregation behavior of microcarrier-based microtissues were very important for macrotissue engineering. However, a systematic study on the aggregation behavior of microtissues is still missing. In this study, to examine the aggregation behavior of microtissues, effects of key operation parameters in dynamic culture including cell seeding density, microcarrier concentration, L-ascorbic acid 2-phosphate (V(c)) and agitating speed were investigated. The aggregation process could be divided into three phases (i.e., lag, growth and stable). Aggregation efficiency (S) was found to be modulated by cell seeding density, microcarrier concentration, addition of V(c) and agitating speed. A mathematical model correlating the operation parameters with S at different phases of aggregation was developed and experimentally proved to be able to predict S with varied operation parameters. In the end, a cylindrical macrotissue (diameter × height: 2.0 cm × 0.8 cm) with fairly good integrity and cellularity and uniform cell distribution was successfully engineered through perfusion assembling microtissues with controlled S under selected culture conditions. Our study showed that aggregation of microtissues could be precisely modulated, which would definitely facilitate engineering macrotissues with high quality. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Anatomy and cell wall polysaccharides of almond (Prunus dulcis D. A. Webb) seeds.

    Science.gov (United States)

    Dourado, Fernando; Barros, António; Mota, Manuel; Coimbra, Manuel A; Gama, Francisco M

    2004-03-10

    The anatomy of Prunus dulcis was analyzed by applying several differential staining techniques and light microscopy. Prunus dulcis seed has a thin and structurally complex seed coat, with lignified cellulosic tissue. The embryo has two voluminous cotyledons. Cotyledon cells have a high number of protein and lipid bodies, some of which have phytin. The provascular tissue, located in the cotyledons, is oriented in small bundles perpendicular to the transverse embryonic axis. Prunus dulcis cell wall material is very rich in arabinose (45 mol %). Glucose (23%), uronic acids (12%), and xylose (12%) are also major sugar components. The polymers obtained from the imidazole and Na(2)CO(3) extracts contain mainly pectic substances rich in arabinose, but the sugar content of these extracts was very low. The majority of the pectic substances (also rich in arabinose) was recovered with the KOH extracts. These extracts, with high sugar content, yielded also xyloglucans and acidic xylans. The 4 M KOH + H(3)BO(3) extracts yielded polysaccharides rich in uronic acids and xylose and very rich in arabinose, accounting for 27% of the cell wall material.

  10. Dye-sensitized solar cells with natural dyes extracted from achiote seeds

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ortiz, N.M.; Vazquez-Maldonado, I.A.; Azamar-Barrios, J.A.; Oskam, G. [Departamento de Fisica Aplicada, CINVESTAV-IPN, Merida, Yuc. 97310 (Mexico); Perez-Espadas, A.R.; Mena-Rejon, G.J. [Laboratorio de Quimica Organica de Investigacion, Facultad de Quimica, Universidad Autonoma de Yucatan, Merida, Yuc. 97150 (Mexico)

    2010-01-15

    We have explored the application of natural dyes extracted from the seeds of the achiote shrub (Bixa orellana L.) in dye-sensitized solar cells (DSCs). The main pigments are bixin and norbixin, which were obtained by separation and purification from the dark-red extract (annatto). The dyes were characterized using {sup 1}H-NMR, FTIR spectroscopy, and UV-Vis spectrophotometry. Solar cells were prepared using TiO{sub 2} and ZnO nanostructured, mesoporous films and the annatto, bixin, and norbixin as sensitizers. The best results were obtained with bixin-sensitized TiO{sub 2} solar cells with efficiencies of up to 0.53%, illustrating the importance of purification of dyes from natural extracts. (author)

  11. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed

    International Nuclear Information System (INIS)

    Jegla, D.E.; Sussex, I.M.

    1989-01-01

    We mapped the fate of cells in the shoot meristem of the dry-seed embryo of sunflower, Helianthus annuus L. cv. Peredovic, using irradiation-induced somatic sectors. We analyzed 249 chlorophyll-deficient or glabrous (hairless) sectors generated in 236 plants. Most sectors observed in the inflorescence extended into vegetative nodes. Thus cell lineages that ultimately gave rise to reproductive structures also contributed to vegetative structures. No single sector extended the entire length of the shoot. Thus the shoot is not derived from one or a few apical initials. Rather, the position, vertical extent, and width of the sectors at different levels of the shoot suggest that the shoot is derived from three to four circumferential populations of cells in each of three cell layers of the embryo meristem. Sectors had no common boundaries even in plants with two or three independent sectors, but varied in extent and overlapped along the length of the shoot. Thus individual cells in a single circumferential population behaved independently to contribute lineages of different vertical extents to the growing shoot. The predicted number of circumferential populations of cells as well as the apparent cell number in each population was consistent with the actual number of cells in the embryo meristem observed in histological sections

  12. Amniotic Fluid Cells Show Higher Pluripotency-Related Gene Expression Than Allantoic Fluid Cells.

    Science.gov (United States)

    Kehl, Debora; Generali, Melanie; Görtz, Sabrina; Geering, Diego; Slamecka, Jaroslav; Hoerstrup, Simon P; Bleul, Ulrich; Weber, Benedikt

    2017-10-01

    Amniotic fluid represents an abundant source of multipotent stem cells, referred as broadly multipotent given their differentiation potential and expression of pluripotency-related genes. However, the origin of this broadly multipotent cellular fraction is not fully understood. Several sources have been proposed so far, including embryonic and extraembryonic tissues. In this regard, the ovine developmental model uniquely allows for direct comparison of fetal fluid-derived cells from two separate fetal fluid cavities, the allantois and the amnion, over the entire duration of gestation. As allantoic fluid mainly collects fetal urine, cells originating from the efferent urinary tract can directly be compared with cells deriving from the extraembryonic amniotic tissues and the fetus. This study shows isolation of cells from the amniotic [ovine amniotic fluid cells (oAFCs)] and allantoic fluid [ovine allantoic fluid cells (oALCs)] in a strictly paired fashion with oAFCs and oALCs derived from the same fetus. Both cell types showed cellular phenotypes comparable to standard mesenchymal stem cells (MSCs), with trilineage differentiation potential, and expression of common ovine MSC markers. However, the expression of MSC markers per single cell was higher in oAFCs as measured by flow cytometry. oAFCs exhibited higher proliferative capacities and showed significantly higher expression of pluripotency-related genes OCT4, STAT3, NANOG, and REX1 by quantitative real-time polymerase chain reaction compared with paired oALCs. No significant decrease of pluripotency-related gene expression was noted over gestation, implying that cells with high differentiation potential may be isolated at the end of pregnancy. In conclusion, this study suggests that cells with highest stem cell characteristics may originate from the fetus itself or the amniotic fetal adnexa rather than from the efferent urinary tract or the allantoic fetal adnexa.

  13. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2).

    Science.gov (United States)

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2014-01-01

    The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with 5-500 μg/ml of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and 500 μg/ml of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and 500 μg/ml of PO, respectively by NRU assay. PS exposed HepG2 cells with 100 μg/ml and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and 500 μg/ml of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with 50 μg/ml and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.

  14. Cell-seeded polyurethane-fibrin structures – A possible system for intervertebral disc regeneration

    Directory of Open Access Journals (Sweden)

    C Mauth

    2009-10-01

    Full Text Available Nowadays, intervertebral disc (IVD degeneration is one of the principal causes of low back pain involving high expense within the health care system. The long-term goal is the development of a medical treatment modality focused on a more biological regeneration of the inner nucleus pulposus (NP. Hence, interest in the endoscopic implantation of an injectable material took center stage in the recent past. We report on the development of a novel polyurethane (PU scaffold as a mechanically stable carrier system for the reimplantation of expanded autologous IVD-derived cells (disc cells to stimulate regenerative processes and restore the chondrocyte-like tissue within the NP. Primary human disc cells were seeded into newly developed PU spheroids which were subsequently encapsulated in fibrin hydrogel. The study aims to analyze adhesion properties, proliferation capacity and phenotypic characterization of these cells. Polymerase chain reaction was carried out to detect the expression of genes specifically expressed by native IVD cells. Biochemical analyses showed an increased DNA content, and a progressive enhancement of total collagen and glycosaminoglycans (GAG was observed during cell culture. The results suggest the synthesis of an appropriate extracellular matrix as well as a stable mRNA expression of chondrogenic and/or NP specific markers. In conclusion, the data presented indicate an alternative medical approach to current treatment options of degenerated IVD tissue.

  15. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana.

    Science.gov (United States)

    Shigeyama, Takuma; Watanabe, Asuka; Tokuchi, Konatsu; Toh, Shigeo; Sakurai, Naoki; Shibuya, Naoto; Kawakami, Naoto

    2016-10-01

    Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages.

    Science.gov (United States)

    Xie, Jingwei; Willerth, Stephanie M; Li, Xiaoran; Macewan, Matthew R; Rader, Allison; Sakiyama-Elbert, Shelly E; Xia, Younan

    2009-01-01

    Due to advances in stem cell biology, embryonic stem (ES) cells can be induced to differentiate into a particular mature cell lineage when cultured as embryoid bodies. Although transplantation of ES cells-derived neural progenitor cells has been demonstrated with some success for either spinal cord injury repair in small animal model, control of ES cell differentiation into complex, viable, higher ordered tissues is still challenging. Mouse ES cells have been induced to become neural progenitors by adding retinoic acid to embryoid body cultures for 4 days. In this study, we examine the use of electrospun biodegradable polymers as scaffolds not only for enhancing the differentiation of mouse ES cells into neural lineages but also for promoting and guiding the neurite outgrowth. A combination of electrospun fiber scaffolds and ES cells-derived neural progenitor cells could lead to the development of a better strategy for nerve injury repair.

  17. EVALUATION OF THE FUNCTIONAL PROPERTIES OF HUMAN ENDOTHELIAL AND SMOOTH MUSCLE CELLS AFTER SEEDING ON THE SURFACE OF NATURAL AND SYNTHETIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Sh. B. Saaya

    2016-01-01

    Full Text Available At present, vascular surgery using small diameter synthetic grafts is associated with a higher incidence of complications (thrombosis, restenosis, intimal hyperplasia than in operations using autologous vessels. However, the occurrence of concomitant pathology, reoperations and multifocal vascular disease limit the use of autologous vein and arteries. The important factor providing a long-term patency is the presence of vascular cells, which produce biologically active substance and provide mechanical properties. Aim. Selection of the optimal scaffold for creating cell-seeded tissue-engineering vessels. Materials and methods. Endothelial (EC and smooth muscle cells (SMC derived from human myocardium were seeded on different surfaces: decellularized homoarteriа, хenopericardium, polytetrafl uoroethylene (PTFE, polyethylene terephthalate (PET, polycaprolactone (PCL and polylactide-co-glycolide (PLGA. Results. Synthetic biodegradable materials polycaprolactone and polylactide-co-glycolide provide cell adhesion. The cells cultured on the polycaprolactone and polylactide-coglycolide scaffolds retain their functional properties: viability and proliferative properties, maintain specifi c endothelial antigens and synthesis of extracellular matrix. Conclusion. Synthetic biodegradable polycaprolactone and polylactide-co-glycolide electrospun scaffolds can be used for creation of cell-fi lled vascular prostheses. 

  18. Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns.

    Science.gov (United States)

    Seth, Gargi; Hamilton, Robert W; Stapp, Thomas R; Zheng, Lisa; Meier, Angela; Petty, Krista; Leung, Stephenie; Chary, Srikanth

    2013-05-01

    Agility to schedule and execute cell culture manufacturing campaigns quickly in a multi-product facility will play a key role in meeting the growing demand for therapeutic proteins. In an effort to shorten campaign timelines, maximize plant flexibility and resource utilization, we investigated the initiation of cell culture manufacturing campaigns using CHO cells cryopreserved in large volume bags in place of the seed train process flows that are conventionally used in cell culture manufacturing. This approach, termed FASTEC (Frozen Accelerated Seed Train for Execution of a Campaign), involves cultivating cells to high density in a perfusion bioreactor, and cryopreserving cells in multiple disposable bags. Each run for a manufacturing campaign would then come from a thaw of one or more of these cryopreserved bags. This article reviews the development and optimization of individual steps of the FASTEC bioprocess scheme: scaling up cells to greater than 70 × 10(6) cells/mL and freezing in bags with an optimized controlled rate freezing protocol and using a customized rack configuration. Flow cytometry analysis was also employed to understand the recovery of CHO cells following cryopreservation. Extensive development data were gathered to ensure that the quantity and quality of the drug manufactured using the FASTEC bioprocess scheme was acceptable compared to the conventional seed train process flow. The result of offering comparable manufacturing options offers flexibility to the cell culture manufacturing network. Copyright © 2012 Wiley Periodicals, Inc.

  19. Glyoxal Crosslinking of Cell-Seeded Chitosan/Collagen Hydrogels for Bone Regeneration

    Science.gov (United States)

    Wang, Limin; Stegemann, Jan P.

    2011-01-01

    Chitosan and collagen are natural biomaterials that have been used extensively in tissue engineering, both separately and as composite materials. Most methods to fabricate chitosan/collagen composites use freeze drying and chemical crosslinking to create stable porous scaffolds, which subsequently can be seeded with cells. In this study, we directly embedded human bone marrow stem cells (hBMSC) in chitosan/collagen materials by initiating gelation using β-glycerophosphate at physiological temperature and pH. We further examined the use of glyoxal, a dialdehyde with relatively low toxicity, to crosslink these materials and characterized the resulting changes in matrix and cell properties. The cytocompatibility of glyoxal and the crosslinked gels were investigated in terms of hBMSC metabolic activity, viability, proliferation, and osteogenic differentiation. These studies revealed that glyoxal was cytocompatible at concentrations below about 1 mM for periods of exposure up to 15 h, though the degree of cell spreading and proliferation were dependent on matrix composition. Glyoxal-crosslinked matrices were stiffer and compacted less than uncrosslinked controls. It was further demonstrated that hBMSC can attach and proliferate in 3D matrices composed of 50/50 chitosan/collagen, and that these materials supported osteogenic differentiation in response to stimulation. Such glyoxal-crosslinked chitosan/collagen composite materials may find utility as cell delivery vehicles for enhancing the repair of bone defects. PMID:21345389

  20. Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh.

    Directory of Open Access Journals (Sweden)

    Alessandra Zonari

    Full Text Available Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM. Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF, the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in

  1. Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh.

    Science.gov (United States)

    Zonari, Alessandra; Novikoff, Silviene; Electo, Naira R P; Breyner, Natália M; Gomes, Dawidson A; Martins, Albino; Neves, Nuno M; Reis, Rui L; Goes, Alfredo M

    2012-01-01

    Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs) to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB) and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM). Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF), the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in combination with

  2. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in arabidopsis seed coat mucilage secretory cells.

    Science.gov (United States)

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J; Harpaz-Saad, Smadar

    2015-03-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Leelapriya, Thasari; Kumari, Bollipo Diana Ranjitha

    2012-12-01

    The effects of magnetic field (MF) treatments of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress were investigated under controlled conditions. Soybean seeds were exposed to a 1.0 Hz sinusoidal uniform pulsed magnetic field (PMF) of 1.5 µT for 5 h/day for 20 days. Non-treated seeds were considered as controls. For callus regeneration, the embryonic axis explants were taken from seeds and inoculated in a saline medium with a concentration of 10 mM NaCl for calli growth analysis and biochemical changes. The combined treatment of MF and salt stress was found to significantly increase calli fresh weight, total soluble sugar, total protein, and total phenol contents, but it decreased the ascorbic acid, lipid peroxidation, and catalase activity of calli from magnetically exposed seeds compared to the control calli. PMF treatment significantly improved calli tolerance to salt stress in terms of an increase in flavonoid, flavone, flavonole, alkaloid, saponin, total polyphenol, genistein, and daidzein contents under salt stress. The results suggest that PMF treatment of soybean seeds has the potential to counteract the adverse effects of salt stress on calli growth by improving primary and secondary metabolites under salt stress conditions. Copyright © 2012 Wiley Periodicals, Inc.

  4. Depth of dormancy in tomato (Lycopersicon esculentum Mill.) seeds is related to the progression of the cell cycle prior to the induction of dormancy

    NARCIS (Netherlands)

    Castro, de R.D.; Bino, R.J.; Jing, H.C.; Hilhorst, H.W.M.

    2001-01-01

    Cell cycle activities are initiated following imbibition of non-dormant seeds. However, it is not known whether cell cycle related events other than DNA replication also remain suppressed in imbibed dormant seeds. The objective of this study was to demonstrate that the transitions between the

  5. Evaluation of early healing events around mesenchymal stem cell-seeded collagen-glycosaminoglycan scaffold. An experimental study in Wistar rats.

    LENUS (Irish Health Repository)

    Alhag, Mohamed

    2011-03-01

    Tissue engineering using cell-seeded biodegradable scaffolds offers a new bone regenerative approach that might circumvent many of the limitations of current therapeutic modalities. The aim of this experiment was to study the early healing events around mesenchymal stem cell-seeded collagen-glycosaminoglycan scaffolds.

  6. Backup pathways of NHEJ in cells of higher eukaryotes: Cell cycle dependence

    International Nuclear Information System (INIS)

    Iliakis, George

    2009-01-01

    DNA double-strand breaks (DSBs) induced by ionizing radiation (IR) in cells of higher eukaryotes are predominantly repaired by a pathway of non-homologous end joining (NHEJ) utilizing Ku, DNA-PKcs, DNA ligase IV, XRCC4 and XLF/Cernunnos (D-NHEJ) as central components. Work carried out in our laboratory and elsewhere shows that when this pathway is chemically or genetically compromised, cells do not shunt DSBs to homologous recombination repair (HRR) but instead use another form of NHEJ operating as a backup (B-NHEJ). Here I review our efforts to characterize this repair pathway and discuss its dependence on the cell cycle as well as on the growth conditions. I present evidence that B-NHEJ utilizes ligase III, PARP-1 and histone H1. When B-NHEJ is examined throughout the cell cycle, significantly higher activity is observed in G2 phase that cannot be attributed to HRR. Furthermore, the activity of B-NHEJ is compromised when cells enter the plateau phase of growth. Together, these observations uncover a repair pathway with unexpected biochemical constitution and interesting cell cycle and growth factor regulation. They generate a framework for investigating the mechanistic basis of HRR contribution to DSB repair.

  7. Seeding of single hemopoietic stem cells and self renewal of committed stem cells

    International Nuclear Information System (INIS)

    Brecher, G.

    1986-01-01

    Single cells and two to five proliferating cells were transfused into mice whose own stem cells had been killed by irradiation. When a small inoculum of 50,000 AB marrow cells was given only 4 of 20 recipients survived, but all 4 had only PGK A enzyme in their peripheral blood cells. The results indicate that the survivors received a single pluripotential stem cell capable of proliferating. Survivors showed no deterioration in their blood picture after many months. It was concluded that there is no clonal succession in the marrow cells. Further studies with transfusions of 100,000 and 10,000,000 marrow cells after lethal irradiation suggest that there is production of committed stem cells with significant self-renewal

  8. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells.

    Science.gov (United States)

    Watanabe, Tatsuro; Kuramochi, Hiromi; Takahashi, Atsushi; Imai, Kazue; Katsuta, Naoko; Nakayama, Tomonobu; Fujiki, Hirota; Suganuma, Masami

    2012-05-01

    To understand how nanomechanical stiffness affects metastatic potential, we studied the relationship between cell migration, a characteristic of metastasis, and cell stiffness using atomic force microscopy (AFM), which can measure stiffness (elasticity) of individual living cells. Migration and cell stiffness of three metastatic B16 melanoma variants (B16-F10, B16-BL6, and B16-F1 cells), and also effects of (-)-epigallocatechin gallate (EGCG), were studied using Transwell assay and AFM. Migration of B16-F10 and B16-BL6 cells was 3 and 2 times higher than that of B16-F1 cells in Transwell assay, and cell stiffness determined by AFM was also different among the three variants, although they have similar morphologies and the same growth rates: Means of Young's modulus were 350.8 ± 4.8 Pa for B16-F10 cells, 661.9 ± 16.5 Pa for B16-BL6 cells, and 727.2 ± 13.0 Pa for B16-F1 cells. AFM measurements revealed that highly motile B16-F10 cells have low cell stiffness, and low motile and metastatic B16-F1 cells have high cell stiffness: Nanomechanical stiffness is inversely correlated with migration potential. Treatment of highly motile B16-F10 cells with EGCG increased cell stiffness 2-fold and inhibited migration of the cells. Our study with AFM clearly demonstrates that cell stiffness is a reliable quantitative indicator of migration potential, and very likely metastatic potential, even in morphologically similar cells. And increased cell stiffness may be a key nanomechanical feature in inhibition of metastasis.

  9. Estimation of cancerolytic properties of thionine from plants seeds by inclusion of C14-thymidine in tumoral cells

    International Nuclear Information System (INIS)

    Pshenichnov, E.A.; Sultanova, E.M.; Kuznetsova, N.N.; Khashimova, Z.S.; Veshkurova, O.N.; Sadikov, A.A.; Salikhov, Sh.I.

    2004-01-01

    Full text: It has been earlier shown that cysteine rich peptides - thionine from seeds of various plants possess expressed fungitoxic activity. It is connected to influence of thionine on cellular membranes of fungi. It was possible to assume that the substances showing cytotoxic activity will be active in relation to tumoral cells. We isolated peptide fractions from seeds bamia (Hibiscus esculentus), kenaf (Hibiscus cannabinus), abutilon (Abutilon theophrasti), euphorbia (Euphorbia virgata), palma Christi (Ricinus communis) and horse sorrel (Rumex confertus) and studied their antineoplastic and fungitoxic activity. Antiproliferative action of peptides to melanoma cells of mice was estimated in cytotoxic test by inclusion of C 14 -thymidine to DNA. This researches have shown that peptides from seeds of horse sorrel and palma Christi did not change a level of synthesis of DNA while peptides from euphorbia and bamia considerably reduced inclusion of labeled nucleotide to DNA and suppressed growth of tumoral cells on 14 and 39 % accordingly. Parallel tests of these peptides on fungitoxic activity in relation to virulent strains of Verticillium dahliae have shown suppression of conidial growth on 17 and 26 % accordingly. Thus, peptides from seeds of bamia and euphorbia possess the expressed property to suppress growth of tumoral cells and can be used at creation a new cancerolytic preparations for treatment of human cancer. Work is executed under the financial support of fundamental grants F - 4.19 and F-4.1.44

  10. The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells: EPC-seeded antithrombotic Ti implants.

    Science.gov (United States)

    Achneck, Hardean E; Jamiolkowski, Ryan M; Jantzen, Alexandra E; Haseltine, Justin M; Lane, Whitney O; Huang, Jessica K; Galinat, Lauren J; Serpe, Michael J; Lin, Fu-Hsiung; Li, Madison; Parikh, Amar; Ma, Liqiao; Chen, Tao; Sileshi, Bantayehu; Milano, Carmelo A; Wallace, Charles S; Stabler, Thomas V; Allen, Jason D; Truskey, George A; Lawson, Jeffrey H

    2011-01-01

    Implantable and extracorporeal cardiovascular devices are commonly made from titanium (Ti) (e.g. Ti-coated Nitinol stents and mechanical circulatory assist devices). Endothelializing the blood-contacting Ti surfaces of these devices would provide them with an antithrombogenic coating that mimics the native lining of blood vessels and the heart. We evaluated the viability and adherence of peripheral blood-derived porcine endothelial progenitor cells (EPCs), seeded onto thin Ti layers on glass slides under static conditions and after exposure to fluid shear stresses. EPCs attached and grew to confluence on Ti in serum-free medium, without preadsorption of proteins. After attachment to Ti for 15 min, less than 5% of the cells detached at a shear stress of 100 dyne / cm(2). Confluent monolayers of EPCs on smooth Ti surfaces (Rq of 10 nm), exposed to 15 or 100 dyne/cm(2) for 48 h, aligned and elongated in the direction of flow and produced nitric oxide dependent on the level of shear stress. EPC-coated Ti surfaces had dramatically reduced platelet adhesion when compared to uncoated Ti surfaces. These results indicate that peripheral blood-derived EPCs adhere and function normally on Ti surfaces. Therefore EPCs may be used to seed cardiovascular devices prior to implantation to ameliorate platelet activation and thrombus formation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. seed oil

    African Journals Online (AJOL)

    Wara

    Neem seed oil from the neem tree (Azadiracta indica) finds wide usage one of which is its utilization for cosmetics particularly .... obtained which is higher than that of olive oil 17. mgKOH/g (Davine ... The skin tolerance of shea fat employed as ...

  12. Modification of structural chromosome mutations by zinc ions at wavelike kinetics of radiation mutagenesis in Crepis Capillaris seed cells

    International Nuclear Information System (INIS)

    Mustafaev, Kh. B.; Pomanov, V.P.

    1979-01-01

    The resting seeds Cr. capillaris have been irradiated by gamma rays in the 4 kR dose. Immediately after irradiation and within different terms of storage the seeds have been grown in the 3.5x10 -5 M solution ZnCl 2 and in the distilled water. Chromosome structural mutations in the K-mitosis of the first cell cycle have been studied. The frequency modification of chromosomal rearrangement by zinc ions at the waveline kinetics of the radiation mutagenesis is revealed as follows: zinc ions increase the mutation frequency at the points of waveline kinetics maximum and exert no influence at minimum points

  13. Co-Seeding Human Endothelial Cells with Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells on Calcium Phosphate Scaffold Enhances Osteogenesis and Vascularization in Rats.

    Science.gov (United States)

    Liu, Xian; Chen, Wenchuan; Zhang, Chi; Thein-Han, Wahwah; Hu, Kevin; Reynolds, Mark A; Bao, Chongyun; Wang, Ping; Zhao, Liang; Xu, Hockin H K

    2017-06-01

    A major challenge in repairing large bone defects with tissue-engineered constructs is the poor vascularization in the defect. The lack of vascular networks leads to insufficient oxygen and nutrients supply, which compromises the survival of seeded cells. To achieve favorable regenerative effects, prevascularization of tissue-engineered constructs by co-culturing of endothelial cells and bone cells is a promising strategy. The aim of this study was to investigate the effects of human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) co-cultured with human umbilical vein endothelial cells (HUVECs) for prevascularization of calcium phosphate cement (CPC) scaffold on bone regeneration in vivo for the first time. HUVECs co-cultured with hiPSC-MSCs formed microcapillary-like structures in vitro. HUVECs promoted mineralization of hiPSC-MSCs on CPC scaffolds. Four groups were tested in a cranial bone defect model in nude rats: (1) CPC scaffold alone (CPC control); (2) HUVEC-seeded CPC (CPC-HUVEC); (3) hiPSC-MSC-seeded CPC (CPC-hiPSC-MSC); and (4) HUVECs co-cultured with hiPSC-MSCs on CPC scaffolds (co-culture group). After 12 weeks, the co-culture group achieved the greatest new bone area percentage of 46.38% ± 3.8% among all groups (p < 0.05), which was more than four folds of the 10.61% ± 1.43% of CPC control. In conclusion, HUVECs co-cultured with hiPSC-MSCs substantially promoted bone regeneration. The novel construct of HUVECs co-cultured with hiPSC-MSCs delivered via CPC scaffolds is promising to enhance bone and vascular regeneration in orthopedic applications.

  14. Beneficial Effect of Jojoba Seed Extracts on Hyperglycemia-Induced Oxidative Stress in RINm5f Beta Cells

    Directory of Open Access Journals (Sweden)

    Sahla Belhadj

    2018-03-01

    Full Text Available Hyperglycemia occurs during diabetes and insulin resistance. It causes oxidative stress by increasing reactive oxygen species (ROS levels, leading to cellular damage. Polyphenols play a central role in defense against oxidative stress. In our study, we investigated the antioxidant properties of simmondsin, a pure molecule present in jojoba seeds, and of the aqueous extract of jojoba seeds on fructose-induced oxidative stress in RINm5f beta cells. The exposure of RINm5f beta cells to fructose triggered the loss of cell viability (−48%, p < 0.001 and disruption of insulin secretion (p < 0.001 associated with of reactive oxygen species (ROS production and a modulation of pro-oxidant and antioxidant signaling pathway. Cell pre-treatments with extracts considerably increased cell viability (+86% p < 0.001 for simmondsin and +74% (p < 0.001 for aqueous extract and insulin secretion. The extracts also markedly decreased ROS (−69% (p < 0.001 for simmondsin and −59% (p < 0.001 for aqueous extract and caspase-3 activation and improved antioxidant defense, inhibiting p22phox and increasing nuclear factor (erythroid-derived 2-like 2 (Nrf2 levels (+70%, p < 0.001 for aqueous extract. Simmondsin had no impact on Nrf2 levels. The richness and diversity of molecules present in jojoba seed extract makes jojoba a powerful agent to prevent the destruction of RINm5f beta cells induced by hyperglycemia.

  15. TRANSPLANTATION OF CRYOPRESERVED FETAL LIVER CELLS SEEDED INTO MACROPOROUS ALGINATE-GELATIN SCAFFOLDS IN RATS WITH LIVER FAILURE

    Directory of Open Access Journals (Sweden)

    D. V. Grizay

    2015-01-01

    Full Text Available Aim. To study the therapeutic potential of cryopreserved fetal liver cells seeded into macroporous alginategelatin scaffolds after implantation to omentum of rats with hepatic failure.Materials and methods.Hepatic failure was simulated by administration of 2-acetyl aminofl uorene followed partial hepatectomy. Macroporous alginate-gelatin scaffolds, seeded with allogenic cryopreserved fetal liver cells (FLCs were implanted into rat omentum. To prevent from colonization of host cells scaffolds were coated with alginate gel shell. Serum transaminase activity, levels of albumin and bilirubin as markers of hepatic function were determined during 4 weeks after failure model formation and scaffold implantation. Morphology of liver and scaffolds after implantation were examined histologically. Results. Macroporous alginate-gelatin scaffolds after implantation to healthy rats were colonized by host cells. Additional formation of alginate gel shell around scaffolds prevented the colonization. Implantation of macroporous scaffolds seeded with cryopreserved rat FLCs and additionally coated with alginate gel shell into omentum of rats with hepatic failure resulted in signifi cant improvement of hepatospecifi c parameters of the blood serum and positive changes of liver morphology. The presence of cells with their extracellular matrix within the scaffolds was confi rmed after 4 weeks post implantation.Conclusion. The data above indicate that macroporous alginate-gelatin scaffolds coated with alginate gel shell are promising cell carriers for the development of bioengineered liver equivalents.

  16. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  17. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    Science.gov (United States)

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  18. Induction of micronuclei in the root tip cells of Haplopappus germinating seeds by fission neutrons and X rays

    International Nuclear Information System (INIS)

    Hanmoto, Hidehiro; Yonezawa, Yoshihiko; Itoh, Tetsuo; Kondo, Sohei.

    1992-01-01

    Seeds of Haplopappus gracilis (2n=4), an annual Compositae, were soaked in water for 24 hr and then irradiated with fission neutrons from the 1-wattage reactor, UTR-KINKI, or X rays. The root tip cells were inspected at 48 hr post-irradiation for evidence of chromosome damage using micronucleus as endpoint. The frequency of neutron-induced micronuclei increased almost linearly as the dose increased up to as much as 1.2 Gy. X-ray-induced micronuclei showed an exponential dose-response relation. From dose-response data, we estimated that the dose necessary to induce micronuclei at a frequency of 5 per 1,000 cells was 1.2 Gy for neutrons and 8.6 Gy for X rays. Thus, to induce chromosome damage in the somatic cells of germinating Haplopappus seeds, fission neutrons were much more effective than X rays. (author)

  19. Anticancer Screening of Various Seed Extract of Cardiospermum halicacabum on Human Colorectal, Skin and Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Behzad Mohaddesi

    2015-08-01

    Full Text Available Background: In the modern lifestyle, the increase in cancer and related chronic disorders is a major public health problem. In spite of different methods used for the treatment of these conditions, natural medicines have high demands due to their significant effects as immune enhancement and therapeutic agents and fewer side effects in comparison with other treatment methods. Hence, this study was undertaken to evaluate the cytotoxic effect of cardiospermum halicacabum Linn. seeds, based on traditional claims.Methods: A Soxhlet extractor was used to obtain different extracts from seeds of C. halicacabum Linn. Sulforhodamine B colorimetric (SRB assay used for the evaluation of the cytotoxic effect of the various extracts on HT-29, HCT-15 colon carcinoma, SK-MEL-2 skin carcinoma, and MCF-7 breast carcinoma. The results were compared against Doxorubicin as a standard drug.Results: The results of the present study showed the potent cytotoxic activity of n-hexane extract of seeds of C. halicacabum Linn. against the MCF-7 breast cancer cell line with 50% growth inhibition value (GI50 of 12.8 μg/ml but other extracts showed poor activity in other tested cell lines.Conclusions: The results indicated the potential medicinal value of C. halicacabum Linn. seeds oil with the highest extractive yield as an antineoplastic agent. However, further studies are needed for the isolation of the active anticancer compounds and evaluating the mechanism of action of the responsible compound.

  20. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects.

    Science.gov (United States)

    Haberstroh, Kathrin; Ritter, Kathrin; Kuschnierz, Jens; Bormann, Kai-Hendrik; Kaps, Christian; Carvalho, Carlos; Mülhaupt, Rolf; Sittinger, Michael; Gellrich, Nils-Claudius

    2010-05-01

    The aim of this study was to investigate the osteogenic effect of three different cell-seeded 3D-bioplotted scaffolds in a ovine calvarial critical-size defect model. The choice of scaffold-materials was based on their applicability for 3D-bioplotting and respective possibility to produce tailor-made scaffolds for the use in cranio-facial surgery for the replacement of complex shaped boneparts. Scaffold raw-materials are known to be osteoinductive when being cell-seeded [poly(L-lactide-co-glycolide) (PLGA)] or having components with osteoinductive properties as tricalciumphosphate (TCP) or collagen (Col) or chitosan. The scaffold-materials PLGA, TCP/Col, and HYDR (TCP/Col/chitosan) were cell-seeded with osteoblast-like cells whether gained from bone (OLB) or from periost (OLP). In a prospective and randomized design nine sheep underwent osteotomy to create four critical-sized calvarial defects. Three animals each were assigned to the HYDR-, the TCP/Col-, or the PLGA-group. In each animal, one defect was treated with a cell-free, an OLB- or OLP-seeded group-specific scaffold, respectively. The fourth defect remained untreated as control (UD). Fourteen weeks later, animals were euthanized for histo-morphometrical analysis of the defect healing. OLB- and OLP-seeded HYDR and OLB-seeded TCP/Col scaffolds significantly increased the amount of newly formed bone (NFB) at the defect bottom and OLP-seeded HYDR also within the scaffold area, whereas PLGA-scaffolds showed lower rates. The relative density of NFB was markedly higher in the HYDR/OLB group compared to the corresponding PLGA group. TCP/Col had good stiffness to prepare complex structures by bioplotting but HYDR and PLGA were very soft. HYDR showed appropriate biodegradation, TCP/Col and PLGA seemed to be nearly undegraded after 14 weeks. 3D-bioplotted, cell-seeded HYDR and TCP/Col scaffolds increased the amount of NFB within ovine critical-size calvarial defects, but stiffness, respectively, biodegradation of

  1. Engineering endostatin-producing cartilaginous constructs for cartilage repair using nonviral transfection of chondrocyte-seeded and mesenchymal-stem-cell-seeded collagen scaffolds.

    Science.gov (United States)

    Jeng, Lily; Olsen, Bjorn R; Spector, Myron

    2010-10-01

    Although there is widespread recognition of the importance of angiogenesis in tissue repair, there is little work on the inhibition of angiogenesis in the context of tissue engineering of naturally avascular tissues, like articular cartilage. The objective was to engineer a collagen-scaffold-based cartilaginous construct overexpressing a potent antiangiogenic factor, endostatin, using nonviral transfection. Endostatin-plasmid-supplemented collagen scaffolds were seeded with mesenchymal stem cells and chondrocytes and cultured for 20–22 days. The effects of the following variables on endostatin expression and chondrogenesis were examined: collagen scaffold material, method of nonviral vector incorporation, plasmid load, culture medium, and oxygen tension. An increase and peak of endostatin protein was observed during the first week of culture, followed by a decrease to low levels, suggesting that overexpression of endostatin could be sustained for several days using the nonviral vector. The amount of endostatin produced was tunable with the external factors. Chondrogenesis was observed in the engineered constructs cultured in chondrogenic medium at the 3-week time point, demonstrating that endostatin did not inhibit the chondrogenic potential of mesenchymal stem cells or the general viability of the cells. The ability to engineer endostatin-expressing cartilaginous constructs will be of value for future work exercising regulatory control of angiogenesis in cartilage repair.

  2. Impact of Multi-Targeted Antiretroviral Treatment on Gut T Cell Depletion and HIV Reservoir Seeding during Acute HIV Infection

    Science.gov (United States)

    Ananworanich, Jintanat; Schuetz, Alexandra; Vandergeeten, Claire; Sereti, Irini; de Souza, Mark; Rerknimitr, Rungsun; Dewar, Robin; Marovich, Mary; van Griensven, Frits; Sekaly, Rafick; Pinyakorn, Suteeraporn; Phanuphak, Nittaya; Trichavaroj, Rapee; Rutvisuttinunt, Wiriya; Chomchey, Nitiya; Paris, Robert; Peel, Sheila; Valcour, Victor; Maldarelli, Frank; Chomont, Nicolas; Michael, Nelson; Phanuphak, Praphan; Kim, Jerome H.

    2012-01-01

    Background Limited knowledge exists on early HIV events that may inform preventive and therapeutic strategies. This study aims to characterize the earliest immunologic and virologic HIV events following infection and investigates the usage of a novel therapeutic strategy. Methods and Findings We prospectively screened 24,430 subjects in Bangkok and identified 40 AHI individuals. Thirty Thais were enrolled (8 Fiebig I, 5 Fiebig II, 15 Fiebig III, 2 Fiebig IV) of whom 15 completed 24 weeks of megaHAART (tenofovir/emtricitabine/efavirenz/raltegravir/maraviroc). Sigmoid biopsies were completed in 24/30 at baseline and 13/15 at week 24. At baseline, the median age was 29 years and 83% were MSM. Most were symptomatic (87%), and were infected with R5-tropic (77%) CRF01_AE (70%). Median CD4 was 406 cells/mm3. HIV RNA was 5.5 log10 copies/ml. Median total blood HIV DNA was higher in Fiebig III (550 copy/106 PBMC) vs. Fiebig I (8 copy/106 PBMC) (p = 0.01) while the median %CD4+CCR5+ gut T cells was lower in Fiebig III (19%) vs. Fiebig I (59%) (p = 0.0008). After 24 weeks of megaHAART, HIV RNA levels of HIV DNA at week 0 predicted reservoir size at week 24 (pHIV DNA declined significantly and was undetectable in 3 of 15 in blood and 3 of 7 in gut. Frequency of CD4+CCR5+ gut T cells increased from 41% at baseline to 64% at week 24 (p>0.050); subjects with less than 40% at baseline had a significant increase in CD4+CCR5+ T cells from baseline to week 24 (14% vs. 71%, p = 0.02). Conclusions Gut T cell depletion and HIV reservoir seeding increases with progression of AHI. MegaHAART was associated with immune restoration and reduced reservoir size. Our findings could inform research on strategies to achieve HIV drug-free remission. PMID:22479485

  3. Evolution of plant cell wall: Arabinogalactan-proteins from three moss genera show structural differences compared to seed plants.

    Science.gov (United States)

    Bartels, Desirée; Baumann, Alexander; Maeder, Malte; Geske, Thomas; Heise, Esther Marie; von Schwartzenberg, Klaus; Classen, Birgit

    2017-05-01

    Arabinogalactan-proteins (AGPs) are important proteoglycans of plant cell walls. They seem to be present in most, if not all seed plants, but their occurrence and structure in bryophytes is widely unknown and actually the focus of AGP research. With regard to evolution of plant cell wall, we isolated AGPs from the three mosses Sphagnum sp., Physcomitrella patens and Polytrichastrum formosum. The moss AGPs show structural characteristics common for AGPs of seed plants, but also unique features, especially 3-O-methyl-rhamnose (trivial name acofriose) as terminal monosaccharide not found in arabinogalactan-proteins of angiosperms and 1,2,3-linked galactose as branching point never found in arabinogalactan-proteins before. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bioinspired seeding of biomaterials using three dimensional microtissues induces chondrogenic stem cell differentiation and cartilage formation under growth factor free conditions

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Moreira Teixeira, Liliana; Bolander, J.; Ji, W.; Vanspauwen, B.; Lammertyn, J.; Schrooten, J.; Luyten, F.P.

    2016-01-01

    Cell laden biomaterials are archetypically seeded with individual cells and steered into the desired behavior using exogenous stimuli to control growth and differentiation. In contrast, direct cell-cell contact is instructive and even essential for natural tissue formation. Namely, microaggregation

  5. Why high seed densities within buried mesh bags may overestimate depletion rates of soil seed banks

    NARCIS (Netherlands)

    Mourik, van T.A.; Stomph, T.J.; Murdoch, A.J.

    2005-01-01

    1. Estimates of seed bank depletion rates are essential for modelling and management of plant populations. The seed bag burial method is often used to measure seed mortality in the soil. However, the density of seeds within seed bags is higher than densities in natural seed banks, which may elevate

  6. Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions.

    Science.gov (United States)

    Griffiths, Jonathan S; North, Helen M

    2017-05-01

    The cell wall defines the shape of cells and ultimately plant architecture. It provides mechanical resistance to osmotic pressure while still being malleable and allowing cells to grow and divide. These properties are determined by the different components of the wall and the interactions between them. The major components of the cell wall are the polysaccharides cellulose, hemicellulose and pectin. Cellulose biosynthesis has been extensively studied in Arabidopsis hypocotyls, and more recently in the mucilage-producing epidermal cells of the seed coat. The latter has emerged as an excellent system to study cellulose biosynthesis and the interactions between cellulose and other cell wall polymers. Here we review some of the major advances in our understanding of cellulose biosynthesis in the seed coat, and how mucilage has aided our understanding of the interactions between cellulose and other cell wall components required for wall cohesion. Recently, 10 genes involved in cellulose or hemicellulose biosynthesis in mucilage have been identified. These discoveries have helped to demonstrate that xylan side-chains on rhamnogalacturonan I act to link this pectin directly to cellulose. We also examine other factors that, either directly or indirectly, influence cellulose organization or crystallization in mucilage. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  7. Radiation protective nursing intervene of 125I seed implantation in non-small cell lung carcinoma guided by CT

    International Nuclear Information System (INIS)

    Fu Li; Zhang Zuncheng; Yu Zhaochen; Zheng Guangjun; Tian Meirong

    2009-01-01

    Objective: To research radiation protective nursing intervene and important notice of 125 I seeds minimally invasive implantation in non-small cell lung carcinoma (NSCLC) by CT. Methods: Under the system of therapy planning system (TPS) and posologic validation, 125 I seeds were implanted in 89 cases of NSCLC patients. The consistent radiation protective nursing intervene was used in perioperative period management. The operative successful rate, therapeutic effect and complication rate, therapeutic effect and complication rate was observed. Results: The scientific radiation protective nursing intervene can ensure that the radioactive dose distribution of 125 I seed implantation brachytherapy is consistent with the principles of effective and minimally invasive. The operative successful rate was 100%. The local control rate and 1 year survival rate respectively was 97.4% and 92.2%. But the early and later incidence rate of radioactive damaging effect was 14.6% and 1.1% respectively. Leakage of radioactive contamination has not occurred. Conclusion: The consistent TPS and posologic validation 125 I seeds implantation integrated scientific radiation protective nursing intervene. It is very important to improve the therapeutic effect of NSCLC and reduce the incidence of complications. (authors)

  8. Proteins in Soy Might Have a Higher Role in Cancer Prevention than Previously Expected: Soybean Protein Fractions Are More Effective MMP-9 Inhibitors Than Non-Protein Fractions, Even in Cooked Seeds

    Directory of Open Access Journals (Sweden)

    Ana Lima

    2017-02-01

    Full Text Available The search for anticancer MMP-9 inhibitors (MMPIs in food products has become a major goal for research. MMPIs in soy have been related only to saponins and isoflavones, but recently, low specific protein fractions in soybeans were shown to reduce MMP-9 activity as well. The present work aimed at comparing the MMPI potential of protein fractions (P and non-protein fractions (NP isolated from soybean seeds, before and after soaking and cooking, mimicking dietary exposures. Reverse and substrate zymography, as well as a fluoregenic DQ gelatin assay were used to evaluate MMP-9 activities. Colon cancer cell migration and proliferation was also tested in HT29 cells. Regarding MMP-9 inhibition, proteins in soy presented IC50 values 100 times lower than non-protein extracts, and remained active after cooking, suggesting that proteins may be more effective MMP-9 inhibitors than non-protein compounds. Using the determined IC50 concentrations, NP fractions were able to induce higher inhibitions of HT29 cell migration and proliferation, but not through MMP-9 inhibition, whilst protein fractions were shown to specifically inhibit MMP-9 activity. Overall, our results show that protein fractions in soybeans might have a higher role in soy-related cancer prevention as MMPIs than previously expected. Being nontoxic and active at lower concentrations, the discovery of these heat-resistant specific MMPI proteins in soy can be of significant importance for cancer preventive diets, particularly considering the increasing use of soy proteins in food products and the controversy around isoflavones amongst consumers.

  9. AUTOLOGOUS Marrow-Derived Stem Cell-Seeded Gene-Supplemented Collagen Scaffolds for Spinal Cord Regeneration as a Treatment for Paralysis

    National Research Council Canada - National Science Library

    Spector, Myron

    2006-01-01

    .... Moreover, the authors will be investigating the effects of incorporating genes from nerve growth factors into the collagen scaffolds and seeding the scaffolds with marrow-derived mesenchymal stem cells...

  10. ABA Inhibits Embryo Cell Expansion and Early Cell Division Events During Coffee (Coffea arabica 'Rubi') Seed Germination

    NARCIS (Netherlands)

    Silva, da E.A.A.; Toorop, P.E.; Lammeren, van A.A.M.; Hilhorst, H.W.M.

    2008-01-01

    Background and Aims: Coffee seed germination represents an interplay between the embryo and the surrounding endosperm. A sequence of events in both parts of the seed determines whether germination will be successful or not. Following previous studies, the aim here was to further characterize the

  11. Galactomannan from Schizolobium amazonicum seed and its sulfated derivatives impair metabolism in HepG2 cells.

    Science.gov (United States)

    Cunha de Padua, Monique Meyenberg; Suter Correia Cadena, Silvia Maria; de Oliveira Petkowicz, Carmen Lucia; Martinez, Glaucia Regina; Rodrigues Noleto, Guilhermina

    2017-08-01

    This study evaluated the effects of native galactomannan from Schizolobium amazonicum seeds and its sulfated forms on certain metabolic parameters of HepG2 cells. Aqueous extraction from S. amazonicum seeds furnished galactomannan with 3.2:1 Man:Gal ratio (SAGM) and molar mass of 4.34×10 5 g/mol. The SAGM fraction was subjected to sulfation using chlorosulfonic acid to obtain SAGMS1 and SAGMS2 with DS of 0.4 and 0.6, respectively. Cytotoxicity of SAGM, SAGMS1, and SAGMS2 was evaluated in human hepatocellular carcinoma cells (HepG2). After 72h, SAGM decreased the viability of HepG2 cells by 50% at 250μg/mL, while SAGMS1 reduced it by 30% at the same concentration. SAGM, SAGMS1, and SAGMS2 promoted a reduction in oxygen consumption and an increase in lactate production in non-permeabilized HepG2 cells after 72h of treatment. These results suggest that SAGM, SAGMS1, and SAGMS2 could be recognized by HepG2 cells and might trigger alterations that impair its survival. These effects could be implicated in the modification of the oxidative phosphorylation process in HepG2 cells and activation of the glycolytic pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.

    Science.gov (United States)

    Hadlock, T; Sundback, C; Hunter, D; Cheney, M; Vacanti, J P

    2000-04-01

    Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft

  13. The direct biologic effects of radioactive 125I seeds on pancreatic cancer cells PANC-1, at continuous low-dose rates.

    Science.gov (United States)

    Wang, Jidong; Wang, Junjie; Liao, Anyan; Zhuang, Hongqing; Zhao, Yong

    2009-08-01

    The relative biologic effectiveness of model 6711 125I seeds (Ningbo Junan Pharmaceutical Technology Company,Ningbo, China) and their effects on growth, cell cycle, and apoptosis in human pancreatic cancer cell line PANC-1 were examined in the present study. PANC-1 cells were exposed to the absorbed doses of 1, 2, 4, 6, 8, and 10 Gyeither with 125I seeds (initial dose rate, 2.59 cGy=h) or with 60Co g-ray irradiation (dose rate, 221 cGy=min),respectively. Significantly greater numbers of apoptotic PANC-1 cells were detected following the continuouslow-dose-rate (CLDR) irradiation of 125I seeds, compared with cells irradiated with identical doses of 60Co g-ray. The D(0) for 60Co g-ray and 125I seed irradiation were 2.30 and 1.66, respectively. The survival fraction after 125Iseed irradiation was significantly lower than that of 60Co g-ray, with a relative biologic effectiveness of 1.39.PANC-1 cells were dose dependently arrested in the S-phase by 60Co g-rays and in the G2=M phase by 125I seeds,24 hour after irradiation. CLDR irradiation by 125I seeds was more effective in inducing cell apoptosis in PANC-1cells than acute high-dose-rate 60Co g irradiation. Interestingly, CLDR irradiation by 125I seeds can cause PANC-1cell-cycle arrest at the G2=M phase and induce apoptosis, which may be an important mechanism underlying 125Iseed-induced PANC-1 cell inhibition.

  14. Evaluation of the toxic potential of coffee wastewater on seeds, roots and meristematic cells of Lactuca sativa L.

    Science.gov (United States)

    Aguiar, Luara Louzada; Andrade-Vieira, Larissa Fonseca; de Oliveira David, José Augusto

    2016-11-01

    Coffee wastewater (CWW) is an effluent produced through wet processing of coffee containing high concentration of organic matter, nutrients, salts and also agrochemicals. It is released directly into the argillaceous soil or into decantation tanks for later disposal into soils, by fertigation, subsurface infiltration or superficial draining. However, this practice is not followed by the monitoring the toxicity potential of this effluent. In this sense, the present work aimed to evaluate the phytotoxic, cytogenotoxic and mutagenic potential of CWW on seed germination, root elongation and cell cycle alterations in the plant model Lactuca sativa L. The effluent (CWW) collected was diluted in distilled water into six concentrations solutions (1.25%, 1.66%, 2.5%, 5.0%, 10%, 20%). A solution of raw CWW (100%) was also applied. Distilled water was used as negative control), and the DNA alkylating agent, metilmetano sulfonate (4×10(-4)M) as positive control. Physico-chemical parameters of the CWW was accessed and it was found that the effluent contained total phenols and inorganic matter in amounts within the limits established by the National Environment Council (CONAMA). Nevertheless, the biologicals assays performed demonstrated the phytotoxicity and cytogenotoxicty of CWW. Seed germination was totally inhibited after exposure of raw CWW. In addition, a decrease in seed germination speed as well as in root growth dose-dependently manner was noticed. Moreover, nuclear and chromosomal alterations were observed in the cell cycle, mostly arising from aneugenic action. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A non-invasive and rapid seed vigor biosensor based on quantitative measurement of superoxide generated by aleurone cell in intact seeds.

    Science.gov (United States)

    Liu, Xuejun; Gao, Caiji; Xing, Da

    2009-02-15

    Superoxide generated during the early imbibition is an excellent marker for evaluating seed vigor. In this paper, a new principle biosensor for non-invasive detection of seed vigor based on quantitative measurement of superoxide via selective probe 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo [1,2alpha] pyrazin-3-one (MCLA)-mediated chemiluminescence (CL) was developed. The biosensor, which used a compact single-photon counting module (SPCM) to collect the CL signal, could evaluate seed vigor in vivo. Benefiting from the high CL efficiency of MCLA reacting with superoxide and high sensitivity of the SPCM technique, the trace superoxide generated by dry seeds under storage state can be detected to achieve rapid and non-invasive determination of the seed vigor. In comparison with the traditional methods for fast measuring seed vigor based on measurement of physiological and biochemical properties, our proposed technique has significant advantages such as low cost, simplicity, convenient operation and short time consuming. To demonstrate the utility of the system, it was applied to evaluate MCLA-mediated CL of three different plant species wheat (Ze Yu No. 2), maize (Tai Gu No. 1 and 2) and rice (Jing Dao No. 21) seeds with different degrees of aging. The experimental results suggested that there was an excellent positive correlation between the seed vigor assessment from quantitative TTC-test and the detection based on MCLA-mediated CL of superoxide measurement. The new principle of seed vigor measurement is a challenge and breakthrough to conventional method of seed vigor determination and may be a potential technique of the next generation seed vigor detection.

  16. The Arabidopsis GASA10 gene encodes a cell wall protein strongly expressed in developing anthers and seeds.

    Science.gov (United States)

    Trapalis, Menelaos; Li, Song Feng; Parish, Roger W

    2017-07-01

    The Arabidopsis GASA10 gene encodes a GAST1-like (Gibberellic Acid-Stimulated) protein. Reporter gene analysis identified consistent expression in anthers and seeds. In anthers expression was developmentally regulated, first appearing at stage 7 of anther development and reaching a maximum at stage 11. Strongest expression was in the tapetum and developing microspores. GASA10 expression also occurred throughout the seed and in root vasculature. GASA10 was shown to be transported to the cell wall. Using GASA1 and GASA6 as positive controls, gibberellic acid was found not to induce GASA10 expression in Arabidopsis suspension cells. Overexpression of GASA10 (35S promoter-driven) resulted in a reduction in silique elongation. GASA10 shares structural similarities to the antimicrobial peptide snakin1, however, purified GASA10 failed to influence the growth of a variety of bacterial and fungal species tested. We propose cell wall associated GASA proteins are involved in regulating the hydroxyl radical levels at specific sites in the cell wall to facilitate wall growth (regulating cell wall elongation). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of graphene on seed germination and seedling growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Gao, Bin, E-mail: bg55@ufl.edu [University of Florida, Department of Agricultural and Biological Engineering (United States); Chen, Jianjun [University of Florida, Department of Environmental Horticulture and Mid-Florida Research & Education Center (United States); Li, Yuncong [University of Florida, Soil and Water Science Department Tropical Research & Education Center (United States)

    2015-02-15

    The environmental impact of graphene has recently attracted great attention. In this work, we show that graphene at a low concentration affected tomato seed germination and seedling growth. Graphene-treated seeds germinated much faster than control seeds. Analytical results indicated that graphene penetrated seed husks. The penetration might break the husks to facilitate water uptake, resulting in faster germination and higher germination rates. At the stage of seedling growth, graphene was also able to penetrate root tip cells. Seedlings germinated from graphene-treated seeds had slightly lower biomass accumulation than the control, but exhibited significantly longer stems and roots than the control, which suggests that graphene, in contrast with other nanoparticles, had different effects on seedling growth. Taken together, our results imply that graphene played complicated roles in affecting the initial stage of seed germination and subsequent seedling growth.

  18. Topical grape seed proanthocyandin extract reduces sunburn cells and mutant p53 positive epidermal cell formation, and prevents depletion of Langerhans cells in an acute sunburn model.

    Science.gov (United States)

    Yuan, Xiao-Ying; Liu, Wei; Hao, Jian-Chun; Gu, Wei-Jie; Zhao, Yan-Shuang

    2012-01-01

    The purpose of this study was to investigate whether grape seed proanthocyanidin extract (GSPE) can provide photoprotection against ultraviolet (UV) irradiation. Study has shown that GSPE is a natural oxidant, and is used in many fields such as ischemia-reperfusion injury, chronic pancreatitis, and even cancer. However, the effect of GSPE on UV irradiation is as yet unknown. Cutaneous areas on the backs of normal volunteers were untreated or treated with GSPE solutions or vehicles 30 min before exposure to two minimal erythema doses (MED) of solar simulated radiation. Cutaneous areas at different sites were examined histologically for the number of sunburn cells, or immunohistochemically for Langerhans cells and mutant p53 epidermal cells. On histological and immunohistochemical examination, skin treated with GSPE before UV radiation showed fewer sunburn cells and mutant p53-positive epidermal cells and more Langerhans cells compared with skin treated with 2-MED UV radiation only (p<0.001, p<0.001, and p<0.01, respectively). GSPE may be a possible preventive agent for photoprotection.

  19. Osmoconditioning prevents the onset of microtubular cytoskeleton and activation of cell cycle and is detrimental for germination of Jatropha curcas L. seeds.

    Science.gov (United States)

    de Brito, C D; Loureiro, M B; Ribeiro, P R; Vasconcelos, P C T; Fernandez, L G; de Castro, R D

    2016-11-01

    Jatropha curcas is an oilseed crop renowned for its tolerance to a diverse range of environmental stresses. In Brazil, this species is grown in semiarid regions where crop establishment requires a better understanding of the mechanisms underlying appropriate seed, seedling and plant behaviour under water restriction conditions. In this context, the objective of this study was to investigate the physiological and cytological profiles of J. curcas seeds in response to imbibition in water (control) and in polyethylene glycol solution (osmoticum). Seed germinability and reactivation of cell cycle events were assessed by means of different germination parameters and immunohistochemical detection of tubulin and microtubules, i.e. tubulin accumulation and microtubular cytoskeleton configurations in water imbibed seeds (control) and in seeds imbibed in the osmoticum. Immunohistochemical analysis revealed increasing accumulation of tubulin and appearance of microtubular cytoskeleton in seed embryo radicles imbibed in water from 48 h onwards. Mitotic microtubules were only visible in seeds imbibed in water, after radicle protrusion, as an indication of cell cycle reactivation and cell proliferation, with subsequent root development. Imbibition in osmoticum prevented accumulation of microtubules, i.e. activation of cell cycle, therefore germination could not be resumed. Osmoconditioned seeds were able to survive re-drying and could resume germination after re-imbibition in water, however, with lower germination performance, possibly due to acquisition of secondary dormancy. This study provides important insights into understanding of the physiological aspects of J. curcas seed germination in response to water restriction conditions. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. (Heckel) seeds

    African Journals Online (AJOL)

    UTILISATEUR

    Garcinia kola seeds to six different hormonal pre-germination treatments. This consisted of ... Thus, seed dormancy in this case is not a coat- imposed .... development of the cultivation of the species. The cause .... Hormonal regulation of seed ...

  1. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nadja Rebecca [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Wehrli, Bernhard [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland)

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L{sup −1} molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L{sup −1}. From OPV, copper (14 μg L{sup −1}), zinc (87 μg L{sup −1}) and silver (78 μg L{sup −1}) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. - Highlights: • Photovoltaics may be disposed in the environment after usage. • Copper indium gallium selenide (CIGS) and organic (OPV) cells were compared. • Morphological and molecular effects were assessed in zebrafish embryos. • Environmental condition affected metal leaching and ecotoxicological activity. • Damaged CIGS cells pose higher risk to the environment than OPV cells.

  2. Evaluation of chemopreventive and cytotoxic effect of lemon seed extracts on human breast cancer (MCF-7) cells.

    Science.gov (United States)

    Kim, Jinhee; Jayaprakasha, Guddadarangavvanahally K; Uckoo, Ram M; Patil, Bhimanagouda S

    2012-02-01

    Extracts from lemon seed were investigated for the radical scavenging activity and apoptotic effects in human breast adenocarcinoma (MCF-7) cells and non-malignant breast (MCF-12F) cells for the first time. Defatted seed powder was successively extracted with ethyl acetate (EtOAc), acetone, methanol (MeOH), and MeOH:water (80:20). The chemical constituents were identified and quantified by LC-MS and HPLC analysis, respectively. The highest radical scavenging activity of 62.2% and 91.3% was exhibited by MeOH:water (80:20) at 833μg/mL in 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS(+)), respectively. In addition, the MeOH:water (80:20) extract showed the highest (29.1%, Pwater (80:20) extract induced DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage. Increased levels of Bax and cytosolic cytochrome C and decreased levels of Bcl2 were also observed in MeOH:water (80:20) treated MCF-7 cells. In conclusion, the MeOH:water (80:20) extract from lemon seed has potent antioxidant activity and induces apoptosis in MCF-7 cells, leading to the inhibition of proliferation. These results suggest that aglycones and glucosides of the limonoids and flavonoid present in MeOH:water (80:20) extract may potentially serve as a chemopreventive agent for breast cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Polyphenols from evening primrose ( Oenothera paradoxa ) defatted seeds induce apoptosis in human colon cancer Caco-2 cells.

    Science.gov (United States)

    Gorlach, Sylwia; Wagner, Waldemar; Podsedek, Anna; Sosnowska, Dorota; Dastych, Jarosław; Koziołkiewicz, Maria

    2011-07-13

    Polyphenols extracted from evening primrose seeds (industrial waste product) were studied as apoptosis inducers in human colorectal adenocarcinoma Caco-2 and HT-29 cell lines and in rat normal intestinal IEC-6 cells. The extract dose-dependently inhibited the growth of Caco-2, HT-29, and IEC-6 cells. However, nuclear DNA fragmentation characteristic of apoptosis was observed only in Caco-2. After 72 h of incubation with the extract at 150 μM gallic acid equivalents (44.1 μg extract/mL), Caco-2 cell numbers decreased to 19% of control and 48.8% of the cells were identified by flow cytometry as apoptotic. Under the same conditions only 8% of HT-29 cells and 12.6% of IEC-6 cells exhibited hypodiploid DNA content. The effects of the extract and its fractions on phosphatidylserine exposure and cell membrane integrity were assessed by high content screening image cytometry. The fractions strongly and dose-dependently reduced Caco-2 cell numbers, whereas HT-29 and IEC-6 cells were affected to lesser extents.

  4. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29 Cell Lines

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Abd Ghafar

    2013-01-01

    Full Text Available Kenaf (Hibiscus cannabinus from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β-sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO was from supercritical carbon dioxide extraction fluid (SFE at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29 and mouse embryonic fibroblast (NIH/3T3 cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  5. MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana.

    Science.gov (United States)

    Arsovski, Andrej A; Villota, Maria M; Rowland, Owen; Subramaniam, Rajagopal; Western, Tamara L

    2009-01-01

    Pollination triggers not only embryo development but also the differentiation of the ovule integuments to form a specialized seed coat. The mucilage secretory cells of the Arabidopsis thaliana seed coat undergo a complex differentiation process in which cell growth is followed by the synthesis and secretion of pectinaceous mucilage. A number of genes have been identified affecting mucilage secretory cell differentiation, including MUCILAGE-MODIFIED4 (MUM4). mum4 mutants produce a reduced amount of mucilage and cloning of MUM4 revealed that it encodes a UDP-L-rhamnose synthase that is developmentally up-regulated to provide rhamnose for mucilage pectin synthesis. To identify additional genes acting in mucilage synthesis and secretion, a screen for enhancers of the mum4 phenotype was performed. Eight mum enhancers (men) have been identified, two of which result from defects in known mucilage secretory cell genes (MUM2 and MYB61). Our results show that, in a mum4 background, mutations in MEN1, MEN4, and MEN5 lead to further reductions in mucilage compared to mum4 single mutants, suggesting that they are involved in mucilage synthesis or secretion. Conversely, mutations in MEN2 and MEN6 appear to affect mucilage release rather than quantity. With the exception of men4, whose single mutant exhibits reduced mucilage, none of these genes have a single mutant phenotype, suggesting that they would not have been identified outside the compromised mum4 background.

  6. UVA-induced ROS generation inhibition by Oenothera paradoxa defatted seeds extract and subsequent cell death in human dermal fibroblasts.

    Science.gov (United States)

    Jaszewska, Edyta; Soin, Magdalena; Filipek, Agnieszka; Naruszewicz, Marek

    2013-09-05

    UVA radiation stimulates the production of reactive oxygen species (ROS), which react with lipids, proteins and other intracellular molecules leading to oxidative stress, cellular damage and ultimately cell death. There is, therefore, a growing need for substances exhibiting antioxidant activity, which may support repair mechanisms of the skin. This study evaluates the protective effect of the aqueous Oenothera paradoxa Hudziok defatted seeds extract, rich in polyphenolic compounds, against UVA (25 and 50J/cm(2))-induced changes in normal human dermal fibroblasts (NHDFs). The tested extract (0.1-10μg/ml) has decreased, in a concentration-dependent fashion, the UVA-induced release of lactate dehydrogenase (LDH) into the culture medium, the ROS production (with the use of 2',7'-dichlorodihydrofluorescein diacetate) and lipid peroxidation (utilizing redox reactions with ferrous ions) as compared to the control cells (incubated without the extract). Moreover, the extract increased the number of viable (calcein positive) cells decreasing the number of cells in late apoptosis (annexin V-FITC and propidium iodide positive). Thus our results show that O. paradoxa defatted seeds extract may be beneficial for the prevention of UVA skin damage. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines.

    Science.gov (United States)

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29) and mouse embryonic fibroblast (NIH/3T3) cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  8. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts.

    Science.gov (United States)

    Frassinetti, Stefania; Moccia, Eleonora; Caltavuturo, Leonardo; Gabriele, Morena; Longo, Vincenzo; Bellani, Lorenza; Giorgi, Gianluca; Giorgetti, Lucia

    2018-10-01

    In this study the antioxidant effect of Cannabis sativa L. seeds and sprouts (3 and 5 days of germination) was evaluated. Total polyphenols, flavonoids and flavonols content, when expressed on dry weight basis, were highest in sprouts; ORAC and DPPH (in vitro assays), CAA-RBC (cellular antioxidant activity in red blood cells) and hemolysis test (ex vivo assays) evidenced a good antioxidant activity higher in sprouts than in seeds. Untargeted analysis by high resolution mass spectrometry in negative ion mode allowed the identification of main polyphenols (caffeoyltyramine, cannabisin A, B, C) in seeds and of ω-6 (linoleic acid) in sprouts. Antimutagenic effect of seeds and sprouts extracts evidenced a significant decrease of mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae D7 strain. In conclusion our results show that C. sativa seeds and sprouts exert beneficial effects on yeast and human cells and should be further investigated as a potential functional food. Copyright © 2018. Published by Elsevier Ltd.

  9. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    Science.gov (United States)

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian [Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang, Juncheng; Wu, Jihui [School of Life Science, University of Science and Technology of China, Hefei 230022 (China); Luo, Cheng, E-mail: Luo58@yahoo.com [Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  11. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    International Nuclear Information System (INIS)

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian; Wang, Juncheng; Wu, Jihui; Luo, Cheng

    2013-01-01

    Highlights: ► A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. ► We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. ► The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. ► The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  12. One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T L; Hirose, Y; Hitosugi, T; Hasegawa, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)], E-mail: chen@ksp.or.jp

    2008-03-21

    We present a novel way to obtain heavily nitrogen doped anatase TiO{sub 2} films by using a solid-state nitrogen source. Epitaxial growth of the films was realized by introducing one unit-cell seed layer, which was indicated by reflection high-energy electron diffraction as intensity oscillation. Results of x-ray diffraction and x-ray photoelectron spectroscopy confirmed that the films were in the anatase phase heavily doped with nitrogen of {approx}15 at%. The films obtained exhibited considerable narrowing of the optical bandgap, resulting in an enhancement of absorption in the visible-light region. (fast track communication)

  13. Preparation of a nano- and micro-fibrous decellularized scaffold seeded with autologous mesenchymal stem cells for inguinal hernia repair

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2017-02-01

    Full Text Available Yinlong Zhang,1,* Yuanyuan Zhou,1,* Xu Zhou,2,* Bin Zhao,1,* Jie Chai,1 Hongyi Liu,1 Yifei Zheng,1 Jinling Wang,3 Yaozong Wang,4 Yilin Zhao2 1Medical College, Xiamen University, 2Department of Oncology and Vascular Intervention Radiology, 3Department of Emergency, 4Department of Orthopaedics, Zhongshan Hospital, Xiamen University, Xiamen, People’s Republic of China *These authors contributed equally to this work Abstract: Prosthetic meshes used for hernioplasty are usually complicated with chronic pain due to avascular fibrotic scar or mesh shrinkage. In this study, we developed a tissue-engineered mesh (TEM by seeding autologous bone marrow-derived mesenchymal stem cells onto nanosized fibers decellularized aorta (DA. DA was achieved by decellularizing the aorta sample sequentially with physical, mechanical, biological enzymatic digestion, and chemical detergent processes. The tertiary structure of DA was constituted with micro-, submicro-, and nanosized fibers, and the original strength of fresh aorta was retained. Inguinal hernia rabbit models were treated with TEMs or acellular meshes (AMs. After implantation, TEM-treated rabbit models showed no hernia recurrence, whereas AM-treated animals displayed bulges in inguinal area. At harvest, TEMs were thicker, have less adhesion, and have stronger mechanical strength compared to AMs (P<0.05. Moreover, TEM showed better cell infiltration, tissue regeneration, and neovascularization (P<0.05. Therefore, these cell-seeded DAs with nanosized fibers have potential for use in inguinal hernioplasty. Keywords: nanobiomaterial, tissue engineering, inguinal hernia, hernioplasty, decellularized aorta 

  14. Induction of apoptosis in HeLa cells by chloroform fraction of seed extracts of Nigella sativa

    Directory of Open Access Journals (Sweden)

    Alshatwi Ali A

    2009-11-01

    Full Text Available Abstract Background Cancer remains one of the most dreaded diseases causing an astonishingly high death rate, second only to cardiac arrest. The fact that conventional and newly emerging treatment procedures like chemotherapy, catalytic therapy, photodynamic therapy and radiotherapy have not succeeded in reverting the outcome of the disease to any drastic extent, has made researchers investigate alternative treatment options. The extensive repertoire of traditional medicinal knowledge systems from various parts of the world are being re-investigated for their healing properties. This study progresses in the direction of identifying component(s from Nigella sativa with anti cancer acitivity. In the present study we investigated the efficacy of Organic extracts of Nigella sativa seed powder for its clonogenic inhibition and induction of apoptosis in HeLa cancer cell. Results Methanolic, n-Hexane and chloroform extracts of Nigella sativa seedz effectively killed HeLa cells. The IC50 values of methanolic, n-hexane, and chloroform extracts of Nigella sativa were 2.28 μg/ml, 2.20 μg/ml and 0.41 ng/ml, respectively. All three extracts induced apoptosis in HeLa cells. Apoptosis was confirmed by DNA fragmentation, western blot and terminal transferase-mediated dUTP-digoxigenin-end labeling (TUNEL assay. Conclusion Western Blot and TUNEL results suggested that Nigella sativa seed extracts regulated the expression of pro- and anti- apoptotic genes, indicating its possible development as a potential therapeutic agent for cervical cancer upon further investigation.

  15. Collagen-coated polylactic-glycolic acid (PLGA) seeded with neural-differentiated human mesenchymal stem cells as a potential nerve conduit.

    Science.gov (United States)

    Sulong, Ahmad Fadzli; Hassan, Nur Hidayah; Hwei, Ng Min; Lokanathan, Yogeswaran; Naicker, Amaramalar Selvi; Abdullah, Shalimar; Yusof, Mohd Reusmaazran; Htwe, Ohnmar; Idrus, Ruszymah Bt Hj; Haflah, Nor Hazla Mohamed

    2014-01-01

    Autologous nerve grafts to bridge nerve gaps pose various drawbacks. Nerve tissue engineering to promote nerve regeneration using artificial neural conduits has emerged as a promising alternative. To develop an artificial nerve conduit using collagen-coated polylactic-glycolic acid (PLGA) and to analyse the survivability and propagating ability of the neuro-differentiated human mesenchymal stem cells in this conduit. The PLGA conduit was constructed by dip-molding method and coated with collagen by immersing the conduit in collagen bath. The ultra structure of the conduits were examined before they were seeded with neural-differentiated human mesenchymal stem cells (nMSC) and implanted sub-muscularly on nude mice thighs. The non-collagen-coated PLGA conduit seeded with nMSC and non-seeded non-collagen-coated PLGA conduit were also implanted for comparison purposes. The survivability and propagation ability of nMSC was studied by histological and immunohistochemical analysis. The collagen-coated conduits had a smooth inner wall and a highly porous outer wall. Conduits coated with collagen and seeded with nMSCs produced the most number of cells after 3 weeks. The best conduit based on the number of cells contained within it after 3 weeks was the collagen-coated PLGA conduit seeded with neuro-transdifferentiated cells. The collagen-coated PLGA conduit found to be suitable for attachment, survival and proliferation of the nMSC. Minimal cell infiltration was found in the implanted conduits where nearly all of the cells found in the cell seeded conduits are non-mouse origin and have neural cell markers, which exhibit the biocompatibility of the conduits. The collagen-coated PLGA conduit is biocompatible, non-cytotoxic and suitable for use as artificial nerve conduits.

  16. A role for α-galactosidase in the degradation of the endosperm cell walls of lettuce seeds, cv. Grand Rapids.

    Science.gov (United States)

    Leung, D W; Bewley, J D

    1983-04-01

    Isolated endosperms of Grand Rapids lettuce (Lactuca sativa L.) seeds undergo extensive cell-wall degradation and sugars are released into the surrounding incubation medium. One sugar so released is galactose. α-Galactosidase (EC 3.2.122) is present at the same level in both dry and imbibed isolated endosperms and is responsible for the release of galactose. However, this enzyme does not act upon the native endosperm cell wall, but requires first its partial hydrolysis and the production of oligomers by the action of endo-β-mannanase (EC 3.2.1.787). Galactose is then cleaved from these oligomers, allowing their further subsequent hydrolysis by endo-β-mannanase. Thus α-galactosidase and endo-β-mannanase act cooperatively to effect the hydrolysis of the lettuce endosperm cell walls.

  17. Amniotic membrane seeded with mesenchymal adipose-derived stem cell for coverage of wound in third degree burn: An experimental study

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Fatemi

    2014-09-01

    Conclusion: Acellular amnion seeded with adipose-derived stem cell can result in faster wound healing and better histopathology characteristic. The amnion as a scaffold and the fat derived stem cells as healing accelerator are recommended for coverage of the 3rd degree burn wounds after excision and it may reduce the need for skin graft.

  18. Anticancer Potential of Aqueous Ethanol Seed Extract of Ziziphus mauritiana against Cancer Cell Lines and Ehrlich Ascites Carcinoma

    Directory of Open Access Journals (Sweden)

    Tulika Mishra

    2011-01-01

    Full Text Available Ziziphus mauritiana (Lamk. is a fruit tree that has folkloric implications against many ailments and diseases. In the present study, anticancer potential of seed extract of Ziziphus mauritiana in vitro against different cell lines (HL-60, Molt-4, HeLa, and normal cell line HGF by MTT assay as well as in vivo against Ehrich ascites carcinoma bearing Swiss albino mice was investigated. The extract was found to markedly inhibit the proliferation of HL-60 cells. Annexin and PI binding of treated HL-60 cells indicated apoptosis induction by extract in a dose-dependent manner. The cell cycle analysis revealed a prominent increase in sub Go population at concentration of 20 μg/ml and above. Agarose gel electrophoresis confirmed DNA fragmentation in HL-60 cells after 3 h incubation with extract. The extract also exhibited potent anticancer potential in vivo. Treatment of Ehrlich ascites carcinoma bearing Swiss albino mice with varied doses (100–800 mg/kg b.wt. of plant extract significantly reduced tumor volume and viable tumor cell count and improved haemoglobin content, RBC count, mean survival time, tumor inhibition, and percentage life span. The enhanced antioxidant status in extract-treated animals was evident from decline in levels of lipid peroxidation and increased levels of glutathione, catalase, and superoxide dismutase.

  19. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    Science.gov (United States)

    Arsenyev, Sergey A.; Temkin, Richard J.; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Boulware, Chase H.; Grimm, Terry L.; Rogacki, Adam R.

    2016-08-01

    We present a study of higher order mode (HOM) damping in the first multicell superconducting radio-frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs). Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  20. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    Directory of Open Access Journals (Sweden)

    Sergey A. Arsenyev

    2016-08-01

    Full Text Available We present a study of higher order mode (HOM damping in the first multicell superconducting radio-frequency (SRF cavity with a photonic band gap (PBG coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs. Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  1. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse

    Directory of Open Access Journals (Sweden)

    Cremer Thomas

    2005-12-01

    Full Text Available Abstract Background Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. Results All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Conclusion Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation.

  2. Seed research for improved technologies

    OpenAIRE

    Bino,R.J.; Jalink,H.; Oluoch,M.O.; Groot,S.P.C.

    1998-01-01

    The production of high-quality seed is the basis for a durable a profitable agriculture. After production, seed is processed, conditioned, stored, shipped and germinated. For quality assurance, seed quality has to be controlled at all steps of the production chain. Seed functioning is accompanied by programmed transitions from cell proliferation to quiescence upon maturation and from quiescence to reinitiation of cellular metabolism upon imbibition. Despite the obvious importance of these con...

  3. Dynamic multiphoton imaging of acellular dermal matrix scaffolds seeded with mesenchymal stem cells in diabetic wound healing.

    Science.gov (United States)

    Chu, Jing; Shi, Panpan; Deng, Xiaoyuan; Jin, Ying; Liu, Hao; Chen, Maosheng; Han, Xue; Liu, Hanping

    2018-03-25

    Significantly effective therapies need to be developed for chronic nonhealing diabetic wounds. In this work, the topical transplantation of mesenchymal stem cell (MSC) seeded on an acellular dermal matrix (ADM) scaffold is proposed as a novel therapeutic strategy for diabetic cutaneous wound healing. GFP-labeled MSCs were cocultured with an ADM scaffold that was decellularized from normal mouse skin. These cultures were subsequently transplanted as a whole into the full-thickness cutaneous wound site in streptozotocin-induced diabetic mice. Wounds treated with MSC-ADM demonstrated an increased percentage of wound closure. The treatment of MSC-ADM also greatly increased angiogenesis and rapidly completed the reepithelialization of newly formed skin on diabetic mice. More importantly, multiphoton microscopy was used for the intravital and dynamic monitoring of collagen type I (Col-I) fibers synthesis via second harmonic generation imaging. The synthesis of Col-I fibers during diabetic wound healing is of great significance for revealing wound repair mechanisms. In addition, the activity of GFP-labeled MSCs during wound healing was simultaneously traced via two-photon excitation fluorescence imaging. Our research offers a novel advanced nonlinear optical imaging method for monitoring the diabetic wound healing process while the ADM and MSCs interact in situ. Schematic of dynamic imaging of ADM scaffolds seeded with mesenchymal stem cells in diabetic wound healing using multiphoton microscopy. PMT, photo-multiplier tube. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Study on Characterization of Light-Induced Electroless Plated Ni Seed Layer and Silicide Formation for Solar Cell Application

    Science.gov (United States)

    Takaloo, Ashkan Vakilipour; Joo, Seung Ki; Es, Firat; Turan, Rasit; Lee, Doo Won

    2018-03-01

    Light-induced electroless plating (LIEP) is an easy and inexpensive method that has been widely used for seed layer deposition of Nickel/Copper (Ni/Cu)-based metallization in the solar cell. In this study, material characterization aspects of the Ni seed layer and Ni silicide formation at different bath conditions and annealing temperatures on the n-side of a silicon diode structure have been examined to achieve the optimum cell contacts. The effects of morphology and chemical composition of Ni film on its electrical conductivity were evaluated and described by a quantum mechanical model. It has been found that correlation exists between the theoretical and experimental conductivity of Ni film. Residual stress and phase transformation of Ni silicide as a function of annealing temperature were evaluated using Raman and XRD techniques. Finally, transmission line measurement (TLM) technique was employed to determine the contact resistance of Ni/Si stack after thermal treatment and to understand its correlation with the chemical-structural properties. Results indicated that low electrical resistive mono-silicide (NiSi) phase as low as 5 mΩ.cm2 was obtained.

  5. Irradiation effect on the seed vigor, SOD activity and MDA content in germinating seeds of yellow-seeded and black-seeded rape seed (Brassica napus L.)

    International Nuclear Information System (INIS)

    Han Jixiang; Hu Danhong; Liu Houli

    1993-01-01

    Seeds of a set of near-isogenic lines (Brassica napus L.) with different seed coat color from yellow to black were irradiated by 60 Co γ-rays of 150 krad. Seed vigor, superoxide dismutase (SOD) and malondialdehyde (MDA) in germinating seeds were analysed. In these characters, no significant difference between yellow-seeded lines (YLs) and black-seeded lines (BLs) showed before irradiation. But after irradiation, SOD activity in YLs was lower than that in BLs. While MDA content in YLs was obviously higher that that in DLs. As a result of irradiation, seed vigor of YLs was lower than that in BLs. these results indicated that the irradiation resistance of rape seed was related to the level of SOD as well as protective structure or substances in seed coat and that the radiosensitivity of YLs was higher than that of DLs

  6. A guidance channel seeded with autologous Schwann cells for repair of cauda equina injury in a primate model.

    Science.gov (United States)

    Calancie, Blair; Madsen, Parley W; Wood, Patrick; Marcillo, Alexander E; Levi, Allan D; Bunge, Richard P

    2009-01-01

    To evaluate an implantable guidance channel (GC) seeded with autologous Schwann cells to promote regeneration of transected spinal nerve root axons in a primate model. Schwann cells were obtained from sural nerve segments of monkeys (Macaca fascicularis; cynomolgus). Cells were cultured, purified, and seeded into a PAN/PVC GC. Approximately 3 weeks later, monkeys underwent laminectomy and dural opening. Nerve roots of the L4 through L7 segments were identified visually. The threshold voltage needed to elicit hindlimb muscle electromyography (EMG) after stimulation of intact nerve roots was determined. Segments of 2 or 3 nerve roots (each approximately 8-15 mm in length) were excised. The GC containing Schwann cells was implanted between the proximal and distal stumps of these nerve roots and attached to the stumps with suture. Follow-up evaluation was conducted on 3 animals, with survival times of 9 to 14 months. Upon reexposure of the implant site, subdural nerve root adhesions were noted in all 3 animals. Several of the implanted GC had collapsed and were characterized by thin strands of connective tissue attached to either end. In contrast, 3 of the 8 implanted GC were intact and had white, glossy cables entering and exiting the conduits. Electrical stimulation of the tissue cable in each of these 3 cases led to low-threshold evoked EMG responses, suggesting that muscles had been reinnervated by axons regenerating through the repair site and into the distal nerve stump. During harvesting of the GC implant, sharp transection led to spontaneous EMG in the same 3 roots showing a low threshold to electrical stimulation, whereas no EMG was seen when harvesting nerve roots with high thresholds to elicit EMG. Histology confirmed large numbers of myelinated axons at the midpoint of 2 GC judged to have reinnervated target muscles. We found a modest rate of successful regeneration and muscle reinnervation after treatment of nerve root transection with a Schwann cell-seeded

  7. Pro-oxidative and pro-apoptotic action of defatted seeds of Oenothera paradoxa on human skin melanoma cells.

    Science.gov (United States)

    Jaszewska, Edyta; Kośmider, Anita; Kiss, Anna K; Naruszewicz, Marek

    2009-09-23

    Three extracts of defatted seeds of Oenothera paradoxa Hudziok, aqueous extract, 60% ethanolic extract, and 30% isopropanolic extract, differing by their total content of phenolic compounds and by their contents of individual polyphenols, were investigated in this study. The extracts exerted cytotoxic action on HTB-140 human skin melanoma cells. After 24 h of incubation, IC(50) values of 169.7 +/- 5.9 micog/mL, 72.4 +/- 3.8 microg/mL, and 155.3 +/- 6.3 microg/mL were obtained for HTB-140 cells with the aqueous extract, 60% ethanolic extract, and 30% isopropanolic extract at the tested concentrations (5-200 microg/mL), respectively, while IC(50) for normal fibroblast cells NHDFs was not attained. Moreover, for HTB-140 cells, LD(50) (concentration at which 50% of cells were dead) of 89.2 +/- 4.3 microg/mL and 181.4 +/- 6.5 microg/mL were obtained with 60% ethanolic extract and 30% isopropanolic extract, respectively. In melanoma cells, all three extracts caused a concentration-dependent increase of ROS production, GSH, and ATP lowering, and appearance of phosphatidylserine on the external surface of cellular membranes where it was bound to annexin V-FITC; furthermore, apoptosis without activation of caspase-3 took place. The most effective was 60% ethanolic extract, which had the greatest total content of phenolic compounds and the greatest content of pentagalloyloglucose (PGG).

  8. Weft-knitted silk-poly(lactide-co-glycolide) mesh scaffold combined with collagen matrix and seeded with mesenchymal stem cells for rabbit Achilles tendon repair.

    Science.gov (United States)

    Zhang, Wenyuan; Yang, Yadong; Zhang, Keji; Li, Ying; Fang, Guojian

    2015-02-01

    Natural silk fibroin fiber scaffolds have excellent mechanical properties, but degrade slowly. In this study, we used poly(lactide-co-glycolide) (PLGA, 10:90) fibers to adjust the overall degradation rate of the scaffolds and filled them with collagen to reserve space for cell growth. Silk fibroin-PLGA (36:64) mesh scaffolds were prepared using weft-knitting, filled with type I collagen, and incubated with rabbit autologous bone marrow-derived mesenchymal stem cells (MSCs). These scaffold-cells composites were implanted into rabbit Achilles tendon defects. At 16 weeks after implantation, morphological and histological observations showed formation of tendon-like tissues that expressed type I collagen mRNA and a uniformly dense distribution of collagen fibers. The maximum load of the regenerated Achilles tendon was 58.32% of normal Achilles tendon, which was significantly higher than control group without MSCs. These findings suggest that it is feasible to construct tissue engineered tendon using weft-knitted silk fibroin-PLGA fiber mesh/collagen matrix seeded with MSCs for rabbit Achilles tendon defect repair.

  9. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-01-01

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16 INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  10. NAC selectively inhibit cancer telomerase activity: A higher redox homeostasis threshold exists in cancer cells

    Directory of Open Access Journals (Sweden)

    Pengying Li

    2016-08-01

    Full Text Available Telomerase activity controls telomere length, and this plays an important role in stem cells, aging and tumors. Antioxidant was shown to protect telomerase activity in normal cells but inhibit that in cancer cells, but the underlying mechanism is elusive. Here we found that 7721 hepatoma cells held a higher redox homeostasis threshold than L02 normal liver cells which caused 7721 cells to have a higher demand for ROS; MnSOD over-expression in 7721 decreased endogenous reactive oxygen species (ROS and inhibited telomerase activity; Akt phosphorylation inhibitor and NAC both inhibited 7721 telomerase activity. The over-elimination of ROS by NAC resulted in the inhibition of Akt pathway. Our results suggest that ROS is involved in the regulation of cancer telomerase activity through Akt pathway. The different intracellular redox homeostasis and antioxidant system in normal cells and tumor cells may be the cause of the opposite effect on telomerase activity in response to NAC treatment. Our results provide a theoretical base of using antioxidants selectively inhibit cancer telomerase activity. Findings of the present study may provide insights into novel approaches for cancer treatment.

  11. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada, E-mail: sorada.k@chula.ac.th

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10 mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm{sup 2}) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections. - Highlights

  12. Ricinosomes provide an early indicator of suspensor and endosperm cells destined to die during late seed development in quinoa (Chenopodium quinoa).

    Science.gov (United States)

    López-Fernández, M P; Maldonado, S

    2013-11-01

    In mature quinoa (Chenopodium quinoa) seeds, the lasting endosperm forms a micropylar cone covering the radicle. The suspensor cells lie within the centre of the cone. During the final stage of seed development, the cells of the lasting endosperm accumulate protein and lipids while the rest are crushed and disintegrated. Both the suspensor and endosperm die progressively from the innermost layers surrounding the embryo and extending towards the nucellar tissue. Ricinosomes are endoplasmic reticulum-derived organelles that accumulate both the pro-form and the mature form of cysteine endopeptidase (Cys-EP), first identified in castor bean (Ricinus communis) endosperm during germination. This study sought to identify associations between the presence of ricinosomes and programmed cell death (PCD) hallmarks in suspensor and endosperm cells predestined to die during quinoa seed development. A structural study using light microscopy and transmission electron microscopy was performed. To detect the presence of Cys-EP, both western blot and in situ immunolocalization assays were carried out using anti-R. communis Cys-EP antibody. A TUNEL assay was used to determine DNA fragmentation. Except for the one or two cell layers that constitute the lasting endosperm in the mature seed, ricinosomes were found in suspensor and endosperm cells. These cells were also the site of morphological abnormalities, including misshapen and fragmented nuclei, vesiculation of the cytosol, vacuole collapse and cell wall disorganization. It is proposed that, in suspensor and endosperm cells, the early detection of Cys-EP in ricinosomes predicts the occurrence of PCD during late seed development.

  13. In Vitro Osteogenic and Odontogenic Differentiation of Human Dental Pulp Stem Cells Seeded on Carboxymethyl Cellulose-Hydroxyapatite Hybrid Hydrogel.

    Directory of Open Access Journals (Sweden)

    Gabriella eTeti

    2015-10-01

    Full Text Available Stem cells from human dental pulp have been considered as an alternative source of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages.Recently, polysaccharide based hydrogels have become especially attractive as matrices for the repair and regeneration of a wide variety of tissues and organs. The incorporation of inorganic minerals as hydroxyapatite nanoparticles can modulate the performance of the scaffolds with potential applications in tissue engineering. The aim of this study was to verify the osteogenic and odontogenic differentiation of dental pulp stem cells (DPSCs cultured on a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Human DPSCs were seeded on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel and on carboxymethyl cellulose hydrogel for 1, 3, 5, 7, 14 and 21 days. Cell viability assay and ultramorphological analysis were carried out to evaluate biocompatibility and cell adhesion. Real Time PCR was carried out to demonstrate the expression of osteogenic and odontogenic markers. Results showed a good adhesion and viability in cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel, while a low adhesion and viability was observed in cells cultured on carboxymethyl cellulose hydrogel. Real Time PCR data demonstrated a temporal up-regulation of osteogenic and odontogenic markers in dental pulp stem cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. In conclusion, our in vitro data confirms the ability of DPSCs to differentiate toward osteogenic and odontogenic lineages in presence of a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Taken together, our results provide evidence that DPSCs and carboxymethyl cellulose—hydroxyapatite hybrid hydrogel could be considered promising candidates for dental pulp complex and periodontal tissue engineering.

  14. The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells.

    Science.gov (United States)

    Agizzio, Ana Paula; Da Cunha, Maura; Carvalho, André O; Oliveira, Marco Antônio; Ribeiro, Suzanna F F; Gomes, Valdirene M

    2006-10-01

    Different types of antimicrobial proteins were purified from plant seeds, including chitinases, β-1,3-glucanases, defensins, thionins, lipid transfer proteins and 2S albumins. It has become clear that these groups of proteins play an important role in the protection of plants from microbial infection. Recent results from our laboratory have shown that the defense-related proteins from passion fruit seeds, named Pf1 and Pf2 (which show sequence homology with 2S albumins), inhibit fungal growth and glucose-stimulated acidification of the medium by Saccharomyces cerevisiae cells. The aim of this study was to determine whether 2S albumins from passion fruit seeds induce plasma membrane permeabilization and cause morphological alterations in yeast cells. Initially, we used an assay based on the uptake of SYTOX Green, an organic compound that fluoresces upon interaction with nucleic acids and penetrates cells with compromised plasma membranes, to investigate membrane permeabilization in S. cerevisiae cells. When viewed with a confocal laser microscope, S. cervisiae cells showed strong SYTOX Green fluorescence in the cytosol, especially in the nuclei. 2S albumins also inhibited glucose-stimulated acidification of the medium by S. cerevisiae cells, which indicates a probable impairment of fungal metabolism. The microscopical analysis of the yeast cells treated with 2S albumins demonstrated several morphological alterations in cell shape, cell surface, cell wall and bud formation, as well as in the organization of intracellular organelles. Copyright © 2006 Elsevier Ireland Ltd. All rights reserved.

  15. Effects of radioactive 125I seeds on A549 cell line and human embryonic lung diploid cell line 2BS cultivated in vitro and assessment of its clinical safety dose

    International Nuclear Information System (INIS)

    Bian Wenchao; Qi Liangchen

    2012-01-01

    Objective: To observe the cell count changes of A549 cell line and human embryonic lung diploid cell line 2BS after irradiated by 125 I seeds with different doses, and to study the growth inhibition of 125 I on this two kinds of cell lines, and to determine its clinical safety dose in treatment of non-small cell lung. Methods: 125 I seeds with different doses (low dose: 0.2 mCi, mediate dose: 0.4 mCi, high dose: 0.8 mCi) were chosen and put into A549 cells and human embryonic lung diploid cell line 2BS in vitro, the cells on the 2nd, 4th, 6th and 8th days after irradiation were collected, the alive cells were counted by cells dyeing experiments, then the growth curves were drawn, and the IC 50 of the radioactive 125 I seeds to both two cell lines were calculated. Results: Compared with blank and control groups, the cell proliferation trend of A549 cells in low dose group was not significantly influenced (P>0.05), but the growth of A549 cells in mediate and high dose groups were inhibited in a time-dependent manner, there were significant differences (P<0.05), the most obvious change was on the 6th day. The IC 50 of the radioactive 125 I seeds to A549 cells was about .04 mCi. While the growth inhibition of 125 I 2BS had no statistically significant differences between various dose groups (P>0.05), and the IC 50 of the radioactive 125 I seeds to 2BS cell line was about 1.65 mCi. Conclusion: 0.4 mCi of radioactive 125 I seeds has already had the obvious damage effect on A549 cell, 0.8 mCi of radioactive 125 I seeds has the stronger effect. The IC 50 of the radioactive 125 I seeds to 2BS cells is about 1.65 mCi, so the clinical safety dosage is 0.4-0.8 mCi. (authors)

  16. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    W. Nie

    2013-01-01

    Full Text Available Xyloglucans (XGs of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw and copper complex precipitation (TSc. Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT and fibroblasts (NHDF in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration.

  17. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.

    Science.gov (United States)

    Kumbhar, Sneha G; Pawar, S H

    2016-01-01

    Chitosan and alginate are two natural and accessible polymers that are known to be biocompatible, biodegradable and possesses good antimicrobial activity. When combined, they exhibit desirable characteristics and can be created into a scaffold for cell culture. In this study interaction of chitosan-alginate scaffolds with mesenchymal stem cells are studied. Mesenchymal stem cells were derived from human umbilical cord tissues, characterized by flow cytometry and other growth parameters studied as well. Proliferation and viability of cultured cells were studied by MTT Assay and Trypan Blue dye exclusion assay. Besides chitosan-alginate scaffold was prepared by freeze-drying method and characterized by FTIR, SEM and Rheological properties. The obtained 3D porous structure allowed very efficient seeding of hUMSCs that are able to inhabit the whole volume of the scaffold, showing good adhesion and proliferation. These materials showed desirable rheological properties for facile injection as tissue scaffolds. The results of this study demonstrated that chitosan-alginate scaffold may be promising biomaterial in the field of tissue engineering, which is currently under a great deal of examination for the development and/or restoration of tissue and organs. It combines the stem cell therapy and biomaterials.

  18. Higher positive identification of malignant CSF cells using the cytocentrifuge than the Suta chamber

    Directory of Open Access Journals (Sweden)

    Sérgio Monteiro de Almeida

    Full Text Available ABSTRACT Objective To define how to best handle cerebrospinal fluid (CSF specimens to obtain the highest positivity rate for the diagnosis of malignancy, comparing two different methods of cell concentration, sedimentation and cytocentrifugation. Methods A retrospective analysis of 411 CSF reports. Results This is a descriptive comparative study. The positive identification of malignant CSF cells was higher using the centrifuge than that using the Suta chamber (27.8% vs. 19.0%, respectively; p = 0.038. Centrifuge positively identified higher numbers of malignant cells in samples with a normal concentration of white blood cells (WBCs (< 5 cells/mm3 and with more than 200 cells/mm3, although this was not statistically significant. There was no lymphocyte loss using either method. Conclusions Cytocentrifugation positively identified a greater number of malignant cells in the CSF than cytosedimentation with the Suta chamber. However, there was no difference between the methods when the WBC counts were within the normal range.

  19. Differing strategies of patterning of follicular cells in higher and lower brachycerans (Diptera: Brachycera).

    Science.gov (United States)

    Tworzydlo, Waclaw; Jablonska, Anna; Kisiel, Elzbieta; Bilinski, Szczepan M

    2005-10-01

    In all higher dipterans (Brachycera), including the fruitfly, Drosophila melanogaster, each egg chamber (ovarian follicle) consists of a group (clone) of germ cells (one oocyte and 15 accompanying nurse cells) that is surrounded by a layer of somatic mesodermal follicular cells (FCs). As oogenesis progresses the initially uniform FCs diversify into several morphologically and functionally distinct subpopulations. In D. melanogaster some of these subpopulations, e.g., border, centripetal, and dorsolateral cells, undertake coordinated migration or rearrangement over the surface of the germ cells. During the final stages of oogenesis these subpopulations participate in the formation of a complex, regionally specialized eggshell. In representatives of lower brachycerans (Orthorrhapha), only FCs that undertake active, directed migration are the border cells. These cells originate at the anterior pole of the ovarian follicle and migrate between the nurse cells to the anterior pole of the oocyte. Reduced motility of FCs in lower brachycerans results in the absence of certain FC subpopulations in their egg chambers and subsequent simplicity of their eggshells. We found that the lack of some FC subpopulations coincided with the appearance of lamellipodium-like protrusions of the oocyte. These protrusions penetrated between the apposing membranes of nurse and FCs and partially enveloped the nurse cell compartment. Analysis of whole-mount preparations stained with rhodamine-conjugated phalloidin revealed that the protrusions contained microfilaments and that their tips were equipped with actin-rich filopodium-like processes. We also found that in some lower brachycerans (representatives of the family Rhagionidae), the FCs located at the posterior pole of the oocyte, became enlarged and morphologically similar to the anterior border cells. These findings indicate that in higher dipterans the processes leading to the formation of a functional egg are variable and often markedly

  20. Feasibility of pig and human-derived aortic valve interstitial cells seeding on fixative-free decellularized animal pericardium.

    Science.gov (United States)

    Santoro, Rosaria; Consolo, Filippo; Spiccia, Marco; Piola, Marco; Kassem, Samer; Prandi, Francesca; Vinci, Maria Cristina; Forti, Elisa; Polvani, Gianluca; Fiore, Gianfranco Beniamino; Soncini, Monica; Pesce, Maurizio

    2016-02-01

    Glutaraldehyde-fixed pericardium of animal origin is the elective material for the fabrication of bio-prosthetic valves for surgical replacement of insufficient/stenotic cardiac valves. However, the pericardial tissue employed to this aim undergoes severe calcification due to chronic inflammation resulting from a non-complete immunological compatibility of the animal-derived pericardial tissue resulting from failure to remove animal-derived xeno-antigens. In the mid/long-term, this leads to structural deterioration, mechanical failure, and prosthesis leaflets rupture, with consequent need for re-intervention. In the search for novel procedures to maximize biological compatibility of the pericardial tissue into immunocompetent background, we have recently devised a procedure to decellularize the human pericardium as an alternative to fixation with aldehydes. In the present contribution, we used this procedure to derive sheets of decellularized pig pericardium. The decellularized tissue was first tested for the presence of 1,3 α-galactose (αGal), one of the main xenoantigens involved in prosthetic valve rejection, as well as for mechanical tensile behavior and distensibility, and finally seeded with pig- and human-derived aortic valve interstitial cells. We demonstrate that the decellularization procedure removed the αGAL antigen, maintained the mechanical characteristics of the native pig pericardium, and ensured an efficient surface colonization of the tissue by animal- and human-derived aortic valve interstitial cells. This establishes, for the first time, the feasibility of fixative-free pericardial tissue seeding with valve competent cells for derivation of tissue engineered heart valve leaflets. © 2015 Wiley Periodicals, Inc.

  1. Seeds of Peganum Harmala L. chemical analysis, antimalarial and antioxidant activities, and cytotoxicity against human breast cancer cells.

    Science.gov (United States)

    Chabir, Naziha; Ibrahim, Hany; Romdhane, Hany; Valentin, Alexis; Moukarzel, Beatrice; Mars, Mohamed; Bouajila, Jalloul

    2014-01-01

    The present study evaluated the levels of total phenolics, flavonoids, tannins and anthocyanins from Peganum harmala L. seeds and determined their antioxidant, antiplasmodial and anticancer potentials. Antioxidant activity was determined by DPPH and ABTS assays. Extracts of P. harmala seeds from Oudref and Djerba (two places in Tunisia) were obtained by successive extraction solvents: petroleum ether, chloroform, ethyl acetate, ethanol and water. Their composition was evaluated for phenolics (gallic acid equivalent 2.48 to 72.52 g/kg), tannins (catechin equivalent 0 to 25.27 g/kg), anthocyanins (cyanidin equivalent 0 to 20.56 mg/kg) and flavonoids (quercetin equivalent 0 to 3.12 g/kg). Ethanolic extract exerted the highest activities against a chloroquine-resistant strain of Plasmodium falciparum (IC₅₀=23 mg/L), against human breast cancer cells MCF7 (IC₅₀=32 mg/L) and against free radical (IC₅₀=19.09±3.07 mg/L). Correlations were studied between each chemical family and the three activities. Total phenolics content exhibited the highest correlation with antiplasmodial activity (R²=0.92) and with anticancer activity (R²=0.86), respectively.

  2. Transcriptional effect of an Aframomum angustifolium seed extract on human cutaneous cells using low-density DNA chips.

    Science.gov (United States)

    Bonnet-Duquennoy, Mathilde; Dumas, Marc; Debacker, Adeline; Lazou, Kristell; Talbourdet, Sylvie; Franchi, Jocelyne; Heusèle, Catherine; André, Patrice; Schnebert, Sylvianne; Bonté, Frédéric; Kurfürst, Robin

    2007-06-01

    Studying photoexposed and photoprotected skin biopsies from young and aged women, it has been found that a specific zone, composed of the basal layers of the epidermis, the dermal epidermal junction, and the superficial dermis, is major target of aging and reactive oxygen species. We showed that this zone is characterized by significant variations at a transcriptional and/or protein levels. Using low-density DNA chip technology, we evaluated the effect of a natural mixture of Aframomum angustifolium seed extract containing labdane diterpenoids on these aging markers. Expression profiles of normal human fibroblasts (NHF) were studied using a customized cDNA macroarray system containing genes covering dermal structure, inflammatory responses, and oxidative stress defense mechanisms. For normal human keratinocyte (NHK) investigations, we chose OLISA technique, a sensitive and quantitative method developed by BioMérieux specifically designed to investigate cell death, proliferation, epidermal structure, differentiation, and oxidative stress defense response. We observed that this extract strongly modified gene expression profiles of treated NHK, but weakly for NHF. This extract regulated antioxidant defenses, dermal-epidermal junction components, and epidermal renewal-related genes. Using low-density DNA chip technology, we identified new potential actions of A. angustifolium seed extract on skin aging.

  3. COBRA-LIKE2, a Member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE Family, Plays a Role in Cellulose Deposition in Arabidopsis Seed Coat Mucilage Secretory Cells1,2[OPEN

    Science.gov (United States)

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J.; Harpaz-Saad, Smadar

    2015-01-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. PMID:25583925

  4. Higher Regional Court Celle, judgment of December 9, 1986 (legal term of radioactive waste)

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In its decision of December 9, 1986, the Higher Regional Court in Celle deals with the legal term of radioactive waste. The definition does not result from sec. 1 para. 1 of the Waste Disposal Act but from sec. 9 a para. 1 Atomic Energy Act. (WG) [de

  5. Influence of polyphenol extract from evening primrose (Oenothera paradoxa seeds on human prostate and breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Urszula Lewandowska

    2014-02-01

    Full Text Available There is growing interest in plant polyphenols which exhibit pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. The objective of our study was to evaluate the influence of an evening primrose extract (EPE from defatted seeds on viability and invasiveness of three human cell lines: PNT1A (normal prostate cells, DU145 (prostate cancer cells and MDA-MB-231 (breast cancer cells. The results revealed that after 72 h of incubation the tested extract reduced the viability of DU 145 and MDA-MB-231 with IC50 equal to 14.5 μg/mL for both cell lines. In contrast, EPE did not inhibit the viability of normal prostate cells. Furthermore, EPE reduced PNT1A and MDA-MB-231 cell invasiveness; at the concentration of 21.75 μg/mL the suppression of invasion reached 92% and 47%, respectively (versus control. Additionally, zymographic analysis revealed that after 48 h of incubation EPE inhibited metalloproteinase-2 (MMP-2 and metalloproteinase-9 (MMP-9 activities in a dose-dependent manner. For PNT1A the activities of MMP-2 and MMP-9 decreased 4- and 2-fold, respectively, at EPE concentration of 29 μg/mL. In the case of MDA-MB-231 and DU 145 the decrease in MMP-9 activity at EPE concentration of 29 μg/mL was 5.5-fold and almost 1.9-fold, respectively. In conclusion, this study suggests that EPE may exhibit antimigratory, anti-invasive and antimetastatic potential towards prostate and breast cancer cell lines.

  6. Influence of polyphenol extract from evening primrose (Oenothera paradoxa) seeds on human prostate and breast cancer cell lines.

    Science.gov (United States)

    Lewandowska, Urszula; Owczarek, Katarzyna; Szewczyk, Karolina; Podsędek, Anna; Koziołkiewicz, Maria; Hrabec, Elżbieta

    2014-02-03

    There is growing interest in plant polyphenols which exhibit pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. The objective of our study was to evaluate the influence of an evening primrose extract (EPE) from defatted seeds on viability and invasiveness of three human cell lines: PNT1A (normal prostate cells), DU145 (prostate cancer cells) and MDA-MB-231 (breast cancer cells). The results revealed that after 72 h of incubation the tested extract reduced the viability of DU 145 and MDA-MB-231 with IC50 equal to 14.5 μg/mL for both cell lines. In contrast, EPE did not inhibit the viability of normal prostate cells. Furthermore, EPE reduced PNT1A and MDA-MB-231 cell invasiveness; at the concentration of 21.75 μg/mL the suppression of invasion reached 92% and 47%, respectively (versus control). Additionally, zymographic analysis revealed that after 48 h of incubation EPE inhibited metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) activities in a dose-dependent manner. For PNT1A the activities of MMP-2 and MMP-9 decreased 4- and 2-fold, respectively, at EPE concentration of 29 μg/mL. In the case of MDA-MB-231 and DU 145 the decrease in MMP-9 activity at EPE concentration of 29 μg/mL was 5.5-fold and almost 1.9-fold, respectively. In conclusion, this study suggests that EPE may exhibit antimigratory, anti-invasive and antimetastatic potential towards prostate and breast cancer cell lines.

  7. Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth.

    Science.gov (United States)

    Radchuk, Volodymyr; Weier, Diana; Radchuk, Ruslana; Weschke, Winfriede; Weber, Hans

    2011-01-01

    After fertilization, filial grain organs are surrounded by the maternal nucellus embedded within the integuments and pericarp. Rapid early endosperm growth must be coordinated with maternal tissue development. Parameters of maternal tissue growth and development were analysed during early endosperm formation. In the pericarp, cell proliferation is accomplished around the time of fertilization, followed by cell elongation predominantly in longitudinal directions. The rapid cell expansion coincides with endosperm cellularization. Distribution of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei reveals distinct patterns starting in the nucellus at anthesis and followed later by the inner cell rows of the pericarp, then spreading to the whole pericarp. The pattern suggests timely and spatially regulated programmed cell death (PCD) processes in maternal seed tissues. When the endosperm is coenocytic, PCD events are only observed within the nucellus. Thereby, remobilization of nucellar storage compounds by PCD could nourish the early developing endosperm when functional interconnections are absent between maternal and filial seed organs. Specific proteases promote PCD events. Characterization of the barley vacuolar processing enzyme (VPE) gene family identified seven gene members specifically expressed in the developing grain. HvVPE2a (known as nucellain) together with closely similar HvVPE2b and HvVPE2d might be involved in nucellar PCD. HvVPE4 is strongly cell specific for pericarp parenchyma. Correlative evidence suggests that HvVPE4 plays a role in PCD events in the pericarp. Possible functions of PCD in the maternal tissues imply a potential nutritive role or the relief of a physical restraint for endosperm growth. PCD could also activate post-phloem transport functions.

  8. Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels

    Directory of Open Access Journals (Sweden)

    Anna eWoloszyk

    2016-04-01

    Full Text Available Neovascularization is one of the most important processes during tissue repair and regeneration. Current healing approaches based on the use of biomaterials combined with stem cells in critical-size bone defects fail due to the insufficient implant vascularization and integration into the host tissues. Therefore, here we studied the attraction, ingrowth, and distribution of blood vessels from the chicken embryo chorioallantoic membrane into implanted silk fibroin scaffolds seeded with either human dental pulp stem cells or human gingival fibroblasts. Perfusion capacity was evaluated by non-invasive in vivo Magnetic Resonance Imaging while the number and density of blood vessels were measured by histomorphometry. Our results demonstrate that human dental pulp stem cells and gingival fibroblasts possess equal abilities in attracting vessels within silk fibroin scaffolds. Additionally, the prolonged in vitro pre-incubation period of these two cell populations favors the homogeneous distribution of vessels within silk fibroin scaffolds, which further improves implant survival and guarantees successful healing and regeneration.

  9. 3,4-Dihydroxybenzaldehyde Derived from Prunus mume Seed Inhibits Oxidative Stress and Enhances Estradiol Secretion in Human Ovarian Granulosa Tumor Cells

    International Nuclear Information System (INIS)

    Kono, Ryohei; Nomura, Sachiko; Okuno, Yoshiharu; Nakamura, Misa; Maeno, Akihiro; Kagiya, Tomoko; Tokuda, Akihiko; Inada, Ken-ichi; Matsuno, Akira; Utsunomiya, Tomoko; Utsunomiya, Hirotoshi

    2014-01-01

    Granulosa cells form ovarian follicles and play important roles in the growth and maturation of oocytes. The protection of granulosa cells from cellular injury caused by oxidative stress is an effective therapy for female infertility. We here investigated an effective bioactive compound derived from Prunus mume seed extract that protects granulosa cells from hydrogen peroxide (H 2 O 2 )-induced apoptosis. We detected the bioactive compound, 3,4-dihydroxybenzaldehyde (3,4-DHBA), via bioactivity-guided isolation and found that it inhibited the H 2 O 2 -induced apoptosis of granulosa cells. We also showed that 3,4-DHBA promoted estradiol secretion in granulosa cells and enhanced the mRNA expression levels of steroidogenic factor 1, a promoter of key steroidogenic enzymes. These results suggest that P. mume seed extract may have clinical potential for the prevention and treatment of female infertility

  10. Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line.

    Science.gov (United States)

    Baccarin, Thaisa; Mitjans, Montserrat; Ramos, David; Lemos-Senna, Elenara; Vinardell, Maria Pilar

    2015-12-01

    There has been an increase in the use of botanicals as skin photoprotective agents. Pomegranate (Punica granatum L.) is well known for its high concentration of polyphenolic compounds and for its antioxidant and anti-inflammatory properties. The aim of this study was to analyze the photoprotection provided by P. granatum seed oil nanoemulsion entrapping the polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in the keratinocyte HaCaT cell line. For this purpose, HaCaT cells were pretreated for 1h with nanoemulsions in a serum-free medium and then irradiated with UVB (90-200 mJ/cm(2)) rays. Fluorescence microscopy analysis provided information about the cellular internalization of the nanodroplets. We also determined the in vitro SPF of the nanoemulsions and evaluated their phototoxicity using the 3T3 Neutral Red Uptake Phototoxicity Test. The nanoemulsions were able to protect the cells' DNA against UVB-induced damage in a concentration dependent manner. Nanodroplets were internalized by the cells but a higher proportion was detected along the cell membrane. The SPF obtained (~25) depended on the concentration of the ethyl acetate fraction and pomegranate seed oil in the nanoemulsion. The photoprotective formulations were classified as non-phototoxic. In conclusion, nanoemulsions entrapping the polyphenol-rich ethyl acetate fraction show potential for use as a sunscreen product. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. [Effects of moxibustion with seed-sized moxa cone on apoptosis of myocardial cells after sport fatigue in mice].

    Science.gov (United States)

    Xu, Huiqian; Hu, Yin; Gu, Yihuang; Zhang, Hongru

    2015-03-01

    To observe the effects of moxibustion on factors related with apoptosis of myocardial cells after sports fatigue in mice as well as the relationship among histone acetyltransferases p300 (p300), CREB binding protein (CBP) and cell apoptosis to discuss the role of p300 and CBP in moxibustion against apoptosis of myocardial cells. Sixty clean-grade male Kunming mice were randomly divided into a control group, a sport group and a moxibustion group, 20 cases in each one. Mice in all group received identical feeding environment. Mice in the control group did not received sport nor moxibustion; mice in the sport group and moxibustion group received non-weight swimming training which lasted from 30 min per day to 90 min per day gradually for 21 days; 1 h after swimming training, mice in the moxibustion group received moxibustion with seed-sized moxa cone at "Zusanli" (ST 36) and "Guanyuan" (CV 4), 5 cones at each acupoint, once a day for 21 days. 24 h after the final swimming training, cardiac muscle tissue was collected to test factor associated suicide (Fas), B cell lymphoma/lewkmia-2 (Bcl-2) by immunohistochemical method and expression of p300 and CBP. Compared with the control group, the apoptosis rate of myocardial cells in the sport group was significantly increased (Pprotein was significantly increased (Psport group, the apoptosis rate of myocardial cells in the moxibustion group was significantly reduced (Pprotein was significantly reduced (Psports fatigue in mice to inhibit the starting of apoptotic process, therefore reducing the apoptosis of myocardial cells after heavy exercise and protecting heart function.

  12. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage.

    Science.gov (United States)

    Li, Yang; Shen, Fei; Guo, Haiyan; Wang, Zhanghong; Yang, Gang; Wang, Lilin; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai

    2015-06-01

    The potential phytotoxicity of water extractable toxicants in a typical corn stover biochar, the product of fast pyrolysis, was investigated using an aqueous biochar extract on a soil-less bioassay with tomato plants. The biochar dosage of 0.0-16.0 g beaker(-1) resulted in an inverted U-shaped dose-response relationship between biochar doasage and seed germination/seedling growth. This indicated that tomato growth was slightly stimulated by low dosages of biochar and inhibited with higher dosages of biochar. Additionally, antioxidant enzyme activities in the roots and leaves were enhanced at lower dosages, but rapidly decreased with higher dosages of biochar. With the increased dosages of biochar, the malondialdehyde content in the roots and leaves increased, in addition with the observed morphology of necrotic root cells, suggesting that serious damage to tomato seedlings occurred. EC50 of root length inhibition occurred with biochar dosages of 9.2 g beaker(-1) (3.5th day) and 16.7 g beaker(-1) (11th day) (equivalent to 82.8 and 150.3 t ha(-1), respectively), which implied that toxicity to the early growth of tomato can potentially be alleviated as the plant grows.

  13. Efficacy and safety of iodine-125 radioactive seeds brachytherapy for advanced non-small cell lung cancer-A meta-analysis.

    Science.gov (United States)

    Zhang, Wenchao; Li, Jiawei; Li, Ran; Zhang, Ying; Han, Mingyong; Ma, Wei

    This meta-analysis was conducted to investigate the efficacy and safety of 125 I brachytherapy for locally advanced non-small cell lung cancer (NSCLC). Trials comparing 125 I brachytherapy with chemotherapy in NSCLC were identified. Meta-analysis was performed to obtain pooled risk ratios for an overall response rate (ORR), disease control rate (DCR) and complications, and pooled hazard ratio for overall survival (OS). Fifteen studies including 1188 cases were included. The pooled result indicated that there were significant differences in ORR, DCR, and OS between 125 I brachytherapy combined with chemotherapy and chemotherapy alone, but no statistic differences in gastrointestinal symptoms, leukopenia, myelosuppression, and hemoglobin reduction. Patients treated with 125 I brachytherapy combined with chemotherapy have a higher relative risk of pneumothorax, bloody sputum, and pneumorrhagia compared with chemotherapy alone. Seeds migration only occurred in the group treated with 125 I brachytherapy. There were significant differences in ORR, DCR, and myelosuppression between 125 I brachytherapy alone and chemotherapy. 125 I brachytherapy combined with chemotherapy can significantly enhance the clinical efficacy and improve the OS of patients with advanced NSCLC without increasing the incidence of complications of chemotherapy. 125 I brachytherapy alone can significantly enhance the clinical efficacy and reduce the incidence of myelosuppression compared with chemotherapy. However, 125 I brachytherapy may cause lung injury. Large sample and higher-quality randomized controlled trials are needed to confirm the pooled results of complications. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  14. Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines.

    Science.gov (United States)

    Al-Sheddi, Ebtesam Saad; Farshori, Nida Nayyar; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2015-01-01

    Portulaca oleracea (Family: Portulacaceae), is well known for its anti-inflammatory, antioxidative, anti- bacterial, and anti-tumor activities. However, cytotoxic effects of seed oil of Portulaca oleracea against human liver cancer (HepG2) and human lung cancer (A-549) cell lines have not been studied previously. Therefore, the present study was designed to investigate the cytotoxic effects of Portulaca oleracea seed oil on HepG2 and A-549 cell lines. Both cell lines were exposed to various concentrations of Portulaca oleracea seed oil for 24h. After the exposure, percentage cell viability was studied by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed a concentration-dependent significant reduction in the percentage cell viability and an alteration in the cellular morphology of HepG2 and A-549 cells. The percentage cell viability was recorded as 73%, 63%, and 54% by MTT assay and 76%, 61%, and 50% by NRU assay at 250, 500, and 1000 μg/ml, respectively in HepG2 cells. Percentage cell viability was recorded as 82%, 72%, and 64% by MTT assay and 83%, 68%, and 56% by NRU assay at 250, 500, and 1000 μg/ml, respectively in A-549 cells. The 100 μg/ml and lower concentrations were found to be non cytotoxic to A-549 cells, whereas decrease of 14% and 12% were recorded by MTT and NRU assay, respectively in HepG2 cells. Both HepG2 and A-549 cell lines exposed to 250, 500, and 1000 μg/ ml of Portulaca oleracea seed oil lost their normal morphology, cell adhesion capacity, become rounded, and appeared smaller in size. The data from this study showed that exposure to seed oil of Portulaca oleracea resulted in significant cytotoxicity and inhibition of growth of the human liver cancer (HepG2) and human lung cancer (A-549) cell lines.

  15. Seed coat removal improves Fe bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model

    Science.gov (United States)

    This study examined the range of Fe concentration and relative Fe bioavailability of 24 varieties of cooked lentils, as well as the impact of seed coat removal on lentil Fe nutritional quality. Relative Fe bioavailability was assessed by the in vitro/Caco-2 cell culture method. While Fe concentrat...

  16. Mechanical harvesting of pumpkin seeds

    OpenAIRE

    Sito, Stjepan; Ivančan, Stjepan; Barković, Edi; Mucalo, Ana

    2009-01-01

    One of the key problems in production technology of pumpkin seed for oil production is mechanized harvesting and losses of seed during mechanical harvesting. The losses of pumpkin seed during mechanical harvesting at peripheral velocity of 1.57 m/s (optimally adjusted machine) were 4.4% for Gleisdorf species, 5.2% for Slovenska species and 7.8% for pumpkin with husk. The higher average losses of pumpkin seed with husk were caused by tight connection of seed and pumpkin fruit.

  17. Spatial and temporal changes in the morphology of preosteoblastic cells seeded on microstructured tantalum surfaces

    DEFF Research Database (Denmark)

    Justesen, Jørn; Lorentzen, M.; Andersen, L. K.

    2009-01-01

    It has been widely reported that surface morphology on the micrometer scale affects cell function as well as cell shape. In this study, we have systematically compared the influence of 13 topographically micropatterned tantalum surfaces on the temporal development of morphology, including spreading......, and length of preosteoblastic cells (MC3T3-E1). Cells were examined after 0.5, 1, 4, and 24 h on different Ta microstructures with vertical dimensions (heights) of 0.25 and 1.6 mu m. Cell morphologies depended upon the underlying Surface topography, and the length and spreading of cells varied as a function...... to depend on the distance between the pillars with one specific pillar Structure exhibiting a decreased spreading combined with a radical change in morphology of the cells. Interestingly, this morphology on the particular pillar structure was associated with a markedly different distribution of the actio...

  18. The effectiveness of a standardized rose hip powder, containing seeds and Shells of Rosa canina, on cell longevity, skin wrinkles, moisture, and elasticity 

    DEFF Research Database (Denmark)

    Phetcharat, L; Wongsuphasawat, K; Winther, Kaj

    2015-01-01

    Objective: To evaluate the effects of a rose hip powder (Hyben Vital®) made from seeds and shells on cell senescence, skin wrinkling, and aging. Methods: A total of 34 healthy subjects, aged 35–65 years, with wrinkles on the face (crow’s-feet) were subjected to a randomized and double-blinded cli...... hip product on cell membranes of stored erythrocyte cells observed in this study may contribute to improve the cell longevity and obstructing skin aging. Keywords: rose hip seed and shell powder, cell longevity, wrinkles, aging skin, moisture, elasticity......Objective: To evaluate the effects of a rose hip powder (Hyben Vital®) made from seeds and shells on cell senescence, skin wrinkling, and aging. Methods: A total of 34 healthy subjects, aged 35–65 years, with wrinkles on the face (crow’s-feet) were subjected to a randomized and double...... longevity was measured in terms of leakage of hemoglobin through red cell membranes (hemolytic index) in blood samples kept in a blood bank for 5 weeks. Significance of all values was attained with P#0.05. Results: In the double-blinded study, the rose hip group showed statistically significant improvements...

  19. Purification, structure and immunobiological activity of an arabinan-rich pectic polysaccharide from the cell walls of Prunus dulcis seeds.

    Science.gov (United States)

    Dourado, Fernando; Madureira, Pedro; Carvalho, Vera; Coelho, Ricardo; Coimbra, Manuel A; Vilanova, Manuel; Mota, Manuel; Gama, Francisco M

    2004-10-20

    The structure and bioactivity of a polysaccharide extracted and purified from a 4M KOH + H3BO3 solution from Prunus dulcis seed cell wall material was studied. Anion-exchange chromatography of the crude extract yielded two sugar-rich fractions: one neutral (A), the other acidic (E). These fractions contain a very similar monosaccharide composition: 5:2:1 for arabinose, uronic acids and xylose, respectively, rhamnose and galactose being present in smaller amounts. As estimated by size-exclusion chromatography, the acidic fraction had an apparent molecular mass of 762 kDa. Methylation analysis (from the crude and fractions A and E), suggests that the polysaccharide is an arabinan-rich pectin. In all cases, the polysaccharides bear the same type of structural Ara moieties with highly branched arabinan-rich pectic polysaccharides. The average relative proportions of the arabinosyl linkages is 3:2:1:1 for T-Araf:(1-->5)-Araf:(1-->3,5)-Araf:(1-->2,3,5)-Araf. The crude polysaccharide extract and fractions A and E induced a murine lymphocyte stimulatory effect, as evaluated by the in vitro and in vivo expression of lymphocyte activation markers and spleen mononuclear cells culture proliferation. The lymphocyte stimulatory effect was stronger on B- than on T-cells. No evidence of cytotoxic effects induced by the polysaccharide fractions was found.

  20. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration.

    Science.gov (United States)

    Yang, Kai-Chiang; Wang, Chun-Hao; Chang, Hao-Hueng; Chan, Wing P; Chi, Chau-Hwa; Kuo, Tzong-Fu

    2012-11-01

    Odontogenesis is a complex process with a series of epithelial-mesenchymal interactions and odontogenic molecular cascades. In tissue engineering of teeth from stem cells, platelet-rich fibrin (PRF), which is rich in growth factors and cytokines, may improve regeneration. Accordingly, PRF was added into fibrin glue to enrich the microenvironment with growth factors. Unerupted second molar tooth buds were harvested from miniature swine and cultured in vitro for 3 weeks to obtain dental bud cells (DBCs). Whole blood was collected for the preparation of PRF and fibrin glue before surgery. DBCs were suspended in fibrin glue and then enclosed with PRF, and the DBC-fibrin glue-PRF composite was autografted back into the original alveolar sockets. Radiographic and histological examinations were used to identify the regenerated tooth structure 36 weeks after implantation. Immunohistochemical staining was used to detect proteins specific to tooth regeneration. One pig developed a complete tooth with crown, root, pulp, enamel, dentin, odontoblast, cementum, blood vessels, and periodontal ligaments in indiscriminate shape. Another animal had an unerupted tooth that expressed cytokeratin 14, dentin matrix protein-1, vascular endothelial growth factor, and osteopontin. This study demonstrated, using autogenic cell transplantation in a porcine model, that DBCs seeded into fibrin glue-PRF could regenerate a complete tooth. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Molecular mechanisms of celery seed extract induced apoptosis via s phase cell cycle arrest in the BGC-823 human stomach cancer cell line.

    Science.gov (United States)

    Gao, Lin-Lin; Feng, Lei; Yao, Shu-Tong; Jiao, Peng; Qin, Shu-Cun; Zhang, Wei; Zhang, Ya-Bin; Li, Fu-Rong

    2011-01-01

    Mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. Loss of cell cycle control, leading to uncontrolled proliferation, is common in cancer. Therefore, the identification of potent and selective cyclin dependent kinase inhibitors is a priority for anti-cancer drug discovery. There are at least two major apoptotic pathways, initiated by caspase-8 and caspase-9, respectively, which can activate caspase cascades. Apoptosis triggered by activation of the mitochondrial-dependent caspase pathway represents the main programmed cell death mechanism. This is activated by various intracellular stresses that induce permeabilization of the mitochondrial membrane. Anti-tumor effects of celery seed extract (CSE) and related mechanisms regarding apoptosis were here investigated in human gastric cancer BGC-823 cells. CSE was produced by supercritical fluid extraction. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide (MTT) assay and apoptosis by flow cytometry using Annexin/PI staining and DAPI staining and a laser scanning confocal microscope (LSCM). Cell cycling was evaluated using PI staining with flow cytometry and expression of cell cycle and apoptosis-related proteins cyclin A, CDK2, bcl-2 and bax was assessed by immunohistochemical staining. CSE had an anti-proliferation effect on human gastric cancer BGC-823 cells in a dose- and time-dependent manner. After treatment, the apoptotic rate significantly increased, with morphological changes typical of apoptosis observed with LSCM by DAPI staining. Cell cycle and apoptosis related proteins, such as cyclin A, CDK2 and bcl-2 were all down-regulated, whereas bax was up-regulated. The molecular determinants of inhibition of cell proliferation as well as apoptosis of CSE may be associated with cycle arrest in the S phase.

  2. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells

    Directory of Open Access Journals (Sweden)

    AlSalhi MS

    2016-09-01

    Full Text Available Mohamad S AlSalhi,1,2 Sandhanasamy Devanesan,1,2 Akram A Alfuraydi,3 Radhakrishnan Vishnubalaji,4 Murugan A Munusamy,3 Kadarkarai Murugan,5 Marcello Nicoletti,6 Giovanni Benelli7 1Research Chair in Laser Diagnosis of Cancers, 2Department of Physics and Astronomy, 3Department of Botany and Microbiology, College of Science, 4Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia; 5Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India; 6Department of Environmental Biology, Sapienza University of Rome, Rome, 7Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy Background: The present study focused on a simple and eco-friendly method for the synthesis of silver nanoparticles (AgNPs with multipurpose anticancer and antimicrobial activities. Materials and methods: We studied a green synthesis route to produce AgNPs by using an aqueous extract of Pimpinella anisum seeds (3 mM. Their antimicrobial activity and cytotoxicity on human neonatal skin stromal cells (hSSCs and colon cancer cells (HT115 were assessed. Results: A biophysical characterization of the synthesized AgNPs was realized: the morphology of AgNPs was determined by transmission electron microscopy, energy dispersive spectroscopy, X-ray powder diffraction, and ultraviolet-vis absorption spectroscopy. Transmission electron microscopy showed spherical shapes of AgNPs of P. anisum seed extracts with a 3.2 nm minimum diameter and average diameter ranging from 3.2 to 16 nm. X-ray powder diffraction highlighted the crystalline nature of the nanoparticles, ultraviolet-vis absorption spectroscopy was used to monitor their synthesis, and Fourier transform infrared spectroscopy showed the main reducing groups from the seed extract. Energy dispersive spectroscopy was used to confirm the presence of elemental silver. We evaluated the antimicrobial potential

  3. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.

    Science.gov (United States)

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-04-07

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  4. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus

    Directory of Open Access Journals (Sweden)

    Fulin Wang

    2016-04-01

    Full Text Available Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects. In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1. Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP. It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the

  5. Synthesis of ZnO nanowire arrays on ZnO−TiO{sub 2} mixed oxide seed layer for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T. [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Anandhan, N., E-mail: anandhan_kn@rediffmail.com [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Thangamuthu, R. [Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi (India); Mummoorthi, M. [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Ravi, G. [Photonic Crystal Lab, Department of Physics, Alagappa University, Karaikudi (India)

    2016-08-25

    ZnO nanowire arrays (NWAs) were synthesized on ZnO−TiO{sub 2} mixed oxide seeded FTO conducting glass plate by two-step sol-gel and hydrothermal method, respectively. X-ray diffraction patterns reveal the presence of mixed and hexagonal phases in seed layer and NWAs, respectively. Scanning electron microscope images showed that the FTO glass plate is uniformly covered with grains and a few nanorods in seed layer and dense NWAs are vertically grown on the seed layer. The hexagonal structure and high crystal quality have been confirmed by micro Raman spectra. Photoluminescence spectra also present that NWAs have high crystal quality and less atomic defects. UV spectra indicate that NWAs are absorbed more dye molecules and it has the band gap equal to bulk material. The efficiency of ZnO−TiO{sub 2} mixed oxide seed layer and ZnO NWAs is found to be 0.56 and 0.84% respectively. Electrochemical impedance spectra reveal that NWAs DSSC has high charge transfer recombination resistance than the seed layer DSSC. - Highlights: • ZnO nanowire arrays were synthesized by two-step sol-gel and hydrothermal method. • The crystal structure and crystalline quality of films are confirmed by Raman spectra. • The emission properties of films are investigated by photoluminescence spectra. • ZnO nanowire arrays (NWAs) have higher charge transfer recombination resistance. • The conversion efficiency of the seed layer and NWAs is to be 0.56 and 0.84%.

  6. Seed quality in informal seed systems

    NARCIS (Netherlands)

    Biemond, P.C.

    2013-01-01

    Keywords: informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.

    Seed is a crucial input for agricultural production.

  7. Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional beta-TCP

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lulu; Jin Zuolin; Duan Yinzhong [Department of Orthodontics, Stomatological College, Fourth Military Medical University, Xi' an 710032 (China); Liu Hongchen; Wang Dongsheng; E Lingling [Department of Stomatology, China PLA General Hospital, Beijing 100853 (China); Xu Lin, E-mail: jinzuolin88@yahoo.com.c, E-mail: duanyinzhong@yahoo.com.c [Department of Stomatology, the First Hospital of PLA, Lanzhou 730000 (China)

    2009-12-15

    The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional beta-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial beta-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration. The third passage RDFCs could be seen adhered, extended and proliferated on the beta-TCP by scanning electron microscopy. The ALP activity, the calcium and phosphoniums and the osteocalcin content of dexamethasone (10{sup -8} M) or/and BMP-2 (100 ng ml{sup -1}) were significantly higher than their existence in the control group. They were the significantly highest among four groups after joint application of BMP-2 and dexamethasone. After 8 weeks of implantation, the percentage of the new bones formed area in the RDFCs+beta-TCP+BMP-2+Dex group was significantly higher than that in the RDFCs+beta-TCP+BMP-2 group. In contrast, beta-TCP, RDFCs+beta-TCP+Dex and control constructs lacked new bone formation by histological staining and histomorphometric analysis. The BMP-2+Dex could significantly promote osteogenic differentiation of RDFCs on beta-TCP. beta-TCP supported fast cellular adhesion, proliferation and differentiation of RDFCs. The feasibility of its application in periodontal tissue engineering was also proved.

  8. Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional β-TCP

    International Nuclear Information System (INIS)

    Xu Lulu; Jin Zuolin; Duan Yinzhong; Liu Hongchen; Wang Dongsheng; E Lingling; Xu Lin

    2009-01-01

    The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional β-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial β-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration. The third passage RDFCs could be seen adhered, extended and proliferated on the β-TCP by scanning electron microscopy. The ALP activity, the calcium and phosphoniums and the osteocalcin content of dexamethasone (10 -8 M) or/and BMP-2 (100 ng ml -1 ) were significantly higher than their existence in the control group. They were the significantly highest among four groups after joint application of BMP-2 and dexamethasone. After 8 weeks of implantation, the percentage of the new bones formed area in the RDFCs+β-TCP+BMP-2+Dex group was significantly higher than that in the RDFCs+β-TCP+BMP-2 group. In contrast, β-TCP, RDFCs+β-TCP+Dex and control constructs lacked new bone formation by histological staining and histomorphometric analysis. The BMP-2+Dex could significantly promote osteogenic differentiation of RDFCs on β-TCP. β-TCP supported fast cellular adhesion, proliferation and differentiation of RDFCs. The feasibility of its application in periodontal tissue engineering was also proved.

  9. Study of percutaneous 125I seeds implantation guided by CT in elderly patients of stage I peripheral non-small cell lung cancer

    International Nuclear Information System (INIS)

    Ke Mingyao; Yong Yazhi; Luo Bingqing; Wu Xuemei; Chen Lingling; Xie Hongqi

    2011-01-01

    Objective: To evaluate the efficacy, feasibility and safety of CT guided percutaneous 125 I seeds implantation in elderly patients of stage I peripheral non-small cell lung cancer (NSCLC). Methods: Clinical data of 16 elderly peripheral stage I NSCLC patients (10 squamous carcinoma and 6 adenocarcinoma; 13 stage I A and 3 stage I B ) who received radioactive 125 I seeds implantation because of refusal or being unsuited to operation or external radiotherapy were retrospectively analyzed. Prescribed dose was 140 - 160 Gy. Under CT guidance, 125 I seeds were implanted percutaneously into tumors for interstitial radiotherapy according to treatment plan system. Results: Mean number of 125 I seeds each patient received was 21.1. 12 complete response (CR) and 4 partial response (PR) were achieved. Total response rate (CR + PR) was 100%. 100% patients completed 10 to 56 months of follow-up, 15, 13, 8 and 6 patients completed 1-, 2-, 3-and 4-years' follow-up, respectively. The median local progression free time was 14 months. The 1-, 2-, 3-and 4-year overall survival rate were 60%, 54%, 50% and 33%, respectively (median : 14 months). 7 cases died of non-tumor disease and 5 died of metastasis. No severe complications were observed. Conclusions: CT guided 125 I seeds implantation is a safe, reliable and effective radical treatment method for elderly stage I peripheral NSCLC patients, who refuse to or are unsuitable to operation or external radiotherapy. (authors)

  10. Adhesion, vitality and osteogenic differentiation capacity of adipose derived stem cells seeded on nitinol nanoparticle coatings.

    Directory of Open Access Journals (Sweden)

    Sarah Strauss

    Full Text Available Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells.

  11. Physalis peruviana seed storage

    Directory of Open Access Journals (Sweden)

    Cíntia L. M. de Souza

    2016-03-01

    Full Text Available ABSTRACT Physalis peruviana belongs to Solanaceae family and has a high nutritional and nutraceutical potential. The production is intended for fruit consumption and the propagation is mainly by seeds. This study aimed to evaluate the influence of priming on the kinetics of germination of P. peruviana seeds stored at different temperatures. The seeds were stored at 5 and 25 °C in a chamber saturated with zinc chloride solution and in liquid nitrogen (-196 °C. Every 4 months, the seeds were removed from storage for evaluation of germination and moisture content in the laboratory and emergence and development of seedlings in greenhouse. During the last evaluation at 16 months, the seeds under the same conditions were subjected to salt stress. The moisture content varied during the storage period, but was always higher for seeds kept at -196 ºC. These seeds kept high germination percentage in water until 16 months, regardless of the tested temperature; however, in salt solution the germination percentage was significantly reduced.

  12. Factors affecting the density of Brassica napus seeds

    NARCIS (Netherlands)

    Young, L.; Jalink, H.; Denkert, R.; Reaney, M.

    2006-01-01

    Brassica napus seed is composed of low density oil (0.92 g.cm(-3)) and higher density solids (1.3-1.45 g.cm(-3)). Seed buoyant density may potentially be used to determine seed oil content and to separate seeds with different oil contents, however, we have found that seeds with the lowest buoyant

  13. Phytoextract of Indian mustard seeds acts by suppressing the generation of ROS against acetaminophen-induced hepatotoxicity in HepG2 cells.

    Science.gov (United States)

    Parikh, Harita; Pandita, Nancy; Khanna, Aparna

    2015-07-01

    Indian mustard [Brassica juncea (L.) Czern. & Coss. (Brassicaceae)] is reported to possess diverse pharmacological properties. However, limited information is available concerning its hepatoprotective activity and mechanism of action. To study the protective mechanism of mustard seed extract against acetaminophen (APAP) toxicity in a hepatocellular carcinoma (HepG2) cell line. Hepatotoxicity models were established using APAP (2.5-22.5 mM) based on the cytotoxicity profile. An antioxidant-rich fraction from mustard seeds was extracted and evaluated for its hepatoprotective potential. The mechanism of action was elucidated using various in vitro antioxidant assays, the detection of intracellular generation of reactive oxygen species (ROS), and cell cycle analysis. The phytoconstituents isolated via HPLC-DAD were also evaluated for hepatoprotective activity. Hydromethanolic seed extract exhibited hepatoprotective activity in post- and pre-treatment models of 20 mM APAP toxicity and restored the elevated levels of liver indices to normal values (p DAD analysis revealed the presence quercetin, vitamin E, and catechin, which exhibited hepatoprotective activity. A phytoextract of mustard seeds acts by suppressing the generation of ROS in response to APAP toxicity.

  14. Structural Properties of Zinc Oxide Nanorods Grown on Al-Doped Zinc Oxide Seed Layer and Their Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Kyung Ho Kim

    2014-03-01

    Full Text Available We fabricated zinc oxide (ZnO nanorods (NRs with Al-doped ZnO (AZO seed layers and dye-sensitized solar cells (DSSCs employed the ZnO NRs between a TiO2 photoelectrode and a fluorine-doped SnO2 (FTO electrode. The growth rate of the NRs was strongly dependent on the seed layer conditions, i.e., thickness, Al dopant and annealing temperature. Attaining a large particle size with a high crystallinity of the seed layer was vital to the well-aligned growth of the NRs. However, the growth was less related to the substrate material (glass and FTO coated glass. With optimized ZnO NRs, the DSSCs exhibited remarkably enhanced photovoltaic performance, because of the increase of dye absorption and fast carrier transfer, which, in turn, led to improved efficiency. The cell with the ZnO NRs grown on an AZO seed layer annealed at 350 °C showed a short-circuit current density (JSC of 12.56 mA/cm2, an open-circuit voltage (VOC of 0.70 V, a fill factor (FF of 0.59 and a power conversion efficiency (PCE, η of 5.20% under air mass 1.5 global (AM 1.5G illumination of 100 mW/cm2.

  15. seed oils

    African Journals Online (AJOL)

    Timothy Ademakinwa

    processes, production of biodiesel, as lubricant and in deep-frying purposes. They could ... for its juice, nectars and fruit while its seeds are ... Malaysia. The fine seed powder was stored in a plastic container inside a refrigerator at between 4 o.

  16. seed flour

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... and with a nice taste, used for cooking or as lamp oil. The fatty acid ... Pra seeds were obtained from a local market in Nakhon Si Thammarat. Page 2. Table 1. Proximate composition of pra seed flour. Constituent. Percentage ...

  17. SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mohamad; Broderick, Avery E. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Puchwein, Ewald, E-mail: mshalaby@live.ca [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-05-20

    Numerical heating in particle-in-cell (PIC) codes currently precludes the accurate simulation of cold, relativistic plasma over long periods, severely limiting their applications in astrophysical environments. We present a spatially higher-order accurate relativistic PIC algorithm in one spatial dimension, which conserves charge and momentum exactly. We utilize the smoothness implied by the usage of higher-order interpolation functions to achieve a spatially higher-order accurate algorithm (up to the fifth order). We validate our algorithm against several test problems—thermal stability of stationary plasma, stability of linear plasma waves, and two-stream instability in the relativistic and non-relativistic regimes. Comparing our simulations to exact solutions of the dispersion relations, we demonstrate that SHARP can quantitatively reproduce important kinetic features of the linear regime. Our simulations have a superior ability to control energy non-conservation and avoid numerical heating in comparison to common second-order schemes. We provide a natural definition for convergence of a general PIC algorithm: the complement of physical modes captured by the simulation, i.e., those that lie above the Poisson noise, must grow commensurately with the resolution. This implies that it is necessary to simultaneously increase the number of particles per cell and decrease the cell size. We demonstrate that traditional ways for testing for convergence fail, leading to plateauing of the energy error. This new PIC code enables us to faithfully study the long-term evolution of plasma problems that require absolute control of the energy and momentum conservation.

  18. Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed.

    Science.gov (United States)

    Agbaria, Riad; Gabarin, Adi; Dahan, Arik; Ben-Shabat, Shimon

    2015-01-01

    The traditional preparation process of Nigella sativa (NS) oil starts with roasting of the seeds, an allegedly unnecessary step that was never skipped. The aims of this study were to investigate the role and boundaries of thermal processing of NS seeds in the preparation of therapeutic extracts and to elucidate the underlying mechanism. NS extracts obtained by various seed thermal processing methods were investigated in vitro for their antiproliferative activity in mouse colon carcinoma (MC38) cells and for their thymoquinone content. The effect of the different methods of thermal processing on the ability of the obtained NS oil to inhibit the nuclear factor kappa B (NF-κB) pathway was then investigated in Hodgkin's lymphoma (L428) cells. The different thermal processing protocols yielded three distinct patterns: heating the NS seeds to 50°C, 100°C, or 150°C produced oil with a strong ability to inhibit tumor cell growth; no heating or heating to 25°C had a mild antiproliferative effect; and heating to 200°C or 250°C had no effect. Similar patterns were obtained for the thymoquinone content of the corresponding oils, which showed an excellent correlation with the antiproliferative data. It is proposed that there is an oxidative transition mechanism between quinones after controlled thermal processing of the seeds. While NS oil from heated seeds delayed the expression of NF-κB transcription, non-heated seeds resulted in only 50% inhibition. The data indicate that controlled thermal processing of NS seeds (at 50°C-150°C) produces significantly higher anticancer activity associated with a higher thymoquinone oil content, and inhibits the NF-κB signaling pathway.

  19. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells : an in Vitro Study

    NARCIS (Netherlands)

    Sukho, Panithi; Kirpensteijn, Jolle; Hesselink, Jan Willem; van Osch, Gerjo J V M; Verseijden, Femke; Bastiaansen-Jenniskens, Yvonne M

    Adipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were cultured in 8000

  20. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells: an in Vitro Study

    NARCIS (Netherlands)

    Sukho, P. (Panithi); J. Kirpensteijn (Jolle); Hesselink, J.W. (Jan Willem); G.J.V.M. van Osch (Gerjo); F. Verseijden (Femke); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2017-01-01

    textabstractAdipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were

  1. Robotic seeding

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  2. Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo

    NARCIS (Netherlands)

    Silva, Da E.A.A.; Toorop, P.E.; Nijsse, J.; Bewley, J.D.; Hilhorst, H.W.M.

    2005-01-01

    The mechanism of inhibition of coffee (Coffea arabica cv. Rubi) seed germination by exogenous gibberellins (GAs) and the requirement of germination for endogenous GA were studied. Exogenous GA4+7 inhibited coffee seed germination. The response to GA4+7 showed two sensitivity thresholds: a lower one

  3. Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration

    Czech Academy of Sciences Publication Activity Database

    Sun, X.; Cahill, J.; Van Hautegem, T.; Feys, K.; Whipple, C.; Novák, Ondřej; Delbare, S.; Versteele, C.; Demuynck, C.; De Block, J.; Storme, V.; Claeys, H.; Van Lijsebettens, M.; Coussens, G.; Ljung, K.; De Vliegher, A.; Muszynski, M.; Inzé, D.; Nelissen, H.

    2017-01-01

    Roč. 8, MAR 16 (2017), č. článku 14752. ISSN 2041-1723 Institutional support: RVO:61389030 Keywords : organ size * arabidopsis-thaliana * gene-expression * leaf size * growth * cytochrome-p450 * protein * plants * inference * mechanism Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 12.124, year: 2016

  4. Fatty acid composition and anticancer activity in colon carcinoma cell lines of Prunus dulcis seed oil.

    Science.gov (United States)

    Mericli, Filiz; Becer, Eda; Kabadayı, Hilal; Hanoglu, Azmi; Yigit Hanoglu, Duygu; Ozkum Yavuz, Dudu; Ozek, Temel; Vatansever, Seda

    2017-12-01

    Almond oil is used in traditional and complementary therapies for its numerous health benefits due to high unsaturated fatty acids content. This study investigated the composition and in vitro anticancer activity of almond oil from Northern Cyprus and compared with almond oil from Turkey. Almond oil from Northern Cyprus was obtained by supercritical CO 2 extraction and analyzed by GC-MS. Almond oil of Turkey was provided from Turkish pharmacies. Different concentrations of almond oils were incubated for 24 and 48 h with Colo-320 and Colo-741 cells. Cell growth and cytotoxicity were measured by MTT assays. Anticancer and antiprolifetarive activities of almond oils were investigated by immunocytochemistry using antibodies directed against to BMP-2, β-catenin, Ki-67, LGR-5 and Jagged 1. Oleic acid (77.8%; 75.3%), linoleic acid (13.5%; 15.8%), palmitic acid (7.4%; 6.3%), were determined as the major compounds of almond oil from Northern Cyprus and Turkey, respectively. In the MTT assay, both almond oils were found to be active against Colo-320 and Colo-741 cells with 1:1 dilution for both 24 h and 48 h. As a result of immunohistochemical staining, while both almond oils exhibited significant antiproliferative and anticancer activity, these activities were more similar in Colo-320 cells which were treated with Northern Cyprus almond oil. Almond oil from Northern Cyprus and Turkey may have anticancer and antiproliferative effects on colon cancer cells through molecular signalling pathways and, thus, they could be potential novel therapeutic agents.

  5. Impact of target area selection in 125 Iodine seed brachytherapy on locoregional recurrence in patients with non-small cell lung cancer.

    Science.gov (United States)

    Yan, Wei-Liang; Lv, Jin-Shuang; Guan, Zhi-Yu; Wang, Li-Yang; Yang, Jing-Kui; Liang, Ji-Xiang

    2017-05-01

    Computed tomography (CT)-guided percutaneous implantation of 125 Iodine radioactive seeds requires the precise arrangement of seeds by tumor shape. We tested whether selecting target areas, including subclinical areas around tumors, can influence locoregional recurrence in patients with non-small cell lung cancer (NSCLC). We divided 82 patients with NSCLC into two groups. Target areas in group 1 (n = 40) were defined along tumor margins based on lung-window CT. Target areas in group 2 (n = 42) were extended by 0.5 cm in all dimensions outside tumor margins. Preoperative plans for both groups were based on a treatment plan system, which guided 125 I seed implantation. Six months later, patients underwent chest CT to evaluate treatment efficacy (per Response Evaluation Criteria in Solid Tumors version 1). We compared locoregional recurrences between the groups after a year of follow-up. We then used the treatment plan system to extend target areas for group 1 patients by 0.5 cm (defined as group 3 data) and compared these hypothetical group 3 planned seeds with the actual seed numbers used in group 1 patients. All patients successfully underwent implantation; none died during the follow-up period. Recurrence was significantly lower in group 2 than in group 1 ( P  area for 125 I seeds can decrease recurrence risk by eradicating cancerous lymph-duct blockades within the extended areas. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  6. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration.

    Science.gov (United States)

    Mira, Sara; Hill, Lisa M; González-Benito, M Elena; Ibáñez, Miguel Angel; Walters, Christina

    2016-03-01

    The nature and kinetics of reactions in dry seeds determines how long the seeds survive. We used gas chromatography to assay volatile organic compounds (VOCs) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry, and humid storage (seeds were dried to 5.5, 33, and 75% relative humidity at room temperature). VOCs emitted from seeds stored in humid conditions reflected fermentation-type reactions, with methanol and ethanol being predominant in Lactuca sativa and Carum carvi, and acetaldehyde and acetone being predominant in Eruca vesicaria. Dried C. carvi seeds continued to emit fermentation-type products, although at slower rates than the seeds stored in humid conditions. In contrast, drying caused a switch in VOC emission in L. sativa and E. vesicaria seeds towards higher emission of pentane and hexanal, molecules considered to be byproducts from the peroxidation of polyunsaturated fatty acids. Longevity correlated best with the rate of fermentation-type reactions and appeared unrelated to the rate of lipid peroxidation. Emission of VOCs decreased when seed species were mixed together, indicating that seeds adsorbed VOCs. Adsorption of VOCs did not appear to damage seeds, as longevity was not affected in seed mixtures. Collectively, the study shows similarity among species in the types of reactions that occur in dry seeds, but high diversity in the substrates, and hence the byproducts, of the reactions. Moreover, the study suggests that the most abundant VOCs arise from degradation of storage reserves within seed cells, and that these reactions and their byproducts are not, in themselves, damaging. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Edema-induced increase in tumour cell survival for 125I and 103Pd prostate permanent seed implants - a bio-mathematical model

    International Nuclear Information System (INIS)

    Yue Ning; Chen Zhe; Nath, Ravinder

    2002-01-01

    Edema caused by the surgical procedure of prostate seed implantation expands the source-to-point distances within the prostate and hence decreases the dose coverage. The decrease of dose coverage results in an increase in tumour cell survival. To investigate the effects of edema on tumour cell survival, a bio-mathematical model of edema and the corresponding cell killing by continuous low dose rate irradiation (CLDRI) was developed so that tumour cell surviving fractions can be estimated in an edematous prostate for both 125 I and 103 Pd seed implants. The dynamic nature of edema and its resolution were modelled with an exponential function V(T)=V p (1+M exp(-0.693T/T e )) where V p is the prostate volume before implantation, M is the edema magnitude and T e is edema half-life (EHL). The dose rate of a radioactive seed was calculated according to AAPM TG43, i.e. D radical S k Δg(r) φ-bar an /r 2 , where r is the distance between a seed and a given point. The distance r is now a function of time because of edema. The g(r) was approximated as 1/r 0.4 and 1/r 0.8 for 125 I and 103 Pd, respectively. By expanding the mathematical expression of the resultant dose rate in a Taylor series of exponential functions of time, the dose rate was made equivalent to that produced from multiple fictitious radionuclides of different decay constants and strengths. The biologically effective dose (BED) for an edematous prostate implant was then calculated using a generalized Dale equation. The cell surviving fraction was computed as exp(-αBED), where α is the linear coefficient of the survival curve. The tumour cell survival was calculated for both 125 I and 103 Pd seed implants and for different tumour potential doubling time (TPDT) (from 5 days to 30 days) and for edemas of different magnitudes (from 0% to 95%) and edema half-lives (from 4 days to 30 days). Tumour cell survival increased with the increase of edema magnitude and EHL. For a typical edema of a half-life of 10 days

  8. Producing biodiesel from cotton seed oil using Rhizopus oryzae ATTC #34612 whole cell biocatalysts: Culture media and cultivation period optimization

    Science.gov (United States)

    The effect of culture medium composition and cultivation time on biodiesel production by Rhizopus oryzae ATCC #34612 whole cell catalysts, immobilized on novel rigid polyethylene biomass supports, was investigated. Supplementation of the medium with carbon sources led to higher lipase activity and i...

  9. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    Science.gov (United States)

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Internalisation and multiple phosphorylation of γ-Conglutin, the lupin seed glycaemia-lowering protein, in HepG2 cells

    International Nuclear Information System (INIS)

    Capraro, Jessica; Magni, Chiara; Faoro, Franco; Maffi, Dario; Scarafoni, Alessio; Tedeschi, Gabriella; Maffioli, Elisa; Parolari, Anna; Manzoni, Cristina; Lovati, Maria Rosa; Duranti, Marcello

    2013-01-01

    Highlights: •A glycaemia-reducing lupin seed protein is internalized by HepG2 cells. •The protein accumulates in the cytosol in an intact form. •The internalized protein is multiply phosphorylated. -- Abstract: Lupin seed γ-Conglutin is a protein capable of reducing glycaemia in mammalians and increasing glucose uptake by model cells. This work investigated whether γ-Conglutin is internalised into the target cells and undergoes any covalent change during the process, as a first step to understanding its mechanism of action. To this purpose, γ-Conglutin-treated and untreated HepG2 cells were submitted to confocal and transmission electron microscopy. Immune-revelation of γ-Conglutin at various intervals revealed its accumulation inside the cytosol. In parallel, 2D-electrophoresis of the cell lysates and antibody reaction of the blotted maps showed the presence of the protein intact subunits inside the treated cells, whilest no trace of the protein was found in the control cells. However, γ-Conglutin-related spots with an unexpectedly low pI were also observed in the maps. These spots were excised, trypsin-treated and submitted to MS/MS spectrometric analysis. The presence of phosphorylated amino acids was detected. These findings, by showing that γ-Conglutin is internalised by HepG2 cells in an intact form and is modified by multiple phosphorylation, open the way to the understanding of the lupin γ-Conglutin insulin-mimetic activity

  11. Cartilage constructs from human cord blood stem cells seeded in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Koch, Thomas Gadegaard; Foldager, Casper Bindzus

    Cartilage is an avascular tissue incapable of regeneration. Current treatment modalities for joint cartilage injuries are inefficient in regenerating hyaline cartilage and often leads to the formation of fibrocartilage with undesirable mechanical properties. There is an increasing interest...... in investigating alternative treatments such as tissue engineering, which combines stem cells with scaffolds to produce cartilage in vitro for subsequent transplant. Previous studies have shown that chondrogenesis of induced stem cells is influenced by various growth factors, oxygen tensions and mechanical...... this novel SGS-PCL scaffold supports the chondrogenic differentiation of MLPCs will be interesting to evaluate since this scaffold possesses mechanical properties absent from other “soft” scaffolds currently being investigated for cartilage regeneration and implantation....

  12. Influence of seed layer treatment on low temperature grown ZnO nanotubes: Performances in dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ameen, Sadia [Energy Materials and Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Akhtar, M. Shaheer [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); New and Renewable Energy Material Development Center (NewREC), Chonbuk National University, Buan-gun, Jeonbuk (Korea, Republic of); Kim, Young Soon [Energy Materials and Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Yang, O-Bong [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shin, Hyung-Shik, E-mail: hsshin@jbnu.ac.k [Energy Materials and Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-01-01

    Non-aligned and highly densely aligned ZnO nanotube (NTs), synthesized by low temperature solution method were applied as photoanode materials for the fabrication of efficient dye-sensitized solar cells (DSSCs). The crystalline and the morphological analysis revealed that the grown aligned ZnO NTs possessed a typical hexagonal crystal structure of outer and inner diameter {approx}250 nm and {approx}100 nm, respectively. ZnO seeding on FTO substrates is an essential step to achieve the aligned ZnO NTs. A DSSC fabricated with aligned ZnO NTs photoanode achieved high solar-to-electricity conversion efficiency of {approx}2.2% with short circuit current (J{sub SC}) of 5.5 mA/cm{sup 2}, open circuit voltage (V{sub OC}) of 0.65 V and fill factor (FF) of 0.61. Significantly, the aligned ZnO NTs photoanode showed three times improved solar-to-electricity conversion efficiency than DSSC fabricated with non-aligned ZnO NTs. The enhanced performances were credited to the aligned morphology of ZnO NTs which executed the high charge collection and the transfer of electrons at the interfaces of ZnO NTs and electrolyte layer.

  13. Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering.

    Science.gov (United States)

    Driscoll, Tristan P; Nakasone, Ryan H; Szczesny, Spencer E; Elliott, Dawn M; Mauck, Robert L

    2013-06-01

    The annulus fibrosus (AF) of the intervertebral disk plays a critical role in vertebral load transmission that is heavily dependent on the microscale structure and composition of the tissue. With degeneration, both structure and composition are compromised, resulting in a loss of AF mechanical function. Numerous tissue engineering strategies have addressed the issue of AF degeneration, but few have focused on recapitulation of AF microstructure and function. One approach that allows for generation of engineered AF with appropriate (+/-)30° lamellar microstructure is the use of aligned electrospun scaffolds seeded with mesenchymal stem cells (MSCs) and assembled into angle-ply laminates (APL). Previous work indicates that opposing lamellar orientation is necessary for development of near native uniaxial tensile properties. However, most native AF tensile loads are applied biaxially, as the disk is subjected to multi-axial loads and is constrained by its attachments to the vertebral bodies. Thus, the objective of this study was to evaluate the biaxial mechanical response of engineered AF bilayers, and to determine the importance of opposing lamellar structure under this loading regime. Opposing bilayers, which replicate native AF structure, showed a significantly higher modulus in both testing directions compared to parallel bilayers, and reached ∼60% of native AF biaxial properties. Associated with this increase in biaxial properties, significantly less shear, and significantly higher stretch in the fiber direction, was observed. These results provide additional insight into native tissue structure-function relationships, as well as new benchmarks for engineering functional AF tissue constructs. Copyright © 2013 Orthopaedic Research Society.

  14. Influence of Polyphenol Extract from Evening Primrose (Oenothera Paradoxa Seeds on Proliferation of Caco-2 Cells and on Expression, Synthesis and Activity of Matrix Metalloproteinases and Their Inhibitors

    Directory of Open Access Journals (Sweden)

    Szewczyk Karolina

    2014-09-01

    Full Text Available Evening primrose (Oenothera paradoxa Hudziok seeds are a rich source of not only a valuable oil containing an essential fatty acid - ᵧ-linolenic acid (GLA - but also polyphenols which can be obtained from the biomass remaining after oil pressing. The aim of our studies was to evaluate the influence of a polyphenol extract from defatted seeds of evening primrose on human colorectal adenocarcinoma Caco-2 cell proliferation and matrix metalloproteinases (MMPs synthesis and activity. To assess the effect of evening primrose extract on Caco-2 cell proliferation, crystal violet staining and sulforhodamine B (SRB assays were used whereas mRNA expression and activity of MMPs were evaluated by RT-PCR and gelatin zymography.

  15. Seed regulations and local seed systems

    NARCIS (Netherlands)

    Louwaars, N.

    2000-01-01

    Seed regulations have been introduced in most countries based on the development of formal seed production. Concerns about seed quality and about the varietal identity of the seeds have commonly led to seed laws. However, formal regulations are often inappropriate for informal seed systems, which

  16. Physiological quality and seed respiration of primed Jatropha curcas seeds

    Directory of Open Access Journals (Sweden)

    Micheli Angelica Horbach

    2017-11-01

    Full Text Available ABSTRACT Seed deterioration is a natural and irreversible process. Nevertheless, seed priming with water and antioxidants can minimize oxidative damage in oilseeds, resulting in attenuation of seed deterioration. The objective of this assay was to evaluate seed priming on respiratory activity of Jatropha curcas submitted to accelerated aging. Seeds from two provenances (Janauba and Pedro J. Caballero were submitted to three priming treatments (control, immersion in deionized water, and with 750 µmol L-1 of ascorbic acid and treated for accelerated aging at 41 °C for 72 h. The results showed that the priming of J. curcas seeds promoted tolerance to accelerated aging. Primed seeds, with ascorbic acid from Janauba and deionized water from Pedro J. Caballero, resulted in a higher percentage of normal seedlings, and increased germination speed index and seed respiration. The decline of physiological quality of J. curcas seeds after accelerated aging is directly associated with a reduction in respiratory activity that is related to seed moisture content.

  17. Increased circulating fibrocytes are associated with higher reticulocyte percent in children with sickle cell anemia.

    Science.gov (United States)

    Karafin, Matthew S; Dogra, Shibani; Rodeghier, Mark; Burdick, Marie; Mehrad, Borna; Rose, C Edward; Strieter, Robert M; DeBaun, Michael R; Strunk, Robert C; Field, Joshua J

    2016-03-01

    Interstitial lung disease is common in patients with sickle cell anemia (SCA). Fibrocytes are circulating cells implicated in the pathogenesis of pulmonary fibrosis and airway remodeling in asthma. In this study, we tested the hypotheses that fibrocyte levels are: (1) increased in children with SCA compared to healthy controls, and (2) associated with pulmonary disease. Cross-sectional cohort study of children with SCA who participated in the Sleep Asthma Cohort Study. Fibrocyte levels were obtained from 45 children with SCA and 24 controls. Mean age of SCA cases was 14 years and 53% were female. In children with SCA, levels of circulating fibrocytes were greater than controls (P < 0.01). The fibrocytes expressed a hierarchy of chemokine receptors, with CXCR4 expressed on the majority of cells and CCR2 and CCR7 expressed on a smaller subset. Almost half of fibrocytes demonstrated α-smooth muscle actin activation. Increased fibrocyte levels were associated with a higher reticulocyte count (P = 0.03) and older age (P = 0.048) in children with SCA. However, children with increased levels of fibrocytes were not more likely to have asthma or lower percent predicted forced expiratory volume in 1 sec/forced vital capacity (FEV1 /FVC) or FEV1 than those with lower fibrocyte levels. Higher levels of fibrocytes in children with SCA compared to controls may be due to hemolysis. Longitudinal studies may be able to better assess the relationship between fibrocyte level and pulmonary dysfunction. © 2015 Wiley Periodicals, Inc.

  18. Postoperative [{sup 125}I] seed brachytherapy in the treatment of acinic cell carcinoma of the parotid gland. With associated risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Ming-hui; Zhang, Jian-Guo; Zhang, Jie; Zheng, Lei; Liu, Shu-ming; Huang, Ming-wei; Shi, Yan [Peking Univ. School and Hospital of Stomatology, Beijing (China). Dept. of Oral and Maxillofacial Surgery

    2014-11-15

    This retrospective study was undertaken to analyze data from patients receiving iodine-125 ([{sup 125}I]) seed brachytherapy postoperatively for the treatment of acinic cell carcinoma (ACC) of the parotid gland along with the following risk factors: residual tumor, recurrent tumor, facial nerve invasion, positive resection margins, advanced tumor stage, or tumor spillage. Twenty-nine patients with ACC (17 females, 12 males; age range, 13-73 years; median age, 37.3 years) were included. Median follow-up was 58.2 months (range, 14-122 months). Patients received [{sup 125}I] seed brachytherapy (median actuarial D90, 177 Gy) 3-41 days (median, 14 days) following surgery. Radioactivity was 18.5-33.3 MBq per seed, and the prescription dose was 80-120 Gy. The 3-, 5-, and 10-year rates of local control were 93.1, 88.7, and 88.7 %, respectively; overall survival was 96.6, 92, and 92 %; disease-free survival was 93.1, 88.4, and 88.4 %; and freedom from distant metastasis was 96.6, 91.2, and 91.2 %. Lymph node metastases were absent in all patients, although two patients died with distant metastases. Facial nerve recovery was quick, and no severe radiotherapy-related complications were noted. Recurrence history, local recurrence, and distant metastasis significantly affected overall survival. Postoperative [{sup 125}I] seed brachytherapy is effective in treating ACC and has minor complications. Patients with a history of recurrence showed poor prognosis and were more likely to experience disease recurrence and develop metastases. (orig.) [German] Diese retrospektive Studie wurde durchgefuehrt, um die Daten von Patienten zu analysieren, die postoperativ eine Seed-Brachytherapie mit Iod-125 ([{sup 125}I]) zur Behandlung von Azinuszellkarzinomen der Ohrspeicheldruese mit begleitenden Risikofaktoren, wie Residualtumor, Rezidivtumor, Invasion in den N. facialis, positive (= nicht tumorfreie) Resektionsraender, fortgeschrittenes Tumorstadium oder lokale Verbreitung von Tumorzellen

  19. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment

    Science.gov (United States)

    Govindarajan, Tina; Shandas, Robin

    2018-01-01

    Shape Memory Polymers (SMPs) are smart materials that can recall their shape upon the application of a stimulus, which makes them appealing materials for a variety of applications, especially in biomedical devices. Most prior SMP research has focused on tuning bulk properties; studying surface effects of SMPs may extend the use of these materials to blood-contacting applications, such as cardiovascular stents, where surfaces that support rapid endothelialization have been correlated to stent success. Here, we evaluate endothelial attachment onto the surfaces of a family of SMPs previously developed in our group that have shown promise for biomedical devices. Nine SMP formulations containing varying amounts of tert-Butyl acrylate (tBA) and Poly(ethylene glycol) dimethacrylate (PEGDMA) were analyzed for endothelial cell attachment. Dynamic mechanical analysis (DMA), contact angle studies, and atomic force microscopy (AFM) were used to verify bulk and surface properties of the SMPs. Human umbilical vein endothelial cell (HUVEC) attachment and viability was verified using fluorescent methods. Endothelial cells preferentially attached to SMPs with higher tBA content, which have rougher, more hydrophobic surfaces. HUVECs also displayed an increased metabolic activity on these high tBA SMPs over the course of the study. This class of SMPs may be promising candidates for next generation blood-contacting devices. PMID:29707382

  20. Transport and phosphorylation of choline in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Bligny, R.; Foray, M.F.; Roby, C.; Douce, R.

    1989-03-25

    When sycamore cells were suspended in basal medium containing choline, the latter was taken up by the cells very rapidly. A facilitated diffusion system appertained at low concentrations of choline and exhibited Michaelis-Menten kinetics. At higher choline concentrations simple diffusion appeared to be the principal mode of uptake. Addition of choline to the perfusate of compressed sycamore cells monitored by /sup 31/P NMR spectroscopy resulted in a dramatic accumulation of P-choline in the cytoplasmic compartment containing choline kinase and not in the vacuole. The total accumulation of P-choline over a 10-h period exhibited Michaelis-Menten kinetics. During this period, in the absence of Pi in the perfusion medium there was a marked depletion of glucose-6-P, and the cytoplasmic Pi resonance disappeared almost completely. When a threshold of cytoplasmic Pi was attained, the phosphorylation of choline was sustained by the continuous release of Pi from the vacuole although at a much lower rate. However, when 100 microM inorganic phosphate was present in the perfusion medium, externally added Pi was preferentially used to sustain P-choline synthesis. It is clear, therefore, that cytosolic choline kinase associated with a carrier-mediated transport system for choline uptake appeared as effective systems for continuously trapping cytoplasmic Pi including vacuolar Pi entering the cytoplasm.

  1. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment

    Directory of Open Access Journals (Sweden)

    Tina Govindarajan

    2017-11-01

    Full Text Available Shape Memory Polymers (SMPs are smart materials that can recall their shape upon the application of a stimulus, which makes them appealing materials for a variety of applications, especially in biomedical devices. Most prior SMP research has focused on tuning bulk properties; studying surface effects of SMPs may extend the use of these materials to blood-contacting applications, such as cardiovascular stents, where surfaces that support rapid endothelialization have been correlated to stent success. Here, we evaluate endothelial attachment onto the surfaces of a family of SMPs previously developed in our group that have shown promise for biomedical devices. Nine SMP formulations containing varying amounts of tert-Butyl acrylate (tBA and Poly(ethylene glycol dimethacrylate (PEGDMA were analyzed for endothelial cell attachment. Dynamic mechanical analysis (DMA, contact angle studies, and atomic force microscopy (AFM were used to verify bulk and surface properties of the SMPs. Human umbilical vein endothelial cell (HUVEC attachment and viability was verified using fluorescent methods. Endothelial cells preferentially attached to SMPs with higher tBA content, which have rougher, more hydrophobic surfaces. HUVECs also displayed an increased metabolic activity on these high tBA SMPs over the course of the study. This class of SMPs may be promising candidates for next generation blood-contacting devices.

  2. Self-Shielding Treatment to Perform Cell Calculation for Seed Furl In Th/U Pwr Using Dragon Code

    Directory of Open Access Journals (Sweden)

    Ahmed Amin El Said Abd El Hameed

    2015-08-01

    Full Text Available Time and precision of the results are the most important factors in any code used for nuclear calculations. Despite of the high accuracy of Monte Carlo codes, MCNP and Serpent, in many cases their relatively long computational time leads to difficulties in using any of them as the main calculation code. Usually, Monte Carlo codes are used only to benchmark the results. The deterministic codes, which are usually used in nuclear reactor’s calculations, have limited precision, due to the approximations in the methods used to solve the multi-group transport equation. Self- Shielding treatment, an algorithm that produces an average cross-section defined over the complete energy domain of the neutrons in a nuclear reactor, is responsible for the biggest error in any deterministic codes. There are mainly two resonance self-shielding models commonly applied: models based on equivalence and dilution and models based on subgroup approach. The fundamental problem with any self-shielding method is that it treats any isotope as there are no other isotopes with resonance present in the reactor. The most practical way to solve this problem is to use multi-energy groups (50-200 that are chosen in a way that allows us to use all major resonances without self-shielding. In this paper, we perform cell calculations, for a fresh seed fuel pin which is used in thorium/uranium reactors, by solving 172 energy group transport equation using the deterministic DRAGON code, for the two types of self-shielding models (equivalence and dilution models and subgroup models Using WIMS-D5 and DRAGON data libraries. The results are then tested by comparing it with the stochastic MCNP5 code.  We also tested the sensitivity of the results to a specific change in self-shielding method implemented, for example the effect of applying Livolant-Jeanpierre Normalization scheme and Rimman Integration improvement on the equivalence and dilution method, and the effect of using Ribbon

  3. Lignans from Opuntia ficus-indica seeds protect rat primary hepatocytes and HepG2 cells against ethanol-induced oxidative stress.

    Science.gov (United States)

    Kim, Jung Wha; Yang, Heejung; Kim, Hyeon Woo; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Bioactivity-guided isolation of Opuntia ficus-indica (Cactaceae) seeds against ethanol-treated primary rat hepatocytes yielded six lignan compounds. Among the isolates, furofuran lignans 4-6, significantly protected rat hepatocytes against ethanol-induced oxidative stress by reducing intracellular reactive oxygen species levels, preserving antioxidative defense enzyme activities, and maintaining the glutathione content. Moreover, 4 dose-dependently induced the heme oxygenase-1 expression in HepG2 cells.

  4. DNA comet assay for rice seeds treated with low energy electrons ('soft-electrons')

    International Nuclear Information System (INIS)

    Todoriki, Setsuko; Hayashi, Toru

    1999-01-01

    As rice seeds are sometimes contaminated with phytopathogenic organisms such as blast disease fungi and nematodes, a novel non-chemical disinfection method for rice seeds is highly required. In order to develop a disinfection method, the effect of low energy electron ('soft-electrons') on seed DNA was examined by using the neutral comet assay. Rice seeds (whole grain) were treated with electrons of different acceleration voltages (180 kV to 1 MV) at a dose of 5 kGy. Nucleus suspensions were prepared from whole brown rice and subjected to electrophoresis. DNA from un-irradiated (control) seeds relaxed and produced comets with a short tail, most of the comets distributed within the range of comet length between 30 μm to 70 μm. In the case of seeds treated with electrons at acceleration voltages up to 190 kV, cells without seed coats were not damaged and the frequency histograms of comet length showed almost the same pattern as that for control. At acceleration voltages higher than 200 kV, the cells were distributed into two categories; DNA comets with a short tail (with little DNA damages, less than 70 μm in the comet length) and DNA comets with long tails (with sever strand breaks, more than 130 μm in the comet length). The ratios of damaged cells increased with increasing acceleration voltage. The growths of rice seedlings were not affected by the treatment with electrons at up to 200 kV. On the contrary, the cells of gamma-irradiated seed showed small variations in the comet length, and which were depending on radiation dose. The individual cells of gamma-irradiated seeds at 1 kGy showed shorter comet than the damaged cells with soft electron, seed treated with gamma rays (1-5 kGy) did not shoot nor root. (author)

  5. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  6. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  7. Inhibition of Glucose Transport by Tomatoside A, a Tomato Seed Steroidal Saponin, through the Suppression of GLUT2 Expression in Caco-2 Cells.

    Science.gov (United States)

    Li, Baorui; Terazono, Yusuke; Hirasaki, Naoto; Tatemichi, Yuki; Kinoshita, Emiko; Obata, Akio; Matsui, Toshiro

    2018-02-14

    We investigated whether tomatoside A (5α-furostane-3β,22,26-triol-3-[O-β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl (1→4)-β-d-galactopyranoside] 26-O-β-d-glucopyranoside), a tomato seed saponin, may play a role in the regulation of intestinal glucose transport in human intestinal Caco-2 cells. Tomatoside A could not penetrate through Caco-2 cell monolayers, as observed in the transport experiments using liquid chromatography-mass spectrometry. The treatment of cells with 10 μM tomatoside A for 3 h resulted in a 46.0% reduction in glucose transport as compared to untreated cells. Western blotting analyses revealed that tomatoside A significantly (p transporter 2 (GLUT2) in Caco-2 cells, while no change in the expression of sodium-dependent glucose transporter 1 was observed. In glucose transport experiments, the reduced glucose transport by tomatoside A was ameliorated by a protein kinase C (PKC) inhibitor and a multidrug resistance-associated protein 2 (MRP2) inhibitor. The tomatoside A-induced reduction in glucose transport was restored in cells treated with apical sodium-dependent bile acid transporter (ASBT) siRNA or an ASBT antagonist. These findings demonstrated for the first time that the nontransportable tomato seed steroidal saponin, tomatoside A, suppressed GLUT2 expression via PKC signaling pathway during the ASBT-influx/MRP2-efflux process in Caco-2 cells.

  8. Electricity generation and microbial community structure of air-cathode microbial fuel cells powered with the organic fraction of municipal solid waste and inoculated with different seeds

    KAUST Repository

    El-Chakhtoura, Joline

    2014-08-01

    The organic fraction of municipal solid waste (OFMSW), normally exceeding 60% of the waste stream in developing countries, could constitute a valuable source of feed for microbial fuel cells (MFCs). This study tested the start-up of two sets of OFMSW-fed air-cathode MFCs inoculated with wastewater sludge or cattle manure. The maximum power density obtained was 123±41mWm-2 in the manure-seeded MFCs and 116±29mWm-2 in the wastewater-seeded MFCs. Coulombic efficiencies ranged between 24±5% (manure-seeded MFCs) and 23±2% (wastewater-seeded MFCs). Chemical oxygen demand removal was >86% in all the MFCs and carbohydrate removal >98%. Microbial community analysis using 16S rRNA gene pyrosequencing demonstrated the dominance of the phylum Firmicutes (67%) on the anode suggesting the possible role of members of this phylum in electricity generation. Principal coordinate analysis showed that the microbial community structure in replicate MFCs converged regardless of the inoculum source. This study demonstrates efficient electricity production coupled with organic treatment in OFMSW-fueled MFCs inoculated with manure or wastewater. © 2014 Elsevier Ltd.

  9. Electricity generation and microbial community structure of air-cathode microbial fuel cells powered with the organic fraction of municipal solid waste and inoculated with different seeds

    KAUST Repository

    El-Chakhtoura, Joline; El-Fadel, Mutasem E.; Rao, Hari Ananda; Li, Dong; Ghanimeh, Sophia A.; Saikaly, Pascal

    2014-01-01

    The organic fraction of municipal solid waste (OFMSW), normally exceeding 60% of the waste stream in developing countries, could constitute a valuable source of feed for microbial fuel cells (MFCs). This study tested the start-up of two sets of OFMSW-fed air-cathode MFCs inoculated with wastewater sludge or cattle manure. The maximum power density obtained was 123±41mWm-2 in the manure-seeded MFCs and 116±29mWm-2 in the wastewater-seeded MFCs. Coulombic efficiencies ranged between 24±5% (manure-seeded MFCs) and 23±2% (wastewater-seeded MFCs). Chemical oxygen demand removal was >86% in all the MFCs and carbohydrate removal >98%. Microbial community analysis using 16S rRNA gene pyrosequencing demonstrated the dominance of the phylum Firmicutes (67%) on the anode suggesting the possible role of members of this phylum in electricity generation. Principal coordinate analysis showed that the microbial community structure in replicate MFCs converged regardless of the inoculum source. This study demonstrates efficient electricity production coupled with organic treatment in OFMSW-fueled MFCs inoculated with manure or wastewater. © 2014 Elsevier Ltd.

  10. Biological activities of Schottenol and Spinasterol, two natural phytosterols present in argan oil and in cactus pear seed oil, on murine miroglial BV2 cells

    Energy Technology Data Exchange (ETDEWEB)

    El Kharrassi, Youssef [Université de Bourgogne, Laboratoire Bio-PeroxIL, EA7270, Dijon F-21000 (France); Laboratoire de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26000 Settat (Morocco); Samadi, Mohammad [LCPMC-A2, ICPM, Department of Chemistry, Université de Lorraine, Metz (France); Lopez, Tatiana [CRINSERM 866, Dijon (France); Nury, Thomas [Université de Bourgogne, Laboratoire Bio-PeroxIL, EA7270, Dijon F-21000 (France); El Kebbaj, Riad [Université de Bourgogne, Laboratoire Bio-PeroxIL, EA7270, Dijon F-21000 (France); Laboratoire de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26000 Settat (Morocco); Andreoletti, Pierre; El Hajj, Hammam I. [Université de Bourgogne, Laboratoire Bio-PeroxIL, EA7270, Dijon F-21000 (France); Vamecq, Joseph [INSERM and HMNO, CBP, CHRU Lille, 59037 Lille (France); Moustaid, Khadija [Laboratoire de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26000 Settat (Morocco); Latruffe, Norbert [Université de Bourgogne, Laboratoire Bio-PeroxIL, EA7270, Dijon F-21000 (France); El Kebbaj, M’Hammed Saïd [Laboratoire de recherche sur les Lipoprotéines et l’Athérosclérose, Faculté des Sciences Ben M’sik, Avenue Cdt Driss El Harti BP. 7955, Université Hassan II-Mohammedia-Casablanca (Morocco); Masson, David [CRINSERM 866, Dijon (France); and others

    2014-04-11

    Highlights: • Sterol composition in argan oil and in cactus seed oil. • Chemical synthesis of two sterols: Schottenol and Spinasterol. • Sterols from argan oil or from cactus seed oil show no toxicity on BV2 cells. • Schottenol and Spinasterol modulate the activation and the expression of two nuclear receptors, LXRα and LXRβ. - Abstract: The objective of this study was to evaluate the biological activities of the major phytosterols present in argan oil (AO) and in cactus seed oil (CSO) in BV2 microglial cells. Accordingly, we first determined the sterol composition of AO and CSO, showing the presence of Schottenol and Spinasterol as major sterols in AO. While in CSO, in addition to these two sterols, we found mainly another sterol, the Sitosterol. The chemical synthesis of Schottenol and Spinasterol was performed. Our results showed that these two phytosterols, as well as sterol extracts from AO or CSO, are not toxic to microglial BV2 cells. However, treatments by these phytosterols impact the mitochondrial membrane potential. Furthermore, both Schottenol and Spinasterol can modulate the gene expression of two nuclear receptors, liver X receptor (LXR)-α and LXRβ, their target genes ABCA1 and ABCG1. Nonetheless, only Schottenol exhibited a differential activation vis-à-vis the nuclear receptor LXRβ. Thus Schottenol and Spinasterol can be considered as new LXR agonists, which may play protective roles by the modulation of cholesterol metabolism.

  11. Biological activities of Schottenol and Spinasterol, two natural phytosterols present in argan oil and in cactus pear seed oil, on murine miroglial BV2 cells

    International Nuclear Information System (INIS)

    El Kharrassi, Youssef; Samadi, Mohammad; Lopez, Tatiana; Nury, Thomas; El Kebbaj, Riad; Andreoletti, Pierre; El Hajj, Hammam I.; Vamecq, Joseph; Moustaid, Khadija; Latruffe, Norbert; El Kebbaj, M’Hammed Saïd; Masson, David

    2014-01-01

    Highlights: • Sterol composition in argan oil and in cactus seed oil. • Chemical synthesis of two sterols: Schottenol and Spinasterol. • Sterols from argan oil or from cactus seed oil show no toxicity on BV2 cells. • Schottenol and Spinasterol modulate the activation and the expression of two nuclear receptors, LXRα and LXRβ. - Abstract: The objective of this study was to evaluate the biological activities of the major phytosterols present in argan oil (AO) and in cactus seed oil (CSO) in BV2 microglial cells. Accordingly, we first determined the sterol composition of AO and CSO, showing the presence of Schottenol and Spinasterol as major sterols in AO. While in CSO, in addition to these two sterols, we found mainly another sterol, the Sitosterol. The chemical synthesis of Schottenol and Spinasterol was performed. Our results showed that these two phytosterols, as well as sterol extracts from AO or CSO, are not toxic to microglial BV2 cells. However, treatments by these phytosterols impact the mitochondrial membrane potential. Furthermore, both Schottenol and Spinasterol can modulate the gene expression of two nuclear receptors, liver X receptor (LXR)-α and LXRβ, their target genes ABCA1 and ABCG1. Nonetheless, only Schottenol exhibited a differential activation vis-à-vis the nuclear receptor LXRβ. Thus Schottenol and Spinasterol can be considered as new LXR agonists, which may play protective roles by the modulation of cholesterol metabolism

  12. Unidirectional Movement of Cellulose Synthase Complexes in Arabidopsis Seed Coat Epidermal Cells Deposit Cellulose Involved in Mucilage Extrusion, Adherence, and Ray Formation1[OPEN

    Science.gov (United States)

    Lam, Patricia; Young, Robin; DeBolt, Seth

    2015-01-01

    CELLULOSE SYNTHASE5 (CESA5) synthesizes cellulose necessary for seed mucilage adherence to seed coat epidermal cells of Arabidopsis (Arabidopsis thaliana). The involvement of additional CESA proteins in this process and details concerning the manner in which cellulose is deposited in the mucilage pocket are unknown. Here, we show that both CESA3 and CESA10 are highly expressed in this cell type at the time of mucilage synthesis and localize to the plasma membrane adjacent to the mucilage pocket. The isoxaben resistant1-1 and isoxaben resistant1-2 mutants affecting CESA3 show defects consistent with altered mucilage cellulose biosynthesis. CESA3 can interact with CESA5 in vitro, and green fluorescent protein-tagged CESA5, CESA3, and CESA10 proteins move in a linear, unidirectional fashion around the cytoplasmic column of the cell, parallel with the surface of the seed, in a pattern similar to that of cortical microtubules. Consistent with this movement, cytological evidence suggests that the mucilage is coiled around the columella and unwinds during mucilage extrusion to form a linear ray. Mutations in CESA5 and CESA3 affect the speed of mucilage extrusion and mucilage adherence. These findings imply that cellulose fibrils are synthesized in an ordered helical array around the columella, providing a distinct structure to the mucilage that is important for both mucilage extrusion and adherence. PMID:25926481

  13. Low molecular weight procyanidins from grape seeds enhance the impact of 5-Fluorouracil chemotherapy on Caco-2 human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Ker Y Cheah

    Full Text Available OBJECTIVE: Grape seed procyanidins (PC are flavan-3-ol oligomers and polymers known for their biological activity in the gut. Grape seed extract (GSE have been reported to reduce intestinal injury in a rat model of mucositis. We sought to investigate effects of purified PC fractions differing in mean degree of polymerization (mDP combined with 5-Fluorouracil (5-FU chemotherapy on the viability of colon cancer cells (Caco-2. DESIGN: SixPC fractions (F1-F6 were isolated from Cabernet Sauvignon seeds at two ripeness stages: pre-veraison unripe (immature and ripe (mature, utilizing step gradient, low-pressure chromatography on a Sephadex LH-20 resin. Fractions were tested on Caco-2 cells, alone and in combination with 5-FU. Eluted fractions were characterized by phloroglucinolysis and gel permeation chromatography. Cell viability was determined by the 3-(4,5-Dimethylthiazol-2yl-2,5-diphenyl-tetrazolium bromide (MTT assay. RESULTS: All isolated fractions significantly reduced Caco-2 cell viability compared to the control (P<0.05, but F2 and F3 (mDP 2-6 were the most active fractions (immature F2 = 32% mDP 2.4, F3 = 35% mDP 5.8 and mature F2 = 13% mDP 3.6 and F3 = 17% mDP 5.9; percentage of viable cells remaining on Caco-2 cells. When combined with 5-FU, immature fractions F1-F3 enhanced the cell toxicity effects of 5-FU by 27-73% (P<0.05. Mature seed PC fractions (F1-F4 significantly enhanced the toxicity of 5-FU by 60-83% against Caco-2 cells (P<0.05. Moreover, some fractions alone were more potent at decreasing viability in Caco-2 cells (P<0.05; immature fractions = 65-68% and mature fractions = 83-87% compared to 5-FU alone (37%. CONCLUSIONS: PCs of mDP 2-6 (immature F1-F3 and mature F1 and F4not only enhanced the impact of 5-FU in killing Caco-2 cells, but also surpassed standard 5-FU chemotherapy as an anti-cancer agent.The bioactivity of PC is therefore attributed primarily to lower molecular weight PCs.

  14. [Seed geography: its concept and basic scientific issues].

    Science.gov (United States)

    Yu, Shun-Li; Wang, Zong-Shuai; Zeren, Wangmu

    2010-01-01

    In this paper, a new concept 'seed geography' was provided, and its definition, research contents, and scientific issues were put forward. Seed geography is a newly developed interdisciplinary science from plant geography, seed ecology, and phytosociology, which studies the geographic variation patterns of seed biological traits as well as their relationships with environmental factors from macroscopic to microscopic, and the seed formation, development, and change trends. The main research contents would include geography of seed mass, geography of seed chemical components, geography of seed morphology, geography of seed cell biological characteristics, geography of seed physiological characteristics, geography of seed genetic characteristics, and geography of flower and fruit. To explore the scientific issues in seed geography would help us to better understand the long-term adaptation and evolution of seed characteristics to natural environments.

  15. Evaluation of Wheat (Triticum aestivum, L. Seed Quality of Certified Seed and Farm-Saved Seed in Three Provinces of Iran

    Directory of Open Access Journals (Sweden)

    Khazaei Fardin

    2016-06-01

    Full Text Available The objective of this study was to study the seed quality aspects of wheat (Triticum aestivum L. and the extent of weed seed contamination present in wheat seeds produced in different regions of Iran. Four districts (cities, each including 12 fields (six certified seed fields and six farm-saved seed fields, were selected in each regions (provinces. One kilogram of the wheat seed sample was collected from each field for analysis in the laboratory. Wheat seeding was commonly done by farm-saved seed sourced from within the farm due to the high costs of certified seeds purchased from outside sources, followed by the low seed quality. The use of a farm-saved seed resulted in a higher germination rate and a lower mean time to germination compared with another system. The more positive temperatures experienced by mother plants could decrease the number of normal seedling and seedling length vigor index. Generally there was virtually no difference about physiological quality between certified seed and farm-saved seed sector that is related to lower quality of certified seed. The certified produced seeds had the lower number of weed seed, species and genus before and after cleaning. The highest seed purity and 1000 seed weight was obtained from the certified seed production system. The need for cleaning the farm-saved seed samples before sowing is one of the important findings of this survey.

  16. Studies on the effects of mutagens on cultured cells of higher plants, (2)

    International Nuclear Information System (INIS)

    Mori, Shigeyuki; Nakanishi, Hiroo; Shiojiri, Satoshi; Murakami, Michio

    1980-01-01

    A comparative study on the effects of 60 Co gamma radiation was carried out on callus tissue, seedlings and seeds of Phaseolus vulgaris L. cv. Kentucky Wonder. Callus was obtained from the hypocotyl pieces grown on an agar-solidified, modified Linsmaier and Skoog's medium supplemented with 2, 4-D (5 mg/l), kinetin (5 mg/l) and yeast extract (1,000 mg/l). Subculture was conducted on the same medium in the dark at 28 +- 1 0 C. Callus was exposed to various doses (2.5 - 15 KR) of gamma radiation at 20 KR/hr. Fresh and dry weight, potency of growth in subculture of irradiated callus, color and friability were measured. As compared with control, irradiated callus growth showed a significant decrease with increasing doses. Callus growth was classified into three types, i.e. callus began to grow from the early stage of culture at 5 KR and below, from 6.25 - 8.75 KR there was a delayed growth, at 10 KR and over there was little visual sign of growth. The potency of growth in subculture for 28 days of irradiated- and 24-day-cultured callus was recognized at 10 KR and below. With increasing doses, color of callus darkened, and the degree of friability increased. While 10-day-old seedlings were irradiated, striking inhibition of growth occurred at 2 KR, followed by degradation of the apical meristem and growth ceased completely at 5 KR. Severe inhibition of growth of irradiated seeds occurred at 20 KR and over. A remarkable difference in radiosensitivity was observed among callus tissue, seedlings and seeds, i.e. seedlings were most sensitive, followed by callus tissue, and seeds were most resistant. (author)

  17. Solar cells from 120 PPMA carbon-contaminated feedstock without significantly higher reverse current or shunt

    Energy Technology Data Exchange (ETDEWEB)

    Manshanden, P.; Coletti, G. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    In a bid to drive down the cost of silicon wafers, several options for solar grade silicon feedstock have been investigated over the years. All methods have in common that the resulting silicon contains higher levels of impurities like dopants, oxygen, carbon or transition metals, the type and level of impurities depending on the raw materials and refining processes. In this work wafers from a p-type mc-Si ingot made with feedstock contaminated with 120 ppma of carbon have been processed into solar cells together with reference uncontaminated feedstock from semiconductor grade polysilicon with <0.4 ppma carbon. The results show that comparable reverse current, shunts, and efficiencies can be reached for both types of wafers. Gettering and defect hydrogenation effectiveness also did not deviate from the reference. Electroluminescence pictures do not show increased hotspot formation, even at -16V.

  18. Running title: Water distribution in chickpea seeds

    African Journals Online (AJOL)

    agriphy20

    2012-07-24

    Jul 24, 2012 ... molecular mobility of cellular water in magnetically exposed seeds as compared to unexposed seeds. Analysis of ... protrusion takes place through the seed coat and absorption .... directly related to water activity (aw) of the cell water. (Gambhir ..... plants, including photosynthesis, respiration and enzymatic ...

  19. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines

    OpenAIRE

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as ? -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars...

  20. Effects of seed priming and water potential on seed germination and ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... (without seed drying), primed and 12 h drying on seed germination of wheat .... completely with the lower half and the paper were rolled and placed ..... water stress and control of germination: a review. Plant Cell Environ.

  1. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures.

    Science.gov (United States)

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N W; Walters, Christina

    2014-03-01

    Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm(2) in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches.

  2. Seed yield components and their potential interaction in grasses - to what extend does seed weigth influence yield?

    DEFF Research Database (Denmark)

    Boelt, B; Gislum, R

    2010-01-01

     In a first-year seed crop of red fescue (Festuca rubra L.) the degree of lodging was controlled by the use of Moddus (Trinexapac-ethyl). Seed weight was found to increase by the decreasing degree of lodging prior to harvest. The higher seed weights were accompanied by higher yields even though...... the number of reproductive tillers and floret site utilization (FSU) were unaffected by the treatments. Seed yield is affected by several yield components and reflects the interaction between the seed yield potential (e.g. number of reproductive tillers, number of spikelets and florets/spikelet per...... reproductive tiller), the utilization of the potential (e.g. seed set, seed weight) and the realization of the seed yield potential, defined as the number of florets forming a saleable seed. The realization of the seed yield potential is affected by seed retention, seed weight and other traits associated...

  3. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    Directory of Open Access Journals (Sweden)

    Behrooz Darbani

    Full Text Available In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between

  4. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    Science.gov (United States)

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2015-01-01

    In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between the treatments

  5. Oxidative Damage and Mutagenic Potency of Fast Neutron and UV-B Radiation in Pollen Mother Cells and Seed Yield of Vicia faba L.

    Directory of Open Access Journals (Sweden)

    Ekram Abdel Haliem

    2013-01-01

    Full Text Available In recent years, there has been a great deal of attention toward free radicals, reactive oxygen species (ROS generated by exposure of crop plant cells to physical radiations. Henceforth, the current study was planned to compare oxidative stress and mutagenic potential of different irradiation doses of fast neutron (FN and UV-B on meiotic-pollen mother cells (PMCs, pollen grains (PGs and seeds yielded from irradiated faba beans seedlings. On the cytogenetic level, each irradiation type had special interference with DNA of PMC and exhibited wide range of mutagenic action on the frequency and type of chromosomal anomalies, fertility of PGs and seed yield productivity based on the irradiation exposure dose and radiation sensitivity of faba bean plants compared with un-irradiated ones. On the molecular level, SDS-PAGE and RPAD-PCR analyses of seeds yielded from irradiated seedlings exhibited distinctive polymorphisms based on size, intensity, appearance, and disappearance of polypeptides bands compared with un-irradiated ones. The total values of protein and DNA polymorphisms reached 88% and 90.80% respectively. The neutron fluency (2.3 × 106 n/cm2 and UV-B dose for 1 hr were recorded as bio-positive effects. The present study proved that genetic variations revealed by cytogenetic test could be supported by gene expression (alterations in RAPD and protein profiles.

  6. Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Chudíčková, Milada; Trošan, Peter; Svobodová, Eliška; Krulová, Magdalena; Kubinová, Šárka; Syková, Eva; Širc, Jakub; Michálek, Jiří; Juklíčková, M.; Munzarová, M.; Zajícová, Alena

    2011-01-01

    Roč. 156, č. 3 (2011), s. 406-412 ISSN 0168-3659 R&D Projects: GA AV ČR KAN200520804; GA ČR GAP304/11/0653; GA ČR(CZ) GAP301/11/1568; GA ČR GD310/08/H077; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40500505; CEZ:AV0Z50520514 Keywords : nanofibers * immunosuppression * cell transfer Subject RIV: EC - Immunology Impact factor: 5.732, year: 2011

  7. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    International Nuclear Information System (INIS)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther; Eblenkamp, Markus; Wintermantel, Erich

    2010-01-01

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  8. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  9. Practical considerations for maximizing heat production in a novel thermobrachytherapy seed prototype

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Bhoj; Warrell, Gregory; Shvydka, Diana; Ishmael Parsai, E., E-mail: e.parsai@utoledo.edu [University of Toledo Medical Center, 3000 Arlington Avenue, MS1151, Toledo, Ohio 43614 (United States); Subramanian, Manny [BEST Medical International, Inc., 7643 Fullerton Road, Springfield, Virginia 22153 (United States)

    2014-02-15

    Purpose: A combination of hyperthermia and radiation in the treatment of cancer has been proven to provide better tumor control than radiation administered as a monomodality, without an increase in complications or serious toxicities. Moreover, concurrent administration of hyperthermia and radiation displays synergistic enhancement, resulting in greater tumor cell killing than hyperthermia and radiation delivered separately. The authors have designed a new thermobrachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent brachytherapy and hyperthermia treatments when implanted in solid tumors. This innovative seed, similar in size and geometry to conventional seeds, will have self-regulating thermal properties. Methods: The new seed's geometry is based on the standard BEST Model 2301{sup 125}I seed, resulting in very similar dosimetric properties. The TB seed generates heat when placed in an oscillating magnetic field via induction heating of a ferromagnetic Ni–Cu alloy core that replaces the tungsten radiographic marker of the standard Model 2301. The alloy composition is selected to undergo a Curie transition near 50 °C, drastically decreasing power production at higher temperatures and providing for temperature self-regulation. Here, the authors present experimental studies of the magnetic properties of Ni–Cu alloy material, the visibility of TB seeds in radiographic imaging, and the ability of seed prototypes to uniformly heat tissue to a desirable temperature. Moreover, analyses are presented of magnetic shielding and thermal expansion of the TB seed, as well as matching of radiation dose to temperature distributions for a short interseed distance in a given treatment volume. Results: Annealing the Ni–Cu alloy has a significant effect on its magnetization properties, increasing the sharpness of the Curie transition. The TB seed preserves the radiographic properties of the BEST 2301 seed in both plain x rays and CT

  10. Practical considerations for maximizing heat production in a novel thermobrachytherapy seed prototype

    International Nuclear Information System (INIS)

    Gautam, Bhoj; Warrell, Gregory; Shvydka, Diana; Ishmael Parsai, E.; Subramanian, Manny

    2014-01-01

    Purpose: A combination of hyperthermia and radiation in the treatment of cancer has been proven to provide better tumor control than radiation administered as a monomodality, without an increase in complications or serious toxicities. Moreover, concurrent administration of hyperthermia and radiation displays synergistic enhancement, resulting in greater tumor cell killing than hyperthermia and radiation delivered separately. The authors have designed a new thermobrachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent brachytherapy and hyperthermia treatments when implanted in solid tumors. This innovative seed, similar in size and geometry to conventional seeds, will have self-regulating thermal properties. Methods: The new seed's geometry is based on the standard BEST Model 2301 125 I seed, resulting in very similar dosimetric properties. The TB seed generates heat when placed in an oscillating magnetic field via induction heating of a ferromagnetic Ni–Cu alloy core that replaces the tungsten radiographic marker of the standard Model 2301. The alloy composition is selected to undergo a Curie transition near 50 °C, drastically decreasing power production at higher temperatures and providing for temperature self-regulation. Here, the authors present experimental studies of the magnetic properties of Ni–Cu alloy material, the visibility of TB seeds in radiographic imaging, and the ability of seed prototypes to uniformly heat tissue to a desirable temperature. Moreover, analyses are presented of magnetic shielding and thermal expansion of the TB seed, as well as matching of radiation dose to temperature distributions for a short interseed distance in a given treatment volume. Results: Annealing the Ni–Cu alloy has a significant effect on its magnetization properties, increasing the sharpness of the Curie transition. The TB seed preserves the radiographic properties of the BEST 2301 seed in both plain x rays and CT images

  11. Higher 5-hydroxymethylcytosine identifies immortal DNA strand chromosomes in asymmetrically self-renewing distributed stem cells.

    Science.gov (United States)

    Huh, Yang Hoon; Cohen, Justin; Sherley, James L

    2013-10-15

    Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands. The difference in relative 5hmC content was caused by the loss of 5hmC from mortal chromosomes. These findings implicate higher 5hmC as a specific molecular determinant of immortal DNA strand chromosomes. Because 5hmC is an intermediate during DNA demethylation, we propose a ten-eleven translocase enzyme mechanism for both the specification and maintenance of nonrandomly segregated immortal DNA strands. The proposed mechanism reveals a means by which DSCs "know" the generational age of immortal DNA strands. The mechanism is supported by molecular expression data and accounts for the selection of newly replicated DNA strands when nonrandom segregation is initiated. These mechanistic insights also provide a possible basis for another characteristic property of immortal DNA strands, their guanine ribonucleotide dependency.

  12. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.

    Science.gov (United States)

    Yang, William C; Lu, Jiuyi; Kwiatkowski, Chris; Yuan, Hang; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2014-01-01

    Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof-of-concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high-seed fed-batch production cultures. First, we optimized the perfusion N-1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N-1 duration, reaching >40 × 10(6) vc/mL at the end of the perfusion N-1 stage. The cultures were subsequently split into high-seed (10 × 10(6) vc/mL) fed-batch production cultures. This strategy significantly shortened the culture duration. The high-seed fed-batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low-seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N-1 and high-seed fed-batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low-seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers.

  13. Testing Optimum Seeding Rates for five Bread Wheat Cultivars

    International Nuclear Information System (INIS)

    Wekesa, S.J.; Kiriswa, F.; Owuoche, J.

    1999-01-01

    A cultivar by seed rate trial was conducted in 1994-1995 crop seasons at Njoro, Kenya. Yield results were found to be significant (P > 0.01) for year, variety, seed rate and year by seed rate interaction. Test weight was highly significant (P -1 were grouped together for significantly higher yields (A) whereas seed rates 85 and 50 kg ha -1 had lower significant yields (B and C respectively). The same grouping was repeated for test weight. There was no significant cultivar by seed rate interaction and no cultivar, specific seed rate. However, since seed rates 245, 205, 165 and 125 kg ha -1 were grouped together, the lowest seed rate, 125 kg ha -1 can be recommended as the optimum seed rate for the above cultivars, as higher seed rates do not give significantly higher yields or higher test weights

  14. Polyalkoxybenzenes from plants. 5. Parsley seed extract in synthesis of azapodophyllotoxins featuring strong tubulin destabilizing activity in the sea urchin embryo and cell culture assays.

    Science.gov (United States)

    Semenova, Marina N; Kiselyov, Alex S; Tsyganov, Dmitry V; Konyushkin, Leonid D; Firgang, Sergei I; Semenov, Roman V; Malyshev, Oleg R; Raihstat, Mikhail M; Fuchs, Fabian; Stielow, Anne; Lantow, Margareta; Philchenkov, Alex A; Zavelevich, Michael P; Zefirov, Nikolay S; Kuznetsov, Sergei A; Semenov, Victor V

    2011-10-27

    A series of 4-azapodophyllotoxin derivatives with modified rings B and E have been synthesized using allylpolyalkoxybenzenes from parsley seed oil. The targeted molecules were evaluated in vivo in a phenotypic sea urchin embryo assay for antimitotic and tubulin destabilizing activity. The most active compounds identified by the in vivo sea urchin embryo assay featured myristicin-derived ring E. These molecules were determined to be more potent than podophyllotoxin. Cytotoxic effects of selected molecules were further confirmed and evaluated by conventional assays with A549 and Jurkat human leukemic T-cell lines including cell growth inhibition, cell cycle arrest, cellular microtubule disruption, and induction of apoptosis. The ring B modification yielded 6-OMe substituted molecule as the most active compound. Finally, in Jurkat cells, compound induced caspase-dependent apoptosis mediated by the apical caspases-2 and -9 and not caspase-8, implying the involvement of the intrinsic caspase-9-dependent apoptotic pathway.

  15. Induction of Apoptotic Effects of Antiproliferative Protein from the Seeds of Borreria hispida on Lung Cancer (A549 and Cervical Cancer (HeLa Cell Lines

    Directory of Open Access Journals (Sweden)

    S. Rupachandra

    2014-01-01

    Full Text Available A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3 on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3 exhibited significant cytotoxic activity against lung (A549 and cervical (HeLa cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549 and cervical (HeLa cancer cells.

  16. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal

    KAUST Repository

    Kim, Younggy

    2011-01-01

    Voltages produced by microbial fuel cells (MFCs) cannot be sustainably increased by linking them in series due to voltage reversal, which substantially reduces stack voltages. It was shown here that MFC voltages can be increased with continuous power production using an electronic circuit containing two sets of multiple capacitors that were alternately charged and discharged (every one second). Capacitors were charged in parallel by the MFCs, but linked in series while discharging to the circuit load (resistor). The parallel charging of the capacitors avoided voltage reversal, while discharging the capacitors in series produced up to 2.5 V with four capacitors. There were negligible energy losses in the circuit compared to 20-40% losses typically obtained with MFCs using DC-DC converters to increase voltage. Coulombic efficiencies were 67% when power was generated via four capacitors, compared to only 38% when individual MFCs were operated with a fixed resistance of 250 Ω. The maximum power produced using the capacitors was not adversely affected by variable performance of the MFCs, showing that power generation can be maintained even if individual MFCs perform differently. Longer capacitor charging and discharging cycles of up to 4 min maintained the average power but increased peak power by up to 2.6 times. These results show that capacitors can be used to easily obtain higher voltages from MFCs, allowing for more useful capture of energy from arrays of MFCs. © 2011 The Royal Society of Chemistry.

  17. Improving Spiking Dynamical Networks: Accurate Delays, Higher-Order Synapses, and Time Cells.

    Science.gov (United States)

    Voelker, Aaron R; Eliasmith, Chris

    2018-03-01

    Researchers building spiking neural networks face the challenge of improving the biological plausibility of their model networks while maintaining the ability to quantitatively characterize network behavior. In this work, we extend the theory behind the neural engineering framework (NEF), a method of building spiking dynamical networks, to permit the use of a broad class of synapse models while maintaining prescribed dynamics up to a given order. This theory improves our understanding of how low-level synaptic properties alter the accuracy of high-level computations in spiking dynamical networks. For completeness, we provide characterizations for both continuous-time (i.e., analog) and discrete-time (i.e., digital) simulations. We demonstrate the utility of these extensions by mapping an optimal delay line onto various spiking dynamical networks using higher-order models of the synapse. We show that these networks nonlinearly encode rolling windows of input history, using a scale invariant representation, with accuracy depending on the frequency content of the input signal. Finally, we reveal that these methods provide a novel explanation of time cell responses during a delay task, which have been observed throughout hippocampus, striatum, and cortex.

  18. Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways.

    Science.gov (United States)

    Looi, Chung Yeng; Moharram, Bushra; Paydar, Mohammadjavad; Wong, Yi Li; Leong, Kok Hoong; Mohamad, Khalit; Arya, Aditya; Wong, Won Fen; Mustafa, Mohd Rais

    2013-07-10

    Centratherum anthelminticum (L.) Kuntze (scientific synonyms: Vernonia anthelmintica; black cumin) is one of the ingredients of an Ayurvedic preparation, called "Kayakalp", commonly applied to treat skin disorders in India and Southeast Asia. Despite its well known anti-inflammatory property on skin diseases, the anti-cancer effect of C. anthelminticum seeds on skin cancer is less documented. The present study aims to investigate the anti-cancer effect of Centratherum anthelminticum (L.) seeds chloroform fraction (CACF) on human melanoma cells and to elucidate the molecular mechanism involved. A chloroform fraction was extracted from C. anthelminticum (CACF). Bioactive compounds of the CACF were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Human melanoma cell line A375 was treated with CACF in vitro. Effects of CACF on growth inhibition, morphology, stress and survival of the cell were examined with MTT, high content screening (HSC) array scan and flow cytometry analyses. Involvement of intrinsic or extrinsic pathways in the CACF-induced A375 cell death mechanism was examined using a caspase luminescence assay. The results were further verified with different caspase inhibitors. In addition, Western blot analysis was performed to elucidate the changes in apoptosis-associated molecules. Finally, the effect of CACF on the NF-κB nuclear translocation ability was assayed. The MTT assay showed that CACF dose-dependently inhibited cell growth of A375, while exerted less cytotoxic effect on normal primary epithelial melanocytes. We demonstrated that CACF induced cell growth inhibition through apoptosis, as evidenced by cell shrinkage, increased annexin V staining and formation of membrane blebs. CACF treatment also resulted in higher reactive oxygen species (ROS) production and lower Bcl-2 expression, leading to decrease mitochondrial membrane potential (MMP). Disruption of the MMP facilitated the release of mitochondrial cytochrome c, which

  19. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study

    Directory of Open Access Journals (Sweden)

    Jennifer J. Warnock

    2014-04-01

    Full Text Available Introduction. Tissue engineering is a new methodology for addressing meniscal injury or loss. Synovium may be an ideal source of cells for in vitro meniscal fibrocartilage formation, however, favorable in vitro culture conditions for synovium must be established in order to achieve this goal. The objective of this study was to determine cellularity, cell distribution, and extracellular matrix (ECM formation of equine fibroblast-like synoviocytes (FLS cultured on synthetic scaffolds, for potential application in synovium-based meniscal tissue engineering. Scaffolds included open-cell poly-L-lactic acid (OPLA sponges and polyglycolic acid (PGA scaffolds cultured in static and dynamic culture conditions, and PGA scaffolds coated in poly-L-lactic (PLLA in dynamic culture conditions.Materials and Methods. Equine FLS were seeded on OPLA and PGA scaffolds, and cultured in a static environment or in a rotating bioreactor for 12 days. Equine FLS were also seeded on PGA scaffolds coated in 2% or 4% PLLA and cultured in a rotating bioreactor for 14 and 21 days. Three scaffolds from each group were fixed, sectioned and stained with Masson’s Trichrome, Safranin-O, and Hematoxylin and Eosin, and cell numbers and distribution were analyzed using computer image analysis. Three PGA and OPLA scaffolds from each culture condition were also analyzed for extracellular matrix (ECM production via dimethylmethylene blue (sulfated glycosaminoglycan assay and hydroxyproline (collagen assay. PLLA coated PGA scaffolds were analyzed using double stranded DNA quantification as areflection of cellularity and confocal laser microscopy in a fluorescent cell viability assay.Results. The highest cellularity occurred in PGA constructs cultured in a rotating bioreactor, which also had a mean sulfated glycosaminoglycan content of 22.3 µg per scaffold. PGA constructs cultured in static conditions had the lowest cellularity. Cells had difficulty adhering to OPLA and the PLLA

  20. Argyrophil cell density in the oxyntic mucosa is higher in female than in male morbidly obese patients

    International Nuclear Information System (INIS)

    Maksud, F.A.N.; Kakehasi, A.M.; Barbosa, A.J.A.

    2013-01-01

    Obesity is a multifactorial disorder often associated with many important diseases such as diabetes, hypertension and other metabolic syndrome conditions. Argyrophil cells represent almost the total population of endocrine cells of the human gastric mucosa and some reports have described changes of specific types of these cells in patients with obesity and metabolic syndrome. The present study was designed to evaluate the global population of argyrophil cells of the gastric mucosa of morbidly obese and dyspeptic non-obese patients. Gastric biopsies of antropyloric and oxyntic mucosa were obtained from 50 morbidly obese patients (BMI >40) and 50 non-obese patients (17 dyspeptic overweight and 33 lean individuals) and processed for histology and Grimelius staining for argyrophil cell demonstration. Argyrophil cell density in the oxyntic mucosa of morbidly obese patients was higher in female (238.68 ± 83.71 cells/mm 2 ) than in male patients (179.31 ± 85.96 cells/mm 2 ) and also higher in female (214.20 ± 50.38 cells/mm 2 ) than in male (141.90 ± 61.22 cells/mm 2 ) morbidly obese patients with metabolic syndrome (P = 0.01 and P = 0.02, respectively). In antropyloric mucosa, the main difference in argyrophil cell density was observed between female morbidly obese patients with (167.00 ± 69.30 cells/mm 2 ) and without (234.00 ± 69.54 cells/mm 2 ) metabolic syndrome (P = 0.001). In conclusion, the present results show that the number of gastric argyrophil cells could be under gender influence in patients with morbid obesity. In addition, gastric argyrophil cells seem to behave differently among female morbidly obese patients with and without metabolic syndrome

  1. Argyrophil cell density in the oxyntic mucosa is higher in female than in male morbidly obese patients

    Energy Technology Data Exchange (ETDEWEB)

    Maksud, F.A.N. [Laboratório de Patologia Digestiva e Neuroendócrina, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Faculdade de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG (Brazil); Kakehasi, A.M. [Laboratório de Patologia Digestiva e Neuroendócrina, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Barbosa, A.J.A. [Laboratório de Patologia Digestiva e Neuroendócrina, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Instituto Alfa de Gastroenterologia, Belo Horizonte, MG (Brazil)

    2013-04-05

    Obesity is a multifactorial disorder often associated with many important diseases such as diabetes, hypertension and other metabolic syndrome conditions. Argyrophil cells represent almost the total population of endocrine cells of the human gastric mucosa and some reports have described changes of specific types of these cells in patients with obesity and metabolic syndrome. The present study was designed to evaluate the global population of argyrophil cells of the gastric mucosa of morbidly obese and dyspeptic non-obese patients. Gastric biopsies of antropyloric and oxyntic mucosa were obtained from 50 morbidly obese patients (BMI >40) and 50 non-obese patients (17 dyspeptic overweight and 33 lean individuals) and processed for histology and Grimelius staining for argyrophil cell demonstration. Argyrophil cell density in the oxyntic mucosa of morbidly obese patients was higher in female (238.68 ± 83.71 cells/mm{sup 2}) than in male patients (179.31 ± 85.96 cells/mm{sup 2}) and also higher in female (214.20 ± 50.38 cells/mm{sup 2}) than in male (141.90 ± 61.22 cells/mm{sup 2}) morbidly obese patients with metabolic syndrome (P = 0.01 and P = 0.02, respectively). In antropyloric mucosa, the main difference in argyrophil cell density was observed between female morbidly obese patients with (167.00 ± 69.30 cells/mm{sup 2}) and without (234.00 ± 69.54 cells/mm{sup 2}) metabolic syndrome (P = 0.001). In conclusion, the present results show that the number of gastric argyrophil cells could be under gender influence in patients with morbid obesity. In addition, gastric argyrophil cells seem to behave differently among female morbidly obese patients with and without metabolic syndrome.

  2. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    Directory of Open Access Journals (Sweden)

    Julien De Giorgi

    2015-12-01

    Full Text Available Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA and abscisic acid (ABA signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  3. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted?

    Science.gov (United States)

    Pestka, Jan M; Bode, Gerrit; Salzmann, Gian; Steinwachs, Mathias; Schmal, Hagen; Südkamp, Norbert P; Niemeyer, Philipp

    2014-01-01

    Autologous chondrocyte implantation (ACI) has been associated with satisfying results. Still, it remains unclear when success or failure after ACI can be estimated. To evaluate the clinical outcomes of cell-seeded collagen matrix-supported ACI (ACI-Cs) for the treatment of cartilage defects of the knee at 36 months and to determine a time point after ACI-Cs at which success or failure can be estimated. Cohort study; Level of evidence, 3. A total of 80 patients with isolated full-thickness cartilage defects of the knee joint treated with ACI-Cs were prospectively assessed before surgery as well as postoperatively by use of the International Knee Documentation Committee (IKDC) score and Lysholm knee score. Preoperative IKDC and Lysholm scores increased from 49.6 and 59.5, respectively, to 79.1 and 83.5, respectively, at 36 months. Only half the patients (46.6%) with poor IKDC scores (ie, <70) at 6 months postoperatively showed continued poor or fair scores at 36 months' follow-up. The probability of poor scores at 36 months after surgery further increased to 0.61 and 0.81, respectively, when scores were persistent at 12 and 24 months. All 3 patients (100%) with good IKDC scores (ie, 81-90) at 6 months after surgery showed constant or even improved scores at 36 months' follow-up. Ninety-one percent of patients with good and excellent scores at 12 months and 83% of patients with good and excellent scores at 24 months (a total of 23 and 37 patients, respectively) were able to maintain these scores at 36 months' follow-up. Similar results were obtained for the Lysholm score. With regard to the improvements in functional outcomes after ACI-Cs at 36 months after surgery, the technique described here appears to lead to satisfying and stable clinical results. This study helps the treating physician to predict the likeliness of further clinical improvements or constant unsatisfactory results after ACI. In patients with good/excellent scores shortly after surgery

  4. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species.

    Science.gov (United States)

    Ge, Liangfa; Yu, Jianbin; Wang, Hongliang; Luth, Diane; Bai, Guihua; Wang, Kan; Chen, Rujin

    2016-11-01

    Plant organs, such as seeds, are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a conserved role for the BIG SEEDS1 (BS1) gene in the control of seed size and weight in the model legume Medicago truncatula and the grain legume soybean (Glycine max). BS1 encodes a plant-specific transcription regulator and plays a key role in the control of the size of plant organs, including seeds, seed pods, and leaves, through a regulatory module that targets primary cell proliferation. Importantly, down-regulation of BS1 orthologs in soybean by an artificial microRNA significantly increased soybean seed size, weight, and amino acid content. Our results provide a strategy for the increase in yield and seed quality in legumes.

  5. Dependence of rate of germination of teak ( Tectona grandis ) seeds ...

    African Journals Online (AJOL)

    A study was conducted to determine suitable sources of teak (Tectona grandis) seeds and methods of treating the seeds to promote higher rate of germination, with the objective to supply large quantities of seedlings for developing commercial teak plantations in Ghana. The field work involved seed collection, seed pericarp ...

  6. Safety Evaluation of a Bioglass–Polylactic Acid Composite Scaffold Seeded with Progenitor Cells in a Rat Skull Critical-Size Bone Defect

    Science.gov (United States)

    El-Kady, Abeer M.; Arbid, Mahmoud S.; Abd El-Hady, Bothaina M.; Marzi, Ingo; Seebach, Caroline

    2014-01-01

    Treating large bone defects represents a major challenge in traumatic and orthopedic surgery. Bone tissue engineering provides a promising therapeutic option to improve the local bone healing response. In the present study tissue biocompatibility, systemic toxicity and tumorigenicity of a newly developed composite material consisting of polylactic acid (PLA) and 20% or 40% bioglass (BG20 and BG40), respectively, were analyzed. These materials were seeded with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) and tested in a rat calvarial critical size defect model for 3 months and compared to a scaffold consisting only of PLA. Serum was analyzed for organ damage markers such as GOT and creatinine. Leukocyte count, temperature and free radical indicators were measured to determine the degree of systemic inflammation. Possible tumor occurrence was assessed macroscopically and histologically in slides of liver, kidney and spleen. Furthermore, the concentrations of serum malondialdehyde (MDA) and sodium oxide dismutase (SOD) were assessed as indicators of tumor progression. Qualitative tissue response towards the implants and new bone mass formation was histologically investigated. BG20 and BG40, with or without progenitor cells, did not cause organ damage, long-term systemic inflammatory reactions or tumor formation. BG20 and BG40 supported bone formation, which was further enhanced in the presence of EPCs and MSCs. This investigation reflects good biocompatibility of the biomaterials BG20 and BG40 and provides evidence that additionally seeding EPCs and MSCs onto the scaffold does not induce tumor formation. PMID:24498345

  7. Contrast-enhanced ultrasound and computed tomography findings of recurrent ovarian steroid cell tumor presenting with peritoneal seeding: A case report

    International Nuclear Information System (INIS)

    Im, A Lan; Lee, Young Hwan; Kim, Hye Won; Lee, Han Ah; Choi, Keum Ha

    2013-01-01

    We present ultrasonography and computed tomography (CT) findings of a case of recurrent ovarian steroid cell tumor presenting with peritoneal seeding in a 45-year-old woman. On abdominal ultrasonography, there were multiple hypoechoic round masses in the peritoneal cavity including the perihepatic area. Contrast-enhanced ultrasonography showed intense homogenous enhancement on the arterial phase and delayed prolonged enhancement of the masses. CT revealed multiple peritoneal solid masses with strong enhancement. Five years ago, the patient had been diagnosed with a steroid cell tumor of the left ovary. At that time, the CT showed a well-enhancing, lobulating, large solid mass at the left adnexa. Imaging findings of the peritoneal masses suggested peritoneal seeding from the preexisting ovarian steroid cell tumor. For treatment of the metastatic lesions in the perihepatic area, ultrasonography-guided radiofrequency ablation (RFA) was performed, and debulking surgery for the peritoneal masses was done. Six months later, complete ablation of the perihepatic metastases by RFA and a marked decrease in the peritoneal metastases by surgery were found on the follow-up CT.

  8. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    CSIR Research Space (South Africa)

    Wesley-Smith, J

    2014-03-01

    Full Text Available Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus...

  9. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Chinnapaka Somaiah

    Full Text Available Mesenchymal stem cells (MSC can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.

  10. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects.

    Science.gov (United States)

    Wang, Lei; Baskin, Jerry M; Baskin, Carol C; Cornelissen, J Hans C; Dong, Ming; Huang, Zhenying

    2012-09-25

    Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration.

  11. Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects

    Directory of Open Access Journals (Sweden)

    Tim Kornfeld

    2016-11-01

    Full Text Available Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95% throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction.

  12. The entire miR-200 seed family is strongly deregulated in clear cell renal cell cancer compared to the proximal tubular epithelial cells of the kidney

    NARCIS (Netherlands)

    Duns, Gerben; van den Berg, Anke; van Dijk, Marcory C. R. F.; van Duivenbode, Inge; Giezen, Cor; Kluiver, Joost; van Goor, Harry; Hofstra, Robert M. W.; van den Berg, Eva; Kok, Klaas

    Despite numerous studies reporting deregulated microRNA (miRNA) and gene expression patterns in clear cell renal cell carcinoma (ccRCC), no direct comparisons have been made to its presumed normal counterpart: the renal proximal tubular epithelial cells (PTECs). The aim of this study was to

  13. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes.

    Science.gov (United States)

    Galluzzi, L; Aaronson, S A; Abrams, J; Alnemri, E S; Andrews, D W; Baehrecke, E H; Bazan, N G; Blagosklonny, M V; Blomgren, K; Borner, C; Bredesen, D E; Brenner, C; Castedo, M; Cidlowski, J A; Ciechanover, A; Cohen, G M; De Laurenzi, V; De Maria, R; Deshmukh, M; Dynlacht, B D; El-Deiry, W S; Flavell, R A; Fulda, S; Garrido, C; Golstein, P; Gougeon, M-L; Green, D R; Gronemeyer, H; Hajnóczky, G; Hardwick, J M; Hengartner, M O; Ichijo, H; Jäättelä, M; Kepp, O; Kimchi, A; Klionsky, D J; Knight, R A; Kornbluth, S; Kumar, S; Levine, B; Lipton, S A; Lugli, E; Madeo, F; Malomi, W; Marine, J-C W; Martin, S J; Medema, J P; Mehlen, P; Melino, G; Moll, U M; Morselli, E; Nagata, S; Nicholson, D W; Nicotera, P; Nuñez, G; Oren, M; Penninger, J; Pervaiz, S; Peter, M E; Piacentini, M; Prehn, J H M; Puthalakath, H; Rabinovich, G A; Rizzuto, R; Rodrigues, C M P; Rubinsztein, D C; Rudel, T; Scorrano, L; Simon, H-U; Steller, H; Tschopp, J; Tsujimoto, Y; Vandenabeele, P; Vitale, I; Vousden, K H; Youle, R J; Yuan, J; Zhivotovsky, B; Kroemer, G

    2009-08-01

    Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.

  14. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    NARCIS (Netherlands)

    Groot, S.P.C.; Surki, A.A.; Vos, de R.C.H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under

  15. Higher percentage of CD133+ cells is associated with poor prognosis in colon carcinoma patients with stage IIIB

    Directory of Open Access Journals (Sweden)

    Zhang Xin

    2009-07-01

    Full Text Available Abstract Background Cancer stem cell model suggested that tumor progression is driven by the overpopulation of cancer stem cells and eradicating or inhibiting the symmetric division of cancer stem cells would become the most important therapeutic strategy. However, clinical evidence for this hypothesis is still scarce. To evaluate the overpopulation hypothesis of cancer stem cells the association of percentage of CD133+ tumor cells with clinicopathological parameters in colon cancer was investigated since CD133 is a putative cancer stem cell marker shared by multiple solid tumors. Patients and methods Tumor tissues matched with adjacent normal tissues were collected from 104 stage IIIB colon cancer patients who were subject to radical resection between January, 1999 to July, 2003 in this center. The CD133 expression was examined with immunohistochemical staining. The correlation of the percentage of CD133+ cell with clinicopathological parameters and patients' 5-year survival was analyzed. Results The CD133+ cells were infrequent and heterogeneous distribution in the cancer tissue. Staining of CD133 was localized not only on the glandular-luminal surface of cancer cells but also on the invasive budding and the poorly differentiated tumors with ductal structures. Both univariate and multivariate survival analysis revealed that the percentage of CD133+ cancer cells and the invasive depth of tumor were independently prognostic. The patients with a lower percentage of CD133+ cancer cells (less than 5% were strongly associated with a higher 5-year survival rate than those with a higher percentage of CD133+ cancer cells (greater than or equal to 55%. Additionally, no correlation was obtained between the percentage of CD133+ cancer cells and the other clinicopathological parameters including gender, age, site of primary mass, pathologic types, grades, and invasive depth. Conclusion The fact that a higher percentage CD133+ cells were strongly associated

  16. Distribution and viability of fetal and adult human bone marrow stromal cells in a biaxial rotating vessel bioreactor after seeding on polymeric 3D additive manufactured scaffolds

    Directory of Open Access Journals (Sweden)

    Anne eLeferink

    2015-10-01

    Full Text Available One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow derived mesenchymal stromal cells (MSCs are promising candidates for tissue engineering based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix (ECM distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.

  17. Internalisation and multiple phosphorylation of γ-Conglutin, the lupin seed glycaemia-lowering protein, in HepG2 cells.

    Science.gov (United States)

    Capraro, Jessica; Magni, Chiara; Faoro, Franco; Maffi, Dario; Scarafoni, Alessio; Tedeschi, Gabriella; Maffioli, Elisa; Parolari, Anna; Manzoni, Cristina; Lovati, Maria Rosa; Duranti, Marcello

    2013-08-09

    Lupin seed γ-Conglutin is a protein capable of reducing glycaemia in mammalians and increasing glucose uptake by model cells. This work investigated whether γ-Conglutin is internalised into the target cells and undergoes any covalent change during the process, as a first step to understanding its mechanism of action. To this purpose, γ-Conglutin-treated and untreated HepG2 cells were submitted to confocal and transmission electron microscopy. Immune-revelation of γ-Conglutin at various intervals revealed its accumulation inside the cytosol. In parallel, 2D-electrophoresis of the cell lysates and antibody reaction of the blotted maps showed the presence of the protein intact subunits inside the treated cells, whilest no trace of the protein was found in the control cells. However, γ-Conglutin-related spots with an unexpectedly low pI were also observed in the maps. These spots were excised, trypsin-treated and submitted to MS/MS spectrometric analysis. The presence of phosphorylated amino acids was detected. These findings, by showing that γ-Conglutin is internalised by HepG2 cells in an intact form and is modified by multiple phosphorylation, open the way to the understanding of the lupin γ-Conglutin insulin-mimetic activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

    NARCIS (Netherlands)

    Galluzzi, L.; Aaronson, S. A.; Abrams, J.; Alnemri, E. S.; Andrews, D. W.; Baehrecke, E. H.; Bazan, N. G.; Blagosklonny, M. V.; Blomgren, K.; Borner, C.; Bredesen, D. E.; Brenner, C.; Castedo, M.; Cidlowski, J. A.; Ciechanover, A.; Cohen, G. M.; de Laurenzi, V.; de Maria, R.; Deshmukh, M.; Dynlacht, B. D.; El-Deiry, W. S.; Flavell, R. A.; Fulda, S.; Garrido, C.; Golstein, P.; Gougeon, M.-L.; Green, D. R.; Gronemeyer, H.; Hajnóczky, G.; Hardwick, J. M.; Hengartner, M. O.; Ichijo, H.; Jäättelä, M.; Kepp, O.; Kimchi, A.; Klionsky, D. J.; Knight, R. A.; Kornbluth, S.; Kumar, S.; Levine, B.; Lipton, S. A.; Lugli, E.; Madeo, F.; Malorni, W.; Marine, J.-Cw; Martin, S. J.; Medema, J. P.; Mehlen, P.; Melino, G.; Moll, U. M.; Morselli, E.; Nagata, S.; Nicholson, D. W.; Nicotera, P.; Nuñez, G.; Oren, M.; Penninger, J.; Pervaiz, S.; Peter, M. E.; Piacentini, M.; Prehn, J. H. M.; Puthalakath, H.; Rabinovich, G. A.; Rizzuto, R.; Rodrigues, C. M. P.; Rubinsztein, D. C.; Rudel, T.; Scorrano, L.; Simon, H.-U.; Steller, H.; Tschopp, J.; Tsujimoto, Y.; Vandenabeele, P.; Vitale, I.; Vousden, K. H.; Youle, R. J.; Yuan, J.; Zhivotovsky, B.; Kroemer, G.

    2009-01-01

    Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous

  19. Higher acid-chlorite reactivity of cell corner middle lamella lignin in black spruce

    Science.gov (United States)

    Umesh P. Agarwal

    2007-01-01

    To determine if there was a delignification behavior difference between secondary wall (S2) and middle lamella (cell corner or CC) lignin, black spruce cross-sections were acid-chlorite delignified and the tissue was evaluated in-situ by Raman imaging. Lignin concentration in S2 and CC was determined in numerous latewood cell areas in the two hour delignified cross...

  20. Anticancer Screening of Various Seed Extract of Cardiospermum halicacabum on Human Colorectal, Skin and Breast Cancer Cell Lines

    OpenAIRE

    Behzad Mohaddesi; Ashvin Dudhrejiya; Navin R. Sheth

    2015-01-01

    Background: In the modern lifestyle, the increase in cancer and related chronic disorders is a major public health problem. In spite of different methods used for the treatment of these conditions, natural medicines have high demands due to their significant effects as immune enhancement and therapeutic agents and fewer side effects in comparison with other treatment methods. Hence, this study was undertaken to evaluate the cytotoxic effect of cardiospermum halicacabum Linn. seeds, based on t...

  1. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Directory of Open Access Journals (Sweden)

    Jensen Jonas

    2016-01-01

    Full Text Available Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs was compared with that of dental pulp-derived stromal cells (DPSCs in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D polycaprolactone (PCL – hyaluronic acid – tricalcium phosphate (HT-PCL scaffold. Population doubling (PD, alkaline phosphatase (ALP activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1 empty defects vs. HT-PCL scaffolds; (2 PCL scaffolds vs. HT-PCL scaffolds; and (3 autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV were assessed with micro-computed tomography (μCT and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.

  2. Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haibing [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Wei, Hui [Biosciences Center, National Renewable Energy Laboratory, Golden CO USA; Ma, Guojie [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Antunes, Mauricio S. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Vogt, Stefan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; Cox, Joseph [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Zhang, Xiao [Department of Horticulture, Purdue University, West Lafayette IN USA; Liu, Xiping [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Bu, Lintao [National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Gleber, S. Charlotte [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; Carpita, Nicholas C. [Department of Biological Sciences, Purdue University, West Lafayette IN USA; Department of Botany and Plant Pathology, Purdue University, West Lafayette IN USA; Makowski, Lee [Department of Bioengineering, Northeastern University, Boston MA USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston MA USA; Himmel, Michael E. [Biosciences Center, National Renewable Energy Laboratory, Golden CO USA; Tucker, Melvin P. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; McCann, Maureen C. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Murphy, Angus S. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park MD USA; Peer, Wendy A. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park MD USA; Department of Environmental Science and Technology, University of Maryland, College Park MD USA

    2016-04-07

    Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.

  3. Weed seed predation in organic and conventional fields

    DEFF Research Database (Denmark)

    Navntoft, Søren; Wratten, S.D.; Kristensen, Kristian

    2009-01-01

    Enhanced biological control of weed seeds may improve sustainability of agricultural production. Biological control due to seed predation may be higher in organic fields because organic production generally supports more seed predators. To investigate such a difference, weed seed predation...... University and in two of the fields used for estimating seed predation. Recording of predators had therefore limited overlap with seed predation assays but was expected to give important information on key seed predators in the region. The mean seed removal rate was 17% in organic fields compared with 10...... edges. Overall, there was no consistent effect of distance from the field edge. Vegetation had a significant influence on the predation rates, with maximum rates at a medium-dense plant cover. Based on the video images, birds were the most important seed predators. The higher weed seed predation rate...

  4. Study on interstitial brachytherapy using 103Pd seeds on tumor-bearing rats

    International Nuclear Information System (INIS)

    Feng Huiru; Zhang Jingming; Tian Jiahe; Ding Weimin; Bai Hongsheng; Jin Xiaohai

    2003-01-01

    The effects of low-dose-rate brachytherapy are investigated in tumor-bearing rat. Walker 256 cells are transplanted subcutaneously with a trocar in the left leg of rats (Wistar). Two weeks later, rats with a tumor of 10 mm in mean diameter are divided into three groups (10 per group). Two groups are given 1 seed and 2 seeds implantation of 103 Pd, respectively, the third group is as an untreated control. Tumor size is measured twice a week until the 25th day when the rats are killed. Tumor is monitored either by palpation or further confirmed by histopathology. Kaplan-Meier statistic method is performed for survival analysis. The results show that the average weight of rats in untreated group is lower than in radiation groups (P 0.05). Tumor volumes in all treatment groups increase more obviously than in control till 16 days post-implantation. Tumor regression rate in 1 seed group is higher than in control group and in 2 seeds group. Although survival analysis show that the median survival time in 1 seed, 2 seeds and control groups are 24±0, 21±2 and 19±2 days with survival rate of 80%, 60% and 50% respectively, no significant differences are seen in all groups. So, brachytherapy with 103 Pd seed is effective on tumor-bearing rats. The implantation of seed can cause tumor edema in a self-limited way. A reasonable doses chosen for brachytherapy may play a role in treatment success

  5. Laser microsurgery of higher plant cell walls permits patch-clamp access

    International Nuclear Information System (INIS)

    Henriksen, G.H.; Taylor, A.R.; Brownlee, C.; Assmann, S.M.

    1996-01-01

    Plasma membranes of guard cells in epidermal peels of Vicia faba and Commelina communis can be made accessible to a patch-clamp pipet by removing a small portion (1-3 micrometer in diameter) of the guard cell wall using a microbeam of ultraviolet light generated by a nitrogen laser. Using this laser microsurgical technique, we have measured channel activity across plasma membranes of V. faba guard cells in both cell-attached and isolated patch configurations. Measurements made in the inside-out patch configuration revealed two distinct K+-selective channels. Major advantages of the laser microsurgical technique include the avoidance of enzymatic protoplast isolation, the ability to study cell types that have been difficult to isolate as protoplasts or for which enzymatic isolation protocols result in protoplasts not amenable to patch-clamp studies, the maintenance of positional information in single-channel measurements, reduced disruption of cell-wall-mediated signaling pathways, and the ability to investigate intercellular signaling through studies of cells remaining situated within tissue

  6. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells

    International Nuclear Information System (INIS)

    Rajasekharreddy, Pala; Rani, Pathipati Usha

    2014-01-01

    A one-step and eco-friendly process for the synthesis of silver-(protein-lipid) nanoparticles (Ag-PL NPs) (core–shell) has been developed using the seed extract from wild Indian Almond tree, Sterculia foetida (L.) (Sterculiaceae). The reaction temperature played a major role in controlling the size and shell formation of NPs. The amount of NPs synthesized and qualitative characterization was done by UV–vis spectroscopy and transmission electron microscopy (TEM), respectively. TEM studies exhibited controlled dispersity of spherical shaped NPs with an average size of 6.9 ± 0.2 nm. Selected area electron diffraction (SAED) and X-ray diffraction (XRD) revealed ‘fcc’ phase and crystallinity of the particles. X-ray photoelectron spectroscopy (XPS) was used to identify the protein–lipid (PL) bilayer that appears as a shell around the Ag core particles. The thermal stability of the Ag-PL NPs was examined using thermogravimetric analysis (TGA). Further analysis was carried out by using Fourier transform infrared spectroscopy (FTIR), where the spectra provided evidence for the presence of proteins and lipid moieties ((2n-octylcycloprop-1-enyl)-octanoic acid (I)), and their role in synthesis and stabilization of Ag NPs. This is the first report of plant seed assisted synthesis of PL conjugated Ag NPs. These formed Ag-PL NPs showed potential mosquito larvicidal activity against Aedes aegypti (L.), Anopheles stephensi Liston and Culex quinquefasciatus Say. These Ag-PL NPs can also act as promising agents in cancer therapy. They exhibited anti-proliferative activity against HeLa cancer cell lines and a promising toxicity was observed in a dose dependent manner. Toxicity studies were further supported by the cellular DNA fragmentation in the Ag-PL NPs treated HeLa cells. - Highlights: • Green synthesis of protein-lipid conjugated Ag NPs using S. foetida L. seed extract. • S. foetida seed extract acted as good reducing and stabilizing agent for Ag NPs. • XPS and

  7. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekharreddy, Pala; Rani, Pathipati Usha, E-mail: usharani65@yahoo.com

    2014-06-01

    A one-step and eco-friendly process for the synthesis of silver-(protein-lipid) nanoparticles (Ag-PL NPs) (core–shell) has been developed using the seed extract from wild Indian Almond tree, Sterculia foetida (L.) (Sterculiaceae). The reaction temperature played a major role in controlling the size and shell formation of NPs. The amount of NPs synthesized and qualitative characterization was done by UV–vis spectroscopy and transmission electron microscopy (TEM), respectively. TEM studies exhibited controlled dispersity of spherical shaped NPs with an average size of 6.9 ± 0.2 nm. Selected area electron diffraction (SAED) and X-ray diffraction (XRD) revealed ‘fcc’ phase and crystallinity of the particles. X-ray photoelectron spectroscopy (XPS) was used to identify the protein–lipid (PL) bilayer that appears as a shell around the Ag core particles. The thermal stability of the Ag-PL NPs was examined using thermogravimetric analysis (TGA). Further analysis was carried out by using Fourier transform infrared spectroscopy (FTIR), where the spectra provided evidence for the presence of proteins and lipid moieties ((2n-octylcycloprop-1-enyl)-octanoic acid (I)), and their role in synthesis and stabilization of Ag NPs. This is the first report of plant seed assisted synthesis of PL conjugated Ag NPs. These formed Ag-PL NPs showed potential mosquito larvicidal activity against Aedes aegypti (L.), Anopheles stephensi Liston and Culex quinquefasciatus Say. These Ag-PL NPs can also act as promising agents in cancer therapy. They exhibited anti-proliferative activity against HeLa cancer cell lines and a promising toxicity was observed in a dose dependent manner. Toxicity studies were further supported by the cellular DNA fragmentation in the Ag-PL NPs treated HeLa cells. - Highlights: • Green synthesis of protein-lipid conjugated Ag NPs using S. foetida L. seed extract. • S. foetida seed extract acted as good reducing and stabilizing agent for Ag NPs. • XPS and

  8. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition.

    Science.gov (United States)

    Al-Sabahi, Bushra N; Fatope, Majekodunmi O; Essa, Musthafa Mohamed; Subash, Selvaraju; Al-Busafi, Saleh N; Al-Kusaibi, Fatma S M; Manivasagam, Thamilarasan

    2017-01-01

    Seed oils are used as cosmetics or topical treatment for wounds, allergy, dandruff, and other purposes. Natural antioxidants from plants were recently reported to delay the onset or progress of various neurodegenerative conditions. Over one thousand cultivars of Punica granatum (Punicaceae) are known and some are traditionally used to treat various ailments. The effect of pomegranate oil on 3-nitropropionic acid- (3-NP) induced cytotoxicity in rat pheochromocytoma (PC12) neuronal cells was analyzed in this study. Furthermore, the analysis of unsaturated fatty acid composition of the seed oil of pomegranate by gas chromatography-electron impact mass spectrometry (GC-MS) was done. GC-MS study showed the presence of 6,9-octadecadiynoic acid (C18:2(6,9)) as a major component (60%) as 4,4-dimethyloxazoline derivative. The total extractable oil with light petroleum ether by Soxhlet from the dry seed of P. granatum was 4-6%. The oil analyzed for 48.90 ± 1.50 mg gallic acid equivalents/g of oil, and demonstrated radical-scavenging-linked antioxidant activities in various in vitro assays like the DPPH (2,2-diphenyl-l-picrylhydrazyl, % IP = 35.2 ± 0.9%), ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), % IP 2.2 ± 0.1%), and β-carotene bleaching assay (% IP = 26 ± 3%), respectively, which could be due the possible role of one methylene interrupted diynoic acid system for its radical-scavenging/antioxidant properties of oil. The oil also reduced lipid peroxidation, suppressed reactive oxygen species, extracellular nitric oxide, lactate/pyruvate ratio, and lactase dehydrogenase generated by 3-NP- (100 mM) induced neurotoxicity in PC12 cells, and enhanced the levels of enzymatic and non-enzymatic antioxidants at 40 μg of gallic acid equivalents. The protective effect of pomegranate seed oil might be due to the ability of an oil to neutralize ROS or enhance the expression of antioxidant gene and the exact mechanism of action yet to be elucidated.

  9. Critical Role of FoxO1 in Granulosa Cell Apoptosis Caused by Oxidative Stress and Protective Effects of Grape Seed Procyanidin B2

    Directory of Open Access Journals (Sweden)

    Jia-Qing Zhang

    2016-01-01

    Full Text Available Reactive oxygen species (ROS are closely related to the follicular granulosa cell apoptosis. Grape seed procyanidin B2 (GSPB2 has been reported to possess potent antioxidant activity. However, the GSPB2-mediated protective effects and the underlying molecular mechanisms in granulosa cell apoptosis process remain unknown. In this study, we showed for the first time that GSPB2 treatment decreased FoxO1 protein level, improved granulosa cell viability, upregulated LC3-II protein level, and reduced granulosa cell apoptosis rate. Under a condition of oxidative stress, GSPB2 reversed FoxO1 nuclear localization and increased its level in cytoplasm. In addition, FoxO1 knockdown inhibited the protective effects of GSPB2 induced. Our findings suggest that FoxO1 plays a pivotal role in regulating autophagy in granulosa cells, GSPB2 exerts a potent and beneficial role in reducing granulosa cell apoptosis and inducing autophagy process, and targeting FoxO1 could be significant in fighting against oxidative stress-reduced female reproductive system diseases.

  10. Flavanols from evening primrose (Oenothera paradoxa) defatted seeds inhibit prostate cells invasiveness and cause changes in Bcl-2/Bax mRNA ratio.

    Science.gov (United States)

    Lewandowska, Urszula; Szewczyk, Karolina; Owczarek, Katarzyna; Hrabec, Zbigniew; Podsędek, Anna; Koziołkiewicz, Maria; Hrabec, Elżbieta

    2013-03-27

    In this study, we assessed the influence of an evening primrose flavanol preparation (EPFP) on proliferation and invasiveness of human prostate cancer cells (DU 145) and immortalized prostate epithelial cells (PNT1A). We report for the first time that EPFP reduces DU 145 cell proliferation (IC50 = 97 μM GAE for 72 h incubation) and invasiveness (by 24% versus control at 75 μM GAE). EPFP strongly inhibited PNT1A invasiveness in a concentration-dependent manner (by 67% versus control at 75 μM GAE) and did not cause a reduction in their proliferation. Furthermore, EPFP inhibited the activities of MMP-2 and MMP-9 secreted to culture medium by PNT1A cells by 84% and 34% versus control at 100 μM GAE, respectively. In the case of DU 145, MMP-9 activity at 100 μM GAE was reduced by 37% versus control. Moreover, the evening primrose seed flavanols suppressed the expression of selected genes (MMP-1, MMP-9, MMP-14, c-Fos, c-Jun, and VEGF) and also caused favorable changes in Bcl-2/Bax mRNA ratio which render DU 145 cells more sensitive to apoptosis-triggering agents. An additional confirmation of the proapoptotic activity of EPFP toward DU 145 was visualization of characteristic apoptotic bodies by DAPI staining. In conclusion, this study suggests that EPFP may increase apoptosis and reduce angiogenesis of prostate cancer cells.

  11. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.

    Science.gov (United States)

    Abdul Rahman, Rozlin; Mohamad Sukri, Norhamiza; Md Nazir, Noorhidayah; Ahmad Radzi, Muhammad Aa'zamuddin; Zulkifly, Ahmad Hafiz; Che Ahmad, Aminudin; Hashi, Abdurezak Abdulahi; Abdul Rahman, Suzanah; Sha'ban, Munirah

    2015-08-01

    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (ptissue engineered cartilage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The effectiveness of a standardized rose hip powder, containing seeds and shells of Rosa canina, on cell longevity, skin wrinkles, moisture, and elasticity

    Directory of Open Access Journals (Sweden)

    Phetcharat L

    2015-11-01

    Full Text Available L Phetcharat,1,2 K Wongsuphasawat,1,2 K Winther31School of Antiaging and Regenerative Medicine, Mae Fah University, Bangkok, Thailand; 2Department of Anti-aging and Regenerative Medicine, Mae Fah University, Bangkok, Thailand; 3Institute for Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, DenmarkObjective: To evaluate the effects of a rose hip powder (Hyben Vital® made from seeds and shells on cell senescence, skin wrinkling, and aging.Methods: A total of 34 healthy subjects, aged 35–65 years, with wrinkles on the face (crow’s-feet were subjected to a randomized and double-blinded clinical study of the effects of the rose hip powder, as compared to astaxanthin, a well-known remedy against wrinkles. During the 8-week study, half of the participants ingested the standardized rose hip product, while the other half ingested astaxanthin. Objective measurements of facial wrinkles, skin moisture, and elasticity were made by using Visioscan, Corneometer, and Cutometer at the beginning of the study, after 4 weeks, and after 8 weeks. Evaluation of participant satisfaction of both supplements was assessed using questionnaires. In addition, the effect of the rose hip preparation on cell longevity was measured in terms of leakage of hemoglobin through red cell membranes (hemolytic index in blood samples kept in a blood bank for 5 weeks. Significance of all values was attained with P≤0.05.Results: In the double-blinded study, the rose hip group showed statistically significant improvements in crow’s-feet wrinkles (P<0.05, skin moisture (P<0.05, and elasticity (P<0.05 after 8 weeks of treatment. A similar improvement was observed for astaxanthin, with P-values 0.05, 0.001, and 0.05. Likewise, both groups expressed equal satisfaction with the results obtained in their self-assessment. The rose hip powder further resulted in increased cell longevity of erythrocyte cells during storage for 5 weeks in a blood bank

  13. ID3 contributes to cerebrospinal fluid seeding and poor prognosis in medulloblastoma

    International Nuclear Information System (INIS)

    Phi, Ji Hoon; Choi, Seung Ah; Lim, Sang-Hee; Lee, Joongyub; Wang, Kyu-Chang; Park, Sung-Hye; Kim, Seung-Ki

    2013-01-01

    The inhibitor of differentiation (ID) genes have been implicated as promoters of tumor progression and metastasis in many human cancers. The current study investigated the expression and functional roles of ID genes in seeding and prognosis of medulloblastoma. ID gene expression was screened in human medulloblastoma tissues. Knockdown of ID3 gene was performed in medulloblastoma cells in vitro. The expression of metastasis-related genes after ID3 knockdown was assessed. The effect of ID3 knockdown on tumor seeding was observed in an animal model in vivo. The survival of medulloblastoma patients was plotted according to the ID3 expression levels. Significantly higher ID3 expression was observed in medulloblastoma with cerebrospinal fluid seeding than tumors without seeding. Knockdown of ID3 decreased proliferation, increased apoptosis, and suppressed the migration of D283 medulloblastoma cells in vitro. In a seeding model of medulloblastoma, ID3 knockdown in vivo with shRNA inhibited the growth of primary tumors, prevented the development of leptomeningeal seeding, and prolonged animal survival. High ID3 expression was associated with shorter survival of medulloblastoma patients, especially in Group 4 medulloblastomas. High ID3 expression is associated with medullolbastoma seeding and is a poor prognostic factor, especially in patients with Group 4 tumors. ID3 may represent the metastatic/ aggressive phenotype of a subgroup of medulloblastoma

  14. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Martha Luevano

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC has become an alluring option for NK cell therapy, with umbilical cord blood (UCB and mobilized peripheral blood (PBCD34(+ being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+ and frozen PBCD34(+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+ cultures. NK cells generated from CBCD34(+ and PBCD34(+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+ for the production of NK cells in vitro results in higher cell numbers than PBCD34(+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  15. Structural and cell adhesion properties of zebrafish syndecan-4 are shared with higher vertebrates

    DEFF Research Database (Denmark)

    Whiteford, James; Ko, Sunggeon; Lee, Weontae

    2008-01-01

    , but no molecular and cellular studies have been reported. Here it is demonstrated that key functional attributes of syndecan-4 are common to both zebrafish and mammalian homologues. These include glycosaminoglycan substitution, a NXIP motif in the extracellular domain that promotes integrin-mediated cell adhesion......The syndecan proteoglycans are an ancient class of receptor, bearing heparan sulfate chains that interact with numerous potential ligands including growth factors, morphogens, and extracellular matrix molecules. The single syndecan of invertebrates appears not to have cell adhesion roles......, but these have been described for mammalian paralogues, especially syndecan-4. This member is best understood in terms of interactions, signaling, and structure of its cytoplasmic domain. The zebrafish homologue of syndecan-4 has been genetically linked to cell adhesion and migration in zebrafish embryos...

  16. Fucoidan cytotoxicity against human breast cancer T47D cell line increases with higher level of sulfate ester group

    Science.gov (United States)

    Saepudin, Endang; Alfita Qosthalani, Fildzah; Sinurat, Ellya

    2018-01-01

    The anticancer activity of different sulfate ester group content in different molecular weight was examined. The anticancer activity was achieved in vitro on human breast cancer T47D cell line. Fucoidan with lower molecular weight (5.79 kDa) tends to have lower sulfate ester group content (8.69%) and resulted in higher IC50 value (184.22 μg/mL). While fucoidan with higher molecular weight (785.12 kDa) tends to have higher sulfate level (18.63%) and achieved lower IC50 value (75.69 μg/mL). The result showed that in order to maintain fucoidan cytotoxic activity against human breast cancer T47D cell line, the sulfate content should be remain high. Keywords: fucoidan, sulfate ester group, human breast cancer

  17. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: A cholinesterase dependent mechanism

    International Nuclear Information System (INIS)

    Del Pino, Javier; Zeballos, Garbriela; Anadon, María José; Capo, Miguel Andrés; Díaz, María Jesús; García, Jimena; Frejo, María Teresa

    2014-01-01

    Cadmium is an environmental pollutant, which is a cause of concern because it can be greatly concentrated in the organism causing severe damage to a variety of organs including the nervous system which is one of the most affected. Cadmium has been reported to produce learning and memory dysfunctions and Alzheimer like symptoms, though the mechanism is unknown. On the other hand, cholinergic system in central nervous system (CNS) is implicated on learning and memory regulation, and it has been reported that cadmium can affect cholinergic transmission and it can also induce selective toxicity on cholinergic system at peripheral level, producing cholinergic neurons loss, which may explain cadmium effects on learning and memory processes if produced on central level. The present study is aimed at researching the selective neurotoxicity induced by cadmium on cholinergic system in CNS. For this purpose we evaluated, in basal forebrain region, the cadmium toxic effects on neuronal viability and the cholinergic mechanisms related to it on NS56 cholinergic mourine septal cell line. This study proves that cadmium induces a more pronounced, but not selective, cell death on acetylcholinesterase (AChE) on cholinergic neurons. Moreover, MTT and LDH assays showed a dose dependent decrease of cell viability in NS56 cells. The ACh treatment of SN56 cells did not revert cell viability reduction induced by cadmium, but siRNA transfection against AChE partially reduced it. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on the function and viability of neurons, and the possible relevance of cadmium in the pathogenesis of neurodegenerative diseases

  18. Potential Anti-Inflammatory Effects of the Hydrophilic Fraction of Pomegranate (Punica granatum L. Seed Oil on Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Susan Costantini

    2014-06-01

    Full Text Available In this work, we characterized conjugated linolenic acids (e.g., punicic acid as the major components of the hydrophilic fraction (80% aqueous methanol extract from pomegranate (Punica granatum L. seed oil (PSO and evaluated their anti-inflammatory potential on some human colon (HT29 and HCT116, liver (HepG2 and Huh7, breast (MCF-7 and MDA-MB-231 and prostate (DU145 cancer lines. Our results demonstrated that punicic acid and its congeners induce a significant decrease of cell viability for two breast cell lines with a related increase of the cell cycle G0/G1 phase respect to untreated cells. Moreover, the evaluation of a great panel of cytokines expressed by MCF-7 and MDA-MB-231 cells showed that the levels of VEGF and nine pro-inflammatory cytokines (IL-2, IL-6, IL-12, IL-17, IP-10, MIP-1α, MIP-1β, MCP-1 and TNF-α decreased in a dose dependent way with increasing amounts of the hydrophilic extracts of PSO, supporting the evidence of an anti-inflammatory effect. Taken together, the data herein suggest a potential synergistic cytotoxic, anti-inflammatory and anti-oxidant role of the polar compounds from PSO.

  19. Influence of Rice Seeding Rate on Efficacies of Neonicotinoid and Anthranilic Diamide Seed Treatments against Rice Water Weevil

    Directory of Open Access Journals (Sweden)

    Jason Hamm

    2014-12-01

    Full Text Available Rice in the U.S. is frequently seeded at low rates and treated before sowing with neonicotinoid or anthranilic diamide insecticides to target the rice water weevil. A previous study of the influence of seeding rate on rice water weevil densities showed an inverse relationship between seeding rates and immature weevil densities. This study investigated interactive effects of seeding rate and seed treatment on weevil densities and rice yields; in particular, experiments were designed to determine whether seed treatments were less effective at low seeding rates. Four experiments were conducted over three years by varying seeding rates of rice treated at constant per seed rates of insecticide. Larval suppression by chlorantraniliprole was superior to thiamethoxam or clothianidin, and infestations at low seeding rates were up to 47% higher than at high seeding rates. Little evidence was found for the hypothesis that seed treatments are less effective at low seeding rates; in only one of four experiments was the reduction in weevil densities by thiamethoxam greater at high than at low seeding rates. However, suppression of larvae by neonicotinoid seed treatments in plots seeded at low rates was generally poor, and caution must be exercised when using the neonicotioids at low seeding rates.

  20. Organic leek seed production - securing seed quality

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Boelt, Birte

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  1. Organic Leek Seed Production - Securing Seed Quality

    DEFF Research Database (Denmark)

    Deleuran, L C; Boelt, B

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  2. Cyclic uniaxial compression of human stem cells seeded on a bone biomimetic nanocomposite decreases anti-osteogenic commitment evoked by shear stress.

    Science.gov (United States)

    Baumgartner, Walter; Schneider, Isabelle; Hess, Samuel C; Stark, Wendelin J; Märsmann, Sonja; Brunelli, Marzia; Calcagni, Maurizio; Cinelli, Paolo; Buschmann, Johanna

    2018-04-05

    Chemical supplementation of culture media to induce differentiation of adult stem cells seeded on a scaffold may mask other differentiation triggers such as scaffold stiffness, chemical composition or mechanical stimulation. However, stem cells can be differentiated towards osteoblasts without any supplementation given an appropriate osteogenic scaffold and an adequate mechanical stimulation. Electrospun meshes of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/aCaP) in a weight ratio of 60:40 were seeded with human adipose-derived stem cells (ASCs) and cultured in DMEM. After two weeks of static cultivation, they were either further cultivated statically for another two weeks (group 1), or placed in a Bose® bioreactor with a flow rate per area of 0.16 mL cm -2 min 1 (group 2). Furthermore, group 3 was also cultivated under perfusion, however, with an additional uniaxial cyclic compression. Stiffness of the scaffolds was assessed as a function of time. After a total of four weeks, minimum stem cell criteria markers as well as typical markers for osteogenesis, endothelial cell differentiation, adipogenesis and chondrogenesis were analyzed by quantitative real-time PCR, cell distribution within the scaffolds by histology and protein expression by immunohistochemistry. Dynamic conditions (perfusion ± uniaxial cyclic compression) significantly upregulated gene and protein expression of PPAR-γ-2 compared to static cultivation, while osteogenic markers were slightly downregulated. However, the compression in the perfusion bioreactor favored osteogenesis compared to mere perfusion as indicated by upregulation of ALP, Runx2 and collagen I. This behavior was not only attributed to the compressive load, but also to the significant increase in stiffness of the scaffold. Furthermore, CD105 was significantly upregulated under compression. Although an osteogenic electrospun composite material with an organic (PLGA) and an inorganic phase

  3. Is seed conditioning essential for Orobanche germination?

    Science.gov (United States)

    Plakhine, Dina; Ziadna, Hammam; Joel, Daniel M

    2009-05-01

    Parasitic Orobanchaceae germinate only after receiving a chemical stimulus from roots of potential host plants. A preparatory phase of several days that follows seed imbibition, termed conditioning, is known to be required; thereafter the seeds can respond to germination stimulants. The aim of this study was to examine whether conditioning is essential for stimulant receptivity. Non-conditioned seeds of both Orobanche cumana Wallr. and O. aegyptiaca Pers. [syn. Phelipanche aegyptiaca (Pers.) Pomel] were able to germinate in response to chemical stimulation by GR24 even without prior conditioning. Stimulated seeds reached maximal germination rates about 2 weeks after the onset of imbibition, no matter whether the seeds had or had not been conditioned before stimulation. Whereas the lag time between stimulation and germination response of non-conditioned seeds was longer than for conditioned seeds, the total time between imbibition and germination was shorter for the non-conditioned seeds. Unlike the above two species, O. crenata Forsk. was found to require conditioning prior to stimulation. Seeds of O. cumana and O. aegyptiaca are already receptive before conditioning. Thus, conditioning is not involved in stimulant receptivity. A hypothesis is put forward, suggesting that conditioning includes (a) a parasite-specific early phase that allows the imbibed seeds to overcome the stress caused by failing to receive an immediate germination stimulus, and (b) a non-specific later phase that is identical to the pregermination phase between seed imbibition and actual germination that is typical for all higher plants.

  4. The effectiveness of a standardized rose hip powder, containing seeds and shells of Rosa canina, on cell longevity, skin wrinkles, moisture, and elasticity.

    Science.gov (United States)

    Phetcharat, L; Wongsuphasawat, K; Winther, K

    2015-01-01

    To evaluate the effects of a rose hip powder (Hyben Vital(®)) made from seeds and shells on cell senescence, skin wrinkling, and aging. A total of 34 healthy subjects, aged 35-65 years, with wrinkles on the face (crow's-feet) were subjected to a randomized and double-blinded clinical study of the effects of the rose hip powder, as compared to astaxanthin, a well-known remedy against wrinkles. During the 8-week study, half of the participants ingested the standardized rose hip product, while the other half ingested astaxanthin. Objective measurements of facial wrinkles, skin moisture, and elasticity were made by using Visioscan, Corneometer, and Cutometer at the beginning of the study, after 4 weeks, and after 8 weeks. Evaluation of participant satisfaction of both supplements was assessed using questionnaires. In addition, the effect of the rose hip preparation on cell longevity was measured in terms of leakage of hemoglobin through red cell membranes (hemolytic index) in blood samples kept in a blood bank for 5 weeks. Significance of all values was attained with P≤0.05. In the double-blinded study, the rose hip group showed statistically significant improvements in crow's-feet wrinkles (Prose hip powder further resulted in increased cell longevity of erythrocyte cells during storage for 5 weeks in a blood bank. Results suggest that intake of the standardized rose hip powder (Hyben Vital(®)) improves aging-induced skin conditions. The apparent stabilizing effects of the rose hip product on cell membranes of stored erythrocyte cells observed in this study may contribute to improve the cell longevity and obstructing skin aging.

  5. Seed source, seed traits, and frugivore habits: Implications for dispersal quality of two sympatric primates.

    Science.gov (United States)

    Benítez-Malvido, Julieta; González-Di Pierro, Ana Ma; Lombera, Rafael; Guillén, Susana; Estrada, Alejandro

    2014-06-01

    • Premise of the study: Frugivore selection of fruits and treatment of seeds together with seed deposition site are crucial for the population dynamics of vertebrate-dispersed plants. However, frugivore species may influence dispersal quality differently even when feeding on the same fruit species and, while animals disperse some seeds, others simply fall beneath the parent plant.• Methods: In southern Mexico, we investigated to see if within-species seed traits (i.e., length, width, weight, and volume) and germination success differed according to seed source. For five tropical tree species we obtained ingested seeds from two sources, howler monkey (Alouatta pigra) and spider monkey (Ateles geoffroyi) feces; and noningested seeds from two sources, the ground and tree crowns (with predispersed seeds used as control).• Key results: A principal components' analysis showed that traits of seeds ingested by howler monkeys differed from other sources while seeds ingested by spider monkeys were similar to noningested seeds. Howlers consumed on average the larger seeds in Ampelocera hottlei, Brosimum lactescens, and Dialium guianense. Both primate species consumed the smaller seeds in Spondias mombin, while no seed trait differences among seed sources were found in Spondias radlkoferi. For all five tree species, germination rate was greatest for seeds ingested by howler monkeys.• Conclusions: For the studied plant species, seed ingestion by howler monkeys confers higher dispersal quality than ingestion by spider monkeys or nondispersal. Dispersal services of both primate species, however, are not redundant and may contribute to germination heterogeneity within plant populations in tropical forests. © 2014 Botanical Society of America, Inc.

  6. The biomechanics of seed germination.

    Science.gov (United States)

    Steinbrecher, Tina; Leubner-Metzger, Gerhard

    2017-02-01

    From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Metabolism of ibuprofen in higher plants: A model Arabidopsis thaliana cell suspension culture system

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Šíša, Miroslav; Lacina, O.; Moťková, Kateřina; Langhansová, Lenka; Rezek, Jan; Vaněk, Tomáš

    2017-01-01

    Roč. 220, JAN (2017), s. 383-392 ISSN 0269-7491 R&D Projects: GA ČR(CZ) GA14-22593S Grant - others:European Regional Development Fund(XE) CZ.2.16/3.1.00/24014 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Ibuprofen * Metabolism * Plant cells * Sequestration Subject RIV: CE - Biochemistry OBOR OECD: Plant sciences, botany Impact factor: 5.099, year: 2016

  8. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  9. [Testing methods for seed quality of Bletilla striata].

    Science.gov (United States)

    Zhang, Zhi-Hui; Liu, Da-Hui; Zhu, Xin-Yan; Ji, Peng-Zhang; Wang, Li; Shi, Ya-Na; Ma, Cong-Ji

    2016-06-01

    In order to provide a basis for establishing seed testing rules and seed quality standard of Bletilla striata, the seed quality of B.striata from different producing area was measured referring to the Rules for Agricultural Seed Testing(GB/T 3543-1995).The results showed that the seeds of B.striata passed through 20-mesh sieve for purity analysis.The weight of seeds was measured by 1000-seed method and the water content was measured at the higher temperature (133±2) ℃ for 3 hours.The seeds were cultured on the wet filter paper at 30 ℃ for 4-20 days in light for germination testing.The method of testing seed viability was that seeds were dipped into 1% TTC solution for 7 hours at temperature of 40 ℃. Copyright© by the Chinese Pharmaceutical Association.

  10. EFFICACY OF TRADITIONAL MAIZE (Zea mays L.) SEED ...

    African Journals Online (AJOL)

    Seed security is key to the attainment of household food security among ... the highest insect damage and this was about 99% higher than the damage recorded ..... farmers which will allow them to save enough seeds of high quality for future.

  11. Special proliferative sites are not needed for seeding and proliferation of transfused bone marrow cells in normal syngeneic mice

    International Nuclear Information System (INIS)

    Brecher, G.; Ansell, J.D.; Micklem, H.S.; Tjio, J.H.; Cronkite, E.P.

    1982-01-01

    The widely held view that transfused bone marrow cells will not proliferate in normal mice, not exposed to irradiation or other forms of bone marrow ablation, was reinvestigated. Forty million bone marrow cells from male donors were given to female recipients on each of 5 consecutive days, 5 to 10 times the number customarily used in the past. When the recipients were examined 2-13 weeks after the last transfusion, donor cells were found to average 16-25% of total marrow cells. Similar percentages of donor cells were found when variants of the enzyme phosphoglycerate kinase determined electrophoretically were used for identification of donor and recipient cells. Evidence is presented that the proportion of donor cells is compatible with a nonlinear dependence on the number of cells transfused over the range tested - i.e., 20-200 million bone marrow cells injected intravenously. Special proliferative sites thus do not appear to be required

  12. Field profile and loading measurements on higher order modes in a two cell 500 MHz superconducting structure

    International Nuclear Information System (INIS)

    Barry, W.; Edighoffer, J.; Chattopadhyay, S.; Fornaco, S.

    1992-01-01

    The Infrared Free Electron Laser, being designed at LBL as part of the Chemical Dynamics Research Laboratory, is based on a 500 MHz superconducting linac driver that consists of five 4-cell structures of the CERN/DESY type. A 500 MHz, 2-cell version of this structure is being used in a joint Stanford/LBL/BNL program to study accelerator issues relevant to the FEL applications. As part of this study, field profile and loading measurements of higher order modes have been made on the prototype structure. (Author) 3 refs., 2 figs., tab

  13. Field profile and loading measurements on higher order modes in a two cell 500 MHz superconducting structure

    International Nuclear Information System (INIS)

    Barry, W.; Edighoffer, J.; Chattopadhyay, S.; Fornaca, S.

    1992-08-01

    The Infrared Free Electron Laser, being designed at LBL as part of the Chemical Dynamics Research Laboratory, is based on a 500 MHz superconducting linac driver that consists of five 4-cell structures of the CERN/DESY type. A 500 MHz, 2-cell version of this structure is being used in a joint Stanford/LBL/BNL program to study accelerator issues relevant to the FEL applications. As part of this study, field profile and loading measurements of higher order modes have been made on the prototype structure

  14. Synthesis and Cell Seeding Assessment of Novel Biphasic Nano Powder in the CaO–MgO–SiO2 System for Bone Implant Application

    Directory of Open Access Journals (Sweden)

    Kazem Marzban

    2017-02-01

    Full Text Available Objective(s: CaO–MgO–SiO2 system bioceramics possess good characteristics for hard tissue engineering applications. The aim of the study was to synthesize the nano powder by using a sol-gel method and evaluate of bioactivity in the cells culture. Methods: To characterize of powder X-ray diffraction (XRD, transmission electron microscopy (TEM and to evaluate the bioactivity sample cell seeding and methylthiazol tetrazolium (MTT assay were performed. Results: X-ray diffraction (XRD analysis showed that the biphasic powder was obtained at 1300°C for 2 h by using a sol-gel method. Transmission electron microscopy (TEM image showed that powder particle size was about 45 nm. Besides, cell culture results indicated that the percentage of viability values was increased by the extension of period. Conclusions: found that the sample is cytocompatible and has cell proliferation potential in culture medium. The present study demonstrates that, the biphasic CaO–MgO–SiO2 system can be used to achieve novel bioactive materials for bone implant application.

  15. Identification of seed-related QTL in Brassica rapa

    Directory of Open Access Journals (Sweden)

    H. Bagheri

    2013-10-01

    Full Text Available To reveal the genetic variation, and loci involved, for a range of seed-related traits, a new F2 mapping population was developed by crossing Brassica rapa ssp. parachinensis L58 (CaiXin with B. rapa ssp. trilocularis R-o-18 (spring oil seed, both rapid flowering and self-compatible. A linkage map was constructed using 97 AFLPs and 21 SSRs, covering a map distance of 757 cM with an average resolution of 6.4 cM, and 13 quantitative trait loci (QTL were detected for nine traits. A strong seed colour QTL (LOD 26 co-localized with QTL for seed size (LOD 7, seed weight (LOD 4.6, seed oil content (LOD 6.6, number of siliques (LOD 3 and number of seeds per silique (LOD 3. There was only a significant positive correlation between seed colour and seed oil content in the yellow coloured classes. Seed coat colour and seed size were controlled by the maternal plant genotype. Plants with more siliques tended to have more, but smaller, seeds and higher seed oil content. Seed colour and seed oil content appeared to be controlled by two closely linked loci in repulsion phase. Thus, it may not always be advantageous to select for yellow-seededness when breeding for high seed oil content in Brassicas.

  16. Adjuvant therapy in renal cell carcinoma: does higher risk for recurrence improve the chance for success?

    Science.gov (United States)

    Figlin, R A; Leibovich, B C; Stewart, G D; Negrier, S

    2018-02-01

    The success of targeted therapies, including inhibitors of the vascular endothelial growth factor pathway or the mammalian target of rapamycin, in the treatment of metastatic renal cell carcinoma led to interest in testing their efficacy in the adjuvant setting. Results from the first trials are now available, with other studies due to report imminently. This review provides an overview of adjuvant targeted therapy in renal cell carcinoma, including interpretation of currently available conflicting data and future direction of research. We discuss the key differences between the completed targeted therapy adjuvant trials, and highlight the importance of accurately identifying patients who are likely to benefit from adjuvant treatment. We also consider reasons why blinded independent radiology review and treatment dose may prove critical for adjuvant treatment success. The implications of using disease-free survival as a surrogate end point for overall survival from the patient perspective and measurement of health benefit have recently been brought into focus and are discussed. Finally, we discuss how the ongoing adjuvant trials with targeted therapies and checkpoint inhibitors may improve our understanding and ability to prevent tumor recurrence after nephrectomy in the future.

  17. Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability

    Directory of Open Access Journals (Sweden)

    Kurt Jacobs

    2016-03-01

    Full Text Available Human embryonic stem cells (hESC show great promise for clinical and research applications, but their well-known proneness to genomic instability hampers the development to their full potential. Here, we demonstrate that medium acidification linked to culture density is the main cause of DNA damage and genomic alterations in hESC grown on feeder layers, and this even in the short time span of a single passage. In line with this, we show that increasing the frequency of the medium refreshments minimizes the levels of DNA damage and genetic instability. Also, we show that cells cultured on laminin-521 do not present this increase in DNA damage when grown at high density, although the (long-term impact on their genomic stability remains to be elucidated. Our results explain the high levels of genome instability observed over the years by many laboratories worldwide, and show that the development of optimal culture conditions is key to solving this problem.

  18. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    Science.gov (United States)

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and

  19. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth.

    Science.gov (United States)

    Fukami, Josiane; Ollero, Francisco Javier; Megías, Manuel; Hungria, Mariangela

    2017-12-01

    Azospirillum spp. are plant-growth-promoting bacteria used worldwide as inoculants for a variety of crops. Among the beneficial mechanisms associated with Azospirillum inoculation, emphasis has been given to the biological nitrogen fixation process and to the synthesis of phytohormones. In Brazil, the application of inoculants containing A. brasilense strains Ab-V5 and Ab-V6 to cereals is exponentially growing and in this study we investigated the effects of maize inoculation with these two strains applied on seeds or by leaf spray at the V2.5 stage growth-a strategy to relieve incompatibility with pesticides used for seed treatment. We also investigate the effects of spraying the metabolites of these two strains at V2.5. Maize growth was promoted by the inoculation of bacteria and their metabolites. When applied via foliar spray, although A. brasilense survival on leaves was confirmed by confocal microscopy and cell recovery, few cells were detected after 24 h, indicating that the effects of bacterial leaf spray might also be related to their metabolites. The major molecules detected in the supernatants of both strains were indole-3-acetic acid, indole-3-ethanol, indole-3-lactic acid and salicylic acid. RT-PCR of genes related to oxidative stress (APX1, APX2, CAT1, SOD2, SOD4) and plant defense (pathogenesis-related PR1, prp2 and prp4) was evaluated on maize leaves and roots. Differences were observed according to the gene, plant tissue, strain and method of application, but, in general, inoculation with Azospirillum resulted in up-regulation of oxidative stress genes in leaves and down-regulation in roots; contrarily, in general, PR genes were down-regulated in leaves and up-regulated in roots. Emphasis should be given to the application of metabolites, especially of Ab-V5 + Ab-V6 that in general resulted in the highest up-regulation of oxidative-stress and PR genes both in leaves and in roots. We hypothesize that the benefits of inoculation of Azospirillum on

  20. Higher molecular weight polyethylene glycol increases cell proliferation while improving barrier function in an in vitro colon cancer model.

    Science.gov (United States)

    Bharadwaj, Shruthi; Vishnubhotla, Ramana; Shan, Sun; Chauhan, Chinmay; Cho, Michael; Glover, Sarah C

    2011-01-01

    Polyethylene glycol (PEG) has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  1. Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model

    Directory of Open Access Journals (Sweden)

    Shruthi Bharadwaj

    2011-01-01

    Full Text Available Polyethylene glycol (PEG has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  2. Distinct Signaling Pathways After Higher or Lower Doses of Radiation in Three Closely Related Human Lymphoblast Cell Lines

    International Nuclear Information System (INIS)

    Lu, T.-P.; Lai, L.-C.; Lin, B.-I.; Chen, L.-H.; Hsiao, T.-H.; Liber, Howard L.; Cook, John A.; Mitchell, James B.; Tsai, M.-H.; Chuang, Eric Y.

    2010-01-01

    Purpose: The tumor suppressor p53 plays an essential role in cellular responses to DNA damage caused by ionizing radiation; therefore, this study aims to further explore the role that p53 plays at different doses of radiation. Materials and Methods: The global cellular responses to higher-dose (10 Gy) and lower dose (iso-survival dose, i.e., the respective D0 levels) radiation were analyzed using microarrays in three human lymphoblast cell lines with different p53 status: TK6 (wild-type p53), NH32 (p53-null), and WTK1 (mutant p53). Total RNAs were extracted from cells harvested at 0, 1, 3, 6, 9, and 24 h after higher and lower dose radiation exposures. Template-based clustering, hierarchical clustering, and principle component analysis were applied to examine the transcriptional profiles. Results: Differential expression profiles between 10 Gy and iso-survival radiation in cells with different p53 status were observed. Moreover, distinct gene expression patterns were exhibited among these three cells after 10 Gy radiation treatment, but similar transcriptional responses were observed in TK6 and NH32 cells treated with iso-survival radiation. Conclusions: After 10 Gy radiation exposure, the p53 signaling pathway played an important role in TK6, whereas the NFkB signaling pathway appeared to replace the role of p53 in WTK1. In contrast, after iso-survival radiation treatment, E2F4 seemed to play a dominant role independent of p53 status. This study dissected the impacts of p53, NFkB and E2F4 in response to higher or lower doses of γ-irradiation.

  3. Comparison of higher order modes damping techniques for 800 MHz single cell superconducting cavities

    Science.gov (United States)

    Shashkov, Ya. V.; Sobenin, N. P.; Petrushina, I. I.; Zobov, M. M.

    2014-12-01

    At present, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOMs) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOMs damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOMs damping is analyzed. The problems of a multipacting discharge in the considered structures are discussed and the operating frequency detuning due to the Lorentz force is evaluated.

  4. Comparison of higher order modes damping techniques for 800 MHz single cell superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Shashkov, Ya.V., E-mail: shashkovyv@mail.ru [National Research Nuclear University MEPhI, Moscow (Russian Federation); Sobenin, N.P.; Petrushina, I.I. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Zobov, M.M. [Laboratori Nazionali di Frascati INFN, Rome (Italy)

    2014-12-11

    At present, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOMs) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOMs damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOMs damping is analyzed. The problems of a multipacting discharge in the considered structures are discussed and the operating frequency detuning due to the Lorentz force is evaluated.

  5. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L..

    Directory of Open Access Journals (Sweden)

    Hui Xue

    Full Text Available Pomegranate (Punica granatum L. belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7% were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  6. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.).

    Science.gov (United States)

    Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang

    2017-01-01

    Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  7. [Study on influence factors of seed germination and seeding growth of Lonicera macranthoides].

    Science.gov (United States)

    Xu, Jin; Zhang, Ying; Cui, Guang-Lin; She, Yue-Hui; Li, Long-Yun

    2016-01-01

    In order to improve reproductive efficiency and quality standard, the influence factors of seed germination and seeding growth of Lonicera macranthoides werew studied. The fruit and seed morphological characteristics of L. macranthoides were observed, the seed water absorbing capacity was determined, and different wet sand stratification time, temperature and germination bed treatment were set up. The effects of the parameters on seed germination and seedling growth were analysed. There was no obstacles of water absorption on L. macranthoides seed, quantity for 22 h water absorption was close to saturation. In the first 80 d, with the increase of the stratification time, seed initial germination time was shortened, germination rate and germination potential was improved. Stratification for 100 d, germination rate decreased. At 15 ℃, seed germination and seedling growth indicators were the best. The seedling cotyledon width in light was significantly higher than that in dark. Seeds on the top of paper and top of sand germination rate, germination potential, and germination index was significantly higher than that of other germination bed and mildew rate is low. The optimal conditions of seeds germination test was stratified in 4 ℃ wet sand for 80 d, 15 ℃ illuminate culture on the top of paper or top of sand. The first seeding counting time was the 4th day after beginning the test, the final time was the 23th day. The germination potential statistical time was the 13th day after beginning the test. Copyright© by the Chinese Pharmaceutical Association.

  8. Local evolution of seed flotation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Susana Saez-Aguayo

    2014-03-01

    Full Text Available Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 β-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed.

  9. Seed morphology and variation in the genus Pachycereus (Cactaceae).

    Science.gov (United States)

    Arias, Salvador; Terrazas, Teresa

    2004-08-01

    Seeds of 13 Pachycereus species and two Stenocereus species that have been suggested as closely related were examined with the scanning electron microscope. Quantitative features were evaluated using multivariate analysis in order to identify characters that distinguish them. Several species groups were recognized on the basis of 16 qualitative characters. All species studied are keeled. Stenocereus aragonii and S. eichlamii share with most Pachycereus species large size, glossy appearance, and a flat relief on periclinal cells in the lateral region. Pachycereus gatesii and P. schottii are unique in having the smallest seeds and a deeply impressed hilum-micropylar region. P. hollianus does not exhibit micro-relief on periclinal walls in the lateral region, and P. fulviceps has no expanded testa border. Multivariate analysis showed that four characters, length, breadth, hilum-micropylar region length, and angle, made the greatest contribution to distinguishing among species groups. More than 80% of P. fulviceps, P. hollianus, P. tepamo, P. weberi, and S. eichlamii seeds could be classified correctly using four seed features and the percentage was even higher using just two or three features for P. gatesii, P. grandis, P. militaris, P. pringlei, and P. schottii. Testa appearance, testa cell-pattern, and position relative to the rim of the hilum-micropylar region were found to be potentially informative and should be combined with other sources of data in future phylogenetic analyses.

  10. Live and let die - the B(sister MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Xuelian Yang

    Full Text Available B(sister genes have been identified as the closest relatives of class B floral homeotic genes. Previous studies have shown that B(sister genes from eudicots are involved in cell differentiation during ovule and seed development. However, the complete function of B(sister genes in eudicots is masked by redundancy with other genes and little is known about the function of B(sister genes in monocots, and about the evolution of B(sister gene functions. Here we characterize OsMADS29, one of three MADS-box B(sister genes in rice. Our analyses show that OsMADS29 is expressed in female reproductive organs including the ovule, ovule vasculature, and the whole seed except for the outer layer cells of the pericarp. Knock-down of OsMADS29 by double-stranded RNA-mediated interference (RNAi results in shriveled and/or aborted seeds. Histological analyses of the abnormal seeds at 7 days after pollination (DAP indicate that the symplastic continuity, including the ovular vascular trace and the nucellar projection, which is the nutrient source for the filial tissue at early development stages, is affected. Moreover, degeneration of all the maternal tissues in the transgenic seeds, including the pericarp, ovular vascular trace, integuments, nucellar epidermis and nucellar projection, is blocked as compared to control plants. Our results suggest that OsMADS29 has important functions in seed development of rice by regulating cell degeneration of maternal tissues. Our findings provide important insights into the ancestral function of B(sister genes.

  11. FinFET memory cell improvements for higher immunity against single event upsets

    Science.gov (United States)

    Sajit, Ahmed Sattar

    The 21st century is witnessing a tremendous demand for transistors. Life amenities have incorporated the transistor in every aspect of daily life, ranging from toys to rocket science. Day by day, scaling down the transistor is becoming an imperious necessity. However, it is not a straightforward process; instead, it faces overwhelming challenges. Due to these scaling changes, new technologies, such as FinFETs for example, have emerged as alternatives to the conventional bulk-CMOS technology. FinFET has more control over the channel, therefore, leakage current is reduced. FinFET could bridge the gap between silicon devices and non-silicon devices. The semiconductor industry is now incorporating FinFETs in systems and subsystems. For example, Intel has been using them in their newest processors, delivering potential saving powers and increased speeds to memory circuits. Memory sub-systems are considered a vital component in the digital era. In memory, few rows are read or written at a time, while the most rows are static; hence, reducing leakage current increases the performance. However, as a transistor shrinks, it becomes more vulnerable to the effects from radioactive particle strikes. If a particle hits a node in a memory cell, the content might flip; consequently, leading to corrupting stored data. Critical fields, such as medical and aerospace, where there are no second chances and cannot even afford to operate at 99.99% accuracy, has induced me to find a rigid circuit in a radiated working environment. This research focuses on a wide spectrum of memories such as 6T SRAM, 8T SRAM, and DICE memory cells using FinFET technology and finding the best platform in terms of Read and Write delay, susceptibility level of SNM, RSNM, leakage current, energy consumption, and Single Event Upsets (SEUs). This research has shown that the SEU tolerance that 6T and 8T FinFET SRAMs provide may not be acceptable in medical and aerospace applications where there is a very high

  12. Lower omental t-regulatory cell count is associated with higher fasting glucose and lower β-cell function in adults with obesity.

    Science.gov (United States)

    Gyllenhammer, Lauren E; Lam, Jonathan; Alderete, Tanya L; Allayee, Hooman; Akbari, Omid; Katkhouda, Namir; Goran, Michael I

    2016-06-01

    T-lymphocytes are potential initiators and regulators of adipose tissue (AT) inflammation, but there is limited human data on omental AT. The aim of this study was to assess the relationship between T cells, particularly Foxp3+ regulatory T (Treg) cells, in human subcutaneous (subQ) and omental AT and type 2 diabetes risk. SubQ and deep subQ (DsubQ) abdominal and omental AT biopsies were collected from 44 patients (body mass index, BMI ≥25) undergoing elective abdominal surgery. Flow cytometry was used to quantify CD4+ T cell (T effector and Treg) and macrophages (M1 and M2), and systemic inflammation was measured in fasting blood. Tregs were significantly lower in omental versus subQ and DsubQ AT, and M1 cell counts were significantly higher in the omental and DsubQ depot relative to the subQ. Only omental AT Tregs were negatively associated with fasting glucose and MCP-1 and positively associated with homeostasis model assessment (HOMA)-β. M1 and M2 cell counts across multiple depots had significant relationships with HOMA-insulin resistance, tumor necrosis factor-α, insulin, and HOMA-β. All relationships were consistent across ethnicities. Tregs were significantly lower in omental versus both subQ adipose depots. Fewer omental Tregs may have metabolic implications based on depot-specific relationships with higher fasting glucose and lower β-cell function. © 2016 The Obesity Society.

  13. Should elderly patients with higher-risk myelodysplastic syndromes undergo allogeneic hematopoietic stem cell transplantation?

    Science.gov (United States)

    Zeidan, Amer M; Gore, Steven D

    2013-10-01

    Myelodysplastic syndromes (MDS) include a group of hematopoietic malignancies characterized by dysplastic changes, ineffective hematopoiesis and variable risk of leukemic progression. At diagnosis, 86% of MDS patients are ≥60 years. Azacitidine, the only drug that prolongs life in high-risk (HR)-MDS patients, adds a median of only 9.5 months to life. Allogeneic stem cell transplantation (alloSCT) remains the only potentially curative approach. Despite recent improvements including use of reduced intensity conditioning (RIC) that decrease transplant-related mortality, alloSCT continues to be used rarely in elderly MDS. There is paucity of data regarding outcomes of RIC alloSCT in elderly MDS patients, especially in direct comparison with azanucleosides. In this paper, the authors discuss the recent Markov decision analysis by Koreth et al. in which investigators demonstrated superior survival of patients with HR-MDS aged 60-70 years who underwent RIC alloSCT in comparison with those who were treated with azanucleosides.

  14. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum.

    Science.gov (United States)

    Wesley-Smith, James; Walters, Christina; Pammenter, N W; Berjak, Patricia

    2015-05-01

    Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than -180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g(-1) dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s(-1) or programmed cooling at 3·3 °C s(-1). Samples were thawed rapidly (177 °C s(-1)) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small

  15. CD3+/CD16+CD56+ cell numbers in peripheral blood are correlated with higher tumor burden in patients with diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Anna Twardosz

    2011-04-01

    Full Text Available Diffuse large B-cell lymphoma is the commonest histological type of malignant lymphoma, andremains incurable in many cases. Developing more efficient immunotherapy strategies will require betterunderstanding of the disorders of immune responses in cancer patients. NKT (natural killer-like T cells wereoriginally described as a unique population of T cells with the co-expression of NK cell markers. Apart fromtheir role in protecting against microbial pathogens and controlling autoimmune diseases, NKT cells havebeen recently revealed as one of the key players in the immune responses against tumors. The objective of thisstudy was to evaluate the frequency of CD3+/CD16+CD56+ cells in the peripheral blood of 28 diffuse largeB-cell lymphoma (DLBCL patients in correlation with clinical and laboratory parameters. Median percentagesof CD3+/CD16+CD56+ were significantly lower in patients with DLBCL compared to healthy donors(7.37% vs. 9.01%, p = 0.01; 4.60% vs. 5.81%, p = 0.03, although there were no differences in absolute counts.The frequency and the absolute numbers of CD3+/CD16+CD56+ cells were lower in advanced clinical stagesthan in earlier ones. The median percentage of CD3+/CD16+CD56+ cells in patients in Ann Arbor stages 1–2 was5.55% vs. 3.15% in stages 3–4 (p = 0.02, with median absolute counts respectively 0.26 G/L vs. 0.41 G/L (p == 0.02. The percentage and absolute numbers of CD3+/CD16+CD56+ cells were significantly higher in DL-BCL patients without B-symptoms compared to the patients with B-symptoms, (5.51% vs. 2.46%, p = 0.04;0.21 G/L vs. 0.44 G/L, p = 0.04. The percentage of CD3+/CD16+CD56+ cells correlated adversely with serumlactate dehydrogenase (R= –445; p < 0.05 which might influence NKT count. These figures suggest a relationshipbetween higher tumor burden and more aggressive disease and decreased NKT numbers. But it remains tobe explained whether low NKT cell counts in the peripheral blood of patients with DLBCL are the result

  16. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit

    Directory of Open Access Journals (Sweden)

    Maiti SK

    2016-11-01

    Full Text Available Bone marrow derived mesenchymal stem cells (BMSC represent an attractive cell population for tissue engineering purpose. The objective of this study was to determine whether the addition of recombinant human bone morphogenetic protein (rhBMP-2 and insulin-like growth factor (IGF-1 to a silica-coated calcium hydroxyapatite (HASi - rabbit bone marrow derived mesenchymal stem cell (rBMSC construct promoted bone healing in a large segmental bone defect beyond standard critical -size radial defects (15mm in rabbits. An extensively large 30mm long radial ostectomy was performed unilaterally in thirty rabbits divided equally in five groups. Defects were filled with a HASi scaffold only (group B; HASi scaffold seeded with rBMSC (group C; HASi scaffold seeded with rBMSC along with rhBMP-2 and IGF-1 in groups D and E respectively. The same number of rBMSC (five million cells and concentration of growth factors rhBMP-2 (50µg and IGF-1 (50µg was again injected at the site of bone defect after 15 days of surgery in their respective groups. An empty defect served as the control group (group A. Radiographically, bone healing was evaluated at 7, 15, 30, 45, 60 and 90 days post implantation. Histological qualitative analysis with microCT (µ-CT, haematoxylin and eosin (H & E and Masson’s trichrome staining were performed 90 days after implantation. All rhBMP-2-added constructs induced the formation of well-differentiated mineralized woven bone surrounding the HASi scaffolds and bridging bone/implant interfaces as early as eight weeks after surgery. Bone regeneration appeared to develop earlier with the rhBMP-2 constructs than with the IGF-1 added construct. Constructs without any rhBMP-2 or IGF-1 showed osteoconductive properties limited to the bone junctions without bone ingrowths within the implantation site. In conclusion, the addition of rhBMP-2 to a HASi scaffold could promote bone generation in a large critical-size-defect.

  17. The methanol seed extract of Garcinia kola attenuated angiotensin II- and lipopolyssacharide-inducedvascular smooth muscle cell proliferation and nitric oxide production

    Directory of Open Access Journals (Sweden)

    Adeolu A. Adedapo

    2016-10-01

    Full Text Available All over the world, cardiovascular diseases are a risk factor for poor health and early death with predisposing factors to include age, gender, tobacco use, physical inactivity, excessive alcohol consumption, unhealthy diet, obesity, family history of cardiovascular disease, hypertension, diabetes mellitus, hyperlipidemia, psychosocial factors, poverty and low educational status, and air pollution. It is envisaged that herbal products that can stem this trend would be of great benefit. Garcinia kola (GK, also known as bitter kola is one of such plants. Generally used as a social snack and offered to guests in some cultural settings, bitter kola has been indicated in the treatment of laryngitis, general inflammation, bronchitis, viral infections and diabetes. In this study, the effects of methanol seed extract of Garcinia kola on the proliferation of Vascular Smooth Muscle Cells (VSMCs in cell culture by Angiotensin II (Ang II and LPS-induced NO production were carried out. Confluent VSMCs were exposed to GK (25, 50 and 100 μg/ml before or after treatment with lipopolyssacharide (100μg/ml, and Angiotensin II (10-8-10-6M. Cellular proliferation was determined by MTT assay and NO production by Griess assay. Treatment with Angiotensin II (10-8, 10-6 or LPS significantly enhanced proliferation of VSM cells while LPS significantly increased nitric oxide (NO production. Treatment with GK (25, 50 & 100 μg/ml attenuated VSM cell proliferation. The results indicate that GK has potential to inhibit mitogen activated vascular cell growth and possibly inhibit inflammatory responses to LPS. Thus GK may be useful in condition that is characterized by cellular proliferation and inflammatory responses.

  18. A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat

    Science.gov (United States)

    Abirached-Darmency, Mona

    2013-01-01

    The seed coat is involved in the determination of seed quality traits such as seed size, seed composition, seed permeability, and hormonal regulation. Understanding seed coat structure is therefore a prerequisite to deciphering the genetic mechanisms that govern seed coat functions. By combining histological and transcriptomic data analyses, cellular and molecular events occurring during Medicago truncatula seed coat development were dissected in order to relate structure to function and pinpoint target genes potentially involved in seed coat traits controlling final seed quality traits. The analyses revealed the complexity of the seed coat transcriptome, which contains >30 000 genes. In parallel, a set of genes showing a preferential expression in seed coat that may be involved in more specific functions was identified. The study describes how seed coat anatomy and morphological changes affect final seed quality such as seed size, seed composition, seed permeability, and hormonal regulation. Putative regulator genes of different processes have been identified as potential candidates for further functional genomic studies to improve agronomical seed traits. The study also raises new questions concerning the implication of seed coat endopolyploidy in cell expansion and the participation of the seed coat in de novo abscisic acid biosynthesis at early seed filling. PMID:23125357

  19. Hormones and tomato seed germination

    NARCIS (Netherlands)

    Liu, Y.

    1996-01-01

    Using GA- and ABA-deficient mutants, exogenous gibberellins (GAs), abscisic acid (ABA) and osmoticum, we studied the roles of GAs and ABA in the induction of cell cycle activities, internal free space formation and changes in water relations during seed development and imbibition in tomato. First of

  20. Early planting and hand sorting effectively controls seed-borne fungi in farm-retained bean seed

    Directory of Open Access Journals (Sweden)

    Ernest Dube

    2014-11-01

    Full Text Available Home-saved bean (Phaseolus vulgaris L. seed can be hand-sorted to remove discoloured seed, thereby reducing the level of contamination by certain seed-borne fungi and improving seed germination. In this study, the effect of planting date on the infection and discolouration of bean seed by seed-borne fungi was investigated in order to improve the quality of hand-sorted, farm-retained bean seeds used by resource poor smallholder farmers. The germination quality and level of seed-borne fungi in hand-sorted first-generation bean seed harvested from an early-, mid- and late-summer season planted crop was therefore assessed. The highest percentage of discoloured seed (68% was obtained from the mid-summer season planting. Non-discoloured seed from early- and late-season plantings had significantly (p"less than"0.001 higher normal germination (82% and 77%, respectively than that from the mid-season planting date (58%. Irrespective of planting date, unsorted seed and discoloured seed had higher levels of infection by Fusarium spp. and Phaeoisariopsis spp. than the non-discoloured seed. Removal of discoloured seed by hand sorting eliminated Rhizoctonia spp. from all seed lots. Farmers can eliminate this pathogen by simply removing discoloured seed. Non-discoloured seed from the early-planted crop had the lowest level of infection by Fusarium spp. and Phaeoisariopsis spp. The results indicate that planting date is an important consideration in improving the quality of hand-sorted farm-retained bean seed.

  1. Seed Anatomy and Water Uptake in Relation to Seed Dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae)

    Science.gov (United States)

    Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.

    2007-01-01

    Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989

  2. Selected aspects of tiny vetch [Vicia hirsuta (L. Gray S.F.] seed ecology: generative reproduction and effects of seed maturity and seed storage on seed germination

    Directory of Open Access Journals (Sweden)

    Magdalena Kucewicz

    2012-12-01

    Full Text Available Vicia hirsuta (L. Gray S.F. (tiny vetch is a common and persistent segetal weed. Tiny vetch seeds and pods reach different stages of maturity during the crop harvest season. Some seeds that mature before cereal harvest are shed in the field and deposited in the soil seed bank, while others become incorporated into seed material. The objective of this study was to describe selected aspects of tiny vetch seed ecology: to determine the rate of individual reproduction of vetch plants growing in winter and spring grain crops and to evaluate the germination of seeds at different stages of maturity, subject to storage conditions. The seeds and pods of V. hirsuta were sorted according to their development stages at harvest and divided into two groups. The first group was stored under laboratory conditions for two months. In the autumn of the same year, the seeds were subjected to germination tests. The remaining seeds were stored in a storeroom, and were planted in soil in the spring. The germination rate was evaluated after 8 months of storage. Potential productivity (developed pods and flowers, fruit buds was higher in plants fruiting in winter wheat than in spring barley. Vetch plants produced around 17-26% more pods (including cracked, mature, greenish-brown and green pods and around 25% less buds in winter wheat than in spring barley. Immature seeds were characterized by the highest germination capacity. Following storage under laboratory conditions and stratification in soil, mature seeds germinated at a rate of several percent. After storage in a storeroom, seeds at all three development stages broke dormancy at a rate of 72- 75%. The high germination power of tiny vetch seeds stored in a storeroom indicates that this plant can be classified as an obligatory speirochoric weed species.

  3. Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, Shanghai 200063 (China); Liu, Siwen [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Bode, Liv [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Liu, Chengyu [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Zhang, Liang [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wang, Xiao [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Li, Dan [Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016 (China); Lei, Yang [Department of Internal Medicine, University-Town Hospital of Chongqing Medical University, Chongqing 400016 (China); Peng, Xiaojun [Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou 310018 (China); Cheng, Zhongyi [Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092 (China); and others

    2015-11-15

    Background: Borna disease virus (BDV) is a neurotropic RNA virus persistently infecting mammalian hosts including humans. Lysine acetylation (Kac) is a key protein post-translational modification (PTM). The unexpectedly broad regulatory scope of Kac let us to profile the entire acetylome upon BDV infection. Methods: The acetylome was profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Results: We identified and quantified 791 Kac sites in 473 Kac proteins in human BDV Hu-H1-infected and non-infected oligodendroglial (OL) cells. Bioinformatic analysis revealed that BDV infection alters the acetylation of metabolic proteins, membrane-associated proteins and transmembrane transporter activity, and affects the acetylation of several lysine acetyltransferases (KAT). Conclusions: Upon BDV persistence the OL acetylome is manipulated towards higher energy and transporter levels necessary for shuttling BDV proteins to and from nuclear replication sites. - Highlights: • We used SILAC-based proteomics to analyze the acetylome of BDV infected OL cells. • We quantified 791Kac sites in 473 proteins. • Bioinformatic analysis revealed altered acetylation of metabolic proteins et al. • BDV manipulates the OL acetylome towards higher energy and transporter levels. • BDV infection is associated with enriched phosphate-associated metabolic processes.

  4. Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels

    International Nuclear Information System (INIS)

    Liu, Xia; Liu, Siwen; Bode, Liv; Liu, Chengyu; Zhang, Liang; Wang, Xiao; Li, Dan; Lei, Yang; Peng, Xiaojun; Cheng, Zhongyi

    2015-01-01

    Background: Borna disease virus (BDV) is a neurotropic RNA virus persistently infecting mammalian hosts including humans. Lysine acetylation (Kac) is a key protein post-translational modification (PTM). The unexpectedly broad regulatory scope of Kac let us to profile the entire acetylome upon BDV infection. Methods: The acetylome was profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Results: We identified and quantified 791 Kac sites in 473 Kac proteins in human BDV Hu-H1-infected and non-infected oligodendroglial (OL) cells. Bioinformatic analysis revealed that BDV infection alters the acetylation of metabolic proteins, membrane-associated proteins and transmembrane transporter activity, and affects the acetylation of several lysine acetyltransferases (KAT). Conclusions: Upon BDV persistence the OL acetylome is manipulated towards higher energy and transporter levels necessary for shuttling BDV proteins to and from nuclear replication sites. - Highlights: • We used SILAC-based proteomics to analyze the acetylome of BDV infected OL cells. • We quantified 791Kac sites in 473 proteins. • Bioinformatic analysis revealed altered acetylation of metabolic proteins et al. • BDV manipulates the OL acetylome towards higher energy and transporter levels. • BDV infection is associated with enriched phosphate-associated metabolic processes.

  5. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.

    Science.gov (United States)

    Muzio, Giuliana; Martinasso, Germana; Baino, Francesco; Frairia, Roberto; Vitale-Brovarone, Chiara; Canuto, Rosa A

    2014-11-01

    In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Mast cells and pro-inflammatory cytokines roles in assessment of grape seeds extract anti-inflammatory activity in rat model of carrageenan-induced paw edema

    Directory of Open Access Journals (Sweden)

    Amany Ahmed Mohamed Abd-Allah

    2018-01-01

    Full Text Available Objective(s: Reactive oxygen species (ROS-produced oxidative disorders were involved at the pathophysiology of many inflammatory processes via the generation of pro-inflammatory cytokines and antioxidant defense system suppression. Although herbal antioxidants as mono-therapy relief many inflammatory diseases including, autoimmunity rheumatoid arthritis, but as combination therapy with other proven anti-inflammatory drugs in order to decreasing their toxic impacts has not yet been studied clearly, especially against chemical substances that’s induced local inflammation with characteristic edema. Materials and Methods: Grape seeds extract (GSE at a concentration of 40 mg/kg B. wt alone or in combination with indomethacin (Indo. at a dose of 5 mg/Kg B. wt orally given for 10 days prior (gps VI, VII, VIII or as a single dose after edema induction (gps IX, X, XI in rat's left hind paw by sub-planter single injection of 0.1 carrageenan: saline solution (1% (gp. V to assess the prophylactic and therapeutic anti-inflammatory activities of both through  the estimation of selective inflammatory mediators and oxidative damage-related biomarkers as well as tissue mast cell scoring. Furthermore, both substances were given alone (gps II, III, IV for their  blood, liver and kidney safety evaluation comparing with negative control rats (gp. I which kept without medication. Results: A marked reduction on the inflammatory mediators, edema volume and oxidative byproducts in edema bearing rats' prophylactic and treated with grape seeds extract and indomethacin was observed. Indomethacin found to induce some toxicological impacts which minimized when administered together with GSE. Conclusion: GSE is a safe antioxidant agent with anti-inflammatory property.

  7. Improving the sludge conditioning potential of moringa seed

    Science.gov (United States)

    Ademiluyi, Joel O.; Eze, Romanus M.

    1990-01-01

    In the search for a cheaper material to effectively condition sludge, oil-free moringa seed was prepared and tested. A Soxhlet apparatus was used to extract the oil from moringa seed ( Moringa oleifera). The oil-free seed (marc) has been found to have higher conditioning potential than the ordinary moringa seed. However, the traditional ferric chloride is still a better sludge conditioner than moringa seed marc. For the digested domestic sludge used, optimum conditioning dosages were found to be 0.6, 0.80, and 1.10% of the total solids for ferric chloride, marc of the moringa seed, and ordinary moringa seed, respectively. Since little or no operational material is lost in the extraction process, the moringa seed marc is a promising conditioner in place of the ordinary seed.

  8. Seed coat development in Velloziaceae: primary homology assessment and insights on seed coat evolution.

    Science.gov (United States)

    Sousa-Baena, Mariane S; de Menezes, Nanuza L

    2014-09-01

    Seed coat characteristics have historically been used to infer taxonomic relationships and are a potential source of characters for phylogenetic reconstruction. In particular, seed coat morphoanatomy has never been studied in detail in Velloziaceae. One character based on seed surface microsculpture has been used in phylogenies, but was excluded from recent studies owing to problems in primary homology. This work aimed to clarify the origin and general composition of seed coat cell layers in Velloziaceae and to propose hypotheses of primary homology among seed characters.• Seed coat development of 24 Velloziaceae species, comprising nine genera, and one species of Pandanaceae (outgroup) was studied using standard anatomical methods. Developmental data were interpreted in the light of a recently published phylogeny.• Eight types of seed coat were identified. Whereas the most common type has four distinct cell layers (two-layered tegmen and testa), we encountered much more variation in seed coat composition than previously reported, the analysis of which revealed some potential synapomorphies. For instance, an exotesta with spiral thickenings may be a synapomorphy of Barbacenia.• Our results showed that the character states previously used in phylogenies are not based on homologous layers and that the same state was misattributed to species exhibiting quite different seed coats. This study is a first step toward a better understanding of seed coat structure evolution in Velloziaceae. © 2014 Botanical Society of America, Inc.

  9. Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Sani Jaafaru

    Full Text Available Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA induced differentiated neuroblastoma cells (SHSY5Y via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases.

  10. A constitutive damage specific DNA-binding protein is synthesized at higher levels in UV-irradiated primate cells

    International Nuclear Information System (INIS)

    Hirschfeld, S.; Levine, A.S.; Ozato, K.; Protic, M.

    1990-01-01

    Using a DNA band shift assay, we have identified a DNA-binding protein complex in primate cells which is present constitutively and has a high affinity for UV-irradiated, double-stranded DNA. Cells pretreated with UV light, mitomycin C, or aphidicolin have higher levels of this damage-specific DNA-binding protein complex, suggesting that the signal for induction can either be damage to the DNA or interference with cellular DNA replication. Physiochemical modifications of the DNA and competition analysis with defined substrates suggest that the most probable target site for the damage-specific DNA-binding protein complex is a 6-4'-(pyrimidine-2'-one)-pyrimidine dimer: specific binding could not be detected with probes which contain -TT- cyclobutane dimers, and damage-specific DNA binding did not decrease after photoreactivation of UV-irradiated DNA. This damage-specific DNA-binding protein complex is the first such inducible protein complex identified in primate cells. Cells from patients with the sun-sensitive cancer-prone disease, xeroderma pigmentosum (group E), are lacking both the constitutive and the induced damage-specific DNA-binding activities. These findings suggest a possible role for this DNA-binding protein complex in lesion recognition and DNA repair of UV-light-induced photoproducts

  11. Seed predators exert selection on the subindividual variation of seed size.

    Science.gov (United States)

    Sobral, M; Guitián, J; Guitián, P; Larrinaga, A R

    2014-07-01

    Subindividual variation among repeated organs in plants constitutes an overlooked level of variation in phenotypic selection studies, despite being a major component of phenotypic variation. Animals that interact with plants could be selective agents on subindividual variation. This study examines selective pressures exerted during post-dispersal seed predation and germination on the subindividual variation of seed size in hawthorn (Crataegus monogyna). With a seed offering experiment and a germination test, we estimated phenotypic selection differentials for average and subindividual variation of seed size due to seed predation and germination. Seed size affects germination, growth rate and the probability of an individual seed of escaping predation. Longer seeds showed higher germination rates, but this did not result in significant selection on phenotypes of the maternal trees. On the other hand, seed predators avoided wider seeds, and by doing so exerted phenotypic selection on adult average and subindividual variation of seed size. The detected selection on subindividual variation suggests that the levels of phenotypic variation within individual plants may be, at least partly, the adaptive consequence of animal-mediated selection. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Portulaca oleracea Linn seed extract ameliorates hydrogen ...

    African Journals Online (AJOL)

    Portulaca oleracea Linn seed extract ameliorates hydrogen ... induced cell death by inhibiting oxidative stress and ROS generation. Keywords: ... culture medium; therefore the stock solutions of ... acetic acid (1 %) and ethanol (50 %) to extract.

  13. Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells.

    Science.gov (United States)

    Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Yung Hyun; Kim, Byung Woo; Shin, Hwa Kyoung; Choi, Byung Tae

    2012-05-07

    Semen cuscutae has been used traditionally to treat pimples and alleviate freckles and melasma in Korea. The present study aimed to investigate the inhibitory effect of Cuscuta japonica Choisy seeds on alpha-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. The aqueous fraction from Semen cuscutae (AFSC) was used to determine anti-melanogenic effects by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay and Western blot analysis for melanin synthesis-related signaling proteins in B16F10 mouse melanoma cells. AFSC markedly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related proteins (TRPs). Moreover, AFSC significantly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) signaling through the down-regulation of α-MSH-induced cAMP. Furthermore, we confirmed that the specific inhibitor of p38 MAPK (SB203580)-mediated suppressed melanin synthesis and tyrosinase activity was further attenuated by AFSC. AFSC also further decreased SB203580-mediated suppression of MITF and TRP expression. These results indicate that AFSC inhibits p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression, which results in a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells.

    Science.gov (United States)

    Yao, Yang; Yang, Xiushi; Shi, Zhenxing; Ren, Guixing

    2014-05-01

    Quinoa (Chenopodium quinoa Willd.) is a pseudocereal from South Americas that has received increased interest around the world because it is a good source of different nutrients and rich in saponins. However, the saponins in quinoa seeds planted in China were poorly known. We obtained 4 quinoa saponin fractions, Q30, Q50, Q70, and Q90, and 11 saponins were determined by HPLC-MS. Q50 possessed 8 individual saponins and had the highest content of saponins. We further evaluated the anti-inflammatory activity on RAW 264.7 murine macrophage cells of the 4 fractions. The 4 fractions not only dose-dependently decreased the production of inflammatory mediators NO but also inhibited the release of inflammatory cytokines including tumor necrosis factor-α and interleukin-6 in lipopolysaccharide-induced RAW264.7 cells. These results suggest that quinoa saponins may be used as functional food components for prevention and treatment of inflammation. Our findings demonstrate that saponins from the quinoa have the potential to anti-inflammation by suppressing the release of inflammatory cytokines. © 2014 Institute of Food Technologists®

  15. Repair of Traumatic Skeletal Muscle Injury with Bone-Marrow-Derived Mesenchymal Stem Cells Seeded on Extracellular Matrix

    Science.gov (United States)

    2010-06-02

    expressing full length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet 15, 213, 2006. 52. Pittenger, M.F., et al... muscle , and vascular tissue, that are necessary for viable muscular regeneration after muscle defect injury.29–32 Cells from the bone marrow are known to...3,3-diaminobenzidine. Muscular infiltration into the ECM was further confirmed by immunofluorescent staining for the muscle -specific cyto- skeleton

  16. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development

    Directory of Open Access Journals (Sweden)

    Yongxiang Liao

    2018-03-01

    Full Text Available Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 (lmm9150, exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H2O2. Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610 in lmm9150. Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150. Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150. Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.

  17. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development.

    Science.gov (United States)

    Liao, Yongxiang; Bai, Que; Xu, Peizhou; Wu, Tingkai; Guo, Daiming; Peng, Yongbin; Zhang, Hongyu; Deng, Xiaoshu; Chen, Xiaoqiong; Luo, Ming; Ali, Asif; Wang, Wenming; Wu, Xianjun

    2018-01-01

    Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 ( lmm9150 ), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H 2 O 2 . Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150 . Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150 . Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150 . Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.

  18. Effect of processing techniques on nutritional composition and antioxidant activity of fenugreek (Trigonella foenum-graecum) seed flour

    OpenAIRE

    Pandey, Hemlata; Awasthi, Pratima

    2013-01-01

    Fenugreek (Pusa Early Bunching) seeds were processed by using different processing methods viz. soaking, germination and roasting. Raw and processed fenugreek seed flours were analyzed for nutritional composition, anti- nutritional, and antioxidant activity. Raw fenugreek seed flour contained higher amount of dietary fiber (45.4 %) followed by 41.7 % in soaked seed flour, 40.9 % in roasted fenugreek seed flour and 31.3 % in germinated fenugreek seed flour. Processing of fenugreek seeds improv...

  19. Assessment of cellular responses to oxidative stress using MCF-7 breast cancer cells, black seed (N. Sativa L.) extracts and H2O2.

    Science.gov (United States)

    Farah, Ibrahim O

    2005-12-01

    Black seed (N. Sativa L) is an oriental spice of the family Ranunculaceae that has long been rationally used as a natural medicine for treatment of many acute as well as chronic conditions including cardiovascular disease and immunological disorders. It has been used in the treatment of diabetes, hypertension, and dermatological conditions. There have been very few studies on the effects of N. Sativa as a chemoprevention of chronic diseases as well as in cancer prevention and/or therapy. Oxidative stress is a condition that underlies many acute as well as chronic conditions. The combination and role of oxidative stress and antioxidants in vivo is still a matter of conjecture. Our objective for the present study was to expose MCF-7 breast cancer cells in vitro (as a chronic disease example) to aqueous and alcohol extracts and in combination with H[2]O[2] as an oxidative stressor. Measurement of cell survival under various concentrations and mixtures was conducted using standard cell culture techniques, exposure protocols in 96 well plates and Fluorospectrosphotometry. Following cellular growth to 90% confluencey, exposure to water (WE) and ethanol (AE) extracts of N. sativa and H[2]O[2] was performed. Cell survival indices were calculated from percent survival using regression analysis. Results showed that the alcohol extract and its mixtures were able to influence the survival of MCF-7 cells (indices ranged from 357.15- 809.50 mug/ml in descending potency for H[2]O[2]+AE to the mix of 3). In contrast, H[2]O[2] alone reduced effectively the survival of MCF-7 cells and the least effective combinations in descending potency were AE+H[2]O[2], WE+H[2]O[2], AE+WE, and WE+AE+H[2]O[2]. Mixtures other than AE+H[2]O[2] showed possible interactions and loss of potency. In conclusion, N. Sativa alone or in combination with oxidative stress was found to be effective (in vitro) in influencing the survival of MCF-7 breast cancer cells, unveiling promising opportunities in the

  20. Assessment of Cellular Responses to Oxidative Stress using MCF-7 Breast Cancer Cells, Black Seed (N. Sativa L. Extracts and H2O2

    Directory of Open Access Journals (Sweden)

    Ibrahim O. Farah

    2005-12-01

    Full Text Available Black seed (N. Sativa L is an oriental spice of the family Ranunculaceae that has long been rationally used as a natural medicine for treatment of many acute as well as chronic conditions including cardiovascular disease and immunological disorders. It has been used in the treatment of diabetes, hypertension, and dermatological conditions. There have been very few studies on the effects of N. Sativa as a chemoprevention of chronic diseases as well as in cancer prevention and/or therapy. Oxidative stress is a condition that underlies many acute as well as chronic conditions. The combination and role of oxidative stress and antioxidants in vivo is still a matter of conjecture. Our objective for the present study was to expose MCF-7 breast cancer cells in vitro (as a chronic disease example to aqueous and alcohol extracts and in combination with H2O2 as an oxidative stressor. Measurement of cell survival under various concentrations and mixtures was conducted using standard cell culture techniques, exposure protocols in 96 well plates and Fluorospectrosphotometry. Following cellular growth to 90% confluencey, exposure to water (WE and ethanol (AE extracts of N. sativa and H2O2 was performed. Cell survival indices were calculated from percent survival using regression analysis. Results showed that the alcohol extract and its mixtures were able to influence the survival of MCF-7 cells (indices ranged from 357.15- 809.50 Bg/ml in descending potency for H2O2+AE to the mix of 3. In contrast, H2O2 alone reduced effectively the survival of MCF-7 cells and the least effective combinations in descending potency were AE+H2O2, WE+H2O2, AE+WE, and WE+AE+H2O2. Mixtures other than AE+H2O2 showed possible interactions and loss of potency. In conclusion, N. Sativa alone or in combination with oxidative stress was found to be effective (in vitro in influencing the survival of MCF-7 breast cancer cells, unveiling promising opportunities in the field of cancer

  1. Modulation of Higher Order Chromatin Conformation in Mammalian Cell Nuclei Can Be Mediated by Polyamines and Divalent Cations.

    Directory of Open Access Journals (Sweden)

    Ashwat Visvanathan

    Full Text Available The organisation of the large volume of mammalian genomic DNA within cell nuclei requires mechanisms to regulate chromatin compaction involving the reversible formation of higher order structures. The compaction state of chromatin varies between interphase and mitosis and is also subject to rapid and reversible change upon ATP depletion/repletion. In this study we have investigated mechanisms that may be involved in promoting the hyper-condensation of chromatin when ATP levels are depleted by treating cells with sodium azide and 2-deoxyglucose. Chromatin conformation was analysed in both live and permeabilised HeLa cells using FLIM-FRET, high resolution fluorescence microscopy and by electron spectroscopic imaging microscopy. We show that chromatin compaction following ATP depletion is not caused by loss of transcription activity and that it can occur at a similar level in both interphase and mitotic cells. Analysis of both live and permeabilised HeLa cells shows that chromatin conformation within nuclei is strongly influenced by the levels of divalent cations, including calcium and magnesium. While ATP depletion results in an increase in the level of unbound calcium, chromatin condensation still occurs even in the presence of a calcium chelator. Chromatin compaction is shown to be strongly affected by small changes in the levels of polyamines, including spermine and spermidine. The data are consistent with a model in which the increased intracellular pool of polyamines and divalent cations, resulting from depletion of ATP, bind to DNA and contribute to the large scale hyper-compaction of chromatin by a charge neutralisation mechanism.

  2. The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Heng-Hsuan; Car, Suzana; Socha, Amanda L.; Hindt, Maria N.; Punshon, Tracy; Guerinot, Mary Lou

    2017-09-08

    Understanding how seeds obtain and store nutrients is key to developing crops with higher agronomic and nutritional value. We have uncovered unique patterns of micronutrient localization in seeds using synchrotron X-ray fluorescence (SXRF). Although all four members of the Arabidopsis thaliana Mn-CDF family can transport Mn, here we show that only mtp8-2 has an altered Mn distribution pattern in seeds. In an mtp8-2 mutant, Mn no longer accumulates in hypocotyl cortex cells and sub-epidermal cells of the embryonic cotyledons, but rather accumulates with Fe in the cells surrounding the vasculature, a pattern previously shown to be determined by the vacuolar transporter VIT1. We also show that MTP8, unlike the other three Mn-CDF family members, can transport Fe and is responsible for localization of Fe to the same cells that store Mn. When both the VIT1 and MTP8 transporters are non-functional, there is no accumulation of Fe or Mn in specific cell types; rather these elements are distributed amongst all cell types in the seed. Disruption of the putative Fe binding sites in MTP8 resulted in loss of ability to transport Fe but did not affect the ability to transport Mn.

  3. Efficacy of Selected Insecticides Applied to Hybrid Rice Seed

    Science.gov (United States)

    Adams, A.; Gore, J.; Musser, F.; Cook, D.; Walker, T.; Dobbins, C.

    2016-01-01

    Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities and yield. Labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin were compared with higher rates of these products to determine if labeled rates provide an acceptable level of control of the rice water weevil. Study locations were divided into low, moderate, and high groups based on rice water weevil larval densities. All seed treatments and seed treatment rates reduced rice water weevil densities. However, there was no observed yield or economic benefit from the use of an insecticidal seed treatment in areas of low pressure. Differences in yield were observed among seed treatments and seed treatment rates in moderate and high pressure locations, and all seed treatments yielded better than the untreated plots, but these differences were not always economical. All seed treatments showed an economic advantage in areas of high weevil pressure, and there were no differences among seed treatment products or rates, suggesting that currently labeled seed treatment rates in hybrid rice are effective for rice water weevil management. PMID:26537671

  4. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.

    Science.gov (United States)

    Esparza, Yussef; Bandara, Nandika; Ullah, Aman; Wu, Jianping

    2018-09-01

    Hydrogel prepared from keratin shows potential applications in tissue engineering. However, the importance of the keratin sources has not been considered. The objectives of this study were to characterize and compare the rheological (storage modulus), physical (porosity, pore size, swelling capacity, and water contact angle) and in vitro cell compatibility of hydrogel scaffolds prepared from various keratin sources. Keratins were characterized by means of their molecular weight, amino acid composition, thermal and conformational properties. Hydrogels from chicken feather keratins demonstrated substantially higher storage modulus (G') than hair and wool keratin hydrogels. However, higher swelling capacity (>3000%) was determined in hair and wool over feather keratin (1500%) hydrogels. Our results suggest that small molecular weight and β-sheet conformation of feather keratin (~10 kDa) facilitated the self-assembly of rigid hydrogels through disulfide bond re-oxidation. Whereas, high molecular weight (10-75 kDa) stretchable α-helix conformation in hair and wool keratins resulted in weaker hydrogels. The cell cultures using fibroblasts showed the highest proliferation rate on chicken feather keratin hydrogel scaffolds. After 15 days of culture, partial breakdown of keratin fibers was observed. Results indicate that stiffer avian keratins can be used to fabricate more mechanically robust biomaterials than mammalian keratins. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Aging and stem cell therapy: AMPK as an applicable pharmacological target for rejuvenation of aged stem cells and achieving higher efficacy in stem cell therapy.

    Science.gov (United States)

    Khorraminejad-Shirazi, Mohammadhossein; Farahmandnia, Mohammad; Kardeh, Bahareh; Estedlal, Alireza; Kardeh, Sina; Monabati, Ahmad

    2017-10-19

    In recent years, tissue regeneration has become a promising field for developing stem cell-based transplantation therapies for human patients. Adult stem cells are affected by the same aging mechanisms that involve somatic cells. One of the mechanisms involved in cellular aging is hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and disruption of 5' adenosine monophosphate-activated protein kinase (AMPK). Aging of stem cells results in their impaired regenerative capacity and depletion of stem cell pools in adult tissue, which results in lower efficacy of stem cell therapy. By utilizing an effective therapeutic intervention for aged stem cells, stem cell therapy can become more promising for future application. mTORC1 inhibition is a practical approach to preserve the stem cell pool. In this article, we review the dynamic interaction between sirtuin (silent mating type information regulation 2 homolog) 1, AMPK, and mTORC1. We propose that using AMPK activators such as 5-aminoimidazole-4-carboxamide ribonucleotide, A769662, metformin, and oxidized nicotinamide adenine dinucleotide (NAD + ) are practical ways to be employed for achieving better optimized results in stem cell-based transplantation therapies. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  6. A Chitin-binding Protein Purified from Moringa oleifera Seeds Presents Anticandidal Activity by Increasing Cell Membrane Permeability and Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    João X.S. Neto

    2017-06-01

    Full Text Available Candida species are opportunistic pathogens that infect immunocompromised and/or immunosuppressed patients, particularly in hospital facilities, that besides representing a significant threat to health increase the risk of mortality. Apart from echinocandins and triazoles, which are well tolerated, most of the antifungal drugs used for candidiasis treatment can cause side effects and lead to the development of resistant strains. A promising alternative to the conventional treatments is the use of plant proteins. M. oleifera Lam. is a plant with valuable medicinal properties, including antimicrobial activity. This work aimed to purify a chitin-binding protein from M. oleifera seeds and to evaluate its antifungal properties against Candida species. The purified protein, named Mo-CBP2, represented about 0.2% of the total seed protein and appeared as a single band on native PAGE. By mass spectrometry, Mo-CBP2 presented 13,309 Da. However, by SDS-PAGE, Mo-CBP2 migrated as a single band with an apparent molecular mass of 23,400 Da. Tricine-SDS-PAGE of Mo-CBP2 under reduced conditions revealed two protein bands with apparent molecular masses of 7,900 and 4,600 Da. Altogether, these results suggest that Mo-CBP2 exists in different oligomeric forms. Moreover, Mo-CBP2 is a basic glycoprotein (pI 10.9 with 4.1% (m/m sugar and it did not display hemagglutinating and hemolytic activities upon rabbit and human erythrocytes. A comparative analysis of the sequence of triptic peptides from Mo-CBP2 in solution, after LC-ESI-MS/MS, revealed similarity with other M. oleifera proteins, as the 2S albumin Mo-CBP3 and flocculating proteins, and 2S albumins from different species. Mo-CBP2 possesses in vitro antifungal activity against Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis, with MIC50 and MIC90 values ranging between 9.45–37.90 and 155.84–260.29 μM, respectively. In addition, Mo-CBP2 (18.90 μM increased the cell membrane permeabilization

  7. MDS shows a higher expression of hTERT and alternative splice variants in unactivated T-cells.

    Science.gov (United States)

    Dong, Wen; Wu, Lei; Sun, Houfang; Ren, Xiubao; Epling-Burnette, Pearlie K; Yang, Lili

    2016-11-01

    Telomere instability and telomerase reactivation are believed to play an important role in the development of myelodysplastic syndromes (MDS). Abnormal enzymatic activity of human telomerase reverse transcriptase (hTERT), and its alternative splice variants have been reported to account for deregulated telomerase function in many cancers. In this study, we aim to compare the differences in expression of hTERT and hTERT splice variants, as well as telomere length and telomerase activity in unstimulated T-cells between MDS subgroups and healthy controls. Telomere length in MDS cases was significantly shorter than controls (n = 20, pMDS using World Health Organization classification (WHO subgroups versus control: RARS, p= 0.009; RCMD, p=0.0002; RAEB1/2, p=0.004, respectively) and the International Prognostic Scoring System (IPSS subgroups: Low+Int-1, pMDS patients (n=20) had significantly higher telomerase activity (p=0.002), higher total hTERT mRNA levels (p=0.001) and hTERT α+β- splice variant expression (pMDS (r=0.58, p=0.007). This data is in sharp contrast to data published previously by our group showing a reduction in telomerase and hTERT mRNA in MDS T-cells after activation. In conclusion, this study provides additional insight into hTERT transcript patterns and activity in peripheral T-cells of MDS patients. Additional studies are necessary to better understand the role of this pathway in MDS development and progression.

  8. Adipose-Derived-Stem-Cell-Seeded Fibrin Matrices for Periodontal Ligament Engineering: The Need for Dynamic Strain

    NARCIS (Netherlands)

    de Jong, Thijs; Oostendorp, Corien; Bakker, Astrid D.; van Kuppevelt, Toin H.; Smit, Theo H.

    2017-01-01

    Introduction: The periodontal ligament (PDL) connects the tooth to the alveolar bone. For PDL regeneration after tissue damage, we propose human adipose-derived stem cells (hASCs) embedded in fibrin. We showed previously that hASCs in fibrin extensively produce collagen, but in a non-functional,

  9. Evaluation of Pistacia lentiscus seed oil and phenolic compounds for in vitro antiproliferative effects against BHK21 cells.

    Science.gov (United States)

    Mezni, Faten; Shili, Sarra; Ben Ali, Nejia; Larbi Khouja, Mohamed; Khaldi, Abdelhamid; Maaroufi, Abderrazak

    2016-01-01

    Within the global context of increasing cancer diseases, natural products are important in devising new drugs and providing unique ideas in cancer therapy. In Tunisian folk medicine, Pistacia lentiscus L. (Anacardiaceae) fixed oil is used for cancer treatment. This investigation studied, for the first time, the antiproliferative effect of Pistacia lentiscus fixed oil and its phenolic extract on BHK21 cancer cells. Oil was extracted from fruits harvested in northwest Tunisia and the phenolic fraction was obtained by mixing with methanol. The anti-proliferative activity of the two tested substances on BHK 21 cells were investigated in vitro using trypan blue assays. Cells were treated with different concentrations of P. lentiscus oil (0.009, 0.018, 0.036, and 0.09 g/mL) and the phenolic extract (0.007, 0.014, 0.03, and 0.07 g/mL) for 24, 48, and 72 h. The inhibitory effect of Pistacia lentiscus fixed oil increases with the increase in dose. The IC50 value was estimated at 0.029 g/mL. The percentage of cell viability was 42.46 ± 3.4% at a dose of 0.09 g/mL and was significantly lower than that of the untreated control (96.24 ± 2.5%, pPistacia lentiscus fixed oil in treating cancer, as it is used in traditional medicine.

  10. Using Hydroxyapatite-Gelatin Scaffold Seeded with Bone Marrow Stromal Cells as a Bone Graft in Animal Model

    Directory of Open Access Journals (Sweden)

    Mahsoumeh Behruzi

    2016-11-01

    Full Text Available Background: Nowadays, composite scaffolds with some desired characteristics have a numerous applications in hard tissue engineering. In present study, the role of composite hydroxyapatite - gelatin was examined in both alone and coated by Bone Marrow Stromal Stem Cells (BMSCs conditions in the process of healing bone defects, reduction of time repair and the immune response of body by laboratory studies (in vitro and in vivo on the skull of adult rats as well. Materials and Methods: In present study, nano-hydroxyapatite powder and gelatin were used to provide nano-hydroxyapatite-gelatin scaffold, BMSCs were isolated by Flushing method. Fifteen adult male Wistar rats weighing 250-200 g were used. Studing groups included bone defect with hydroxyapatite-gelatin scaffold, bone defect with hydroxyapatite-gelatin with BMSCs and bone defects without scaffolding as a controlwhich were examined after a week and a month after surgery. MTT assay was used in order to evaluation of biocompatibility of scaffolds. To confirm the healing progress trend and the presence of inflammatory cells we used hematoxylin-eosin and we used Masson's trichrome staining in order to study of synthesis of collagen fibers. Results: The results of MTT showed that the scaffold has no toxic effects on stromal cells. The first signs of ossification in hydroxyapatite-gelatin with BMSCs cells group, appeared in the first week. However, in the fourth week, ossification was completed and the scaffold remaining was found as embedded islands in the spongy bone tissue. The greatest number of lymphocytes was observed in the experimental group after one week of planting scaffold. Conclusion: it seems that Hydroxyapatite-gelatin scaffold coated with BMSCs cells has a potential role in the healing process of bone and it can be suitable as a therapeutic strategy to repair extensive bone lesions.

  11. Lower expression of CADM1 and higher expression of MAL in Merkel cell carcinomas are associated with Merkel cell polyomavirus infection and better prognosis.

    Science.gov (United States)

    Iwasaki, Takeshi; Matsushita, Michiko; Nonaka, Daisuke; Nagata, Keiko; Kato, Masako; Kuwamoto, Satoshi; Murakami, Ichiro; Hayashi, Kazuhiko

    2016-02-01

    Merkel cell carcinoma (MCC) is a clinically aggressive neuroendocrine skin cancer; 80% of the cases are associated with the Merkel cell polyomavirus (MCPyV). We previously reported that MCPyV-negative MCCs have more irregular nuclei with abundant cytoplasm and significantly unfavorable outcomes than do MCPyV-positive MCCs. These results suggest that some cell adhesion or structural stabilization molecules are differently expressed depending on MCPyV infection status. Thus, we investigated the association of prognosis or MCPyV infection status in MCCs with cell adhesion molecule 1 (CADM1)/differentially expressed in adenocarcinoma of the lung protein 1 (DAL-1)/membrane protein, palmitoylated 3 (MPP3) tripartite complex and mal T-cell differentiation protein (MAL) expression, which play important roles in cell adhesion and oncogenesis and are related to cancer outcomes in various malignancies, to elucidate the role of these molecules. We analyzed the pathological and molecular characteristics of 26 MCPyV-positive and 15 MCPyV-negative MCCs. Univariate Cox regression analysis showed that advanced age (hazard ratio [HR], 8.249; P = .007) and high CADM1 expression (HR, 5.214; P = .012) were significantly unfavorable overall survival parameters, whereas MCPyV infection (HR, 0.043, P Merkel cells expressed DAL-1 and MAL but not CADM1. This study revealed that MCPyV-negative MCCs significantly expressed higher CADM1 and lower MAL than MCPyV-positive MCCs; these expression levels were markedly related to unfavorable outcomes. These data will give us important insights to develop novel molecular target therapies for MCCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. IMPORTANCE OF STORAGE CONDITIONS AND SEED TREATMENT FOR SUNFLOWER HYBRIDS SEEDS GERMINATION

    Directory of Open Access Journals (Sweden)

    Goran Krizmanić

    2014-12-01

    Full Text Available In this research we have determined germination energy and germination of seeds of sunflower hybrids ‘Luka’ and ‘Apolon’, at the beginning of storage and 6, 12 and 18 months after of storage period (2011-2012 in the floor concrete storage at two different air temperatures and humidity (S-1: air temperature 15-18°C and relative air humidity 65-70% as well as in climate chamber (S-2: air temperature 10-12°C and relative air humidity 60-65%, stored in four treatments (Control: processed-untreated seed; T-1: treated with A.I. metalaxyl-M; T-2: treated with A.I. metalaxyl-M + A.I. imidacloprid and T-3: treated with A.I. metalaxyl-M + A.I. clothianidin. Based on the obtained results we have determined that sunflower hybrid ‘Luka’, compared to hybrid ‘Apolon’, in the given storage conditions and with the same seed treatment has 5-8% higher germination energy and seed germination and that in climate chamber both hybrids have 5-7% higher germination energy. Seed treatment of both sunflower hybrids with A.I. imidacloprid maximally reduced initial germination energy and seed germination in all tested periods and conditions of storage. On the average, natural seed, after 18 months of storage did not have better seed quality compared to seed treated with A.I. metalaxyl-M while other treatments had more significant influence on reduction of germination energy and seed germination, 6-15%. On the average, compared to other variants, seeds treated with A.I. metalaxyl-M after 18 months of storage in both storage conditions had higher germination energy by 4-15%, and seed germination by 2-12%.

  13. In vitro culture of higher plants as a tool in the propagation of horticultural crops.

    NARCIS (Netherlands)

    Pierik, R.L.M.

    1988-01-01

    In vitro culture of higher plants is the culture, under sterile conditions, of plants, seeds, embryos, organs, explants, tissues, cells and protoplasts on nutrient media. This type of culture has shown spectacular development since 1975, resulting in the production and regeneration of viable

  14. A Preclinical Model of Chronic Alcohol Consumption Reveals Increased Metastatic Seeding of Colon Cancer Cells in the Liver.

    Science.gov (United States)

    Im, Hwi-Jin; Kim, Hyeong-Geug; Lee, Jin-Seok; Kim, Hyo-Seon; Cho, Jung-Hyo; Jo, Il-Joo; Park, Sung-Joo; Son, Chang-Gue

    2016-04-01

    Liver metastasis is the main cause of death from colorectal cancer. Alcohol consumption impacts liver function and is suggested to be an independent risk factor for liver metastasis of colorectal cancer, but no experimental evidence supporting this hypothesis has been demonstrated to date. In this study, we investigated the effect of alcohol intake on liver metastasis. We examined colon cancer cell spread from the spleen in mice provided with water (control group), alcohol for 4 weeks before tumor injection (prealcohol), alcohol for 3 weeks after tumor injection (postalcohol), or alcohol throughout the 7-week study (alcohol). Alcohol intake significantly increased hepatic metastatic burden in the prealcohol (2.4-fold, P < 0.001), postalcohol (2.0-fold, P < 0.01), and alcohol groups (2.2-fold, P < 0.001). A fluorescence-based metastasis tracking assay also confirmed an alcohol-induced increase in the abundance of tumor cells in the liver (2.5-fold, P < 0.001). Investigation of the host microenvironment revealed an alcohol-induced inflammatory response marked by elevated TNFα, IL1β, IL6, and IFNγ protein levels, as well as increased expression of intercellular molecule-1 (ICAM1) in hepatic tissues after 4 weeks of alcohol consumption. Moreover, the peripheral blood of mice provided with alcohol for 4 weeks exhibited reduced natural killer and CD8(+) T-cell counts. Collectively, our findings suggest that chronic alcohol consumption accelerates liver metastasis of colorectal cancer cells through alterations to the liver microenvironment and inactivation of immune surveillance. Cancer Res; 76(7); 1698-704. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. What Are Chia Seeds?

    Science.gov (United States)

    ... your diet? Chia seeds come from the desert plant Salvia hispanica , a member of the mint family. ... ancient Aztec diet. The seeds of a related plant, Salvia columbariae (golden chia), were used primarily by ...

  16. Seeds and Synergies

    International Development Research Centre (IDRC) Digital Library (Canada)

    'Seeds and Synergies presents inspiring evidence of change in practice and policy ... Seeds of inspiration: breathing new life into the formal agricultural research .... and Urban Development and Poverty Alleviation and Agricultural Commodity ...

  17. Seeds as biosocial commons

    NARCIS (Netherlands)

    Patnaik, Archana

    2016-01-01

    This research investigates and describes the conservation and use of Plant Genetic Resources (PGRs), especially seeds through processes of commonisation. Seeds form an important element for sustaining human life (through food production) and social relations (by maintaining agricultural

  18. Seed dispersal in fens

    NARCIS (Netherlands)

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and

  19. Influence of seed layer treatment on ZnO growth morphology and their device performance in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R. Saravana [PG and Research, Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029 (India); Sudhagar, P. [Energy Materials Laboratary, WCU Program Department of Energy Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Matheswaran, P. [PG and Research, Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029 (India); Sathyamoorthy, R., E-mail: rsathya59@gmail.com [PG and Research, Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029 (India); Kang, Yong Soo, E-mail: kangys@hanyang.ac.kr [Energy Materials Laboratary, WCU Program Department of Energy Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-09-15

    The surface modification of the ZnO seed layer by ultrasonic mediated rinsing (UMR) was realized as an efficient tool for growing highly branched hierarchical ZnO nanorods through multistage approach. The hierarchical ZnO nanostructure achieved through UMR approach was performed as the photoanodes in dye-sensitized solar cells (DSSCs). The DSSC based on the novel branched network resulted in energy conversion efficiency ({eta}) of 1.1% (J{sub sc} = 4.7 mA cm{sup -2}). The improved device performance was ascribed to the (a) high internal surface area for efficient dye adsorption, (b) rapid electron pathway for charge transport from ZnO to transparent conducting oxide (TCO) substrate and (c) producing random multiple scattering of the light within the hierarchical network leading to photon localization, thereby increasing the probability of the interaction between the photons and the dye molecules of the branched network. The beneficial effect of the UMR approach was distinguished by fabricating DSSCs based on randomly oriented ZnO nanorods prepared by conventional rinsing (CR), which offered lower conversion efficiency {eta} = 0.7% (J{sub sc} = 3.8 mA cm{sup -2}). The exploration of novel hierarchical ZnO nanorods grown in the present work by the low temperature solution growth techniques may pave way to bring out photoanode material on flexible substrates for the fast growing DSSCs devices.

  20. Report of the International Stem Cell Banking Initiative Workshop Activity: Current Hurdles and Progress in Seed-Stock Banking of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Kim, Jung-Hyun; Kurtz, Andreas; Yuan, Bao-Zhu; Zeng, Fanyi; Lomax, Geoff; Loring, Jeanne F; Crook, Jeremy; Ju, Ji Hyeon; Clarke, Laura; Inamdar, Maneesha S; Pera, Martin; Firpo, Meri T; Sheldon, Michael; Rahman, Nafees; O'Shea, Orla; Pranke, Patricia; Zhou, Qi; Isasi, Rosario; Rungsiwiwut, Ruttachuk; Kawamata, Shin; Oh, Steve; Ludwig, Tenneille; Masui, Tohru; Novak, Thomas J; Takahashi, Tsuneo; Fujibuchi, Wataru; Koo, Soo Kyung; Stacey, Glyn N

    2017-11-01

    This article summarizes the recent activity of the International Stem Cell Banking Initiative (ISCBI) held at the California Institute for Regenerative Medicine (CIRM) in California (June 26, 2016) and the Korean National Institutes for Health in Korea (October 19-20, 2016). Through the workshops, ISCBI is endeavoring to support a new paradigm for human medicine using pluripotent stem cells (hPSC) for cell therapies. Priority considerations for ISCBI include ensuring the safety and efficacy of a final cell therapy product and quality assured source materials, such as stem cells and primary donor cells. To these ends, ISCBI aims to promote global harmonization on quality and safety control of stem cells for research and the development of starting materials for cell therapies, with regular workshops involving hPSC banking centers, biologists, and regulatory bodies. Here, we provide a brief overview of two such recent activities, with summaries of key issues raised. Stem Cells Translational Medicine 2017;6:1956-1962. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Scatter hoarding of seeds confers survival advantages and disadvantages to large-seeded tropical plants at different life stages.

    Directory of Open Access Journals (Sweden)

    Erin K Kuprewicz

    Full Text Available Scatter hoarding of seeds by animals contributes significantly to forest-level processes, including plant recruitment and forest community composition. However, the potential positive and negative effects of caching on seed survival, germination success, and seedling survival have rarely been assessed through experimental studies. Here, I tested the hypothesis that seed burial mimicking caches made by scatter hoarding Central American agoutis (Dasyprocta punctate enhances seed survival, germination, and growth by protecting seeds from seed predators and providing favorable microhabitats for germination. In a series of experiments, I used simulated agouti seed caches to assess how hoarding affects seed predation by ground-dwelling invertebrates and vertebrates for four plant species. I tracked germination and seedling growth of intact and beetle-infested seeds and, using exclosures, monitored the effects of mammals on seedling survival through time. All experiments were conducted over three years in a lowland wet forest in Costa Rica. The majority of hoarded palm seeds escaped predation by both invertebrates and vertebrates while exposed seeds suffered high levels of infestation and removal. Hoarding had no effect on infestation rates of D. panamensis, but burial negatively affected germination success by preventing endocarp dehiscence. Non-infested palm seeds had higher germination success and produced larger seedlings than infested seeds. Seedlings of A. alatum and I. deltoidea suffered high mortality by seed-eating mammals. Hoarding protected most seeds from predators and enhanced germination success (except for D. panamensis and seedling growth, although mammals killed many seedlings of two plant species; all seedling deaths were due to seed removal from the plant base. Using experimental caches, this study shows that scatter hoarding is beneficial to most seeds and may positively affect plant propagation in tropical forests, although

  2. The effects of nano-TiO{sub 2} on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L

    Energy Technology Data Exchange (ETDEWEB)

    Ruffini Castiglione, Monica, E-mail: mruffini@biologia.unipi.it [University of Pisa, Department of Biology (Italy); Giorgetti, Lucia; Geri, Chiara [Institute of Agricultural Biology and Biotechnology (IBBA/CNR), UOS Pisa (Italy); Cremonini, Roberto [University of Pisa, Department of Biology (Italy)

    2011-06-15

    This study aimed to provide new information about phyto-toxicology of nano-TiO{sub 2} on plant systems. To contribute to the evaluation of the potential harmful effects of the nanoparticles on monocots and dicots we considered their effects on seed germination and root elongation applying a concentration range from 0.2 to 4.0 Per-Mille-Sign in the plants Zea mays L. and Vicia narbonensis L. Moreover, we achieved a genotoxicity study at cytological level in root meristems by means of traditional cytogenetic approach, to evidence possible alterations in mitotic activity, chromosomal aberrations, and micronuclei release. From these analyses it comes out that nano-TiO{sub 2} particles, after short-term exposure and under our experimental conditions, delayed germination progression for the first 24 h in both materials. Root elongation was affected only after treatment with the higher nano-TiO{sub 2} concentration. Further significant effects were detected showing mitotic index reduction and concentration-dependent increase in the aberration emergence that evidenced a nano-TiO{sub 2}-induced genotoxic effect for both species.

  3. Effect of GA3 treatment on seed development and seed-related gene expression in grape.

    Directory of Open Access Journals (Sweden)

    Chenxia Cheng

    Full Text Available The phytohormone gibberellic acid (GA3 is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes.In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars ('Kyoho' and 'Red Globe', along with a seedless cultivar ('Thompson Seedless', following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF, both 'Kyoho' and 'Red Globe' seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls.Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development.

  4. The seed of change in society. Diffusion of solar cell systems in housing by means of pilot projects

    International Nuclear Information System (INIS)

    Van Mierlo, B.C.

    2002-01-01

    The central question in this thesis is: in what way can pilot projects contribute to the diffusion of new sustainable technologies, in particular solar cell systems in housing units. The reason for this is, in the first place, that trials, demonstration projects, practical experiments and market introduction projects are often launched by firms and subsidised by the state. The objective of such projects, referred to here as pilot projects, is in general to prepare the market introduction of new technologies. However, these projects are often realised and financed without much information being available on how they operate: about how they could prepare the market launch and how this function could be optimised. The second reason is that since the end of the 1980s the expectations in the Netherlands in respect of solar cell systems (PV systems) connected to the electricity grid have been high. These systems could have great advantages for the environment and after 2010 could be the most important source of sustainable energy. The government sees housing as the most promising market segment for these systems. It is recognised that certain major bottlenecks have to be solved before a large-scale diffusion is possible. According to the niche approach, the basic starting point of this thesis, this means that the existing social-technological regime needs to change: the rules and infrastructure according to which the existing technologies are, as it were, considered self-evident, and which hinder the introduction of new technologies. Subsidised pilot projects form a protected market niche that can stimulate a change in the regime by learning and by the social embedding of the learning experiences. According to this approach, a protected market niche is a necessary component of state-supported innovation policy if market niches do not arise spontaneously. It is, however, a limited instrument since the ultimate impact on existing regimes depends mainly on external factors

  5. Seed development and carbohydrates

    NARCIS (Netherlands)

    Wittich, P.E.

    1998-01-01

    Seeds assure the plant the onset of a next generation and a way of dispersal. They consist of endosperm and an embryo (originating from gametophytic tissue), enveloped by a seed coat (sporophytic tissue). Plants generate different types of seeds. For instance, the endosperm may either be

  6. Exploration of Shorea robusta (Sal seeds, kernels and its oil

    Directory of Open Access Journals (Sweden)

    Shashi Kumar C.

    2016-12-01

    Full Text Available Physical, mechanical, and chemical properties of Shorea robusta seed with wing, seed without wing, and kernel were investigated in the present work. The physico-chemical composition of sal oil was also analyzed. The physico-mechanical properties and proximate composition of seed with wing, seed without wing, and kernel at three moisture contents of 9.50% (w.b, 9.54% (w.b, and 12.14% (w.b, respectively, were studied. The results show that the moisture content of the kernel was highest as compared to seed with wing and seed without wing. The sphericity of the kernel was closer to that of a sphere as compared to seed with wing and seed without wing. The hardness of the seed with wing (32.32, N/mm and seed without wing (42.49, N/mm was lower than the kernels (72.14, N/mm. The proximate composition such as moisture, protein, carbohydrates, oil, crude fiber, and ash content were also determined. The kernel (30.20%, w/w contains higher oil percentage as compared to seed with wing and seed without wing. The scientific data from this work are important for designing of equipment and processes for post-harvest value addition of sal seeds.

  7. Nitric Oxide Regulates Seedling Growth and Mitochondrial Responses in Aged Oat Seeds

    Directory of Open Access Journals (Sweden)

    Chunli Mao

    2018-04-01

    Full Text Available Mitochondria are the source of reactive oxygen species (ROS in plant cells and play a central role in the mitochondrial electron transport chain (ETC and tricarboxylic acid cycle (TCA cycles; however, ROS production and regulation for seed germination, seedling growth, as well as mitochondrial responses to abiotic stress, are not clear. This study was conducted to obtain basic information on seed germination, embryo mitochondrial antioxidant responses, and protein profile changes in artificial aging in oat seeds (Avena sativa L. exposed to exogenous nitric oxide (NO treatment. The results showed that the accumulation of H2O2 in mitochondria increased significantly in aged seeds. Artificial aging can lead to a loss of seed vigor, which was shown by a decline in seed germination and the extension of mean germination time (MGT. Seedling growth was also inhibited. Some enzymes, including catalase (CAT, glutathione reductase (GR, dehydroascorbate reductase (DHAR, and monodehydroascorbate reductase (MDHAR, maintained a lower level in the ascorbate-glutathione (AsA-GSH scavenging system. Proteomic analysis revealed that the expression of some proteins related to the TCA cycle were down-regulated and several enzymes related to mitochondrial ETC were up-regulated. With the application of 0.05 mM NO in aged oat seeds, a protective effect was observed, demonstrated by an improvement in seed vigor and increased H2O2 scavenging ability in mitochondria. There were also higher activities of CAT, GR, MDHAR, and DHAR in the AsA-GSH scavenging system, enhanced TCA cycle-related enzymes (malate dehydrogenase, succinate-CoA ligase, fumarate hydratase, and activated alternative pathways, as the cytochrome pathway was inhibited. Therefore, our results indicated that seedling growth and seed germinability could retain a certain level in aged oat seeds, predominantly depending on the lower NO regulation of the TCA cycle and AsA-GSH. Thus, it could be concluded that the

  8. HPMA-RGD Hydrogels Seeded with Mesenchymal Stem Cells Improve Functional Outcome in Chronic Spinal Cord Injury

    Czech Academy of Sciences Publication Activity Database

    Hejčl, Aleš; Šedý, Jiří; Kapcalová, Miroslava; Arboleda Toro, David; Amemori, Takashi; Lesný, Petr; Likavčanová, Katarína; Krumbholcová, Eva; Přádný, Martin; Michálek, Jiří; Burian, M.; Hájek, M.; Jendelová, Pavla; Syková, Eva

    2010-01-01

    Roč. 19, č. 10 (2010), s. 1535-1546 ISSN 1547-3287 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR IAA500390902 Grant - others:GA ČR(CZ) GD309/08/H079; GA MZd(CZ) 1A8697; GA MŠk(CZ) 1M0538; EC FP6 project RESCUE(XE) LSHB-CT-2005-518233 Program:1M Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z40500505 Keywords : magnetic-resonance tracking * spinal cord injury * stem cells Subject RIV: FH - Neurology Impact factor: 4.791, year: 2010

  9. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Yu Tian

    2014-01-01

    Full Text Available A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.. Results indicated that the seeds primed by gibberellins (GA, NaCl, and polyethylene glycol (PEG reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P<0.05. The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM, or PEG (15% significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  10. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    Science.gov (United States)

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  11. Ethanol and supercritical fluid extracts of hemp seed (Cannabis sativa L. increase gene expression of antioxidant enzymes in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Sunghyun Hong

    2015-06-01

    Conclusions: In conclusion, the findings of our study demonstrated that the hemp seed effectively inhibited H2O2 mediated oxidative stress and may be useful as a therapeutic agent in preventing oxidative stress mediated diseases.

  12. Higher proliferation of peritumoral endothelial cells to IL-6/sIL-6R than tumoral endothelial cells in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhuang, Peng-Yuan; Wang, Jian-Dong; Tang, Zhao-Hui; Zhou, Xue-Ping; Quan, Zhi-Wei; Liu, Ying-Bin; Shen, Jun

    2015-01-01

    This study aimed to explore the responses to the interleukin-6 (IL-6)/soluble interleukin-6 receptor (sIL-6R) complex in peritumoral endothelial cells (PECs) and tumor endothelial cells (TECs), as well as determine the signaling pathways in the angiogenesis of hepatocellular carcinoma (HCC). The expression of IL-6, IL-6R, gp130, CD68, HIF-1α, and microvessel density (MVD) were assessed with an orthotopic xenograft model in nude mice. ECs were incubated under hypoxic conditions to detect IL-6 and gp130. The proliferation of PECs and TECs in the presence of IL-6 and sIL-6R, as well as the expression of gp130, JAK2/STAT3, PI3K/AKT in endothelial cells were measured. Peritumoral IL-6, IL-6R, gp130, CD68, and HIF-1α expression, as well as MVD, gradually increased during tumor growth. Hypoxia could directly induce IL-6 expression, but not gp130 in PECs. The co-culture of IL-6/sIL-6R induced much higher PEC proliferation and gp130 expression, as well as the elevated phosphorylation of JAK2 and STAT3, however not the phosphorylation of PI3K and AKT. PECs exhibited higher proliferation in response to IL-6/sIL-6R co-treatment compared with TECs in HCC via the up-regulation of gp130 /JAK2/STAT3. PEC and its associated peritumoral angiogenesis microenvironment may be a potential novel target for anti-angiogenic treatment. The online version of this article (doi:10.1186/s12885-015-1763-2) contains supplementary material, which is available to authorized users

  13. Tolerance to Cadmium of Agave lechuguilla (Agavaceae Seeds and Seedlings from Sites Contaminated with Heavy Metals

    Directory of Open Access Journals (Sweden)

    Alejandra Méndez-Hurtado

    2013-01-01

    Full Text Available We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz and from a noncontaminated site (Villa de Zaragoza were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.

  14. Effects of sand burial and seed size on seed germination, seedling emergence and seedling biomass of anabasis aphylla

    International Nuclear Information System (INIS)

    Wang, T.T.; Chu, G.M.; Jiang, P.; Wang, M.

    2017-01-01

    Two greenhouse experiments were conducted to test the effects of sand burial (0-2 cm) and seed size (small, medium and large) on seed germination and seedling growth of Anabasis aphylla, which is typically used as a windbreak and for the fixation of sand in the Gurbantunggut desert of Xinjiang, region of northwest China. The results showed that sand burial significantly affected seed germination, seedling emergence, survival and biomass of A. aphylla. The seed germination rate, seedling emergence rate, seedling survival rate and biomass were highest at the 0.2 and 0.5 cm sand burial depths. At different burial depths, different sizes of A. aphylla seed showed a significant difference in the germination and emergence rate. At the same sand burial depth, the seedling emergence rate of the large seeds was significantly higher than that of medium and small seeds. At sand burial depth of 0.2-2 cm, germination of large seeds and seedling survival rates were significantly higher than those at the same sand burial depth for medium seed germination, and the latter was significantly higher than for small seed. We speculate that tolerance to sand burial and diversity of seed size increased the adaption of A. aphylla to this environment, contributing to its dominance in the windy and sandy area of Gurbantunggut desert. (author)

  15. Pre-sowing irradiation of vegetable seeds

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, S

    1975-01-01

    Results are reported of trials with radiation stimulation of vegetable crops conducted under farm conditions in different regions. They were based on exact tests accomplished at the IGHB. Pre-sowing irradiation of seed increased the greenhouse yield of Extase tomato variety by 15%; it increased the yield of Triumph tomato variety under field conditions as well. The pepper variety Kourtovska Kapiya and eggplant variety Bulgarski 12, both grown from irradiated seed in open field produced 18% and 5.5% higher yields, respectively. Irradiation of vegetable seeds finds a large application in the farm practice.

  16. Pre-sowing irradiation of vegetable seeds

    International Nuclear Information System (INIS)

    Stoyanov, S.

    1975-01-01

    Results are reported of trials with radiation stimulation of vegetable crops conducted under farm conditions in different regions. They were based on exact tests accomplished at the IGHB. Pre-sowing irradiation of seed increased the greenhouse yield of Extase tomato variety by 15%; it increased the yield of Triumph tomato variety under field conditions as well. The pepper variety Kourtovska Kapiya and eggplant variety Bulgarski 12, both grown from irradiated seed in open field produced 18% and 5.5% higher yields, respectively. Irradiation of vegetable seeds finds a large application in the farm practice. (author)

  17. Experimental determination of the anisotropy function for the Model 200 103Pd 'light seed' and derivation of the anisotropy constant based upon the linear quadratic model

    International Nuclear Information System (INIS)

    Yue Ning; Nath, Ravinder

    2002-01-01

    Since the publication of the AAPM Task Group 43 report in 1995, Model 200 103 Pd seed, which has been widely used in prostate seed implants and other brachytherapy procedures, has undergone some changes in its internal geometry resulting from the manufacturer's transition from lower specific activity reactor-produced 103 Pd ('heavy seeds') to higher specific activity accelerator-produced radioactive material ('light seeds'). Based on previously reported theoretical calculations and measurements, the dose rate constants and the radial dose functions of the two types of seeds are nearly the same and have already been reported. In this work, the anisotropy function of the 'light seed' was experimentally measured and an averaging method for the determination of the anisotropy constant from distance-dependent values of anisotropy factors is presented based upon the continuous low dose rate irradiation linear quadratic model for cell killing. The anisotropy function of Model 200 103 Pd 'light seeds' was measured in a Solid Water trade mark sign phantom using 1x1x1 mm micro LiF TLD chips at radial distances of 1, 2, 3, 4, 5, and 6 cm and at angles from 0 to 90 deg. with respect to the longitudinal axis of the seeds. At a radial distance of 1 cm, the measured anisotropy function of the 103 Pd 'light seed' is considerably lower than that of the 103 Pd 'heavy seed' reported in the TG 43 report. Our measured values at all radial distances are in excellent agreement with the results of a Monte Carlo simulation reported by Weaver, except for points along and near the seed longitudinal axis. The anisotropy constant of the 103 Pd 'light seed' was calculated using the linear quadratic biological model for cell killing in 30 clinical implants. For the model 200 ''light seed,'' it has a value of 0.865. However, our biological model calculations lead us to conclude that if the anisotropy factors of an interstitial brachytherapy seed vary significantly over radial distances anisotropy

  18. Seed reserve utilization and hydrolytic enzyme activities in germinating seeds of sweet corn

    International Nuclear Information System (INIS)

    Cheng, X.; Xiong, F.; Wang, C.; He, S.; Zhou, Y.

    2018-01-01

    In this study, two sh2 sweet corn cultivars (i.e., the initial seed dry weight for FT018 and TB010 was 0.16+-0.02 g/grain and 0.09+-0.01 g/grain, respectively) were used to determine the physiological characteristics of seed reserve utilization in germination. The data implied that the weight of mobilized seed reserve (WMSR) and seed reserve utilization efficiency (SRUE) increased with seed germination. FT018 exhibited higher SRUE than TB010 due to its sufficient energy production for growth. Sugar (sucrose and fructose) contents were at different levels in the germinating seed of sh2 sweet corn. The protein content and number of protein species were highest in the early stage of germination. Enzyme activity in the germinating seed indicated that enzymes for starch and sugar hydrolysis were important and that enzyme activities significantly differed at each germination stage and between the cultivars under dark conditions. Succinate dehydrogenase, sucrose synthase, and glucose-6-phosphate dehydrogenase accumulated in the late germination stage. Thus, appropriate efforts should be focused on improving the seed reserve utilization in sweet corn by identifying the physiological mechanism of germinating seed. (author)

  19. Seed dispersers, seed predators, and browsers act synergistically as biotic filters in a mosaic landscape.

    Directory of Open Access Journals (Sweden)

    Regino Zamora

    Full Text Available In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal and antagonistic (seed predation, herbivory animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees.

  20. THE EFFECTS OF Jatropha curcas L SEED EXTRACT IN REGULATION EXPRESSION TUMOR MARKER OF TGF- β1 GENE

    Directory of Open Access Journals (Sweden)

    Endah Wulandari

    2017-04-01

    Full Text Available The role of TGF-β1 is known as the main immunosuppresor associated with tumor, but on the other opinion, it is associated with proliferation and tumor invasion. The increase and decrease of the secretion of TGF-β is to regulate the proliferation, differentiation, and death of various cell types. Now we all know the extract of Jatropha curcas L seed serves as antitumor. Allegedly, it can regulate the expression of TGF-β1 in control of cell number. The purpose of this study is to determine the effects of Jatropha seeds to the regulation of gene expression of TGF-β1 as a tumor marker. The method is performed by giving a dose groups the extract of jatropha seed (0, 5, 25, 50, 250 mg/BB in mice. Then measurement of mRNA expression (RT-PCR, the protein of TGF-β1 levels (ELISA, and qualitative observations of liver histology were done. The expression of TGF-β1 mRNA is significantly 4.39 to 7.34 times higher than (ANOVA, p 0.05 than the control. Histological observation of liver showed the extract of jatropha seed induces damage nucleus of hepatocytes cell and sinusoidal. The effects extract of jatropha seed increased the level of TGF-β1 mRNA but not followed by increasing protein of TGF-β1 levels, and it was stimulated necrosis and apoptosis of hepatocytes cell.

  1. Magnetic field effect on growth, arsenic uptake, and total amylolytic activity on mesquite (Prosopis juliflora x P. velutina) seeds

    Science.gov (United States)

    Flores-Tavizón, Edith; Mokgalaka-Matlala, Ntebogeng S.; Elizalde Galindo, José T.; Castillo-Michelle, Hiram; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2012-04-01

    Magnetic field is closely related to the cell metabolism of plants [N. A. Belyavskaya, Adv. Space Res. 34, 1566 (2004)]. In order to see the effect of magnetic field on the plant growth, arsenic uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina) seeds, ten sets of 80 seeds were selected to be oriented with the long axis parallel or randomly oriented to an external magnetic field. The external magnetic field magnitude was 1 T, and the exposition time t = 30 min. Then, the seeds were stored for three days in a plastic bag and then sown on paper towels in a modified Hoagland's nutrient solution. After three days of germination in the dark and three days in light, seedlings were grown hydroponically in modified Hoagland's nutrient solution (high PO42-) containing 0, 10, or 20 ppm of arsenic as As (III) and (V). The results show that the germination ratios, growth, elongation, arsenic uptake, and total amylolytic activity of the long axis oriented mesquite seeds were much higher than those of the randomly oriented seeds. Also, these two sets of seeds showed higher properties than the ones that were not exposed to external magnetic field.

  2. Comparison of Enzymatic and Ultrasonic Extraction of Albumin from Defatted Pumpkin (Cucurbita pepo Seed Powder

    Directory of Open Access Journals (Sweden)

    Gia Loi Tu

    2015-01-01

    Full Text Available In this study, ultrasound- and enzyme-assisted extractions of albumin (water-soluble protein group from defatted pumpkin (Cucurbita pepo seed powder were compared. Both advanced extraction techniques strongly increased the albumin yield in comparison with conventional extraction. The extraction rate was two times faster in the ultrasonic extraction than in the enzymatic extraction. However, the maximum albumin yield was 16 % higher when using enzymatic extraction. Functional properties of the pumpkin seed albumin concentrates obtained using the enzymatic, ultrasonic and conventional methods were then evaluated. Use of hydrolase for degradation of cell wall of the plant material did not change the functional properties of the albumin concentrate in comparison with the conventional extraction. The ultrasonic extraction enhanced water-holding, oil-holding and emulsifying capacities of the pumpkin seed albumin concentrate, but slightly reduced the foaming capacity, and emulsion and foam stability.

  3. Hot seeding using large Y-123 seeds

    International Nuclear Information System (INIS)

    Scruggs, S J; Putman, P T; Zhou, Y X; Fang, H; Salama, K

    2006-01-01

    There are several motivations for increasing the diameter of melt textured single domain discs. The maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that have traditionally been considered to require wound electromagnets, such as beam bending magnets for particle accelerators and electric propulsion. We have investigated the possibility of using large area epitaxial growth instead of the conventional point nucleation growth mechanism. This process involves the use of large Y123 seeds for the purpose of increasing the maximum achievable Y123 single domain size. The hot seeding technique using large Y-123 seeds was employed to seed Y-123 samples. Trapped field measurements indicate that single domain samples were indeed grown by this technique. Microstructural evaluation indicates that growth can be characterized by a rapid nucleation followed by the usual peritectic grain growth which occurs when large seeds are used. Critical temperature measurements show that no local T c suppression occurs in the vicinity of the seed. This work supports the suggestion of using an iterative method for increasing the size of Y-123 single domains that can be grown

  4. Oil palm seed distribution

    Directory of Open Access Journals (Sweden)

    Durand-Gasselin Tristan

    2005-03-01

    Full Text Available For a tropical plant, the oil palm commodity chain has the peculiarity of possessing a major seed production sector for reasons that are primarily genetic. This seed sector has numerous original aspects. Breeders are also propagators and usually also distribute their seeds. Oil palm seeds are semi-recalcitrant: they display pseudo-dormancy. Achieving seed germination is difficult and requires lengthy treatments and special installations. This restriction greatly influences seed distribution and the role of the different stakeholders in the commodity chain. It was only once it had been discovered how the “sh” gene functioned, which controls shell thickness, and when it became necessary to produce “tenera” seeds derived from exclusively “dura x pisifera” crosses, that a true seed market developed. In addition it is difficult to organize seed distribution to smallholders. This is partly due to difficulties that the profession, or a State-run organization, has in controlling middlemen networks, and partly to the absence of any protective systems (UPOV, plant breeder certificate, etc. that generally oblige breeders to preserve and propagate parents in their own installations. In fact there are major inequalities in the access to seeds between agroindustry and smallholders. Another peculiarity of the oil palm seed market is the virtually total absence of guarantees for buyers: the quality of the research conducted by breeders, the seed production strategies necessary for transferring genetic progress, and the technical quality of production. The only guarantee today comes from the relations of confidence established year after year between breeders/distributors and growers. In this fields, research can lead to some proposals: molecular biology offers some interesting prospects for certifying seed quality and social science develop effective communication methods.

  5. Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors

    Science.gov (United States)

    Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.

    2018-01-01

    The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.

  6. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Patrick D.; Call, Douglas F.; Yates, Matthew D.; Regan, John M.; Logan, Bruce E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering

    2010-09-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most ({proportional_to}30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m{sup 2}, whereas the original mixed culture produced up to 10 mW/m{sup 2}. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m{sup 2}) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. (orig.)

  7. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    KAUST Repository

    Kiely, Patrick D.; Call, Douglas F.; Yates, Matthew D.; Regan, John M.; Logan, Bruce E.

    2010-01-01

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m 2, whereas the original mixed culture produced up to 10 mW/m 2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. © 2010 Springer-Verlag.

  8. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    KAUST Repository

    Kiely, Patrick D.

    2010-07-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m 2, whereas the original mixed culture produced up to 10 mW/m 2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. © 2010 Springer-Verlag.

  9. Embryo Localization Enhances the Survival of Acidovorax citrulli in Watermelon Seeds.

    Science.gov (United States)

    Dutta, Bhabesh; Schneider, Raymond W; Robertson, Clark L; Walcott, Ronald R

    2016-04-01

    Acidovorax citrulli, the causal agent of bacterial fruit blotch (BFB) of cucurbits has been observed to survive for >34 years in stored melon and watermelon seeds. To better understand this remarkable longevity, we investigated the bacterium's tolerance to desiccation and the effect of bacterial localization in different watermelon seed tissues on its survival. We compared the ability of A. citrulli to tolerate desiccation on filter paper discs and on host (watermelon) and nonhost (cabbage, corn and tomato) seeds to two seedborne (Xanthomonas campestris pv. campestris and Pantoea stewartii subsp. stewartii) and one soilborne (Ralstonia solanacearum) plant-pathogenic bacteria. A. citrulli survival on dry filter paper (>12 weeks) was similar to that of X. campestris pv. campestris but longer than P. stewartii subsp. stewartii. Ralstonia solanacearum survived longer than all other bacteria tested. On all seeds tested, A. citrulli and X. campestris pv. campestris populations declined by 5 orders of magnitude after 12 weeks of incubation at 4°C and 50% relative humidity, while R. solanacearum populations declined by 3 orders. P. stewartii subsp. stewartii was not recovered after 12 weeks of incubation. To determine the effect of tissue localization on bacterial survival, watermelon seeds infested with A. citrulli by flower stigma inoculation (resulting in bacterial localization in the embryo/endosperm) or by ovary pericarp inoculations (resulting in bacterial localization under the testa) were treated with peroxyacetic acid or chlorine (Cl2) gas. Following these treatments, a significantly higher reduction in BFB seed-to-seedling transmission was observed for seeds generated by ovary pericarp inoculation (≥89.5%) than for those generated by stigma inoculation (≤76.5%) (Pseed coat, suggesting that tissue localization is important for bacterial survival in seed. This observation was confirmed when P. stewartii subsp. stewartii survived significantly longer in stigma

  10. Does the informal seed system threaten cowpea seed health?

    NARCIS (Netherlands)

    Biemond, P.C.; Oguntade, O.; Lava Kumar, P.; Stomph, T.J.; Termorshuizen, A.J.; Struik, P.C.

    2013-01-01

    Most smallholder farmers in developing countries depend on an informal Seed System (SS) for their seed. The informal SS is often criticized because farmer-produced seed samples are not tested for seed health, thus accepting the risk of planting infected seeds. Here we aimed at assessing the quality

  11. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells.

    Science.gov (United States)

    Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K

    2017-01-01

    CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  12. Roles of gibberellins and abscisic acid in regulating germination of Suaeda salsa dimorphic seeds under salt stress

    Directory of Open Access Journals (Sweden)

    Weiqiang eLi

    2016-01-01

    Full Text Available Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs and abscisic acid (ABA in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA

  13. Composition and Biological Activity of Picea pungens and Picea orientalis Seed and Cone Essential Oils.

    Science.gov (United States)

    Wajs-Bonikowska, Anna; Szoka, Łukasz; Karna, Ewa; Wiktorowska-Owczarek, Anna; Sienkiewicz, Monika

    2017-03-01

    The increasing consumption of natural products lead us to discover and study new plant materials, such as conifer seeds and cones, which could be easily available from the forest industry as a waste material, for their potential uses. The chemical composition of the essential oils of Picea pungens and Picea orientalis was fully characterized by GC and GC/MS methods. Seed and cone oils of both tree species were composed mainly of monoterpene hydrocarbons, among which limonene, α- and β-pinene were the major, but in different proportions in the examined conifer essential oils. The levorotary form of chiral monoterpene molecules was predominant over the dextrorotary form. The composition of oils from P. pungens seeds and cones was similar, while the hydrodistilled oils of P. orientalis seeds and cones differed from each other, mainly by a higher amount of oxygenated derivatives of monoterpenes and by other higher molar mass terpenes in seed oil. The essential oils showed mild antimicrobial action, however P. orientalis cone oil exhibited stronger antimicrobial properties against tested bacterial species than those of P. pungens. Effects of the tested cone essential oils on human skin fibroblasts and microvascular endothelial cells (HMEC-1) were similar: in a concentration of 0 - 0.075 μl/ml the oils were rather safe for human skin fibroblasts and 0 - 0.005 μl/ml for HMEC-1 cells. IC 50 value of Picea pungens oils was 0.115 μl/ml, while that of Picea orientalis was 0.105 μl/ml. The value of IC 50 of both oils were 0.035 μl/ml for HMEC-1 cells. The strongest effect on cell viability had the oil from Picea orientalis cones, while on DNA synthesis the oil from Picea pungens cones. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  14. A comparison of the structure of ovules and seeds in Stemona (Stemonaceae) and Pentastemona (Pentastemonaceae)

    NARCIS (Netherlands)

    Bouman, F.; Devente, N.

    1992-01-01

    Stemona and Pentastemona differ clearly in the size and structure of their ovules and seeds. Especially the development, shape, and cell wall thickenings of the endotestal cells, and by consequence the origin of the seed ridges, show marked differences. The embryological and seed anatomical

  15. Sowing seasons and quality of soybean seeds

    Directory of Open Access Journals (Sweden)

    Ávila Marizangela Rizzatti

    2003-01-01

    Full Text Available Considering the difficulties of producing high quality soybean [Glycine max (L. Merrill] seeds during the traditional cropping period in some areas of the State of Paraná, Brazil, a research project was carried out with the objective of evaluating the influence of sowing dates on the physiological and sanitary quality of seeds, during the 1998/99 and 1999/00 cropping seasons, in Maringá, PR, Brazil. The experiment consisted of five cultivar competition assays, arranged in a completely randomized block design, with each assay sown at different dates (10/15, 10/30, 11/15, 11/30 and 12/15 for each cropping season. The evaluated cultivars were BRS 132 (early, BRS 133 (semi-early, BR 16 (semi-early, BRS 134 (intermediate and FT- Estrela (late. Seeds obtained at the sowing dates were evaluated in the laboratory by germination, accelerated aging, and health tests. Sowing in November resulted in seeds with superior physiological and health quality. Cultivar BRS 133 showed the greatest stability in seed production with better quality for the different sowing dates. Cultivars BRS 134 and BRS 133, which were sown during the period from 10/15 to 11/30, produced seeds that had higher percentages of normal seedlings in the germination and accelerated aging tests. Advancing or delaying sowing dates had adverse effects on soybean seed production with regard to their sanitary quality.

  16. Cultivation of mouse mammary tumor cells derived from DD/Tbr, 3

    International Nuclear Information System (INIS)

    Iwai, Mineko; Iwai, Yoshiaki; Takamori, Yasuhiko; Okumoto, Masaaki; Nishikawa, Ryosuke

    1981-01-01

    The factors affecting production of MuMTV by DD-762 cells, an established cell line from a spontaneous mammary tumor in a DD/Tbr mouse, were examined. When the cells were seeded and cultures medium were refreshed at every 3 - 4 day intervals without passage of cells, virus production began after exponential pase of cell growth and attained to peaks at every 10 - 12 days intervals up to approximately 60 days after seeding. MuMTV production was dependent on cell seeding density. Seeding at higher cell density, virus release occurred earlier. Maximum amount of MuMTV was observed with the medium containing 10 μg INS, 5 μg DXM and 10% FCS. The RDDP activities in the culture fluid were rapidly inactivated by incubation at 37 0 C. (author)

  17. An extract from date seeds stimulates endogenous insulin secretion in streptozotocin-induced type I diabetic rats

    Directory of Open Access Journals (Sweden)

    Ahmed F. El Fouhil

    2013-11-01

    Full Text Available Background: The efficacy of an extract from date seeds has been tested successfully on the glycemic control of type I diabetes mellitus in rats. A suggestion that date seed extract could stimulate certain cells to differentiate into insulin-secreting cells has been proposed. In order to investigate such a possibility, this study was conducted to measure C-peptide levels in the serum of type 1 diabetic rats treated with date seed extract. Methods: Two hundred rats were divided into 4 groups. Group I served as the control. Group II was given daily ingestions of 10 ml of date seed extract. Groups III and IV were made diabetic by streptozotocin injection and were given daily subcutaneous injections of 3 IU/day of insulin for 8 weeks. Group IV received, in addition, daily ingestions of 10 ml of seed extract. At the end of experiment, blood samples were collected from each rat, and blood glucose and serum Cpeptide levels were measured. Results: No significant differences in the means of blood glucose and serum C-peptide levels were observed between groups I (control group and II (date seed extract-treated control group. Group IV (date seed extract-insulin-treated diabetic group showed a statistically significant reduction in the mean blood glucose level compared to Group III (insulin-treated diabetic group. The mean serum C-peptide level was significantly higher in group IV compared to group III. Conclusion: Biochemical results suggested an increase in endogenous insulin secretion in the case of type 1 diabetic rats treated with date seed extract, which might be the cause of its hypoglycemic effect.

  18. Different modes of hydrogen peroxide action during seed germination

    Directory of Open Access Journals (Sweden)

    Łukasz eWojtyla

    2016-02-01

    Full Text Available Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins and ethylene and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and

  19. Seed yield response to N fertilization and potential of proximal sensing in Italian ryegrass seed crops

    DEFF Research Database (Denmark)

    Vleugels, Tim; Rijckaert, Georges; Gislum, René

    2017-01-01

    Italian ryegrass (Lolium multiflorum L.) seed crops are often routinely fertilized with a predetermined amount of nitrogen (N) fertilizer in spring. However, nitrate leaching and increasing N fertilizer prices require rationalized fertilizer applications without compromises in seed yield....... The objectives of this study were (1) to determine the seed yield response to N fertilization, and (2) to evaluate if NDVI values can reliably predict the N status in Italian ryegrass seed crops. During eight years, field trials were conducted with two cultivars ‘Melclips’ and ‘Melquatro’, and seven N strategies...... applied after the forage cut as single or split application: 0, 60, 60 + 30, 90, 90 + 30, 120 and 150 kg N ha−1. NDVI values were obtained with a ‘GreenSeeker’ optical sensor. Maximum seed yield was attained at 141 kg N ha−1 total available N (92 kg N ha−1 fertilized). Higher fertilizations only increased...

  20. combining high seed number and weight to improve seed yield

    African Journals Online (AJOL)

    ACSS

    ABSTRACT. Increasing seed size and seed weight is an important trait for trade, yield component and adaptation of chickpea ... determining yield or quality, and the development of rapid and ..... C.G. 1981. Control of seed growth in soybeans.

  1. Producing the target seed: Seed collection, treatment, and storage

    Science.gov (United States)

    Robert P. Karrfalt

    2011-01-01

    The role of high quality seeds in producing target seedlings is reviewed. Basic seed handling and upgrading techniques are summarized. Current advances in seed science and technology as well as those on the horizon are discussed.

  2. Protein synthesis in the embryo of Pinus thunbergii seed, 2

    International Nuclear Information System (INIS)

    Yamamoto, Naoaki; Sasaki, Satohiko.

    1977-01-01

    14 C-Amino acid incorporating activity in the absence of exogenous mRNA was found in a cell-free system from embryos of light-germinated Pinus thunbergii seeds, but not in that from dark-imbibed seed embryos. Template activity in the cell-free system from the light-germinated seed embryos was observed in the ribosome fraction, especially the polyribosome fraction, but not in the 100,000 x g supernatant fraction (s100). These facts suggest that the nature of the block in protein synthesis during the imbibition of seeds in the dark is due to the lack or inactivity of mRNA. The s100 from light-germinated seed embryos was found to be less active in amino acid incorporation than that from dark-imbibed seed embryos. (auth.)

  3. Effects of Osmo- and Hydro-priming on Seed Parameters of Sage

    African Journals Online (AJOL)

    dastanpoor

    2013-03-13

    Mar 13, 2013 ... Effects of hydropriming on seed germination and seedling ... through stem cuttings. .... and shoot length, and seedling fresh and dry weights were .... division in all the cells of germinating seeds. .... electric field treatments.