WorldWideScience

Sample records for higher capacity wind

  1. Capacity factor of wind power realized values vs. estimates

    International Nuclear Information System (INIS)

    Boccard, Nicolas

    2009-01-01

    For two decades now, the capacity factor of wind power measuring the average energy delivered has been assumed in the 30-35% range of the name plate capacity. Yet, the mean realized value for Europe over the last five years is below 21%; accordingly private cost is two-third higher and the reduction of carbon emissions is 40% less than previously expected. We document this discrepancy and offer rationalizations that emphasize the long term variations of wind speeds, the behavior of the wind power industry, political interference and the mode of finance. We conclude with the consequences of the capacity factor miscalculation and some policy recommendations.

  2. Assessing Capacity Value of Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A.

    2017-04-18

    This presentation provides a high-level overview of assessing capacity value of wind power, including Impacts of multiple-year data sets, impacts of transmission assumptions, and future research needs.

  3. Higher education and capacity building in Africa

    DEFF Research Database (Denmark)

    Higher education has recently been recognised as a key driver for societal growth in the Global South and capacity building of African universities is now widely included in donor policies. The question is; how do capacity-building projects affect African universities, researchers and students? U...... is a valuable resource for researchers and postgraduate students in education, development studies, African studies and human geography, as well as anthropology and history.......? Universities and their scientific knowledges are often seen to have universal qualities; therefore, capacity building may appear straightforward. Higher Education and Capacity Building in Africa contests such universalistic notions. Inspired by ideas about the ‘geography of scientific knowledge’ it explores...

  4. When Higher Working Memory Capacity Hinders Insight

    Science.gov (United States)

    DeCaro, Marci S.; Van Stockum, Charles A., Jr.; Wieth, Mareike B.

    2016-01-01

    Higher working memory capacity (WMC) improves performance on a range of cognitive and academic tasks. However, a greater ability to control attention sometimes leads individuals with higher WMC to persist in using complex, attention-demanding approaches that are suboptimal for a given task. We examined whether higher WMC would hinder insight…

  5. Short-term optimal wind power generation capacity in liberalized electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Roescher, Mark; Larisson, Carlos; Garces, Francisco

    2007-01-01

    Mainly because of environmental concerns and fuel price uncertainties, considerable amounts of wind-based generation capacity are being added to some deregulated power systems. The rapid wind development registered in some countries has essentially been driven by strong subsidizing programs. Since wind investments are commonly isolated from market signals, installed wind capacity can be higher than optimal, leading to distortions of the power prices with a consequent loss of social welfare. In this work, the influence of wind generation on power prices in the framework of a liberalized electricity market has been assessed by means of stochastic simulation techniques. The developed methodology allows investigating the maximal wind capacity that would be profitably deployed if wind investments were subject to market conditions only. For this purpose, stochastic variables determining power prices are accurately modeled. A test system resembling the size and characteristics of the German power system has been selected for this study. The expected value of the optimal, short-term wind capacity is evaluated for a considerable number of random realizations of power prices. The impact of dispersing the wind capacity over statistical independent wind sites has also been evaluated. The simulation results reveal that fuel prices, installation and financing costs of wind investments are very influential parameters on the maximal wind capacity that might be accommodated in a market-based manner

  6. Higher Education and Capacity Building in Africa

    DEFF Research Database (Denmark)

    ? Universities and their scientific knowledges are often seen to have universal qualities; therefore, capacity building may appear straightforward. Higher Education and Capacity Building in Africa contests such universalistic notions. Inspired by ideas about the ‘geography of scientific knowledge’ it explores...... what role specific places and relationships have in knowledge production, and analyses how cultural experiences are included and excluded in teaching and research. Thus, the different chapters show how what constitutes legitimate scientific knowledge is negotiated and contested. In doing so...... is a valuable resource for researchers and postgraduate students in education, development studies, African studies and human geography, as well as anthropology and history....

  7. Capacity credit of wind power in the Netherlands

    International Nuclear Information System (INIS)

    Wijk, A.J.M. van; Turkenburg, W.C.

    1993-01-01

    The Dutch Government has stated that by the year 2000 a total amount of 1000 MW wind power should be installed in the Netherlands. The penetration of wind power into the electricity supply system poses questions about the costs and benefits of wind power. One of the parameters affecting the benefits is the amount of conventional capacity that can be saved by wind power, the so-called 'capacity credit'. In this study the capacity credit of wind power in the Netherlands is analysed. The capacity credit is calculated using a probabilistic method which evaluates the loss of load expectation (LOLE) of the total electricity generating system. In these evaluations the available wind power is treated as 'negative load'. The capacity credit is evaluated with respect to the Dutch electricity generating system and the electricity demand that is projected for the year 2000 by the Dutch utilities. Special attention is given to modelling the hourly wind power production. The model incorporates detailed siting information, wind speed data for several meteorological stations and the power curves of five different types of wind turbines. The average amount of electricity produced by wind power can be expressed by the capacity factor. For the set of assumptions and for the meteorological conditions for the years investigated the capacity factor has a value of 22%. 30 refs, 10 figs, 3 tabs

  8. NedWind with 80 MW wind power capacity leader in the Netherlands

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    At 31 December 1995 1050 wind turbines were in operation in the Netherlands with a total capacity of 255 MW. An overview is given of the top locations of wind turbines in different categories and from different manufacturers and owners. The wind turbine manufacturer NedWind is leading the field. 9 figs

  9. Capacity expansion model of wind power generation based on ELCC

    Science.gov (United States)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  10. Interconnector capacity allocation in offshore grids with variable wind generation

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten

    2013-01-01

    the interconnector capacity should be allocated for wind generation and for international power trading. The main difficulty arises from the stochastic nature of wind generation: in a case with radial connections to the national coast, the wind park owner has the possibility of aggregating the offshore wind park....... It is concluded that treating offshore generation as a single price zone within the interconnector reduces the wind operator’s ability to pool it with other generation. Furthermore, a single offshore price zone between two markets will always receive the lower spot market price of the neighbouring zones, although...

  11. The Capacity Value of Wind in the United States: Methods and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael; Porter, Kevin

    2006-03-01

    As more wind energy capacity is added in the nation, the question of wind's capacity value is raised. This article shows how the capacity value of wind is determined, both in theory and in practice. (author)

  12. Wind distribution and capacity factor estimation for wind turbines in the coastal region of South Africa

    International Nuclear Information System (INIS)

    Ayodele, T.R.; Jimoh, A.A.; Munda, J.L.; Agee, J.T.

    2012-01-01

    Highlights: ► We evaluate capacity factor of some commercially available wind turbines. ► Wind speed in the sites studied can best be modelled using Weibull distribution. ► Site WM05 has the highest wind power potential while site WM02 has the lowest. ► More wind power can be harnessed during the day period compared to the night. ► Turbine K seems to be the best turbine for the coastal region of South Africa. - Abstract: The operating curve parameters of a wind turbine should match the local wind regime optimally to ensure maximum exploitation of available energy in a mass of moving air. This paper provides estimates of the capacity factor of 20 commercially available wind turbines, based on the local wind characteristics of ten different sites located in the Western Cape region of South Africa. Ten-min average time series wind-speed data for a period of 1 year are used for the study. First, the wind distribution that best models the local wind regime of the sites is determined. This is based on root mean square error (RMSE) and coefficient of determination (R 2 ) which are used to test goodness of fit. First, annual, seasonal, diurnal and peak period-capacity factor are estimated analytically. Then, the influence of turbine power curve parameters on the capacity factor is investigated. Some of the key results show that the wind distribution of the entire site can best be modelled statistically using the Weibull distribution. Site WM05 (Napier) presents the highest capacity factor for all the turbines. This indicates that this site has the highest wind power potential of all the available sites. Site WM02 (Calvinia) has the lowest capacity factor i.e. lowest wind power potential. This paper can assist in the planning and development of large-scale wind power-generating sites in South Africa.

  13. Statistical analysis of installed wind capacity in the United States

    International Nuclear Information System (INIS)

    Staid, Andrea; Guikema, Seth D.

    2013-01-01

    There is a large disparity in the amount of wind power capacity installed in each of the states in the U.S. It is often thought that the different policies of individual state governments are the main reason for these differences, but this may not necessarily be the case. The aim of this paper is to use statistical methods to study the factors that have the most influence on the amount of installed wind capacity in each state. From this analysis, we were able to use these variables to accurately predict the installed wind capacity and to gain insight into the driving factors for wind power development and the reasons behind the differences among states. Using our best model, we find that the most important variables for explaining the amount of wind capacity have to do with the physical and geographic characteristics of the state as opposed to policies in place that favor renewable energy. - Highlights: • We conduct a statistical analysis of factors influencing wind capacity in the U.S. • We find that state policies do not strongly influence the differences among states. • Driving factors are wind resources, cropland area, and available percentage of land

  14. Probabilistic Capacity Assessment of Lattice Transmission Towers under Strong Wind

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-10-01

    Full Text Available Serving as one key component of the most important lifeline infrastructure system, transmission towers are vulnerable to multiple nature hazards including strong wind and could pose severe threats to the power system security with possible blackouts under extreme weather conditions, such as hurricanes, derechoes, or winter storms. For the security and resiliency of the power system, it is important to ensure the structural safety with enough capacity for all possible failure modes, such as structural stability. The study is to develop a probabilistic capacity assessment approach for transmission towers under strong wind loads. Due to the complicated structural details of lattice transmission towers, wind tunnel experiments are carried out to understand the complex interactions of wind and the lattice sections of transmission tower and drag coefficients and the dynamic amplification factor for different panels of the transmission tower are obtained. The wind profile is generated and the wind time histories are simulated as a summation of time-varying mean and fluctuating components. The capacity curve for the transmission towers is obtained from the incremental dynamic analysis (IDA method. To consider the stochastic nature of wind field, probabilistic capacity curves are generated by implementing IDA analysis for different wind yaw angles and different randomly generated wind speed time histories. After building the limit state functions based on the maximum allowable drift to height ratio, the probabilities of failure are obtained based on the meteorological data at a given site. As the transmission tower serves as the key nodes for the power network, the probabilistic capacity curves can be incorporated into the performance based design of the power transmission network.

  15. Probabilistic Capacity of a Grid connected Wind Farm

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper proposes a method to find the maximum acceptable wind power injection regarding the thermal limits, steady state stability limits and voltage limits of the grid system. The probabilistic wind power is introduced based on the probability distribution of wind speed. Based on Power Transfer...... Distribution Factor (PTDF) and voltage sensitivities, a predictor-corrector method is suggested to calculate the acceptable active power injection. Then this method is combined with the probabilistic model of wind power to compute the allowable capacity of the wind farm. Finally, an example is illustrated...... to test this method. It is concluded that proposed method in this paper is a feasible, fast, and accurate approach to find the size of a wind farm....

  16. Economic viability of transmission capacity expansion at high wind penetrations

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    investments and analyses of the Nord Pool price variations. The analyses are done for varying degrees of wind power penetrations ranging from 20% of the West Danish electricity demand up to 100% of the demand. The analyses demonstrate, that while there is an economic potential for some expansion in some years......With growing wind power penetrations in many countries, grid and system integration becomes more and more important issues. This is particularly the case in countries or regions with good wind resources as well as substantial installed wind power capacity as found in e.g. Northern Europe. At 20......% penetration in Western Denmark, the issue is pertinent here in relation to future plans of further expansion which is planned in accordance with the Danish Government’s climate change mitigation initiatives. This paper analyses the potential economic benefit of selling excess electricity production...

  17. Higher Capacity, Improved Conductive Matrix VB2/Air Batteries (Postprint)

    Science.gov (United States)

    2016-02-18

    gravimetric capacity five-fold higher than the 2 e− oxidation of the widely used zinc alkaline anode. One challenge to the implementation of VB2/air...VB2 has an intrinsic gravimetric capacity five fold higher than the 2 e− oxidation of the widely used zinc alkaline anode. One challenge to the...to ameliorate this effect through advanced anode configurations with an improved conductive matrix. Materials and Methods Anodes were prepared using

  18. Dilemmas and paradoxes of capacity building in African higher education

    DEFF Research Database (Denmark)

    Madsen, Lene Møller; Jensen, Stig; Adriansen, Hanne Kirstine

    2015-01-01

    This chapter discusses and reflects on the dilemmas and paradoxes of capacity building in African higher education by drawing on the findings of the case-based chapters in the book. The collection confirms the importance of using geography of knowledge as an approach for understanding how capacity...... building influences and affects African academics, institutions and degree programmes. The chapters also illustrate how reflexivity and positionality can be important tools for highlighting the power relations inherent in capacity building. In this chapter we discuss the three interwoven dilemmas...... neo-imperial effects of internationalisation. We finally argue that capacity building programmes can be a means to assist African universities to ‘find their own feet’ if they are based on long terms partnerships, a close understanding of historical, political and geographical context, and not least...

  19. Reconsidering the Capacity Credit of Wind Power: Application of Cumulative Prospect Theory

    NARCIS (Netherlands)

    Wilton, E.; Delarue, E.; D'haeseleer, W.; Sark, W.G.J.H.M. van

    2014-01-01

    The capacity credit is often erroneously considered to be a time-invariant quantity. A multi-year analysis of the incident wind profile of various potential wind sites uncovered that there exist large differences between annual capacity credit figures. The uniformity of these capacity credit

  20. Reconsidering the capacity credit of wind power : Application of cumulative prospect theory

    NARCIS (Netherlands)

    Wilton, Edgar; Delarue, Erik; D'haeseleer, William; van Sark, Wilfried

    The capacity credit is often erroneously considered to be a time-invariant quantity. A multi-year analysis of the incident wind profile of various potential wind sites uncovered that there exist large differences between annual capacity credit figures. The uniformity of these capacity credit figures

  1. Using Successorship to Build Leadership Capacity in Higher Education

    Science.gov (United States)

    Furtek, Diane

    2012-01-01

    Professionals in higher education face many challenges. Chief among them are increasing leadership and organizational effectiveness. A variety of approaches can be used to build competencies to increase leadership that results in organizational effectiveness. For the purposes of this article, leadership is "the capacity to influence others by…

  2. Why study higher education and capacity building in Africa?

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine; Madsen, Lene Møller; Jensen, Stig

    2015-01-01

    innovative approach to higher education and capacity building, namely by studying this through ‘geographies of knowledge’. This is an interdisciplinary field that pays attention to the ways scientific knowledge is produced and consumed with a special focus on geography. By using a geographical approach...... for exploring the current and future development of teaching and knowledge production in Africa, we want to explore how scientific knowledge is negotiated and contested in parallel to societal changes in general and capacity building in particular, and thus how scientific knowledge becomes local. Then we...... position the book and its authors before the structure of the book is presented together with a short presentation of the case-based chapters, organised in three parts. These are Part I: Capacity building of African universities – asymmetrical power relations? Part II: Researching and teaching climate...

  3. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind capacity and power prices

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? Future energy hopes and emissions reduction scenarios place significant reliance on renewables, actually meaning largely new wind power both onshore and offshore. The opportunity exists for a synergy between high capacity factor nuclear plants and wind power using hydrogen by both as a 'currency' for use in transportation and industrial processing. But this use of hydrogen needs to be introduced soon. To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 Cent US/kW.h). One approach is to operate interruptibly allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies have shown that this could be a cost-competitive approach with a nuclear power generator producing electricity around 3 Cent US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the hydrogen production (electrolysis) facility due to the variability of wind generated electricity imposes a serious cost penalty. This paper reports our latest results on the potential economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment enables it to accommodate the higher rate of hydrogen generation, while still being substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability in our NuWind model. The variability in wind fields between sites was accommodated by assuming an average wind speed that produced an average electricity

  4. A variance analysis of the capacity displaced by wind energy in Europe

    DEFF Research Database (Denmark)

    Giebel, Gregor

    2007-01-01

    into a longer-term context. The results are that wind energy can contribute more than 20% of the European demand without significant changes in the system and can replace conventional capacity worth about 10% of the installed wind power capacity. The long-term reference shows that the analysed year is the worst...... simulating the scheduling of the European power plants to cover the demand at every hour of the year. The wind power generation was modelled using wind speed measurements from 60 meteorological stations, for 1 year. The distributed wind power also displaces fossil-fuelled capacity. However, every assessment...... of the displaced capacity (or a capacity credit) by means of a chronological model is highly sensitive to single events. Therefore the wind time series was shifted by integer days against the load time series, and the different results were aggregated. The some set of results is shown for two other options, one...

  5. Capacity building for higher education in developing countries

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    "Higher education is the modern world's basic education, but many countries are falling further and further behind". This quote from a recent World Bank publication indicates that the role of the universities as a key driver for societal development is now widely recognized and included...... in the donor policies. However, donor projects are not easy to organize in this area, and the role of the western universities in this area is not easy to identify. The paper presents a case study from Mozambique dealing with a World Bank project in Higher Education. The project was focused on qualitative...... in the donor countries in order to merge the interests of the universities, the Ministry of Science/Education and the national/international donor agencies. It is argued that capacity building for higher education in developing countries should be a generally accepted part of the university strategy portfolio...

  6. Wind plant capacity credit variations: A comparison of results using multiyear actual and simulated wind-speed data

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter-annual variation in capacity credit is still understated by the synthetic data technique.

  7. Erasmus+: Capacity Building in Higher Education. EU Support to Higher Education Institutions around the World

    Science.gov (United States)

    Jongsma, Ard

    2016-01-01

    The aim of this brochure is to introduce those who are new to working with European Union funding, to the philosophy of Erasmus+ "capacity-building in higher education" projects. European Union experience of working on these types of projects will be shared. Examples of existing projects are scattered throughout the text to inspire you…

  8. Benefit Evaluation of Wind Turbine Generators in Wind Farms Using Capacity-Factor Analysis and Economic-Cost Methods

    DEFF Research Database (Denmark)

    Chen, Zhe; Wang, L.; Yeh, T-H.

    2009-01-01

    Due to the recent price spike of the international oil and the concern of global warming, the development and deployment of renewable energy become one of the most important energy policies around the globe. Currently, there are different capacities and hub heights for commercial wind turbine gen...... height for WTGs that have been installed in Taiwan. Important outcomes affecting wind cost of energy in comparison with economic results using the proposed economic-analysis methods for different WFs are also presented.......Due to the recent price spike of the international oil and the concern of global warming, the development and deployment of renewable energy become one of the most important energy policies around the globe. Currently, there are different capacities and hub heights for commercial wind turbine...... generators (WTGs). To fully capture wind energy, different wind farms (WFs) should select adequate capacity of WTGs to effectively harvest wind energy and maximize their economic benefit. To establish selection criterion, this paper first derives the equations for capacity factor (CF) and pairing performance...

  9. Threats to the Human Capacity of Regional Higher Education Institutions

    Directory of Open Access Journals (Sweden)

    Evgeny Valentinovich Romanov

    2018-03-01

    Full Text Available In recent years, the sphere of science and education in Russia undergoes significant reforms. However, the existing framework guiding the development of the higher education contradict the Strategy of Scientific and Technological Development of Russia. These contradictions concern the conditions for building an integral system of personnel reserve and recruitment, which is necessary for the scientific and technological development of the country. The change of the funding model and the transition to two-tier higher education contribute to the outflow of talented youth to the cities where branded universities are concentrated. It creates threats to the human capacity of regional higher education institutions (both regarding staffing number, and regarding personnel reserve. Decreasing trend in number of students because of the federal budget appropriation and the existing system of per capita funding for regional higher education institutions are the threats for regional higher education. These threats can result in permanent reduction of the number of academic teaching staff and in potential decline in quality of education due to increasing teachers’ workloads. The transition to the two-tier model of university education has changed the approach to evaluating the efficiency of scientific research. The number of publications in the journals, which are indexed in the Web of Science and Scopus, has increased, but the patent activity of the leading higher education institutions has decreased many times. The ratio of number of articles to the number of the granted patents in the leading Russian universities significantly exceeds a similar indicator of the leading foreign universities. It can be regarded as «brain drain». Furthermore, this fact explains why the specific weight of income from the results of intellectual activity in total income in the majority of the Russian universities is close to zero. Regional higher education institutions need

  10. Wind turbine cost of electricity and capacity factor

    International Nuclear Information System (INIS)

    Cavallo, A.J.

    1995-01-01

    Wind turbines are currently designed to minimize the cost of electricity at the wind turbine (the busbar cost) in a given wind regime, ignoring constraints on the capacitor factor (the ratio of the average power output to the maximum power output). The trade-off between these two quantities can be examined in a straightforward fashion; it is found that the capacitor factor can be increased by a factor of 1.3 above its value at the cost minimum for a 10 percent increase in the cost of electricity. This has important implications for the large scale integration of wind electricity on utility grids where the cost of transmission and storage may be a significant fraction of the cost of delivered electricity. (Author)

  11. The value of holding scarce wind resource—A cause of overinvestment in wind power capacity in China

    International Nuclear Information System (INIS)

    Liu, Xuemei

    2013-01-01

    China's wind power capacity has increased dramatically in recent years, but about 30% of the installed capacity sits idle, so overinvestment in wind power capacity seems to be a serious problem. This paper explores reasons for the overinvestment. The economic analysis shows that, given uncertain future policy on wind power, it is optimal for power companies to invest more than the amount in a certain world. A part of the “overinvestment” has a real value, which can be interpreted as the value of holding scarce wind resource. This value exists because the wind-rich sites with convenient locations to connect to the grids are scarce resource, and also because the specific government policies that are essential for promoting wind power are uncertain in the future. This value should be taken into account in the investment decision, but it results in the phenomenon of “overinvestment”. The concept of the value of holding scarce resource can be generally applied to the resources that are scarce and for which the future policy is uncertain

  12. Practical methodologies for the calculation of capacity in electricity markets for wind energy

    International Nuclear Information System (INIS)

    Botero B, Sergio; Giraldo V, Luis Alfonso; Isaza C, Felipe

    2008-01-01

    Determining the real capacity of the generators in a power market is an essential task in order to estimate the actual system reliability, and to estimate the reward for generators due to their capacity in the firm energy market. In the wind power case, which is an intermittent resource, several methodologies have been proposed to estimate the capacity of a wind power emplacement, not only for planning but also for firm energy remuneration purposes. This paper presents some methodologies that have been proposed or implemented around the world in order to calculate the capacity of this energy resource.

  13. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  14. Optimal Capacity Proportion and Distribution Planning of Wind, Photovoltaic and Hydro Power in Bundled Transmission System

    Science.gov (United States)

    Ye, X.; Tang, Q.; Li, T.; Wang, Y. L.; Zhang, X.; Ye, S. Y.

    2017-05-01

    The wind, photovoltaic and hydro power bundled transmission system attends to become common in Northwest and Southwest of China. To make better use of the power complementary characteristic of different power sources, the installed capacity proportion of wind, photovoltaic and hydro power, and their capacity distribution for each integration node is a significant issue to be solved in power system planning stage. An optimal capacity proportion and capacity distribution model for wind, photovoltaic and hydro power bundled transmission system is proposed here, which considers the power out characteristic of power resources with different type and in different area based on real operation data. The transmission capacity limit of power grid is also considered in this paper. Simulation cases are tested referring to one real regional system in Southwest China for planning level year 2020. The results verify the effectiveness of the model in this paper.

  15. Wind Power Grid Connected Capacity Prediction Using LSSVM Optimized by the Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Qunli Wu

    2015-12-01

    Full Text Available Given the stochastic nature of wind, wind power grid-connected capacity prediction plays an essential role in coping with the challenge of balancing supply and demand. Accurate forecasting methods make enormous contribution to mapping wind power strategy, power dispatching and sustainable development of wind power industry. This study proposes a bat algorithm (BA–least squares support vector machine (LSSVM hybrid model to improve prediction performance. In order to select input of LSSVM effectively, Stationarity, Cointegration and Granger causality tests are conducted to examine the influence of installed capacity with different lags, and partial autocorrelation analysis is employed to investigate the inner relationship of grid-connected capacity. The parameters in LSSVM are optimized by BA to validate the learning ability and generalization of LSSVM. Multiple model sufficiency evaluation methods are utilized. The research results reveal that the accuracy improvement of the present approach can reach about 20% compared to other single or hybrid models.

  16. Influence of wind farm capacity, turbine size and wind speed on production cost: analysis of the actual market trend

    International Nuclear Information System (INIS)

    Laali, A.-R.; Meyer, J.-L.

    1996-01-01

    Several studies are undertaken in R and D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site that could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analysed. A brief analysis of the market trend is also performed. (author)

  17. Evaluating the capacity value of wind power considering transmission and operational constraints

    International Nuclear Information System (INIS)

    Gil, Esteban; Aravena, Ignacio

    2014-01-01

    Highlights: • Discussion of power system adequacy and the capacity value of wind power. • Method for estimating capacity value of wind power is proposed. • Monte Carlo simulation used to consider transmission and operational constraints. • Application of the method to the Chilean Northern Interconnected System (SING). - Abstract: This paper presents a method for estimating the capacity value of wind considering transmission and operational constraints. The method starts by calculating a metric for system adequacy by repeatedly simulating market operations in a Monte Carlo scheme that accounts for forced generator outages, wind resource variability, and operational conditions. Then, a capacity value calculation that uses the simulation results is proposed, and its application to the Chilean Northern Interconnected System (SING) is discussed. A comparison of the capacity value for two different types of wind farms is performed using the proposed method, and the results are compared with the method currently used in Chile and the method recommended by the IEEE. The method proposed in the paper captures the contribution of the variable generation resources to power system adequacy more accurately than the method currently employed in the SING, and showed capable of taking into account transmission and operational constraints

  18. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  19. Wind power and capacity of transmission in northern Norway; Vindkraft og overfoeringskapasitet i Nord Norge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Northern Norway, and especially the county of Finnmark, has the largest potential for cheap wind power, but at the same time it has the largest transmission costs. Ambitious goals for renewable energy can be reached in a cheaper way if small-scale hydro electrical power plants are developed, wind power in southern Norway, and wind power in northern Norway within the capacity of the network (about 1.000 MW). Central challenges include creating a well-functioning distribution of new wind power within northern Norway's current network, and efficient bottle-neck handling. Price regions are important in order to take advantage of the flexibility in hydroelectric power and prevent excessive investments. Concession refusal may be necessary. Increased ambitions for wind power can later strengthen the northern Norway network and make it profitable. Ideally, the power developers will pay for this strengthening. Practical difficulties may still give priority to the traditional financing provided by Statnett.

  20. Capacity factor prediction and planning in the wind power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Gurgur, Cigdem Z. [Department of Management and Marketing, Richard T. Doermer School of Business and Management Sciences, Indiana - Purdue University, 2101 Coliseum Blvd. East, Fort Wayne, IN 46805 (United States); Jones, Michael [Xcel Energy, Denver, CO 80223 (United States)

    2010-12-15

    The common practice to calculate wind generation capacity values relies more on heuristic approximations than true system estimations. In this paper we proposed a more accurate method. In the first part of our analysis, a Monte Carlo simulation was created based on Markov chains to provide an independent estimate of the true behavior of wind farm capacity value as a function of system penetration. With this curve as a baseline, a technique for using beta distributions to model the input variables was adopted. A final step to increase accuracy involved the use of numerical convolution within the program to eliminate summation estimates. (author)

  1. Location of Swedish wind power—Random or not? A quantitative analysis of differences in installed wind power capacity across Swedish municipalities

    International Nuclear Information System (INIS)

    Ek, Kristina; Persson, Lars; Johansson, Maria; Waldo, Åsa

    2013-01-01

    The amount of installed wind power varies significantly across municipalities although the financial support for wind power production and the technology available is identical in all Swedish municipalities. This study analyses how local differences between municipalities, such as local wind prerequisites and socioeconomic conditions, might explain the establishment of wind power. The analysis is carried out for a cross section of Swedish municipalities. The time periods before and after 2006 are analyzed separately; and results reveal that the factors affecting wind power establishments are different between the two periods. In the later time period we found a statistically significant positive relationship between good wind resources and the presence of wind power as well as with the amount of wind energy installed. This result is consistent with the idea that the first wind power investments in Sweden were highly affected by individual wind energy enthusiasts, while in the more recent large-scale investments market-based judgments about future profitability may have become increasingly important. In addition, previous experience seems to be a factor that in itself facilitates additional future wind power establishments, thereby pointing to the role of accumulated institutional capacity. - Highlights: ► Local differences in installed wind power capacity in Sweden is analysed. ► The amount of installed wind power capacity varies significantly in time and space. ► Results reveal different determinants of installed capacity before/after 2006. ► Good wind resources have become increasingly important over time. ► Previous experience of wind power has a positive impact on installed capacity

  2. Impact of Flexibility Options on Grid Economic Carrying Capacity of Solar and Wind: Three Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Novacheck, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    In this study, we attempt to quantify the benefits of various options of grid flexibility by measuring their impact on two measures: economic carrying capacity and system costs. Flexibility can increase economic carrying capacity and reduce overall system costs. In some cases, options that provide a limited increase in economic carrying capacity can provide significant operational savings, thus demonstrating the need to evaluate flexibility options using multiple metrics. The value of flexibility options varies regionally due to different generation mixes and types of renewables. The more rapid decline in PV value compared to wind makes PV more dependent on adding flexibility options, including transmission and energy storage.

  3. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    Energy Technology Data Exchange (ETDEWEB)

    Laali, A.R.; Meyer, J.L.; Bellot, C. [Electricite de France, Chatou (France); Louche, A. [Espace de Recherche, Ajaccio (France)

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  4. Measuring the Contribution of Higher Education to Innovation Capacity in the EU. Final Report: Revised Version

    Science.gov (United States)

    European Commission, 2017

    2017-01-01

    This current study is part of the actions taken aiming to analyse the links between the operations and effects of higher-education institutions on the capacity to innovate in the economies in Europe. Providing insights into the contribution of higher education to the innovative capacity of the EU economies is crucial for policy making and the…

  5. How to correct for long-term externalities of large-scale wind power development by a capacity mechanism?

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Finon, Dominique

    2013-01-01

    This paper deals with the practical problems related to long-term security of supply in electricity markets in the presence of large-scale wind power development. The success of recent renewable promotion schemes adds a new dimension to ensuring long-term security of supply: it necessitates designing second-best policies to prevent large-scale wind power development from distorting long-run equilibrium prices and investments in conventional generation and in particular in peaking units. We rely upon a long-term simulation model which simulates electricity market players' investment decisions in a market regime and incorporates large-scale wind power development in the presence of either subsidized or market driven development scenarios. We test the use of capacity mechanisms to compensate for long-term effects of large-scale wind power development on prices and reliability of supply. The first finding is that capacity mechanisms can help to reduce the social cost of large scale wind power development in terms of decrease of loss of load probability. The second finding is that, in a market-based wind power deployment without subsidy, wind generators are penalised for insufficient contribution to the long term system's reliability. - Highlights: • We model power market players’ investment decisions incorporating wind power. • We examine two market designs: an energy-only market and a capacity mechanism. • We test two types of wind power development paths: subsidised and market-driven. • Capacity mechanisms compensate for the externalities of wind power developments

  6. Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-03-01

    In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present simple and efficient closed-form expression to the higher order moments of the channel capacity of dual hop transmission system with Rayleigh fading channels. In order to analyze the behavior of the higher order capacity statistics and investigate the usefulness of the mathematical analysis, some selected numerical and simulation results are presented. Our results are found to be in perfect agreement. © 2012 IEEE.

  7. Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories

    Science.gov (United States)

    Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan

    2017-10-01

    Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.

  8. Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels

    KAUST Repository

    Yilmaz, Ferkan; Tabassum, Hina; Alouini, Mohamed-Slim

    2012-01-01

    In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present

  9. Low-capacity wind power systems. Technology, legal aspects, economic efficiency; Kleine Windenergieanlagen. Technik - Recht - Wirtschaftlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Eggersgluess, Walter [Landwirtschaftskammer Schleswig-Holstein, Rendsburg (Germany); Eckel, Henning; Hartmann, Stefan [Kuratorium fuer Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt (Germany)

    2012-07-01

    In what conditions will investments in a low-capacity wind power plant be profitable? This leaflet intends to provide a decision aid for farmers and other land owners interested in thes subject. It outlines the technology of low-capacity wind power systems, goes into site selection, expected yields and legal boundary conditions. The most important economic data are defined, and the economic efficiency of wind power plants of 7.5 to 25 kW is discussed. The text is supplemented by useful internet links. [German] Unter welchen Bedingungen rechnet sich die Investition in eine kleine Windenergieanlage? Das Heft hilft Landwirten sowie allen anderen investitionswilligen Grundstueckseigentuemern fuer sich Antworten auf diese Fragen zu finden und die richtigen Entscheidungen zu treffen. Es gibt einen Ueberblick ueber die Technik kleiner Windenergieanlagen, beschreibt was den richtigen Standort auszeichnet, mit welchen Energieertraegen gerechnet werden kann und welchen rechtlichen Rahmenbedingungen Bau und Betrieb der Anlagen unterliegen. Die wichtigsten wirtschaftlichen Kenngroessen werden definiert und die Wirtschaftlichkeit kleiner Windenergieanlagen anhand von Beispielanlagen im Leistungsbereich von 7,5 bis 25 kW diskutiert. Nuetzliche Internetadressen zum Thema Windenergie runden das Informationsangebot ab.

  10. On the exergetic capacity factor of a wind – Solar power generation system

    DEFF Research Database (Denmark)

    Xydis, George

    2013-01-01

    production. In this paper, a detailed exergetic analysis aiming to identify the overall Exergetic Capacity Factor (ExCF) for a wind – solar power generation system was done. ExCF, as a new parameter, can be used for better classification and evaluation of renewable energy sources (RES). All the energy...... and exergy characteristics of wind and solar energy were examined in order to identify the variables that affect the power output of the hybrid system. A validated open source PV optimization tool was also included in the analysis, It was shown that parameters as e.g. air density or tracking losses, low......In the recent years, exergy analysis has become a very important tool in the evaluation of systems’ efficiency. It aims on minimizing the energy related-system losses and therefore maximizing energy savings and helps society substantially to move towards sustainable development and cleaner...

  11. Turning the wind into hydrogen: The long-run impact on electricity prices and generating capacity

    International Nuclear Information System (INIS)

    Green, Richard; Hu, Helen; Vasilakos, Nicholas

    2011-01-01

    Hydrogen production via electrolysis has been proposed as a way of absorbing the fluctuating electricity generated by wind power, potentially allowing the use of cheap electricity at times when it would otherwise be in surplus. We show that large-scale adoption of electrolysers would change the shape of the load-duration curve for electricity, affecting the optimal capacity mix. Nuclear power stations will replace gas-fired power stations, as they are able to run for longer periods of time. Changes in the electricity capacity mix will be much greater than changes to the pattern of prices. The long-run supply price of hydrogen will thus tend to be insensitive to the amount produced. - Research Highlights: → Hydrogen production from electrolysis may offset intermittent wind generation. → The generation capacity mix will change in response to changed demand patterns. → The long-run equilibrium supply curve for hydrogen will be quite flat. → The production cost will be very sensitive to fuel prices paid by generators.

  12. Impact of Flexibility Options on Grid Economic Carrying Capacity of Solar and Wind: Three Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Novacheck, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    In this study, we attempt to quantify the benefits of various options of grid flexibility by measuring their impact on two measures: economic carrying capacity and system costs. Flexibility can increase ECC and reduce overall system costs. In some cases, options that provide a limited increase in ECC can provide significant operational savings, thus demonstrating the need to evaluate flexibility options using multiple metrics. The value of flexibility options varies regionally due to different generation mixes and types of renewables. The more rapid decline in PV value compared to wind makes PV more dependent on adding flexibility options, including transmission and energy storage.

  13. Higher Self-Control Capacity Predicts Lower Anxiety-Impaired Cognition during Math Examinations.

    Science.gov (United States)

    Bertrams, Alex; Baumeister, Roy F; Englert, Chris

    2016-01-01

    We assumed that self-control capacity, self-efficacy, and self-esteem would enable students to keep attentional control during tests. Therefore, we hypothesized that the three personality traits would be negatively related to anxiety-impaired cognition during math examinations. Secondary school students (N = 158) completed measures of self-control capacity, self-efficacy, and self-esteem at the beginning of the school year. Five months later, anxiety-impaired cognition during math examinations was assessed. Higher self-control capacity, but neither self-efficacy nor self-esteem, predicted lower anxiety-impaired cognition 5 months later, over and above baseline anxiety-impaired cognition. Moreover, self-control capacity was indirectly related to math grades via anxiety-impaired cognition. The findings suggest that improving self-control capacity may enable students to deal with anxiety-related problems during school tests.

  14. Higher Self-Control Capacity Predicts Lower Anxiety-Impaired Cognition During Math Examinations

    Directory of Open Access Journals (Sweden)

    Alex eBertrams

    2016-03-01

    Full Text Available We assumed that self-control capacity, self-efficacy, and self-esteem would enable students to keep attentional control during tests. Therefore, we hypothesized that the three personality traits would be negatively related to anxiety-impaired cognition during math examinations. Secondary school students (N = 158 completed measures of self-control capacity, self-efficacy, and self-esteem at the beginning of the school year. Five months later, anxiety-impaired cognition during math examinations was assessed. Higher self-control capacity, but neither self-efficacy nor self-esteem, predicted lower anxiety-impaired cognition five months later, over and above baseline anxiety-impaired cognition. Moreover, self-control capacity was indirectly related to math grades via anxiety-impaired cognition. The findings suggest that improving self-control capacity may enable students to deal with anxiety-related problems during school tests.

  15. Intermittent Theta Burst Stimulation Increases Reward Responsiveness in Individuals with Higher Hedonic Capacity.

    Science.gov (United States)

    Duprat, Romain; De Raedt, Rudi; Wu, Guo-Rong; Baeken, Chris

    2016-01-01

    Repetitive transcranial magnetic stimulation over the left dorsolateral prefrontal cortex (DLPFC) has been documented to influence striatal and orbitofrontal dopaminergic activity implicated in reward processing. However, the exact neuropsychological mechanisms of how DLPFC stimulation may affect the reward system and how trait hedonic capacity may interact with the effects remains to be elucidated. In this sham-controlled study in healthy individuals, we investigated the effects of a single session of neuronavigated intermittent theta burst stimulation (iTBS) on reward responsiveness, as well as the influence of trait hedonic capacity. We used a randomized crossover single session iTBS design with an interval of 1 week. We assessed reward responsiveness using a rewarded probabilistic learning task and measured individual trait hedonic capacity (the ability to experience pleasure) with the temporal experience of pleasure scale questionnaire. As expected, the participants developed a response bias toward the most rewarded stimulus (rich stimulus). Reaction time and accuracy for the rich stimulus were respectively shorter and higher as compared to the less rewarded stimulus (lean stimulus). Active or sham stimulation did not seem to influence the outcome. However, when taking into account individual trait hedonic capacity, we found an early significant increase in the response bias only after active iTBS. The higher the individual's trait hedonic capacity, the more the response bias toward the rich stimulus increased after the active stimulation. When taking into account trait hedonic capacity, one active iTBS session over the left DLPFC improved reward responsiveness in healthy male participants with higher hedonic capacity. This suggests that individual differences in hedonic capacity may influence the effects of iTBS on the reward system.

  16. How to correct long-term system externality of large scale wind power development by a capacity mechanism?

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Finon, Dominique

    2013-04-01

    This paper deals with the practical problems related to long-term security of supply in electricity markets in the presence of large-scale wind power development. The success of renewable promotion schemes adds a new dimension to ensuring long-term security of supply. It necessitates designing second-best policies to prevent large-scale wind power development from distorting long-run equilibrium prices and investments in conventional generation and in particular in peaking units. We rely upon a long-term simulation model which simulates electricity market players' investment decisions in a market regime and incorporates large-scale wind power development either in the presence of either subsidised wind production or in market-driven development. We test the use of capacity mechanisms to compensate for the long-term effects of large-scale wind power development on the system reliability. The first finding is that capacity mechanisms can help to reduce the social cost of large scale wind power development in terms of decrease of loss of load probability. The second finding is that, in a market-based wind power deployment without subsidy, wind generators are penalized for insufficient contribution to the long term system's reliability. (authors)

  17. Investigating wind power`s effective capacity: A case study in the Caribbean Island of La Martinique

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.; Germa, J.M.; Bailey, B. [AWS Scientific, Inc., Paris (France)

    1996-12-31

    In this paper, we report on the experimental determination of the effective capacity of wind and photovoltaic (PV) power generation with respect to the utility load requirements of the Island of La Martinique. La Martinique is a French Overseas Department in the Caribbean Sea. The case study spans two years, 1990 and 1991. We consider wind generation at three locations in different wind regimes, and PV generation for fixed and tracking flat plate systems. The results presented include: (1) An overview of typical solar and wind power output at each considered site, presented in contrast to the Island`s electric load requirements; and (2) Effective capacities quantified for each resource as a function of penetration in the utility generation mix. 7 refs., 6 figs.

  18. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    Science.gov (United States)

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  19. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    International Nuclear Information System (INIS)

    Zhou, W; Oodo, S O; He, H; Qiu, G Y

    2013-01-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  20. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    Science.gov (United States)

    Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.

    2013-03-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  1. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Science.gov (United States)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  2. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Directory of Open Access Journals (Sweden)

    Radziukynas V.

    2016-04-01

    Full Text Available The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011 and planned wind power capacities (the year 2023.

  3. Criteria for Determining the Adaptive Capacity of Students of Higher Medical Institutions

    Directory of Open Access Journals (Sweden)

    M V Yoltukhivskyi

    2018-01-01

    Full Text Available The article focuses on the importance of the adaptive capacity of students of higher medical institutions in the process of their professional training. The criteria for evaluating the adaptive capacity of students depending on their age were determined. The main mechanisms of forming the adaptive capacity at the organism level were found to be: 1 biochemical mechanisms which manifest themselves in the intracellular processes, e.g. the change in enzyme activity or their number; 2 physiological mechanisms, e.g. increased sweating as the body temperature rises; 3 morphofunctional mechanisms, i.e. the features of body structure and functions which are associated with lifestyle; 4 behavioural mechanisms – e.g. the creation of comfortable living conditions, etc.; 5 ontogenetic mechanisms, i.e. the acceleration of individual development or its slowdown contributing to the survival when conditions change.

  4. A Novel Method for Fast Configuration of Energy Storage Capacity in Stand-Alone and Grid-Connected Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-12-01

    Full Text Available In this paper, a novel method is proposed and applied to quickly calculate the capacity of energy storage for stand-alone and grid-connected wind energy systems, according to the discrete Fourier transform theory. Based on practical wind resource data and power data, which are derived from the American Wind Energy Technology Center and HOMER software separately, the energy storage capacity of a stand-alone wind energy system is investigated and calculated. Moreover, by applying the practical wind power data from a wind farm in Fujian Province, the energy storage capacity for a grid-connected wind system is discussed in this paper. This method can also be applied to determine the storage capacity of a stand-alone solar energy system with practical photovoltaic power data.

  5. Study on Space Audit Assessment Criteria for Public Higher Education Institution in Malaysia: Space Capacity Assessment

    Directory of Open Access Journals (Sweden)

    Wan Hamdan Wan Samsul Zamani

    2016-01-01

    Full Text Available The aim of this study is to measure the capacity rate of learning space based on the as-built drawing provided by the institutions or if the as-built drawing is missing, the researcher have to prepare measured drawing as per actual on site. The learning space Capacity Index is developed by analyzing the space design in as-built drawing or measured drawing and the list of learning spaces available at the institution. The Capacity Index is classified according to the level of Usable Floor Area (UFA and Occupancy Load (OL according to learning space design capacity. The classification of Capacity Index is demonstrated through linguistic value and the color-coded key. From the said index, the institution can easily identify whether the existing learning space is currently best used or vice versa and standard space planning compliance in Malaysia Public Higher Education Institutions. The data will assist the management to clarify whether to maximize the use of existing space or to request for new learning space.

  6. Measuring the Contribution of Higher Education to Innovation Capacity in the EU. Executive Summary of the Final Report

    Science.gov (United States)

    European Commission, 2017

    2017-01-01

    This current study is part of the actions taken aiming to analyse the links between the operations and effects of higher-education institutions on the capacity to innovate in the economies in Europe. Providing insights into the contribution of higher education to the innovative capacity of the EU economies is crucial for policy making and the…

  7. Line Capacity Expansion and Transmission Switching in Power Systems With Large-Scale Wind Power

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Bronmo, Geir; Philpott, Andy B.

    2013-01-01

    In 2020 electricity production from wind power should constitute nearly 50% of electricity demand in Denmark. In this paper we look at optimal expansion of the transmission network in order to integrate 50% wind power in the system, while minimizing total fixed investment cost and expected cost...... of power generation. We allow for active switching of transmission elements to reduce congestion effects caused by Kirchhoff's voltage law. Results show that actively switching transmission lines may yield a better utilization of transmission networks with large-scale wind power and increase wind power...

  8. Associations between Depressive State and Impaired Higher-Level Functional Capacity in the Elderly with Long-Term Care Requirements.

    Science.gov (United States)

    Ogata, Soshiro; Hayashi, Chisato; Sugiura, Keiko; Hayakawa, Kazuo

    2015-01-01

    Depressive state has been reported to be significantly associated with higher-level functional capacity among community-dwelling elderly. However, few studies have investigated the associations among people with long-term care requirements. We aimed to investigate the associations between depressive state and higher-level functional capacity and obtain marginal odds ratios using propensity score analyses in people with long-term care requirements. We conducted a cross-sectional study based on participants aged ≥ 65 years (n = 545) who were community dwelling and used outpatient care services for long-term preventive care. We measured higher-level functional capacity, depressive state, and possible confounders. Then, we estimated the marginal odds ratios (i.e., the change in odds of impaired higher-level functional capacity if all versus no participants were exposed to depressive state) by logistic models using generalized linear models with the inverse probability of treatment weighting (IPTW) for propensity score and design-based standard errors. Depressive state was used as the exposure variable and higher-level functional capacity as the outcome variable. The all absolute standardized differences after the IPTW using the propensity scores were functional capacity.

  9. Mismatch of wind power capacity and generation: causing factors, GHG emissions and potential policy responses

    NARCIS (Netherlands)

    Subtil Lacerda, J.; van den Bergh, J.C.J.M.

    2016-01-01

    Policies to assure combatting climate change and realising energy security have stimulated a rapid growth in global installed capacity of renewable energy generation. The expansion of power generation from renewables, though, has so far lagged behind the growth in generation capacity. This indicates

  10. Solar PV resource for higher penetration through a combined spatial aggregation with wind

    CSIR Research Space (South Africa)

    Bischof-Niemz, ST

    2016-06-01

    Full Text Available between wind and solar PV and how these would be reflected in the power system. The benefits of spatial distribution of renewables are well understood, but the impact of the combined spatial aggregation of wind and solar PV is central to the design...

  11. Female Leadership Capacity and Effectiveness: A Critical Analysis of the Literature on Higher Education in Saudi Arabia

    Science.gov (United States)

    Alomair, Miznah O.

    2015-01-01

    In light of the progressive changes occurring in Saudi Arabia, developing female leadership capacity and effectiveness in the country's higher education is vital. This literature review examines the scholarship and research on female leadership in higher education in Saudi Arabia, describes the major barriers for female leaders, and provides a…

  12. Higher capacity, lower carbon dioxide emissions. Idle power compensation in HV lines; Mehr Kapazitaet, weniger Kohlendioxid. Blindleistungskompensation bei Hochspannungsleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Jan-Hendrik von [Alstom Grid GmbH, Berlin (Germany). Team Leistungselektronik und Kompensationsanlagen

    2012-07-01

    Even today, many HP lines have reached their limits. It is therefore highly urgent to find measures for optimum utilization of the available overhead transmssion capacities, e.g. by idle power compensation. Together with a filter for harmonics reduction, this will ensure higher grid stability and enhance transport capacities while reducing transport losses, thus saving money and reducing CO{sub 2} emissions. (orig./AKB)

  13. A Method for Increasing the Operating Limit Capacity of Wind Farms Using Battery Energy Storage Systems with Rate of Change of Frequency

    Directory of Open Access Journals (Sweden)

    Dae-Hee Son

    2018-03-01

    Full Text Available In this paper, the appropriate rated power of battery energy storage system (BESS and the operating limit capacity of wind farms are determined considering power system stability, and novel output control methods of BESS and wind turbines are proposed. The rated power of BESS is determined by correlation with the kinetic energy that can be released from wind turbines and synchronous generators when a disturbance occurs in the power system. After the appropriate rated power of BESS is determined, a novel control scheme for quickly responding to disturbances should be applied to BESS. It is important to compensate the insufficient power difference between demand and supply more quickly after a disturbance, and for this purpose, BESS output is controlled using the rate of change of frequency (ROCOF. Generally, BESS output is controlled by the frequency droop control (FDC, however if ROCOF falls below the threshold, BESS output increases sharply. Under this control for BESS, the power system’s stability can be improved and the operating limit capacity of wind farms can be increased. The operating limit capacity is determined as the smaller of technical limit and dynamic limit capacity. The technical limit capacity is calculated by the difference between the maximum power of the generators connected to the power system and the magnitude of loads, and the dynamic limit capacity is determined by considering dynamic stability of a power system frequency when the wind turbines drop out from a power system. Output of the dynamic model developed for wind turbine is based on the operating limit capacity and is controlled by blade pitch angle. To validate the effectiveness of the proposed control method, different case studies are conducted, with simulations for BESS and wind turbine using Power System Simulation for Engineering (PSS/E.

  14. For the definition of capacity effects of electricity generation from wind power and solar radiation

    International Nuclear Information System (INIS)

    Kaltschmitt, M.

    1996-01-01

    It is the objective of this contribution to define the calculable really available output of a fluctuating electricity generation from wind energy and solar radiation. Apart from that, the methods for determining the really available output are explained, as far as they are necessary for understanding the definitions. Exemplified on a simulated large-scale regenerative electricity generation in Germany, in addition, some defined values are calculated and discussed. (orig.) [de

  15. Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    This paper investigates the influence of the CVUF angle on the windings temperature rise and the derating factor of an induction machine supplied with unbalanced voltage. The effect of simultaneous voltage unbalance and harmonics on its operational life is analyzed as well. The results of calculations and experimental investigations are presented for two induction cage machines of rated power 3 and 5.5 kW. (author)

  16. Wind energy potential in India

    International Nuclear Information System (INIS)

    Rangarajan, S.

    1995-01-01

    Though located in the tropics, India is endowed with substantial wind resources because of its unique geographical location which gets fully exposed to both the south-west and north-east monsoon winds. The westerly winds of the south-west monsoons provide bulk of the wind potential. Areas with mean annual wind speed exceeding 18 k mph and areas with mean annual power density greater than 140 W/m 2 have been identified using the wind data collected by the wind monitoring project funded by the Ministry of Non-conventional Energy Sources (MNES). Seasonal variations in wind speed at selected locations are discussed as also the frequency distribution of hourly wind speed. Annual capacity factors for 250 kW wind electric generators have been calculated for several typical locations. A good linear correlation has been found between mean annual wind speed and mean annual capacity factor. A method is described for assessing wind potential over an extended region where adequate data is available. It is shown that the combined wind energy potential over five selected areas of limited extent in Gujarat, Andhra Pradesh and Tamil Nadu alone amounts to 22,000 MW under the assumption of 20 per cent land availability for installing wind farms. For a higher percentage of land availability, the potential will be correspondingly higher. (author). 12 refs., 6 figs., 3 tabs

  17. ICT Capacity Building: A Critical Discourse Analysis of Rwandan Policies from Higher Education Perspective

    Science.gov (United States)

    Byungura, Jean Claude; Hansson, Henrik; Masengesho, Kamuzinzi; Karunaratne, Thashmee

    2016-01-01

    With the development of technology in the 21st Century, education systems attempt to integrate technology-based tools to improve experiences in pedagogy and administration. It is becoming increasingly prominent to build human and ICT infrastructure capacities at universities from policy to implementation level. Using a critical discourse analysis,…

  18. More Is Generally Better: Higher Working Memory Capacity Does Not Impair Perceptual Category Learning

    Science.gov (United States)

    Kalish, Michael L.; Newell, Ben R.; Dunn, John C.

    2017-01-01

    It is sometimes supposed that category learning involves competing explicit and procedural systems, with only the former reliant on working memory capacity (WMC). In 2 experiments participants were trained for 3 blocks on both filtering (often said to be learned explicitly) and condensation (often said to be learned procedurally) category…

  19. Immunization Documentation Practices and Vaccine-Preventable Disease Surveillance Capacity among Institutions of Higher Education in Indiana

    Science.gov (United States)

    Stevens, Taryn; Golwalkar, Mugdha

    2018-01-01

    ABSTRACTObjective: Complete and accurate documentation of immunization records and surveillance of disease transmission are critical to the public health response to outbreaks of communicable disease in institutions of higher education (IHEs). This study aims to describe immunization documentation practices and disease surveillance capacity among…

  20. The effect of modifiable healthy practices on higher-level functional capacity decline among Japanese community dwellers

    Directory of Open Access Journals (Sweden)

    Rei Otsuka

    2017-03-01

    Full Text Available This study aimed to clarify the effects of the accumulation of 8 modifiable practices related to health, including smoking, alcohol drinking, physical activity, sleeping hours, body mass index, dietary diversity, ikigai (life worth living, and health checkup status, on higher-level functional capacity decline among Japanese community dwellers. Data were derived from the National Institute for Longevity Sciences - Longitudinal Study of Aging. Subjects comprised 1269 men and women aged 40 to 79 years at baseline (1997–2000 who participated in a follow-up postal survey (2013. Higher-level functional capacity was measured using the Tokyo Metropolitan Institute of Gerontology Index of Competence (total score and 3 subscales: instrumental self-maintenance, intellectual activity, and social role. The odds ratio (OR and 95% confidence interval (CI for a decline in higher-level functional capacity in the follow-up study according to the total number of healthy practices were analyzed using the lowest category as a reference. Multivariate adjusted ORs (95% CIs for the total score of higher-level functional capacity, which declined according to the total number of healthy practices (0–4, 5–6, 7–8 groups were 1.00 (reference, 0.63 (0.44–0.92, and 0.54 (0.31–0.94. For the score of social role decline, multivariate adjusted ORs (95% CIs were 1.00 (reference, 0.62 (0.40–0.97, and 0.46 (0.23–0.90, respectively (P for trend = 0.04. Having more modifiable healthy practices, especially in social roles, may protect against a decline in higher-level functional capacity among middle-aged and elderly community dwellers in Japan.

  1. The effect of modifiable healthy practices on higher-level functional capacity decline among Japanese community dwellers.

    Science.gov (United States)

    Otsuka, Rei; Nishita, Yukiko; Tange, Chikako; Tomida, Makiko; Kato, Yuki; Nakamoto, Mariko; Ando, Fujiko; Shimokata, Hiroshi; Suzuki, Takao

    2017-03-01

    This study aimed to clarify the effects of the accumulation of 8 modifiable practices related to health, including smoking, alcohol drinking, physical activity, sleeping hours, body mass index, dietary diversity, ikigai (life worth living), and health checkup status, on higher-level functional capacity decline among Japanese community dwellers. Data were derived from the National Institute for Longevity Sciences - Longitudinal Study of Aging. Subjects comprised 1269 men and women aged 40 to 79 years at baseline (1997-2000) who participated in a follow-up postal survey (2013). Higher-level functional capacity was measured using the Tokyo Metropolitan Institute of Gerontology Index of Competence (total score and 3 subscales: instrumental self-maintenance, intellectual activity, and social role). The odds ratio (OR) and 95% confidence interval (CI) for a decline in higher-level functional capacity in the follow-up study according to the total number of healthy practices were analyzed using the lowest category as a reference. Multivariate adjusted ORs (95% CIs) for the total score of higher-level functional capacity, which declined according to the total number of healthy practices (0-4, 5-6, 7-8 groups) were 1.00 (reference), 0.63 (0.44-0.92), and 0.54 (0.31-0.94). For the score of social role decline, multivariate adjusted ORs (95% CIs) were 1.00 (reference), 0.62 (0.40-0.97), and 0.46 (0.23-0.90), respectively (P for trend = 0.04). Having more modifiable healthy practices, especially in social roles, may protect against a decline in higher-level functional capacity among middle-aged and elderly community dwellers in Japan.

  2. Enhancing research capacity across healthcare and higher education sectors: development and evaluation of an integrated model

    Directory of Open Access Journals (Sweden)

    Whitworth Anne

    2012-08-01

    Full Text Available Abstract Background With current policy in healthcare research, in the United Kingdom and internationally, focused on development of research excellence in individuals and teams, building capacity for implementation and translation of research is paramount among the professionals who use that research in daily practice. The judicious use of research outcomes and evaluation of best evidence and practice in healthcare is integrally linked to the research capacity and capabilities of the workforce. In addition to promoting high quality research, mechanisms for actively enhancing research capacity more generally must be in place to address the complexities that both undermine and facilitate this activity. Methods A comprehensive collaborative model for building research capacity in one health professional group, speech and language therapy, was developed in a region within the UK and is presented here. The North East of England and the strong research ethos of this profession in addressing complex interventions offered a fertile context for developing and implementing a model which integrated the healthcare and university sectors. Two key frameworks underpin this model. The first addresses the individual participants’ potential trajectory from research consciousness to research participative to research active. The second embeds a model developed for general practitioners into a broader framework of practice-academic partnership and knowledge and skills exchange, and considers external drivers and impacts on practice and patient outcomes as key elements. Results and discussion The integration of practice and academia has been successful in building a culture of research activity within one healthcare profession in a region in the UK and has resulted, to date, in a series of research related outcomes. Understanding the key components of this partnership and the explicit strategies used has driven the implementation of the model and are discussed

  3. The Challenges of Increasing Capacity and Diversity in Japanese Higher Education through Proactive Recruitment Strategies

    Science.gov (United States)

    Kuwamura, Akira

    2009-01-01

    There has been fierce competition for a shrinking pool of high school graduates in the higher education market in Japan in recent years. Along came former Prime Minister Fukuda's plan for an intake of 300,000 international students by the year 2020. These have placed Japanese institutions of higher education under further pressure to sustain their…

  4. Study of Flexible Load Dispatch to Improve the Capacity of Wind Power Absorption

    Science.gov (United States)

    Yunlei, Yang; Shifeng, Zhang; Xiao, Chang; Da, Lei; Min, Zhang; Jinhao, Wang; Shengwen, Li; Huipeng, Li

    2017-05-01

    The dispatch method which track the trend of load demand by arranging the generation scheme of controllable hydro or thermal units faces great difficulties and challenges. With the increase of renewable energy sources such as wind power and photovoltaic power introduced to grid, system has to arrange much more spinning reserve units to compensate the unbalanced power. How to exploit the peak-shaving potential of flexible load which can be shifted with time or storage energy has become many scholars’ research direction. However, the modelling of different kinds of load and control strategy is considerably difficult, this paper choose the Air Conditioner with compressor which can storage energy in fact to study. The equivalent thermal parameters of Air Conditioner has been established. And with the use of “loop control” strategies, we can predict the regulated power of Air Conditioner. Then we established the Gen-Load optimal scheduling model including flexible load based on traditional optimal scheduling model. At last, an improved IEEE-30 case is used to verify. The result of simulation shows that flexible load can fast-track renewable power changes. More than that, with flexible load and reasonable incentive method to consumers, the operating cost of the system can be greatly cut down.

  5. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    Science.gov (United States)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  6. When is enough, enough? Identifying predictors of capacity estimates for onshore wind-power development in a region of the UK

    International Nuclear Information System (INIS)

    Jones, Christopher R.; Orr, Barry J.; Eiser, J. Richard

    2011-01-01

    The level of 'wind-prospecting' presently occurring in the UK is increasing the likelihood that new wind-power developments will conflict with other existing and/or proposed schemes. This study reports multiple-regression analyses performed on survey data obtained in a region of the UK (i.e. Humberhead Levels, near Doncaster) simultaneously subject to nine wind-farm proposals (September 2008). The aim of the analysis was to identify which survey-items were predictors of respondents' estimates of the number of wind turbines they believed the region could reasonably support (i.e. capacity estimates). The results revealed that the majority of respondents would endorse some local development; however, there was substantial variability in the upper level that was considered acceptable. Prominent predictors included general attitude, perceived knowledge of wind power, community attachment, environmental values, visual attractiveness of wind turbines, and issues relating to perceived fairness and equity. The results have implications for Cumulative Effects Assessment (CEA) - and in particular the assessment of Cumulative Landscape and Visual Impacts (CLVI) - and support calls for greater community involvement in decisions regarding proposed schemes. - Highlights: → Research seeks to identify predictors of the scale of local wind development people will tolerate. → Research conducted in region of the UK subject to nine wind-farm applications (2008). → Predictors found to include issues of perceived fairness and equity. → Results hold implications for cumulative effects assessment and development practices.

  7. When is enough, enough? Identifying predictors of capacity estimates for onshore wind-power development in a region of the UK

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher R., E-mail: c.r.jones@shef.ac.uk [Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP (United Kingdom); Orr, Barry J.; Eiser, J. Richard [Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP (United Kingdom)

    2011-08-15

    The level of 'wind-prospecting' presently occurring in the UK is increasing the likelihood that new wind-power developments will conflict with other existing and/or proposed schemes. This study reports multiple-regression analyses performed on survey data obtained in a region of the UK (i.e. Humberhead Levels, near Doncaster) simultaneously subject to nine wind-farm proposals (September 2008). The aim of the analysis was to identify which survey-items were predictors of respondents' estimates of the number of wind turbines they believed the region could reasonably support (i.e. capacity estimates). The results revealed that the majority of respondents would endorse some local development; however, there was substantial variability in the upper level that was considered acceptable. Prominent predictors included general attitude, perceived knowledge of wind power, community attachment, environmental values, visual attractiveness of wind turbines, and issues relating to perceived fairness and equity. The results have implications for Cumulative Effects Assessment (CEA) - and in particular the assessment of Cumulative Landscape and Visual Impacts (CLVI) - and support calls for greater community involvement in decisions regarding proposed schemes. - Highlights: > Research seeks to identify predictors of the scale of local wind development people will tolerate. > Research conducted in region of the UK subject to nine wind-farm applications (2008). > Predictors found to include issues of perceived fairness and equity. > Results hold implications for cumulative effects assessment and development practices.

  8. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  9. 基于韦伯模型的风场储能容量计算%Storage Capacity Calculation of Wind Power Based on Weibull Model

    Institute of Scientific and Technical Information of China (English)

    王树超

    2013-01-01

    Wind speed model and wind generator output model are analyzed by applying Weibull function to set up wind speed distribution model and the concept of probability theory to calculate the power capacity of energy storage system . The ratio of wind energy and storage capacity is reasonable and meets requirement of energy system by means of stimula -tion experiment .Under the condition of satisfying China ’ s wind power grid standard , the energy storage scale should be minimized and be verified by actual wind farm data .%分析了风电场风速的模型、风力发电机输出模型,运用韦伯函数建立风速分布模型,采用概率论期望的思想,计算储能系统功率容量。通过模拟仿真实验,得出满足电力系统要求的合理风储比。在满足我国风电并网标准的条件下,尽可能地减小储能系统规模,并利用实际风电场数据加以分析验证。

  10. Northern Hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends

    Czech Academy of Sciences Publication Activity Database

    Kozubek, Michal; Križan, Peter; Laštovička, Jan

    2015-01-01

    Roč. 15, Feb (2015), s. 2203-2213 ISSN 1680-7316 R&D Projects: GA ČR GAP209/10/1792; GA ČR GA15-03909S; GA MŠk LD12070 Institutional support: RVO:68378289 Keywords : stratospheric dynamics * meridional wind * long-term trend Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 5.114, year: 2015 http://www.atmos-chem-phys.net/15/2203/2015/acp-15-2203-2015.html

  11. Building capacity in Australian interprofessional health education: perspectives from key health and higher education stakeholders.

    Science.gov (United States)

    Matthews, Lynda R; Pockett, Rosalie B; Nisbet, Gillian; Thistlethwaite, Jill E; Dunston, Roger; Lee, Alison; White, Jill F

    2011-05-01

    A substantial literature engaging with the directions and experiences of stakeholders involved in interprofessional health education exists at the international level, yet almost nothing has been published that documents and analyses the Australian experience. Accordingly, this study aimed to scope the experiences of key stakeholders in health and higher education in relation to the development of interprofessional practice capabilities in health graduates in Australia. Twenty-seven semi-structured interviews and two focus groups of key stakeholders involved in the development and delivery of interprofessional health education in Australian higher education were undertaken. Interview data were coded to identify categories that were organised into key themes, according to principles of thematic analysis. Three themes were identified: the need for common ground between health and higher education, constraints and enablers in current practice, and the need for research to establish an evidence base. Five directions for national development were also identified. The study identified a range of interconnected changes that will be required to successfully mainstream interprofessional education within Australia, in particular, the importance of addressing issues of culture change and the need for a nationally coordinated and research informed approach. These findings reiterate those found in the international literature.

  12. Wind energy economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy have improved rapidly in the past few years, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. As bank loan periods for wind projects are shorter than for thermal plant, the effect on the price of wind energy is discussed. It is argued that wind energy has a higher value than that of centralised plant, since it is fed into the low voltage distribution network and it follows that the price of wind energy is converging with its value. The paper also includes a brief review of the capacity credit of wind plant and an assessment of the cost penalties which are incurred due to the need to hold extra plant on part load. These penalties are shown to be small. (author)

  13. Cost of wind energy: comparing distant wind resources to local resources in the midwestern United States.

    Science.gov (United States)

    Hoppock, David C; Patiño-Echeverri, Dalia

    2010-11-15

    The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.

  14. Photonic Integrated Circuits for Cost-Effective, High Port Density, and Higher Capacity Optical Communications Systems

    Science.gov (United States)

    Chiappa, Pierangelo

    Bandwidth-hungry services, such as higher speed Internet, voice over IP (VoIP), and IPTV, allow people to exchange and store huge amounts of data among worldwide locations. In the age of global communications, domestic users, companies, and organizations around the world generate new contents making bandwidth needs grow exponentially, along with the need for new services. These bandwidth and connectivity demands represent a concern for operators who require innovative technologies to be ready for scaling. To respond efficiently to these demands, Alcatel-Lucent is fast moving toward photonic integration circuits technologies as the key to address best performances at the lowest "bit per second" cost. This article describes Alcatel-Lucent's contribution in strategic directions or achievements, as well as possible new developments.

  15. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan.

    Science.gov (United States)

    Tanimoto, Yoshimi; Watanabe, Misuzu; Sun, Wei; Sugiura, Yumiko; Tsuda, Yuko; Kimura, Motoshi; Hayashida, Itsushi; Kusabiraki, Toshiyuki; Kono, Koichi

    2012-01-01

    This study aimed to determine the association between sarcopenia, defined by muscle mass, muscle strength, and physical performance, and higher-level functional capacity in community-dwelling Japanese elderly people. Subjects were 1158 elderly, community-dwelling Japanese people aged 65 or older. We used bioelectrical impedance analysis to measure muscle mass, grip strength to measure muscle strength, and usual walking speed to measure physical performance. Sarcopenia was characterized by low muscle mass, plus low muscle strength or low physical performance. Subjects without low muscle mass, low muscle strength, and low physical performance were classified as "normal." Examination of higher-level functional capacity was performed using the Tokyo Metropolitan Institute of Gerontology Index of Competence (TMIG-IC). The TMIG-IC is a 13-item questionnaire completed by the subject; it contains five questions on self-maintenance and four questions each on intellectual activity and social role. Sarcopenia was identified in 11.3% and 10.7% of men and women, respectively. The percentage of disability for instrumental activities of daily living (IADL) was 39.0% in men with sarcopenia and 30.6% in women with sarcopenia. After adjustment for age, in men, sarcopenia was significantly associated with IADL disability compared with intermediate and normal subjects. In women, sarcopenia was significantly associated with every subscale of the TMIG-IC disability compared with intermediate and normal subjects. This study revealed that sarcopenia, defined by muscle mass, muscle strength, and physical performance, had a significant association with disability in higher-level functional capacity in elderly Japanese subjects. Interventions to prevent sarcopenia may prevent higher-level functional disability among elderly people. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. On the computation of the higher-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-12-01

    The higher-order statistics (HOS) of the channel capacity μn=E[logn (1+γ end)], where n ∈ N denotes the order of the statistics, has received relatively little attention in the literature, due in part to the intractability of its analysis. In this letter, we propose a novel and unified analysis, which is based on the moment generating function (MGF) technique, to exactly compute the HOS of the channel capacity. More precisely, our mathematical formalism can be readily applied to maximal-ratio-combining (MRC) receivers operating in generalized fading environments. The mathematical formalism is illustrated by some numerical examples focusing on the correlated generalized fading environments. © 2012 IEEE.

  17. On the computation of the higher-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2012-01-01

    The higher-order statistics (HOS) of the channel capacity μn=E[logn (1+γ end)], where n ∈ N denotes the order of the statistics, has received relatively little attention in the literature, due in part to the intractability of its analysis. In this letter, we propose a novel and unified analysis, which is based on the moment generating function (MGF) technique, to exactly compute the HOS of the channel capacity. More precisely, our mathematical formalism can be readily applied to maximal-ratio-combining (MRC) receivers operating in generalized fading environments. The mathematical formalism is illustrated by some numerical examples focusing on the correlated generalized fading environments. © 2012 IEEE.

  18. On the computation of the higher order statistics of the channel capacity for amplify-and-forward multihop transmission

    KAUST Repository

    Yilmaz, Ferkan; Tabassum, Hina; Alouini, Mohamed-Slim

    2014-01-01

    Higher order statistics (HOS) of the channel capacity provide useful information regarding the level of reliability of signal transmission at a particular rate. In this paper, we propose a novel and unified analysis, which is based on the moment-generating function (MGF) approach, to efficiently and accurately compute the HOS of the channel capacity for amplify-and-forward (AF) multihop transmission over generalized fading channels. More precisely, our easy-to-use and tractable mathematical formalism requires only the reciprocal MGFs of the transmission hop signal-to-noise ratio (SNR). Numerical and simulation results, which are performed to exemplify the usefulness of the proposed MGF-based analysis, are shown to be in perfect agreement. © 2013 IEEE.

  19. Contemporary and prospective fuel cycles for WWER-440 based on new assemblies with higher uranium capacity and higher average fuel enrichment

    International Nuclear Information System (INIS)

    Gagarinskiy, A.A.; Saprykin, V.V.

    2009-01-01

    RRC 'Kurchatov Institute' has performed an extensive cycle of calculations intended to validate the opportunities of improving different fuel cycles for WWER-440 reactors. Works were performed to upgrade and improve WWER-440 fuel cycles on the basis of second-generation fuel assemblies allowing core thermal power to be uprated to 107 108 % of its nominal value (1375 MW), while maintaining the same fuel operation lifetime. Currently intensive work is underway to develop fuel cycles based on second-generation assemblies with higher fuel capacity and average fuel enrichment per assembly increased up to 4.87 % of U-235. Fuel capacity of second-generation assemblies was increased by means of eliminated central apertures of fuel pellets, and pellet diameter extended due to reduced fuel cladding thickness. This paper intends to summarize the results of works performed in the field of WWER-440 fuel cycle modernization, and to present yet unemployed opportunities and prospects of further improvement of WWER-440 neutronic and operating parameters by means of additional optimization of fuel assembly designs and fuel element arrangements applied. (Authors)

  20. HIGHER SPIRITUAL AND SELF-REGULATIVE CAPACITIES IN ANCIENT KNOWLEDGE SYSTEM - BUDDHISM (APPROACH OF HISTORY OF PSYCHOLOGY

    Directory of Open Access Journals (Sweden)

    G V Ozhiganova

    2015-12-01

    Full Text Available The necessity of research on higher spiritual and self-regulative capacities in the context of ancient oriental system of knowledge is expressed. The historical and psychological methods of studying ancient knowledge are described. The methods of the history of psychology, proposed by the author, are used: such as the method of revealing scientific knowledge reserves, aimed at restoring and practical mastering the psychological heritage of ancient times, as well as the experimental method, involving the verification of psychological facts, phenomena and laws described in ancient texts, with the help of modern scientific research methods (observation, experiment, statistical data. Meditative practices and philosophical concepts of Buddhism are considered from the standpoint of modern psychology. The ancient Buddhist meditative practices “Contemplation of the mind”, linked to the concept of “mindfulness” is described. It is concluded that the concept of the mind is the key in the Buddhist system of knowledge. The understanding of the mind in the ancient Buddhist doctrine is compared with a modern interpretation of the concept of “mind” in psychological science, as well as its content is revealed due to psychological terms “higher self-regulative capacities” and “moral-value aspect of spiritual capacities”. It is revealed that in the Buddhist system of knowledge there can be seen close links between higher self-regulative capacities and moral-value aspect of spiritual capacities. The results of empirical studies of the ancient meditative practices and their positive impact on self-regulation of the modern people are submitted.

  1. Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.; Porter, K.

    2012-03-01

    This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

  2. A comparative calculation of the wind turbines capacities on the basis of the L-{sigma} criterion

    Energy Technology Data Exchange (ETDEWEB)

    Menet, Jean-Luc; Valdes, Laurent-Charles; Menart, Bruno [Universite de Valenciennes et du Hainaut-Cambresis, Groupe de Recherche Energies et Environnement, Valenciennes, 59 (France)

    2001-04-01

    Usually, wind sites are equipped with fast-running Horizontal Axis Wind Turbines of the airscrew type, which has a high efficiency. In this article, the argument is put forward that the choice of a wind turbine must not be based only on high efficiency. We propose a comparative criterion adapted to the comparison of a horizontal axis wind turbine with a vertical axis wind turbine: the L-{sigma} criterion. This criterion consists in comparing wind turbines which intercept the same front width of wind, by allocating them a same reference value of the maximal mechanical stress on the blades or the paddles. On the basis of this criterion, a quantitative comparison points to a clear advantage of the Savonius rotors, because of their lower angular velocity, and provides some elements for the improvement of their rotor. (Author)

  3. Endurance Wind Power : practical insights into small wind

    International Nuclear Information System (INIS)

    Hicks, D.

    2008-01-01

    This presentation discussed practical issues related to purchasing and installing small wind turbines in Canada. Wind power capacity can be estimated by looking at provincial wind maps as well as by seeking wind data at local airports. Wind resources are typically measured at heights of between 20 meters and 50 m. The height of a wind turbine tower can significantly increase the turbine's wind generating capacity. Turbine rotors should always be placed 30 feet higher than obstacles within 500 feet. Many provinces have now mandated utilities to accept renewable energy resources from grid-connected wind energy plants. Net billing systems are used to determine the billing relationship between power-producing consumers and the utilities who will buy the excess power and sell it to other consumers. Utilities are not yet mandated to purchase excess power, and it is likely that federal and provincial legislation will be needed to ensure that net billing systems continue to grow. Many Canadian municipalities have no ordinances related to wind turbine placements. Consumers interested in purchasing small wind turbines should ensure that the turbine has been certified by an accredited test facility and has an adequate safety system. The noise of the turbine as well as its power performance in relation to the purchaser's needs must also be considered. It was concluded that small wind turbines can provide a means for electricity consumers to reduce their carbon footprint and hedge against the inflationary costs of fossil-fuelled energy resources. tabs., figs

  4. Model Development for Power System Analysis with a Substantial Wind Energy Capacity Installed in the Nordic grid

    DEFF Research Database (Denmark)

    Carlson, Ola; Perdana, Abram; Chen, Peiyuan

    2011-01-01

    The worldwide development of wind power installations now includes planning and construction of large-scale wind farms ranging in magnitudes of 1000 MW and more. As part of the planning and design of such systems, it is well established that the transient and dynamic stability of the electrical...... power system needs to be studied. Modelling work of the electrical behaviour of wind turbines and wind farms as well as model validation by measurements have been important parts of this project work. The models have been used to study dynamic phenomena during normal operation and fault occasions...... in the electric system. Fault Ride Through (FRT) measurements have been carried out on new wind parks connected to Estonian power grid and in all of them FRT tests were made. In several wind parks the tests were not successful and the tests will be repeated. In Finland measurements have carried out in 6 MW...

  5. Low frequency geomagnetic field fluctuations at low latitude during the passage of a higher pressure solar wind region

    Directory of Open Access Journals (Sweden)

    U. Villante

    1997-06-01

    Full Text Available The passage of a higher pressure solar wind region at the Earth's orbit marked the onset of low latitude (L=1.6 fluctuations in the frequency range (0.8–5.5 mHz for both the horizontal geomagnetic field components. Spectral peaks mostly occur at the same frequencies as the spectral enhancements which appeared in the long term analysis of experimental measurements from the same station and were tentatively interpreted in terms of ground signatures of global magnetospheric modes. A comparison with simultaneous observations discussed by previous investigations allows us to conclude that the same set of frequencies is enhanced in a wide portion of the Earth's magnetosphere.

  6. Wind energy - an overview

    International Nuclear Information System (INIS)

    Rangi, R.; Oprisan, M.

    1998-01-01

    The current status of wind technology developments in Canada and around the world was reviewed. Information regarding the level of wind turbine deployment was presented. It was shown that significant effort has been made on the national and international level to increase the capacity of this clean, non-polluting form of energy. Wind energy has become competitive with conventional sources of electricity due to lower cost, higher efficiency and improved reliability of generating equipment. The advantages and disadvantages of wind electricity generating systems and the economics and atmospheric emissions of the systems were described. At present, there is about 23 MW of wind energy generating capacity installed in Canada, but the potential is very large. It was suggested that wind energy could supply as much as 60 per cent of Canada's electricity needs if only one per cent of the land with 'good winds' were covered by wind turbines. Recently, the Canadian government has provided an accelerated capital cost allowance for certain types of renewable energies under the Income Tax Act, and the flow-through share financing legislation to include intangible expenses in certain renewable energy projects has been extended. Besides the support provided to the private sector through tax advantages, the Government also supports renewable energy development by purchasing 'green' energy for its own buildings across the country, and by funding a research and development program to identify and promote application of wind energy technologies, improve its cost effectiveness, and support Canadian wind energy industries with technology development to enhance their competitiveness at home and abroad. Details of the Wind Energy Program, operated by Natural Resources Canada, are described. 3 tabs., 5 figs

  7. Firm Type, Feed-in Tariff, and Wind Energy Investment in Germany : An Investigation of Decision Making Factors of Energy Producers Regarding Investing in Wind Energy Capacity

    NARCIS (Netherlands)

    Werner, Lone; Scholtens, Lambertus

    2017-01-01

    The development of renewable and sustainable energy is advanced by public financial support. This is particularly so in the German Energiewende, which seeks to replace nuclear and fossil electricity generation with wind, sun, and biomass. We study the impact of the (changes in the) feed-in tariff

  8. European offshore wind power in 2015: record €13bn investment, 3 GW new capacity; La eólica marina europea en 2015: record de inversión 13.000 M€, 3 GW de nueva potencia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    Offshore wind investments in Europe doubled in 2015 to €13.3bn in a record year for financing and gridconnected installations. A total of 3,019 MW in new offshore wind capacity came online in European waters in 2015, more than double the capacity connected to the grid in 2014. Europe’s total offshore wind capacity now stands at 11,027 MW. A further 3,034 MW of capacity, spread across ten projects, reached final investment decision last year, a twofold increase on 2014. These are some of the main figures contained in “The European offshore wind industry - key trends and statistics 2015”, a report published by EWEA. (Author)

  9. Innovation and the price of wind energy in the US

    International Nuclear Information System (INIS)

    Berry, David

    2009-01-01

    In the last ten years, the wind energy industry has experienced many innovations resulting in wider deployment of wind energy, larger wind energy projects, larger wind turbines, and greater capacity factors. Using regression analysis, this paper examines the effects of technological improvements and other factors on the price of wind energy charged under long-term contracts in the United States. For wind energy projects completed during the period 1999-2006, higher capacity factors and larger wind farms contributed to reductions in wind energy contract prices paid by regulated investor owned utilities in 2007. However, this effect was offset by rising construction costs. Turbine size (in MW) shows no clear relationship to contract prices, possibly because there may be opposing factors tending to decrease costs as turbine size increases and tending to increase costs as turbine size increases. Wind energy is generally a low-cost resource that is competitive with natural gas-fired power generation.

  10. Reduced-Capacity Inrush Current Suppressor Using a Matrix Converter in a Wind Power Generation System with Squirrel-Cage Induction Machines

    Directory of Open Access Journals (Sweden)

    Sho Shibata

    2016-03-01

    Full Text Available This paper describes the reduced capacity of the inrush current suppressor using a matrix converter (MC in a large-capacity wind power generation system (WPGS with two squirrel-cage induction machines (SCIMs. These SCIMs are switched over depending on the wind speed. The input side of the MC is connected to the source in parallel. The output side of the MC is connected in series with the SCIM through matching transformers. The modulation method of the MC used is direct duty ratio pulse width modulation. The reference output voltage of the MC is decided by multiplying the SCIM current with the variable control gain. Therefore, the MC performs as resistors for the inrush current. Digital computer simulation is implemented to confirm the validity and practicability of the proposed inrush current suppressor using PSCAD/EMTDC (power system computer-aided design/electromagnetic transients including DC. Furthermore, the equivalent resistance of the MC is decided by the relationship between the equivalent resistance and the capacity of the MC. Simulation results demonstrate that the proposed inrush current suppressor can suppress the inrush current perfectly.

  11. Wind energy resources assessment for Yanbo, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur

    2004-01-01

    The paper presents long term wind data analysis in terms of annual, seasonal and diurnal variations at Yanbo, which is located on the west coast of Saudi Arabia. The wind speed and wind direction hourly data for a period of 14 years between 1970 and 1983 is used in the analysis. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 5.0 m/s and more were observed during the summer months of the year and noon hours (09:00 to 16:00 h) of the day. The wind duration availability is discussed as the percent of hours during which the wind remained in certain wind speed intervals or bins. Wind energy calculations were performed using wind machines of sizes 150, 250, 600, 800, 1000, 1300, 1500, 2300 and 2500 kW rated power. Wind speed is found to remain above 3.5 m/s for 69% of the time during the year at 40, 50, 60, and 80 m above ground level. The energy production analysis showed higher production from wind machines of smaller sizes than the bigger ones for a wind farm of 30 MW installed capacity. Similarly, higher capacity factors were obtained for smaller wind machines compared to larger ones

  12. Negative plates for dry-charged lead storage batteries. [higher charging capacity when impregnated with tannin solution

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, V; Malikova, V; Weber, H

    1970-09-15

    Impregnation of negative plates with acid solutions of sulfomethylated tannins was found to improve the charging properties at low temperatures. Methods for synthesizing tannins are described. Charging capacity at 0/sup 0/ was 7.3A. (RWR)

  13. Impact of Climate Change on Natural Snow Reliability, Snowmaking Capacities, and Wind Conditions of Ski Resorts in Northeast Turkey: A Dynamical Downscaling Approach

    Directory of Open Access Journals (Sweden)

    Osman Cenk Demiroglu

    2016-04-01

    Full Text Available Many ski resorts worldwide are going through deteriorating snow cover conditions due to anthropogenic warming trends. As the natural and the artificially supported, i.e., technical, snow reliability of ski resorts diminish, the industry approaches a deadlock. For this reason, impact assessment studies have become vital for understanding vulnerability of ski tourism. This study considers three resorts at one of the rapidly emerging ski destinations, Northeast Turkey, for snow reliability analyses. Initially one global circulation model is dynamically downscaled by using the regional climate model RegCM4.4 for 1971–2000 and 2021–2050 periods along the RCP4.5 greenhouse gas concentration pathway. Next, the projected climate outputs are converted into indicators of natural snow reliability, snowmaking capacity, and wind conditions. The results show an overall decline in the frequencies of naturally snow reliable days and snowmaking capacities between the two periods. Despite the decrease, only the lower altitudes of one ski resort would face the risk of losing natural snow reliability and snowmaking could still compensate for forming the base layer before the critical New Year’s week. On the other hand, adverse high wind conditions improve as to reduce the number of lift closure days at all resorts. Overall, this particular region seems to be relatively resilient against climate change.

  14. The future of wind energy

    International Nuclear Information System (INIS)

    Koughnett, K. Van

    2003-01-01

    This presentation provided a brief history of wind power through the ages, and culminated with a look at installed capacity in 2002. Vision Quest has been in the wind power business since 1980, and the first turbines were installed in 1997. The company operates 40 per cent of Canada's wind capacity. Vision Quest became part of TransAlta in December 2002, the largest non-regulated electric generation and marketing company in Canada. The reasons for investing in wind power were briefly reviewed. The author then examined the physics of wind power and wind energy resources. The key resource issues were identified as being resource availability and constancy, which is similar to oil and gas exploration. Utility scale turbines were described. The pros and cons of larger turbines were compared, and it was shown that larger turbines offer better economics, a higher capacity factor and fewer turbines to permit. Manufacturers are focused on larger machines for offshore. The various permitting authorities and their areas of responsibility were listed, from municipal, provincial and federal levels. The key drivers are: wind speed, installed cost of equipment, revenue, operating expense, and financial expense. Project risks include: power purchase agreements, technology risk, financial risk, construction risk, regulation, operating risks, dependence on third parties, and reliance on advisors. Some of the challenges facing Vision Quest are being early, permitting, electric grid interconnection, openness of markets, market supply, demand forces, and getting capital costs down. tabs., figs

  15. Global wind power development: Economics and policies

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Cornelis van Kooten, G.; Narbel, Patrick A.

    2013-01-01

    Existing literature indicates that theoretically, the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 2–3% of global electricity demand is currently derived from wind power despite 27% annual growth in wind generating capacity over the last 17 years. More than 95% of total current wind power capacity is installed in the developed countries plus China and India. Our analysis shows that the economic competitiveness of wind power varies at wider range across countries or locations. A climate change damage cost of US$20/tCO 2 imposed to fossil fuels would make onshore wind competitive to all fossil fuels for power generation; however, the same would not happen to offshore wind, with few exceptions, even if the damage cost is increased to US$100/tCO 2 . To overcome a large number of technical, financial, institutional, market and other barriers to wind power, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides, climate change mitigation policies, such as the Clean Development Mechanism, have played a pivotal role in promoting wind power. Despite these policies, intermittency, the main technical constraint, could remain as the major challenge to the future growth of wind power. - Highlights: • Global wind energy potential is enormous, yet the wind energy contribution is very small. • Existing policies are boosting development of wind power. • Costs of wind energy are higher than cost of fossil-based energies. • Reasonable premiums for climate change mitigation substantially promote wind power. • Intermittency is the key challenge to future development of wind power

  16. Wind power

    International Nuclear Information System (INIS)

    2009-01-01

    At the end of 2008,the European wind power capacity had risen to 65,247 MW which is a 15,1% increase on 2007. The financial crisis does not appear to have any real consequences of the wind power sector's activity in 2008. At the end of 2008 the European Union accommodated 53,9% of the world's wind power capacity. The top ten countries in terms of installed wind capacities are: 1) Usa with 25,388 MW, 2) Germany with 23,903 MW, 3) Spain with 16,740 MW, 4) China with 12,200 MW, 5) India with 9,645 MW, 6) Italy with 3,736 MW, 7) France with 3,542 MW, 8) U.K. with 3,406 MW, 9) Denmark with 3,166 MW and 10) Portugal with 2,862 MW. (A.C.)

  17. Alberta wind integration. Status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Kehler, John; Aksomitis, Kris; Duchesne, Jacques [Alberta Electric System Operator (AESO), Calgary, AB (Canada)

    2010-07-01

    Alberta has excellent wind resources with over 600 MW of wind generation currently operating on the Alberta Interconnected Electric System (AIES) and there continues to be strong interest in wind development. Integration of large-scale wind power, however, is still relatively new and presents new operational opportunities and challenges. The AESO currently has over 7,700 MW in potential wind power development in Alberta in our interconnection queue. The Alberta system peak load is 10, 236 MW with 12,763 MW installed generation capacity and limited interconnection capability to neighboring jurisdictions. The AESO recognizes that it is important, both to system reliability and to the successful development of renewable resources in Alberta, that the impact on power system operations and the obligations of market participants are understood as Alberta reaches higher levels of wind penetration. The paper discusses the current status and future outlook on wind integration in Alberta. (orig.)

  18. Development of a higher capacity, lower pressure drop steam/water separator with reduced primary-to-secondary spacing

    International Nuclear Information System (INIS)

    Pruster, W.P.; Kidwell, J.H.; Eaton, A.M.; Wall, J.R.

    1985-01-01

    The goal of this development effort was to double the steam flow capacity of an existing module steam/water separator design without significantly increasing the pressure drop while simultaneously minimizing the vertical distance (spacing) between the primary and secondary separation stages. The development work included extensive air/water and steam/water testing. The steam/water tests were performed at a common pressure of 300 psia (2.1 MPa) with comparable water and steam flows

  19. Assessing high wind energy penetration

    International Nuclear Information System (INIS)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project settings are close to ideal, including a very capable national utility company, Electra, a conventional power supply system based on imported heavy fuel and gas oil, and favourable wind conditions with an estimated annual average of 9.3 m/s at the hub height of the wind turbines. With the applied case study assumptions, simulations with WINSYS over the lifetime of the assessed wind power investment show that investments up to 4.2 MW are economically viable. The economic optimum is found at 2.4 MW reaching an internal rate of return of almost 8% p.a. This 2.4 MW of wind power would, together with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h. (Author)

  20. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: relationship between soil water and carrying capacity for vegetation in the Tengger Desert.

    Science.gov (United States)

    Li, XingRong; Zhang, ZhiShan; Tan, HuiJuan; Gao, YanHong; Liu, LiChao; Wang, XingPing

    2014-05-01

    The main prevention and control area for wind-blown sand hazards in northern China is about 320000 km(2) in size and includes sandlands to the east of the Helan Mountain and sandy deserts and desert-steppe transitional regions to the west of the Helan Mountain. Vegetation recovery and restoration is an important and effective approach for constraining wind-blown sand hazards in these areas. After more than 50 years of long-term ecological studies in the Shapotou region of the Tengger Desert, we found that revegetation changed the hydrological processes of the original sand dune system through the utilization and space-time redistribution of soil water. The spatiotemporal dynamics of soil water was significantly related to the dynamics of the replanted vegetation for a given regional precipitation condition. The long-term changes in hydrological processes in desert areas also drive replanted vegetation succession. The soil water carrying capacity of vegetation and the model for sand fixation by revegetation in aeolian desert areas where precipitation levels are less than 200 mm are also discussed.

  1. 2010 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

    2011-06-27

    The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

  2. A Generalized National Planning Approach for Admission Capacity in Higher Education: A Nonlinear Integer Goal Programming Model with a Novel Differential Evolution Algorithm.

    Science.gov (United States)

    El-Qulity, Said Ali; Mohamed, Ali Wagdy

    2016-01-01

    This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.

  3. Cooperation, complexity and adaptation: higher education capacity initiatives in international development assistance programmes in sub-Saharan Africa.

    OpenAIRE

    McEvoy, Peter

    2018-01-01

    At a time when global relations are characterised by great complexity, uncertainty and inequality, the role of higher education is crucial for a balanced and coherent development strategy, and achievement of the Sustainable Development Goals (SDGs). This is especially true for countries of sub-Saharan Africa, where there is a critical need to generate knowledge that can be used in the service of social and economic development, human rights and climate change adaptation. The study concern...

  4. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  5. TRIXcell+, a new long-term boar semen extender containing whey protein with higher preservation capacity and litter size

    Directory of Open Access Journals (Sweden)

    B.M. van den Berg

    2014-02-01

    Full Text Available It was the aim of the present study to test whey as protective protein for the sperm cell in the long-term boar semen preservation medium TRIXcell. Analyses of sperm cell motility using computer-assisted semen analysis (CASA indicated that the whey protein Porex has a similar protective effect as bovine serum albumin (BSA in maintaining viability of stored boar sperm. Boar sperm diluted in TRIXcell+ maintains commercially acceptable motility (>60% for 10 days, while swine sperm diluted in the semen preservation medium Beltsville Thawing Solution (BTS maintains commercially acceptable motility (>60% for 3-5 days for most boars. To test the on-farm fertility performance of TRIXcell+ compared to BTS, inseminations were started on 35 commercial pig production farms in the summer of 2006. During the period of July 2006 until July 2012 for each farm and each calendar year the mean farrowing rate and litter size for semen diluted in TRIXcell+ and stored for 3-5 days was found higher than that of semen stored for 1-2 days in BTS. Based on data gained from a total of 583.749 sows inseminated through the years 2006-2012, the mean farrowing rate for semen diluted in TRIXcell+ and BTS was 90.4 ± 4.0 and 87.9 ± 3.6, respectively, which is not significantly different. Based on the same data, the mean total number of piglets born alive for semen diluted in TRIXcell+ and BTS was 14.2 ± 0.7 and 13.6 ± 0.6, respectively, which is significantly different. We conclude that whey protein can effectively be used in the long-term preservation medium TRIXcell resulting in a higher litter size.

  6. TRIXcell+, a new long-term boar semen extender containing whey protein with higher preservation capacity and litter size

    Science.gov (United States)

    van den Berg, B.M.; Reesink, J.; Reesink, W.

    2014-01-01

    It was the aim of the present study to test whey as protective protein for the sperm cell in the long-term boar semen preservation medium TRIXcell. Analyses of sperm cell motility using computer-assisted semen analysis (CASA) indicated that the whey protein Porex has a similar protective effect as bovine serum albumin (BSA) in maintaining viability of stored boar sperm. Boar sperm diluted in TRIXcell+ maintains commercially acceptable motility (>60%) for 10 days, while swine sperm diluted in the semen preservation medium Beltsville Thawing Solution (BTS) maintains commercially acceptable motility (>60%) for 3-5 days for most boars. To test the on-farm fertility performance of TRIXcell+ compared to BTS, inseminations were started on 35 commercial pig production farms in the summer of 2006. During the period of July 2006 until July 2012 for each farm and each calendar year the mean farrowing rate and litter size for semen diluted in TRIXcell+ and stored for 3-5 days was found higher than that of semen stored for 1-2 days in BTS. Based on data gained from a total of 583.749 sows inseminated through the years 2006-2012, the mean farrowing rate for semen diluted in TRIXcell+ and BTS was 90.4 ± 4.0 and 87.9 ± 3.6, respectively, which is not significantly different. Based on the same data, the mean total number of piglets born alive for semen diluted in TRIXcell+ and BTS was 14.2 ± 0.7 and 13.6 ± 0.6, respectively, which is significantly different. We conclude that whey protein can effectively be used in the long-term preservation medium TRIXcell resulting in a higher litter size. PMID:26623335

  7. Peer tutors as learning and teaching partners: a cumulative approach to building peer tutoring capacity in higher education

    Directory of Open Access Journals (Sweden)

    Sherran Clarence

    2016-06-01

    Full Text Available Peer tutors in higher education are frequently given vital teaching and learning work to do, but the training or professional development and support opportunities they are offered vary, and more often than not peer tutors are under-supported. In order to create and sustain teaching and learning environments that are better able to facilitate students’ engagement with knowledge and learning, the role of peer tutors needs to be recognised differently, as that of learning and teaching partners to both lecturers and students. Tutors then need to be offered opportunities for more in-depth professional academic development in order to fully realise this role. This paper explores a tutor development programme within a South African writing centre that aimed at offering tutors such ongoing and cumulative opportunities for learning and growth using a balanced approach, which included scholarly research and practice-based training. Using narrative data tutors provided in reflective written reports, the paper explores the kinds of development in tutors’ thinking and action that are possible when training and development is theoretically informed, coherent, and oriented towards improving practice.

  8. Higher adsorption capacity of Spirulina platensis alga for Cr(VI) ions removal: parameter optimisation, equilibrium, kinetic and thermodynamic predictions.

    Science.gov (United States)

    Gunasundari, Elumalai; Senthil Kumar, Ponnusamy

    2017-04-01

    This study discusses about the biosorption of Cr(VI) ion from aqueous solution using ultrasonic assisted Spirulina platensis (UASP). The prepared UASP biosorbent was characterised by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmet-Teller, scanning electron spectroscopy and energy dispersive X-ray and thermogravimetric analyses. The optimum condition for the maximum removal of Cr(VI) ions for an initial concentration of 50 mg/l by UASP was measured as: adsorbent dose of 1 g/l, pH of 3.0, contact time of 30 min and temperature of 303 K. Adsorption isotherm, kinetics and thermodynamic parameters were calculated. Freundlich model provided the best results for the removal of Cr(VI) ions by UASP. The adsorption kinetics of Cr(VI) ions onto UASP showed that the pseudo-first-order model was well in line with the experimental data. In the thermodynamic study, the parameters like Gibb's free energy, enthalpy and entropy changes were evaluated. This result explains that the adsorption of Cr(VI) ions onto the UASP was exothermic and spontaneous in nature. Desorption of the biosorbent was done using different desorbing agents in which NaOH gave the best result. The prepared material showed higher affinity for the removal of Cr(VI) ions and this may be an alternative material to the existing commercial adsorbents.

  9. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  10. Irradiation studies of local Streptomyces strains for higher antibiotic producing capacity. Part of a coordinated programme on radiation microbiology

    International Nuclear Information System (INIS)

    Kintanar, Q.L.

    1978-06-01

    The 14 mutants produced by sequential exposure to gamma and ultraviolet irradiation were found to belong to different fundamental types of variants differing in morphology, stability, and metabolite spectra from the parent strain. The first hour mutants, M-1 to M-4 could be considered as belonging to the first category of mutants. Metabolites produced were the same as the parent but differ only in quantity. One was a morphological mutant, M-4 which differed from the parent strain in the production of a brown pigment and conidia, and lack of aerial mycelium. It was found to be most stable and capable of producing high antibiotic yield. The rest of the mutants, M-5 to M-14 could be grouped in the second category. The synthesis of one or more metabolites of the parent strain has been lost by mutation. Unexpectedly, a mutant, M-9 instead of synthesizing either oxytetracycline or tetracycline produced chlortetracycline. Coconut water was found inhibitory to the production of antibiotics by the parent strain and the high and low producing mutants. Modifying the medium by incorporating phosphate and adjusting the initial pH to 4.75 raised the antibiotic yield of the 10% coconut water supplemented medium of M-4 more than the control. Higher pH than the optimum shortened the lag phase but reduced the antibiotic yield while a lower initial pH prevented the growth of the organism giving negligible yield. A reduction of pH to pH 4.5 for the initial 48 hours lengthened the lag phase with almost no adverse effect on the yield. The incorporation of large amounts of coconut water aggravated the amino acid imbalance of the medium

  11. IEA Wind TCP Task 26: Impacts of Wind Turbine Technology on the System Value of Wind in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Riva, Alberto D [Ea Energy Analyses; Hethey, Janos [Ea Energy Analyses; Vitina, Aisma [Danish Energy Agency

    2018-05-01

    This report analyzes the impact of different land-based wind turbine designs on grid integration and related system value and cost. This topic has been studied in a number of previous publications, showing the potential benefits of wind turbine technologies that feature higher capacity factors. Building on the existing literature, this study aims to quantify the effects of different land-based wind turbine designs in the context of a projection of the European power system to 2030. This study contributes with insights on the quantitative effects in a likely European market setup, taking into account the effect of existing infrastructure on both existing conventional and renewable generation capacities. Furthermore, the market effects are put into perspective by comparing cost estimates for deploying different types of turbine design. Although the study focuses on Europe, similar considerations and results can be applied to other power systems with high wind penetration.

  12. Wind power soars

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  13. Improving the design of higher-capacity railway tank cars for hazardous materials transport: Optimizing the trade-off between weight and safety

    International Nuclear Information System (INIS)

    Barkan, Christopher P.L.

    2008-01-01

    As with many aspects of modern industrial society, decision-makers face trade-offs in considering hazardous materials transportation equipment and practices. Tank cars used for transport of hazardous materials can be made more resistant to damage in accidents through use of a thicker steel tank and other protective features. However, the additional weight of these features reduces the car's capacity and thus its efficiency as a transportation vehicle. In this paper the problem of tank car safety versus weight is developed as a multi-attribute decision problem. North American railroads recently developed specifications for higher capacity tank cars for transportation of hazardous materials including enhanced safety design features. A group of tank car safety design features or 'risk reduction options' (RROs) were analyzed with regard to their effect on the conditional probability of release in an accident, and their incremental effect on tank car weight. All possible combinations of these RROs were then analyzed in terms of the reduced release probability per unit of weight increase and the Pareto optimal set of options identified. This set included the combinations of RROs that provided the greatest improvement in safety with the least amount of additional weight for any desired level of tank car weight increase. The analysis was conducted for both non-insulated and insulated tank cars and used two objective functions, minimization of conditional probability of release, and minimization of expected quantity lost, given that a car was derailed in an accident. Sensitivity analyses of the effect of tank car size and use of different objective functions were conducted and the optimality results were found to be robust. The results of this analysis were used by the Association of American Railroads Tank Car Committee to develop new specifications for higher capacity non-insulated and insulated, non-pressure tank cars resulting in an estimated 32% and 24% respective

  14. Microcomputers with higher processing capacity

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Loosely-coupled multiprocessor systems comprise a number of modules with specialised functions such as arithmetic processor, bit-slice processors, single-chip peripheral processors, usually provided with local resources (I/O units, memories) and forming an integrated network. The topology of three typical multiprocessor systems are discussed: coupling via I/O modules, common memory and DMA. I/O coupled systems have serial transmission, often in master/slave configuration. Several processors may have a common memory and for fast exchange of data between processors, the DMA coupling is used. Configurations for local networks (star, loop, ring) are surveyed and dictionary of terms (LAN, SDLC, HDLC etc.) is provided.

  15. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  16. Wind farm project economics : value of wind

    Energy Technology Data Exchange (ETDEWEB)

    Bills-Everett, T. [Mainstream Renewable Power, Toronto, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of increasing the value of wind power projects. Appropriate turbine selection and layout is needed to ensure that wind resources are fully developed. Construction costs have a significant impact on project costs. The world turbine price index has not significantly fluctuated since 2006. Operating costs, and the value of wind power projects, are linked with OPEX fluctuations. Wind power projects can significantly reduce greenhouse gas (GHG) emissions. An increase in wind power capacity will reduce the overall cost of energy produced from wind power. Countries can use wind power as part of a renewable energy portfolio designed to reduce risks related to diminishing petroleum supplies. Wind power will help to ensure a global transition to renewable energy use. tabs., figs.

  17. Doctoral level research and training capacity in the social determinants of health at universities and higher education institutions in India, China, Oman and Vietnam: a survey of needs.

    Science.gov (United States)

    Ali, Farhad; Shet, Arun; Yan, Weirong; Al-Maniri, Abdullah; Atkins, Salla; Lucas, Henry

    2017-09-02

    Research capacity is scarce in low- and middle-income country (LMIC) settings. Social determinants of health research (SDH) is an area in which research capacity is lacking, particularly in Asian countries. SDH research can support health decision-makers, inform policy and thereby improve the overall health and wellbeing of the population. In order to continue building this capacity, we need to know to what extent training exists and how challenges could be addressed from the perspective of students and staff. This paper aims to describe the challenges involved in training scholars to undertake research on the SDH in four Asian countries - China, India, Oman and Vietnam. In-depth interviews were conducted with research scholars, research supervisors and principal investigators (n = 13) at ARCADE partner institutions, which included eight universities and research institutes. In addition, structured questionnaires (n = 70) were used to collect quantitative data relating to the courses available, teaching and supervisory capacity, and related issues for students being trained in research on SDH. Simple descriptive statistics were calculated from the quantitative data and thematic analysis applied to the qualitative data. We identified a general lack of training courses focusing on SDH. Added to this, PhD students studying related areas reported inadequate supervision, with limited time allocated to meetings and poor interpersonal communication. Supervisors cited interpersonal communication problems and student lack of skills to perform high quality research as challenges to research training. Further challenges reported included a lack of research funding to include SDH-related topics. Finally, it was suggested that there was a need for institutions to define clear and appropriate standards regarding admission and supervision of students to higher education programs awarding doctoral degrees. There are gaps in training for research on the SDH at the surveyed

  18. What to expect from a greater geographic dispersion of wind farms?-A risk portfolio approach

    International Nuclear Information System (INIS)

    Drake, Ben; Hubacek, Klaus

    2007-01-01

    The UK, like many other industrialised countries, is committed to reducing greenhouse gas emissions under the Kyoto Protocol. To achieve this goal the UK is increasingly turning towards wind power as a source of emissions free energy. However, the variable nature of wind power generation makes it an unreliable energy source, especially at higher rates of penetration. Likewise the aim of this paper is to measure the potential reduction in wind power variability that could be realised as a result of geographically dispersing the location of wind farm sites. To achieve this aim wind speed data will be used to simulate two scenarios. The first scenario involves locating a total of 2.7 gigawatts (GW) of wind power capacity in a single location within the UK while the second scenario consists of sharing the same amount of capacity amongst four different locations. A risk portfolio approach as used in financial appraisals is then applied in the second scenario to decide upon the allocation of wind power capacity, amongst the four wind farm sites, that succeeds in minimising overall variability for a given level of wind power generation. The findings of this paper indicate that reductions in the order of 36% in wind power variability are possible as a result of distributing wind power capacity

  19. Wind: French revolutions

    International Nuclear Information System (INIS)

    Jones, C.

    2006-01-01

    Despite having the second best wind resources in Europe after the UK, the wind industry in France lags behind its European counterparts with just 6 W of installed wind capacity per person. The electricity market in France is dominated by the state-owned Electricite de France (EdF) and its nuclear power stations. However, smaller renewable generators are now in theory allowed access to the market and France has transposed the EU renewables directive into national law. The French governement has set a target of generating 10,000 MW of renewable capacity by 2010. The announcement of an increased feed-in tariff and the introduction of 'development zones' (ZDEs) which could allow fast-tracking of planning for wind projects are also expected to boost wind projects. But grid access and adminstrative burdens remain major barriers. In addition, French politicians and local authorities remain committed to nuclear, though encouraged by the European Commission, wind is beginning to gain acceptance; some 325 wind farms (representing 1557 MW of capacity) were approved between February 2004 and January 2005. France is now regarded by the international wind energy sector as a target market. One of France's leading independent wind developers and its only listed wind company, Theolia, is expected to be one of the major beneficiaries of the acceleration of activity in France, though other companies are keen to maximise the opportunities for wind. France currently has only one indigenous manufacturer of wind turbines, but foreign suppliers are winning orders

  20. Offshore Wind Farm Layout Design Considering Optimized Power Dispatch Strategy

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; N. Soltani, Mohsen

    2017-01-01

    Offshore wind farm has drawn more and more attention recently due to its higher energy capacity and more freedom to occupy area. However, the investment is higher. In order to make a cost-effective wind farm, the wind farm layout should be optimized. The wake effect is one of the dominant factors...... leading to energy losses. It is expected that the optimized placement of wind turbines (WT) over a large sea area can lead to the best tradeoff between energy yields and capital investment. This paper proposes a novel way to position offshore WTs for a regular shaped wind farm. In addition to optimizing...... the direction of wind farm placement and the spacing between WTs, the control strategy’s impact on energy yields is also discussed. Since the problem is non-convex and lots of optimization variables are involved, an evolutionary algorithm, the particle swarm optimization algorithm (PSO), is adopted to find...

  1. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  2. 2010 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryan Wiser, Mark Bolinger

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  3. Report on the field test project for wind power development at Kamiyaku Town (wind characteristics investigation); Kamiyakucho ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Wind characteristics are observed for a year at the above town located at the northern end of the Yakushima island, Kagoshima Prefecture. The exponential index of the wind speed distribution in the vertical direction is 6.06 with all the directions averaged, and is so high as 8.4/13.6 in the wind directions (W/E). Prudence should be exercised, when to estimate the wind speed at the wind turbine hub altitude, against disjunction from the simple exponential law due to geographical peculiarities of the observation location. Turbulence intensity is low and is 0.15 when the wind speed is 2m/s or more, not exerting an ill effect on wind power development. As for the total wind direction occurrence rate on the prevalent wind axis, 78.2% is recorded, which is much higher than the reference value (60%). The average wind speed on this wind axis is high, and this shows that the location is quite suitable for wind power development. The annual average wind speed of 6.3m/s is much higher than the reference value, this again promising a success. The wind energy density of 478W/m{sup 2} is sufficiently high, as compared with the reference value (215W/m{sup 2}). Since there are possibilities of a maximum instantaneous wind speed of over 60m/s, caution is to be used in determining wind endurance for the wind turbine design. The annual capacity ratios for the 150/300/750kW wind turbine models are 33.8/36.5/36.9%, respectively, higher than the NEDO-provided reference value (17% or higher) and predicting sufficient power generation. (NEDO)

  4. A simple gold nanoparticle-mediated immobilization method to fabricate highly homogeneous DNA microarrays having higher capacities than those prepared by using conventional techniques

    International Nuclear Information System (INIS)

    Jung, Cheulhee; Mun, Hyo Young; Li, Taihua; Park, Hyun Gyu

    2009-01-01

    A simple, highly efficient immobilization method to fabricate DNA microarrays, that utilizes gold nanoparticles as the mediator, has been developed. The fabrication method begins with electrostatic attachment of amine-modified DNA to gold nanoparticles. The resulting gold-DNA complexes are immobilized on conventional amine or aldehyde functionalized glass slides. By employing gold nanoparticles as the immobilization mediator, implementation of this procedure yields highly homogeneous microarrays that have higher binding capacities than those produced by conventional methods. This outcome is due to the increased three-dimensional immobilization surface provided by the gold nanoparticles as well as the intrinsic effects of gold on emission properties. This novel immobilization strategy gives microarrays that produce more intense hybridization signals for the complementary DNA. Furthermore, the silver enhancement technique, made possible only in the case of immobilized gold nanoparticles on the microarrays, enables simple monitoring of the integrity of the immobilized DNA probe.

  5. Wind energy potential in Bulgaria

    International Nuclear Information System (INIS)

    Shtrakov, Stanko Vl.

    2009-01-01

    In this study, wind characteristic and wind energy potential in Bulgaria were analyzed using the wind speed data. The wind energy potential at different sites in Bulgaria has been investigated by compiling data from different sources and analyzing it using a software tool. The wind speed distribution curves were obtained by using the Weibull and Rayleigh probability density functions. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve. A technical and economic assessment has been made of electricity generation from three wind turbines having capacity of (60, 200, and 500 kW). The yearly energy output capacity factor and the electrical energy cost of kWh produced by the three different turbines were calculated

  6. Making full use of wind power potential in North America -- possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Guillaud, Christian

    2010-09-15

    The anticipated increase in electrical load in North America up to the year 2050 will be at least 50%. Wind potential in North America is enormous, well in excess of the expected requirements. However, the amount of wind capacity, which can be directly connected to a grid is limited to 20% of the installed capacity because of technical constraints. Technologies to enable full wind potential to be harnessed still need to be developed; they will consist in storing wind energy in hydroelectric reservoirs or generating hydrogen. However, the resulting cost of electricity will be somewhat higher than present.

  7. Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes

    Directory of Open Access Journals (Sweden)

    Souma Chowdhury

    2016-05-01

    Full Text Available The suitability of turbine configurations to different wind resources has been traditionally restricted to considering turbines operating as standalone entities. In this paper, a framework is thus developed to investigate turbine suitability in terms of the minimum cost of energy offered when operating as a group of optimally-micro-sited turbines. The four major steps include: (i characterizing the geographical variation of wind regimes in the onshore U.S. market; (ii determining the best performing turbines for different wind regimes through wind farm layout optimization; (iii developing a metric to quantify the expected market suitability of available turbine configurations; and (iv exploring the best tradeoffs between the cost and capacity factor yielded by these turbines. One hundred thirty one types of commercial turbines offered by major global manufacturers in 2012 are considered for selection. It is found that, in general, higher rated power turbines with medium tower heights are the most favored. Interestingly, further analysis showed that “rotor diameter/hub height” ratios greater than 1.1 are the least attractive for any of the wind classes. It is also observed that although the “cost-capacity factor” tradeoff curve expectedly shifted towards higher capacity factors with increasing wind class, the trend of the tradeoff curve remained practically similar.

  8. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Caneghem, A.E. von

    1975-07-24

    The invention applies to a wind power plant in which the wind is used to drive windmills. The plant consists basically of a vertical tube with a lateral wind entrance opening with windmill on its lower end. On its upper end, the tube carries a nozzle-like top which increases the wind entering the tube by pressure decrease. The wind is thus made suitable for higher outputs. The invention is illustrated by constructional examples.

  9. Impact of integrating wind power in the Norwegian power system

    International Nuclear Information System (INIS)

    Tande, John Olav

    2006-04-01

    Wind power may in the future constitute a significant part of the Norwegian electricity supply. 20 TWh annual wind generation is a realistic goal for 2020 assuming wind farms on-land and offshore. The development of grid codes for wind farms is sound. It is recognising that large wind farms are basically power plants and may participate in securing efficient and stable power system operation. Modern wind farms may control the reactive power or voltage as any other power plant, and may also control active power or frequency as long as wind conditions permits. Grid code requirements must however be carefully assessed and possibly adjusted over time aiming for overall least cost solutions. Development of wind farms are today to some degree hindered by conservative assumptions being made on operation of wind farms in areas with limited power transfer capacity. By accepting temporary grid congestions, however, a large increase installed wind power is viable. For grid congestion that appears a few hours per year only, the cost of lost generation will be modest and may be economic over the alternatives of limiting wind farm capacities or increasing the grid transfer capacity. Wind generation impact on power system operation and adequacy will be overall positive. Combining wind and hydro provides for a more stable annual energy supply than hydro alone, and wind generation will generally be higher in the winter period than in the summer. Wind will replace the generation with the highest operating cost, and reduce the average Nord Pool spot market price. 20 TWh wind will reduce price with about 3 oere/kWh and CO 2 emissions by 12-14 million tons for the case of replacing coal, and about 6 million tons for replacing natural gas. Wind impact on need for balancing power is small, i.e. the extra balancing cost is about 0,8 oere per kWh wind, and about half if investment in new reserve capacity is not needed. In summary this report demonstrates options for large scale integration

  10. Potentials of wind power

    International Nuclear Information System (INIS)

    Bezrukikh, P.P.; Bezrukikh, P.P.

    2000-01-01

    The ecological advantages of the wind power facilities (WPF) are considered. The possibilities of small WPF, generating the capacity from 40 W up to 10 kW, are discussed. The basic technical data on the national and foreign small WPF are presented. The combined wind power systems are considered. Special attention is paid to the most perspective wind-diesel systems, which provide for all possible versions of the electro-power supply. Useful recommendations and information on the wind power engineering are given for those, who decided to build up a wind facility [ru

  11. Superior integrin activating capacity and higher adhesion to fibrinogen matrix in buffy coat-derived platelet concentrates (PCs) compared to PRP-PCs.

    Science.gov (United States)

    Beshkar, Pezhman; Hosseini, Ehteramolsadat; Ghasemzadeh, Mehran

    2018-02-01

    Regardless of different sources, methods or devices which are applied for preparation of therapeutic platelets, these products are generally isolated from whole blood by the sedimentation techniques which are based on PRP or buffy coat (BC) separation. As a general fact, platelet preparation and storage are also associated with some deleterious changes that known as platelet storage lesion (PSL). Although these alternations in platelet functional activity are aggravated during storage, whether technical issues within preparation can affect integrin activation and platelet adhesion to fibrinogen were investigated in this study. PRP- and BC-platelet concentrates (PCs) were subjected to flowcytometry analysis to examine the expression of platelet activation marker, P-selectin as well as active confirmation of the GPIIb/IIIa (α IIb β 3 ) on day 0, 1, 3 and 5 post-storage. Platelet adhesion to fibrinogen matrix was evaluated by fluorescence microscopy. Glucose concentration and LDH activity were also measured by colorimetric methods. The increasing P-selectin expression during storage was in a reverse correlation with PAC-1 binding (r = -0.67; p = .001). PRP-PCs showed the higher level of P-selectin expression than BC-PCs, whereas the levels of PAC-1 binding and platelet adhesion to fibrinogen matrix were significantly lower in PRP-PCs. Higher levels of active confirmation of the GPIIb/IIIa in BC-PCs were also associated with greater concentration of glucose in these products. We demonstrated the superior capacities of integrin activation and adhesion to fibrinogen for BC-PCs compared to those of PRP-PCs. These findings may provide more advantages for BC method of platelet preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Wind integration in Alberta

    International Nuclear Information System (INIS)

    Frost, W.

    2007-01-01

    This presentation described the role of the Alberta Electric System Operator (AESO) for Alberta's interconnected electric system with particular reference to wind integration in Alberta. The challenges of wind integration were discussed along with the requirements for implementing the market and operational framework. The AESO is an independent system operator that directs the reliable operation of Alberta's power grid; develops and operates Alberta's real-time wholesale energy market to promote open competition; plans and develops the province's transmission system to ensure reliability; and provides transmission system access for both generation and load customers. Alberta has over 280 power generating station, with a total generating capacity of 11,742 MW, of which 443 is wind generated. Since 2004, the AESO has been working with industry on wind integration issues, such as operating limits, need for mitigation measures and market rules. In April 2006, the AESO implemented a temporary 900 MW reliability threshold to ensure reliability. In 2006, a Wind Forecasting Working Group was created in collaboration with industry and the Canadian Wind Energy Association in an effort to integrate as much wind as is feasible without compromising the system reliability or the competitive operation of the market. The challenges facing wind integration include reliability issues; predictability of wind power; the need for dispatchable generation; transmission upgrades; and, defining a market and operational framework for the large wind potential in Alberta. It was noted that 1400 MW of installed wind energy capacity can be accommodated in Alberta with approved transmission upgrades. figs

  13. 基于有效容量分布的含风电场电力系统随机生产模拟%Power System Probabilistic Production Simulation With Wind Generation Based on Available Capacity Distribution

    Institute of Scientific and Technical Information of China (English)

    邹斌; 李冬

    2012-01-01

    The power system operation simulation including large wind turbine generations, which is based on the Monte Carlo method, is of good accuracy and extensive adaptability. However, the computation time of the simulation is long and this limits its application. The other theoretical methodologies have some disadvantages, for example, the wind turbine generations could not be described precisely, or it is difficult to deal with the multi wind farms and the correlations among them. In order to overcome these disadvantages, a probabilistic production simulation algorithm for power systems including wind farms was proposed based on available capacity distribution. The time-varying characteristics of the load and wind turbines were considered in the algorithm. The auto-regressive moving average (ARMA) time series model was applied to simulate the wind speed, and the cumulants method was used to calculate the available capacity distribution. The proposed algorithm could better describe the characteristics of the wind turbine generations, and is of high computing efficiency. Multi wind farms and their correlations are taken into consideration in the algorithm, and the probability and the energy of the abandoned wind power caused by the limitation of the minimum output can be calculated. The effectiveness of the method was verified based on the data of IEEE-RTS system.%基于蒙特卡罗(MonteCarlo)方法的含大规模风力发电的电力系统模拟虽然具有较好的精度和广泛的适应性,但其过大的时间开销限制了其应用。而现有的理论计算方法则存在风力发电描述不够准确、难以处理多风电场及其相关性等问题。针对此现状,提出了一种基于发电机组有效容量分布的含风电场的电力系统随机生产模拟算法。该算法保留了负荷和风电机组的时变特性,采用时间序列白回归移动平均(auto-regressive movingaverage,ARMA)模型模拟风速,使用半不变量

  14. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  15. Observability of wind power

    International Nuclear Information System (INIS)

    Gonot, J.P.; Fraisse, J.L.

    2009-01-01

    The total installed capacity of wind power grows from a few hundred MW at the beginning of 2005 to 3400 MW at the end of 2008. With such a trend, a total capacity of 7000 MW could be reached by 2010. The natural variability of wind power and the difficulty of its predictability require a change in the traditional way of managing supply/demand balance, day-ahead margins and the control of electrical flows. As a consequence, RTE operators should be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. French specificities are that wind farms are largely spread over the territory, that 95 % of wind farms have an output power below 10 MW and that they are connected to the distribution network. In this context, new tools were necessary to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production 'IPES system' enable to get an access to the technical characteristics of the whole wind farms, to observe in real time 75 % of the wind generation and to implement a forecast model related to wind generation. (authors)

  16. Identification of wind energy systems

    NARCIS (Netherlands)

    Van der Veen, G.J.

    2013-01-01

    In the next decades wind energy is expected to secure a firm share of the total energy production capacity in many countries. To increase competitiveness of wind power with other power sources it is essential to lower the cost of wind energy. Given the design of a turbine, this objective can be

  17. Energy researchers - 8. Wind power production: Wind power, the energy of the future; A mature sector; The ecological attraction of wind

    International Nuclear Information System (INIS)

    Minster, Jean-Francois; Appert, Olivier; Moisan, Francois; Salha, Bernard; Tardieu, Bernard; Florette, Marc; Ghidaglia, Jean-Michel; Viterbo, Jerome

    2012-01-01

    A first article comments the development in the design of wind turbines which become more powerful, with higher performance. Researchers are also working on blade shape, on alternator technology, on the use of multiplier to enable the reduction of the alternator weight, on better control and command systems to increase the load factor. The development of offshore wind farms is also a challenge in terms of maintenance, in wind turbine design in order to withstand sea corrosion, and in terms of connection to the grid. A second article comments the evolution of the wind energy sector in terms of installed capacity, costs and competitiveness. In an interview, three researchers outline the extremely positive carbon footprint and other benefits of wind power, and also discuss its disadvantages: they mainly concern the impact on landscape, but also birds and marine fauna

  18. [Playing of wind instruments is associated with an obstructive pattern in the spirometry of adolescents with a good aerobic resistance capacity].

    Science.gov (United States)

    Granell, Javier; Granell, Jose; Ruiz, Diana; Tapias, Jose A

    2011-03-01

    There is controversy in the medical literature regarding the beneficial or detrimental effects of playing wind musical instruments on the respiratory system. The aim of this study is to analyse this relationship, taking the physical condition of the subjects into consideration. Cross-sectional observational study. Public institution with coordinated medium grade musical instruction and primary and secondary education. Young performers (between 13 and 17 years). We collected basic epidemiological parameters (gender, age, weight, size, heath status), and each subject underwent a fitness test ("course navette" cardiorespiratory fitness test) and a forced spirometry. We included 90 students, 53 females and 37 males. Thirty two were wind instrument players and 58 studied other instruments. The two groups were homogeneous with respect to gender, age and body mass index. The maximum oxygen uptake showed no significant difference (P=0.255), further demonstrating an adequate level of fitness compared to the general population. FVC was normal and similar in both groups (P=0.197). The FEV(1) percentage and the FEV(1)/FVC ratio were significantly lower (Pstudy of wind instruments was associated with an obstructive spirometric pattern in young musicians with a normal level of physical fitness. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  19. Trend in China's Wind Power

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Attractive prospects for wind power development Sha Yiqiang:In recent years,the development and utilization of wind energy has achieved remarkable results.To the end of 2007,the installed capacity of the wind power had reached 94 000 MW all over the world,which is distributed over 60 countries.Over the past 20 years,the wind power generation installation cost has been reduced by 50% and is closing to that of the conventional energy resources.Meanwhile,the single unit capacity,efficiency and reliability of wind power have been greatly improved.

  20. 2013 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  1. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  2. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    International Nuclear Information System (INIS)

    Waite, Michael; Modi, Vijay

    2014-01-01

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  3. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  4. Structural Optimization of an Innovative 10 MW Wind Turbine Nacelle

    DEFF Research Database (Denmark)

    Dabrowski, Dariusz; Natarajan, Anand; Stehouwer, Ewoud

    2015-01-01

    For large wind turbine configurations of 10 MW and higher capacities, direct-drives present a more compact solution over conventional geared drivetrains. Further, if the generator is placed in front of the wind turbine rotor, a compact “king-pin” drive is designed, that allows the generator...... to be directly coupled to the hub. In presented study, the structural re-design of the innovative 10 MW nacelle was made using extreme loads obtained from a 10 MW reference wind turbine. On the basis of extreme loads the ultimate stresses on critical nacelle components were determined to ensure integrity...

  5. Breezing ahead: the Spanish wind energy market

    International Nuclear Information System (INIS)

    Avia Aranda, Felix; Cruz, I.C.

    2000-01-01

    This article traces the rapid increase in Spain's wind generating capacity, and examines Spain's wind strategy, the assessment of wind power potential at regional level, and the guaranteeing of the market price for power generators using wind energy with yearly reviews of the price of electricity from wind power. Prices payable for electricity generated from renewable sources are listed, and the regional distribution of wind energy production is illustrated. Recent wind power installations in Spain, target levels for wind energy installations, wind farms larger than 1MW installed in 1999, and the impact of the growth of the wind energy market on the manufacturing industry and the manufacturers are discussed. Details of the wind energy capacity in the provinces of Navarra and Galicia are given, and plans for wind energy projects in the New National Plan for Scientific research, Development and Technological innovation (2000-2003) are considered

  6. The potential of wind farms

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Summaries of papers presented at the European wind energy conference on the potential of wind farms are presented. It is stated that in Denmark today, wind energy provides about 3% to the Danish electricity consumption and the wind power capacity is, according to Danish wind energy policy, expected to increase substantially in the years to come. A number of countries in Europe and elsewhere are making significant progress in this repect. Descriptions of performance are given in relation to some individual wind farms. The subjects covered concern surveys of national planning and policies regarding wind utilization and national and global development of wind turbine arrays. Papers also deal with utility and project planning, wind prediction and certification, wind loads and fatigue, wakes, noise and control. (AB).

  7. Application of Boost Converter to Increase the Speed Range of Dual-stator Winding Induction Generator in Wind Power Systems

    DEFF Research Database (Denmark)

    Kavousi, Ayoub; Fathi, S. Hamid; Milimonfared, Jafar

    2018-01-01

    In this paper, a topology using a Dual-stator Winding Induction Generator (DWIG) and a boost converter is proposed for the variable speed wind power application. At low rotor speeds, the generator saturation limits the voltage of the DWIG. Using a boost converter, higher DC voltage can be produced...... while the DWIG operates at Maximum Power Point Tracking (MPPT) even at low speed and low voltage conditions. Semiconductor Excitation Controller (SEC) of the DWIG utilizes Control-Winding Voltage Oriented Control (CWVOC) method to adjust the voltage, considering V/f characteristics. For the proposed...... topology, the SEC capacity and the excitation capacitor is optimized by analyzing the SEC reactive current considering wind turbine power-speed curve, V/f strategy, and the generator parameters. The method shows that the per-unit capacity of the SEC can be limited to the inverse of DWIG magnetizing...

  8. Heuristic and probabilistic wind power availability estimation procedures: Improved tools for technology and site selection

    Energy Technology Data Exchange (ETDEWEB)

    Nigim, K.A. [University of Waterloo, Waterloo, Ont. (Canada). Department of Electrical and Computer Engineering; Parker, Paul [University of Waterloo, Waterloo, Ont. (Canada). Department of Geography, Environmental Studies

    2007-04-15

    The paper describes two investigative procedures to estimate wind power from measured wind velocities. Wind velocity data are manipulated to visualize the site potential by investigating the probable wind power availability and its capacity to meet a targeted demand. The first procedure is an availability procedure that looks at the wind characteristics and its probable energy capturing profile. This profile of wind enables the probable maximum operating wind velocity profile for a selected wind turbine design to be predicted. The structured procedures allow for a consequent adjustment, sorting and grouping of the measured wind velocity data taken at different time intervals and hub heights. The second procedure is the adequacy procedure that investigates the probable degree of availability and the application consequences. Both procedures are programmed using MathCAD symbolic mathematical software. The math tool is used to generate a visual interpolation of the data as well as numerical results from extensive data sets that exceed the capacity of conventional spreadsheet tools. Two sites located in Southern Ontario, Canada are investigated using the procedures. Successful implementation of the procedures supports informed decision making where a hill site is shown to have much higher wind potential than that measured at the local airport. The process is suitable for a wide spectrum of users who are considering the energy potential for either a grid-tied or off-grid wind energy system. (author)

  9. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  10. Wind energy in Europe

    International Nuclear Information System (INIS)

    Evans, L.C.

    1992-01-01

    Wind energy should be an important part of the energy supply mix, both at home and abroad, to provide cleaner air and a more stable fuel supply. Not only can wind energy contribute to solving complex global issues, it also can provide a large market for American technological leadership. Even though utilities are paying more attention to wind in a number of states, there are no plans for major installations of wind power plants in the United States. At the same time, European nations have developed aggressive wind energy development programs, including both ambitious research and development efforts and market incentives. Many countries recognize the importance of the clean energy provided by wind technology and are taking steps to promote their fledgling domestic industries. The emphasis on market incentives is starting to pay off. In 1991, European utilities and developers installed nearly twice as much wind capacity as Americans did. In 1992 the gap will be even greater. This article reviews aggressive incentives offered by European governments to boost their domestic wind industries at home and abroad in this almost $1 billion per year market. By offering substantial incentives - considerably more than the American Wind Energy Association (AWEA) is proposing - European nations are ensuring dramatic near-term wind energy development and are taking a major step toward dominating the international wind industry of the 21st century

  11. Offshore wind energy prospects

    International Nuclear Information System (INIS)

    Gaudiosi, Gaetano

    1999-01-01

    In last two years offshore wind energy is becoming a focal point of national and non national organisations particularly after the limitations of fossil fuel consumption, adopted by many developed countries after Kyoto conference at the end of 1997 on global climate change. North Europe is particularly interested in offshore for the limited land areas still available, due to the intensive use of its territory and its today high wind capacity. Really the total wind capacity in Europe could increase from the 1997 value of 4450 MW up to 40 000 MW within 2010, according the White Paper 1997 of the European Commission; a significant percentage (25%) could be sited offshore up to 10 000 MW, because of close saturation of the land sites at that time. World wind capacity could increase from the 1997 value of 7200 MW up to 60 000 MW within 2010 with a good percentage (20%) offshore 12 000 MW. In last seven years wind capacity in shallow water of coastal areas has reached 34 MW. Five wind farms are functioning in the internal seas of Netherlands, Denmark, Sweden; however such siting is mostly to be considered as semi-offshore condition. Wind farms in real offshore sites, open seas with waves and water depth over 10 m, are now proposed in North Sea at 10-20 km off the coasts of Netherlands, Denmark using large size wind turbine (1-2 MW). In 1997 an offshore proposal was supported in Netherlands by Greenpeace after the OWEMES '97 seminar, held in Italy on offshore wind in the spring 1997. A review is presented in the paper of European offshore wind programs with trends in technology, economics and siting effects. (Author)

  12. Baseload, industrial-scale wind power: An alternative to coal in China

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.J.; Williams, R.H. [Princeton Univ., Princeton, NJ (United States); Xie Shaoxiong; Zhang Shihui [Ministry of Electric Power, Beijing (China)

    1996-12-31

    This report presents a novel strategy for developing wind power on an industrial-scale in China. Oversized wind farms, large-scale electrical storage and long-distance transmission lines are integrated to deliver {open_quotes}baseload wind power{close_quotes} to distant electricity demand centers. The prospective costs for this approach to developing wind power are illustrated by modeling an oversized wind farm at Huitengxile, Inner Mongolia. Although storage adds to the total capital investment, it does not necessarily increase the cost of the delivered electricity. Storage makes it possible to increase the capacity factor of the electric transmission system, so that the unit cost for long-distance transmission is reduced. Moreover, baseload wind power is typically more valuable to the electric utility than intermittent wind power, so that storage can be economically attractive even in instances where the cost per kWh is somewhat higher than without storage. 9 refs., 3 figs., 2 tabs.

  13. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    Science.gov (United States)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine

  14. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  15. Higher Education

    African Journals Online (AJOL)

    Kunle Amuwo: Higher Education Transformation: A Paradigm Shilt in South Africa? ... ty of such skills, especially at the middle management levels within the higher ... istics and virtues of differentiation and diversity. .... may be forced to close shop for lack of capacity to attract ..... necessarily lead to racial and gender equity,.

  16. Planning wind turbines in harmony with the landscape. Main report

    International Nuclear Information System (INIS)

    1996-02-01

    The report concerns the revision of the plan for the siting of wind turbines in Loegstoer municipality in Denmark. A major aim of the plan is that the wind turbines should not spoil the beauty of the landscape which also includes coastal areas. The already existing plan is described and records are given of the 132 wind turbines, primarily sited in coastal areas. These turbines have been subjected to arbitrary siting which created a disharmonious landscape view. Wind conditions were assessed with a view to finding suitable sites and a map showing 24 prioritized areas with space for 127 wind turbines, with a total capacity of 500 kW, was produced. It is stated that the Loegstoer landscape would be suited by 40 m high turbines and the flatter areas could take even higher ones. Four possible scenarios are described in detail and a great number of large scale coloured photographs illustrate the text. (AB)

  17. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  18. Improvement of small-signal stability of power system by controlling doubly fed induction generators of a large-capacity wind farm

    Directory of Open Access Journals (Sweden)

    Tomohiro Adachi

    2016-01-01

    Full Text Available Many wind turbine generations have been installed into power systems around the world, where in recent years doubly fed induction generator (DFIG attracts a lot of attentions because of its efficiency and controllability. However, the DFIG is connected to the power system through inverters and originally does not have an ability to release the kinetic energy of the rotor or resorb the surplus power of the power system as the kinetic energy. Therefore, it has not been made clear how the DFIGs have an influence on small-signal stability in power systems. In this paper, we propose a control scheme of the DFIG and analyse its effect on the small-signal stability of the power system by eigenvalue calculations and time-domain simulations.

  19. Wind Resource Assessment of Gujarat (India)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  20. Environmental impact of wind energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Teilmann, Jonas

    2013-01-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative...... ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions...... are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric...

  1. Transmission cost minimization strategies for wind-electric generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R. [Northern States Power Company, Minneapolis, MN (United States)

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  2. Wind farm economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy are changing rapidly, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. Although the United Kingdom has regions of high wind speed, these are often in difficult terrain and construction costs are often higher than elsewhere in Europe. Nevertheless, wind energy costs are converging with those of the conventional thermal sources. At present, bank loan periods for wind projects are shorter than for thermal plant, which means that energy prices are higher. Ways of overcoming this problem are explored. It is important, also, to examine the value of wind energy. It is argued that wind energy has a higher value than energy from centralized plant, since it is fed into the low-voltage distribution network. (Author)

  3. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  4. Assessing the economic wind power potential in Austria

    International Nuclear Information System (INIS)

    Gass, Viktoria; Schmidt, Johannes; Strauss, Franziska; Schmid, Erwin

    2013-01-01

    In the European Union, electricity production from wind energy is projected to increase by approximately 16% until 2020. The Austrian energy plan aims at increasing the currently installed wind power capacity from approximately 1 GW to 3 GW until 2020 including an additional capacity of 700 MW until 2015. The aim of this analysis is to assess economically viable wind turbine sites under current feed-in tariffs considering constraints imposed by infrastructure, the natural environment and ecological preservation zones in Austria. We analyze whether the policy target of installing an additional wind power capacity of 700 MW until 2015 is attainable under current legislation and developed a GIS based decision system for wind turbine site selection.Results show that the current feed-in tariff of 9.7 ct kW h −1 may trigger an additional installation of 3544 MW. The current feed-in tariff can therefore be considered too high as wind power deployment would exceed the target by far. Our results indicate that the targets may be attained more cost-effectively by applying a lower feed-in tariff of 9.1 ct kW h −1 . Thus, windfall profits at favorable sites and deadweight losses of policy intervention can be minimized while still guaranteeing the deployment of additional wind power capacities. - Highlight: ► Wind supply curves with high spatial resolution for whole Austria are derived. ► Current feed-in tariff higher than necessary to attain targets. ► Previous feed-in tariffs were too low to achieve targets. ► Current support scheme leads to high social welfare losses. ► Policy makers face high information asymmetry when setting feed-in tariffs.

  5. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  6. Design and Operation of Power Systems with Large Amounts of Wind Power: Final Summary Report, IEA WIND Task 25, Phase Three 2012-2014

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, Hannele; Kiviluoma, Juha; Forcione, Alain; Milligan, Michael; Smith, Charles J.; Dillon, Jody; Dobschinski, Jan; van Roon, Serafin; Cutululis, Nicolaos; Orths, Antje; Eriksen, Peter Borre; Carlini, Enrico Maria; Estanqueiro, Ana; Bessa, Ricardo; Soder, Lennart; Farahmand, Hossein; Torres, Jose Rueda; Jianhua, Bai; Kondoh, Junji; Pineda, Ivan; Strbac, Goran

    2016-06-01

    This report summarizes recent findings on wind integration from the 16 countries participating in the International Energy Agency (IEA) Wind collaboration research Task 25 in 2012-2014. Both real experience and studies are reported. The national case studies address several impacts of wind power on electric power systems. In this report, they are grouped under long-term planning issues and short-term operational impacts. Long-term planning issues include grid planning and capacity adequacy. Short-term operational impacts include reliability, stability, reserves, and maximizing the value in operational timescales (balancing related issues). The first section presents variability and uncertainty of power system-wide wind power, and the last section presents recent wind integration studies for higher shares of wind power. Appendix 1 provides a summary of ongoing research in the national projects contributing to Task 25 in 2015-2017.

  7. 2014 Distributed Wind Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Orell, A; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  8. Towards mass-market development of wind energy

    International Nuclear Information System (INIS)

    Palz, W.

    1996-01-01

    The wind turbine technologies employed in today's markets for wind energy are innovative, efficient and in many cases cost competitive. A world market of more than 1000 MW/year and with a turnover of 1 billion ECU has developed and 30,000 new jobs have been created, most of them in small and medium size enterprises. 80% of today's world production is European. The preferred turbine capacity of today is 500 kW. In the next few years a three-fold increase in the rated power of most commercial machines to 1.5 MW is expected. The new large machines have been achieved through the ''WEGA''-programme of the European Commission. Significant market penetration of wind power in the European Union is very recent. The 2500 MW installed wind capacity in Europe today accounts only for 1/2% of the total capacity available for electricity production. Markets of the future will depend on a better development of the economic integration issues of wind energy into large networks. A key is the cost of electric grids which conditions the opportunity cost for feeding wind power at any particular point into the grids. Also, better predictability of the wind resource will give higher value to wind power in the grid and improve its economics further. Various financing schemes have been set up throughout Europe. Financial support and incentives are vital for some more years to come to expand current markets and improve economics through economy of scale. The utilisation of wind turbines in off-grid situations is an important new field for technological innovations and deployment. (author)

  9. Utility-sized Madaras wind plants

    Science.gov (United States)

    Whitford, D. H.; Minardi, J. E.

    1981-01-01

    An analysis and technological updating were conducted for the Madaras Rotor Power Plant concept, to determine its ability to compete both technically and economically with horizontal axis wind turbine generators currently under development. The Madaras system uses large cylinders rotating vertically atop each regularly spaced flatcar of a train to propel them, by means of Magnus-effect interaction with the wind, along a circular or oval track. Alternators geared to the wheels of each car generate electrical power, which is transmitted to a power station by a trolley system. The study, consisting of electromechanical design, wind tunnel testing, and performance and cost analyses, shows that utility-sized plants greater than 228 MW in capacity and producing 975,000 kWh/year are feasible. Energy costs for such plants are projected to be between 22% lower and 12% higher than horizontal axis turbine plants of comparable output.

  10. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  11. Financing wind projects

    International Nuclear Information System (INIS)

    Manson, J.

    2006-01-01

    This presentation reviewed some of the partnership opportunities available from GE Energy. GE Energy's ecomagination commitment has promised to double research investment, make customers true partners and reduce greenhouse gases (GHGs). GE Energy's renewable energy team provides a broad range of financial products, and has recently funded 30 wind farms and 2 large solar projects. The company has a diverse portfolio of technology providers and wind regimes, and is increasing their investment in technology. GE Energy recognizes that the wind industry is growing rapidly and has received increased regulatory support that is backed by strong policy and public support. It is expected that Canada will have 3006 wind projects either planned or under construction by 2007. According to GE Energy, successful wind financing is dependent on the location of the site and its wind resources, as well as on the wind developer's power sales agreement. The success of a wind project is also determined by clear financing goals. Site-specific data is needed to determine the quality of wind resource, and off-site data can also be used to provide validation. Proximity to load centres will help to minimize capital costs. Power sales agreements should be based on the project's realistic net capacity factor as well as on the cost of the turbines. The economics of many wind farms is driven by the size of the turbines used. Public consultations are also needed to ensure the success of wind power projects. It was concluded that a good partner will have staying power in the wind power industry, and will understand the time-lines and needs that are peculiar to wind energy developers. refs., tabs., figs

  12. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  13. Wind farm power production in the changing wind: Robustness quantification and layout optimization

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2017-01-01

    Wind farms operate often in the changing wind. The wind condition variations in a wide range of time scales lead to the variability of wind farms’ power production. This imposes a major challenge to the power system operators who are facing a higher and higher penetration level of wind power. Thu...

  14. Wind power barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Despite the economic crisis affecting most of the globe's major economies, wind energy continues to gain supporters around the world. Global wind power capacity increased by 40.5 GW between 2010 and 2011 compared to a 39 GW rise between 2009 and 2010, after deduction of decommissioned capacity. By the end of 2011 global installed wind turbine capacity should stand at around 238.5 GW, and much of the world's growth is being driven by capacity build-up in the emerging markets (China, India...). In 2011 Asia was the world's biggest market (52%) ahead of Europe (24.5%) and North-America (19.7%). Europe has still the largest wind power capacity in the world with 40.6% of total in 2011. 2011 was another tough year for Vestas company while Gamesa company has managed to maintain positive profit growth by gaining market shares abroad. Siemens keeps its lead in the offshore market. The Chinese market is now suffering form excess capacity and Chinese companies fell prey to domestic competition

  15. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind generation. Paper no. IGEC-1-094

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 cents US/kW.h). One approach is to operate interruptibly, allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies show that this could be cost-competitive using nuclear power generator producing electricity around 3 cents US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the electrolysis facility due to the variability of wind-generated electricity imposes a significant cost penalty. This paper reports on ongoing work on the economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered - a concept we call NuWind. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment to enable it to accommodate the higher rate of hydrogen generation is still substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability. The variability in wind fields between sites was accommodated by assigning average wind speeds that produced an average electricity generation from wind of between 32 and 42% of peak capacity, which is typical of the expectations for superior wind-generation sites. (author)

  16. Wind Power in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Georgia has good wind power potential. Preliminary analyses show that the technical wind power potential in Georgia is good. Meteorological data shows that Georgia has four main areas in Georgia with annual average wind speeds of over 6 m/s and two main areas with 5-6 m/s at 80m. The most promising areas are the high mountain zone of the Great Caucasus, The Kura river valley, The South-Georgian highland and the Southern part of the Georgian Black Sea coast. Czech company Wind Energy Invest has recently signed a Memorandum of Understanding with Georgian authorities for development of the first wind farm in Georgia, a 50MW wind park in Paravani, Southern Georgia, to be completed in 2014. Annual generation is estimated to 170.00 GWh and the investment estimated to 101 million US$. Wind power is suited to balance hydropower in the Georgian electricity sector Electricity generation in Georgia is dominated by hydro power, constituting 88% of total generation in 2009. Limited storage capacity and significant spring and summer peaks in river flows result in an uneven annual generation profile and winter time shortages that are covered by three gas power plants. Wind power is a carbon-free energy source well suited to balance hydropower, as it is available (often strongest) in the winter and can be exported when there is a surplus. Another advantage with wind power is the lead time for the projects; the time from site selection to operation for a wind power park (approximately 2.5 years) is much shorter than for hydro power (often 6-8 years). There is no support system or scheme for renewable sources in Georgia, so wind power has to compete directly with other energy sources and is in most cases more expensive to build than hydro power. In a country and region with rapidly increasing energy demands, the factors described above nevertheless indicate that there is a commercial niche and a role to play for Georgian wind power. Skra: An example of a wind power development

  17. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...... optimally. In order to reduce the possible increased loading, fatigue due to the wind gusts, control strategies have been considered for both constant sped and variable speed pitch regulated wind turbines. The control study shows that the designed controllers can reduce the standard deviations efficiently......In order to reduce the impact on the electrical grid from the shutdown of MW wind turbines at wind speeds higher than the cut-out wind speed of 25 m/s, we propose in this paper to run the turbines at high wind speeds up to 40 m/s. Two different operation designs are made for both constant speed...

  18. Illinois Wind Workers Group

    Energy Technology Data Exchange (ETDEWEB)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  19. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  20. Offshore wind energy in Mediterranean and other european seas: Technology and potential applications

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1997-01-01

    In the last six years (1990-1996) the world wide capacity of grid connected offshore wind plants, at the prototypical stage, has reached 12 MW at energy costs some what higher than fifty per cent of similar on shore plants. Additional offshore installations are close to the construction and proposed for some hundreds MW in north european seas. The technology of the offshore wind turbines is evolving parallely to that of the onshore ones

  1. Offshore wind energy in Mediterranean and other european seas: Technology and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiosi, G

    1998-12-31

    In the last six years (1990-1996) the world wide capacity of grid connected offshore wind plants, at the prototypical stage, has reached 12 MW at energy costs some what higher than fifty per cent of similar on shore plants. Additional offshore installations are close to the construction and proposed for some hundreds MW in north european seas. The technology of the offshore wind turbines is evolving parallely to that of the onshore ones.

  2. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  3. Wind energy planning in Denmark

    International Nuclear Information System (INIS)

    Godtfredsen, F.; Lemming, J.; Nielsen, S.R.; Jessien, S.

    1992-01-01

    The total capacity of the about 3300 Danish wind turbines is approximately 450 MW. Most of the wind turbines have been erected detached or in small clusters by private citizens - especially by joint ownership. 100 MW of the capacity have been installed by the power companies, mainly in wind farms. Up till now the privately owned wind turbines have been erected without a previous planning process. Increased expansion of wind energy makes demands on physical planning, since access to suitable locations in Denmark is limited. Hence more coordination is called for between the interested parties to ensure optimal utilization of the sites allocated by the physical planning authorities. A siting committee appointed by the Government has recommended locations for additional 100 MW power company wind farms as well as a more detailed planning in each local community. The detailed planning in the municipality of Thisted is described. (au)

  4. Wind energy in the agricultural sector. Tailwind or head wind?

    International Nuclear Information System (INIS)

    Van der Knijff, A.

    1999-06-01

    The state of the art in the use of wind energy in the agricultural sector in the Netherlands is given in order to map opportunities. Obstacles to expansion of wind capacity in that sector in the short term are described, as well as the most important developments with respect to wind energy. An estimated 275 wind turbines with a capacity of 50 MW are in use in the Netherlands. This means that the agricultural sector accounts for approximately 14% of the total wind capacity in the Netherlands (363 MW in 1998). Most of the agricultural businesses supply all the electricity generated to the public networks. Only a small number of farmers use some of the generated electricity themselves. The most important obstacles for the agrarian sector are the proposed policies of provinces and municipalities, the limited capacity of the public electricity network, and the lack of clarity regarding the liberalisation of the electricity market. In particular, provincial and municipal policies (solitary wind turbines versus wind farms) will determine the prospects for the future of wind energy in the agrarian sector. Despite possible adversities, there are good prospects for the future for the sector because farmers own land in windy locations. 33 refs

  5. When real life wind speed exceeds design wind assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Winther-Jensen, M; Joergensen, E R [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Most modern wind turbines are designed according to a standard or a set of standards to withstand the design loads with a defined survival probability. Mainly the loads are given by the wind conditions on the site defining the `design wind speeds`, normally including extreme wind speeds given as an average and a peak value. The extreme wind speeds are normally (e.g. in the upcoming IEC standard for wind turbine safety) defined as having a 50-year recurrence period. But what happens when the 100 or 10,000 year wind situation hits a wind turbine? Results on wind turbines of wind speeds higher than the extreme design wind speeds are presented based on experiences especially from the State of Gujarat in India. A description of the normal approach of designing wind turbines in accordance with the standards in briefly given in this paper with special focus on limitations and built-in safety levels. Based on that, other possibilities than just accepting damages on wind turbines exposed for higher than design wind speeds are mentioned and discussed. The presentation does not intend to give the final answer to this problem but is meant as an input to further investigations and discussions. (au)

  6. Wind power and market power in competitive markets

    International Nuclear Information System (INIS)

    Twomey, Paul; Neuhoff, Karsten

    2010-01-01

    Average market prices for intermittent generation technologies are lower than for conventional generation. This has a technical reason but can be exaggerated in the presence of market power. When there is much wind smaller amounts of conventional generation technologies are required, and prices are lower, while at times of little wind prices are higher. This effect reflects the value of different generation technologies to the system. But under conditions of market power, conventional generators with market power can further depress the prices if they have to buy back energy at times of large wind output and can increase prices if they have to sell additional power at times of little wind output. This greatly exaggerates the effect. Forward contracting does not reduce the effect. An important consequence is that allowing market power profit margins as a support mechanism for generation capacity investment is not a technologically neutral policy.

  7. Wind energy in Bavaria; Windenergie in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    For centuries we use the wind for our purposes. Previously, the wind was almost exclusively important for the economy, and propels windmills and merchant ships. During the 20th century, wind was used especially in leisure such as sailing, surfing and flying. Now we remind ourselves to use the wind energy to our livelihoods - in the power generation by means of wind turbines. Thanks to the financial support from the Renewable Energy Law, wind energy is utilized more and more for ten years. Meanwhile, Germany is internationally ranked third in terms of installed capacity in wind energy.

  8. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-08

    Wind power capacity in the United States experienced strong growth in 2016. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—as well as a myriad of state-level policies. Wind additions have also been driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers.

  9. Damping Wind and Wave Loads on a Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2013-01-01

    Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due......, and we show the influence that both wind speed, wave frequencies and misalignment between wind and waves have on the system dynamics. A new control model is derived that extends standard turbine models to include the hydrodynamics, additional platform degrees of freedom, the platform mooring system...

  10. Wind rotor power station BONI-ShHV

    International Nuclear Information System (INIS)

    Bolotov, A.V.

    1999-01-01

    Wind rotor power station (WRPS) BONI-ShHV has following advantages : the increase of installation stability by rise of wind velocity and rotation speed of rotor due to gyroscopic effect; the absence noise and vibration; the safety for birds and animals; ability of compact installation and creation of series of wind power dams with higher capacity; the simplicity and fast assembling and putting into operation. The price of 1 k W of installing capacity is lower about 2.5-3 times compare to usual WRPS due to simple kinematic scheme. WRPS has high specific output of electrical energy due to use of low and long existing wind velocity and due to short storms, giving greater power. It has ability to be replayed when average annual wind velocity is above 5.5 m/s in comparison with propeller WRPS, which are never repaying. WRPS BONI-ShHV are made on the plants of Republic of Kazakhstan, and tested in wind velocity range up 45 m/s, have experience of 3 years of operation, showing their reliability and effectiveness. The repayment period of individual WRPS BONI-0.5/6 ShHV is from 10 month to 1 year depending on average annual velocity

  11. Generation of electricity from wind

    International Nuclear Information System (INIS)

    Debroy, S.K.; Behera, S.; Murty, J.S.

    1997-01-01

    Bulk power can be generated by using a chain of wind mills with the current level of technology. Wind turbine technology has improved considerably resulting in better efficiency, availability and capacity factor including a significant reduction in the cost of manufacture and installation

  12. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  13. Capturing the journey of wind from the wind turbines (poster)

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Wind turbine design, control strategies often assume Taylor’s frozen turbulence where the fluctuating part of the wind is assumed to be constant. In practise, the wind turbine faces higher turbulence in case of gusts and lower turbulence in some cases. With Lidar technology, the frozen turbulence

  14. Wind power barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The global wind power market not only repelled the strictures of the financial crisis, but saw the installation of 37 GW in 2009, which is almost 10 GW up on 2008. China and the United States registered particularly steady growth and the European Union also picked up momentum to break its installation record. A total capacity of 158 GW of wind power are now installed across the world from which 74.8 GW in the European Union. Among the European countries Denmark has the highest wind capacity per inhabitant in 2009: 627.5 kW/1000 inhabitants. Spain seeks to limit its market's growth in order to better manage the development of wind energy across the country. German growth is back, Italy chalks up a new record for installation and the French market is becoming increasingly regulated. United-Kingdom is developing offshore wind farms: the offshore capacity could reasonably rise to 20000 MW by 2020. The last part of the article reports some economical news from the leading players: Vestas, GE-Energy, Gamesa, Enercon, Sinovel and Siemens. (A.C.)

  15. Wind project gets boost

    Energy Technology Data Exchange (ETDEWEB)

    Oirere, Shem

    2012-11-01

    The development of a two-phase 100 MW wind power plant project in Tanzania moved a notch higher this year when Export-Import Bank of China extended a US$ 123 million non-concessional loan for its construction.

  16. Fibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity

    Science.gov (United States)

    2013-01-01

    Background Recently, in order to improve the resistance of flax plants to pathogen infection, transgenic flax that overproduces β-1,3-glucanase was created. β-1,3-glucanase is a PR protein that hydrolyses the β-glucans, which are a major component of the cell wall in many groups of fungi. For this study, we used fourth-generation field-cultivated plants of the Fusarium -resistant transgenic line B14 to evaluate how overexpression of the β-1,3-glucanase gene influences the quantity, quality and composition of flax fibres, which are the main product obtained from flax straw. Results Overproduction of β-1,3-glucanase did not affect the quantity of the fibre obtained from the flax straw and did not significantly alter the essential mechanical characteristics of the retted fibres. However, changes in the contents of the major components of the cell wall (cellulose, hemicellulose, pectin and lignin) were revealed. Overexpression of the β-1,3-glucanase gene resulted in higher cellulose, hemicellulose and pectin contents and a lower lignin content in the fibres. Increases in the uronic acid content in particular fractions (with the exception of the 1 M KOH-soluble fraction of hemicelluloses) and changes in the sugar composition of the cell wall were detected in the fibres of the transgenic flax when compared to the contents for the control plants. The callose content was lower in the fibres of the transgenic flax. Additionally, the analysis of phenolic compound contents in five fractions of the cell wall revealed important changes, which were reflected in the antioxidant potential of these fractions. Conclusion Overexpression of the β-1,3-glucanase gene has a significant influence on the biochemical composition of flax fibres. The constitutive overproduction of β-1,3-glucanase causes a decrease in the callose content, and the resulting excess glucose serves as a substrate for the production of other polysaccharides. The monosaccharide excess redirects the phenolic

  17. Strategic wind power trading considering rival wind power production

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers, uncert...... depending on the rival’s wind generation, given that its own expected generation is not high. Finally, as anticipated, expected system cost is higher when both wind power producers are expected to have low wind power generation......In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers......, uncertainty of rival wind power generation should also be considered. Under this context, this paper addresses the impact of rival wind producers on the offering strategy and profits of a pricemaker wind producer. A stochastic day-ahead market setup is considered, which optimizes the day-ahead schedules...

  18. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  19. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  20. Large-scale wind power in New Brunswick : a regional scenario study towards 2025

    International Nuclear Information System (INIS)

    2008-08-01

    This paper discussed the large-scale development of wind power in New Brunswick and evaluated Danish experiences with wind development as a template for developing wind resources in the Maritimes region. The study showed that New Brunswick and the Maritimes region have good wind resources, and that the province will gain significant economic benefits from deploying between 5500 and 7500 MW of wind power capacity by 2025. Wind power development will contribute to the security of supply in the region and reduce air pollution. Carbon regulation and renewable portfolio standards will improve the competitiveness of wind power. Electricity generated by wind power plants in the Maritimes can be sold to other provinces in Canada, as well as to the heavily populated New England region of the United States. A high level of cooperation between markets in the Maritimes area and neighbouring New England and Quebec systems will be required in addition to load flow analyses of electricity systems. Denmark's experiences with developing wind power indicate that existing market designs must be restructured to allow for higher levels of competition. A strong system operator is required to integrate wind power into the system. It was concluded that strong political leadership is required to ensure the sustainable development of the region. 5 refs., 4 tabs., 9 figs

  1. Wind power development and policies in China

    International Nuclear Information System (INIS)

    Liao, Cuiping; Farid, Nida R.; Jochem, Eberhard; Zhang, Yi

    2010-01-01

    The People's Republic of China foresees a target of 30 GW for installed wind power capacity by 2010 (2008: 12 GW). This paper reports on the technical and economic potentials of wind power, the recent development, existing obstacles, and related policies in China. The barriers to further commercialization of the wind power market are important and may deter the 100 GW capacity target of the Chinese government by 2020. The paper concludes that the diffusion of wind power in China is an important element for not only reducing global greenhouse gas emissions, but also for worldwide progress of wind power technology and needed economies of scale. (author)

  2. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.

    2010-01-01

    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite observati......Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  3. Trends in Wind Energy Technology Development

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.

    2011-01-01

    . The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind......Text Over the past 25 years global wind energy capacity has doubled every three years, corresponding to a tenfold expansion every decade. By the end of 2010 global installed wind capacity was approximately 200 GW and in 2011 is expected to produce about 2% of global electricity consumption...... turbine technology has seen rapid development, leading to impressive increases in the size of turbines, with corresponding cost reductions. From 2005 to 2009 the industry’s focus seems to have been on increasing manufacturing capacity, meeting market demand and making wind turbines more reliable...

  4. Wind to power a new city in Oman

    International Nuclear Information System (INIS)

    Albadi, M.H.; El-Saadany, E.F.; Albadi, H.A.

    2009-01-01

    This paper proposes the use of wind power as a source of electricity in a new city being developed in the Duqm area of Oman. Recent wind speed measurements taken at the Duqm metrological station are analyzed to obtain the annual and monthly wind probability distribution profiles represented by Weibull parameters. The monthly average mean wind speed ranges between 2.93 m/s in February and 9.76 m/s in July, with an annual average of 5.33 m/s. A techno-economic evaluation of a wind power project is presented to illustrate the project's viability. Given Duqm's wind profile and the power curve characteristics of a V90-1.8 turbine, an annual capacity factor of 0.36 is expected. For the base-case assumptions, the cost of electricity is about 0.05 and 0.08 per kWh for discount rates of 5% and 10%, respectively. These values are higher than that of the existing generation system, due to the subsidized prices of domestically available natural gas. However, given high international natural gas prices, the country's long-term LNG export obligations, and the expansion of natural gas-based industries, investments in wind power in Duqm can be justified. A feed-in tariff and capital cost allowance policies are recommended to facilitate investments in this sector. (author)

  5. A Winding Road--Professional Trajectories from Higher Education to Working Life: A Case Study of Political Science and Psychology Graduates

    Science.gov (United States)

    Nystrom, Sofia; Dahlgren, Madeleine Abrandt; Dahlgren, Lars Owe

    2008-01-01

    This qualitative and longitudinal study focuses on graduate employment and the development of graduate employment paths. The aim of this article is to explore the present professional trajectory from higher education to working life, with particular reference to graduates from two different study programmes at Linkoping University in Sweden:…

  6. Evaluation of methodologies for remunerating wind power's reliability in Colombia

    International Nuclear Information System (INIS)

    Botero B, Sergio; Isaza C, Felipe; Valencia, Adriana

    2010-01-01

    Colombia strives to have enough firm capacity available to meet unexpected power shortages and peak demand; this is clear from mechanisms currently in place that provide monetary incentives (in the order of nearly US$ 14/MW h) to power producers that can guarantee electricity provision during scarcity periods. Yet, wind power in Colombia is not able to currently guarantee firm power because an accepted methodology to calculate its potential firm capacity does not exist. In this paper we argue that developing such methodology would provide an incentive to potential investors to enter into this low carbon technology. This paper analyzes three methodologies currently used in energy markets around the world to calculate firm wind energy capacity: PJM, NYISO, and Spain. These methodologies are initially selected due to their ability to accommodate to the Colombian energy regulations. The objective of this work is to determine which of these methodologies makes most sense from an investor's perspective, to ultimately shed light into developing a methodology to be used in Colombia. To this end, the authors developed a methodology consisting on the elaboration of a wind model using the Monte-Carlo simulation, based on known wind behaviour statistics of a region with adequate wind potential in Colombia. The simulation gives back random generation data, representing the resource's inherent variability and simulating the historical data required to evaluate the mentioned methodologies, thus achieving the technology's theoretical generation data. The document concludes that the evaluated methodologies are easy to implement and that these do not require historical data (important for Colombia, where there is almost no historical wind power data). It is also found that the Spanish methodology provides a higher Capacity Value (and therefore a higher return to investors). The financial assessment results show that it is crucial that these types of incentives exist to make viable

  7. Wind shear coefficients and their effect on energy production

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; Al-Abbadi, Naif M.

    2005-01-01

    This paper provides realistic values of wind shear coefficients calculated using measured values of wind speed at 20, 30 and 40 m above the ground for the first time in Saudi Arabia in particular and, to the best of the authors' knowledge, in the Gulf region in general. The paper also presents air density values calculated using the measured air temperature and surface pressure and the effects of wind shear factor on energy production from wind machines of different sizes. The measured data used in the study covered a period of almost three years between June 17, 1995 and December 1998. An overall mean value of wind shear coefficient of 0.194 can be used with confidence to calculate the wind speed at different heights if measured values are known at one height. The study showed that the wind shear coefficient is significantly influenced by seasonal and diurnal changes. Hence, for precise estimations of wind speed at a height, both monthly or seasonal and hourly or night time and day time average values of wind shear coefficient must be used. It is suggested that the wind shear coefficients must be calculated either (i) using long term average values of wind speed at different heights or (ii) using those half hourly mean values of wind speed for which the wind shear coefficient lies in the range 0 and 0.51. The air density, calculated using measured temperature and pressure was found to be 1.18 kg/m 3 . The air density values were also found to vary with the season of the year and hour of the day, and hence, care must be taken when precise calculations are to be made. The air density values, as shown in this paper, have no significant variation with height. The energy production analysis showed that the actual wind shear coefficient presented in this paper produced 6% more energy compared to that obtained using the 1/7 power law. Similarly, higher plant capacity factors were obtained with the wind shear factor of 0.194 compared to that with 0.143

  8. Wind energy: Science or fiction?

    International Nuclear Information System (INIS)

    Sisouw de Zilwa, L.G.

    1993-01-01

    The energy policy of the Dutch government is aimed at the use of different energy sources (diversification). Therefore the Dutch government supports the implementation of wind turbines and stimulates product improvement and research by means of the TWIN-program (a program to support the application of wind energy in the Netherlands). The purpose of the program is to commercialize efficient wind turbines. Without subsidies it is not yet possible to exploit wind turbines in an efficient way. Around the year 2000 a capacity of 1000 MW must be realized. 1 fig., 1 ill., 5 tabs., 1 ref

  9. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  10. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    or an anticipated 1,766 tonnes of biomass. The levelized cost of electricity (COE) ranged from 65.6/GJ (236/MWh) to 208.9/GJ (752/MWh) with the price of generated electricity being most sensitive to the biomass feedstock cost and the levelized COE being significantly impacted by the high cost of compressed storage. The resulting electrical energy available to the grid has an approximate wholesale value of 13.5/GJ (48.6/MWh) based on year 2007 Midwest Reliability Organization (MRO) regional averages [1]. Therefore, the annual average wholesale value of the generated electricity is lower than the cost to produce the electricity. A significant deficiency of this simple comparison is that it does not consider the fact that the proposed wind and biomass gasification hybrid is now a dispatchable source of electricity with a near net-zero lifetime carbon footprint and storage capability. Dispatchable power can profit from market fluctuations that dramatically increase the value of available electricity so that in addition to providing base power the hybrid facility can store energy during low price points in the market and generate at full capacity during points of high prices. Any financial incentive for energy generated from reduced carbon technologies will also increase the value of electricity produced. Also, alternative operational parameters that do not require the costly storage of synthetic natural gas (SNG) will likely result in a more competitive levelized COE. Additional benefits of the system are in the flexibility of transporting wind and biomass energy produced as well as the end use of the energy. Instead of high-voltage electrical transmission a gas line can now be used to transport energy produced by the wind. Syngas can also be further processed into higher energy density liquefied syngas. Liquid fuels can then be transported via commercial freight on existing road infrastructure.

  11. China Wind Power Outlook 2010

    International Nuclear Information System (INIS)

    Junfeng, Li; Pengfei, Shi; Hu, Gao

    2010-10-01

    China's wind power can reach 230 GW of installed capacity by 2020, which is equal to 13 times the current capacity of the Three Gorges Dam; its annual electricity output of 464.9 TWh could replace 200 coal fire power plants. In 2009, China led the world in newly installed wind-energy devices, reaching a capacity of 13.8 GW (10,129 turbines) - a rate of one new turbine every hour. In terms of overall capacity, China ranks second, at 25.8 GW. The report projects that by 2020, China's total wind power capacity will reach at least 150GW, possibly up to 230GW, which, if realized, could cut 410 million tons of CO2 emission, or 150 million tons of coal consumption. Compared to multinationals, many Chinese companies are young and lack a strong basis for research and development. Despite a renewable energy policy requiring grid companies to purchase all electricity from wind farms, access to wind power for the grid is frequently lagging behind an unstable, out-dated grid infrastructure. There is also the problem of a lack of incentives and penalties for grid companies, and slow progress in more wind energy technologies.

  12. China Wind Power Outlook 2010

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li; Pengfei, Shi; Hu, Gao [Chinese Renewable Energy Industries Association CREIA, Beijing (China)

    2010-10-15

    China's wind power can reach 230 GW of installed capacity by 2020, which is equal to 13 times the current capacity of the Three Gorges Dam; its annual electricity output of 464.9 TWh could replace 200 coal fire power plants. In 2009, China led the world in newly installed wind-energy devices, reaching a capacity of 13.8 GW (10,129 turbines) - a rate of one new turbine every hour. In terms of overall capacity, China ranks second, at 25.8 GW. The report projects that by 2020, China's total wind power capacity will reach at least 150GW, possibly up to 230GW, which, if realized, could cut 410 million tons of CO2 emission, or 150 million tons of coal consumption. Compared to multinationals, many Chinese companies are young and lack a strong basis for research and development. Despite a renewable energy policy requiring grid companies to purchase all electricity from wind farms, access to wind power for the grid is frequently lagging behind an unstable, out-dated grid infrastructure. There is also the problem of a lack of incentives and penalties for grid companies, and slow progress in more wind energy technologies.

  13. Harnessing wind power with sustained policy support

    Energy Technology Data Exchange (ETDEWEB)

    Meera, L. [BITS-Pilani. Dept. of Economics, Hyderabad (India)

    2012-07-01

    The development of wind power in India began in the 1990s, and has significantly increased in the last few years. The ''Indian Wind Turbine Manufacturers Association (IWTMA)'' has played a leading role in promoting wind energy in India. Although a relative newcomer to the wind industry compared with Denmark or the US, a combination of domestic policy support for wind power and the rise of Suzlon (a leading global wind turbine manufacturer) have led India to become the country with the fifth largest installed wind power capacity in the world. Wind power accounts for 6% of India's total installed power capacity, and it generates 1.6% of the country's power. (Author)

  14. Applications of wind turbines in Canada

    Energy Technology Data Exchange (ETDEWEB)

    South, P; Rangi, R S; Templin, R J

    1977-01-01

    There are differing views as to the role of wind energy in the overall requirements. While some people tend to ignore it there are others who think that wind could be a major source of energy. In this paper an effort has been made to determine the wind power potential and also the amount that is economically usable. From the existing wind data a map showing the distribution of wind power density has been prepared. This map shows that the maritime provinces and the west coast of Hudson Bay have high wind power potential. These figures show that the wind power potential is of the same order as the installed electrical generating capacity in Canada (58 x 10/sup 6/kW in 1974). However, in order to determine how much of this power is usable the economics of adding wind energy to an existing system must be considered. A computer program has been developed at NRC to analyze the coupling of wind turbines with mixed power systems. Using this program and making certain assumptions about the cost of WECS and fuel the maximum amount of usable wind energy has been calculated. It is shown that if an installed capacity of 420 megawatts of wind power was added to the existing diesel capacity it would result in a savings of 60,000,000 gallons of fuel oil per year. On the other hand it is shown that if the existing installed hydro electric capacity of 37,000 megawatts (1976) was increased to 60,000 megawatts without increasing the average water flow rate, an installed capacity of 60,000 megawatts of wind power could be added to the system. This would result in an average of 14,000 megawatts from the wind. Using projected manufacturing costs for vertical axis wind turbines, the average cost of wind energy could be in the range of 1.4 cents/kwh to 3.6 cents/kwh.

  15. Wind energy power plants (wind farms) review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, K B; McKeary, M [McMaster Univ., Hamilton, ON (Canada). McMaster Inst. of Environment and Health

    2010-07-01

    Global wind power capacity has increased by an average cumulative rate of over 30 percent over the past 10 years. Although wind energy emits no air pollutants and facilities can often share spaces with other activities, public opposition to wind power development is an ongoing cause of concern. Development at the local level in Ontario has been met with fierce opposition on the basis of health concerns, aesthetic values, potential environmental impacts, and economic risks. This report was prepared for the Town of Wasaga Beach, and examined some of the controversy surrounding wind power developments through a review of evidence found in the scientific literature. The impacts of wind power developments related to noise, shadow flicker, avian mortality, bats, and real estate values were evaluated. The study included details of interviews conducted with individuals from Ontario localities where wind farms were located. 77 refs., 1 tab., 1 fig., 2 appendices.

  16. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  17. Optimizing transmission from distant wind farms

    International Nuclear Information System (INIS)

    Pattanariyankool, Sompop; Lave, Lester B.

    2010-01-01

    We explore the optimal size of the transmission line from distant wind farms, modeling the tradeoff between transmission cost and benefit from delivered wind power. We also examine the benefit of connecting a second wind farm, requiring additional transmission, in order to increase output smoothness. Since a wind farm has a low capacity factor, the transmission line would not be heavily loaded, on average; depending on the time profile of generation, for wind farms with capacity factor of 29-34%, profit is maximized for a line that is about 3/4 of the nameplate capacity of the wind farm. Although wind generation is inexpensive at a good site, transmitting wind power over 1600 km (about the distance from Wyoming to Los Angeles) doubles the delivered cost of power. As the price for power rises, the optimal capacity of transmission increases. Connecting wind farms lowers delivered cost when the wind farms are close, despite the high correlation of output over time. Imposing a penalty for failing to deliver minimum contracted supply leads to connecting more distant wind farms.

  18. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  19. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  20. Design, Numerical Modelling and Analysis of a Semi-submersible Floater Supporting the DTU 10MW Wind Turbine.

    OpenAIRE

    Islam, Md Touhidul

    2016-01-01

    In recent years, the demand for renewable energy has increased significantly because of its lower environmental impact than conventional energy technologies. Wind power is one of the most important sources of renewable energy produced nowadays. As land based turbines have reached their maximum potential, recent market trends are moving into deeper waters with higher capacity turbines. The design of a floating offshore wind turbine (FOWT) foundation poses few technical challenges....

  1. Statement on Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-15

    Wind power will grow in importance in future electricity supply. In the next few decades it will to some degree replace fossil power but it will, at the same time also depend on fossil-b beyond, when wind power is expected to have a substantial share of the electricity market, CO{sub 2} emission-free electricity plants that are well suited for balancing the wind intermittency will be required. Predictions of the future penetration of wind power into the electricity market are critically dependent on a number of policy measures and will be especially influenced by climate driven energy policies. Very large investments will also be necessary as is shown by the lEA's Blue Map Scenario which includes 5,000 TWh wind electricity by 2050 at a cost of USD 700 billion. This implies an average 8% increase of wind electricity per year energy system, i.e. an energy system so large that it affects the entire world. The Energy Committee's scenario for electricity production in the year 2050 includes 5,000 TWh wind electricity out of a total of 45,000 TWh. Wind electricity thus has a within presently reached penetration of wind energy in a single country and within the calculated future projections of its penetration. Future large continental and intercontinental power grids may enable higher penetrations of wind energy since contributions of wind power from a larger area will tend to reduce its intermittency. Also, large-scale storage systems (thermal storage as is intermittent power systems. These alternatives have been discussed from a technical point of view [3] but for the required large-scale systems, further studies on the social, environmental and economical implications are needed

  2. Offshore wind power experiences, potential and key issues for deployment

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J.; Morthorst, P.E.; Clausen, Niels-Erik

    2009-01-15

    Wind power has been growing at spectacular rates. Today it is the largest non-hydro renewable power technology. Worldwide there is 74 GW of installed capacity which is 1.7% of power generation capacity and in 2006 it accounted for 0.82% of electricity production. However, offshore wind still only counts for a very small amount and development has only taken place in North European counties round the North Sea and the Baltic Sea over the last 15 years. Offshore wind is still some 50% more expensive than onshore wind, but more wind resources and lesser visual impacts from larger turbines are expected to compensate for the higher installation costs in the long term. Most offshore wind farms are installed in British, Swedish and Danish waters, and present-day costs of installing wind energy in the UK are between 1,200 to 1,600 GBP/kW (1,781 to 2,375 Euro/kW) offshore, while in Sweden investment costs were 1,800 Euro/kW, and in Denmark 1,200 to 1,700 Euro/kW, though investment costs for a new wind farm are expected be in the range of 2.0 to 2.2 mill. Euro/MW for a near-shore shallow depth facility. Future developments in offshore wind technology concerning aerodynamics, structural dynamics, structural design, machine elements, electrical design and grid integration could drive investment costs from present-day range of 1.9 to 2.2 mill. Euro/MW down to 1.35 - 1.54 mill.Euro/MW in 2050, which accounts for a reduction of costs of approx. 35%. In order to sum up progress and identify future research needs, the International Energy Agency (IEA) Wind agreement Task 11 should arrange a new meeting concerning long term research needs for reviewing 'the long term strategy for 2000 to 2020' from 2001, to come up with suggestions / recommendations on how to define and proceed with, the necessary research activities of the IEA Wind Agreement and governments involved on key wind issues related to offshore technologies. (au)

  3. Wind farm array wake losses

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. [Impact Weather, Washougal, WA (United States); McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  4. Intraday Trading of Wind Energy

    DEFF Research Database (Denmark)

    Skajaa, Anders; Edlund, Kristian; Morales González, Juan Miguel

    2015-01-01

    In this paper, we tackle the problem of a wind power producer participating in a short-term electricity market that allows for the continuous, but potentially illiquid, intraday trading of energy. Considering the realistic case of a wind farm operating in the western Danish price area of Nord Pool......, we build a simple but effective algorithm for the wind power producer to fully benefit from the Elbas intraday market. We then investigate the sensitivity of the obtained benefits to the maximum volume of energy the wind power producer is willing to trade in the intraday market, the ultimate aim...... of the trade (either to decrease energy imbalances or to increase profits) and to the installed capacity of the wind farm. Our numerical results reveal that the wind power producer can substantially increase his revenues by partaking in the intraday market but with diminishing returns to scale—a result that we...

  5. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  6. Wind energy integration in the Spanish electrical system

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Garcia, Olivia; Torre Rodriguez, Miguel de la; Prieto Garcia, Eduardo; Martinez Villanueva, Sergio; Rodriguez Garcia, Juan Manuel [Red Electrica de Espana s.a. (Spain)

    2009-07-01

    Integration of significant amounts of wind power in electrical systems represents a challenge for TSOs, due to the technological and distributed particularities of wind generators and to the variability of its primary resource. The proposed paper describes the implications of massive wind power integration in the Spanish system in terms of technical requirements and operation measures. Concerning technical specifications for wind producers, the former criteria are nowadays being reviewed and the new requirements under discussion right now (grid code) are here introduced. Stability studies for the horizon 2016 (about 29 GW of wind power installed) and beyond have been performed and the obtrained results for the considered scenarios have led to a series of necessary criteria which relate to the next topics: - increased fault ride-though capabilities, - voltage maintenance and support in static and dynamic, - restoration of primary regulation reserves to the system, - active power and ramp controlling. Innovative solutions for wind power control, already operative in Spain, such as the dedicated control centre for renewable energies and other special producers (CECRE) will still provide the necessary tools and infrastructure to optimise integration limits in real time, maximizing renewable energy production and assuring security, as well as the communication with the renewable control centres. Regarding system balancing, while currently being able to appropriately deliver demand coverage, the main concern is the dispacement by wind power of conventional generation that will be required shortly afterwards to cover peak demand. Further concerns are the need to keep appropriate sizing of downward reserves during off-peak hours. This is normally dealt with market mechanisms leading combined cycle units to daily shut-down and start-up. When wind forecast errors occur and wind production is higher than expected, the system may run out of downward reserve and combined cycle

  7. Wind energy integration in the Spanish electrical system

    International Nuclear Information System (INIS)

    Alonso Garcia, Olivia; Torre Rodriguez, Miguel de la; Prieto Garcia, Eduardo; Martinez Villanueva, Sergio; Rodriguez Garcia, Juan Manuel

    2009-01-01

    Integration of significant amounts of wind power in electrical systems represents a challenge for TSOs, due to the technological and distributed particularities of wind generators and to the variability of its primary resource. The proposed paper describes the implications of massive wind power integration in the Spanish system in terms of technical requirements and operation measures. Concerning technical specifications for wind producers, the former criteria are nowadays being reviewed and the new requirements under discussion right now (grid code) are here introduced. Stability studies for the horizon 2016 (about 29 GW of wind power installed) and beyond have been performed and the obtrained results for the considered scenarios have led to a series of necessary criteria which relate to the next topics: - increased fault ride-though capabilities, - voltage maintenance and support in static and dynamic, - restoration of primary regulation reserves to the system, - active power and ramp controlling. Innovative solutions for wind power control, already operative in Spain, such as the dedicated control centre for renewable energies and other special producers (CECRE) will still provide the necessary tools and infrastructure to optimise integration limits in real time, maximizing renewable energy production and assuring security, as well as the communication with the renewable control centres. Regarding system balancing, while currently being able to appropriately deliver demand coverage, the main concern is the dispacement by wind power of conventional generation that will be required shortly afterwards to cover peak demand. Further concerns are the need to keep appropriate sizing of downward reserves during off-peak hours. This is normally dealt with market mechanisms leading combined cycle units to daily shut-down and start-up. When wind forecast errors occur and wind production is higher than expected, the system may run out of downward reserve and combined cycle

  8. Simulating European wind power generation applying statistical downscaling to reanalysis data

    International Nuclear Information System (INIS)

    González-Aparicio, I.; Monforti, F.; Volker, P.; Zucker, A.; Careri, F.; Huld, T.; Badger, J.

    2017-01-01

    Highlights: •Wind speed spatial resolution highly influences calculated wind power peaks and ramps. •Reduction of wind power generation uncertainties using statistical downscaling. •Publicly available dataset of wind power generation hourly time series at NUTS2. -- Abstract: The growing share of electricity production from solar and mainly wind resources constantly increases the stochastic nature of the power system. Modelling the high share of renewable energy sources – and in particular wind power – crucially depends on the adequate representation of the intermittency and characteristics of the wind resource which is related to the accuracy of the approach in converting wind speed data into power values. One of the main factors contributing to the uncertainty in these conversion methods is the selection of the spatial resolution. Although numerical weather prediction models can simulate wind speeds at higher spatial resolution (up to 1 × 1 km) than a reanalysis (generally, ranging from about 25 km to 70 km), they require high computational resources and massive storage systems: therefore, the most common alternative is to use the reanalysis data. However, local wind features could not be captured by the use of a reanalysis technique and could be translated into misinterpretations of the wind power peaks, ramping capacities, the behaviour of power prices, as well as bidding strategies for the electricity market. This study contributes to the understanding what is captured by different wind speeds spatial resolution datasets, the importance of using high resolution data for the conversion into power and the implications in power system analyses. It is proposed a methodology to increase the spatial resolution from a reanalysis. This study presents an open access renewable generation time series dataset for the EU-28 and neighbouring countries at hourly intervals and at different geographical aggregation levels (country, bidding zone and administrative

  9. Design of airborne wind turbine and computational fluid dynamics analysis

    Science.gov (United States)

    Anbreen, Faiqa

    Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.

  10. Index Bioclimatic "Wind-Chill"

    Directory of Open Access Journals (Sweden)

    Teodoreanu Elena

    2015-05-01

    Full Text Available This paper presents an important bioclimatic index which shows the influence of wind on the human body thermoregulation. When the air temperature is high, the wind increases thermal comfort. But more important for the body is the wind when the air temperature is low. When the air temperature is lower and wind speed higher, the human body is threatening to freeze faster. Cold wind index is used in Canada, USA, Russia (temperature "equivalent" to the facial skin etc., in the weather forecast every day in the cold season. The index can be used and for bioclimatic regionalization, in the form of skin temperature index.

  11. Wind farm design optimization

    Energy Technology Data Exchange (ETDEWEB)

    Carreau, Michel; Morgenroth, Michael; Belashov, Oleg; Mdimagh, Asma; Hertz, Alain; Marcotte, Odile

    2010-09-15

    Innovative numerical computer tools have been developed to streamline the estimation, the design process and to optimize the Wind Farm Design with respect to the overall return on investment. The optimization engine can find the collector system layout automatically which provide a powerful tool to quickly study various alternative taking into account more precisely various constraints or factors that previously would have been too costly to analyze in details with precision. Our Wind Farm Tools have evolved through numerous projects and created value for our clients yielding Wind Farm projects with projected higher returns.

  12. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  13. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stelhy, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  14. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  15. Wind power in China – Dream or reality?

    International Nuclear Information System (INIS)

    Li, X.; Hubacek, K.; Siu, Y.L.

    2012-01-01

    After tremendous growth of wind power generation capacity in recent years, China now has 44.7 GW of wind-derived power. Despite the recent growth rates and promises of a bright future, two important issues - the capability of the grid infrastructure and the availability of backup systems - must be critically discussed and tackled in the medium term. The study shows that only a relatively small share of investment goes towards improving and extending the electricity infrastructure which is a precondition for transmitting clean wind energy to the end users. In addition, the backup systems are either geographically too remote from the potential wind power sites or currently financially infeasible. Finally, the introduction of wind power to the coal-dominated energy production system is not problem-free. Frequent ramp ups and downs of coal-fired plants lead to lower energy efficiency and higher emissions, which are likely to negate some of the emission savings from wind power. The current power system is heavily reliant on independently acting but state-owned energy companies optimizing their part of the system, and this is partly incompatible with building a robust system supporting renewable energy technologies. Hence, strategic, top-down co-ordination and incentives to improve the overall electricity infrastructure is recommended. -- Highlights: ► We analyse the power grid availability for large-scale wind integration in China. ► We examine the choices of backup systems for the compensation of wind power. ► The Chinese power grid infrastructure is not sufficient to integrate the wind power. ► The backup systems are either geographically unavailable or financially infeasible. ► Using coal-fired plants as the backup system is unavoidable but not problem-free.

  16. Shifting towards offshore wind energy—Recent activity and future development

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kapsali, M.

    2013-01-01

    To date, most of the existing wind farms have been built on-land but during the last few years many countries have also invested in offshore applications. The shift towards offshore wind project developments has mainly been driven by European energy policies, especially in north-west countries. In offshore sites the winds are stronger and steadier than on-land, making wind farms more productive with higher capacity factors. On the other hand, although offshore wind energy is not in its infancy period, most of the costs associated with its development are still much higher from onshore counterparts; however some recent technological progress may have the potential to narrow this gap in the years to come. In the present work, an overview of the activity noted in the field of offshore wind energy is carried out, with emphasis being given on the current status and future trends of the technology employed, examining at the same time energy production and availability issues as well as economic considerations. - Highlights: ► An overview of the activity noted in the field of offshore wind energy is carried out. ► Emphasis is given on the current status and future trends of the technology. ► Wind energy production and availability issues are discussed. ► Economic issues such as investment and energy production costs are also analysed.

  17. Renewable Energy Essentials: Wind

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Subjects for further research, specific to wind energy technology, include more refined resource assessment; materials with higher strength to mass ratios; advanced grid integration and power quality and control technologies; standardisation and certification; development of low-wind regime turbines; improved forecasting; increased fatigue resistance of major components such as gearboxes; better models for aerodynamics and aeroelasticity; generators based on superconductor technology; deep-offshore foundations; and high-altitude 'kite' concepts.

  18. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  19. Wind energy. To produce electricity with the wind

    International Nuclear Information System (INIS)

    Bareau, Helene

    2015-11-01

    This guide addresses the different aspects of wind-based power generation. It outlines the role of wind energy to meet objectives related to the share of renewable energies in the French energy mix, that wind energy is actually replacing fossil energies, that it is based on local resources within higher safety and less wastage, that current advances are made to integrate wind energy production into the grid, and that it is a solution to diversify energy production. Some figures are presented and commented, regarding onshore wind energy production in France, the location of wind farms, and wind energy production in comparison with other renewable sources. The operation of a wind turbine is described and the different types of wind turbines are evoked. The issue of wind farm planning with citizen participation is addressed: regional planning, studies of pre-feasibility for location selection, procedure, and content of the impact study (radars, fauna and flora, landscapes, safety, health). Other features are outlined: a planned dismantling, and a globally favourable perception. The next part addresses offshore wind energy: the interesting potential of stronger and more reliable wind at sea (European situation, French opportunities, elements comprised in an offshore wind farm), impacts (on marine ecosystems, on neighbouring localities, and interests for visitors). Economic aspects are then addressed: cost and profitability, economic spin-offs, and perspectives. The last part concerns individuals and the possibilities to participate to wind farm projects or to invest in small wind turbines with some prerequisites (constant and steady winds, installation assessment, required expertise, indispensable preliminary steps, costs, aids and profitability)

  20. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  1. Offshore wind resources at Danish measurement sites

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R J; Courtney, M S; Lange, B; Nielsen, M; Sempreviva, A M [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Svenson, J; Olsen, F [SEAS, Haslev (Denmark); Christensen, T [Elsamprojekt, Fredericia (Denmark)

    1999-03-01

    In order to characterise wind and turbulence characteristics at prospective offshore wind energy sites, meteorological observations from a number of purpose-built offshore monitoring sites have been analyzed and compared with long wind speed time series. New analyses have been conducted on the data sets focussing on meteorology, turbulence, extreme winds and wind and wave interactions. Relationships between wind speed, turbulence and fetch are highly complex. Minimum turbulence intensity offshore is associated with wind speeds of about 12 m/s. At lower wind speeds, stability effects are important while at higher winds speeds wind and wave interactions appear to dominate. On average, turbulence intensity offshore at 48 m height is approximately 0.08 if no coastal effects are present. However, the effect of the coastal discontinuity persists in wind speed and turbulence characteristics for considerable distances offshore. The majority of the adjustment of appears to occur within 20 km of the coast. (au)

  2. Why Are We Talking About Capacity Markets?

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany

    2017-06-28

    Revenue sufficiency or 'missing money' concerns in wholesale electricity markets are important because they could lead to resource (or capacity) adequacy shortfalls. Capacity markets or other capacity-based payments are among the proposed solutions to remedy these challenges. This presentation provides a high-level overview of the importance of and process for ensuring resource adequacy, and then discusses considerations for capacity markets under futures with high penetrations of variable resources such as wind and solar.

  3. Wind speed perception and risk.

    Directory of Open Access Journals (Sweden)

    Duzgun Agdas

    Full Text Available BACKGROUND: How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human-wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. METHOD: We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. RESULTS: Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk. The number of tropical cyclones people had experienced moderated the strength of the actual-perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. CONCLUSION: These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.

  4. Wind speed perception and risk.

    Science.gov (United States)

    Agdas, Duzgun; Webster, Gregory D; Masters, Forrest J

    2012-01-01

    How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human-wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual-perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.

  5. Wind Speed Perception and Risk

    Science.gov (United States)

    Agdas, Duzgun; Webster, Gregory D.; Masters, Forrest J.

    2012-01-01

    Background How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. Method We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Results Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. Conclusion These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters. PMID:23226230

  6. What needs to be done to make wind power a thriving business

    International Nuclear Information System (INIS)

    Gallagher, F.

    2004-01-01

    The use of wind power around the world is growing at a rate of about 30 per cent per year with over 40,000 MW of installed capacity. Canada has 434 MW of installed capacity, of which half has been installed since 2002. The author claims that the reason for this slower start compared to other countries is due to the abundance of low cost hydrocarbons and water resources and little incentives for renewable energy resources. The federal government has recently implemented its Wind Power Production Incentive (WPPI) to help develop this valuable renewable resource. A series of provincial incentives are also in place. The author states that wind energy has the potential to supply about 30 per cent of Canada's electricity supply. The Canadian Wind Energy Association (CanWEA) has set a goal to develop 10,000 MW of electricity by 2010. CanWEA expects that 30,000 MW are achievable by 2020 despite the challenges facing this growing industry. Some of the barriers that impede progress revolve around interconnection challenges, transmission, and access to markets. Until these factors are addressed and a permanent industrial complex of wind energy has been established, higher costs for wind power should be expected. These challenges may affect the market success in the near term, but wind power is expected to be a major contributor to Canada's energy supply in the long term. tabs., figs

  7. Optimal wind energy penetration in power systems: An approach based on spatial distribution of wind speed

    International Nuclear Information System (INIS)

    Zolfaghari, Saeed; Riahy, Gholam H.; Abedi, Mehrdad; Golshannavaz, Sajjad

    2016-01-01

    Highlights: • Chronological wind speeds at distinct locations of the wind farm are not the same. • Spatial distribution of wind speed affects wind farm’s output power expectation. • Neglecting wind speed’s spatial doubt leads to mistake in wind energy penetration. • Scenario-based method can be used for effective wind capacity penetration level. - Abstract: Contributing in power system expansions, the present study establishes an efficient scheme for optimal integration of wind energy resources. The proposed approach highly concerns the spatial distribution of wind speed at different points of a wind farm. In mathematical statements, a suitable probability distribution function (PDF) is well-designed for representing such uncertainties. In such conditions, it is likely to have dissimilar output powers for individual and identical wind turbines. Thus, the overall aggregated PDF of a wind farm remarkably influences the critical parameters including the expected power and energy, capacity factor, and the reliability metrics such as loss of load expectation (LOLE) and expected energy not supplied (EENS). Furthermore, the proposed approach is deployed for optimal allocation of wind energy in bulk power systems. Hence, two typical test systems are numerically analyzed to interrogate the performance of the proposed approach. The conducted survey discloses an over/underestimation of harvestable wind energy in the case of overlooking spatial distributions. Thus, inaccurate amounts of wind farm’s capacity factor, output power, energy and reliability indices might be estimated. Meanwhile, the number of wind turbines may be misjudged to be installed. However, the proposed approach yields in a fair judgment regarding the overall performance of the wind farm. Consequently, a reliable penetration level of wind energy to the power system is assured. Extra discussions are provided to deeply assess the promising merits of the founded approach.

  8. Life cycle cost analysis of wind power considering stochastic uncertainties

    International Nuclear Information System (INIS)

    Li, Chiao-Ting; Peng, Huei; Sun, Jing

    2014-01-01

    This paper presents a long-term cost analysis of wind power and compares its competitiveness to non-renewable generating technologies. The analysis considers several important attributes related to wind intermittency that are sometimes ignored in traditional generation planning or LCOE (levelized cost of energy) studies, including the need for more nameplate capacity due to intermittency, hourly fluctuations in wind outputs and cost for reserves. The competitiveness of wind power is assessed by evaluating four scenarios: 1) adding natural gas generating capacity to the power grid; 2) adding coal generating capacity to the power grid; 3) adding wind capacity to the power grid; and, 4) adding wind capacity and energy storage to the power grid where an energy storage device is used to cover wind intermittency. A case study in the state of Michigan is presented to demonstrate the use of the proposed methodology, in which a time horizon from 2010 to 2040 is considered. The results show that wind energy will still be more expensive than natural gas power plants in the next three decades, but will be cheaper than coal capacities if wind intermittency is mitigated. Furthermore, if the costs of carbon emissions and environmental externalities are considered, wind generation will be a competitive option for grid capacity expansion. - Highlights: • The competitiveness of wind power is analyzed via life cycle cost analysis. • Wind intermittency and reserve costs are explicitly considered in the analysis. • Results show that wind is still more expensive than natural gas power plants. • Wind can be cheaper than coal capacities if wind intermittency is mitigated. • Wind will be competitive if costs of carbon emissions are considered

  9. Wind around the world

    International Nuclear Information System (INIS)

    Rackstraw, K.

    1998-01-01

    A combination of cost reductions and progressive policies in key markets kept the world wind market percolating in 1997 with a record 1510 MW of new wind capacity installed, representing annual sales of more than $1.5 billion. This new record surpasses last year''s total by 24 percent, about the average annual rate of growth for the last three years. Worldwide utility-scale wind installations at the end of 1997 totaled 7763 MW. Most activity occurred in Europe, which accounted for over 75 percent of 1997 installations. Germany was again the world''s leading single market, this time by quite a large margin, accounting for more than one-third of the annual total by itself at 532 MW in 1997. The end of 1997 also marked the time at which Germany officially passed the US as the largest total single market with over 2079 MW in total installations versus about 1805 MW for the US, although the US had actually lost the lead by mid-year. Spain is the new addition to the top echelon of world wind markets, installing 215 MW in 1997 that more than doubles their total installed capacity over the previous year and ranks them number three in the world for the year. Denmark''s 1997 total of 300 MW is also a record, although this estimate could go up as the official count is finalized. India, the second largest wind market in 1995 and 1996, slipped several notches because of a variety of factors, including a change in government and a slowdown in the economy. The US wind market continues to stagnate as it has for the last several years, largely because of the uncertainty surrounding restructuring of US electric utilities. The US market is poised for a big comeback in 1998, however

  10. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the

  12. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station......Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  13. EDITORIAL: Wind energy

    Science.gov (United States)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also

  14. Wind-Electric Power Potential Assessment for Three Locations in East Java-Indonesia

    Directory of Open Access Journals (Sweden)

    Ali Musyafa

    2011-08-01

    Full Text Available This paper reports our effort to asses wind energy potentials for three locations in East Java. We used wind speed data over a period of almost 3 years, i.e. in period of June 2006 – August 2008. Data were taken from direct measurement in locations in East Java Province, i.e. Sampang (Madura, Juanda (Surabaya, and Sawahan (Nganjuk. The short-term of wind speed mean in monthly signifies to wind-speed value ”which parallels to the wind turbine power curve value” were used to estimate the annual energy output for a 1 MW installed capacity wind farm on the each site 100 of 10kW rated wind turbines were used in the analysis. The short term of wind speed mean at Surabaya and Nganjuk were 2.34, 3.03 and 1.97 m/s at 2 m Above Ground Level (AGL, respectively. In both locations, wind speeds were observed during the day time between 04.00 and 18.00 and relatively smaller ones between 19.00 and 03.00 period. Meanwhile, in Sampang (Madura the higher wind speeds were observed between 20.00 and 06.00, and relatively smaller between 07.00 and 19.00 period. The 1 MW windfarm at Sampang, Surabaya and Nganjuk can produce 1.284; 1.199 and 1.008 MWh of electricity yearly, taking into consideration of the temperature adjustment coefficien of about 6 %. The plant capacity factor at Sampang, Surabaya and Nganjuk were found to be 30.02 %, 30.00 % and 30.01 % respectively. Additionally, it is noticed that these site can contribute to the avoidance of 0.904; 0.846 and 0.709 tons/year of CO2 equivalent Green House Gases (GHG from entering into the local atmosphere, thus creating a clean and healthy athmosphere for local inhabitants.

  15. Off-Shore wind potential estimation along the coast of Chile by using scatterometer and Reanalysis data

    Directory of Open Access Journals (Sweden)

    C. Mattar

    2014-06-01

    Full Text Available This work presents the first offshore wind potential estimation over the coast of Chile using long term data series from “QuikSCAT (V04 wind vectors” and ERA-interim’s wind product between 1999-2009 and 1979-2012, respectively. Weibull and Rayleigh’s distribution were used to adjust the data series from the study period to find the probability density function, mean wind speed, maximum and minimum from each data series adjusted per pixel. Power generation and a capacity factor were estimated for the whole scene using three wind turbine models corresponding to 3.6, 5.0 and 8.0 MW. The images obtained from the data processing were grouped into three different wind power zones named (A located up north, (B in the center and (C down south-center. The mean capacity factors are higher than 20%, moreover B and C areas have an average of 36%. This work shows the high wind power potential to generate electricity by using wind off-shore technologies along the coast of Chile.

  16. Wind Observatory 2017. Analysis of the wind power market, wind jobs and future of the wind industry in France

    International Nuclear Information System (INIS)

    2017-09-01

    Two years after the enactment of the Energy Transition for Green Growth Act, wind power capacity continues to grow in France, exceeding 12 GWatt the end of 2016 and soon to account for 5% of France's electric power consumption. This vitality, which is set to continue in 2017, will help France achieve its objectives of an installed capacity of 15,000 MW in onshore wind by 2018 and 21,800 to 26,000 MW by 2023. The current pace will nevertheless have to be accelerated in order to reach the realistic objective of 26 GW by 2023 mentioned in the multi-annual energy plan (PPE). With 1,400 jobs created in one year and more than 3,300 over the last two years, the relevance of wind power as a driving force of sustainable job creation throughout the country is unequivocally confirmed: the increase in wind power capacity continues to contribute to the growth in employment in the country. Prepared in collaboration with the consulting firm BearingPoint, the 2017 edition of the Observatory aims to give the reader an overview of employment in the wind industry and the wind power market over the period under consideration. Any changes from the three previous editions are highlighted. It is based on a comprehensive census of all market participants on three themes: employment, the market and the future of wind power. The Observatory gives an accurate picture of how the wind energy industry is structured, thereby presenting a precise overview of the wind energy industry and all its components

  17. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew D.; Wiser, Ryan; Porter, Kevin

    2009-02-02

    The rapid development of wind power that the United States has experienced over the last several years has been coupled with a growing concern that wind development will require substantial additions to the nation's transmission infrastructure. Transmission is particularly important for wind power due to the locational dependence of wind resources, the relatively low capacity factor of wind plants, and the mismatch between the short lead time to build a new wind project and the longer lead time often needed to plan, permit, and construct transmission. It is clear that institutional issues related to transmission planning, siting, and cost allocation will pose major obstacles to accelerated wind power deployment, but also of concern is the potential cost of this infrastructure build out. Simply put, how much extra cost will society bear to deliver wind power to load centers? Without an answer to this question, there can be no consensus on whether or not the cost of developing transmission for wind will be a major barrier to further wind deployment, or whether the institutional barriers to transmission expansion are likely to be of more immediate concern. In this report, we review a sample of 40 detailed transmission studies that have included wind power. These studies cover a broad geographic area, and were completed from 2001-2008. Our primary goal in reviewing these studies is to develop a better understanding of the transmission costs needed to access growing quantities of wind generation. A secondary goal is to gain a better appreciation of the differences in transmission planning approaches in order to identify those methodologies that seem most able to estimate the incremental transmission costs associated with wind development. Finally, we hope that the resulting dataset and discussion might be used to inform the assumptions, methods, and results of higher-level assessment models that are sometimes used to estimate the cost of wind deployment (e.g. NEMS

  18. Wind Powering America

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. (NREL); Dougherty, P. J. (DOE)

    2001-07-07

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately $60 billion investment and $1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced.

  19. Wind Powering America

    International Nuclear Information System (INIS)

    Flowers, L.; Dougherty, P. J.

    2001-01-01

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately$60 billion investment and$1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced

  20. Wind resource analysis. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D. M.

    1978-12-01

    FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

  1. Wind energy in a global world

    DEFF Research Database (Denmark)

    Hjuler Jensen, Peter

    2007-01-01

    For the past 25 years there has been a dramatic development in the wind energy sector, with regard to the increase in overall utilisation of wind energy as well as technological development, the development of markets and expectations to the role of wind energy in the global electricity supply...... system. The purpose of this paper is to outline developments in the global capacity of wind energy this past quarter of a century, including technology, market aspects, scientific developments, testing and certification, formulation of standards and scenarios for the future development of wind energy...

  2. Tariff based value of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Raekkoelaeinen, J; Vilkko, M; Antila, H; Lautala, P [Tampere Univ. of Technology (Finland)

    1996-12-31

    In this article an approach for determining a value of wind energy is presented. Calculation is based on wholesale tariffs, i.e. the value of wind energy is defined in comparison with other purchase. This approach can be utilised as an aid in the investment planning in defining the benefits of new wind generation capacity. Linear programming optimization method is used. A case study is presented for different wind scenarios. The value of wind energy can vary remarkably depending on timing of power output. (author)

  3. Tariff based value of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Raekkoelaeinen, J.; Vilkko, M.; Antila, H.; Lautala, P. [Tampere Univ. of Technology (Finland)

    1995-12-31

    In this article an approach for determining a value of wind energy is presented. Calculation is based on wholesale tariffs, i.e. the value of wind energy is defined in comparison with other purchase. This approach can be utilised as an aid in the investment planning in defining the benefits of new wind generation capacity. Linear programming optimization method is used. A case study is presented for different wind scenarios. The value of wind energy can vary remarkably depending on timing of power output. (author)

  4. Wind energy barometer - EurObserv'ER - February 2012

    International Nuclear Information System (INIS)

    2012-02-01

    Notwithstanding the economic crisis affecting most of the globe's major economies, wind energy continues to gain supporters around the world. Global wind power capacity increased by 40.5 GW between 2010 and 2011 compared to a 39 GW rise between 2009 and 2010, after deduction of decommissioned capacity. By the end of 2011 global installed wind turbine capacity should stand at around 238.5 GW, and much of the world's growth is being driven by capacity build-up in the emerging markets. In contrast some of the key wind energy markets may be showing fault lines

  5. WINDFARMperception. Visual and acoustic impact of wind turbine farms on residents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Frits van den (Faculty of Mathematics and Natural Sciences, Univ. of Groningen, Groningen (Netherlands)); Pedersen, Eja (Dept. of Public Health and Community Medicine, Goeteborg Univ., Goeteborg (Sweden)); Bouma, Jelte; Bakker, Roel (Northern Centre for Health Care Research, Univ. Medical Centre, Groningen (Netherlands))

    2008-06-15

    This report gives the results of the EU financed study WINDFARMperception on how residents perceive a wind farm in their living environment as far as sound and sight are concerned. The study includes a postal survey among Dutch residents (n = 725, response rate: 37%) and an assessment of their aural and visual exposure due to wind farms in their vicinity. The study group was selected from all residents in the Netherlands within 2.5 km from a wind turbine. As the study aimed to study modern wind farms, wind turbines were selected with an electric capacity of 500 kW or more and one or more turbines within 500 m from the first. Excluded were wind turbines that were erected or replaced in the year preceding the survey. Respondents were exposed to levels of wind turbine sound between 24 and 54 dBA and wind turbines at distances from 17 m to 2.1 km. The (angular) height of the biggest wind turbine ranged from 2 degrees to 79 degrees, with an average value of 10 degrees (the height of a CD box, looking at the front at arm's length). The wind turbines occupied on average 2% of the space above the horizon. The percentage of respondents that were annoyed by the sound also increased with sound level up to 40 to 45 dBA and then decreased. Respondents with economic benefits reported almost no annoyance. This in part explains the decrease in annoyance at high sound levels: above 45 dBA, i.e. close to wind turbines, the majority of respondents have economical benefits. There is no indication that the sound from wind turbines had an effect on respondents' health, except for the interruption of sleep. At high levels of wind turbine sound (more than 45 dBA) interruption of sleep was more likely than at low levels. Higher levels of background sound from road traffic also increased the odds for interrupted sleep. Annoyance from wind turbine sound was related to difficulties with falling asleep and to higher stress scores. From this study it cannot be concluded whether these

  6. Wind farm progress in Denmark

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs; Andersen, Per Dannemand

    1996-01-01

    The paper presents a status of wind power in Denmark and on the technical and industrial achievements. The present total installed capacity is be the end of 1995 approx. 630 MW, and the contribution to the electric energy generation in Denmark is approx. 4%.......The paper presents a status of wind power in Denmark and on the technical and industrial achievements. The present total installed capacity is be the end of 1995 approx. 630 MW, and the contribution to the electric energy generation in Denmark is approx. 4%....

  7. Integration of permanent magnet synchronous generator wind turbines into power grid

    Science.gov (United States)

    Abedini, Asghar

    The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent

  8. Wind power takes off. A structural revolution; Vindkraften tar fart. En strukturell revolution

    Energy Technology Data Exchange (ETDEWEB)

    Staahl, Benjamin; Lilliecreutz, Johan

    2009-03-15

    Wind power is today a large worldwide market that is growing very rapidly. It is already a significant source of energy and will dominate the electricity market within a few decades. The market today has been estimated at Euro 36.5 billion. Looking at wind power share of investment in new plants it has already about 40% in Europe and USA. The growth rate is high and rising, and the market potential for wind power is therefore great. In 2007, 20 GW of wind power was installed and in 2008 about 27 GW, and in total the global capacity in 2008 amounted to 120 GW. More than half of all existing wind power plants have been installed in the last three years. Wind power accounts for about 1.5% of global electricity consumption, but in individual countries for much higher share. Market forecast of the future is uncertain, but there is consensus that it is a rapid growth. IEA estimates in its most positive scenario that wind power capacity in 2015 will amount to 296 GW, while specialized market analysts estimate that wind power capacity globally will increase to 691 GW already in 2017, representing an annual growth rate at almost 20%. In Sweden, a total of 236 MW of new wind power capacity was built in 2008, and Swedish wind power produced around 1.5 TWh, equivalent to 1% of the country's energy consumption and 77% more than in 2006. The goal is to increase production to 10 TWh already in 2015. The Swedish Energy Agency has proposed that it should be possible to produce 30 TWh of wind power in 2020, which represents an annual growth rate of nearly 24%. There is currently no large Swedish producers of wind power plants. However there are plenty of Swedish companies that benefit from the emerging market - ABB, SKF and DIAB are major suppliers to the wind turbine manufacturers. There are also technological development related to wind, both product development and more basic innovation. The conclusions of this study is that even if wind power industry begins to ripen, there

  9. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    International Nuclear Information System (INIS)

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  10. Did accelerated depreciation result in lower generation efficiencies for wind plants in India: An empirical analysis

    International Nuclear Information System (INIS)

    Shrimali, Gireesh; Pusarla, Shreya; Trivedi, Saurabh

    2017-01-01

    India ranks fifth in wind energy installations in the world; with an installed wind capacity is 22 GW at the end of 2014. This has been made possible by a combination of federal financial incentives and state-level feed in tariffs. The federal policies are accelerated depreciation, which allows for higher depreciations in earlier years; and generation based incentive, which provides a premium for each unit of generation. Accelerated depreciation appears to be more effective from deployment and cost perspectives; whereas, generation based incentive is said to be more effective in incentivizing generation. In this paper, using multivariable linear regressions on a sample of approximately 40 wind plants, while controlling for wind regime and wind turbine technology, we investigate the incremental impact of generation based incentive compared to accelerated depreciation. We find that generation based incentive results in at least 3 percentage points higher plant load factors than accelerated depreciation. This indicates that, if higher generation is the goal of renewable policies, generation based incentive should be preferred to accelerated depreciation. This would be similar to the move from investment tax credit to production tax credit in the U.S. - Highlights: • We examine generation effectiveness of federal renewable policies in India. • We examine accelerated depreciation and generation based incentives. • We use a cross-sectional regression analysis on a sample of approx. 40 wind plants. • Generation based incentive results in 3 percentage points higher plant load factor.

  11. Economical assessment of a wind-hydrogen energy system using WindHyGen registered software

    International Nuclear Information System (INIS)

    Aguado, Monica; Ayerbe, Elixabete; Garde, Raquel; Rivas, David M.; Azcarate, Cristina; Blanco, Rosa; Mallor, Fermin

    2009-01-01

    This paper considers the problem of analyzing the economical feasibility of a wind-hydrogen energy storage and transformation system. Energy systems based on certain renewable sources as wind power, have the drawback of random input making them a non-reliable supplier of energy. Regulation of output energy requires the introduction of new equipment with the capacity to store it. We have chosen the hydrogen as an energy storage system due to its versatility. The advantage of these energy storage systems is that the energy can be used (sold) when the demand for energy rises, and needs (prices) therefore are higher. There are two disadvantages: (a) the cost of the new equipment and (b) energy loss due to inefficiencies in the transformation processes. In this research we develop a simulation model to aid in the economic assessment of this type of energy systems, which also integrates an optimization phase to simulate optimal management policies. Finally we analyze a wind-hydrogen farm in order to determine its economical viability compared to current wind farms. (author)

  12. Windonomics. Empirical essays on the economics of wind power in the Nordic electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Mauritzen, Johannes

    2012-07-01

    From the introduction: The following chapters in this dissertation take up three topics surrounding the interaction of wind power investment in Denmark and the functioning of the deregulated Nordic electricity market. The first two chapters take up the issue of how wind power a affects prices in the deregulated market. I find that electricity price variation in the spot market is lower in days with more wind power. In the following chapter I extend this analysis to see how wind power in Denmark affects prices in neighbouring hydro power dominated Norway. I find that wind power affects the magnitude of trade between the countries asymmetrically - dependent on the net direction of trade. I also find that wind power has a slight but statistically significant negative effect on prices in Norway, likely due to a slackening of hydro power producers supply constraints. The last chapter starts with the observation that most turbines are scrapped in order to make room for a newer turbine. An opportunity cost that comes from the interaction of scarce land resources, technological change and government policy is then a dominant reason for the scrapping of wind turbines. This leads to the implication that turbines located on windier, better situated land have a higher risk of being scrapped. Policy is also shown to have a strong and in some respects unexpected effect on scrappings. Over the last two decades two major trends have taken place in power markets around the world. The first has been a movement towards market based power systems. Vertically integrated power companies have been split into component generation, transmission and retailing companies. Generation and retailing have been opened to competition. Increasingly, regulated prices and bilateral trade are being replaced by regulated markets that establish prices through auction mechanisms. The second trend has been investment in renewable and intermittent energy sources - notably wind power. What started as

  13. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  14. Marketing research with respect to centralized electric power generation with wind turbines. Verkenning van de markt voor centrale elektriciteitsopwekking met windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Lenstra, W.J.; Van den Doel, J.C.

    1985-01-01

    The electric utilities so far are not eager to invest in wind power as long as the price per kWh wind power is higher than saved fuel costs. The price the electric utilities are willing to pay for surplus wind power still remains low. Combined with price expectations in the near future for fossil fuels the market does not show great prospects. Wind turbine manufacturers were asked about price-quantity curves of wind turbine types: 3 MW, 1 MW, and 300 kW respectively. Combining the demand and supply side of the market it seems possible in areas having a good wind regime to exploit wind power in a cost-effective way. For a market incentive a wind power capacity of 400 MW: 75-3 MW wind turbines, 120-1 MW wind turbines, 15-300 kW wind turbines and 50 MW for demonstration projects for proving the viability of the technology. 3 figs., 2 tabs.

  15. Repowering of wind farms - A case study

    Energy Technology Data Exchange (ETDEWEB)

    Nivedh, B.S. [Quality Engineering and Software Technologies, Bangalore (India); Devi, R.P.K. [College of Engineering. Power Systems Engineering, Guindy (India); Sreevalsan, E. [Gamesa Wind Turbines India Private Limited, Chennai (India)

    2012-07-01

    The main objective of the study is to devise a method for assessing the repowering potential and to improve the energy output from the wind farms and also to understand the impact on the power quality due to repowering. With repowering, the first-generation wind turbines can be replaced with modern multi-megawatt wind turbines. To carry-out the study an old wind farm located at Kayathar, Tamilnadu is selected. The wind farm was commissioned in 1990's with a capacity of 7.35MW, which consists of 36 Wind Turbines each with the capacity of 200kW and 225kW. The present annual energy generation of the wind farm is 7350MWhr with the plant load factor of 11.41%. The intent of this study is to predict the annual energy output of the wind farm after the repowering using WAsP (Wind Atlas Analysis Application Program). Further this study analyses the power quality issues of the various Wind Turbines. In addition, the main feeder, in which the wind farm which is taken for the study also modeled and the impact on power quality due to repowering also studied. Simulations were carried out using MATLAB. The results are analyzed to understand the significance of repowering to overcome the energy crisis of the nation since the best locations for wind in India are occupied by old wind turbines. The following are the observations and conclusions from the above study. Plant load factor (PLF) increased to 24 %, Energy yield increased to more than 4 times and the capacity of the wind farm became double. And in the view of power quality, comparing to the existing Feeder, Repowered Feeder having less reactive power consumption, voltage variations and flickers except the harmonic distortion. (Author)

  16. Wind energy scenarios up to 2020. Developments in the Netherlands in the framework of the SDE regulation

    International Nuclear Information System (INIS)

    Hoving, P.

    2009-04-01

    scenario following a more realistic view on developments learns that the government should reserve 1.5 billion euro per year until 2020 in order to reach an installed capacity of 10,000 MW. The best way to limit expenditures is to invest in repowering, followed by investments in onshore projects and at last, building of offshore wind farms. The most important parameters are the investment costs and the electricity price. Higher investment costs cause an increase of the expected expenditures that is more than proportional. The electricity price directly influences the financial gap and thus the required subsidy payments. An increase of the electricity price (for instance due to sustainable developments) leads to a slightly more than proportional decrease of the required budget reservations, depending on the cost effectiveness of each capacity category. A recommendation is to start with investments when costs have become low. However, postponement of investment increases uncertainty and brings along the risk that the target capacity is not reached in time. It is recommended that the Dutch government should formulate its targets on the basis of produced electricity instead of installed capacity, especially since the European targets are also defined that way. Furthermore, the development of wind energy should not only depend on the subsidy mechanism and its functioning. The subsidy mechanism must be specific for each capacity category and barriers for each category must be taken away simultaneously. Municipalities have to improve the public acceptance, while the national government can contribute to wind energy development by the allocation of wind locations and the implementation of faster procedures for wind projects. Strategic grid development is an international point of interest to facilitate wind energy. Following these considerations, the choice for large clusters of wind farms seems to be a step forward, but anyway, the government must be willing to - and capable to

  17. An Experiment on Wind Energy

    Science.gov (United States)

    Lombardo, Vincenzo; Fiordilino, Emilio; Gallitto, Aurelio Agliolo; Aglieco, Pasquale

    2012-01-01

    We discuss an experiment on wind energy performed with home-made apparatus. The experiment reproduces a laboratory windmill, which can pump water from a lower level to a higher one. By measuring the gain of the gravitational potential energy of the pumped water, one can determine the power extracted from the wind. The activity was carried out with…

  18. Dynamic modelling of VSC-HVDC for connection of offshore wind farms

    DEFF Research Database (Denmark)

    Rios, Bardo; Garcia-Valle, Rodrigo

    2011-01-01

    A VSC-HVDC (Voltage Source Converter – High Voltage Direct Current) dynamic model with a set of control strategies is developed in DIgSILENT Power-Factory with the objective of analyzing the converter’s operating capability for grid support during grid faults. The investigation is carried out based...... on a 165 MW offshore wind farm with induction generators and a Low Voltage Ride-Through solution of the offshore wind turbines and Static Voltage Compensator units in the point of connection with a grid represented by a reduced four-generator power grid model. VSC-HVDC promises to be a reliable alternative...... solution for interconnection with off-shore wind farms as they become larger, with a higher installed power capacity, increased number of wind turbines, and geographically situated at larger distances from suitable connection points in the transmission grids....

  19. Study on VSC HVDC Modeling and Control Strategies for Wind Power Integration

    DEFF Research Database (Denmark)

    Korompili, Asimenia; Wu, Qiuwei

    Recently, more and more offshore wind farms have been integrated to the power systems. In the next years, these offshore power plants are going to be rated at higher capacities and located in larger distances from the coast. This results in greater interest in the transmission technologies, which....... Finally, more specific requirements are given for the grid connection of offshore wind farms through HVDC systems. These rules derived from the combination of grid codes for the integration of offshore wind farms and grid codes for the operation of HVDC transmission systems, connecting power plants...... are available for the grid connection of the offshore wind farms. In this report various transmission systems are presented. Precisely, the HVAC systems, which have dominated up until now in the power transfer sector, are briefly analysed, by providing their advantages, as well as the bottlenecks that occur...

  20. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  1. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack

  2. Design of low noise airfoil with high aerodynamic performance for use on small wind turbines

    Institute of Scientific and Technical Information of China (English)

    Taehyung; KIM; Seungmin; LEE; Hogeon; KIM; Soogab; LEE

    2010-01-01

    Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased.Low noise wind turbine design is becoming more and more important as noise is spreading more adverse effect of wind turbine to public.This paper demonstrates the design of 10 kW class wind turbines,each of three blades,a rotor diameter 6.4 m,a rated rotating speed 200 r/min and a rated wind speed 10 m/s.The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade is trailing edge noise from the outer 25% of the blade.Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at 1.02×106 with a lift performance,which is resistant to surface contamination and turbulence intensity.The objectives in the design process are to reduce noise emission,while sustaining high aerodynamic efficiency.Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al.and Lowson associated with typical wind turbine operation conditions.During the airfoil redesign process,the aerodynamic performance is analyzed to reduce the wind turbine power loss.The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis.Therefore,the new optimized airfoil showing 2.9 dB reductions of total sound pressure level(SPL) and higher aerodynamic performance are achieved.

  3. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  4. What Factors Influence Wind Perceptions

    Science.gov (United States)

    Stein, Tatiana

    Over the last decade, wind power has emerged as a possible source of energy and has attracted the attention of homeowners and policy makers worldwide. Many technological hurdles have been overcome in the last few years that make this technology feasible and economical. The United States has added more wind power than any other type of electric generation in 2012. Depending on the location, wind resources have shown to have the potential to offer 20% of the nation's electricity; a single, large wind turbine has the capacity to produce enough electricity to power 350 homes. Throughout the development of wind turbines, however, energy companies have seen significant public opposition towards the tall white structures. The purpose of this research was to measure peoples' perceptions on wind turbine development throughout their growth, from proposal to existing phase. Three hypotheses were developed based on the participant's political affiliation, proximity and knowledge of wind turbines. To validate these hypotheses, participants were asked an array of questions regarding their perception on economic, environmental, and social impacts of wind turbines with an online service called Amazon Mechanical Turk. The responses were from residents living in the United States and required them to provide their zip code for subsequent analysis. The analysis from the data obtained suggests that participants are favorable towards wind turbine development and would be supportive of using the technology in their community. Political affiliation and proximity to the nearest wind turbine in any phase of development (proposal, construction, existing) were also analyzed to determine if they had an effect on a person's overall perception on wind turbines and their technology. From the analysis, political affiliation was seen to be an indirect factor to understanding favorability towards wind turbines; the more liberal you are, the more supportive you will be towards renewable energy use

  5. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive....../cities. Four different sectors (water, food production, waste, and forests) were selected as core areas for decentralised spatial planning. Indicators for SCC and ACC were identified and assessed with regard to relevance and quantifiability. For each of the indicators selected, a legal threshold or guiding...... was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive carrying capacity (SCC) and assimilative...

  6. Grid Integration of Wind Farms

    Science.gov (United States)

    Giæver Tande, John Olav

    2003-07-01

    This article gives an overview of grid integration of wind farms with respect to impact on voltage quality and power system stability. The recommended procedure for assessing the impact of wind turbines on voltage quality in distribution grids is presented. The procedure uses the power quality characteristic data of wind turbines to determine the impact on slow voltage variations, flicker, voltage dips and harmonics. The detailed assessment allows for substantially more wind power in distribution grids compared with previously used rule-of-thumb guidelines. Power system stability is a concern in conjunction with large wind farms or very weak grids. Assessment requires the use of power system simulation tools, and wind farm models for inclusion in such tools are presently being developed. A fixed-speed wind turbine model is described. The model may be considered a good starting point for development of more advanced models, hereunder the concept of variable-speed wind turbines with a doubly fed induction generator is briefly explained. The use of dynamic wind farm models as part of power system simulation tools allows for detailed studies and development of innovative grid integration techniques. It is demonstrated that the use of reactive compensation may relax the short-term voltage stability limit and allow integration of significantly more wind power, and that application of automatic generation control technology may be an efficient means to circumvent thermal transmission capacity constraints. The continuous development of analysis tools and technology for cost-effective and secure grid integration is an important aid to ensure the increasing use of wind energy. A key factor for success, however, is the communication of results and gained experience, and in this regard it is hoped that this article may contribute.

  7. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators.......Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...

  8. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  9. Wind energy: the present and the future

    International Nuclear Information System (INIS)

    Catto, Gavin

    1996-01-01

    Wind energy has become a billion-pounds-a-year industry. Its installed capacity worldwide exceeds 4.5 gigawatts. Technical advances coupled with the buying power and mass-production techniques of the main turbine manufacturers are pushing the cost of wind energy down to attractive levels. (author)

  10. Optimal Placement of Energy Storage and Wind Power under Uncertainty

    Directory of Open Access Journals (Sweden)

    Pilar Meneses de Quevedo

    2016-07-01

    Full Text Available Due to the rapid growth in the amount of wind energy connected to distribution grids, they are exposed to higher network constraints, which poses additional challenges to system operation. Based on regulation, the system operator has the right to curtail wind energy in order to avoid any violation of system constraints. Energy storage systems (ESS are considered to be a viable solution to solve this problem. The aim of this paper is to provide the best locations of both ESS and wind power by optimizing distribution system costs taking into account network constraints and the uncertainty associated to the nature of wind, load and price. To do that, we use a mixed integer linear programming (MILP approach consisting of loss reduction, voltage improvement and minimization of generation costs. An alternative current (AC linear optimal power flow (OPF, which employs binary variables to define the location of the generation, is implemented. The proposed stochastic MILP approach has been applied to the IEEE 69-bus distribution network and the results show the performance of the model under different values of installed capacities of ESS and wind power.

  11. Reliability of offshore wind power production under extreme wind conditions. Deliverable D 9.5. Work Package 9: Electrical grid

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Zeni, Lorenzo

    years, with each year simulated with five random seeds, leading to a total of 25 annual wind power time series for six large offshore wind farms, summing up to a little over 330 wind turbines. Two storm control strategies were used. The analysis involved several aspects inspired from reliability studies....... The aspects investigated are storm events occurrences and durations, storm control strategy impact on the capacity factor (lost production), the loss of production (power produced from wind drops below a certain threshold due to high wind speeds and storm controller) and finally, the wind power production......Reliability of offshore wind production under extreme wind conditions was investigated in this report. The wind power variability from existing and future large offshore wind farms in Western Denmark were simulated using the Correlated Wind model developed at Risø. The analysis was done for five...

  12. Wind Resource Assessment in Complex Terrain with a High-Resolution Numerical Weather Prediction Model

    Science.gov (United States)

    Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin

    2014-05-01

    A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated

  13. Development of wind power generation in China

    International Nuclear Information System (INIS)

    Zhiquan, Y.; Yan, C.; Lijun, X.

    1995-01-01

    Present status and development of wind power generation in China is described in this paper. China is vast in territory with abundant wind resources. The exploitable wind energy in China is estimated up to 253,000 MW. At present, more than 150 thousand small WTGs of a total capacity of 17 MW are used to provide residential electricity uses in non-grid connected areas and 13 wind farms, with above 160 medium and large scale grid connected WTGs (50-500 kW) of a total capacity of 30 MW, have been constructed. At the same time, some progress has been made in the fields of nation-wide wind resource assessment, measurement technology of wind turbine performance, the assimilation of foreign wind turbine technology, grid connected WTG technology and the operation of wind farm etc. It is planned that the total installed capacity of WTGs will reach 1000 MW by the end of 2000. Wind power generation could be a part of electric power industry in China. (Author)

  14. WEP. A wind energy planning system

    International Nuclear Information System (INIS)

    Larsen, H.V.

    1991-11-01

    The report describes the Wind Energy Planning system (WEP). It is intended as a decision support system to be used in the economic evaluation of wind energy projects. Such projects could be minor projects with only a single wind turbine or large wind farm projects consisting of several wind turbine plants. In the WEP system, a wind turbine is described by data on initial investment, possible later reinvestments, O and M costs, expected yearly production, life time, and capacity factor. The raising of loans are modelled, too. Depending on which output report is created, the value of the wind generated electricity is calculated in two different ways: either the electricity is assumed to be sold at a price (time series) given by the user, or the alternative conventional power production is modelled by its specific investment, O and M costs, life time, effectivity, fuel mix, and time series for fuel prices. Using these data, capacity credit and saved fuel and O and M costs are calculated. Due to the flexible data structure of the model, the user can easily create a scenario that models a large scale introduction of wind power. In such a scenario the gradual build up through several years of the wind power capacity can be modelled. The report describes in detail the menu structure, the input facilities, the output reports, and the organization of data. Also included is an example with full input documentation and output reports. (au)

  15. Political Connections, Government Subsidies and Technical Innovation of Wind Energy Companies in China

    Directory of Open Access Journals (Sweden)

    Jiaan Qu

    2017-10-01

    Full Text Available Developing wind energy is one of the win win measures in response to climate changes and energy security. In order to promote technical innovation in the wind-energy industry, the government grants various fiscal subsidies to wind-energy companies every year. To acquire these subsidies, enterprises often employ those with political backgrounds as members of the board of directors and board of supervisors. On the one hand, the acquisition of subsidies may indeed promote the technical innovation capacity of enterprises, but, on the other hand, due to the existence of “the grabbing hand”, the technical innovation capacity of enterprises may be weakened. We selected 35 Chinese wind-energy listed companies to analyze the relationship between political connections, subsidies and the technical innovation capacity. Results indicate that, political connections to an enterprise weaken its innovative potential and achievement. Moreover, the higher the strength of political connections is, the stronger the negative impact it will bring to the innovative capacity of the enterprise. Modulation of government subsidies, however, can alleviate the negative effects of political connections.

  16. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  17. Wind power

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This publication describes some of the technical, economic, safety and institutional considerations involved in the selection, installation and evaluation of a wind generation system. This information is presented, where possible, in practical, non-technical terms. The first four sections provide background information, theory, and general knowledge, while the remaining six sections are of a more specific nature to assist the prospective owner of a wind generator in his calculations and selections. Meteorological information is provided relating to the wind regime in Nova Scotia. The section on cost analysis discusses some of the factors and considerations which must be examined in order to provide a logical comparison between the alternatives of electricity produced from other sources. The final two sections are brief summaries of the regulations and hazards pertaining to the use of wind generators. The cost of wind-generated electricity is high compared to present Nova Scotia Power Corporation rates, even on Sable Island, Nova Scotia's highest wind area. However, it may be observed that Sable Island is one of the areas of Nova Scotia which is not presently supplied through the power grid and, particularly if there was a significant increase in the price of diesel oil, wind-generated electricity may well be the most economical alternative in that area. Generally speaking, however, where a consumer can purchase electricity at the normal domestic rate, wind generators are not economical, and they will not become economical unless there is a great reduction in their cost, an great increase in electricity rates, or both. Includes glossary. 23 figs., 11 tabs.

  18. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-10

    The U.S. Department of Energy (DOE)’s Wind Technologies Market Report provides an annual overview of trends in the U.S. wind power market. You can find the report, a presentation, and a data file on the Files tab, below. Additionally, several data visualizations are available in the Data Visualizations tab. Highlights of this year’s report include: -Wind power additions continued at a rapid clip in 2016: $13 billion was invested in new wind power plants in 2016. In 2016, wind energy contributed 5.6% of the nation’s electricity supply, more than 10% of total electricity generation in fourteen states, and 29% to 37% in three of those states—Iowa, South Dakota, and Kansas. -Bigger turbines are enhancing wind project performance: Increased blade lengths, in particular, have dramatically increased wind project capacity factors, one measure of project performance. For example, the average 2016 capacity factor among projects built in 2014 and 2015 was 42.6%, compared to an average of 32.1% among projects built from 2004 to 2011 and 25.4% among projects built from 1998 to 2001. -Low wind turbine pricing continues to push down installed project costs: Wind turbine prices have fallen from their highs in 2008, to $800–$1,100/kW. Overall, the average installed cost of wind projects in 2016 was $1,590/kW, down $780/kW from the peak in 2009 and 2010. -Wind energy prices remain low: After topping out at nearly 7¢/kWh for power purchase agreements (PPAs) executed in 2009, the national average price of wind PPAs has dropped to around 2¢/kWh—though this nationwide average is dominated by projects that hail from the lowest-priced Interior region of the country (such as Texas, Iowa, Oklahoma). These prices, which are possible in part due to federal tax support, compare favorably to the projected future fuel costs of gas-fired generation. -The supply chain continued to adjust to swings in domestic demand for wind equipment: Wind sector employment reached a new high of

  19. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  20. Fish benefits from offshore wind farm development

    DEFF Research Database (Denmark)

    Leonhard, Simon B.; Stenberg, Claus; Støttrup, Josianne

    2013-01-01

    The studies up until 2006 showed few effects on the fish fauna that could be attributed to the establishment and operation of the wind farms. Fish abundance and diversity were not higher inside the wind farms than in the areas outside the wind farms. One obvious reason for this could be that the ...

  1. OPEC future capacity expansions

    International Nuclear Information System (INIS)

    Sandrea, I.

    2005-01-01

    This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs

  2. Lessons from wind policy in Portugal

    International Nuclear Information System (INIS)

    Peña, Ivonne; Azevedo, Inês L.; Marcelino Ferreira, Luís António Fialho

    2017-01-01

    Wind capacity and generation grew rapidly in several European countries, such as Portugal. Wind power adoption in Portugal began in the early 2000s, incentivized by a continuous feed-in tariff policy mechanism, coupled with public tenders for connection licenses in 2001, 2002, and 2005. These policies led to an enormous success in terms of having a large share of renewables providing electricity services: wind alone accounts today for ~23.5% of electricity demand in Portugal. We explain the reasons wind power became a key part of Portugal’s strategy to comply with European Commission climate and energy goals, and provide a detailed review of the wind feed-in tariff mechanism. We describe the actors involved in wind power production growth. We estimate the environmental and energy dependency gains achieved through wind power generation, and highlight the correlation between wind electricity generation and electricity exports. Finally, we compare the Portuguese wind policies with others countries’ policy designs and discuss the relevance of a feed-in tariff reform for subsequent wind power additions. - Highlights: • Portugal relies on feed-in tariffs as the key mechanism for wind diffusion. • Wind generation accounts for a quarter of total electricity generation. • The current feed-in tariffs system is not economically efficiency. • A feed-in tariff reform should be considered.

  3. Assessment of wind resources and annual energy production of wind farms

    DEFF Research Database (Denmark)

    the last 17 years. In Denmark the plan is to increase to 50% share of total electricity consumption in 2020 compared to 26% in 2011. In EU this was 6.3% in 2011. In EU new installed wind power was 9 GW and 0.8 GW, onshore and offshore, respectively, in 2011. The total capacity in Europe is 96 GW......Wind energy provides a significant share of EU’s renewable energy source. It is anticipated in the European Commission (EC), the International Energy Agency (IEA), and the European Wind Energy Association (EWEA) that wind energy expands further. Wind energy has had an annual growth of 15.6% during...

  4. An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics

    International Nuclear Information System (INIS)

    Akpinar, E. Kavak; Akpinar, S.

    2005-01-01

    This paper presents seasonal variations of the wind characteristics and wind turbine characteristics in the regions around Elazig, namely Maden, Agin and Keban. Mean wind speed data in measured hourly time series format is statistically analyzed for the six year period 1998-2003. The probability density distributions are derived from the time series data and their distributional parameters are identified. Two probability density functions are fitted to the measured probability distributions on a seasonal basis. The wind energy characteristics of all the regions is studied based on the Weibull and Rayleigh distributions. Energy calculations and capacity factors for the wind turbine characteristics were determined for wind machines of different sizes between 300 and 2300 kW. It was found that Maden is the best region, among the regions analyzed, for wind characteristics and wind turbine characteristics

  5. Wind turbines in your environment? Wind turbines and economic aspects

    International Nuclear Information System (INIS)

    2002-02-01

    The wind energy industry has demonstrated its maturity and technical reliability. Because it will play an increasing role on the power generation market, the question of the cost and profitability of the wind energy has become of prime importance. Two main traps must be avoided: the first should be to deny the present and future economical interest of wind energy because of its supplementary cost with respect to conventional power generation techniques. The second trap should be to underestimate the economical progresses that wind energy must carry on to ensure its large scale development. Therefore, some advantageous pricing and regulatory conditions are necessary to allow the development of this emerging energy source. This document presents: the cost of a wind power project (initial investment, financial incentives); the profitability of a project (cost of a kWh of wind power origin, retail price, warranty of power supply capacity, indirect environmental costs, value of decentralized production); economical interest of wind power (energy efficiency, employment, financial advantages for the local economy); and who are the investors. (J.S.)

  6. Wind energy in Spain. 2000 MW in 2000

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Spain ranks third in terms of wind energy in Europe. Its wind power capacity has been soaring for the past five years and development of renewable energies is seen as a way to stimulate economy and employment. Two regions are at the forefront in this: Galicia and Navarra. Each autonomous region has its own way to develop wind energy. (A.L.B.)

  7. Wind Power in Australia: Overcoming Technological and Institutional Barriers

    Science.gov (United States)

    Healey, Gerard; Bunting, Andrea

    2008-01-01

    Until recently, Australia had little installed wind capacity, although there had been many investigations into its potential during the preceding decades. Formerly, state-owned monopoly utilities showed only token interest in wind power and could dictate the terms of energy debates. This situation changed in the late 1990s: Installed wind capacity…

  8. 2009 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.

    2010-08-01

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  9. Wind - Prototypes on the landscape

    Science.gov (United States)

    Smith, M. L.

    1981-12-01

    Large wind turbines are shown to be attractive to utilities because of the potential for decreasing gas and oil consumption, the relatively low costs for entry into the field, and the wide distribution of wind energy. The total generating capacity can be increased in incremental steps, experience in construction and operation of large turbines have been gained from the NASA Mod O, OA, 1, and 2 models, and advances in manufacturing processes will make the large turbines competitive as replacement power for oil and gas burning utility generators. The 300 ft rotor Mod 2 machines are described, along with designs for the Mod 5A and Mod 5B wind turbines, with 400 and 422 ft, 6.2 and 7.2 MW rotors and outputs, respectively. Current plans for multi-MW windfarms are reviewed, and the option of using the land around large wind turbines for other purposes is stressed.

  10. 2011 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Fink, Sari [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    The U.S. wind power industry is facing uncertain times. With 2011 capacity additions having risen from 2010 levels and with a further sizable increase expected in 2012, there are – on the surface – grounds for optimism. Key factors driving growth in 2011 included continued state and federal incentives for wind energy, recent improvements in the cost and performance of wind power technology, and the need to meet an end-of-year construction start deadline in order to qualify for the Section 1603 Treasury grant program. At the same time, the currently-slated expiration of key federal tax incentives for wind energy at the end of 2012 – in concert with continued low natural gas prices and modest electricity demand growth – threatens to dramatically slow new builds in 2013.

  11. Generation Capacity Investments and High Levels of Renewables. The Impact of a German Capacity Market on Northwest Europe. Discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, O.; De Joode, J.; Koutstaal, P.R.; Van Hout, M. [ECN Policy Studies, Amsterdam (Netherlands)

    2013-05-15

    Presently, Northwest European centralised electricity markets are designed as 'energy-only' markets. In an energy-only market, the price received for electricity produced is set by the marginal generation unit. Potentially, the designs of these markets could leave the owners of these units with 'missing money': i.e. money that is required to recover investment cost. Further, increasing penetration of renewables could exacerbate this problem. Of all the different options available to tackle the 'missing money' problem, capacity mechanisms have attracted most of the attention in recent policy debates in Europe. This paper contributes to ongoing policy discussions by providing a quantitative analysis of the phenomena of 'missing money' and capacity mechanisms in Northwest Europe. Our analysis shows that in the case of energy-only markets with a much higher penetration of intermittent electricity sources such as wind and solar PV, the 'missing money' problem may be aggravated, because operating hours for peak and mid-merit order capacity will be considerably reduced. Furthermore, unilateral introduction of capacity mechanisms in integrated electricity markets can have considerable impacts on cross-border electricity flows and investment decisions. Stand-alone introduction of a capacity market in Germany will likely result in higher investments in Germany at the expense of lower investments outside Germany and an increase in net exports from Germany. A possible advantage of a unilateral capacity mechanism in Germany may be a reduction in super-peak prices in the larger market area. Thus, neighbouring countries may have the possibility to free ride on the increase in flexible capacity in Germany. However, this advantage is conditional and depends on sufficient availability of interconnection capacity necessary to be able to use this reserve capacity. Otherwise, security of supply might be more at risk if the German

  12. Exerting Capacity.

    Science.gov (United States)

    Leger, J Michael; Phillips, Carolyn A

    2017-05-01

    Patient safety has been at the forefront of nursing research since the release of the Institute of Medicine's report estimating the number of preventable adverse events in hospital settings; yet no research to date has incorporated the perspectives of bedside nurses using classical grounded theory (CGT) methodology. This CGT study explored the perceptions of bedside registered nurses regarding patient safety in adult acute care hospitals. Data analysis used three techniques unique to CGT-the constant comparative method, coding, and memoing-to explore the values, realities, and beliefs of bedside nurses about patient safety. The analysis resulted in a substantive theory, Exerting Capacity, which explained how bedside nurses balance the demands of keeping their patients safe. Exerting Capacity has implications for health care organization leaders, nursing leaders, and bedside nurses; it also has indications for future research into the concept of patient safety.

  13. Finance and banking for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Rave, Klaus [Investitionsbank Schleswig-Holstein (Germany)

    1999-01-01

    Installed wind power capacity in Schleswig-Holstein has grown from 2 MW in 1988 to about 600 MW in 1997; about 10% of the total power demand. The target of 20 to 25% by 2010 should easily be exceeded. Cost per kW of installed capacity has fallen from DM 3,350 in 1990 to DM 1,700 in 1997. Estimates for the world market for wind power are given. Criteria for evaluating the financing of a build, operate, transfer wind energy project are set out. (uk)

  14. Finance and banking for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Rave, Klaus [Investitionsbank Schleswig-Holstein (Germany)

    1999-04-01

    Installed wind power capacity in Schleswig-Holstein has grown from 2 MW in 1988 to about 600 MW in 1997; about 10% of the total power demand. The target of 20 to 25% by 2010 should easily be exceeded. Cost per kW of installed capacity has fallen from DM 3,350 in 1990 to DM 1,700 in 1997. Estimates for the world market for wind power are given. Criteria for evaluating the financing of a build, operate, transfer wind energy project are set out. (uk)

  15. Wind energy barometer - EurObserv'ER - February 2015

    International Nuclear Information System (INIS)

    2015-02-01

    The 2014 global wind energy market surged and set a new record after the previous year's slowdown. More than 52 GW of capacity was installed across the world compared to a little less than 37 GW in 2013. Global wind energy took a 41.4% leap in 2014 to culminate in more than 371 GW of installed capacity

  16. Model based active power control of a wind turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2014-01-01

    in the electricity market that selling the reserve power is more profitable than producing with the full capacity. Therefore wind turbines can be down-regulated and sell the differential capacity as the reserve power. In this paper we suggest a model based approach to control wind turbines for active power reference...

  17. A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia

    Science.gov (United States)

    Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani

    2017-03-01

    A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.

  18. Indirect solar wind geothermal: Alternative energy sources 4, volume 4

    Science.gov (United States)

    Veziroglu, T. N.

    The utilities are obliged to provide electricity in a reliable and cost effective manner. Some unique problems posed by large scale wind turbines as an electricity source have to be considered. A value model is presented which is based upon the fuel displacement capability and the capacity displacement capability of wind turbines. The amount of fossil fuels which is saved by wind turbines depends on the forecasted wind power output, the actual power output fluctuations of the wind turbines and on system operation. The highly controversial capacity credit of wind turbines is discussed under the aspect of system reliability. It is shown that calculations of the capacity credit should be based upon detailed investigations with regard to the time dependence of the hourly wind power output.

  19. An illustrative note on the system price effect of wind and solar power. The German case

    International Nuclear Information System (INIS)

    Jaegemann, Cosima

    2014-01-01

    Exposing wind and solar power to the market price signal allows for cost-efficient investment decisions, as it incentivizes investors to account for the marginal value (MV el ) of renewable energy technologies. As shown by Lamont (2008), the MV el of wind and solar power units depends on their penetration level. More specifically, the MV el of wind and solar power units is a function of the respective unit's capacity factor and the covariance between its generation profile and the system marginal costs. The latter component of the MV el (i.e., the covariance) is found to decline as the wind and solar power penetration increases, displacing dispatchable power plants with higher short-run marginal costs of power production and thus reducing the system marginal costs in all generation hours. This so called 'system price effect' is analyzed in more detail in this paper. The analysis complements the work Lamont (2008) in two regards. First of all, an alternative expression for the MV el of wind and solar power units is derived, which shows that the MV el of fluctuating renewable energy technologies depends not only on their own penetration level but also on a variety of other parameters that are specific to the electricity system. Second, based on historical wholesale prices and wind and solar power generation data for Germany, a numerical 'ceteris paribus' example for Germany is presented which illustrates that the system price effect is already highly relevant for both wind and solar power generation in Germany.

  20. Policy instruments for regulating the development of wind power in a liberated electricity market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    1999-01-01

    Wind power is facing the dual challenge of entering a liberated electricity market and at the same time being one of the main contributors to the reduction of greenhouse gas emissions. The paper analyses the importance of the existing standard payment schemes in the development of wind power, and how this might be affected by the introduction of a liberated electricity market. The existing Danish standard payment scheme has strongly encouraged investments in wind turbines. It has been and still is very effective in promoting a high wind power capacity development, but at a high economic cost to the Danish Government. Different models of conditions for wind power at an electricity exchange do exist, but all seem to introduce a higher risk to the individual wind turbine owner than seen with the present payment scheme. In short it might be stated that going from the existing standard payment system to a market based system, the political uncertainty is converted to a market risk for the individual wind turbine owner. (au)

  1. Policy instruments for regulating the development of wind power in a liberated electricity market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    1999-01-01

    Wind power is facing the dual challenge of entering a liberated electricity market and at the same time being one of the main contributors to the reduction of greenhouse gas emissions. The paper analyses the importance of the existing standard payment schemes in the development of wind power, and how this might be affected by the introduction of a liberated electricity market. The existing Danish standard payment scheme has strongly encouraged investments in wind turbines. It has been and still is very effective in promoting a high wind power capacity development, but at a high economic cost to the Danish Government. Different models of conditions for wind power at an electricity exchange do exist, but all seem to introduce a higher risk to the individual wind turbine owner than seen with the present payment scheme. In short it might be stated that going from the existing standard payment system to a market based system, the political uncertainty is converted to a market risk for the individual wind turbine owner. (author)

  2. Policy instruments for regulating the development of wind power in a liberated electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Morthorst, P E [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Wind power is facing the dual challenge of entering a liberated electricity market and at the same time being one of the main contributors to the reduction of greenhouse gas emissions. The paper analyses the importance of the existing standard payment schemes in the development of wind power, and how this might be affected by the introduction of a liberated electricity market. The existing Danish standard payment scheme has strongly encouraged investments in wind turbines. It has been and still is very effective in promoting a high wind power capacity development, but at a high economic cost to the Danish Government. Different models of conditions for wind power at an electricity exchange do exist, but all seem to introduce a higher risk to the individual wind turbine owner than seen with the present payment scheme. In short it might be stated that going from the existing standard payment system to a market based system, the political uncertainty is converted to a market risk for the individual wind turbine owner. (au)

  3. Wind energy. Market prospects to 2006

    International Nuclear Information System (INIS)

    Huckle, R.

    2002-01-01

    Renewable energy is becoming an increasingly significant source in the energy portfolio of most countries. Several sources of renewable energy are now being pursued commercially and wind energy is the most advanced in terms of installed electricity generation capacity. Of all types of renewable energy wind energy is the one with which there is the greatest experience - wind wheels and windmills have been used in various forms for hundreds of years. Chapter 1 is an introduction to the market study. Chapter 2 begins with a review of the wind energy industry. Topics included here are the case for wind energy (sustainability, security, non-polluting etc), market structure (the relationship between developers, operators, manufacturers, consortia etc) and environmental issues. This is followed by a discussion of the wind energy market for major countries in terms of installed wind power capacity. Within each country market there is an account of government policy, major wind energy programmes, major projects with information on developers and wind turbine manufacturers. A market analysis is given which includes an economic review, wind energy targets (where they exist) and forecasts to 2006. Chapter 3 is a review of wind turbine applications covering electricity generation for public supply networks, stand alone/community applications, water pumping and water desalination. Chapter 4 provides the basic principles of wind turbine operation and associated technologies. A brief account is given of the development of wind turbines and the main components such as the tower, rotor blades, gearbox, generator and electrical controls. Electricity generation and control are outlined and the challenge of electricity storage is also discussed. Meteorological factors (wind speed etc) and the move towards off-shore wind farms are also covered. Chapter 5 contains profiles of leading wind project developers and wind turbine manufacturers. A selection of existing and proposed wind farms

  4. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hamachi LaCommare, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hansen, Dana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  5. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  6. 2015 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Electricity Markets and Policy Group; Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Electricity Markets and Policy Group; Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-03

    Annual wind power capacity additions in the United States surged in 2015 and are projected to continue at a rapid clip in the coming five years. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—having been extended for several years (though with a phase-down schedule, described further on pages 68-69), as well as a myriad of state-level policies. Wind additions are also being driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers. At the same time, the prospects for growth beyond the current PTC cycle remain uncertain: growth could be blunted by declining federal tax support, expectations for low natural gas prices, and modest electricity demand growth. This annual report—now in its tenth year—provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation-related trends: trends in U.S. wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development; and the quantity of proposed wind power capacity in various interconnection queues in the United States. Next, the report covers an array of wind power industry trends: developments in turbine manufacturer market share; manufacturing and supply-chain developments; wind turbine and component imports into and exports from the United States; project financing developments; and trends among wind power project owners and power purchasers. The report then turns to a summary of wind turbine technology trends: turbine size, hub height, rotor diameter, specific power, and IEC Class. After that, the report discusses wind power performance, cost, and pricing trends. In so doing, it describes

  7. Simulation for Grid Connected Wind Turbines with Fluctuating

    Science.gov (United States)

    Ye, Ying; Fu, Yang; Wei, Shurong

    This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.

  8. Challenges and options for large scale integration of wind power

    International Nuclear Information System (INIS)

    Tande, John Olav Giaever

    2006-01-01

    Challenges and options for large scale integration of wind power are examined. Immediate challenges are related to weak grids. Assessment of system stability requires numerical simulation. Models are being developed - validation is essential. Coordination of wind and hydro generation is a key for allowing more wind power capacity in areas with limited transmission corridors. For the case study grid depending on technology and control the allowed wind farm size is increased from 50 to 200 MW. The real life example from 8 January 2005 demonstrates that existing marked based mechanisms can handle large amounts of wind power. In wind integration studies it is essential to take account of the controllability of modern wind farms, the power system flexibility and the smoothing effect of geographically dispersed wind farms. Modern wind farms contribute to system adequacy - combining wind and hydro constitutes a win-win system (ml)

  9. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    assessment is sufficient in the early stage of wind farm planning, before higher-accuracy on site measurements are available. (au)

  10. Potential market of wind farm in China

    Energy Technology Data Exchange (ETDEWEB)

    Pengfei Shi [Hydropower Planning General Inst., Beijing (China)

    1996-12-31

    Wind energy resources are abundant in China, in southeast coast area along with the rapid economic growth, electricity demand has been sharply increased, due to complex terrain detailed assessments are in urgent need. Advanced methodology and computer model should be developed. In this paper the existing wind farms, installed capacity, manufacturers share and projects in the near future are presented. For further development of wind farm in large scale, different ways of local manufacturing wind turbine generators (WTG) are going on. Current policy and barriers are analyzed. 4 refs., 2 figs., 4 tabs.

  11. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    Science.gov (United States)

    Palanichamy, C.; Nasir, Meseret; Veeramani, S.

    2015-04-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia.

  12. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    International Nuclear Information System (INIS)

    Palanichamy, C; Veeramani, S; Nasir, Meseret

    2015-01-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia. (paper)

  13. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  14. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  15. A thermal storage capacity market for non dispatchable renewable energies

    Science.gov (United States)

    Bennouna, El Ghali; Mouaky, Ammar; Arrad, Mouad; Ghennioui, Abdellatif; Mimet, Abdelaziz

    2017-06-01

    Due to the increasingly high capacity of wind power and solar PV in Germany and some other European countries and the high share of variable renewable energy resources in comparison to fossil and nuclear capacity, a power reserve market structured by auction systems was created to facilitate the exchange of balance power capacities between systems and even grid operators. Morocco has a large potential for both wind and solar energy and is engaged in a program to deploy 2000MW of wind capacity by 2020 and 3000 MW of solar capacity by 2030. Although the competitiveness of wind energy is very strong, it appears clearly that the wind program could be even more ambitious than what it is, especially when compared to the large exploitable potential. On the other hand, heavy investments on concentrated solar power plants equipped with thermal energy storage have triggered a few years ago including the launching of the first part of the Nour Ouarzazate complex, the goal being to reach stable, dispatchable and affordable electricity especially during evening peak hours. This paper aims to demonstrate the potential of shared thermal storage capacity between dispatchable and non dispatchable renewable energies and particularly CSP and wind power. Thus highlighting the importance of a storage capacity market in parallel to the power reserve market and the and how it could enhance the development of both wind and CSP market penetration.

  16. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  17. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-55-005, QF07-56-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains...

  18. Wind power forecasting accuracy and uncertainty in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Miettinen, J.; Sillanpaeae, S.

    2013-04-15

    Wind power cannot be dispatched so the production levels need to be forecasted for electricity market trading. Lower prediction errors mean lower regulation balancing costs, since relatively less energy needs to go through balance settlement. From the power system operator point of view, wind power forecast errors will impact the system net imbalances when the share of wind power increases, and more accurate forecasts mean less regulating capacity will be activated from the real time Regulating Power Market. In this publication short term forecasting of wind power is studied mainly from a wind power producer point of view. The forecast errors and imbalance costs from the day-ahead Nordic electricity markets are calculated based on real data from distributed wind power plants. Improvements to forecasting accuracy are presented using several wind forecast providers, and measures for uncertainty of the forecast are presented. Aggregation of sites lowers relative share of prediction errors considerably, up to 60%. The balancing costs were also reduced up to 60%, from 3 euro/MWh for one site to 1-1.4 euro/MWh to aggregate 24 sites. Pooling wind power production for balance settlement will be very beneficial, and larger producers who can have sites from larger geographical area will benefit in lower imbalance costs. The aggregation benefits were already significant for smaller areas, resulting in 30-40% decrease in forecast errors and 13-36% decrease in unit balancing costs, depending on the year. The resulting costs are strongly dependent on Regulating Market prices that determine the prices for the imbalances. Similar level of forecast errors resulted in 40% higher imbalance costs for 2012 compared with 2011. Combining wind forecasts from different Numerical Weather Prediction providers was studied with different combination methods for 6 sites. Averaging different providers' forecasts will lower the forecast errors by 6% for day-ahead purposes. When combining

  19. Capacity Building

    International Nuclear Information System (INIS)

    Molloy, Brian; Mallick, Shahid

    2014-01-01

    Outcomes & Recommendations: • Significant increase needed in the nuclear workforce both to replace soon-to-retire current generation and to staff large numbers of new units planned • Key message, was the importance of an integrated approach to workforce development. • IAEA and other International Organisations were asked to continue to work on Knowledge Management, Networks and E&T activities • IAEA requested to conduct Global Survey of HR needs – survey initiated but only 50% of operating countries (30% of capacity) took part, so results inconclusive

  20. Wind energy - The facts. An analysis of wind energy in the EU-25

    International Nuclear Information System (INIS)

    2004-02-01

    Since the previous edition of Wind Enera - The Facts was published five years ago, the wind energy sector has undergone rapid change and transformation. There has been an explosion in demand for and Interest in a cleaner energy world from politicians, institutions, policy makers and regulators, the media, commentators and the general public. Such interest necessitates a greater depth of understanding of the wind power sector if informed choices and policy decisions are to be made. The European Wind Energy Association (EWEA), and the European Commission's Directorate General for Transport' and Energy have collaborated on this report to provide a detailed overview of the wind power sector. Wind Enera - The Facts provides a comprehenslve overview of the essential issues concerning wind power today: technology, cost, prices, environment, industry and employment, market, and research and development. Wind energy is a relatively young but rapidly expanding industry. Over the past decade, global installed capacity has increased from 2,500 megawatts (MW) in 1992 to just over 40,000 MW at the end of 2003, at an annual growth rate of near 30%. Almost three quarters of this capacity has been installed in Europe. Penetration levels in the electricity sector have reached 20% in Denmark and about 5% in both Germany and Spain. The north German state of Schleswig-Holstein has 1,800 MW of installed wind capacity, enough to meet 30% of the region's total electricity demand, while in Navarra, in Spain, 50% of consumption is met by wind power. If positive policy support continues to develop, EWEA has projected that wind power will achieve an installed capacity of 75,000 MW in the EU-15 by 2010. This would represent an overall contribution to electricity supply of 5.5%. By 2020, this figure is expected to increase to more than 12%, with wind power providing energy equal to the demand of 195 million European household consumers. (au)

  1. Marketing Strategic Choices for Wind Technology in China : case: Chinese Domestic Wind Technology Companies

    OpenAIRE

    Shi, Yi

    2011-01-01

    There are almost 80 wind turbine manufacturers in China. However, the supportive government policies are the fact behind the rapid growth of those case companies. In reality, there are less than 10 Chinese wind turbine manufacturers with actual production capacity. Most of them lack core technology and depend in many ways on state patronage. The current situation is worrisome. Therefore, the correct comprehension of wind power market conditions and the consequent adoption of right marketing s...

  2. Marketing strategic choice for wind power technology in China : case: Chinese domestic wind technology companies

    OpenAIRE

    Shi, Yi

    2011-01-01

    There are almost 80 wind turbine manufacturers in China. However, the supportive government policies are the fact behind the rapid growth of those case companies. In reality, there are less than 10 Chinese wind turbine manufacturers with actual production capacity. Most of them lack core technology and depend in many ways on state patronage. The current situation is worrisome. Therefore, the correct comprehension of wind power market conditions and the consequent adoption of right marketing s...

  3. Two thousand wind pumps in the arid region of Brazil

    International Nuclear Information System (INIS)

    Feitosa, E.A.N.; Sampaio, G.M.P.

    1991-01-01

    The North-East part of Brazil is an arid region where water pumping is of vital importance. The main strategy of the Wind Energy Group (Eolica) at the University of Pernambuco is to act as a 'catalyst' between the Brazilian government and the companies involved in wind energy. The company CONESP is a drilling company that is also responsible for choosing the appropriate pumping system and providing maintenance. CONESP already has drilled about 6,000 wells and installed 2,000 conventional windmills with piston pumps. Most of the wells have a very low capacity; thus wind pumps, having a relatively low water pumping capacity, are a suitable solution. However, one of the problems with the installed conventional wind pumps is that the drilled tube wells are not perfectly vertical, resulting in wear of the pump rod. Besides, the maintenance or replacement of the piston pump is time consuming and consequently costly. To reduce operation and maintenance costs, windmills coupled to pneumatic pumps have been developed. Examples are given of air-lift pumps and barc pumps, both using commercially available compressors. The main advantage is that there are no moving parts situated below ground level. Moreover, the windmill does not necessarily have to be placed above the well. Well and windmill can be situated up to 100 metres from each other. The starting torque of this system is also lower than the conventional wind pump. It is concluded that windmills with pneumatic pumps have a relatively low efficiency and higher investment costs compared with windmills coupled to piston pumps. However, CONESP's effort is to optimize the total performance of the pumping system. Due to the lower maintenance costs, pneumatic pumps seem to be a viable alternative to piston pumps. 7 figs., 3 refs

  4. Offshore Wind Energy Resource Assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  5. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  6. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1996-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  7. An improved market penetration model for wind energy technology forecasting

    International Nuclear Information System (INIS)

    Lund, P.D.

    1995-01-01

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  8. In-operation learning of optimal wind farm operation strategy

    OpenAIRE

    Oliva Gratacós, Joan

    2017-01-01

    In a wind farm, power losses due to wind turbine wake effects can be up to 30-40% under certain conditions. As the global installed wind power capacity increases, the mitigation of wake effects in wind farms is gaining more importance. Following a conventional control strategy, each individual turbine maximizes its own power production without taking into consideration its effects on the performance of downstream turbines. Therefore, this control scheme results in operation con...

  9. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.D. [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1995-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  10. Energy management and grid stability aspects of wind energy integration

    International Nuclear Information System (INIS)

    Saulnier, B.; Krau, S.; Gagnon, R.

    2002-01-01

    Wind energy management on power grids was discussed with reference to a wind integration study in Vermont and new projects at Hydro-Quebec's electricity research institute (IREQ (Recherche en Electricite du Quebec)). Modeling concepts for wind integration were presented for hydro/wind systems and for thermal/wind systems. A large scale wind power integration study for the Quebec/Labrador area has shown that large wind power capacity can be integrated in the existing power system without special investment. The Canadian Wind Energy Association's goal of integrating 10,000 MW of wind in Canadian grids appears realistic from a technical point of view. The Vermont thermal system type project involves the integration of wind and biomass. The project objective is to evaluate the impacts, by 2010, of high penetration levels of renewable energy on the Vermont grid. The study showed that wind power can represent a large portion of Vermont's total generation because transmission capacities to get to other regions are large, plus Vermont has ties with other power systems. The Hydro-Quebec load and Vermont wind are well correlated, meaning that Hydro-Quebec's peak is driven by winter electric space heating demand, and Vermont's best wind resource period is also in the winter. Model results show an economic benefit of adding wind power in the Vermont Power system when it is managed with Quebec's generation assets. The impact that this would have on the transmission system was also discussed. 1 tab., 13 figs

  11. Global wind energy outlook 2006

    International Nuclear Information System (INIS)

    2006-09-01

    The global market for wind power has been expanding faster than any other source of renewable energy. From just 4,800 MW in 1995 the world total has multiplied more than twelve-fold to reach over 59,000 MW at the end of 2005. The international market is expected to have an annual turnover in 2006 of more than euro 13 billion, with an estimated 150,000 people employed around the world. The success of the industry has attracted investors from the mainstream finance and traditional energy sectors. In a number of countries the proportion of electricity generated by wind power is now challenging conventional fuels. The Global Wind Energy Outlook 2006 reports that over a third of the world's electricity - crucially including that required by industry - can realistically be supplied by wind energy by the middle of the century. The report provides an industry blueprint that explains how wind power could supply 34% of the world's electricity by 2050. Most importantly, it concludes that if wind turbine capacity implemented on this scale it would save 113 billion tonnes of CO2 from entering the atmosphere by 2050. This places wind power as one of the world's most important energy sources for the 21st century. The 'Global Wind Energy Outlook 2006' runs three different scenarios for wind power - a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an advanced version assuming that all policy options in favour of renewables have been adopted. These are then set against two scenarios for global energy demand. Under the Reference scenario, growth in demand is again based on IEA projections; under the High Energy Efficiency version, a range of energy efficiency measures result in a substantial reduction in demand

  12. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...... to wind speed at the height 10 m only. The extrapolation of satellite wind fields to higher heights, which are more relevant for wind energy, remains a challenge which cannot be addressed by means of satellite data alone. As part of the EU-NORSEWInD project (2008-12), a hybrid method has been developed...

  13. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  14. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1

  15. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  16. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  17. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  18. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  19. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow

    Institute of Scientific and Technical Information of China (English)

    Binrong WEN; Sha WEI; Kexiang WEI; Wenxian YANG; Zhike PENG; Fulei CHU

    2017-01-01

    The magnitude and stability of power output are two key indices of wind turbines.This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine.First,wind speed models,particularly the wind shear model and the tower shadow model,are described in detail.The widely accepted tower shadow model is modified in view of the cone-shaped towers of modem large-scale wind turbines.Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory.Results indicate that power fluctuation is mainly caused by tower shadow,whereas power loss is primarily induced by wind shear.Under steady wind conditions,power loss can be divided into wind farm loss and rotor loss.Wind farm loss is constant at 3α(3α-1)R2/(8H2).By contrast,rotor loss is strongly influenced by the wind turbine control strategies and wind speed.That is,when the wind speed is measured in a region where a variable-speed controller works,the rotor loss stabilizes around zero,but when the wind speed is measured in a region where the blade pitch controller works,the rotor loss increases as the wind speed intensifies.The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

  20. Mastering the power of wind

    International Nuclear Information System (INIS)

    Stiegel, J.

    1999-01-01

    In this paper the author deals with environmental aspects use of fossil fuels for the energy production. As a way for our planet to get back to a normal and ecologically balanced system the fossil fuels reduction and their replacement by renewable racecourses is recommended. Energetic potential of flowing sun, wind and tidal waves as power resources is discussed. The natural ecological resources are best utilised in the United States where the installed wind power output is 1600 MW. With 360 MW installed output in 1991 the Denmark took lead among European countries in utilising the wind power. The most dynamic power plant development among the European Union countries was recorded in Germany, where the installed power output of the wind power plants is 632 MW, i.e. i.e. 11.5 times higher compared to 55 MW in 1991. The economy of wind power in Germany and in Slovakia is compared. In Slovakia with annual 200 000 kWh power generation annually and the present kWh purchase price guarantee the rate of return of 10 million slovak crowns investment into a wind power plant project is in 100 years. Although the first wind power plants have already been built in the Zahorie, Kremnicke Bane, and Secovce regions, the wind exploitation status in Slovakia is still limping. According to professionals, the wind conditions in Slovakia are not ideal, but sufficient for a supplementary wind power plant system, that can be quite motivating especially for villages. Mount Chopok or mount Krizna are ideal sites to erect the three-blade tower with respect to wind speed. And also the anticipated Kremnicke vrchy site is worth considering. (author)

  1. FY 1998 Report on development of large-scale wind power generation systems. Part 1. Operational research on large-scale wind power generation systems; 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. 1. Ogata furyoku hatsuden system no unten kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The research and development project is implemented for large-scale wind power generation systems, and the FY 1998 results are reported. In the FY 1998, a slip property variable generator is actually mounted on the wind power generator, to conduct various types of demonstration tests. The reliability validation tests include microstructure examinations, fatigue tests and fatigue strength tests to predict residual strength in the blade. It is confirmed that the blade has a sufficient residual strength. The performance validation tests include continuous measurement of power outputs and wind velocities, and analysis of the output fluctuations. The power output performance during winter when the west wind prevails is higher than designed. In the tests for evaluating the characteristics of the system on which a slip property variable generator is mounted, the output smoothing effect is confirmed in a range beyond the rated output. The wind power generation system is continuously operated, to accumulate the operational data for, e.g., capacity factor, operating time rate, and system failure status. The FY 1998 results are 920,000kWh as the output and 21% as capacity factor. The other items investigate include aerodynamic noise reduction countermeasures, fatigue life of the wind turbine blades, economics of wind power generation, and dismantling and reuse of the wind turbines. (NEDO)

  2. Wind Conditions for Wind Farm Hanstholm

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.; Mann, Jakob

    The net annual energy production (AEP) of the Hanstholm Wind Farm is 158 GWh per year for the Siemens SWT-3.6-120 turbine and 140 GWh for the Vestas V112-3.0 turbine. These values have an uncertainty (standard deviation) of 6%. This result is mainly based on the data for Risø DTU’s test station...... at Høvsøre where wind speeds are measured at approximately the same height as the turbines at Hanstholm and where the terrain is similar. On top of that meso-scale modeling has been used to extrapolate the climatology from Høvsøre to Hanstholm increasing the AEP by almost 6% compared to just using...... the Høvsøre climatology directly. This method of extrapolation is rather new, but several older investigations indicate that the wind resource at Hanstholm is slightly higher than at Høvsøre. The work is carried out for Grontmij-Carl Bro according to a contract dated January 18th 2011....

  3. Reducing Turbine Mechanical Loads Using Flow Model-Based Wind Farm Controller

    DEFF Research Database (Denmark)

    Kazda, Jonas; Cutululis, Nicolaos Antonio

    Cumulated O&M costs of offshore wind farms are comparable with wind turbine CAPEX of such wind farm. In wind farms, wake effects can result in up to 80% higher fatigue loads at downstream wind turbines [1] and consequently larger O&M costs. The present work therefore investigates to reduce...... these loads during the provision of grid balancing services using optimal model-based wind farm control. Wind farm controllers coordinate the operating point of wind turbines in a wind farm in order to achieve a given objective. The investigated objective of the control in this work is to follow a total wind...... farm power reference while reducing the tower bending moments of the turbines in the wind farm. The wind farm controller is tested on a 8 turbine array, which is representative of a typical offshore wind farm. The operation of the wind farm is simulated using the dynamic wind farm simulation tool S imWind...

  4. Lightning protection for wind turbines in Vietnam

    Directory of Open Access Journals (Sweden)

    Thuan Nguyen

    2017-01-01

    Full Text Available Wind energy has become increasingly important in the total electrical energy supply mix in Vietnam over the last few years. Small, kW turbines were installed in isolated areas a decade ago, while wind farms of several MW to few hundred MW are now being connected directly to national grid, with many additional projects in planning or under construction to fulfill an objective of 6% of the total installed capacity by 2030 (approximately 6200 MW of wind energy component. The increase in wind farm generation results in increased damage from lightning. In this paper, the annual frequency of lightning strikes to wind turbines in Vietnam is calculated using electrogeometric model. Reported lightning incidents to three major wind farms in Vietnam are summarized. Possible causes of failure are discussed, and an EMTP simulation for each incident was performed accordingly. The simulations suggest the failure mechanisms as well the potential of improved grounding to reduce lightning induced damage in future windfarms.

  5. Analyzing the Energy Performance, Wind Loading, and Costs of Photovoltaic Slat Modules on Commercial Rooftops

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, Otto D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Kelsey A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); MacAlpine, Sara M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Silverman, Timothy J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-13

    NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air to flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.

  6. Why invest in wind energy? Career incentives and Chinese renewable energy politics

    International Nuclear Information System (INIS)

    Cao, Xun; Kleit, Andrew; Liu, Chuyu

    2016-01-01

    We study wind development at the provincial level in China, modelling installed wind capacities as a function of both economics and politics. We assume that the top provincial officials desire to maximize their chances of promotion under the Chinese cadre evaluation system. We expect that those with the strongest incentives to perform in order to achieve promotion would work harder to comply with the central government’s policy agenda to promote renewable energy. Collecting and testing data on provincial leaders’ characteristics, we find that provinces governed by party secretaries who were approaching the age of 65 are associated with significantly higher level of wind installed capacities. This result supports the political tournaments theory of Chinese politics. We also find that better educated party secretaries are likely to be more supportive of renewable energy, implying that education acts to encourage provincial leaders to support the central government’s policy. - Highlights: • No negative association between fossil fuel production and wind energy development. • Provinces with party secretaries approaching the age of 65 have more installed capacities. • Better educated party secretaries are likely to be more supportive of renewable energy.

  7. Wind power report Germany 2014

    International Nuclear Information System (INIS)

    Rohrig, Kurt

    2015-01-01

    Record year 2014. In Germany, the expansion figures attained were so high on land and at sea that the overall new installation figure of 5,188 MW surpassed the previous maximum (from 2002) by more than 60%. With an overall capacity of 39,259 MW, for the first time, wind energy in Germany covers 9.7% of gross power consumption. On the global scale a capacity of more than 51,000 MW has been added - another record high for wind energy installations. Power mix. At 161 TWh, renewable energies in Germany covered 27.8% of gross power consumption and provided for the first time more energy than any other energy source. Coming into force of the new REA in August 2014, modified support schemes caused the expansion of biogas plants and large-scale PV installations to falter. The record expansion seen for wind energy can be interpreted as a pull-forward effect due to the tender procedures coming into force in 2017. Grid integration. Loss of production caused by feed-in management measures rose by 44% to 555 GWh as compared to 2012. Wind turbines were affected in 87% of cases but the impact on PV installations is increasing. Power generation must be more flexible and grids expanded to limit loss of production. Of the 23 expansion projects (1,887 km) in the Electricity Grid Expansion Act, just a quarter of them had been realized by the end of 2014 (463 km). In the preliminary analysis results for the 2014 grid development plan, the extent of grid upgrading and conversion was 3050 km. Offshore, the HelWin 1 grid link with a capacity of 580 MW went online. SylWin 1 and BorWin 2, with a total capacity of 1660 MW, are currently being tested in a trial. In the preliminary analysis results for the 2014 offshore grid development plan, grid connections having an overall capacity of 10.3 GW are planned. Onshore. 2014 saw a total of 44 different turbine types installed in Germany. For the first time, virtually the same number of turbines were added in the 3-4 MW class, as in the 2-3 MW

  8. Analysis of the reduced wake effect for available wind power calculation during curtailment

    NARCIS (Netherlands)

    Sanchez Perez Moreno, S.; Ummels, B. C.; Zaayer, M B

    2017-01-01

    With the increase of installed wind power capacity, the contribution of wind power curtailment to power balancing becomes more relevant. Determining the available power during curtailment at the wind farm level is not trivial, as curtailment changes the wake effects in a wind farm. Current best

  9. Fixed-speed active-stall wind turbines in offshore applications

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Nielsen, Arne Hejde

    2005-01-01

    A large offshore wind farm in the East Danish power system was commissioned in 2003 at Rodsand. The power capacity of the wind farm is 165 MW divided between 72 wind turbines. For this large offshore application, robust and well-known wind technology has been chosen in the form of fixed-speed, ac...

  10. Advanced tools for modeling, design and optimization of wind turbine systems

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, A.D.; Jauch, C.

    2005-01-01

    As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more i...

  11. Technologies for production of electricity and heat in Sweden. Wind energy in perspective of international development

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Joergen; Morthorst, Poul Erik

    2008-12-15

    coast. The cost of wind generated power is higher for offshore wind farms that for on land ones ranging from approximately 6 cEuro/kWh to more than 9 cEuro/kWh. Assuming a learning rate at 10% and a doubling time of total installed capacity of four years the cost interval would in 2015 be approximately 4.8 to 5.5 cEuro/kWh for a coastal and inland site, respectively. (au)

  12. Review of wind power tariff policies in China

    International Nuclear Information System (INIS)

    Hu, Zheng; Wang, Jianhui; Byrne, John; Kurdgelashvili, Lado

    2013-01-01

    In the past 20 years, China has paid significant attention to wind power. Onshore wind power in China has experienced tremendous growth since 2005, and offshore wind power development has been on-going since 2009. In 2010, with a total installed wind power capacity of 41.8 GW, China surpassed the U.S. as the country with the biggest wind power capacity in the world. By comparing the wind power situations of three typical countries, Germany, Spain, and Denmark, this paper provides a comprehensive evaluation and insights into the prospects of China’s wind power development. The analysis is carried out in four aspects including technology, wind resources, administration and time/space frame. We conclude that both German and Spanish have been growing rapidly in onshore capacity since policy improvements were made. In Denmark, large financial subsidies flow to foreign markets with power exports, creating inverse cost-benefit ratios. Incentives are in place for German and Danish offshore wind power, while China will have to remove institutional barriers to enable a leap in wind power development. In China, cross-subsidies are provided from thermal power (coal-fired power generation) in order to limit thermal power while encouraging wind power. However, the mass installation of wind power capacity completely relies on power subsidies. Furthermore, our study illustrates that capacity growth should not be the only consideration for wind power development. It is more important to do a comprehensive evaluation of multi-sectorial efforts in order to achieve long-term development. - Highlights: ► Key components to exam China’s wind power. ► Evaluation of Europe could be helpful. ► China has to remove institutional barrier.

  13. Wind power in political whirlwind

    International Nuclear Information System (INIS)

    Morch, Stein

    2002-01-01

    In Norway, according to this article, shifting fair wind and head wind for wind power have changed to unpredictable political whirlwinds. That is, there is great uncertainty with respect to further development of wind power in Norway as well as in nearby markets such as Sweden, Denmark and the Netherlands. The government, represented by Enova, has announced reduced investment grants, and so the realization of a ''green'' market, at home or across the frontiers, becomes very important. The political goal of producing 3 TWh of wind power per year by 2010 apparently is still valid, but it is difficult to see any robust and convincing clarity when it comes to policy instruments and economical frames that will make it possible to reach that goal. In its directive on renewable energy sources in the energy generation, the EU has quoted a total increase in capacity from 14 percent in 1997 to 22 percent in 2010. This has been shared among the member countries as indicative targets and there is great freedom in the selection of policy instruments. At the end of 2002, the wind power production in Norway is 0.3 TWh/year

  14. Bigger and better wind tech

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    This article briefly describes two new wind energy projects. One is the Portland Wind Commercialisation Project in the Portland district of south west Victoria, for which Pacific Hydro Limited was granted Major Project Facilitation Status. The Project consists of a staged development during 2001-2002 of four wind farms in the Portland district on the southwest coast of Victoria with total investment being between $230 million and $250 million. Generation capacity will be between 140 and 150 MW using over 100 wind driven turbines. It is estimated that the annual production of electricity from this Project will be in excess of 500 G Wh which represents an abatement of more than 500,000 tonnes of CO 2 per annum. This is around 5% of Australia's 9,500 G Wh target for renewables. If developed, the project will generate approximately 15 permanent new jobs as well as employment for some 80 during the construction phase and will be subject to normal environmental controls. The Australian industry participation for the Project is envisaged to be in excess of 90% potentially creating up to 500 indirect manufacturing jobs, which may result in substantial economic growth in the region and the emerging renewable energy market. Another company, Western Power, has launched a new renewable energy storage system at Denham, Western Australia, with wind turbine-flywheel hybrid generating system. It is estimated that this project could greatly improve the effectiveness of wind energy for power generation in remote location all over the world

  15. Modelling the wind climate of Ireland

    DEFF Research Database (Denmark)

    Frank, H.P.; Landberg, L.

    1997-01-01

    The wind climate of Ireland has been calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM. The climatology is represented by 65 frequency classes of geostrophic wind that were selected as equiangular direction sectors and speed intervals with equal frequency in a sector. The results...... are compared with data from the European Wind Atlas which have been analyzed using the Wind Atlas Analysis and Application Program, WA(S)P. The prediction of the areas of higher wind power is fair. Stations with low power are overpredicted....

  16. Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation

    International Nuclear Information System (INIS)

    Greenblatt, Jeffery B.; Succar, Samir; Denkenberger, David C.; Williams, Robert H.; Socolow, Robert H.

    2007-01-01

    The economic viability of producing baseload wind energy was explored using a cost-optimization model to simulate two competing systems: wind energy supplemented by simple- and combined cycle natural gas turbines ('wind+gas'), and wind energy supplemented by compressed air energy storage ('wind+CAES'). Pure combined cycle natural gas turbines ('gas') were used as a proxy for conventional baseload generation. Long-distance electric transmission was integral to the analysis. Given the future uncertainty in both natural gas price and greenhouse gas (GHG) emissions price, we introduced an effective fuel price, p NGeff , being the sum of the real natural gas price and the GHG price. Under the assumption of p NGeff =$5/GJ (lower heating value), 650 W/m 2 wind resource, 750 km transmission line, and a fixed 90% capacity factor, wind+CAES was the most expensive system at cents 6.0/kWh, and did not break even with the next most expensive wind+gas system until p NGeff =$9.0/GJ. However, under real market conditions, the system with the least dispatch cost (short-run marginal cost) is dispatched first, attaining the highest capacity factor and diminishing the capacity factors of competitors, raising their total cost. We estimate that the wind+CAES system, with a greenhouse gas (GHG) emission rate that is one-fourth of that for natural gas combined cycle plants and about one-tenth of that for pulverized coal plants, has the lowest dispatch cost of the alternatives considered (lower even than for coal power plants) above a GHG emissions price of $35/tC equiv. , with good prospects for realizing a higher capacity factor and a lower total cost of energy than all the competing technologies over a wide range of effective fuel costs. This ability to compete in economic dispatch greatly boosts the market penetration potential of wind energy and suggests a substantial growth opportunity for natural gas in providing baseload power via wind+CAES, even at high natural gas prices

  17. Onshore wind energy potential over Iberia: present and future projections

    Science.gov (United States)

    Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.

    2014-05-01

    Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  18. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  19. Offshore wind power in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H. [VTT Energy, Espoo (Finland)

    1998-12-31

    The objectives of the project were to estimate the technical offshore wind power potential of the Gulf of Bothnia, with cost assessments, to study icing conditions and ice loads, and to design a foundation suitable for the environmental conditions. The technical offshore potential from Vaasa to Tornio is huge, more than 40 TWh/a, although the cost of offshore wind power is still higher than on land. Wind turbines have not previously been designed for the icing conditions found in Gulf of Bothnia and the recommendations for load cases and siting of megawatt-class turbines are an important result of the project. (orig.)

  20. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  1. Wind Spires as an Alternative Energy Source

    Energy Technology Data Exchange (ETDEWEB)

    Majid Rashidi, Ph.D., P.E.

    2012-10-30

    This report discloses the design and development of an innovative wind tower system having an axisymmetric wind deflecting structure with a plurality of symmetrically mounted rooftop size wind turbines near the axisymmetric structure. The purpose of the wind deflecting structure is to increase the ambient wind speed that in turn results in an overall increase in the power capacity of the wind turbines. Two working prototypes were constructed and installed in the summer of 2009 and 2012 respectively. The system installed in the Summer of 2009 has a cylindrical wind deflecting structure, while the tower installed in 2012 has a spiral-shape wind deflecting structure. Each tower has 4 turbines, each rated at 1.65 KW Name-Plate-Rating. Before fabricating the full-size prototypes, computational fluid dynamic (CFD) analyses and scaled-down table-top models were used to predict the performance of the full-scale models. The performance results obtained from the full-size prototypes validated the results obtained from the computational models and those of the scaled-down models. The second prototype (spiral configuration) showed at a wind speed of 11 miles per hour (4.9 m/s) the power output of the system could reach 1,288 watt, when a typical turbine installation, with no wind deflecting structure, could produce only 200 watt by the same turbines at the same wind speed. At a wind speed of 18 miles per hour (8 m/sec), the spiral prototype produces 6,143 watt, while the power generated by the same turbines would be 1,412 watt in the absence of a wind deflecting structure under the same wind speed. Four US patents were allowed, and are in print, as the results of this project (US 7,540,706, US 7,679,209, US 7,845,904, and US 8,002,516).

  2. Local ownership, smart energy systems and better wind power economy

    DEFF Research Database (Denmark)

    Hvelplund, Frede; Möller, Bernd; Sperling, Karl

    2013-01-01

    is never sold at a lower price than the most expensive heat alternative. The other is to lower the average costs of wind power by building more onshore wind power capacity, and proportionally less offshore wind power. This is facilitated by local and regional majority ownership models that increase...... the acceptance rate of onshore wind. The economy of wind power is thus improved by both increasing its value and reducing its costs.......Increasing wind power shares enhances the need to integrate wind power into the energy system and to improve its economy. In this study we propose two ways of achieving this end. One is to increase the value of wind power by integrating the heat and power markets, and thus ensures that wind power...

  3. Power control for wind turbines in weak grids: Concepts development

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    will make wind power more firm and possible to connect to weaker grids. So, when the concept is matured, theexpectation is that for certain wind power installations, the cost of the power control is paid back as added wind power capacity value and saved grid reinforcement costs. Different systems...... and analyze methods and technologies for making it viable to utilize more of the wind potential in remote areas. The suggestion is to develop a power control concept for wind turbines which will even out thepower fluctuations and make it possible to increase the wind energy penetration. The main options...... are to combine wind power with a pumped hydro power storage or with an AC/DC converter and battery storage. The AC/DC converter can either be an "add-on" typeor it can be designed as an integrated part of a variable speed wind turbine. The idea is that combining wind power with the power control concept...

  4. Conference on wind energy and grid integration

    International Nuclear Information System (INIS)

    Laffaille, Didier; Boemer, Jens; Fraisse, Jean-Luc; Mignon, Herve; Gonot, Jean-Pierre; Rohrig, Kurt; Lange, Matthias; Bagusche, Daniel; Wagner, Stefan; Schiel, Johannes

    2008-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the grid integration of wind farms. In the framework of this French-German exchange of experience, more than 80 participants exchanged views on the evolutions of tariffs and licensing procedures, and on grid capacity improvements and production forecasts. This document brings together the available presentations (slides) made during this event: 1 - The necessary evolution of billing and procedures for wind turbines connection to the grid in France (Didier Laffaille); 2 - Improvement of wind turbines integration to the grid in the framework of the EEG 2009 law (Jens Boemer); 3 - Decentralized power generation on the French power grids - 15, 20 kV and low voltage (Jean-Luc Fraisse); 4 - GOTTESWIND? Solution for the future: towards a grid evolution (Herve Mignon); 5 - Production forecasts in Germany - State-of-the-art and challenges for the grid exploitation (Kurt Rohrig); 6 - High-voltage lines capacity evaluation in meteorological situations with high wind energy production (Matthias Lange); 7 - The IPES project for the integration of wind energy production in the exploitation of the French power system (Jean-Pierre Gonot); 8 - Experience feedback from a wind turbine manufacturer in France and in Germany (Daniel Bagusche); 9 - Solutions for grid security improvement and capacity enhancement: cooperation between grid and power plant operators (Stefan Wagner); 10 - Open questions on wind energy integration to French and German grids (Johannes Schiel)

  5. Lessons from wind policy in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Peña, Ivonne; L. Azevedo, Inês; Marcelino Ferreira, Luís António Fialho

    2017-04-01

    Wind capacity and generation grew rapidly in several European countries, such as Portugal. Wind power adoption in Portugal began in the early 2000s, incentivized by a continuous feed-in tariff policy mechanism, coupled with public tenders for connection licenses in 2001, 2002, and 2005. These policies led to an enormous success in terms of having a large share of renewables providing electricity services: wind alone accounts today for ~23.5% of electricity demand in Portugal. We explain the reasons wind power became a key part of Portugal's strategy to comply with European Commission climate and energy goals, and provide a detailed review of the wind feed-in tariff mechanism. We describe the actors involved in wind power production growth. We estimate the environmental and energy dependency gains achieved through wind power generation, and highlight the correlation between wind electricity generation and electricity exports. Finally, we compare the Portuguese wind policies with others countries' policy designs and discuss the relevance of a feed-in tariff reform for subsequent wind power additions.

  6. Asynchrony of wind and hydropower resources in Australia

    KAUST Repository

    Gunturu, Udaya

    2017-08-14

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  7. Asynchrony of wind and hydropower resources in Australia

    KAUST Repository

    Gunturu, Udaya; Hallgren, Willow

    2017-01-01

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  8. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  9. Asynchrony of wind and hydropower resources in Australia.

    Science.gov (United States)

    Gunturu, Udaya Bhaskar; Hallgren, Willow

    2017-08-18

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation - canonical and Modoki - on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia's energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  10. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  11. The Current Situation of Wind Energy in Turkey

    Directory of Open Access Journals (Sweden)

    Raşit Ata

    2013-01-01

    Full Text Available Wind energy applications and turbine installations at different scales have increased since the beginning of this century. As wind energy is an alternative clean energy source compared to the fossil fuels that pollute the atmosphere, systems that convert wind energy to electricity have developed rapidly. Turkey’s domestic fossil fuel resources are extremely limited. In addition, Turkey’s geographical location has several advantages for extensive use of wind power. In this context, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Among the renewable sources, Turkey has very high wind energy potential. According to the Organization for Economic Cooperation and Development (OECD Turkey theoretically has 166 TWh a year of wind potential. However the installed wind power capacity is approximately 14% of total economical wind potential. In this study, Turkey’s installed electric power capacity and electric energy production are investigated and also the current situation of wind energy in Turkey is examined. The wind data used in this study were taken from Turkish Wind Energy Association (TUREB for the year 2012. This paper reviews the assessment of wind energy in Turkey as of the end of July 2012 including wind energy applications.

  12. What day-ahead reserves are needed in electric grids with high levels of wind power?

    International Nuclear Information System (INIS)

    Mauch, Brandon; Apt, Jay; Jaramillo, Paulina; Carvalho, Pedro M S

    2013-01-01

    Day-ahead load and wind power forecasts provide useful information for operational decision making, but they are imperfect and forecast errors must be offset with operational reserves and balancing of (real time) energy. Procurement of these reserves is of great operational and financial importance in integrating large-scale wind power. We present a probabilistic method to determine net load forecast uncertainty for day-ahead wind and load forecasts. Our analysis uses data from two different electric grids in the US with similar levels of installed wind capacity but with large differences in wind and load forecast accuracy, due to geographic characteristics. We demonstrate that the day-ahead capacity requirements can be computed based on forecasts of wind and load. For 95% day-ahead reliability, this required capacity ranges from 2100 to 5700 MW for ERCOT, and 1900 to 4500 MW for MISO (with 10 GW of installed wind capacity), depending on the wind and load forecast values. We also show that for each MW of additional wind power capacity for ERCOT, 0.16–0.30 MW of dispatchable capacity will be used to compensate for wind uncertainty based on day-ahead forecasts. For MISO (with its more accurate forecasts), the requirement is 0.07–0.13 MW of dispatchable capacity for each MW of additional wind capacity. (letter)

  13. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  14. Wind Development on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  15. Health impact of wind farms.

    Science.gov (United States)

    Kurpas, Donata; Mroczek, Bozena; Karakiewicz, Beata; Kassolik, Krzysztof; Andrzejewski, Waldemar

    2013-01-01

    analyses of these issues are justified, especially because none of the studies published in peer-reviewed journals so far meet the criteria for cohort or case-control studies. Due to methodology, currently available research results do not allow for higher than C-level recommendations. In the case of wind farms, the ideal types of research would be: a retrospective observation of a particular group of residents before and after the wind farm construction, case-control studies or cohort studies with control groups matched in respect of socioeconomic factors, predisposition for chronic diseases, exposure to environmental risk factors, and only one variable which would differentiate cases from controls--the distance between place of residence and a wind farm.

  16. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future.

    Science.gov (United States)

    Bailey, Helen; Brookes, Kate L; Thompson, Paul M

    2014-01-01

    Offshore wind power provides a valuable source of renewable energy that can help reduce carbon emissions. Technological advances are allowing higher capacity turbines to be installed and in deeper water, but there is still much that is unknown about the effects on the environment. Here we describe the lessons learned based on the recent literature and our experience with assessing impacts of offshore wind developments on marine mammals and seabirds, and make recommendations for future monitoring and assessment as interest in offshore wind energy grows around the world. The four key lessons learned that we discuss are: 1) Identifying the area over which biological effects may occur to inform baseline data collection and determining the connectivity between key populations and proposed wind energy sites, 2) The need to put impacts into a population level context to determine whether they are biologically significant, 3) Measuring responses to wind farm construction and operation to determine disturbance effects and avoidance responses, and 4) Learn from other industries to inform risk assessments and the effectiveness of mitigation measures. As the number and size of offshore wind developments increases, there will be a growing need to consider the population level consequences and cumulative impacts of these activities on marine species. Strategically targeted data collection and modeling aimed at answering questions for the consenting process will also allow regulators to make decisions based on the best available information, and achieve a balance between climate change targets and environmental legislation.

  17. A tall tower study of Missouri winds

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Neil I. [Department of Soil, Environmental and Atmospheric Sciences, 332 ABNR Building, University of Missouri, Columbia, MO 65211 (United States)

    2011-01-15

    This paper summarizes the results of a study of wind speeds observed at heights up to 150 m above ground level around Missouri. This is an amalgamation of four projects that allowed a total of eleven tall communication towers to be instrumented with wind observation equipment across the State of Missouri. This provided an assessment of the wind resource and the characteristics of the seasonal and diurnal cycles of wind in different areas of Missouri at the heights of utility scale wind turbines. Comparisons were also made to wind speeds predicted at these levels from a previously published wind map. The main finding was that the observed winds at each tower were smaller than those presented in the wind map. The discrepancy is most likely to be due to underestimation of the surface roughness and turbulence leading to an overestimation of near-surface wind shear. However, the wind shear, as expressed by the shear parameter was consistently greater than the 'standard' value of 1.4. The reconciliation of these two apparently contradictory findings is that the shear varies with the height at which it is measured. In wind resource assessment, wind shear is usually observed below 50 m and is tacitly assumed to be constant with height when used to extrapolate winds to higher levels. The author advocates the use of the friction velocity as a measure of shear in wind power applications in preference to the shear parameter that is usually used. This is because the shear parameter has a velocity bias that can also manifest as a bias with height or season. As wind power resource assessment is starting to use taller towers than the standard 50 m, intercomparison of site resources and extrapolation to turbine heights can be compromised if the shear parameter is used. (author)

  18. Wind potential assessment of Quebec Province

    International Nuclear Information System (INIS)

    Ilinca, A.; Chaumel, J.-L.; Retiveau, J.-L.

    2003-01-01

    The paper presents the development of a comprehensive wind atlas of the Province of Quebec. This study differs from previous studies by 1) use of a standard classification index to categorize the wind resource, 2) extensive review of surface and upper air data available for the Province to define the wind resource, and 3) integration of available wind data with the topography of the Province. The wind resource in the Province of Quebec is classified using the scheme proposed by Battelle-Pacific Northwest Laboratory (PNL). The Battelle-PNL classification is a numerical one which includes rankings from Wind Power Class 1 (lowest) to Wind Power Class 7 (highest). Associated with each numerical classification is a range of wind power and associated mean wind speed at 10 m and 50 m above ground level. For this study, a classification for 30 m above ground level was interpolated and used. A significant amount of wind data was gathered for the Province. These data were obtained from Atmospheric Environment Service (AES), Canada, from wind project developers, and from climatological summaries of surface and upper air data. A total of 35 primary data sites were selected in the Province. Although a number of wind data sites in the Province were identified and used in the analysis, large areas of the Province lacked any specific wind information. The Province was divided into grid blocks having dimensions of 1/4 o latitude by 1/3 o longitude. Each grid block is assigned a numerical Wind Power Class value ranging from 1 to 7. This value is based on the integration of the available wind data and the topography within the square. The majority of the Province was classified as 1 or 2. Coastal locations and topographic features in the interior of the Province typically have Wind Power Class 3 or higher. (author)

  19. Wind energy development: Danish experiences and international options

    International Nuclear Information System (INIS)

    Frandsen, S.; Hasted, F.; Josephsen, L.; Nielson, J.H.

    1989-01-01

    In Denmark, wind energy makes a visible contribution to energy planning. Since 1976, over 1,800 wind turbine units have been installed in Denmark, representing a capacity of ca 140 MW out of a grid capacity of 8,000 MW. These units are all grid-connected and the unit sizes range from 55 kW to 400 kW. The installed wind energy capacity represents a substantial development of technologies for wind energy utilization during the last 15 years, involving participation from research institutes, electric utilities, private industry, and the national energy administration. A considerable improvement of the technical and economic performance of wind turbines, along with increased reliability and durability, has been strongly supported by comprehensive government programs. In 1985, another large construction program was initiated which will add 100 MW wind power capacity by the end of 1990. Parallel with commercial development, Danish utilities have developed and constructed a number of megawatt-size wind turbines on a pilot basis. In general terms the wind energy resources in Denmark are rather good, and many suitable sites exist, but installed wind energy capacity is limited by the high population density. Consequently, research is being conducted on the feasibility of offshore wind turbines. In other countries, wind energy developments similar to those in Denmark are taking place. In communities with no connection to the national grid, special attention should be paid to hybrid systems such as wind-diesel and hydro-wind systems. A substantial transfer of technology is required for facilitating significant development of hybrid systems in developing countries. 11 refs., 7 figs., 2 tabs

  20. Where, when and how much wind is available? A provincial-scale wind resource assessment for China

    International Nuclear Information System (INIS)

    He, Gang; Kammen, Daniel M.

    2014-01-01

    China's wind installed capacity has grown at a remarkable rate, over 80% annually average growth since 2005, reaching 91.5 GW of capacity by end of 2013, accounting for over 27% of global capacity. This rapid growth has been the result of a domestic manufacturing base and favorable national policies. Further evolution will be greatly aided with a detailed wind resource assessment that incorporates spatial and temporal variability across China. We utilized 200 representative locations for which 10 years of hourly wind speed data exist to develop provincial capacity factors from 2001 to 2010, and to build analytic wind speed profiles. From these data and analysis we find that China's annual wind generation could reach 2000 TWh to 3500 TWh. Nationally this would correspond to an average capacity factor of 0.18. The diurnal and seasonal variation shows spring and winter has better wind resources than in the summer and fall. A highly interconnected and coordinated power system is needed to effectively exploit this large but variable resource. A full economic assessment of exploitable wind resources demands a larger, systems-level analysis of China's energy options, for which this work is a core requirement. - Highlights: • We assessed China's wind resources by utilizing 10 years of hourly wind speed data of 200 sites. • We built provincial scale wind speed profiles and develop provincial capacity factors for China. • We found that China's wind generation could reach 2000 TWh to 3500 TWh annually. • We observed similar temporal variation pattern of wind availability across China

  1. Wind energy developments in the Americas

    International Nuclear Information System (INIS)

    Swisher, R.; Ancona, D.F.

    1990-01-01

    This paper will highlight the key wind energy activities and programs of American countries. In South and Central America, wind technology awareness and opportunity is spreading. Countries have projects in the beginning stages of development and many sites with excellent wind resources are believed to exist. Argentina, Costa Rica, Colombia, Mexico, and several Caribbean countries are among those active in wind energy development. In Canada, after a decade of research and systems development, the Department of Energy Mines and Resources is conducting a review of all renewable energy technologies, including wind, to develop a strategic plan for future activities. Canadian industry continues development of various vertical axis projects and the Province of Alberta has begun a program to assess wind potential in that region. In the United States, commercial application of wind energy is continuing to expand. During 1989, over 140 MW of new wind turbine capacity was installed in wind power plants, bringing the total operating in the U.S. to 14600 turbines and 1,400 MW. During 1989, these machines produced over 2.1 billion kWh, enough to supply the residential needs of Washington D.C. or San Francisco. This is an increase of 15% over the 1988 total, even though installed operating capacity dropped by about 10% as smaller, out-dated turbines were phased out or replaced. The U.S. government is in the process of formulating a new National Energy Strategy. It seems clear that renewable energy and energy efficiency will play an increasingly important role in this strategy. The U.S. wind program continues to emphasize broad-based technology development, but has also initiated conceptual design studies for an advanced wind turbine for power generation in the late 1990s. (Author)

  2. Wind energy. Energy technologies in national, European and global perspective

    International Nuclear Information System (INIS)

    Hauge Madsen, P.; Bjerregaard, E.T.D.

    2002-01-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind international co

  3. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  4. The complete list of wind farms in France

    International Nuclear Information System (INIS)

    Le jannic, N.

    2013-01-01

    This list takes into account all the wind farms present or being constructed in France at the end of may 2013. The installed capacity reached 7913.4 MW while the projected capacity represents 3925.1 MW. 982 wind farms are reported in this document. For each wind farm the following pieces of information are reported: the name of the operator, the power output, the number of wind turbines, the name of the turbine manufacturer, and the date of commissioning. (A.C.)

  5. Wind and load variability in the Nordic countries

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Rissanen, S. [VTT Technical Research Centre of Finland, Espoo (Finland); Larsen, X. [Danmarks Tekniske Universitet, Lyngby (Denmark); Loevholm, A. L. [Kjeller Vindteknikk (Norway)

    2013-04-15

    This publication analysed the variability of wind production and load in Denmark, Finland, Sweden, and the Nordic region as a whole, based on real data measured from large-scale wind power during 2009-2011. The Nordic-wide wind power time series was scaled up such that Sweden had same amount of wind power production than Denmark, and Finland and Norway only 50% of the wind power production in Denmark. Wind power production in Denmark and Sweden is somewhat correlated (coefficient 0.7) but less correlation is found between the other countries. The variations from one hour to the next are only weakly correlated between all countries, even between Denmark and Sweden. Largest variations occur when the production is approximately 30-70% of installed capacity and variability is low during periods of light winds. The variability in shorter time scales was less than the hourly variations. During the three years analysed in this publication there were few storm incidents and they did not produce dramatic wind power ramps in the Nordic region. Wind and load variations are not correlated between the countries, which is beneficial from the viewpoint of wind integration. The smoothing effect is shown as reduction of variability from a single country to Nordic-wide wind power. The impact of wind power on the variability that the system experiences is evaluated by analysing the variability of net load with different wind power penetration levels. The Nordic-wide wind power production increases the highest hourly ramps by 2.4% (up) and -3.6% (down) of installed wind power capacity when there is 20% wind power penetration and by 2.7% (up) and -4.7% (down) for 30% wind penetration. These results assess the impacts of variability only. The next step will be assessing the uncertainty from forecast errors. The timing of ramp events, and occurrence of high-wind and low-load are studied. With current wind penetration, low production levels (2-5% of installed wind power) can occur in a

  6. Wind energy in the electric power system

    DEFF Research Database (Denmark)

    Polinder, H.; Peinke, J.; Kramer, O.

    2016-01-01

    have to behave when connected to the power system. In this way, they already incorporate basic ancillary services. However, frequency control is normally not provided as a regular reserve, because this would require reserving parts of the available wind capacity as stand-by capacity. Within R...... in order to guarantee a reliable stable power supply at any instant in time. Substituting these plants with renewable generation units requires the latter to be capable of providing these ancillary services. The state of the art is that grid codes are used to define the way wind turbines and wind farms......&D institutes, such control options were demonstrated and assessed for wind power plant clusters....

  7. InfraSound from wind turbines : observations from Castle River wind farm. Volume 1

    International Nuclear Information System (INIS)

    Edworthy, J.; Hepburn, H.

    2005-01-01

    Although infrasound has been discussed as a concern by groups opposed to wind farm facilities, there is very little information available about infrasound and wind turbines. This paper presented details of a project conducted by VisionQuest, the largest wind power producer in Canada. Three sensor types were used: precision sound analyzer, seismic geophones, and calibrated microphones to take measurements in low, medium and high winds. The project also measured infrasound when the wind farm was not operating. Acquisition geometry was presented, as well as details of apparent attenuations of wind noise. It was noted that high wind noise was a dominant factor and that there was little difference when the wind farm was not operational. It was suggested that turbines have no impact with high wind, since wind noise is not attenuated with distance. It was noted that increased geophone amplitudes indicate high wind coupled motion which is attenuated when the turbines are on. Results indicate that all frequencies showed attenuation with distance. Evidence showed that low frequency sound pressure levels were often lower when the turbines were switched on. Where turbines contributed to sound pressure levels, the magnitude of the contribution was below levels of concern to human health. Ambient sound pressure levels were much higher than contributions from wind turbines. It was concluded that wind itself generates infrasound. Wind turbines generate low levels of infrasound, detectable very close to facilities at low to medium wind speeds. Wind turbines may reduce ambient infrasound levels at high wind speeds by converting the energy from the wind into electricity. refs., tabs., figs

  8. Estimating near-shore wind resources

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Hahmann, Andrea N.; Peña, Alfredo

    An evaluation and sensitivity study using the WRF mesoscale model to estimate the wind in a coastal area is performed using a unique data set consisting of scanning, profiling and floating lidars. The ability of the WRF model to represent the wind speed was evaluated by running the model for a four...... grid spacings were performed for each of the two schemes. An evaluation of the wind profile using vertical profilers revealed small differences in modelled mean wind speed between the different set-ups, with the YSU scheme predicting slightly higher mean wind speeds. Larger differences between...... the different simulations were observed when comparing the root-mean-square error (RMSE) between modelled and measured wind, with the ERA interim-based simulations having the lowest errors. The simulations with finer horizontal grid spacing had a larger MSE. Horizontal transects of mean wind speed across...

  9. Production of the Finnish Wind Atlas

    DEFF Research Database (Denmark)

    Tammelin, Bengt; Vihma, Timo; Atlaskin, Evgeny

    2013-01-01

    ) the parameterization method for gust factor was extended to be applicable at higher altitudes; and (vii) the dissemination of the Wind Atlas was based on new technical solutions. The AROME results were calculated for the heights of 50, 75, 100, 125, 150, 200, 300 and 400 m, and the WAsP results for the heights of 50......, 75, 100, 125 and 150 m. In addition to the wind speed, the results included the values of the Weibull distribution parameters, the gust factor, wind power content and the potential power production, which was calculated for three turbine sizes. The Wind Atlas data are available for each grid point......The Finnish Wind Atlas was prepared applying the mesoscale model AROME with 2.5 km horizontal resolution and the diagnostic downscaling method Wind Atlas Analysis and Application Programme (WAsP) with 250 m resolution. The latter was applied for areas most favourable for wind power production: a 30...

  10. 2012 wind technologies market report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weaver, Samantha [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Assoc., Columbia, MD (United States); Buckley, Michael [Exeter Assoc., Columbia, MD (United States); Fink, Sari [Exeter Assoc., Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Annual wind power capacity additions in the United States achieved record levels in 2012, motivated by the then-planned expiration of federal tax incentives at the end of 2012 and recent improvements in the cost and performance of wind power technology. At the same time, even with a short-term extension of federal tax incentives now in place, the U.S. wind power industry is facing uncertain times. It will take time to rebuild the project pipeline, ensuring a slow year for new capacity additions in 2013. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on industry growth expectations. In combination with global competition within the sector, these trends continue to impact the manufacturing supply chain. What these trends mean for the medium to longer term remains to be seen, dictated in part by future natural gas prices, fossil plant retirements, and policy decisions, although recent declines in the price of wind energy have boost ed the prospects for future growth

  11. Wind power project at Pasni

    International Nuclear Information System (INIS)

    Masud, Jamil

    1998-01-01

    Major power generation capacity additions have recently been achieved in Pakistan as a result of policy initiatives taken in response to widespread power shortages in the eighties. These additions are based mainly on residual fuel oil and natural gas as fuel, resulting in a marked shift in favor of thermal generation and away from the traditionally dominant hydel sources. In recent decades, the supply of electricity to less developed areas has also been accorded high priority in Pakistan, although economic considerations in grid expansion have largely limited an otherwise aggressive rural electrification program to areas easily accessible from the national grid. These factors, coupled with relatively high system losses, have contributed to an unprecedented increase in emissions of greenhouse gases from the power generation industry in the country. An option which merits serious consideration in Pakistan is wind power. Wind power provides an opportunity to reduce dependence on imported fossil fuels and, at the same time, expand the power supply capacity to remote locations where grid expansion is not practical. Preliminary analysis of wind data in selected coastal locations in the Balochistan province indicates that a potential exists for harvesting wind energy using currently available technologies. (author)

  12. Opportunities in Canada's growing wind energy industry

    International Nuclear Information System (INIS)

    Lovshin Moss, S.; Bailey, M.

    2006-01-01

    Investment in Canada's wind sector is projected to reach $8 billion by 2012, and growth of the sector is expected to create over 16,000 jobs. Canada's wind energy capacity grew by 54 per cent in 2005 alone, aided in part by supportive national policies and programs such as the Wind Power Production Incentive (WPPI); the Canadian Renewable Conservation Expense (CRCE) and Class 43.1 Capital Cost Allowance; and support for research and development. Major long-term commitments for clean power purchases, standard offer contracts and renewable portfolio standards in several provinces are encouraging further development of the wind energy sector. This paper argued that the development of a robust Canadian wind turbine manufacturing industry will enhance economic development, create opportunities for export; and mitigate the effects of international wind turbine supply shortages. However, it is not known whether Canadian wind turbine firms are positioned to capitalize on the sector's recent growth. While Canada imports nearly all its large wind turbine generators and components, the country has technology and manufacturing strengths in advanced power electronics and small wind systems, as well as in wind resource mapping. Wind-diesel and wind-hydrogen systems are being developed in Canada, and many of the hybrid systems will offer significant opportunities for remote communities and off-grid applications. Company partnerships for technology transfer, licensing and joint ventures will accelerate Canada's progress. A recent survey conducted by Industry Canada and the Canadian Wind Energy Association (CanWEA) indicated that the total impact of wind energy related expenditures on economic output is nearly $1.38 billion for the entire sector. Annual payroll for jobs in Canada was estimated at $50 million, and substantial employment growth in the next 5 years is expected. Canada offers a strong industrial supply base capable of manufacturing wind turbine generators and

  13. Latin America wind market assessment. Forecast 2013-2022

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-15

    Wind Power Activities by Country: Developers/Owners, Wind Plant Sizes, Wind Turbines Deployed, Commissioning Dates, Market Share, and Capacity Forecasts Latin American markets are a subject of intense interest from the global wind industry. Wind plant construction across Latin America is modest compared to the more established markets like the United States, Europe, and China, but it is an emerging market that is taking off at a rapid pace. The region has become the hottest alternative growth market for the wind energy industry at a time when growth rates in other markets are flat due to a variety of policy and macroeconomic challenges. Globalization is driving sustainable economic growth in most Latin American countries, resulting in greater energy demand. Wind is increasingly viewed as a valuable and essential answer to increasing electricity generation across most markets in Latin America. Strong wind resources, coupled with today's sophisticated wind turbines, are providing cost-effective generation that is competitive with fossil fuel generation. Most Latin American countries also rely heavily on hydroelectricity, which balances well with variable wind generation. Navigant Research forecasts that if most wind plants under construction with planned commissioning go online as scheduled, annual wind power installations in Latin America will grow from nearly 2.2 GW in 2013 to 4.3 GW by 2022. This Navigant Research report provides a comprehensive view of the wind energy market dynamics at play in Latin America. It offers a country-by-country analysis, outlining the key energy policies and development opportunities and barriers and identifying which companies own operational wind plants and which wind turbine vendors supplied those projects. Market forecasts for wind power installations, capacity, and market share in Latin America, segmented by country and company, extend through 2022. The report also offers an especially close analysis of Brazil and Mexico

  14. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  15. WIND VARIABILITY IN BZ CAMELOPARDALIS

    International Nuclear Information System (INIS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-01-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  16. Wind energy in China. Current scenario and future perspectives

    International Nuclear Information System (INIS)

    Changliang, Xia; Zhanfeng, Song

    2009-01-01

    Wind power in China registered a record level of expansion recently, and has doubled its total capacity every year since 2004. Many experts believe that China will be central to the future of the global wind energy market. Consequently, the growth pattern of wind power in China may be crucial to the further development of the global wind market. This paper firstly presented an overview of wind energy potential in China and reviewed the national wind power development course in detail. Based on the installed wind capacity in China over the past 18 years and the technical potential of wind energy resources, the growth pattern was modeled in this study for the purpose of prospect analysis, in order to obtain projections concerning the development potential. The future perspectives of wind energy development in China are predicted and analyzed. This study provides a comprehensive overview of the current status of wind power in China and some insights into the prospects of China's wind power market, which is emerging as a new superpower in the global wind industry. (author)

  17. Overplanting in offshore wind power plants in different regulatory regimes

    DEFF Research Database (Denmark)

    Wolter, Christoph; Klinge Jacobsen, Henrik; Rogdakis, Georgios

    2016-01-01

    framework results more favourable to overplanting. The results indicate that current conceivable offshore wind power plants in the UK can increase their economic value by around 30 mio AC when optimising their capacity setup. In Denmark, current regulations are not suitable for overplanting causing loss...... of value when optimising the capacity design of wind power plants.......Offshore wind power’s journey towards being competitive with other generation technologies relies on technical innovation and maturation, but also on further optimisation of proven and mature solutions. Capacity optimisation or so-called overplanting is one example of optimisation, which...

  18. The comprehensive atlas of wind farms in France

    International Nuclear Information System (INIS)

    Le Jannic, N.; Vincent, C.

    2014-01-01

    This article reports the 1075 wind farms installed or planned on the French territory. The figures were collected during the first semester of 2014. The total installed capacity is 8678.9 MW and the planned farms represent a future capacity of 4288.1 MW, the planned farms will enter into operation during the next 3 years. For each farm the following data has been reported: city, operator, capacity and number of wind turbines, manufacturer and date of entry into operation. The wind farms are classified according to the department in which they are located. (A.C.)

  19. Study of large-scale vertical axis wind turbine wake through numerical modelling and fullscale experiments

    DEFF Research Database (Denmark)

    Immas, Alexandre; Kluczewska-Bordier, Joanna; Beneditti, Pascal

    Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One k...... horizontal axis wind turbine wind farm....... improvement that could make offshore wind more attractive is the reduction of the wake effect [1]. The latter corresponds to the velocity deficit generated by each wind turbine wake which affects the production of the others. This effect accounts for approximately 10% of the energy losses for a typical......Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One key...

  20. Wind Energy Basics | NREL

    Science.gov (United States)

    Wind Energy Basics Wind Energy Basics We have been harnessing the wind's energy for hundreds of grinding grain. Today, the windmill's modern equivalent-a wind turbine can use the wind's energy to most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and

  1. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  2. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  3. Wake-Effect Minimising Optimal Control of Wind Farms, with Load Reduction

    DEFF Research Database (Denmark)

    Borchersen, Anders Bech; Larsen, Jesper Abildgaard; Sivabalan, Senthuran

    2014-01-01

    A power generating wind turbine causes a speed reduction and an added turbulence to the wind. Wind turbines in wind farms are often caught in these wakes and are found to have a higher structural load than non affected wind turbines. This article investigates the possibility of designing a contro...

  4. Reliability benefits of dispersed wind resource development

    International Nuclear Information System (INIS)

    Milligan, M.; Artig, R.

    1998-05-01

    Generating capacity that is available during the utility peak period is worth more than off-peak capacity. Wind power from a single location might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility's peak load than a single site. There are other issues that arise when considering disperse wind plant development. Singular development can result in economies of scale and might reduce the costs of obtaining multiple permits and multiple interconnections. However, disperse development can result in cost efficiencies if interconnection can be accomplished at lower voltages or at locations closer to load centers. Several wind plants are in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming, Iowa and Texas. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically disperse sites on the reliability of the overall wind plant.This paper uses a production-cost/reliability model to analyze the reliability of several wind sites in the state of Minnesota. The analysis finds that the use of a model with traditional reliability measures does not produce consistent, robust results. An approach based on fuzzy set theory is applied in this paper, with improved results. Using such a model, the authors find that system reliability can be optimized with a mix of disperse wind sites

  5. Wind - the fuel of the future

    International Nuclear Information System (INIS)

    Farooqui, S.Z.

    2001-01-01

    Wind energy is not only cheap and clean, it is also safe. It has been very low external and social costs, and it has no liabilities related to decommissioning of obsolete plants, such as nuclear power. Wind turbines do not pose any substantial threat to birds and other wildlife. Accidents with extremely rare, and there are no recorded cases of person hurt by parts of blades or ice loosened from a wind turbine. Wind turbines provide a good energy balance - the energy invested in the production, installation, operation and maintenance and decommissioning of a typical wind turbine has a 'pay-back' time of less than six months of operation, while its average productive life is about 20 years. Wind energy plants can be installed fast and the capacity can be increased as per demand, any time, without decommissioning the previous installations. Wind energy is a domestic source of energy, hence it can improve a nation's degree of self electrification of rapidly industrializing countries. However, it is realized that wind power alone cannot satisfy the world's increasing demand for electrical power. But wind energy represents a feasible supplement in a diversified energy supply portfolio. In order to develop a renewable energy culture in our society, the government must provide a variety of incentives, as have been provided in those countries where the renewable energies have grown to become important sources of power generation during the recent years. (AB)

  6. Tuno Knob Offshore Wind Farm

    International Nuclear Information System (INIS)

    Madsen, P.S.

    1996-01-01

    In 1995 Midtkraft Power Company built Denmark's second offshore wind farm as a demonstration project. The project purpose is first of all to investigate the environmental aspects of offshore wind energy. The two primary objects are to study the impact on bird life and to test different methods for predicting the visual effect. The wind farm consists of 10 pitch-regulated Vestas V39 500 kW wind turbines placed on box caisson foundations in a shallow water area 6 km east of Jutland. The project has been implemented successfully under a very narrow time schedule, and during the first 6 months in operation, the production has been approx. 30% higher than expected. (author)

  7. Indian Wind Energy Outlook 2011

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Shruti; Kharul, Rajendra; Sawyer, Steve; Patel, Narendra; Pullen, Angelika; Gorate, Devanand; Raghu, V. (eds.)

    2011-12-15

    This report is a valuable tool for members of the wind industry and policy makers alike to learn about the market opportunities and the legal and regulatory framework in India. In addition, it gives us insights into the challenges going forward and offers suggestions for overcoming remaining hurdles for wind power development. According to the outlook 65.2 GW of wind power could be installed in Indian by 2020, up from 13.1 GW at the end of 2010. This would attract around USD 10.4bn of annual investment to the sector, and create 170,000 'green collar' jobs in manufacturing, project development, installation, operation, maintenance, consulting etc. At the same time, it would save 174 tons of CO2 every year. By 2030, the installed capacity could reach as much as 160.7 GW. In order to fully exploit the indigenous energy source at its doorstep, the Indian government needs to address several challenges and barriers that are holding back development. This includes a national renewable energy law, incentives for repowering, and rapid up-scaling of grid infrastructure to transport increasing amounts of wind power to the demand centres. It highlights the key role wind power could play in fueling India's growing energy demand, by delivering substantial amounts of clean energy.

  8. Indian Wind Energy Outlook 2011

    International Nuclear Information System (INIS)

    Shukla, Shruti; Kharul, Rajendra; Sawyer, Steve; Patel, Narendra; Pullen, Angelika; Gorate, Devanand; Raghu, V.

    2011-12-01

    This report is a valuable tool for members of the wind industry and policy makers alike to learn about the market opportunities and the legal and regulatory framework in India. In addition, it gives us insights into the challenges going forward and offers suggestions for overcoming remaining hurdles for wind power development. According to the outlook 65.2 GW of wind power could be installed in Indian by 2020, up from 13.1 GW at the end of 2010. This would attract around USD 10.4bn of annual investment to the sector, and create 170,000 'green collar' jobs in manufacturing, project development, installation, operation, maintenance, consulting etc. At the same time, it would save 174 tons of CO2 every year. By 2030, the installed capacity could reach as much as 160.7 GW. In order to fully exploit the indigenous energy source at its doorstep, the Indian government needs to address several challenges and barriers that are holding back development. This includes a national renewable energy law, incentives for repowering, and rapid up-scaling of grid infrastructure to transport increasing amounts of wind power to the demand centres. It highlights the key role wind power could play in fueling India's growing energy demand, by delivering substantial amounts of clean energy.

  9. World trends in wind energy

    International Nuclear Information System (INIS)

    Kane, Mamadou

    2016-01-01

    A set of articles proposes an overview of some recent, important and characteristic trends in the field of wind energy all over the world. China, with 30,8 GW of newly installed capacities in 2015 has just overtaken the European Union as far as the total installed power is concerned (145 GW against 142 GW). Job growth in the wind energy sector has reached 20 per cent in the USA in 2015. In this country, major companies held 52 per cent of the market in 2015 while a new American research plan has been approved for the development of offshore wind energy. In South Africa, a German company specialised in blade inspection and repair will provide the Obelisk group with its services on blades and towers for wind turbines. As far as the UK is concerned, the article outlines and comments the continuing decrease of production costs. In India, General Electric is about to launch a new technology of digital wind farm which is supposed to improve production by simulating availability and productivity over the farm lifetime while reducing costs. In Norway, a Norwegian company proposes a new battery-based storage solution, Batwind, for offshore wing energy

  10. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  11. Does wind energy mitigate market power in deregulated electricity markets?

    International Nuclear Information System (INIS)

    Ben-Moshe, Ori; Rubin, Ofir D.

    2015-01-01

    A rich body of literature suggests that there is an inverse relationship between wind power penetration rate into the electricity market and electricity prices, but it is unclear whether these observations can be generalized. Therefore, in this paper we seek to analytically characterize market conditions that give rise to this inverse relationship. For this purpose, we expand a recently developed theoretical framework to facilitate flexibility in modeling the structure of the electric industry with respect to the degree of market concentration and diversification in the ownership of wind power capacity. The analytical results and their attendant numerical illustrations indicate that the introduction of wind energy into the market does not always depress electricity prices. Such a drop in electricity prices is likely to occur when the number of firms is large enough or the ownership of wind energy is sufficiently diversified, or most often a combination of the two. Importantly, our study defines the circumstances in which the question of which type of firm invests in wind power capacity is crucial for market prices. - Highlights: • Studies show that electricity prices decrease with increased wind power capacity. • We investigate market conditions that give rise to this inverse relationship. • Average prices for wind energy are systematically lower than average market prices. • Conventional generation firms may increase market power by investing in wind farms. • Energy policy should seek to diversify the ownership of wind power capacity

  12. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  13. Wind energy for a sustainable development

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Hasager, Charlotte Bay; Sempreviva, Anna Maria

    2014-01-01

    of both the wind energy related research activities and the wind energy industry, as installed capacity has been increasing in most of the developed and developing countries. The DTU Wind Energy department carries the heritage of the Risø National Laboratory for Sustainable Energy by leading the research......Wind energy is on the forefront of sustainable technologies related to the production of electricity from green sources that combine the efficiency of meeting the demand for growth and the ethical responsibility for environmental protection. The last decades have seen an unprecedented growth...... developments in all sectors related to planning, installing and operating modern wind farms at land and offshore. With as many as 8 sections the department combines specialists at different thematic categories, ranging from meteorology, aeroelastic design and composite materials to electrical grids and test...

  14. Introduction effect of a load levelling system in an electric power system with a photovoltaic and wind system; Taiyoko/furyoku hatsuden wo donyu shita denryoku keito ni okeru fuka heijunka shisutemu no donyu koka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1998-12-05

    Introduction effect of load levelling system by a battery in an electric power system by a battery in an electric power system with a PV and wind system is investigated. Charge and discharge power of the battery are determined from a load curve and every hour data of PV and wind output. Annual cost of the power system is calculated from the generating power and the capacity of each source via the installed utility capacity and the capacity factor. It is found that (1) the battery system reduces the maximum demand and improves the load factor, (2) the cost effect of the battery system when introducing the PV system is higher than that when introducing the wind system. (author)

  15. International wind energy development. World market update 2012. Forecast 2013-2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The BTM wind report, World Market Update 2012, published by Navigant Research, is the eighteenth edition of this annual wind energy market report. The report includes more than 80 tables, charts and graphs illustrating global wind market development, as well as a wind market forecast for 2013?2017 and highlighted trends for the wind market through 2022. The report delivers several views on the fast?growing wind market, including: 1) More than 285 GW of wind power now installed globally; 2) 45GW of new capacity added in 2012, including 1.1 GW from offshore wind; 3) The United States surpassed China as the largest market in terms of new installations in 2012; 4) Europe lost its position as the largest world region in terms of new installations; 5) Wind installations in the Americas grew by 12.3 percent compared with 2011; 6) Big shake?up in the top ten wind turbine supplier ranking; 7) Strong Chinese presence among top 15 wind owner?operators; 8) Wind market structures continue to evolve; 9) The penetration of wind power in the world's electricity supply has reached 2.62 percent; 10) Offshore wind more than doubled the capacity added in 2011, with more than 4 GW currently under construction. With the addition of 44,951 MW in new installations in 2012, world wind power capacity grew to around 285,700 MW, an increase in the total wind power installation base of 18.6 percent. Market growth year-over-year in 2012, though a modest 7.8 percent, was still higher than in 2011. Average annual growth for the past five years has been 17.8 percent, achieved during the aftermath of the 2008 financial crisis, with traditionally large markets for wind power in economic recession in America and Europe. The wind power industry continues to demonstrate its ability to rapidly evolve to meet new demands in markets that face a variety of challenges. The focus on product diversification grows with wind turbine vendors designing machines for maximum energy production in low wind speed

  16. Wind power in areas with limited export capability

    Energy Technology Data Exchange (ETDEWEB)

    Matevosyan, Julija

    2004-03-01

    During the last two decades, increase in electricity demand and environmental concern resulted in fast growth of power production from renewable sources. Wind power is one of the most efficient alternatives. Due to rapid development of wind turbine technology and increasing size of wind farms, wind power plays a significant part in the power production mix of Germany, Spain, Denmark and some other countries. Wind power has to be build in areas with good wind potential. The best conditions for installation of wind power are, thus, in remote areas free of obstacles, and consequently with low population density. The transmission system in such areas might not be dimensioned to accommodate additional large-scale power plants. Insufficient transmission capacity problem, however, would emerge for any type of new generation, planned in similar conditions, although wind power has some special features that should be considered solving this problem. In this thesis the four possibilities are considered. One possibility is to revise the methods for calculation of available transmission capacity. Another solution for large-scale integration of wind power in such areas is to reinforce the network. This alternative however may be expensive and time consuming. Since wind power production depends on the wind speed, the wind farm utilization time is only 2,000-4,000 hours a year, and power production peaks not necessarily occur during periods with insufficient transmission capacity. Therefore wind energy curtailment may be considered as an alternative for large-scale wind power integration. It is also possible to store excess wind energy during the periods with insufficient transmission capacity. Conventional power plants with possibilities of fast production control (e.g. hydropower plants or gas power plants) may also be employed for this purpose. There is a lot of research regarding first two measures, therefore, this thesis provides a review and summarized conclusions from the

  17. Wind resource characterization in the Arabian Peninsula

    KAUST Repository

    Yip, Chak Man Andrew

    2015-12-28

    Wind energy is expected to contribute to alleviating the rise in energy demand in the Middle East that is driven by population growth and industrial development. However, variability and intermittency in the wind resource present significant challenges to grid integration of wind energy systems. These issues are rarely addressed in the literature of wind resource assessment in the Middle East due to sparse meteorological observations with varying record lengths. In this study, the wind field with consistent space–time resolution for over three decades at three hub heights (50m, 80m, 140m) over the whole Arabian Peninsula is constructed using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) dataset. The wind resource is assessed at a higher spatial resolution with metrics of temporal variations in the wind than in prior studies. Previously unrecognized locations of interest with high wind abundance and low variability and intermittency have been identified in this study and confirmed by recent on-site observations. In particular, the western mountains of Saudi Arabia experience more abundant wind resource than most Red Sea coastal areas. The wind resource is more variable in coastal areas along the Arabian Gulf than their Red Sea counterparts at a similar latitude. Persistent wind is found along the coast of the Arabian Gulf.

  18. WindFloat Pacific Project, Final Scientific and Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Banister, Kevin [Principle Power, Inc., Emeryville, CA (United States)

    2017-01-17

    PPI’s WindFloat Pacific project (WFP) was an up to 30 MW floating offshore wind demonstration project proposed off the Coast of Oregon. The project was to be sited approximately 18 miles due west of Coos Bay, in over 1000 ft. of water, and is the first floating offshore wind array proposed in the United States, and the first offshore wind project of any kind proposed off the West Coast. PPI’s WindFloat, a semi-submersible foundation designed for high-capacity (6MW+) offshore wind turbines, is at the heart of the proposed project, and enables access to the world class wind resource at the project site and, equally, to other deep water, high wind resource areas around the country.

  19. Wind power in Argentina: Policy instruments and economic feasibility

    International Nuclear Information System (INIS)

    Recalde, M.

    2010-01-01

    Despite its great wind endowment, Argentina has not still succeeded in increasing wind power share in its wholesale market. However, the energy supply problem that this country is facing from 2004 on seems to open an opportunity for wind energy projects. A wide range of legislation has recently emerged. In this context, this paper discusses whether policy instruments in the Argentinean regulatory frame contribute to economic feasibility for wind power projects or not. To this purpose, we study wind installed capacity, Argentinean wind potential, the different promotion tools used worldwide and those employed in Argentina. Finally, we realize a feasibility study for a typical project. We found, that in spite of its high wind potential, economic feature, related to policy instruments, have been a boundary to the development of wind energy into the energy mix. (author)

  20. Wind farms in the land of steel

    International Nuclear Information System (INIS)

    Crie-Wiesner, H.

    2012-01-01

    At the beginning of the 2000 years, the wind industry began a flourishing period in the Usa which rose hopes for replacing ailing steel and coal industry and failing car manufacturing. Some wind turbine manufacturers settled into the vacant huge halls of steelworks. Since then this industrial renaissance has known ups and downs because of the economic crisis and the changes in the energy policy of the government. In the 2005-2006 period only 52% of the component parts of wind turbines were manufactured in the Usa, now this rate has increased to reach 68%. Today the global situation is gloomy with turbine production over-capacity. (A.C.)

  1. Assessment of Wind Production Impacts to a Power System and Market Formation in Baltic

    OpenAIRE

    Turcik, M; Obuševs, A; Oļeiņikova, I; Junghāns, G

    2013-01-01

    This paper is related to the topical problem of expanding wind production integration to the power system and electricity markets. The model for simulation of wind production curves according to the development of wind capacities in Baltic is proposed. In order to evaluate the effect of the wind power integration to the price formation as well as level of system penetration by wind, methodology and algorithms taking into account the development scenarios in Baltic are pre...

  2. Cost optimization of wind turbines for large-scale offshore wind farms

    International Nuclear Information System (INIS)

    Fuglsang, P.; Thomsen, K.

    1998-02-01

    This report contains a preliminary investigation of site specific design of off-shore wind turbines for a large off-shore wind farm project at Roedsand that is currently being proposed by ELKRAFT/SEAS. The results were found using a design tool for wind turbines that involve numerical optimization and aeroelastic calculations of response. The wind climate was modeled in detail and a cost function was used to estimate costs from manufacture and installation. Cost of energy is higher for off-shore installations. A comparison of an off-shore wind farm site with a typical stand alone on-shore site showed an increase of the annual production of 28% due to the difference in wind climate. Extreme loads and blade fatigue loads were nearly identical, however,fatigue loads on other main components increased significantly. Optimizations were carried out to find the optimum overall off-shore wind turbine design. A wind turbine for the off-shore wind farm should be different compared with a stand-alone on-shore wind turbine. The overall design changed were increased swept area and rated power combined with reduced rotor speed and tower height. Cost was reduced by 12% for the final 5D/14D off-shore wind turbine from 0.306 DKr/kWh to 0.270 DKr/kWh. These figures include capital costs from manufacture and installation but not on-going costs from maintenance. These results make off-shore wind farms more competitive and comparable to the reference on-shore stand-alone wind turbine. A corresponding reduction of cost of energy could not be found for the stand alone on-shore wind turbine. Furthermore the fatigue loads on wind turbines in on-shore wind farms will increase and cost of energy will increase in favor of off-shore wind farms. (au) EFP-95; EU-JOULE-3; 21 tabs., 7 ills., 8 refs

  3. Wind energy generation and pollution control

    International Nuclear Information System (INIS)

    Mohibullah; Mohd Nishat Anwar

    2009-01-01

    Full text: In India, power generation from wind has emerged as one of the most successful programme. It is making meaningful contributions to the overall power requirements in some of the states. India is emerging as fifth nation in wind power generation. As per the projections made by Ministry of New and Renewable Energy, Govt. of India, 10 % of the total capacity of power generation will come from renewable energy sources by the year 2012. It is envisaged that 50 % of this capacity may come from wind power alone. The paper describes a WECS (Wind Energy Conversion Systems) structure implemented in the MATLAB-Simulink simulation environment by using the specialized PSB toolbox, designed for modeling and simulation of electrical equipment. A study is made to show effectiveness in pollution control. An analytical study is also made regarding the potential of wind energy in limiting the amount of green house gases added into the atmosphere per year in different states in India. The amount of green house gases which are saved in the process are calculated for nine wind potential sites in India. The amount of green house gases saved is considerable to reduce environmental pollution and saving in carbon credit. Approximately an amount of 70681 Euro per year may be saved if the scheme is implemented and use of wind energy known in India is fully utilized for power generation. (author)

  4. Seismic capacity of switchgear

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.; Kassir, M.; Pepper, S.

    1989-01-01

    As part of a component fragility program sponsored by the USNRC, BNL has collected existing information on the seismic capacity of switchgear assemblies from major manufacturers. Existing seismic test data for both low and medium voltage switchgear assemblies have been evaluated and the generic results are presented in this paper. The failure modes are identified and the corresponding generic lower bound capacity levels are established. The test response spectra have been used as a measure of the test vibration input. The results indicate that relays chatter at a very low input level at the base of the switchgear cabinet. This change of state of devices including relays have been observed. Breaker tripping occurs at a higher vibration level. Although the structural failure of internal elements have been noticed, the overall switchgear cabinet structure withstands a high vibration level. 5 refs., 2 figs., 2 tabs

  5. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  6. SMES for wind energy systems

    Science.gov (United States)

    Paul Antony, Anish

    Renewable energy sources are ubiquitous, wind energy in particular is one of the fastest growing forms of renewable energy, yet the stochastic nature of wind creates fluctuations that threaten the stability of the electrical grid. In addition to stability with increased wind energy, the need for additional load following capability is a major concern hindering increased wind energy penetration. Improvements in power electronics are required to increase wind energy penetration, but these improvements are hindered by a number of limitations. Changes in physical weather conditions, insufficient capacity of the transmission line and inaccurate wind forecasting greatly stymie their effect and ultimately lead to equipment damage. With this background, the overall goal of this research effort is to pitch a case for superconducting magnetic energy storage (SMES) by (1) optimally designing the SMES to be coupled with wind turbines thus reducing wind integration challenges and (2) to help influence decision makers in either increasing superconducting wire length/fill factor or improving superconducting splice technology thereby increasing the storage capacity of the SMES. Chapter 1 outlines the scope of this thesis by answering the following questions (1) why focus on wind energy? (2) What are the problems associated with increasing wind energy on the electric grid? (3) What are the current solutions related to wind integration challenges and (4) why SMES? Chapter 2, presents a detailed report on the study performed on categorizing the challenges associated with integrating wind energy into the electric grid. The conditions under which wind energy affected the electric grid are identified both in terms of voltage stability and excess wind generation. Chapter 3, details a comprehensive literature review on the different superconducting wires. A technology assessment of the five selected superconductors: [Niobium Titanium (NbTi), Niobium Tin (Nb3Sn), Bismuth strontium calcium

  7. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  8. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  9. Experimental study of improved HAWT performance in simulated natural wind by an active controlled multi-fan wind tunnel

    Science.gov (United States)

    Toshimitsu, Kazuhiko; Narihara, Takahiko; Kikugawa, Hironori; Akiyoshi, Arata; Kawazu, Yuuya

    2017-04-01

    The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine (HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.

  10. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  11. Community wind power ownership schemes in Europe and their relevance to the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark

    2001-05-15

    With varying success, the United States and Europe have followed a more or less parallel path of policies to support wind development over the past twenty years. Feed-in laws and tax incentives first popularized in California in the early 1980s and greatly expanded upon in Europe during the 1990s are gradually giving way to market-based support mechanisms such as renewable portfolio standards, which are being implemented in one form or another in ten US states and at least three European nations. At the same time, electricity markets are being liberalized in both the US and Europe, and many electricity consumers are being given the choice to support the development of renewable energy through higher tariffs, both in traditionally regulated and newly competitive markets. One notable area in which wind development in Europe and United States has not evolved in common, however, is with respect to the level of community ownership of wind turbines or clusters. While community ownership of wind projects is unheard of in the United States, in Europe, local wind cooperatives or other participatory business schemes have been responsible for a large share of total wind development. In Denmark, for example, approximately 80% of all wind turbines are either individually or cooperatively owned, and a similar pattern holds in Germany, the world leader in installed wind capacity. Sweden also has a strong wind cooperative base, and the UK has recently made forays into community wind ownership. Why is it that wind development has evolved this way in Europe, but not in the United States? What incremental effect have community-owned wind schemes had on European wind development? Have community-owned wind schemes driven development in Europe, or are they merely a vehicle through which the fundamental driving institutions have been channeled? Is there value to having community wind ownership in the US? Is there reason to believe that such schemes would succeed in the US? If so, which

  12. Wind of opportunity

    International Nuclear Information System (INIS)

    Jamieson, Peter

    1999-01-01

    This article traces the move towards the offshore exploitation of wind energy in Europe, and presents information on existing offshore wind energy projects and proposed wind turbine prototypes for offshore operation. The building of the first major offshore wind project at Vindeby, the use of rock socketed monopile foundations for pile drilling and erection of the wind turbines from a mobile jack-up barge, the costs of wind turbines, the fatigue loads on the support structures due to the wind loading, and the offshore wind market in the UK and Europe are discussed. (UK)

  13. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  14. The U.S. wind market is back

    International Nuclear Information System (INIS)

    Azua, C.R. de

    2000-01-01

    The recent growth in wind energy projects in the US was spurred by supportive policies in a few states, steadily improving economics, the federal wind energy Production Tax Credit and emerging green power programs. Wind farms are springing up around the US, providing clean energy as well as an economic boon to farmers and local communities. This year's headlines announced the rebirth of the US wind energy market, as wind farms were dedicated in local communities from coast to coast. At this year's exuberant pace of development, utility-scale wind energy seems well on its way to generating 5% of the nation's electricity by 2020, the target set by the Administration and announced by Energy Secretary Bill Richardson at the wind industry's annual conference earlier this year. Wind energy projects have mushroomed throughout the country, most notably in the Midwest. In the eighteen months from July 1998 to December 1999, the American Wind Energy Association (AWEA) estimates that wind energy companies will have added almost 900 megawatts (MW) to the nation's generating capacity. At the same time, new, more efficient turbines replaced some 200 MW of aging equipment. In all, 1,096 MW of new wind generators were installed over that period, representing an investment of well over $1.1 billion and bringing American utility-scale generating capacity to over 2,500 MW

  15. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability. ...

  16. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    Institute of Scientific and Technical Information of China (English)

    W. Tian; A. Ozbay; X. D. Wang; H.Hu

    2017-01-01

    We examined experimentally the effects of incom-ing surface wind on the turbine wake and the wake interfer-ence among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experi-ment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incom-ing surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow char-acteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Varia-tions of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes charac-teristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake inter-ference for the turbines sited in onshore wind farms.

  17. Profiling the regional wind power fluctuation in China

    International Nuclear Information System (INIS)

    Yu Dayang; Liang Jun; Han Xueshan; Zhao Jianguo

    2011-01-01

    As China starts to build 6 10-GW wind zones in 5 provinces by 2020, accommodating the wind electricity generated from these large wind zones will be a great challenge for the regional grids. Inadequate wind observing data hinders profiling the wind power fluctuations at the regional grid level. This paper proposed a method to assess the seasonal and diurnal wind power patterns based on the wind speed data from the NASA GEOS-5 DAS system, which provides data to the study of climate processes including the long-term estimates of meteorological quantities. The wind power fluctuations for the 6 largest wind zones in China are presented with both the capacity factor and the megawatt wind power output. The measured hourly wind output in a regional grid is compared to the calculating result to test the analyzing model. To investigate the offsetting effect of dispersed wind farms over large regions, the regional correlations of hourly wind power fluctuations are calculated. The result illustrates the different offsetting effects of minute and hourly fluctuations.

  18. Inventory of future power and heat production technologies. Partial report Wind Power; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Vindkraft

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Joergen; Morthorst, Poul Erik [Risoe National Laboratory, Roskilde (Denmark)

    2008-12-15

    to the coast. The cost of wind generated power is higher for offshore wind farms that for on land ones ranging from approximately 0.06 Euro/kWh to more than 0.09 Euro/kWh. Assuming a learning rate at 10% and a doubling time of total installed capacity of four years the cost interval would in 2015 be approximately 0.048 to 0.055 Euro/kWh for a coastal and inland site, respectively

  19. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T; Brask, M H [DEFU (Denmark); Jensen, F V; Raben, N [SEAS (Denmark); Saxov, J [Nordjyllandsvaerket (Denmark); Nielsen, L [Vestkraft (Denmark); Soerensen, P E [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  20. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task

  1. 2012 Market Report on Wind Technologies in Distributed Applications

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, Alice C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  2. The Wind Energy Potential of Iceland

    DEFF Research Database (Denmark)

    Nawri, Nikolai; Petersen, Guðrún Nína; Björnsson, Halldór

    2014-01-01

    Downscaling simulations performed with theWeather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3...... is higher by 100 e700 W m_2 than that of offshore winds. Based on these results, 14 test sites were selected for more detailed analyses using the Wind Atlas Analysis and Application Program (WAsP). © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license...

  3. Analysis of Renewable Energy Policies Related to Repowering the Wind Energy Sector: the Spanish Case

    OpenAIRE

    Rodriguez, Roberto; Rodríguez Monroy, Carlos; Rodriguez, Rubén; Calvo Narvaez, Felix

    2013-01-01

    In countries that started early with wind energy, the old wind turbines were located in places where the wind is often very good. Since the best places in which the wind is concerned are occupied by old wind turbines (with lower capacity than the more recent ones) the trend is to start replacing old turbines with new ones. With repowering, the first generation of wind turbines can be replaced by modern multi-megawatt wind turbines. The aim of this article is to analyze energy policies in ...

  4. Multiobjective optimization and multivariable control of offshore wind turbine system

    OpenAIRE

    Bakka, Tore

    2013-01-01

    Doktorgradsavhandling i Mekatronikk, Universitetet i Agder Grimstad Renewable energy is a hot topic all over the world. Nowadays, there are several sustainable renewable power solutions out there; hydro, wind, solar, wave and biomass to name a few. Most countries have a tendency to want to become greener. According to the European Wind Energy Association (EWEA), the world wide capacity increased with 44.601 [MW] in 2012. From this number, 27 % accounts for new installed wind...

  5. Review of Contemporary Wind Turbine Concepts and their Market Penetration

    DEFF Research Database (Denmark)

    Hansen, A. D.; Iov, Florin; Blaabjerg, Frede

    2004-01-01

    The main aim of this paper is to investigate the market penetration and share of different wind turbine concepts during the years 1998-2002, a period when the increase in the wind power capacity is starting to mark an abrupt evolution. A detailed overview is performed based on suppliers market data...... and concept evaluation for each individual wind turbine type sold by the Top Ten suppliers over the selected five years?.....

  6. Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine

    Science.gov (United States)

    Suppioni, Vinicius; P. Grilo, Ahda

    2013-10-01

    In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.

  7. Cost and Benefit Analysis of VSC-HVDC Schemes for Offshore Wind Power Transmission

    Institute of Scientific and Technical Information of China (English)

    Sheng WANG; Chunmei FENG; An WEN; Jun LIANG

    2013-01-01

    Due to low load factors of wind power generation,it is possible to reduce transmission capacity to minimize the cost of transmission system construction.Two VSC-HVDC schemes for offshore wind farm,called the point to point (PTP) and DC mesh connections are compared in terms of the utilization of transmission system and its cost.A Weibull distribution is used for estimating offshore wind power generation,besides,the cross correlation between wind farms is considered.The wind energy curtailment is analyzed using the capacity output possibility table (COPT).The system power losses,costs of transmission investment and wind energy curtailment are also computed.A statistic model for the wind generation and transmission is built and simulated in MATLAB to validate the study.It is concluded that a DC mesh transmission can reduce the energy curtailment and power losses.Further benefit is achievable as the wind cross correlation between wind farms decreases.

  8. Collective institutional entrepreneurship and contestations in wind energy in India

    NARCIS (Netherlands)

    Jolly, Suyash; Raven, Rob|info:eu-repo/dai/nl/41331927X

    2015-01-01

    With 21,136MW of wind energy installed in 2014, India is considered a success story in terms of net installed capacity. Few existing studies on Indian wind energy have highlighted the important role of institutions, and how they stemmed from the work of advocacy groups; studies also tend to focus on

  9. Collective institutional entrepreneurship and contestations in wind energy in India

    NARCIS (Netherlands)

    Jolly, S.; Raven, R.P.J.M.

    2013-01-01

    With 19550 MW installed in 2013, India is considered a success story in terms of net installed capacity of wind power. Few existing studies on wind energy in India have highlighted the important role of institutions, and most lack a detailed account of how influential institutions came about through

  10. Wind Predictions Upstream Wind Turbines from a LiDAR Database

    Directory of Open Access Journals (Sweden)

    Soledad Le Clainche

    2018-03-01

    Full Text Available This article presents a new method to predict the wind velocity upstream a horizontal axis wind turbine from a set of light detection and ranging (LiDAR measurements. The method uses higher order dynamic mode decomposition (HODMD to construct a reduced order model (ROM that can be extrapolated in space. LiDAR measurements have been carried out upstream a wind turbine at six different planes perpendicular to the wind turbine axis. This new HODMD-based ROM predicts with high accuracy the wind velocity during a timespan of 24 h in a plane of measurements that is more than 225 m far away from the wind turbine. Moreover, the technique introduced is general and obtained with an almost negligible computational cost. This fact makes it possible to extend its application to both vertical axis wind turbines and real-time operation.

  11. Performance analysis of wind resource assessment software in different wind sites in México and Brazil

    OpenAIRE

    Jorio, Nyzar

    2010-01-01

    Renewable energy sources are increasing in order to provide power with minimal envi- ronmental impact. The most commercially advanced of these at present is wind power. The production and use of wind energy opens new opportunities for Latin American coun- tries to limit the emissions of carbon dioxide. It will provide a cleaner, sustainable, efficient and competitive energy matrix. According to the Latin American Wind Energy Association (LAWEA), Latin America has an installed capacity of only...

  12. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    Science.gov (United States)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  13. An improved artificial physical optimization algorithm for dynamic dispatch of generators with valve-point effects and wind power

    International Nuclear Information System (INIS)

    Yuan, Xiaohui; Ji, Bin; Zhang, Shuangquan; Tian, Hao; Chen, Zhihuan

    2014-01-01

    Highlights: • Dynamic load economic dispatch with wind power (DLEDW) model is established. • Markov chains combined with scenario analysis method are used to predict wind power. • Chance constrained technique is used to simulate the impacts of wind forecast error. • Improved artificial physical optimization algorithm is proposed to solve DLEDW. • Heuristic search strategies are applied to handle the constraints of DLEDW. - Abstract: Wind power, a kind of promising renewable energy resource, has recently been getting more attractive because of various environmental and economic considerations. But the penetration of wind power with its fluctuation nature has made the operation of power system more intractable. To coordinate the reliability and operation cost, this paper established a stochastic model of dynamic load economic dispatch with wind integration (DLEDW). In this model, constraints such as ramping up/down capacity, prohibited operating zone are considered and effects of valve-point are taken into account. Markov chains combined with scenario analysis method is used to generate predictive values of wind power and chance constrained programming (CCP) is applied to simulate the impacts of wind power fluctuation on system operation. An improved artificial physical optimization algorithm is presented to solve the DLEDW problem. Heuristic strategies based on the priority list and stochastic simulation techniques are proposed to handle the constraints. In addition, a local chaotic mutation strategy is applied to overcome the disadvantage of premature convergence of artificial physical optimization algorithm. Two test systems with and without wind power integration are used to verify the feasibility and effectiveness of the proposed method and the results are compared with those of gravitational search algorithm, particle swarm optimization and standard artificial physical optimization. The simulation results demonstrate that the proposed method has a

  14. Wind power in Denmark technology, policies and results

    International Nuclear Information System (INIS)

    Dannemand Andersen, Per

    1998-11-01

    The Association of Danish Electricity Utilities has estimated the total electricity production from wind turbines in 1997 as 1932 GWh: 384 GWh from utility-owned turbines and 1548 GWh from privately owned turbines. This equals 6% of total electricity consumption in Denmark. Corrected to a 'normal wind year' this equals 6.6% of Denmark's annual electricity consumption. The wind energy index in 1997 was 91%. According to the Danish Association of Electricity Utilities, 4784 turbines with a capacity of 1129 MW were connected to the grid at the end of 1997. 534 turbines and 287 MW were added in 1997, the largest figure ever. These are net figures and included dismantled machines. The actual sales of turbines is a bit higher, reflecting the fact that not all machines sold in 1997 were installed that year. New machines are usually 500 kW, 600 kW and 750 kW. No 1500 kW machines have as yet been installed on a commercial basis in Denmark. (au)

  15. Wind power in Denmark technology, policies and results

    Energy Technology Data Exchange (ETDEWEB)

    Dannemand Andersen, Per [ed.] [Risoe National Lab. (Denmark)

    1998-11-01

    The Association of Danish Electricity Utilities has estimated the total electricity production from wind turbines in 1997 as 1932 GWh: 384 GWh from utility-owned turbines and 1548 GWh from privately owned turbines. This equals 6% of total electricity consumption in Denmark. Corrected to a `normal wind year` this equals 6.6% of Denmark`s annual electricity con-sumption. The wind energy index in 1997 was 91%. According to the Danish Association of Electricity Utilities, 4784 turbines with a capacity of 1129 MW were connected to the grid at the end of 1997. 534 turbines and 287 MW were added in 1997, the largest figure ever. These are net figures and included dismantled machines. The actual sales of turbines is a bit higher, reflecting the fact that not all machines sold in 1997 were installed that year. New machines are usually 500 kW, 600 kW and 750 kW. No 1500 kW machines have as yet been installed on a commercial basis in Denmark. (au)

  16. Wind engineering in Africa

    NARCIS (Netherlands)

    Wisse, J.A.; Stigter, C.J.

    2007-01-01

    The International Association for Wind Engineering (IAWE) has very few contacts in Africa, the second-largest continent. This paper reviews important wind-related African issues. They all require data on wind climate, which are very sparse in Africa. Wind engineering in Africa can assist in

  17. Wind energy's role in a deregulated environment

    International Nuclear Information System (INIS)

    Gallagher, F.M.

    1998-01-01

    The current status of wind energy in Canada was the focus of this presentation. Wind energy is the fastest growing source of new electrical power in the world. In 1997 the world-wide capacity was 1495 MW, with Germany (535 MW), Spain (263 MW) and Denmark (259 MW) leading the way. It is clear that Canadian markets lag behind the world in recognizing the value of wind energy. The rationale for this is economic downturn, cheap hydrocarbon energy, a closed electricity market, minimal commitment to greenhouse gas reduction, and a significant oversupply of installed capacity. Nevertheless, there are many potential benefits for Canadian grids by wind generated electricity, not the least of which are tangible reductions in carbon emissions per kWh. It was noted that significant risk reductions have resulted from size and technological improvements. Besides being environmentally benign, wind energy also provides unequaled opportunities for load matching, distributed generation, and low operating and ongoing fuel costs. Aggressive marketers such as Enron and Vision Quest have predicted that because of these advantages, and the willingness of many potential customers to pay more for 'green' energy, renewable energy sources such as wind and solar, will capture a significant share of the world energy market over the next 20 years. tabs., figs

  18. Visual disamenities from off-shore wind farms in Denmark

    DEFF Research Database (Denmark)

    Ladenburg, Jacob; Dubgaard, Alex; Tranberg, Jesper

    2006-01-01

    Expansion of the off-shore wind power plays a significant role in the energy policies of many EU countries. However, off-shore wind farms create visual disamenities. These disamenities can be reduced by locating wind farms at larger distances from the coast – and accepting higher costs per k......Wh produced. Base on the choices among alternative wind farm outlays, the preferences for reducing visual disamenities of off-shore wind farms were elicited using the Choice Experiment Method. The results show a clear picture; the respondents in three independent samples are willing to pay for mowing future...... off-shore wind farms away from the shore to reduce the wind farms visibility. However, the results also denote that the preferences vary with regards to the experiences with visual disamenities of off-shore wind farms. The respondents Horns Revs sample, where the off-shore wind farm is located...

  19. High Power Electronics - Key Technology for Wind Turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2014-01-01

    reliability challenges for the future wind turbines are explained. It is concluded that the wind turbine behavior/performance can be significantly improved by introducing power electronics, and there will be higher requirements for the power electronics performances in wind power application....

  20. Integration of wind power in the Danish generation system. EC wind power penetration study, phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-06-01

    The Commission of the European Communities has asked utilities in the member countries to carry out a coordinated study of the wind energy potential. The main objective is to show the consequences for the future electricity system when integrating wind power production covering 5, 10 or 15% of total demand. In addition to the best estimate scenario believed to be operational, some additional calculations have been carried out: wind power production as a negative load only (not operational for the total system); different levels of investment in wind farms. The methodology is based on the following steps: define a reference scenario for year 2000; define an alternative scenario with a certain amount of wind power production; calculate time-series for electrical load and district heating from combined heat/power production; calculate time-series for wind power production; make economic evaluation and sensitivity analysis; show environmental differences. Incorporation of wind power into the ELSAM power system, with the wind energy meeting, about 5% of demand will give rise to additional control capacity, or call for new contracts with neighbouring countries. The study includes estimated network investments. The simulations have been made with the SIM and SLUMP computer programmes. The economic analyses and the sensitivity analyses have been carried out using spreadsheets. The conclusion concerning profitability - based on the best estimate assumptions - is that the studied wind power scenarios are unprofitable. (EG)