WorldWideScience

Sample records for higher biomass production

  1. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming; Peng, Meng

    2015-08-01

    This study aimed at enhancing the bacterial biomass and pigments production in together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via using different photoperiods. Different light/dark cycles and light/dark cycle frequencies were examined. Results showed that PSB had the highest biomass production, COD removal and biomass yield, and light energy efficiency with light/dark cycle of 2h/1h. The corresponding biomass, COD removal and biomass yield reached 2068mg/L, 90.3%, and 0.38mg-biomass/mg-COD-removal, respectively. PSB showed higher biomass production and biomass yield with higher light/dark cycle frequency. Mechanism analysis showed within a light/dark cycle from 1h/2h to 2h/1h, the carotenoid and bacteriochlorophyll production increased with an increase in light/dark cycle. Moreover, the pigment contents were much higher with lower frequency of 2-4 times/d. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  3. A Review on Biomass Torrefaction Process and Product Properties

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

    2011-08-01

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

  4. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  5. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Science.gov (United States)

    Bywaters, Kathryn F.; Fritsen, Christian H.

    2015-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels. PMID:25763368

  7. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  8. Optimization of animal manure vermicomposting based on biomass production of earthworms and higher plants.

    Science.gov (United States)

    Borges, Yan V; Alves, Luciano; Bianchi, Ivan; Espíndola, Jonas C; Oliveira, Juahil M De; Radetski, Claudemir M; Somensi, Cleder A

    2017-11-02

    The goal of this study was to optimize the mixture of swine manure (SM) and cattle manure (CM) used in the vermicomposting process, seeking to increase the manure biodegradation rate and enhance the biomass production of both earthworms and higher plants. To achieve this goal, physico-chemical parameters were determined to assess the final compost quality after 50 days of vermicomposting. The different manure ratios used to produce the composts (C) were as follows (SM:CM, % m/m basis): C1 100:0, C2 (75:25), C3 (50:50), C4 (25:75), and C5 (0:100). In addition, the earthworm biomass and the phytoproductivity of lettuce (Lactuca sativa L.) plants grown in mixtures (1:1) of natural soil and the most viable vermicomposts were investigated. The C1 and C2 compost compositions were associated with high earthworm mortality rates. The C3 compost provided the highest mineral concentrations and C5 showed the highest lettuce yield (wet biomass). The results verify that stabilized cattle manure is an excellent substrate for the vermicomposting process and that fresh swine manure must be mixed with pre-stabilized cattle manure to ensure an optimized vermicomposting process, which must be controlled in terms of temperature and ammonia levels. It is concluded that small livestock farmers could add value to swine manure by applying the vermicomposting process, without the need for high investments and with a minimal requirement for management of the biodegradation process. These are important technical aspects to be considered when circular economy principles are applied to small farms.

  9. Protein concentrate production from the biomass contaminated with radionuclides

    International Nuclear Information System (INIS)

    Nizhko, V.F.; Shinkarenko, M.P.; Polozhaj, V.V.; Krivchik, O.V.

    1992-01-01

    Coefficients of radionuclides accumulation are determined for traditional and rare forage crops grown on contaminated soils. It is shown that with low concentration of radionuclides in soil minimal level of contamination were found in the biomass of lupine (Lupinus luteus L.) and sainfoin (Onobrychis hybridus L.). Relatively high levels of contamination were found in comfrey (Symphytum asperum Lepech.) and bistort (Polygonum divaricatum L.). Comparatively low accumulation coefficients in case of higher density of soil contamination were observed for white and yellow sweetclovers (Melilotus albus Medik. and M. officinalis (L.) Desr.), while higher values of coefficients were found for bird's-foot trefoil (Lotus corniculatus L.), white clover (Trifolium repens L.) and alsike clover (t. hybridum L.). Biomass of white sweet-clover and alsike clover has been processed to produce leaf protein concentrate. It is shown that with biomass contamination of 1 kBq/kg and above conventional technology based on thermal precipitation of the protein does not provide production of pure product. More purified protein concentrates are obtained after two-stage processing of the biomass

  10. The effect of different nutrient sources on biomass production of ...

    African Journals Online (AJOL)

    The effect of various organic, inorganic and complex compounds on the biomass production (mycelial dry weight) of Lepiota procera, a Nigerian edible higher fungus was investigated. Among the seventeen carbon compounds tested, mannose enhanced the best biomass yield. This was followed in order by glucose, ...

  11. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  12. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  13. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  14. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  15. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  16. Biomass boilers: towards a higher efficiency

    International Nuclear Information System (INIS)

    Petitot, Pauline; Signoret, Stephane; Mary, Olivier; Dejeu, Mathieu; Tachet, Jean-Pierre

    2014-01-01

    A set of articles proposes an overview of the situation and perspectives of biomass fuelled boilers in France. As outlined in an interview, professionals are supported by ADEME and the Heat Fund (Fonds Chaleur) for a continuous development of wood-energy in order to reach national objectives for renewable energies by 2020. The next article discusses issues related to wood supply, with some concerns regarding forest exploitation, and needs to find new management ways and to use other sources than forests. The technical status and perspectives of smoke condensation in wood-fuelled boilers are discussed. The example of a malt-house near Issoudun fuelled by biomass since 2013 is presented. Other examples concern a small town of Burgundy which developed and is still improving a heat network, a wood-fuelled heat network in Saint-Denis, and a biomass wood-fuelled heat production plant for the Toulouse University hospital. Graphs indicate evolutions of prices for different wood-based fuel products. The last article outlines the role of forests and the importance of their protection in the struggle against climate change, and discusses problems faced to support this preservation and its financing

  17. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  18. Potential of sustainable biomass production systems in Texas

    International Nuclear Information System (INIS)

    Sanderson, M.A.; Hussey, M.A.; Wiselogel, A.E.

    1992-01-01

    Biomass production for liquid fuels feedstock from systems based on warm-season perennial grasses (WSPG) offers a sustainable alternative for forage-livestock producers in Texas. Such systems also would enhance diversity and flexibility in current production systems. Research is needed to incorporate biomass production for liquid fuels, chemicals, and electrical power into current forage-livestock management systems. Our research objectives were to (i) document the potential of several WSPG in diverse Texas environments for biomass feedstock production, (ii) conduct fundamental research on morphological development of WSPG to enhance management for biomass feedstock production, (iii) examine current on-farm production systems for opportunities to incorporate biomass production, and (iv) determine feedstock quality and stability during storage

  19. The characteristics of biomass production, lipid accumulation and ...

    African Journals Online (AJOL)

    Glucose was the optimal carbon source for mixotrophic cultivation of C. vulgaris and the effects of glucose content on the alga growth under mixotrophic conditions were considerable because lower glucose content (1 g/l) promoted the production of biomass and photosynthetic pigments; higher glucose contents (>5 g/l) ...

  20. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, R. César; Manowitz, David H.; Zhang, Xuesong

    2013-01-01

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environmental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government. - Highlights: ► Bioeconomic optimization model predicts how biomass production affects environment. ► Rising biomass production could impair climate and water quality. ► Environmental protection policies compared as biomass supply grows. ► Carbon price protects the environment cost-effectively as biomass supply expands

  1. Food and disturbance effects on Arctic benthic biomass and production size spectra

    Science.gov (United States)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  2. Hydrogen production from biomass pyrolysis gas via high temperature steam reforming process

    International Nuclear Information System (INIS)

    Wongchang, Thawatchai; Patumsawad, Suthum

    2010-01-01

    Full text: The aim of this work has been undertaken as part of the design of continuous hydrogen production using the high temperature steam reforming process. The steady-state test condition was carried out using syngas from biomass pyrolysis, whilst operating at high temperatures between 600 and 1200 degree Celsius. The main reformer operating parameters (e.g. temperature, resident time and steam to biomass ratio (S/B)) have been examined in order to optimize the performance of the reformer. The operating temperature is a key factor in determining the extent to which hydrogen production is increased at higher temperatures (900 -1200 degree Celsius) whilst maintaining the same as resident time and S/B ratio. The effects of exhaust gas composition on heating value were also investigated. The steam reforming process produced methane (CH 4 ) and ethylene (C 2 H 4 ) between 600 to 800 degree Celsius and enhanced production ethane (C 2 H 6 ) at 700 degree Celsius. However carbon monoxide (CO) emission was slightly increased for higher temperatures all conditions. The results show that the use of biomass pyrolysis gas can produce higher hydrogen production from high temperature steam reforming. In addition the increasing reformer efficiency needs to be optimized for different operating conditions. (author)

  3. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool.

    Science.gov (United States)

    Kimura, Hiroyuki; Mori, Kousuke; Nashimoto, Hiroaki; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-02-01

    Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal pool was measured by in situ cultivation using diffusion chambers. The thermophiles' growth rates ranged from 0.43 to 0.82 day(-1), similar to those of planktonic bacteria in marine and freshwater habitats. Biomass production was estimated based on cellular carbon content measured directly from the thermophiles inhabiting the geothermal pool, which ranged from 5.0 to 6.1 microg C l(-1) h(-1). This production was 2-75 times higher than that of planktonic bacteria in other habitats, because the cellular carbon content of the thermophiles was much higher. Quantitative PCR and phylogenetic analysis targeting 16S rRNA genes revealed that thermophilic H2-oxidizing bacteria closely related to Calderobacterium and Geothermobacterium were dominant in the geothermal pool. Chemical analysis showed the presence of H2 in gases bubbling from the bottom of the geothermal pool. These results strongly suggested that H2 plays an important role as a primary energy source of thermophiles in the geothermal pool.

  4. Does species richness affect fine root biomass and production in young forest plantations?

    Science.gov (United States)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  5. Economic analysis of biomass crop production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F. [University of Florida, Gainesville, FL (United States)

    1997-07-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  6. Economic analysis of biomass crop production in Florida

    International Nuclear Information System (INIS)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F.

    1997-01-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  7. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  8. Techno-economic analysis of ammonia production via integrated biomass gasification

    International Nuclear Information System (INIS)

    Andersson, Jim; Lundgren, Joakim

    2014-01-01

    Highlights: • Techno-economic results regarding biomass-based ammonia production systems. • Integration of an ammonia production process in a pulp and paper mill. • Integrated ammonia production gains higher system efficiency than stand-alone production. • The economics of an integrated production system is improved compared to stand-alone production. - Abstract: Ammonia (NH 3 ) can be produced by synthesis of nitrogen and hydrogen in the Haber–Bosch process, where the economic challenge is the hydrogen production. Currently, substantial amounts of greenhouse gases are emitted from the ammonia industry since the hydrogen production is almost exclusively based on fossil feedstocks. Hydrogen produced via gasification of lignocellulosic biomass is a more environmentally friendly alternative, but the economic performance is critical. The main objective of this work was to perform a techno-economic evaluation of ammonia production via integrated biomass gasification in an existing pulp and paper mill. The results were compared with a stand-alone production case to find potential technical and economic benefits deriving from the integration. The biomass gasifier and the subsequent NH 3 production were modelled using the commercial software Aspen Plus. A process integration model based on Mixed Integer Linear Programming (MILP) was used to analyze the effects on the overall energy system of the pulp mill. Important modelling constraints were to maintain the pulp production and the steam balance of the mill. The results showed that the process economics and energy performance are favourable for the integrated case compared to stand-alone production. The main conclusion was however that a rather high NH 3 selling price is required to make both production cases economically feasible

  9. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  10. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  11. Potentials for forest woody biomass production in Serbia

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar Lj.

    2015-01-01

    Full Text Available The paper presents the analysis of possible potentials for the production of forest biomass in Serbia taking into consideration the condition of forests, present organizational and technical capacities as well as the needs and situation on the firewood market. Starting point for the estimation of production potentials for forest biomass is the condition of forests which is analyzed based on the available planning documents on all levels. Potentials for biomass production and use refer to initial periods in the production and use of forest biomass in Serbia.

  12. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  13. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  14. Ethanol Production from Hydrothermally-Treated Biomass from West Africa

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2015-08-01

    Full Text Available Despite the abundance of diverse biomass resources in Africa, they have received little research and development focus. This study presents compositional analysis, sugar, and ethanol yields of hydrothermal pretreated (195 °C, 10 min biomass from West Africa, including bamboo wood, rubber wood, elephant grass, Siam weed, and coconut husk, benchmarked against those of wheat straw. The elephant grass exhibited the highest glucose and ethanol yields at 57.8% and 65.1% of the theoretical maximums, respectively. The results show that the glucose yield of pretreated elephant grass was 3.5 times that of the untreated material, while the ethanol yield was nearly 2 times higher. Moreover, the sugar released by the elephant grass (30.8 g/100 g TS was only slightly lower than by the wheat straw (33.1 g/100 g TS, while the ethanol yield (16.1 g/100 g TS was higher than that of the straw (15.26 g/100 g TS. All other local biomass types studied exhibited sugar and ethanol yields below 33% and 35% of the theoretical maximum, respectively. Thus, elephant grass is a highly promising biomass source for ethanol production in Africa.

  15. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  16. Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp., and Candida utilis

    International Nuclear Information System (INIS)

    Ahmed, S.; Ahmad, F.; Hashmi, A.S.

    2010-01-01

    Sequential culture fermentation by Arachniotus sp. at 35 deg. C for 72 h and followed by Candida utilis fermentation at 35 deg. C for 72 h more resulted in higher production of microbial biomass protein. 6% (w/v) corn stover, 0.0075% CaCl/sub 2/.2H/sub 2/O, 0.005% MgSO/sub 4/.7H/sub 2/O, 0.01% KH/sub 2/PO/sub 4/, C:N ratio of 30:1 and 1% molasses gave higher microbial biomass protein production by the sequential culture fermentation of Arachniotus sp., and C. utilis. The mixed microbial biomass protein produced in the 75-L fermentor contained 16.41%, 23.51%, 10.9%, 12.11% and 0.12% true protein, crude protein, crude fiber, ash and RNA content, respectively. The amino acid profile of final mixed microbial biomass protein showed that it was enriched with essential amino acids. Thus, the potential utilization of corn stover can minimize the cost for growth of these microorganisms and enhance microbial biomass protein production by sequential culture fermentation. (author)

  17. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Prospects of Rubberwood Biomass Energy Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-03-01

    Full Text Available Rubber has been shown to be one of the most important plantation crops in Malaysia, and rubber tree biomass has widespread applications in almost all sectors of the wood products manufacturing sector. Despite its abundance, the exploitation of rubberwood biomass for energy generation is limited when compared to other available biomass such as oil palm, rice husk, cocoa, sugarcane, coconut, and other wood residues. Furthermore, the use of biomass for energy generation is still in its early stages in Malaysia, a nation still highly dependent on fossil fuels for energy production. The constraints for large scale biomass energy production in Malaysia are the lack of financing for such projects, the need for large investments, and the limited research and development activities in the sector of efficient biomass energy production. The relatively low cost of energy in Malaysia, through the provision of subsidy, also restricts the potential utilization of biomass for energy production. In order to fully realize the potential of biomass energy in Malaysia, the environmental cost must be factored into the cost of energy production.

  19. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    International Nuclear Information System (INIS)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  20. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T., E-mail: rsayre@newmexicoconsortium.org [Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM (United States)

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  1. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  2. Thermodynamic evaluation of biomass-to-biofuels production systems

    International Nuclear Information System (INIS)

    Piekarczyk, Wodzisław; Czarnowska, Lucyna; Ptasiński, Krzysztof; Stanek, Wojciech

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like Fischer–Tropsch fuels or Substitute Natural Gas which are produced either from wood or from waste biomass. For these biofuels the most promising conversion case is the one which involves production of syngas from biomass gasification, followed by synthesis of biofuels. The thermodynamic efficiency of biofuels production is analyzed and compared using both the direct exergy analysis and the thermo-ecological cost. This analysis leads to the detection of exergy losses in various elements which forms the starting point to the improvement of conversion efficiency. The efficiency of biomass conversion to biofuels is also evaluated for the whole production chain, including biomass cultivation, transportation and conversion. The global effects of natural resources management are investigated using the thermo-ecological cost. The energy carriers' utilities such as electricity and heat are externally generated either from fossil fuels or from renewable biomass. In the former case the production of biofuels not always can be considered as a renewable energy source whereas in the latter case the production of biofuels leads always to the reduction of depletion of non-renewable resources

  3. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    Science.gov (United States)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  4. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  5. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  7. Hydrogen production from high-moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T. [Univ. of Hawaii, Honolulu, HI (United States)] [and others

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  8. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...

  9. Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass

    Energy Technology Data Exchange (ETDEWEB)

    Irmak, Sibel; Oeztuerk, ilker [Department of Chemistry, Cukurova University, Arts and Sciences Faculty, Adana 01330 (Turkey)

    2010-06-15

    Kenaf (Hibiscus cannabinus L.), a well known energy crop and an annual herbaceous plant grows very fast with low lodging susceptibility was used as representative lignocellulosic biomass in the present work. Thermocatalytic conversions were performed by aqueous phase reforming (APR) of kenaf hydrolysates and direct gasification of solid biomass of kenaf using 5% Pt on activated carbon as catalyst. Hydrolysates used in APR experiments were prepared by solubilization of kenaf biomass in subcritical water under CO{sub 2} gas pressure. APR of kenaf hydrolysate with low molecular weight polysaccharides in the presence of the reforming catalyst produced more gas compared to the hydrolysate that had high molecular weight polysaccharides. APR experiments of kenaf biomass hydrolysates and glucose, which was used as a simplest biomass model compound, in the presence of catalyst produced various amounts of gas mixtures that consisted of H{sub 2}, CO, CO{sub 2}, CH{sub 4} and C{sub 2}H{sub 6}. The ratios of H{sub 2} to other gases produced were 0.98, 1.50 and 1.35 for 150 C and 250 C subcritical water-treated kenaf hydrolysates and glucose, respectively. These ratios indicated that more the degraded organic content of kenaf hydrolysate the better selectivity for hydrogen production. Although APR of 250 C-kenaf hydrolysate resulted in similar gas content and composition as glucose, the gas volume produced was three times higher in glucose feed. The use of solid kenaf biomass as starting feedstock in APR experiments resulted in less gas production since the activity of catalyst was lowered by solid biomass particles. (author)

  10. Biomass and alcohol production potential of over-ripe plantains and ...

    African Journals Online (AJOL)

    Procedures for alcohol and protein-rich biomass production from over-ripe plantains and their peels are described. Chemical analyses indicated a significantly (P < 0.05) higher content of moisture, crude fat and protein; as well as potassium, sodium, calcium, iron and magnesium in ripe plantains than in their peels.

  11. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising...... such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability...... from 39.3-66.9 Mtoe, depending on the availability of the residues. Grass from roadside verges and meadow habitats in Denmark represent two currently unutilised sources. If utilised in the Danish biogas sector, the results showed that the resources represent a net energy potential of 60,000 -122,000 GJ...

  12. The feasibility of biomass production for the Netherlands energy economy

    International Nuclear Information System (INIS)

    Lysen, E.H.; Daey Ouwens, C.; Van Onna, M.J.G.; Blok, K.; Okken, P.A.; Goudriaan, J.

    1992-05-01

    The title study aims at providing a reliable overview of the technical and financial parameters for the available and potential methods of energy production through biomass. In the study the production of biomass has been separated as much as possible from the transport and the conversion of energy carriers such as fuels or electricity. The assessment of the feasibility is based upon data analysis in phase A of the study and subsequent interviews with key institutes and industries in the Netherlands in phase B. The problems in agriculture and environment justify an active policy with respect to the use of biomass for the Netherlands' energy economy. The developments and the programmes in other European countries and the USA, the fact that a good infrastructure is present in the Netherlands, and the possible spin-off for developing countries justify this conclusion. It is recommended to initiate a focused national programme in the field of biomass energy, properly coordinated with the present ongoing Energy from Waste programme (EWAB) and with ongoing international programmes. The programme should encompass both research and development, as well as a few demonstration projects. Research to reduce costs of biomass is important, largely through reaching higher yields. In view of the competitive kWh costs of combined biomass gasifier/steam and gas turbines systems, based upon energy and environmental considerations, development and demonstration of this system is appropriate. 14 figs., 24 tabs., 6 app., 99 refs

  13. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  14. Medium selection for exopolysaccharide and biomass production in submerged cultures of culinary-medicinal mushrooms from Turkey

    NARCIS (Netherlands)

    Kizilcik, M.; Yamaç, M.; Griensven, van L.J.L.D.

    2010-01-01

    The present study investigates the exopolysaccharide (EPS) and biomass production of 18 strains of 15 species of culinary-medicinal higher Basidiomycetes in submerged culture under four different media. Gloeophyllum abietinum and Schizophyllum commune produced the highest EPS and biomass

  15. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  16. Relationships between biomass composition and liquid products formed via pyrolysis

    Directory of Open Access Journals (Sweden)

    Fan eLin

    2015-10-01

    Full Text Available Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability—all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models for biomass components in formation of liquid pyrolysis products: (1 as direct sources, (2 as catalysts, and (3 as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  17. Relationships between Biomass Composition and Liquid Products Formed via Pyrolysis

    International Nuclear Information System (INIS)

    Lin, Fan; Waters, Christopher L.; Mallinson, Richard G.; Lobban, Lance L.; Bartley, Laura E.

    2015-01-01

    Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability – all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models) for biomass components in the formation of liquid pyrolysis products: (1) as direct sources, (2) as catalysts, and (3) as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques, this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  18. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  19. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    NARCIS (Netherlands)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F.S. III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S.L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I.A.

    2015-01-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the

  20. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  1. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production.

    Science.gov (United States)

    Zheng, Yubin; Chi, Zhanyou; Lucker, Ben; Chen, Shulin

    2012-01-01

    A two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production was studied, wherein high density heterotrophic cultures of Chlorellasorokiniana serve as seed for subsequent phototrophic growth. The data showed growth rate, cell density and productivity of heterotrophic C.sorokiniana were 3.0, 3.3 and 7.4 times higher than phototrophic counterpart, respectively. Hetero- and phototrophic algal seeds had similar biomass/lipid production and fatty acid profile when inoculated into phototrophic culture system. To expand the application, food waste and wastewater were tested as feedstock for heterotrophic growth, and supported cell growth successfully. These results demonstrated the advantages of using heterotrophic algae cells as seeds for open algae culture system. Additionally, high inoculation rate of heterotrophic algal seed can be utilized as an effective method for contamination control. This two-stage heterotrophic phototrophic process is promising to provide a more efficient way for large scale production of algal biomass and biofuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Benthic bacterial biomass and production in the Hudson River estuary

    International Nuclear Information System (INIS)

    Austin, H.K.; Findlay, S.E.G.

    1989-01-01

    Bacterial biomass, production, and turnover were determined for two freshwater march sites and a site in the main river channel along the tidally influenced Hudson River. The incorporation of [methyl- 3 H]thymidine into DNA was used to estimate the growth rate of surface and anaerobic bacteria. Bacterial production at marsh sites was similar to, and in some cases considerably higher than, production estimates reported for other aquatic wetland and marine sediment habitats. Production averaged 1.8-2.8 mg C·m -2 · hour -1 in marsh sediments. Anaerobic bacteria in marsh sediment incorporated significant amounts of [methyl- 3 H]thymidine into DNA. Despite differences in dominant vegatation and tidal regime, bacterial biomass was similar (1 x 10 3 ± 0.08 mg C·m -2 ) in Trapa, Typha, and Nuphar aquatic macrophyte communities. Bacterial abundance and productivity were lower in sandy sediments associated with Scirpus communities along the Hudson River (0.2 x 10 3 ± 0.05 mg C·m -2 and 0.3 ± 0.23 mg C · m -2 · hour -1 , respectively)

  3. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Biomass production potentials in Central and Eastern Europe under different scenarios

    International Nuclear Information System (INIS)

    Dam, J. van; Faaij, A.P.C.; Lewandowski, I.; Fischer, G.

    2007-01-01

    A methodology for the assessment of biomass potentials was developed and applied to Central and Eastern European countries (CEEC). Biomass resources considered are agricultural residues, forestry residues, and wood from surplus forest and biomass from energy crops. Only land that is not needed for food and feed production is considered as available for the production of energy crops. Five scenarios were built to depict the influences of different factors on biomass potentials and costs. Scenarios, with a domination of current level of agricultural production or ecological production systems, show the smallest biomass potentials of 2-5.7 EJ for all CEEC. Highest potentials can reach up to 11.7 EJ (85% from energy crops, 12% from residues and 3% from surplus forest wood) when 44 million ha of agricultural land become available for energy crop production. This potential is, however, only realizable under high input production systems and most advanced production technology, best allocation of crop production over all CEEC and by choosing willow as energy crops. The production of lignocellulosic crops, and willow in particular, best combines high biomass production potentials and low biomass production costs. Production costs for willow biomass range from 1.6 to 8.0 EUR/GJ HHV in the scenario with the highest agricultural productivity and 1.0-4.5 EUR/GJ HHV in the scenario reflecting the current status of agricultural production. Generally the highest biomass production costs are experienced when ecological agriculture is prevailing and on land with lower quality. In most CEEC, the production potentials are larger than the current energy use in the more favourable scenarios. Bulk of the biomass potential can be produced at costs lower than 2 EUR/GJ. High potentials combined with the low cost levels gives CEEC major export opportunities. (author)

  5. Photoautotrophic Production of Biomass, Laurate, and Soluble Organics by Synechocystis sp. PCC 6803

    Science.gov (United States)

    Nguyen, Binh Thanh

    Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly. This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 muE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 muE/m2-s. Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to success. Wild-type Synechocystis channeled 75% to 84% of its fixed electrons to biomass; laurate-excreting Synechocystis fixed 64 to 69% as biomass and 6.6% to 10% as laurate. This means that 16 to 30% of the electrons were diverted to non-valuable soluble products, and the trend was accentuated with higher LI. How the Ci concentration depended on the pH and the nitrogen source was quantified by the proton condition and experimentally validated. Nitrate increased, ammonium decreased, but ammonium nitrate stabilized alkalinity and Ci. This finding provides a mechanistically sound tool to manage Ci and pH independently. Independent evaluation pH and Ci on the growth kinetics of Synechocystis showed that pH 8.5 supported the fastest maximum specific growth rate (mumax): 2.4/day and 1.7/day, respectively, for the wild type and modified strains with LI of 202 muE/m2-s. Half-maximum-rate concentrations (KCi) were less than 0.1 mM, meaning that Synechocystis should attain its mumax with a modest Ci concentration (≥1.0 mM). Biomass grown with day-night cycles had a night endogenous decay rate of 0.05-1.0/day, with decay being faster with higher LI and the beginning of dark periods. Supplying light at a fraction of daylight reduced dark decay rate and improved overall

  6. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    Science.gov (United States)

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production. PMID:24195081

  8. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Directory of Open Access Journals (Sweden)

    Hechun Cao

    2013-01-01

    Full Text Available A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  9. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  10. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341.

    Science.gov (United States)

    Li, ZhaoSheng; Yuan, HongLi; Yang, JinShui; Li, BaoZhen

    2011-10-01

    High production cost is a major obstacle to the extensive use of microalgae biodiesel. To cut the cost and achieve higher biomass productivity, Chlorella minutissima UTEX2341 was cultured under photoheterotrophic conditions. With the carbon, nitrogen and phosphorus concentration of 26.37, 2.61 and 0.03 g L⁻¹ d⁻¹ respectively, a maximum biomass productivity of 1.78 g L⁻¹ d⁻¹ was obtained, which was 59 times more than that cultured under autotrophic condition. The lipid productivity reached 0.29 g L⁻¹ d⁻¹, which was 11.9 times higher than the highest value reported by Oh et al. (2010). The conversion rate of microalgae lipids to FAME was found to be elevated from 45.65% to 62.97% and the FAME productivity increased from 1.16 to 180.68 mg L⁻¹ d⁻¹ after the optimization. 94% of the fatty acid of C. minutissima UTEX2341 was found to be composed of palmitic, oleic, linoleic and γ linoleic and the unsaturated fatty acids were the main parts (79.42%). Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cai, Hao [Argonne National Laboratory

    2017-11-01

    Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates the relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.

  12. Selection of Willows (Salix sp. for Biomass Production

    Directory of Open Access Journals (Sweden)

    Davorin Kajba

    2014-12-01

    Full Text Available Background and Purpose: Willows compared with other species are the most suitable for biomass production in short rotations because of their very abundant growth during the first years. Nowadays, in Croatia, a large number of selected and registered willow clones are available. The main objective of the research should be to find genotypes which, with minimum nutrients, will produce the maximum quantity of biomass. Material and Methods: Clonal test of the arborescent willows include the autochthonous White Willow (Salix alba, interracial hybrids of the autochthonous White Willow and the English ‘cricket’ Willow (S. alba var. calva, interspecies hybrids (S. matsudana × S. alba, as well as multispecies hybrids of willows. Average production of dry biomass (DM∙ha-1∙a-1 per hectare was estimated in regard to the clone, survival, spacing and the number of shoots per stump. Results: The highest biomass production as well as the best adaptedness and phenotypic stability on testing site was shown by clones (‘V 374’, ‘V 461’, ‘V 578’ from 15.2 - 25.0 t∙DM∙ha-1∙a-1 originated from backcross hybrid S. matsudana × (S. matsudana × S. alba and by one S. alba clone (‘V 95’, 23.1 - 25.7 t∙DM∙ha-1∙a-1. These clones are now at the stage of registration and these results indicate significant potential for further breeding aimed at biomass production in short rotations. Conclusions: Willow clones showed high biomass production on marginal sites and dry biomass could be considerably increased with the application of intensive silvicultural and agro technical measures. No nutrition or pest control measures were applied (a practice otherwise widely used in intensive cultivation system, while weed vegetation was regulated only at the earliest age.

  13. Variation of Spirulina maxima biomass production in different depths of urea-used culture medium.

    Science.gov (United States)

    Affan, Md-Abu; Lee, Dae-Won; Al-Harbi, Salim Marzoog; Kim, Han-Jun; Abdulwassi, Najah Ibrahim; Heo, Soo-Jin; Oh, Chulhong; Park, Heung-Sik; Ma, Chae Woo; Lee, Hyeon-Yong; Kang, Do-Hyung

    2015-01-01

    Fewer studies have assessed the outdoor cultivation of Spirulina maxima compared with S. platensis, although the protein content of S. maxima is higher than S. platensis. Spirulina growth medium requires an increased amount of NaHCO3, Na2CO3, and NaNO3, which increases the production cost. Therefore, the current study used a low-cost but high-efficiency biomass production medium (Medium M-19) after testing 33 different media. The medium depth of 25 cm (group A) was sub-divided into A1 (50% cover with a black curtain (PolyMax, 12 oz ultra-blackout), A2 (25% cover), and A3 (no cover). Similarly the medium depths of 30 and 35 cm were categorized as groups B (B1, B2, and B3) and C (C1, C2, and C3), respectively, and the effects of depth and surface light availability on growth and biomass production were assessed. The highest biomass production was 2.05 g L-1 in group A2, which was significantly higher (p maxima died in B1 and C1 on the fifth day of culture. The biochemical composition of the biomass obtained from A2 cultures, including protein, carbohydrate, lipid, moisture, and ash, was 56.59%, 14.42%, 0.94%, 5.03%, and 23.02%, respectively. Therefore, S. maxima could be grown outdoors with the highest efficiency in urea-enriched medium at a 25-cm medium depth with 25% surface cover or uncovered.

  14. Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Thakur Upadhyay

    2012-12-01

    Full Text Available Efficient procurement and utilization of woody biomass for bioenergy production requires a good understanding of biomass supply chains. In this paper, a dynamic optimization model has been developed and applied to estimate monthly supply and procurement costs of woody biomass required for the Atikokan Generating Station (AGS in northwestern Ontario, based on its monthly electricity production schedule. The decision variables in the model are monthly harvest levels of two types of woody biomass, forest harvest residues and unutilized biomass, from 19,315 forest depletion cells (each 1 km2 for a one year planning horizon. Sixteen scenarios are tested to examine the sensitivity of the cost minimization model to changing economic and technological parameters. Reduction in moisture content and improvement of conversion efficiency showed relatively higher reductions in monthly and total costs of woody biomass feedstock for the AGS. The results of this study help in understanding and designing decision support systems for optimal biomass supply chains under dynamic operational frameworks.

  15. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  16. Production of yeast biomass using waste Chinese cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Min Ho Choi; Yun Hee Park [Ajou Univ., Suwon (Korea). Dept. of Molecular Science and Technology

    2003-08-01

    The possibility of using waste Chinese cabbage as a substrate for microbial biomass production was investigated. Cell mass and the protein content of four species of yeast, Candida utilis, Pichia stipitis, Kluyveromyces marxianus, and Saccharomyces cerevisiae, were determined when cultured in juice extracted from cabbage waste. Compared to YM broth containing the same level of sugar, all the strains except C. utilis showed higher total protein production in cabbage juice medium (CJM). Cell mass production was lower for all four strains in heat-treated CJM than in membrane-filtered medium, and this adverse effect was pronounced when the CJM was autoclaved at 121{sup o}C for 15 min. As a source of inorganic nitrogen, only ammonium sulfate added at a concentration of 0.5 g nitrogen per liter of CJM increased cell growth. Of the seven organic nitrogen sources tested, only corn steep powder was effective in increasing cell mass (by about 11%). As a micronutrient, the addition of 0.5 mM zinc increased cell mass. The results suggest that juice from waste Chinese cabbages can be used to produce microbial biomass protein without substantial modification, after preliminary heat treatment at temperatures below those required for sterilization. (Author)

  17. Microalgal biomass pretreatment for bioethanol production: a review

    Directory of Open Access Journals (Sweden)

    Jesús Velazquez-Lucio

    2018-03-01

    Full Text Available Biofuels derived from microalgae biomass have received a great deal of attention owing to their high potentials as sustainable alternatives to fossil fuels. Microalgae have a high capacity of CO2 fixation and depending on their growth conditions, they can accumulate different quantities of lipids, proteins, and carbohydrates. Microalgal biomass can, therefore, represent a rich source of fermentable sugars for third generation bioethanol production. The utilization of microalgal carbohydrates for bioethanol production follows three main stages: i pretreatment, ii saccharification, and iii fermentation. One of the most important stages is the pretreatment, which is carried out to increase the accessibility to intracellular sugars, and thus plays an important role in improving the overall efficiency of the bioethanol production process. Diverse types of pretreatments are currently used including chemical, thermal, mechanical, biological, and their combinations, which can promote cell disruption, facilitate extraction, and result in the modification the structure of carbohydrates as well as the production of fermentable sugars. In this review, the different pretreatments used on microalgae biomass for bioethanol production are presented and discussed. Moreover, the methods used for starch and total carbohydrates quantification in microalgae biomass are also briefly presented and compared.

  18. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    In order to increase the share of biomass for sustainable energy production, it will be an advantage to utilize fuels as straw, wood and waste on large suspension fired boilers. On a European scale, currently large straw resources are available that are not fully utilized for energy production...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized.......D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...

  19. Embodied HANPP. Mapping the spatial disconnect between global biomass production and consumption

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Krausmann, Fridolin; Haberl, Helmut; Lucht, Wolfgang

    2009-01-01

    Biomass trade results in a growing spatial disconnect between environmental impacts due to biomass production and the places where biomass is being consumed. The pressure on ecosystems resulting from the production of traded biomass, however, is highly variable between regions and products. We use the concept of embodied human appropriation of net primary production (HANPP) to map the spatial disconnect between net-producing and net-consuming regions. Embodied HANPP comprises total biomass withdrawals and land use induced changes in productivity resulting from the provision of biomass products. International net transfers of embodied HANPP are of global significance, amounting to 1.7 PgC/year. Sparsely populated regions are mainly net producers, densely populated regions net consumers, independent of development status. Biomass consumption and trade are expected to surge over the next decades, suggesting a need to sustainably manage supply and demand of products of ecosystems on a global level. (author)

  20. Hydrogen-rich gas production by cogasification of coal and biomass in an intermittent fluidized bed.

    Science.gov (United States)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  1. Biomass production in energy plantation of Prosopis juliflora

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurti, K.

    1984-09-01

    Studies on time trends of biomass production by means of age series in energy plantations (spacing 1.3 x 1.3 m) of Prosopis juliflora is presented. The component biomass production at the age of 18, 24, 30, 36 and 48 months was determined. The results show considerable variation among the population of trees. However, distinct linear relationship between girth at breast height (GBH) and total height was discernible. The total biomass produced at 18, 24, 30, 36 and 48 months of age was 19.69, 41.39, 69.11, 114.62 and 148.63 dry tonnes per hectare, respectively. The corresponding figures for utilizable biomass (wood, bark and branch) were 14.63, 32.17, 50.59, 88.87 and 113.25 dry tonnes per hectare. At all the periods of study, branch component formed the major portion of total biomass being around 50 to 55%. Utilizable biomass was three-fourths of total biomass at all ages. The solar energy conversion efficiency ranged from 0.59% at 18 months to 1.68% at 48 months of age, the peak value being 1.87% at the age of 36 months. It is shown that the variables diameter and height can be used to reliably predict the biomass production in Prosopis juliflora with the help of the regression equations developed in the present study. It is concluded that Prosopis juliflora is an ideal candidate for energy plantations in semi arid and marginal lands, not only to meet the fuelwood demands but also to improve the soil fertility, for, this plant is a fast growing and nitrogen fixing leguminous tree.

  2. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H.

    2003-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m 3

  3. Production of sugars and levulinic acid from marine biomass Gelidium amansii.

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee

    2010-05-01

    This study focused on optimization of reaction conditions for formation of sugars and levulinic acid from marine algal biomass Gelidium amansii using acid catalyst and by using statistical approach. By this approach, optimal conditions for production of sugars and levulinic acid were found as follows: glucose (reaction temperature of 139.4 degrees C, reaction time of 15.0 min, and catalyst concentration of 3.0%), galactose (108.2 degrees C, 45.0 min, and 3.0%), and levulinic acid (160.0 degrees C, 43.1 min, and 3.0%). While trying to optimize the conditions for the production of glucose and galactose, levulinic acid production was found to be minimum. Similarly, the production of glucose and galactose were found to be minimum while optimizing the conditions for the production of levulinic acid. In addition, optimized production of glucose required a higher reaction temperature and shorter reaction time than that of galactose. Levulinic acid was formed at a high reaction temperature, long reaction time, and high catalyst concentration. The combined results of this study may provide useful information to develop more economical and efficient systems for production of sugars and chemicals from marine biomass.

  4. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  5. Production costs for SRIC Populus biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the US. Populus hybrid planted on good quality agricultural sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year. Discounted cash-flow analysis of multiple rotations showed preharvest production costs of $14/ton (OD). Harvesting and transportation expenses would increase the delivered cost to $35/ton (OD). Although this total cost compared favorably with the regional market price for aspen (Populus tremuloides), future investments in SRIC systems will require the development of biomass energy markets

  6. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating...... in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production...

  7. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    Science.gov (United States)

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  8. PRODUCTION OF ENRICHED BIOMASS BY RED YEASTS OF SPOROBOLOMYCES SP. GROWN ON WASTE SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Emilia Breierova

    2012-02-01

    Full Text Available Carotenoids and ergosterol are industrially significant metabolites probably involved in yeast stress response mechanisms. Thus, controlled physiological and nutrition stress including use of waste substrates can be used for their enhanced production. In this work two red yeast strains of the genus Sporobolomyces (Sporobolomyces roseus, Sporobolomyces shibatanus were studied. To increase the yield of metabolites at improved biomass production, several types of exogenous as well as nutrition stress were tested. Each strain was cultivated at optimal growth conditions and in medium with modified carbon and nitrogen sources. Synthetic media with addition of complex substrates (e.g. yeast extract and vitamin mixtures as well as some waste materials (whey, apple fibre, wheat, crushed pasta were used as nutrient sources. Peroxide and salt stress were applied too, cells were exposed to oxidative stress (2-10 mM H2O2 and osmotic stress (2-10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. In optimal conditions tested strains substantially differed in biomass as well as metabolite production. S.roseus produced about 50 % of biomass produced by S.shibatanus (8 g/L. Oppositely, production of pigments and ergosterol by S.roseus was 3-4 times higher than in S.shibatanus. S.roseus was able to use most of waste substrates, the best production of ergosterol (8.9 mg/g d.w. and beta-carotene (4.33 mg/g d.w. was obtained in medium with crushed pasta hydrolyzed by mixed enzyme from Phanerochaetae chrysosporium. Regardless very high production of carotenes and ergosterol, S.roseus is probably not suitable for industrial use because of relatively low biomass production.

  9. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass.

    Science.gov (United States)

    Leng, Lijian; Li, Jun; Yuan, Xingzhong; Li, Jingjing; Han, Pei; Hong, Yuchun; Wei, Feng; Zhou, Wenguang

    2018-03-01

    Co-liquefaction of municipal sewage sludge (MSS) and lignocellulosic biomass such as rice straw or wood sawdust at different mixing ratios and the characterization of the obtained bio-oil and bio-char were investigated. Synergistic effects were found during co-processing of MSS with biomass for production of bio-oil with higher yield and better fuel properties than those from individual feedstock. The co-liquefaction of MSS/rice straw (4/4, wt) increased the bio-oil yield from 22.74% (bio-oil yield from liquefaction of MSS individually) or 23.67% (rice straw) to 32.45%. Comparable increase on bio-oil yield was also observed for MSS/wood sawdust mixtures (2/6, wt). The bio-oils produced from MSS/biomass mixtures were mainly composed of esters and phenols with lower boiling points (degradation temperatures) than those from individual feedstock (identified with higher heavy bio-oil fractions). These synergistic effects were probably resulted from the interactions between the intermittent products of MSS and those of biomass during processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  11. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  12. Scaling-up the biomass production of Cymbopogon citratus L. in temporary immersion system

    Directory of Open Access Journals (Sweden)

    Elisa Quiala

    2014-04-01

    Full Text Available Shoot-tips, collected from greenhouse-grown plants of Cymbopogon citratus L. (lemmon grass, were incubated on a semi-solid Murashige and Skoog (MS medium with 30% (w/v sucrose, and supplemented with 0.89 µM 6-benzyladenine (BA. After three weeks of culture shoots were individualized and then inoculated in 10 litres temporary immersion system (TIS containing 3 litres of the same basal MS liquid medium. The effects of three immersion frequency (immersion every 12, 6 and 4 hours on the production of biomass were studied. Three inoculum densities (forty, fifty and sixty shoots/TIS were also tested. The biomass growth was inûuenced by the immersion frequency. The highest proliferation rate (17.3 shoots/explants and the plant length (45.2 cm were obtained in plants immersed every 4 h. Also, the fresh and dry biomass weight (153.4 gFW and 24.8 gDW, respectively were higher in this treatment. The maximum biomass accumulation (185.2 gFW and 35.2 gDW was achieved after 30 days of culture when an inoculum density of 60 explants per TIS was used. For the first time, biomass of C. citratus has been produced in10 litres TIS. These results represent the first step in the scaling-up the biomass production of this medicinal plant in large temporary immersion bioreactors. Key words: automation, biomass growth, lemmon grass medicinal plant, tissue culture

  13. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  14. Production of chemicals and fuels from biomass

    Science.gov (United States)

    Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; Kania, John

    2018-01-23

    Methods, reactor systems, and catalysts are provided for converting in a continuous process biomass to fuels and chemicals, including methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  15. Improvement of biomass production and glucoamylase activity by Candida famata using factorial design.

    Science.gov (United States)

    Mosbah, Habib; Aissa, Imen; Hassad, Nahla; Farh, Dhaker; Bakhrouf, Amina; Achour, Sami

    2016-07-01

    To improve biomass production and glucoamylase activity (GA) by Candida famata, culture conditions were optimized. A 2(3) full factorial design (FFD) with a response surface model was used to evaluate the effects and interactions of pH (X1 ), time of cultivation (X2 ), and starch concentration (X3 ) on the biomass production and enzyme activity. A total of 16 experiments were conducted toward the construction of an empiric model and a first-order equation. It was found that all factors (X1 , X2 , and X3 ) and their interactions were significant at a certain confidence level (P production and GA of C. famata. Under this optimized medium, the experimental biomass production and GA obtained were 1.8 ± 0.54 g/L and 0.078 ± 0.012 µmol/L/Min, about 1.5- and 1.8-fold, respectively, higher than those in basal medium. The (R(2) ) coefficients obtained were 0.997 and 0.990, indicating an adequate degree of reliability in the model. Approximately 99% of validity of the predicted value was achieved. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  16. Biomass production of dense direct-seeded lodgepole pine (Pinus contorta) at short rotation periods

    Energy Technology Data Exchange (ETDEWEB)

    Backlund, I.; Bergsten, U.

    2012-07-01

    Lodgepole pine (Pinus contorta) is a fast-growing species that is suitable for producing woody biomass in Nordic countries. Direct seeding of this species is cheaper than planting and creates dense, stable stands. The objective of this study was to quantify the stem volume and biomass production of direct seeded lodgepole pine stands grown under different site conditions with different stem densities, at an age that would permit extensive harvesting of biomass. A circle-plot inventory was performed in 16 of the oldest direct seeded lodgepole pine stands in mid-northern Sweden. Stemwood production of almost 200 m{sup 3}/ha was achieved on average on the best sites, rising to about 300 m{sup 3}/ha for the best circle-plots within 30 years of direct seeding despite the fact that pre-commercial thinning was made once or twice. This corresponds to 100 and 140 tons of dry weight biomass/ha, respectively. Higher stand stem densities ({>=}3000 st/ha) yielded more biomass with only slight reductions in diameter at breast height. The development of stem volume with respect to dominant height in direct seeded stands was becoming comparable to that in planted stands with similar spacing. It therefore seems that there is an unutilized potential for cost-effectively growing lodgepole pine in dense stands for biomass production after direct seeding. It may be possible to devise regimes for short(er) rotation forestry that would yield substantial amount of inexpensive biomass for biorefineries within a few decades. (orig.)

  17. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  18. Biomass Energy Production in California: The Case for a Biomass Policy Initiative; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.

    2000-12-14

    During the 1980s California developed the largest and most divers biomass energy industry in the world. Biomass energy production has become an important component of the state's environmental infrastructure, diverting solid wastes from open burning and disposal in landfills to a beneficial use application.

  19. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  20. Biomass productivity improvement for eastern cottonwood

    Science.gov (United States)

    Terry L. Robison; Randy J. Rousseau; Jianwei Zhang

    2006-01-01

    Eastern cottonwood ( Populus deltoides Marsh.) is grown in plantations by MeadWestvaco for use at its Wickliffe Kentucky Fine Papers Mill1. Genetic and productivity research over the past two decades have led to significant increases in biomass yield while reducing production costs.Initially, genetic research identified fast growing...

  1. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  2. Biomass production and water use efficiency in perennial grasses during and after drought stress

    DEFF Research Database (Denmark)

    Sørensen, Kirsten Kørup; Lærke, Poul Erik; Sørensen, Helle Baadsgaard

    2018-01-01

    be suitable for assessment of drought stress. There were indications of positive associations between plants carbon isotope composition and water use efficiency (WUE) as well as DM under well-watered conditions. Compared to control, drought-treated plots showed increased growth in the period after drought...... stress. Thus, the drought events did not affect total biomass production (DMtotal) of the whole growing season. During drought stress and the whole growing season, WUE was higher in drought-treated compared to control plots, so it seems possible to save water without loss of biomass. Across soil types, M......Drought is a great challenge to agricultural production, and cultivation of drought-tolerant or water use-efficient cultivars is important to ensure high biomass yields for bio-refining and bioenergy. Here, we evaluated drought tolerance of four C3 species, Dactylis glomerata cvs. Sevenop and Amba...

  3. Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production.

    Science.gov (United States)

    Lima, Marisa A; Gomez, Leonardo D; Steele-King, Clare G; Simister, Rachael; Bernardinelli, Oigres D; Carvalho, Marcelo A; Rezende, Camila A; Labate, Carlos A; Deazevedo, Eduardo R; McQueen-Mason, Simon J; Polikarpov, Igor

    2014-01-18

    The search for promising and renewable sources of carbohydrates for the production of biofuels and other biorenewables has been stimulated by an increase in global energy demand in the face of growing concern over greenhouse gas emissions and fuel security. In particular, interest has focused on non-food lignocellulosic biomass as a potential source of abundant and sustainable feedstock for biorefineries. Here we investigate the potential of three Brazilian grasses (Panicum maximum, Pennisetum purpureum and Brachiaria brizantha), as well as bark residues from the harvesting of two commercial Eucalyptus clones (E. grandis and E. grandis x urophylla) for biofuel production, and compare these to sugarcane bagasse. The effects of hot water, acid, alkaline and sulfite pretreatments (at increasing temperatures) on the chemical composition, morphology and saccharification yields of these different biomass types were evaluated. The average yield (per hectare), availability and general composition of all five biomasses were compared. Compositional analyses indicate a high level of hemicellulose and lignin removal in all grass varieties (including sugarcane bagasse) after acid and alkaline pretreatment with increasing temperatures, whilst the biomasses pretreated with hot water or sulfite showed little variation from the control. For all biomasses, higher cellulose enrichment resulted from treatment with sodium hydroxide at 130°C. At 180°C, a decrease in cellulose content was observed, which is associated with high amorphous cellulose removal and 5-hydroxymethyl-furaldehyde production. Morphological analysis showed the effects of different pretreatments on the biomass surface, revealing a high production of microfibrillated cellulose on grass surfaces, after treatment with 1% sodium hydroxide at 130°C for 30 minutes. This may explain the higher hydrolysis yields resulting from these pretreatments, since these cellulosic nanoparticles can be easily accessed and cleaved by

  4. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  5. Integrated production of warm season grasses and agroforestry for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; Omielan, J. [Resource Efficient Agricultural Production-Canada, Ste, Anne de Bellevue, Quebec (Canada); Girouard, P.; Henning, J. [McGill Univ., Ste. Anne de Bellevue, Quebec (Canada)

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to have distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.

  6. Production costs of liquid fuels from biomass

    International Nuclear Information System (INIS)

    Bridgwater, A.V.; Double, J.M.

    1994-01-01

    This project was undertaken to provide a consistent and thorough review of the full range of processes for producing liquid fuels from biomass to compare both alternative technologies and processes within those technologies in order to identify the most promising opportunities that deserve closer attention. Thermochemical conversion includes both indirect liquefaction through gasification, and direct liquefaction through pyrolysis and liquefaction in pressurized solvents. Biochemical conversion is based on a different set of feedstocks. Both acid and enzyme hydrolysis are included followed by fermentation. The liquid products considered include gasoline and diesel hydrocarbons and conventional alcohol fuels of methanol and ethanol. Results are given both as absolute fuel costs and as a comparison of estimated cost to market price. In terms of absolute fuel costs, thermochemical conversion offers the lowest cost products, with the least complex processes generally having an advantage. Biochemical routes are the least attractive. The most attractive processes from comparing production costs to product values are generally the alcohol fuels which enjoy a higher market value. (author)

  7. Microalgal biomass production pathways: evaluation of life cycle environmental impacts.

    Science.gov (United States)

    Zaimes, George G; Khanna, Vikas

    2013-06-20

    Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of -46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae's life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae's direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Given the high variability in microalgae's energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative.

  8. Effect of diverse ecological conditions on biomass production of ...

    African Journals Online (AJOL)

    Kangaroo grass native to Australia is known as the best grass to grow on different environmental and soil conditions. Biomass production of any grass is the key factor to estimate that if the grass could fulfill the animal requirements. Biomass production of kangaroo grass was estimated in this study at three growth stages on ...

  9. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    Science.gov (United States)

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost.

  10. Thermodynamic evaluation of biomass-to-biofuels production systems

    NARCIS (Netherlands)

    Piekarczyk, W.; Czarnowska, L.; Ptasinski, K.J.; Stanek, W.

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like

  11. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  12. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  13. Production of biomass and polysaccharides of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt. :Fr.) P. Karst. (higher Basidiomycetes), by submerged cultivation.

    Science.gov (United States)

    Habijanic, Jozica; Berovic, Marin; Boh, Bojana; Wraber, Branka; Petravic-Tominac, Vlatka

    2013-01-01

    Submerged batch and repeated fed-batch cultivation techniques were used for mycelia cultivation and polysaccharide production of the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum. Although most publications use various Asiatic G. lucidum strains, the growth of the strain Ga.l 4 (Biotechnical Faculty Strain Collection, Ljubljana, Slovenia), originally isolated from the Slovenian forest, is much faster. The results between the batch and repeated fed-batch cultivation are compared with the polysaccharide production in batch cultivation. From the aspect of biomass production, the best results were obtained in repeated fed-batch after 44 days, where 12.4 g/L of dry fungal biomass was obtained.

  14. Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes.

    Science.gov (United States)

    Corton, J; Donnison, I S; Patel, M; Bühle, L; Hodgson, E; Wachendorf, M; Bridgwater, A; Allison, G; Fraser, M D

    2016-09-01

    Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush ( Juncus effuses ) and bracken ( Pteridium aquilinum ) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 10 5  tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

  15. Development of Value-Added Products from Residual Algae to Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Craig [Sapphire Energy, San Diego, CA (United States)

    2016-02-29

    DOE Award # EE0000393 was awarded to fund research into the development of beneficial uses of surplus algal biomass and the byproducts of biofuel production. At the time of award, Sapphire’s intended fuel production pathway was a fairly conventional extraction of lipids from biomass, resulting in a defatted residue which could be processed using anaerobic digestion. Over the lifetime of the award, we conducted extensive development work and arrived at the conclusion that anaerobic digestion presented significant technical challenges for this high-nitrogen, high-ash, and low carbon material. Over the same timeframe, Sapphire’s fuel production efforts came to focus on hydrothermal liquefaction. As a result of this technology focus, the residue from fuel production became unsuitable for either anaerobic digestion (or animal feed uses). Finally, we came to appreciate the economic opportunity that the defatted biomass could represent in the animal feed space, as well as understanding the impact of seasonal production on a biofuels extraction plant, and sought to develop uses for surplus biomass produced in excess of the fuel production unit’s capacity.

  16. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  17. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment

    International Nuclear Information System (INIS)

    Seo, Dong Cheol; DeLaune, Ronald D.

    2010-01-01

    Fungal and bacterial carbon dioxide (CO 2 ) production/emission was determined under a range of redox conditions in sediment from a Louisiana swamp forest used for wastewater treatment. Sediment was incubated in microcosms at 6 Eh levels (-200, -100, 0, + 100, + 250 and + 400 mV) covering the anaerobic range found in wetland soil and sediment. Carbon dioxide production was determined by the substrate-induced respiration (SIR) inhibition method. Cycloheximide (C 15 H 23 NO 4 ) was used as the fungal inhibitor and streptomycin (C 21 H 39 N 7 O 12 ) as the bacterial inhibitor. Under moderately reducing conditions (Eh > + 250 mV), fungi contributed more than bacteria to the CO 2 production. Under highly reducing conditions (Eh ≤ 0 mV), bacteria contributed more than fungi to the total CO 2 production. The fungi/bacteria (F/B) ratios varied between 0.71-1.16 for microbial biomass C, and 0.54-0.94 for microbial biomass N. Under moderately reducing conditions (Eh ≥ + 100 mV), the F/B ratios for microbial biomass C and N were higher than that for highly reducing conditions (Eh ≤ 0 mV). In moderately reducing conditions (Eh ≥ + 100 mV), the C/N microbial biomass ratio for fungi (C/N: 13.54-14.26) was slightly higher than for bacteria (C/N: 9.61-12.07). Under highly reducing redox conditions (Eh ≤ 0 mV), the C/N microbial biomass ratio for fungi (C/N: 10.79-12.41) was higher than for bacteria (C/N: 8.21-9.14). For bacteria and fungi, the C/N microbial biomass ratios under moderately reducing conditions were higher than that in highly reducing conditions. Fungal CO 2 production from swamp forest could be of greater ecological significance under moderately reducing sediment conditions contributing to the greenhouse effect (GHE) and the global warming potential (GWP). However, increases in coastal submergence associated with global sea level rise and resultant decrease in sediment redox potential from increased flooding would likely shift CO 2 production to bacteria

  18. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  19. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  20. Optimization of Culture Medium Enhances Viable Biomass Production and Biocontrol Efficacy of the Antagonistic Yeast, Candida diversa

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-10-01

    Full Text Available Viable biomass production is a key determinant of suitability of antagonistic yeasts as potential biocontrol agents. This study investigated the effects of three metal ions (magnesium, ferrous, and zinc on biomass production and viability of the antagonistic yeast, Candida diversa. Using response surface methodology to optimize medium components, a maximum biomass was obtained, when the collective Mg2+, Fe2+, and Zn2+ concentrations were adjusted in a minimal mineral (MM medium. Compared with the unmodified MM, and three ion-deficient MM media, yeast cells cultured in the three ion-modified MM medium exhibited a lower level of cellular oxidative damage, and a higher level of antioxidant enzyme activity. A biocontrol assay indicated that C. diversa grown in the ion-modified MM exhibited the greatest level of control of gray mold on apple fruit. These results provide new information on culture medium optimization to grow yeast antagonists in order to improve biomass production and biocontrol efficacy.

  1. Technical and economic data biomass-based energy conversion systems for the production of gaseous and/or liquid energy carriers

    International Nuclear Information System (INIS)

    2000-02-01

    /GJ) are higher than that of their fossil fuel derived competitors, but not insurmountably higher. There is more then enough financial scope for the government, for example by a lower excise duty, to make 'green' fuels competitive with fossil-fuel derived conventional fuels. Because biomass-derived fuels contain less contaminants, and therefore are high quality fuels, a higher production price is even tolerable. A pressurised O 2 -blown based BIG/CC (IGT) seems to he the preferable system for integration of a 'once-through' LPMEOH or FT-process, for trigeneration purposes. Based on potential system optimisations the production of FT-fuels (high conversion efficiency at relatively moderate process conditions) seems to be preferable. 39 refs

  2. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  3. An inventory control model for biomass dependent production systems

    International Nuclear Information System (INIS)

    Grado, S.C.; Strauss, C.H.

    1993-01-01

    The financial performance of a biomass dependent production system was critiqued based on the development and validation of an inventory control model. Dynamic programming was used to examine the constraints and capabilities of producing ethanol from various biomass crops. In particular, the model evaluated the plantation, harvest, and manufacturing components of a woody biomass supply system. The optimum wood to ethanol production scheme produced 38 million litres of ethanol in the harvest year, at 13.6 million litre increase over the least optimal policy as demonstrated in the dynamic programming results. The system produced ethanol at a delivered cost of $0.38 L -1 which was consistent with the unit costs from other studies. Nearly 60% of the delivered costs were in ethanol production. The remaining costs were attributed to growing biomass (14%), harvest and shipment of the crop (18%), storage of the raw material and finished product (7%) and open-quotes lost salesclose quotes (2%). Inventory control, in all phases of production, proved to be an important cost consideration throughout the model. The model also analyzed the employment of alternative harvesting policies and the use of different or multiple feedstocks. A comparison between the least cost wood system and an even cut wood system further revealed the benefits of using an inventory control system

  4. Willow coppice systems in short rotation forestry: effects of plant spacing, rotation length and clonal composition on biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Willebrand, E.; Ledin, S.; Verwijst, T. (Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research)

    1993-01-01

    Above ground biomass production was determined for ten Salix clones grown in pure and mixed stands at a square spacing of 1 m and seven rotation periods (1 to 6 and 8 years), and of one clone grown at four square spacings (0.5, 0.6, 0.7 and 1 m), with rotation cycles of 1 to 5 years. Most clones reached a maximum mean annual increment (8 to 14 tons dry matter ha[sup -1] yr[sup -1]) under a rotation period of 4 to 5 years. Densely spaced stands exhibited a higher production than wider spacings during the first harvests under the shortest rotation periods. Neither in later harvests of short cycles (1 to 3 years) nor in any harvests of longer cycles (> 3 years) did spacing affect biomass production. Some clones suffered from leaf rust and grazing by roe deer. Clone mixtures showed a higher biomass production in the later stages due to the compensatory effect of the successful clones which, when growing in mixtures, could fill out the gaps left by individuals that suffered from impacts other than competition. We conclude that extremely short rotations (1 to 2 years) are unsuitable for Swedish conditions, and that 4- to 6-year rotations perform best. In such longer rotations, biomass production of stands with 2 x 10[sup 4] plants per hectare equals the production of denser stands. (Author)

  5. Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Renate Degen

    2015-08-01

    Full Text Available Little is known about the distribution and dynamics of macrobenthic communities of the deep Arctic Ocean. The few previous studies report low standing stocks and confirm a gradient with declining biomass from the slopes down to the basins, as commonly reported for deep-sea benthos. In this study, we investigated regional differences of faunal abundance and biomass, and made for the first time ever estimates of deep Arctic community production by using a multi-parameter artificial neural network model. The underlying data set combines data from recent field studies with published and unpublished data from the past 20 years, to analyse the influence of water depth, geographical latitude and sea-ice concentration on Arctic benthic communities. We were able to confirm the previously described negative relationship of macrofauna standing stock with water depth in the Arctic deep sea, while also detecting substantial regional differences. Furthermore, abundance, biomass and production decreased significantly with increasing sea-ice extent (towards higher latitudes down to values <200 ind m−2, <65 mg C m−2 and <73 mg C m−2 y−1, respectively. In contrast, stations under the seasonal ice zone regime showed much higher standing stock and production (up to 2500 mg C m−2 y−1, even at depths down to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic Ocean as it explains both the low values in the ice-covered Arctic basins and the higher values in the seasonal ice zone.

  6. Sago Biomass as a Sustainable Source for Biohydrogen Production by Clostridium butyricum A1

    Directory of Open Access Journals (Sweden)

    Mohamad Faizal Ibrahim

    2013-12-01

    Full Text Available Biohydrogen production from biomass is attracting many researchers in developing a renewable, clean and environmental friendly biofuel. The biohydrogen producer, Clostridium butyricum A1, was successfully isolated from landfill soil. This strain produced a biohydrogen yield of 1.90 mol H2/mol glucose with productivity of 170 mL/L/h using pure glucose as substrate. The highest cumulative biohydrogen collected after 24 h of fermentation was 2468 mL/L-medium. Biohydrogen fermentation using sago hampas hydrolysate produced higher biohydrogen yield (2.65 mol H2/mol glucose than sago pith residue (SPR hydrolysate that produced 2.23 mol H2/mol glucose. A higher biohydrogen productivity of 1757 mL/L/h was obtained when using sago hampas hydrolysate compared to when using pure glucose that has the productivity of 170 mL/L/h. A comparable biohydrogen production was also obtained by C. butyricum A1 when compared to C. butyricum EB6 that produced a biohydrogen yield of 2.50 mol H2/mol glucose using sago hampas hydrolysate as substrate. This study shows that the new isolate C. butyricum A1 together with the use of sago biomass as substrate is a promising technology for future biohydrogen production.

  7. Biomass production and carbon storage of Populus ×canadensis ...

    African Journals Online (AJOL)

    euramericana (Dode) Guinier ex Piccarolo) clone I-214 have good potential for biomass production. The objective of the study was estimation of biomass using allometric equations and estimation of carbon allocation according to tree components.

  8. Environmental and economic suitability of forest biomass-based bioenergy production in the Southern United States

    Science.gov (United States)

    Dwivedi, Puneet

    This study attempts to ascertain the environmental and economic suitability of utilizing forest biomass for cellulosic ethanol production in the Southern United States. The study is divided into six chapters. The first chapter details the background and defines the relevance of the study along with objectives. The second chapter reviews the existing literature to ascertain the present status of various existing conversion technologies. The third chapter assesses the net energy ratio and global warming impact of ethanol produced from slash pine (Pinus elliottii Engelm.) biomass. A life-cycle assessment was applied to achieve the task. The fourth chapter assesses the role of emerging bioenergy and voluntary carbon markets on the profitability of non-industrial private forest (NIPF) landowners by combining the Faustmann and Hartmann models. The fifth chapter assesses perceptions of four stakeholder groups (Non-Government Organization, Academics, Industries, and Government) on the use of forest biomass for bioenergy production in the Southern United States using the SWOT-AHP (Strength, Weakness, Opportunity, and Threat-Analytical Hierarchy Process) technique. Finally, overall conclusions are made in the sixth chapter. Results indicate that currently the production of cellulosic ethanol is limited as the production cost of cellulosic ethanol is higher than the production cost of ethanol derived from corn. However, it is expected that the production cost of cellulosic ethanol will come down in the future from its current level due to ongoing research efforts. The total global warming impact of E85 fuel (production and consumption) was found as 10.44 tons where as global warming impact of an equivalent amount of gasoline (production and consumption) was 21.45 tons. This suggests that the production and use of ethanol derived from slash pine biomass in the form of E85 fuel in an automobile saves about 51% of carbon emissions when compared to gasoline. The net energy ratio

  9. Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Veronika; Eggers, Thies; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO{sub 2}) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  10. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Pathak, T.S.; Srivastava, R.; Singh, A.C.

    2016-01-01

    Catalytic co-pyrolysis of biomass and plastics (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) has been performed in a fixed-bed reactor in presence of cobalt based alumina, ceria and ceria-alumina catalysts to analyze the product distribution and selectivity. Catalysts are synthesized using co-precipitation method and characterized by BET (Brunauer–Emmett–Teller) surface area and XRD analysis. The effect of catalytic co-pyrolysis at different temperature with product distribution has been evaluated. The results have clearly shown the synergistic effect between biomass and plastics, the liquid products gradually increases forming with rise in the plastic content in the blend. Gaseous products have yielded most during pyrolysis of blend having biomass/plastics ratio of 5:1 with the presence of 40% Co/30% CeO_2/30% Al_2O_3 catalyst with hydrogen gas production touched its peak of 47 vol%. Catalytic performance enhanced with increase with the cobalt loading, with best performance attributing to 40% Co/30% CeO_2/30% Al_2O_3 catalyst. - Highlights: • Catalytic co-pyrolysis of biomass and plastics (HDPE, PP & PET) blends in fixed-bed reactor. • Strong synergistic effect evident between biomass and plastics. • Solid residue diminished with application of catalysts. • Aromatics and olefins production increases with higher plastic content. • More hydrogen production with application of catalysts with higher cobalt content.

  11. Methods to measure biomass and production of bacteria and photosynthetic microbiota and their application on illuminated lake sediments. A literature study

    International Nuclear Information System (INIS)

    Nilsson, Eva

    2001-06-01

    -production method, the O 2 -microelectrodes method, the changes in dissolved inorganic carbon method, and the photosynthetic parameters method. Studies on illuminated lake bottom habitats indicate that biomass and production of benthic heterotrophic bacteria is higher than the biomass and production of pelagic heterotrophic bacteria. Also, the biomass and production of benthic photosynthesising microorganism may be higher than the biomass and production of phytoplankton. Therefore it is important to study benthic as well as pelagic microorgansims when studying lake ecosystems

  12. Methods to measure biomass and production of bacteria and photosynthetic microbiota and their application on illuminated lake sediments. A literature study

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Eva [Uppsala Univ. (Sweden). Dept. of Limnology

    2001-06-01

    }-incorporation method, the O{sub 2}-production method, the O{sub 2}-microelectrodes method, the changes in dissolved inorganic carbon method, and the photosynthetic parameters method. Studies on illuminated lake bottom habitats indicate that biomass and production of benthic heterotrophic bacteria is higher than the biomass and production of pelagic heterotrophic bacteria. Also, the biomass and production of benthic photosynthesising microorganism may be higher than the biomass and production of phytoplankton. Therefore it is important to study benthic as well as pelagic microorgansims when studying lake ecosystems.

  13. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    Science.gov (United States)

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Thomsen, Anne Belinda; Angelidaki, Irini

    2007-01-01

    In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental...... pollution and reduce dependency on fossil fuels. There are two major biological processes that can convert biomass to liquid energy carriers via anaerobic biological breakdown of organic matter: ethanol fermentation and mixed acetone, butanol, ethanol (ABE) fermentation. The specific product formation...

  15. Potential and impacts of renewable energy production from agricultural biomass in Canada

    International Nuclear Information System (INIS)

    Liu, Tingting; McConkey, Brian; Huffman, Ted; Smith, Stephen; MacGregor, Bob; Yemshanov, Denys; Kulshreshtha, Suren

    2014-01-01

    Highlights: • This study quantifies the bioenergy production potential in the Canadian agricultural sector. • Two presented scenarios included the mix of market and non-market policy targets and the market-only drivers. • The scenario that used mix of market and policy drivers had the largest impact on the production of bioenergy. • The production of biomass-based ethanol and electricity could cause moderate land use changes up to 0.32 Mha. • Overall, agricultural sector has a considerable potential to generate renewable energy from biomass. - Abstract: Agriculture has the potential to supply considerable amounts of biomass for renewable energy production from dedicated energy crops as well as from crop residues of existing production. Bioenergy production can contribute to the reduction of greenhouse gas (GHG) emissions by using ethanol and biodiesel to displace petroleum-based fuels and through direct burning of biomass to offset coal use for generating electricity. We used the Canadian Economic and Emissions Model for Agriculture to estimate the potential for renewable energy production from biomass, the impacts on agricultural production, land use change and greenhouse gas emissions. We explored two scenarios: the first considers a combination of market incentives and policy mandates (crude oil price of $120 bbl −1 ; carbon offset price of $50 Mg −1 CO 2 equivalent and policy targets of a substitution of 20% of gasoline by biomass-based ethanol; 8% of petroleum diesel by biodiesel and 20% of coal-based electricity by direct biomass combustion), and a second scenario considers only carbon offset market incentives priced at $50 Mg −1 CO 2 equivalent. The results show that under the combination of market incentives and policy mandates scenario, the production of biomass-based ethanol and electricity increases considerably and could potentially cause substantial changes in land use practices. Overall, agriculture has considerable potential to

  16. Ethanol production from biomass: technology and commercialisation status

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R.

    2001-06-01

    Owing to technical improvements in the processes used to produce ethanol from biomass, construction of at least two waste-to-ethanol production plants in the United States is expected to start this year. Although there are a number of robust fermentation microorganisms available, initial pretreatment of the biomass and costly cellulase enzymes remain critical targets for process and cost improvements. A highly efficient, very low-acid pretreatment process is approaching pilot testing, while research on cellulases for ethanol production is expanding at both enzyme and organism level. (Author)

  17. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  18. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  19. Effects of radiation, litterfall and throughfall on herbaceous biomass production in oak woodlands of Southern Portugal

    International Nuclear Information System (INIS)

    Nunes, J.; Sa, C.; Madeira, M.; Gazarini, L.

    2002-01-01

    Micro climatic characteristics (soil moisture, and air and soil temperature) were monitored both under and outside the influence of Quercus rotundifolia canopy. The influence of tree cover on biomass production of herbaceous vegetation was studied through the simulation of the physical and chemical effects associated to the tree canopy (radiation, litterfall, throughfall). Treatments were: control (T), radiation shortage (RR), application of leaf litter (F), application of leaflitter and radiation shortage (FRR) , application of throughfall (N) and application of throughfall and radiation shortage (NRR). Most of the times, and especially in winter, soil temperature was higher in areas not influenced by the canopies than in those under their influence. Soil moisture tended to decrease faster in the areas outside the canopy influence. Mean annual biomass production of the herbaceous vegetation was 159.5, 145.8, 132.2, 126.66, 134.9 and 173.1 g m2, respectively, in treatments C, RR, F, FRR, N and NRR. The N, P, K, Mg, Mn and Ca concentrations in the herbaceous biomass were generally higher in the shaded treatments. When the amount of nutrients accumulated in the herbaceous vegetation biomass was expressed on an area basis, the highest values were observed for treatment with throughfall application and radiation shortage. Besides the possible effects of the micro climatic characteristics, differences with respect to herbaceous vegetation production may be explained by the presence of litterfall, as well as by the nutrients present in the throughfall solution [pt

  20. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  1. Biomass production and utilisation. Policy implications for LDCs

    International Nuclear Information System (INIS)

    Davidson, O.

    1997-01-01

    The importance of biomass in the energy sector of LDCs and in Africa in particular is illustrated so as to provide the background to the policy importance on the production and use of this energy source. The main areas for policy attention discussed are: biomass for power generation, biomass use in the transport sector, urban energy supply and the interactions with agricultural policies. The roles of the major institutions the government, private sector institutions, educational institutions and non-governmental organizations are identified. It is concluded that with the necessary policy shift that is being advocated, biomass can contribute to a more equitable supply of high quality and efficient energy services in the future of African countries. (K.A.)

  2. BioRefine. New biomass products programme 2007-2012. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, T. (ed.) [VTT Technical Research Centre of Finland, Espoo (Finland); Alakangas, E.; Holviala, N. (eds.) [VTT Technical Research Centre of Finland, Jyvaskyla (Finland)

    2012-07-01

    The focal areas of the BioRefine programme have been business development, raw materials, and product lines. The key issue in the programme has been the development of business opportunities. The other two programme areas - raw materials and product lines, including technologies and services - have always been viewed from the perspective of short, medium or long-term business activities.The programme has organised four calls for research projects. The focus of the first call was on biomass-based fuels for transport (in the autumn 2007), the second one focused on other biomass-based products like chemicals and materials (in the spring 2008), and the third one on new biomass sources and waste-based biomass, and research supporting the business development of SME companies (early in 2010). In the last call in the spring 2011, project proposals were expected to focus on the following areas: new innovative and multidisciplinary research initiatives related to biomass utilisation, small distributed biorefinery concepts, efficient and sustainable utilisation of biomass raw materials in new integrated solutions for biorefining, and new integrated solutions for the efficient utilisation of sidestreams in the biorefining value chain or in its parts. Unlike research organizations, companies have been able to apply for funding continuously from Tekes.

  3. Production and characterization of bio-oil from catalytic biomass pyrolysis

    Directory of Open Access Journals (Sweden)

    Antonakou Eleni V.

    2006-01-01

    Full Text Available Biomass flash pyrolysis is a very promising thermochemical process for the production of bio-fuels and/or chemicals. However, large-scale applications are still under careful consideration, because of the high bio-liquid upgrading cost. In this paper the production of bio-liquids from biomass flash pyrolysis in a single stage catalytic process is being investigated using a novel once through fluid bed reactor. This biomass pyrolysis unit was constructed in Chemical Process Engineering Research Institute and comprises of a catalyst regenerator, a biomass-vibrating hopper, a fluidization reactor (that consists of an injector and a riser reactor, a product stripper along with a hot cyclone and a filter housing and finally a product condensation/recovery section. The unit can process up to 20 g/min. of biomass (50-800 mm and can circulate up to 300 g/min. of catalyst or inert material. The experiments performed in the pilot plant showed that the unit operates without problems and with satisfactory mass balances in a wide range of experimental conditions both in the absence and presence of catalyst. With the incorporation of an FCC catalyst in the pyrolysis, the physical properties of the bio-oil produced changed, while more stable bio-oil was produced. .

  4. Optimal mode of operation for biomass production

    NARCIS (Netherlands)

    Betlem, Ben H.L.; Roffel, Brian; Mulder, P.

    2002-01-01

    The rate of biomass production is optimised for a predefined feed exhaustion using the residue ratio as a degree of freedom. Three modes of operation are considered: continuous, repeated batch, and repeated fed-batch operation. By means of the Production Curve, the transition points of the optimal

  5. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  6. Production cost of biomasses from eucalyptus and elefant grass for energy

    Directory of Open Access Journals (Sweden)

    Laurent Marie Roger Quéno

    2011-09-01

    Full Text Available This work established the unit energy cost generated from biomass of eucalyptus (Eucalyptus sp. and elephant grass (Pennisetum sp. and applied a sensitivity analysis to verify the influences of factors such as the silviculture of eucalyptus, production volume of each species, the cost of land and the interest rate. It was shown that the treatment of eucalyptus in very short rotation of 2 years with reform of stand every 6 years has a average cost of production higher than the traditional treatment of short rotation of 6 years with reform only at the age of 18. It was also observed that eucalyptus has a Production Cost on average of R$ 4,41 /Gj, lower than the elephant grass which is on average of R$ 5,44/Gj, which however has a higher annual capacity of dry matter production. The elephant grass has the possibility to compete with eucalyptus when a set of conditions is met: discount rate higher than or equal to 8%, High price of land, and elephant grass high volume production, greater than or equal to 35 tonnes of dry matter per hectare and year.

  7. Assessment of potential biomass energy production in China towards 2030 and 2050

    OpenAIRE

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources...

  8. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene

    International Nuclear Information System (INIS)

    Önal, Eylem; Uzun, Başak Burcu; Pütün, Ayşe Eren

    2014-01-01

    Highlights: • We investigate to see the effect of HDPE addition on thermal decomposition of lignocellulosic materials. • Increasing the proportion of HDPE in mixtures increases the oil yields. • After co-pyrolysis applied, obtained oil is more stable due to having lower oxygen content and higher heating value. • The addition of HDPE to aS has a positive effect on fuel properties of obtained oil. - Abstract: Biomass from almond shell (aS) was co-pyrolyzed with high density polyethylene (HDPE) polymer to investigate the synergistic effects on the product yields and compositions. The pyrolysis temperature was selected as 500 °C, based on results of TGA-DTG. Co-pyrolysis of HDPE-biomass mixtures were pyrolysed with various proportions such as 1:0, 1:1, 1:2, 2:1 and 0:1. The yield of liquids produced during co-pyrolysis enhanced 23%, as the weight ratio of HDPE in the mixture was doubled. Obtained bio-oils were analyzed with using column chromatography, 1 H NMR, GC/MS, and FT-IR. According to analyses results, produced liquids by co-pyrolysis had higher carbon (26% higher) and hydrogen contents (78% higher), lower oxygen content (%86 less) with a higher heating value (38% higher) than those of biomass oil

  9. Characterization of biofilm-forming cyanobacteria for biomass and lipid production.

    Science.gov (United States)

    Bruno, L; Di Pippo, F; Antonaroli, S; Gismondi, A; Valentini, C; Albertano, P

    2012-11-01

    This work reports on one of the first attempts to use biofilm-forming cyanobacteria for biomass and lipid production. Three isolates of filamentous cyanobacteria were obtained from biofilms at different Italian sites and characterized by a polyphasic approach, involving microscopic observations, ecology and genetic diversity (studying the 16S rRNA gene). The isolates were grown in batch systems and in a semi-continuous flow incubator, specifically designed for biofilms development. Culture system affected biomass and lipid production, but did not influence the fatty acid profile. The composition of fatty acids was mainly palmitic acid (>50%) and less amounts of other saturated and monounsaturated fatty acids. Only two isolates contained two polyunsaturated fatty acids. Data obtained from the flow-lane incubator system would support a more economical and sustainable use of the benthic micro-organisms for biomass production. The produced lipids contained fatty acids suitable for a high-quality biodiesel production, showing high proportions of saturated and monounsaturated fatty acids. Data seem promising when taking into account the savings in cost and time derived from easy procedures for biomass harvesting, especially when being able to obtain the co-production of other valuable by-products. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  10. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    Science.gov (United States)

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass. PMID:23350028

  11. Bacterial biomass in warm-core Gulf Stream ring 82-B: mesoscale distributions, temporal changes and production

    Science.gov (United States)

    Ducklow, Hugh

    1986-11-01

    The distribution of bacterioplankton biomass and productivity in warm-core Gulf Stream ring 82-B generally corresponded to the physical and dynamical structure of the ring. Mean cell volumes were uniform for 4 months, but were larger by a factor of 2-3 in the high velocity (frontal) region (HVR) near the ring edge. As a result of this gradient and higher abundances, water column biomass and production were highest in the front, which appeared to be a local maximum in those properties. In this regard bacterioplankton contrasted strongly to phytoplankton, which exhibited strong local maxima at the center of the ring in June. In April when the water column inside the ring was isothermal to 450 m, bacterial biomass and production were low and uniform to 250 and 50 m, respectively. Bacterioplankton responded dramatically to the vernal restratification of the ring. In June when the surface layer was characterized by a strong pycnocline at 10-40 m, bacterial biomass and production often had strong subsurface maxima, and were 3 and 5 times greater than in April, respectively. Abundance exceeded 1.5 × 10 9 cells l -1 at ring center and exceeded 3 × 10 9 l -1 in the HVR. Turnover rates for the euphotic zone bacterioplankton as a whole were 0.24 d -1 in April, 0.56 d -1 in June, and 0.27 d -1 in August at ring center. Bacterial production averaged 12% of hourly primary production (range 1-32%), suggesting that bacteria control a significant and sometimes large portion of the carbon cycling in the euphotic zone. These data suggest that warm-core rings are sites of enhanced variability of bacterioplankton properties in the open sea. Furthermore, the data strongly support recent work showing that frontal zones are sites of locally enhanced bacterial biomass and production. In the ring system as a whole, the euphotic zone bacterioplankton biomass and production were comparable to and occasionally greater than the biomass and production of the >64 μm zooplankton, especially in

  12. Conditioning biomass for microbial growth

    Science.gov (United States)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  13. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  14. Advanced biomass science and technology for bio-based products: proceedings

    Science.gov (United States)

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  15. Torrefaction of waste biomass for application in energy production in South Africa

    Directory of Open Access Journals (Sweden)

    T.A. Mamvura

    2018-06-01

    Full Text Available Power producing plants are major emitters of greenhouse gases that lead to global warming and climate changes. In the past two to three decades, attention has been drawn to organizations such as these reduce their dependence on coal reserves which are depleting and focus on producing clean energy i.e. for every ton of fuel produced, 100 kg or more should be made from clean energy. This has made torrefaction to gain interest as it improves energy content of biomass, a renewable and clean energy source, to levels equal to and sometimes above that of coal. The benefit of this is that, torrefied biomass could be co-fired with coal thereby reducing greenhouse gases and global warming.In this study, the effect of different parameters were investigated on two abundant sources of biomass in South Africa. There parameters were temperature, oxygen content, heating rate and residence time. It was observed that a temperature range between 275 and 300 °C under inert conditions with a heating rate of 10 °C/min and residence time between 20 and 40 min were required to achieve the best biomass with properties comparable to those of coal. This made it possible to co-fire the biomass with coal for energy production at different proportions. Keywords: Torrefaction, Biomass, Coal, Higher heating value

  16. Role of Brønsted acid in selective production of furfural in biomass pyrolysis.

    Science.gov (United States)

    Zhang, Haiyan; Liu, Xuejun; Lu, Meizhen; Hu, Xinyue; Lu, Leigang; Tian, Xiaoning; Ji, Jianbing

    2014-10-01

    In this work, the role of Brønsted acid for furfural production in biomass pyrolysis on supported sulfates catalysts was investigated. The introduction of Brønsted acid was shown to improve the degradation of polysaccharides to intermediates for furfural, which did not work well when only Lewis acids were used in the process. Experimental results showed that CuSO4/HZSM-5 catalyst exhibited the best performance for furfural (28% yield), which was much higher than individual HZSM-5 (5%) and CuSO4 (6%). The optimum reaction conditions called for the mass ratio of CuSO4/HZSM-5 to be 0.4 and the catalyst/biomass mass ratio to be 0.5. The recycled catalyst exhibited low productivity (9%). Analysis of the catalysts by Py-IR revealed that the CuSO4/HZSM-5 owned a stronger Brønsted acid intensity than HZSM-5 or the recycled CuSO4/HZSM-5. Therefore, the existence of Brønsted acid is necessary to achieve a more productive degradation of biomass for furfural. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J [VTT Energy, Espoo (Finland). Energy Production Technologies; and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  18. Production of xylitol from biomass using an inhibitor-tolerant fungal strain

    Science.gov (United States)

    Inhibitory compounds arising from physical–chemical pretreatment of biomass feedstock can interfere with fermentation of biomass sugars to product. A fungus, Coniochaeta ligniaria NRRL30616 improves fermentability of biomass sugars by metabolizing a variety of microbial inhibitors including furan al...

  19. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.

    Science.gov (United States)

    Luangpipat, Tiyaporn; Chisti, Yusuf

    2017-09-10

    Five nominally freshwater microalgae (Chlorella vulgaris, Choricystis minor, Neochloris sp., Pseudococcomyxa simplex, Scenedesmus sp.) with a known ability to produce high-levels of lipids for possible use as fuel oils were evaluated for their ability to thrive and produce lipids in seawater and brackish water. Only C. vulgaris was found to thrive and produce lipids in full strength seawater. Seawater tolerant strains of C. vulgaris are unusual. Lipid productivity in nutrient sufficient seawater exceeded 37mgL -1 d -1 and was nearly 2-fold greater than in freshwater. Although other microalgae such as C. minor had higher lipid productivities (e.g. 45mgL -1 d -1 ), they did not thrive in seawater. The lipid content of the C. vulgaris biomass was nearly 16% by dry weight. The calorific value of the seawater-grown C. vulgaris biomass exceeded 25kJg -1 . Compared to continuously illuminated cultures, a 12/12h light-dark cycle reduced lipid productivity of C. vulgaris by ∼30%, but did not affect the lipid content of the biomass. Biomass yield on phosphate was nearly 27% higher in seawater compared to in freshwater. While C. vulgaris has been extensively studied in freshwater, it has not been examined to any detail in full strength seawater. Studies in seawater are essential for any future large scale production of algal oils for biofuels: seawater is available cheaply and in large amounts whereas there is a global shortage of freshwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2000-08-01

    The report includes reports of activities that were carried out within the GRAIN project. This evaluation shows that the (technical) potential contribution of bio-energy to the future world's energy supply could be very large. In theory, energy farming on current agricultural land could contribute over 800 EJ, without jeopardising the world's food supply. Use of degraded lands may add another 150 EJ, although this contribution will largely come from crops with a low productivity. The growing demand for bio-materials may require a biomass input equivalent to 20-50 EJ, which must be grown on plantations when existing forests are not able to supply this growing demand. Organic wastes and residues could possibly supply another 40-170 EJ, with uncertain contributions from forest residues and potentially a very significant role for organic waste, especially when bio-materials are used on a larger scale. In total, the upper limit of the bio-energy potential could be over 1000 EJ per year. This is considerably more than the current global energy use of 400 EJ. However, this contribution is by no means guaranteed: crucial factors determining biomass availability for energy are: (1) Population growth and economic development; (2) The efficiency and productivity of food production systems that must be adopted worldwide and the rate of their deployment in particular in developing countries; (3) Feasibility of the use of marginal/degraded lands; (4) Productivity of forests and sustainable harvest levels; (5) The (increased) utilisation of bio-materials. Major transitions are required to exploit this bio-energy potential. It is uncertain to what extent such transitions are feasible. Depending on the factors mentioned above, the bio-energy potential could be very low as well. At regional/local level the possibilities and potential consequences of biomass production and use can vary strongly, but the insights in possible consequences are fairly limited up to now. Bio-energy offers

  1. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  2. Biomass production and secretion of hydrolytic enzymes are influenced by the structural complexity of the nitrogen source in Fusarium oxysporum and Aspergillus nidulans.

    Science.gov (United States)

    da Silva, M C; Bertolini, M C; Ernandes, J R

    2001-01-01

    The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.

  3. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain

    Directory of Open Access Journals (Sweden)

    Javier Sánchez

    2015-09-01

    Full Text Available The use of residual biomass for energy purposes is of great interest in isolated areas like Majorca for waste reduction, energy sufficiency and renewable energies development. In addition, densification processes lead to easy-to-automate solid biofuels which additionally have higher energy density. The present study aims at (i the estimation of the potential of residual biomass from woody crops as well as from agri-food and wood industries in Majorca, and (ii the analysis of the optimal location of potential pellet plants by means of a GIS approach (location-allocation analysis and a cost evaluation of the pellets production chain. The residual biomass potential from woody crops in Majorca Island was estimated at 35,874 metric tons dry matter (t DM per year, while the wood and agri-food industries produced annually 21,494 t DM and 2717 t DM, respectively. Thus, there would be enough resource available for the installation of 10 pellet plants of 6400 t·year−1 capacity. These plants were optimally located throughout the island of Mallorca with a maximum threshold distance of 28 km for biomass transport from the production points. Values found for the biomass cost at the pellet plant ranged between 57.1 €·t−1 and 63.4 €·t−1 for biomass transport distance of 10 and 28 km. The cost of pelleting amounted to 56.7 €·t−1; adding the concepts of business fee, pellet transport and profit margin (15%, the total cost of pelleting was estimated at 116.6 €·t−1. The present study provides a proposal for pellet production from residual woody biomass that would supply up to 2.8% of the primary energy consumed by the domestic and services sector in the Balearic Islands.

  4. Structure and biomass production of one- to seven-year-old intensively cultured jack pine plantation in Wisconsin.

    Science.gov (United States)

    J. Zavitkovski; David H. Dawson

    1978-01-01

    Spacing and rotation length effects were studied for 7 years in intensively cultured jack pine stands. Production culminated at age 5 in the densest planting and progressively later in more open spacing. Biomass production was two to several times higher than in jack pine plantations grown under traditional silvicultural systems.

  5. Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review

    Directory of Open Access Journals (Sweden)

    Marwa M. El-Dalatony

    2017-12-01

    Full Text Available Biomass is a crucial energy resource used for the generation of electricity and transportation fuels. Microalgae exhibit a high content of biocomponents which makes them a potential feedstock for the generation of ecofriendly biofuels. Biofuels derived from microalgae are suitable carbon-neutral replacements for petroleum. Fermentation is the major process for metabolic conversion of microalgal biocompounds into biofuels such as bioethanol and higher alcohols. In this review, we explored the use of all three major biocomponents of microalgal biomass including carbohydrates, proteins, and lipids for maximum biofuel generation. Application of several pretreatment methods for enhancement the bioavailability of substrates (simple sugar, amino acid, and fatty acid was discussed. This review goes one step further to discuss how to direct these biocomponents for the generation of various biofuels (bioethanol, higher alcohol, and biodiesel through fermentation and transesterification processes. Such an approach would result in the maximum utilization of biomasses for economically feasible biofuel production.

  6. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  7. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Fuliang; Meng, Hengkai; Zhang, Yanping; Li, Yin

    2016-11-01

    Increasing photosynthetic efficiency is crucial to increasing biomass production to meet the growing demands for food and energy. Previous theoretical arithmetic analysis suggests that the light reactions and dark reactions are imperfectly coupled due to shortage of ATP supply, or accumulation of NADPH. Here we hypothesized that solely increasing NADPH consumption might improve the coupling of light reactions and dark reactions, thereby increasing the photosynthetic efficiency and biomass production. To test this hypothesis, an NADPH consumption pathway was constructed in cyanobacterium Synechocystis sp. PCC 6803. The resulting extra NADPH-consuming mutant grew much faster and achieved a higher biomass concentration. Analyses of photosynthesis characteristics showed the activities of photosystem II and photosystem I and the light saturation point of the NADPH-consuming mutant all significantly increased. Thus, we demonstrated that introducing extra NADPH consumption ability is a promising strategy to increase photosynthetic efficiency and to enable utilization of high-intensity lights. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield

    International Nuclear Information System (INIS)

    Mendez, Lara; Mahdy, Ahmed; Ballesteros, Mercedes; González-Fernández, Cristina

    2015-01-01

    Highlights: • Cyanobacteria and C. vulgaris were compared in terms of growth and methane production. • Biomasses were subjected to anaerobic digestion without applying any disruption method. • Cyanobacteria showed an increased methane yield in comparison with C. vulgaris. - Abstract: The aim of the present study was to compare cyanobacteria strains (Aphanizomenon ovalisporum, Anabaena planctonica, Borzia trilocularis and Synechocystis sp.) and microalgae (Chlorella vulgaris) in terms of growth rate, biochemical profile and methane production. Cyanobacteria growth rate ranged 0.5–0.6 day −1 for A. planctonica, A. ovalisporum and Synecochystis sp. and 0.4 day −1 for B. tricularis. Opposite, C. vulgaris maximum growth rate was double (1.2 day −1 ) than that of cyanobacteria. Regarding the methane yield, microalgae C. vulgaris averaged 120 mL CH 4 g COD in −1 due to the presence of a strong cell wall. On the other hand, anaerobic digestion of cyanobacteria supported higher methane yields. B. trilocularis and A. planctonica presented 1.42-fold higher methane yield than microalgae while this value was raised to approximately 1.85-fold for A. ovalisporum and Synechochystis sp. In the biogas production context, this study showed that the low growth rates of cyanobacteria can be overcome by their increased anaerobic digestibility when compared to their microalgae counterpartners, such is the case of C. vulgaris

  9. Biomass production in willows. What did we know before the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Perttu, K L [ed.

    1984-12-01

    The biological foundations of biomass with willows originate in the experiences from basket willow husbandry. This was an established discipline in Europe in the 18th century. Problems concerning site preparation, selection of clones, planting as cuttings, spacing, weed control, rotation time, harvesting and coppicing vigour with respect to the longevity of the stand, were practically solved at the research level and already in practice. The yield potential of basket willow and willows for hoop production as well as yield figures from field experiments were quite high also according to present-day biomass willow experiments. An explanation of this could be the much higher stand densities than has been customary in current willow experiments. Although many practical questions got their answers in basket willow husbandry, open questions still remain. The basket willow era gave only little experience on willow production in peatlands; actually peatsoils were almost avoided. Knowledge of nutrient require ments and fertilization was also rather elementary. These aspects must therefore be established for biomass production. Control of weeds in the establishment phase of the willow husbandry was solved by manual work. Since this is a labour intensive method which is no longer possible, a more modern weed control needs to be developed for current husbandry. As a whole it is a task for related research to attach proper optimization of cultural techniques to suitable willow clones in order to attain and maintain as high a production level as was the case in the old basket willow husbandry. With 25 refs.

  10. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M J; Christian, D; Wilkins, C

    1997-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  11. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.J.; Christian, D.; Wilkins, C.

    1996-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  12. Production of fungal biomass protein using microfungi from winery wastewater treatment.

    Science.gov (United States)

    Zhang, Zhan Ying; Jin, Bo; Bai, Zhi Hui; Wang, Xiao Yi

    2008-06-01

    This study was carried out to investigate the production of fungal biomass protein (FBP) in treatment of winery wastewater using microfungi. Three fungal strains, Trichoderma viride WEBL0702, Aspergillus niger WEBL0901 and Aspergillus oryzae WEBL0401, were selected in terms of microbial capability for FBP production and COD reduction. T. viride appeared to be the best strain for FBP production due to high productivity and less nitrogen requirement. More than 5 g/L of fungal biomass was produced in shake fermentation using T. viride without nitrogen addition, and by A. oryzae and A. niger with addition of 0.5-1.0 g/L (NH4)2SO4. The FBP production process corresponded to 84-90% COD reduction of winery wastewater. Fungal biomass contained approximately 36% protein produced by two Aspergillus strains, while biomass produced by T. viride consisted of 19.8% protein. Kinetic study indicated that maximum fungal cell growth could be achieved in 24h for T. viride and 48 h for A. oryzae and A. niger. Current results indicated that it could be feasible to develop a biotechnological treatment process integrated with FBP production from the winery waste streams.

  13. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  14. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    Directory of Open Access Journals (Sweden)

    T. T. T. Cu

    2015-02-01

    Full Text Available Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4 production to the chemical characteristics of the biomass. The biochemical methane potential (BMP and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL CH4 kg−1 volatile solids (VS compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  15. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    Science.gov (United States)

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  16. Enhancement of Biomass and Lipid Productivities of Water Surface-Floating Microalgae by Chemical Mutagenesis.

    Science.gov (United States)

    Nojima, Daisuke; Ishizuka, Yuki; Muto, Masaki; Ujiro, Asuka; Kodama, Fumito; Yoshino, Tomoko; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-05-27

    Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively) were exposed to ethyl methane sulfonate (EMS) or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), and pale green mutants (PMs) were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability.

  17. Future production and utilisation of biomass in Sweden: potentials and CO2 mitigation

    International Nuclear Information System (INIS)

    Boerjesson, P.; Gustavsson, L.; Christersson, L.; Linder, S.

    1997-01-01

    Swedish biomass production potential could be increased significantly if new production methods, such as optimised fertilisation, were to be used. Optimised fertilisation on 25% of Swedish forest land and the use of stem wood could almost double the biomass potential from forestry compared with no fertilisation, as both logging residues and large quantities of excess stem wood not needed for industrial purposes could be used for energy purposes. Together with energy crops and straw from agriculture, the total Swedish biomass potential would be about 230 TWh/yr or half the current Swedish energy supply if the demand for stem wood for building and industrial purposes were the same as today. The new production methods are assumed not to cause any significant negative impact on the local environment. The cost of utilising stem wood produced with optimised fertilisation for energy purposes has not been analysed and needs further investigation. Besides replacing fossil fuels and, thus, reducing current Swedish CO 2 emissions by about 65%, this amount of biomass is enough to produce electricity equivalent to 20% of current power production. Biomass-based electricity is produced preferably through co-generation using district heating systems in densely populated regions, and pulp industries in forest regions. Alcohols for transportation and stand-alone power production are preferably produced in less densely populated regions with excess biomass. A high intensity in biomass production would reduce biomass transportation demands. There are uncertainties regarding the future demand for stem wood for building and industrial purposes, the amount of arable land available for energy crop production and future yields. These factors will influence Swedish biomass potential and earlier estimates of the potential vary from 15 to 125 TWh/yr. (author)

  18. Biomass production in experimental grasslands of different species richness during three years of climate warming

    Science.gov (United States)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2008-04-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Complementarity effects, likely mostly through both increased aboveground spatial complementarity and facilitative effects of legumes, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  19. Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production.

    Science.gov (United States)

    Gonçalves, Ana L; Pires, José C M; Simões, Manuel

    2016-01-01

    Cultivation of microalgae and cyanobacteria has been the focus of several research studies worldwide, due to the huge biotechnological potential of these photosynthetic microorganisms. However, production of these microorganisms is still not economically viable. One possible alternative to improve the economic feasibility of the process is the use of consortia between microalgae and/or cyanobacteria. In this study, Chlorella vulgaris, Pseudokirchneriella subcapitata and Microcystis aeruginosa were co-cultivated with Synechocystis salina to evaluate how dual-species cultures can influence biomass and lipid production and nutrients removal. Results have shown that the three studied consortia achieved higher biomass productivities than the individual cultures. Additionally, nitrogen and phosphorus consumption rates by the consortia provided final concentrations below the values established by European Union legislation for these nutrients. In the case of lipid productivities, higher values were determined when S. salina was co-cultivated with P. subcapitata and M. aeruginosa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Biomass production of pleurotus sajor-caju by submerged culture fermentation

    International Nuclear Information System (INIS)

    Kausar, T.; Nasreen, Z.; Nadeem, M.; Baig, S.

    2006-01-01

    The effect of different carbon sources, namely, sawdust and powder of agro wastes (as such, or water soluble extracts), and inorganic/natural nitrogen sources on the biomass production of Pleurotus sajor-caju by submerged culture fermentation was studied. Supplementation of the fermentation medium with 2% molasses, 2% wheat spike powder, extract of 2% wheat spike powder, and com gluten meal resulted in 12.85, 10.85, 12.35 and 13.92 g/sub l/ biomass production of P. sajor-caju, respectively. The fungal hyphae biomass contained 8.28% moisture, 21.18% crude protein, 1.55% fat, 3.59% ash, 2.32% crude fibre, and 63.48% nitrogen-free extract. (author)

  1. Effects of Sodium Nitrate and Mixotrophic Culture on Biomass and Lipid Production in Hypersaline Microalgae Dunaliella Viridis Teod

    Directory of Open Access Journals (Sweden)

    Mansour Kharati-Koupaei

    Full Text Available To access the potential application of Dunaliella viridis Teod. for biofuel production, the effects of culture media composition on biomass and lipid content of this microalgae were investigated. Measured at the 20 th day, sodium nitrate at 5.0 mM augmented biomass production by 26.5 percent compared to control (1 mM sodium nitrate. Total lipids expressed as µg mL-1 of culture also increased with increase in nitrate concentration up to 5.0 mM sodium nitrate, whereas when expressed on the per cell basis, total lipids stayed relatively constant at most of the tested nitrate concentrations except at 0.5 mM which was 31.4 percent higher compared to 1.0 mM nitrate. At 5.0 mM sodium nitrate, by using 20 g L-1 of glucose in mixotrophic culture of D. viridis, cell number augmented by 36.4 percent compared to the cultures with no added glucose. Llipid content per cell and per mL of culture was increased by 71.4 and 135.1 percent, respectively. Among plant hormones, 10-9 M indole-3- acetic acid (IAA plus 10 -8 M trans-zeatin riboside led to 22.8 percent higher biomass relative to control (without hormone and at 1.0 mM sodium nitrate. It is concluded that altering the growth conditions of D. viridis can lead to higher cell densities and higher lipids content which can be exploited for biofuel production.

  2. Effect of culture density on biomass production and light utilization efficiency of Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Straka, Levi; Rittmann, Bruce E

    2018-02-01

    The viability of large-scale microalgae cultivation depends on providing optimal growth conditions, for which a key operational parameter is culture density. Using Synechocystis sp. PCC 6803, we conducted a series of fixed-density, steady-state experiments and one batch-growth experiment to investigate the role of culture density on biomass production and light utilization efficiency. In all cases, the fixed-density, steady-state experiments and batch-growth experiment showed good agreement. The highest biomass production rates (260 mg L -1  d -1 ) and efficiency for converting light energy to biomass (0.80 μg (μmol photons) -1 ) occurred together at a culture density near 760 mg L -1 , which approximately corresponded to the lowest culture density where almost all incident light was absorbed. The ratio of OD 680 /OD 735 increased with culture density up to the point of maximum productivity, where it plateaued (at a value of 2.4) for higher culture densities. This change in OD 680 /OD 735 indicates a photoacclimation effect that depended on culture density. Very high culture densities led to a sharp decline in efficiency of biomass production per photons absorbed, likely due to a combination of increased decay relative to growth, metabolic changes due to cell-cell interactions, and photodamage due to mixing between regions with high light intensity and zero light intensity. © 2017 Wiley Periodicals, Inc.

  3. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    Claudet, G.

    2005-01-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  4. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    Science.gov (United States)

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, Luciana G.; Ceccarini, Lucia; Nassi o Di Nasso, Nicoletta [University of Pisa, Dipartimento di Agronomia e Gestione dell' Agroecosistema, Via S. Michele degli Scalzi, 2, 56100 Pisa (Italy); Bonari, Enrico [Scuola Sant' Anna, Piazza Martiri della Liberta, 33, 56100 Pisa (Italy)

    2009-05-15

    Cardoon (Cynara cardunculus L.) is an herbaceous species indicated as one of the most suitable energy crop for southern European countries. The aim of this work was to outline the productivity of two cardoon cultivars, Bianco Avorio (BA) and Gigante di Romagna (GR), over 11 years of cultivation in rain fed field conditions in the temperate climate of Central Italy. The quantitative and qualitative aspects of its biomass (calorific value, ultimate and proximate analyses, ash composition) as well as its energy balance (energy efficiency, net energy yield) have been determined. Crop dry yield was not different between the two cultivars and it was rather stable with a mean value (averaged from year 3 to 11) of 14 and 13 t ha{sup -1} for GR and BA respectively. Furthermore the biomass dry matter content was higher in BA than GR (51% vs 42%). The chemical analysis of cardoon biomass showed a similar composition in both cultivars with good calorific value (15 MJ kg{sup -1}) but with an ash content (13.9% d.w.) higher than other herbaceous energy crops. The total energy input was higher in the establishing than in the following years, however from the planting year onward, both cardoon crops were characterised by a positive energy balance. Even if its mean net energy is lower than other perennial energy crops (182 GJ ha{sup -1} year{sup -1}), cardoon can be easily propagated by seed with important advantages for crop management and production costs. The results confirmed cardoon's good biomass yield and favourable energy balance even in cultivation systems characterised by limited water input. Moreover future works are necessary in order to improve cardoon biomass quality and to evaluate the possibility of using it in blends with other biomass sources. (author)

  6. Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use

    International Nuclear Information System (INIS)

    Angelini, Luciana G.; Ceccarini, Lucia; Nassi o Di Nasso, Nicoletta; Bonari, Enrico

    2009-01-01

    Cardoon (Cynara cardunculus L.) is an herbaceous species indicated as one of the most suitable energy crop for southern European countries. The aim of this work was to outline the productivity of two cardoon cultivars, Bianco Avorio (BA) and Gigante di Romagna (GR), over 11 years of cultivation in rain fed field conditions in the temperate climate of Central Italy. The quantitative and qualitative aspects of its biomass (calorific value, ultimate and proximate analyses, ash composition) as well as its energy balance (energy efficiency, net energy yield) have been determined. Crop dry yield was not different between the two cultivars and it was rather stable with a mean value (averaged from year 3 to 11) of 14 and 13 t ha -1 for GR and BA respectively. Furthermore the biomass dry matter content was higher in BA than GR (51% vs 42%). The chemical analysis of cardoon biomass showed a similar composition in both cultivars with good calorific value (15 MJ kg -1 ) but with an ash content (13.9% d.w.) higher than other herbaceous energy crops. The total energy input was higher in the establishing than in the following years, however from the planting year onward, both cardoon crops were characterised by a positive energy balance. Even if its mean net energy is lower than other perennial energy crops (182 GJ ha -1 year -1 ), cardoon can be easily propagated by seed with important advantages for crop management and production costs. The results confirmed cardoon's good biomass yield and favourable energy balance even in cultivation systems characterised by limited water input. Moreover future works are necessary in order to improve cardoon biomass quality and to evaluate the possibility of using it in blends with other biomass sources.

  7. Methods for producing extracted and digested products from pretreated lignocellulosic biomass

    Science.gov (United States)

    Chundawat, Shishir; Sousa, Leonardo Da Costa; Cheh, Albert M.; Balan; , Venkatesh; Dale, Bruce

    2017-05-16

    Methods for producing extracted and digested products from pretreated lignocellulosic biomass are provided. The methods include converting native cellulose I.sub..beta. to cellulose III.sub.I by pretreating the lignocellulosic biomass with liquid ammonia under certain conditions, and performing extracting or digesting steps on the pretreated/converted lignocellulosic biomass.

  8. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    Science.gov (United States)

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323

  9. Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis

    NARCIS (Netherlands)

    van der Heijden, H.H.J.L.; Ptasinski, K.J.

    2012-01-01

    In this paper an exergy analysis of thermochemical ethanol production from biomass is presented. This process combines a steam-blown indirect biomass gasification of woody feedstock, with a subsequent conversion of produced syngas into ethanol. The production process involves several process

  10. Comparison of biomass productivity and nitrogen fixing potential of Azolla SPP

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Singh, P.K. [Indian Agricultural Research Inst., New Delhi (India)

    2003-03-01

    Study was conducted on six different Azolla species, available in the germplasm collection of NCCUBGA, IARI, New Delhi namely A. filiculoides, A. mexicana, A. microphylla, A. pinnata, A. rubra and A. caroliniana in a polyhouse to assess their growth potential by determining their maximal biomass productivity, doubling time and relative growth rates. Their nitrogen fixing potential was assessed by acetylene reduction assay. Among them Azolla microphylla gave highest biomass production and relative growth rate followed by Azolla caroliniana. Both these had high nitrogenase activity also. Peak nitrogenase activity of these strains was found on 14th day of growth and it declined on further incubation. Azolla microphylla and Azolla rubra were more tolerant to salinity than others. On the other hand Azolla pinnata, which is endemic species found in India, exhibited low biomass production, relative growth rate and lower nitrogenase activity compared to other species. It was unable to sustain growth in saline medium. Under polyhouse conditions, A. microphylla was found to perform better than other cultures in terms of biomass productivity, N fixing ability and salt tolerance. Hence it is taken up for mass production.(author)

  11. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-05-09

    These are a set of slides from this conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  12. Product Characterization and Kinetics of Biomass Pyrolysis in a Three-Zone Free-Fall Reactor

    Directory of Open Access Journals (Sweden)

    Natthaya Punsuwan

    2014-01-01

    Full Text Available Pyrolysis of biomass including palm shell, palm kernel, and cassava pulp residue was studied in a laboratory free-fall reactor with three separated hot zones. The effects of pyrolysis temperature (250–1050°C and particle size (0.18–1.55 mm on the distribution and properties of pyrolysis products were investigated. A higher pyrolysis temperature and smaller particle size increased the gas yield but decreased the char yield. Cassava pulp residue gave more volatiles and less char than those of palm kernel and palm shell. The derived solid product (char gave a high calorific value of 29.87 MJ/kg and a reasonably high BET surface area of 200 m2/g. The biooil from palm shell is less attractive to use as a direct fuel, due to its high water contents, low calorific value, and high acidity. On gas composition, carbon monoxide was the dominant component in the gas product. A pyrolysis model for biomass pyrolysis in the free-fall reactor was developed, based on solving the proposed two-parallel reactions kinetic model and equations of particle motion, which gave excellent prediction of char yields for all biomass precursors under all pyrolysis conditions studied.

  13. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary for photo......Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...

  14. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland

    Science.gov (United States)

    Fay, P. A.; Collins, H.; Polley, W.

    2016-12-01

    Atmospheric CO2 concentration will likely exceed 500 µL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA . Whether increased abundance translates to increased inflorescence production is poorly understood, and is important because it indicates the potential effects of CO2 enrichment on genetic variability and the potential for evolutionary change in future generations. We examined whether the responses of inflorescence production to CO2 enrichment in four C4 grasses and a C3 forb were predicted their vegetative biomass, and by soil moisture, soil nitrogen, or light availability. Inflorescence production was studied in a long-term CO2 concentration gradient spanning pre-industrial to anticipated mid-21st century values (250 - 500 µL L-1) maintained on clay, silty clay and sandy loam soils common in the U.S. Southern Plains. We expected that CO2 enrichment would increase inflorescence production, and more so with higher water, nitrogen, or light availability. However, structural equation modeling revealed that vegetative biomass was the single consistent direct predictor of flowering for all species (p grass) and Solidago canadensis (C3 forb), direct CO2 effects on flowering were only weakly mediated by indirect effects of soil water content and soil NO3-N availability. For the decreasing species (Bouteloua curtipendula, C4 grass), the negative CO2-flowering relationship was cancelled (p = 0.39) by indirect effects of increased SWC and NO3-N on clay and silty clay soils. For the species with no CO2 response, inflorescence production was predicted only by direct water content (p grass) or vegetative biomass (p = 0.0009, Tridens albescens, C4 grass) effects. Light availability was unrelated to inflorescence production. Changes in inflorescence production are thus closely tied to direct and indirect effects of CO2 enrichment on vegetative biomass, and may either increase, decrease, or leave

  15. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  16. Cogeneration: One way to use biomass efficiently

    International Nuclear Information System (INIS)

    Gustavsson, L.; Johansson, B.

    1993-01-01

    Cogeneration in district heating systems is the most energy-efficient way to convert biomass into heat and electricity with current or nearly commercial technologies. Methanol produced from biomass and used in vehicles instead of petrol or diesel could reduce carbon dioxide emissions nearly as much per unit of biomass as if the biomass were used to replace natural gas for cogeneration, but at some higher cost per unit of carbon dioxide reduction. The most energy-efficient way to use biomass for cogeneration appears to be combined cycle technology, and the world's first demonstration plant is now being built. Potentially, this technology can be used for electricity production in Swedish district heating systems to provide nearly 20% of current Swedish electricity production, while simultaneously reducing carbon dioxide emissions from the district heating systems by some 55%. The heat costs from cogeneration with biomass are higher than the heat costs from fossil fuel plants at current fuel prices. Biomass can only compete with fossil fuel if other advantages, for example a lower environmental impact are considered. (au) (35 refs.)

  17. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis.

    Science.gov (United States)

    Li, Yong; Niu, Shuli; Yu, Guirui

    2016-02-01

    Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta-analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta-analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P-induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future. © 2015 John Wiley & Sons Ltd.

  18. Effect of Heating Method on Hydrogen Production by Biomass Gasification in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Qiuhui Yan

    2014-01-01

    Full Text Available The glucose as a test sample of biomass is gasified in supercritical water with different heating methods driven by renewable solar energy. The performance comparisons of hydrogen production of glucose gasification are investigated. The relations between temperature raising speed of reactant fluid, variation of volume fraction, combustion enthalpy, and chemical exergy of H2 of the product gases with reactant solution concentration are presented, respectively. The results show that the energy quality of product gases with preheating process is higher than that with no preheating unit for hydrogen production. Hydrogen production quantity and gasification rate of glucose decrease obviously with the increase of concentration of material in no preheating system.

  19. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Biomass energy production in agriculture: A weighted goal programming analysis

    International Nuclear Information System (INIS)

    Ballarin, A.; Vecchiato, D.; Tempesta, T.; Marangon, F.; Troiano, S.

    2011-01-01

    Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. Our findings show that trade-off exists between the two optimisation targets considered. Although the optimisation of the first target requires traditional agricultural crops, which are characterised by high revenue and a low production of biomass energy, the latter would be achievable with intensive wood production, namely, high-energy production and low income. Our results also show the importance of the constraints imposed, particularly water availability; water scarcity has an overall negative effect and specifically affects the level of energy production. - Research Highlights: → The aim of this study is to assess how agriculture could contribute to the production of bio-energy. → A multi-period (15-year) Weighted Goal Programming model (MpWGP) has been applied. → We identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production. → Three concurrent constraints have been considered: water, labour and soil availability.→ Water scarcity has an overall negative effect and specifically affects the level of energy production.

  1. Biomass upgrading by torrefaction for the production of biofuels: A review

    International Nuclear Information System (INIS)

    Stelt, M.J.C. van der; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J.

    2011-01-01

    An overview of the research on biomass upgrading by torrefaction for the production of biofuels is presented. Torrefaction is a thermal conversion method of biomass in the low temperature range of 200-300 o C. Biomass is pre-treated to produce a high quality solid biofuel that can be used for combustion and gasification. In this review the characteristics of torrefaction are described and a short history of torrefaction is given. Torrefaction is based on the removal of oxygen from biomass which aims to produce a fuel with increased energy density by decomposing the reactive hemicellulose fraction. Different reaction conditions (temperature, inert gas, reaction time) and biomass resources lead to various solid, liquid and gaseous products. A short overview of the different mass and energy balances is presented. Finally, the technology options and the most promising torrefaction applications and their economic potential are described. -- Highlights: → We reviewed recent developments in biomass upgrading by torrefaction. → Torrefaction improves biomass to a high quality solid fuel. → Main advantages of torrefaction are improvement of energy density and grindability. → Further research on kinetics is recommended for design of torrefaction reactor.

  2. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs

    Energy Technology Data Exchange (ETDEWEB)

    Douskova, I.; Doucha, J.; Livansky, K.; Umysova, D.; Zachleder, V.; Vitova, M. [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Laboratory of Cell Cycles of Algae; Machat, J. [Masaryk University, Brno (Czech Republic). Research Centre for Environmental Chemistry and Ecotoxicology; Novak, P. [Termizo Inc., Liberec (Czech Republic)

    2009-02-15

    A flue gas originating from a municipal waste incinerator was used as a source of CO{sub 2} for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO{sub 2} simultaneously. The utilization of the flue gas containing 10-13% ({nu}/{nu}) CO2 and 8-10% ({nu}/{nu}) O{sub 2} for the photobioreactor agitation and CO{sub 2} supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO{sub 2} and air (11% ({nu}/{nu}) CO{sub 2}). Correspondingly, the CO{sub 2} fixation rate was also higher when using the flue gas (4.4 g CO{sub 2} l{sup -1} 24 h{sup -1}) than using the control gas (3.0 g CO{sub 2} l{sup -1} 24 h{sup -1}). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements. (orig.)

  3. Effects of different sources of organic waste application on the growth and biomass production of kenaf (hibiscus cannabinus L.)

    International Nuclear Information System (INIS)

    Shahariara, M.S.; Tahsina, S.; Muhammad, S.; Gani, M.N.; Huq, I.

    2012-01-01

    The growth and biomass productivity of kenaf (Hibiscus cannabinus L.) grown with different sources of organic waste viz. sewage sludge, poultry litter, cow dung and rice straw application were observed in a field experiment. Organic wastes were applied at the rate of 5 t/ha and were compared with recommended dose of fertilizers and control. The plants were harvested at 120 days after sowing (at the flowering stage). Different sources of organic wastes had a significant effect (P cow dung>poultry litter > rice straw treatments. Among the four sources of organic wastes, sewage sludge treated plot produced the highest mean biomass of 23.33 t/ha (dry weight basis) which was 14.64% higher than the mean biomass production from control plot. (author)

  4. Effects of different sources of organic waste application on the growth and biomass production of kenaf (hibiscus cannabinus L.)

    International Nuclear Information System (INIS)

    Shahariar, M.S.; Tashin, S.; Gani, N.; Muhammad, S.; Huq, I.

    2012-01-01

    The growth and biomass productivity of kenaf(Hibiscus cannabinus L.) grown with different sources of organic waste viz. sewage sludge, poultry litter, cow dung and rice straw application were observed in a field experiment. Organic wastes were applied at the rate of 5 t/ha and were compared with recommended dose of fertilizers and control. The plants were harvested at 120 days after sowing (at the flowering stage). Different sources of organic wastes had a significant effect (P cow dung>poultry litter> rice straw treatments. Among the four sources of organic wastes, sewage sludge treated plot produced the highest mean biomass of 23.33 t/ha (dry weight basis) which was 14.64% higher than the mean biomass production from control plot. (author)

  5. Pectin-rich biomass as feedstock for fuel ethanol production.

    Science.gov (United States)

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  6. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  7. Legal framework for a sustainable biomass production for bioenergy on Marginal Lands

    Science.gov (United States)

    Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    authorities and principal laws in the field of bioenergy is given, supplemented by national biomass potentials and bioenergy use as well as by the German, Greek, Italian and Ukrainian NREAP. The overall target of all EU-28 countries - and Ukraine - is to create a more efficient bioeconomy, to increase the amount of biomass produced for bioenergy purposes, to avoid an increased competition between food/feed production on arable land and energy plant production, and decrease imports of fossil energy sources, i.e. [crude] oil, aiming at an independent, domestically based (bio)energy supply. Whereas in Germany the national policy framework regarding bioenergy is well-defined, there are only few specific national and/or regional policies in Greece, Italy or Ukraine. Moreover, the German legislation offers a higher potential for designing and modifying already existing regulations and laws, e.g. soil protection, EEG, etc. with respect to the use of MagL for bioenergy production, than in other SEEMLA partner countries. Although the biomass potential of each SEEMLA partner country varies a lot and the 2020 targets remain ambitious, the exploitation of sustainable biomass production on MagL may offer a suitable approach to fill the gaps of future biomass demands and accelerate the growth of an independent bioenergy based society.

  8. Influence of aeration and lighting on biomass production and protein ...

    African Journals Online (AJOL)

    The influence aeration and light intensity could have on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh is examined. Biomass, proximal composition and amino acid composition obtained from aerated cultures of the organism were compared with ...

  9. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass

    International Nuclear Information System (INIS)

    Andersson, E.; Harvey, S.

    2007-01-01

    When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO 2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO 2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO 2 -lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO 2 emissions' perspective, whereas with high CO 2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable. (author)

  10. Comparison between freeze and spray drying to obtain powder Rubrivivax gelatinosus biomass

    Directory of Open Access Journals (Sweden)

    Edson Francisco do Espírito Santo

    2013-03-01

    Full Text Available The use of colorants in products of animal origin is justified by the improvement in the color of foods since this attribute is considered a quality criterion. These additives can be produced using industrial effluents as substrates and appropriate organisms, such as Rubrivivax gelatinosus. Oxycarotenoids represent a class of carotenes responsible for the pigmentation of animals and vegetables. R. gelatinosus grows in fish industry effluent with the resulting production of a bacterial biomass containing oxycarotenoids. The purpose of this study was to compare the use of two drying processes - spray and freeze drying - to obtain powder biomass in terms of the process parameters (yield, productivity, and product recovery and the product characteristics (color, proximate composition, and oxycarotenoids. No difference was detected in the yield between these techniques, while productivity was higher using spray drying. Higher product recovery and moisture were achieved with freeze drying, while ash was higher with spray drying. The freeze dried biomass was redder, darker and less saturated than the spray dried biomass. No difference in oxycarotenoids was detected between the biomasses. Although it results in lower recovery rate, spray drying was faster and more productive, and it provided the same yield as freeze drying, which makes it the method of choice for obtaining R. gelatinosus biomass.

  11. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  12. Productivity and cost of harvesting a stemwood biomass product from integrated cut-to-length harvest operations in Australian Pinus radiata plantations

    International Nuclear Information System (INIS)

    Walsh, D.; Strandgard, M.

    2014-01-01

    Significant quantities of woody biomass from the tops of trees and larger woody ‘waste’ pieces that fall outside existing sawlog and pulpwood specifications are left on site post final harvest in Australian radiata Pinus radiata (D. Don) (radiata pine) plantations. Woody biomass is a potential product for pulp making or energy generation. Commercial use of woody biomass from radiata pine plantations would add extra value to the Australian plantation estate through improved resource utilisation, and potentially reduced post-harvesting silvicultural costs. This study investigated the productivity and cost impact of the harvest and extraction to roadside of woody biomass in an integrated harvest operation in a typical Australian two machine (harvester/processor and forwarder), cut-to-length, clearfall operation in a mature, thinned radiata pine plantation. The harvest operation yielded 23 GMt/ha (5% of the total yield) of woody biomass (known as ‘fibreplus’), 443 GMt/ha of sawlogs and 28 GMt/ha of pulpwood. The mean quantity of biomass left on site was 128 GMt/ha, mainly consisting of branches and needles, sufficient to minimise nutrient loss and protect the soil from erosion. Woodchips derived from the fibreplus product were suitable for kraft pulp making, (when blended in small amounts with clean de-barked roundwood woodchips), and for energy generation. The method trialed with the fibreplus product being produced did not impact harvesting and processing productivity and costs, but extraction was 14% less productive. Through analysis of the productivities of each phase and development of a cost model the harvest and extraction of the fibreplus product was estimated to increase total unit costs by ∼4.9%. - Highlights: • Study of the productivity and cost impact of producing a woody biomass product. • We compared two scenarios – harvesting with and without the biomass product. • An additional 23 GMt/ha (5% of the total yield) of woody biomass

  13. Characterization of Various Biomass Feedstocks for Energy Production

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2013-01-01

    Biomass represents the renewable energy source and their use reduces the consumption of fossil fuels and limits the emission of CO2. In this work, various biomass feedstocks were assessed for assessing their suitability as energy production sources using thermochemical conversion routes especially...... hydrothermal liquefaction (HTL) process. The methods used to analyze involved performing proximate, ultimate and thermogravimetry analysis. On the basis of proximate, ultimate, and thermogravimetry analysis, the dried distiller grains with solubles (DDGS), corn silage, chlorella vulgaris, spirulina platensis...

  14. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  15. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Sukumaran, Rajeev K.; Singhania, Reeta Rani; Mathew, Gincy Marina; Pandey, Ashok [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum-695 019 (India)

    2009-02-15

    A major constraint in the enzymatic saccharification of biomass for ethanol production is the cost of cellulase enzymes. Production cost of cellulases may be brought down by multifaceted approaches which include the use of cheap lignocellulosic substrates for fermentation production of the enzyme, and the use of cost efficient fermentation strategies like solid state fermentation (SSF). In the present study, cellulolytic enzymes for biomass hydrolysis were produced using solid state fermentation on wheat bran as substrate. Crude cellulase and a relatively glucose tolerant BGL were produced using fungi Trichoderma reesei RUT C30 and Aspergillus niger MTCC 7956, respectively. Saccharification of three different feed stock, i.e. sugar cane bagasse, rice straw and water hyacinth biomass was studied using the enzymes. Saccharification was performed with 50 FPU of cellulase and 10 U of {beta}-glucosidase per gram of pretreated biomass. Highest yield of reducing sugars (26.3 g/L) was obtained from rice straw followed by sugar cane bagasse (17.79 g/L). The enzymatic hydrolysate of rice straw was used as substrate for ethanol production by Saccharomyces cerevisiae. The yield of ethanol was 0.093 g per gram of pretreated rice straw. (author)

  16. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    Energy Technology Data Exchange (ETDEWEB)

    Anton, David [Cellana, LLC, Kailua-Kona, HI (United States)

    2016-12-31

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing, and refining.

  17. Optimization of biomass and dihydroorotase (DHOase) production ...

    African Journals Online (AJOL)

    Growth conditions which maintains DHOase overproduction by Saccharomyces cerevisiae MNJ3 (pMNJ1) and allow sufficient biomass production to ensure DHoase's purification were investigated. We used as basal medium the Yeast Carbon Base (YCB; Difco), especially designed for studies of nitrogen metabolism in ...

  18. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  19. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    International Nuclear Information System (INIS)

    Da Silva, P.H.M.; Poggiani, F.; Laclau, J.P.

    2011-01-01

    In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha - '1) and 86 % higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  20. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Müller da Silva

    2011-01-01

    Full Text Available In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha−1 and 86% higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  1. Eutrophication effects on phytoplankton size-fractioned biomass and production at a tropical estuary.

    Science.gov (United States)

    Guenther, Mariana; Araújo, Moacyr; Flores-Montes, Manuel; Gonzalez-Rodriguez, Eliane; Neumann-Leitão, Sigrid

    2015-02-28

    Size-fractioned phytoplankton (pico, nano and microplankton) biomass and production were estimated throughout a year at Recife harbor (NE Brazil), a shallow well mixed tropical hypereutrophic estuary with short residence times but restricted water renewal. Intense loads of P-PO4 (maximum 14 μM) resulted in low N:P ratios (around 2:1), high phytoplankton biomass (B=7.1-72 μg chl-a L(-1)), production (PP=10-2657 μg C L(-1) h(-1)) and photosynthetic efficiency (P(B)=0.5-45 μg C μg chl-a(-1)), but no oxygen depletion (average O2 saturation: 109.6%). Nanoplankton dominated phytoplankton biomass (66%) but micro- and nanoplankton performed equivalent primary production rates (47% each). Production-biomass models indicate an export of the exceeding microplankton biomass during most of the year, possibly through grazing. The intense and constant nutrient and organic matter loading at Recife harbor is thus supporting the high microplankton productivity that is not accumulating on the system nor contributing to oxygen depletion, but supporting the whole system's trophic web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production

    International Nuclear Information System (INIS)

    Dasgupta, Chitralekha Nag; Suseela, M.R.; Mandotra, S.K.; Kumar, Pankaj; Pandey, Manish K.; Toppo, Kiran; Lone, J.A.

    2015-01-01

    Highlights: • Chlorella sp. NBRI029 and Scenedesmus sp. NBRI012 shows high biomass productivity. • Scenedesmus sp. NBRI012 shows maximum H 2 evolution in 6th day of fermentation. • Residual biomass after H 2 production contains high lipid content. • Lipid extracted from the residual biomass fulfills various biodiesel properties. - Abstract: Dual application of biomass for biohydrogen and biodiesel production could be considered a feasible option for economic and sustainable energy production from microalgae. In this study, after a large screening of fresh water microalgal isolates, Scenedesmus sp. NBRI012 and Chlorella sp. NBRI029 have exhibited high biomass (1.31 ± 0.11 and 2.62 ± 0.13 g/L respectively) and lipid (244.44 ± 12.3 and 587.38 ± 20.2 mg/L respectively) yield with an organic carbon (acetate) source. Scenedesmus sp. NBRI012 has shown the highest H 2 (maximum evolution of 17.72% v/v H 2 of total gases) production; it produced H 2 continuously for seven days in sulfur-deprived TAP media. Sulfur deprivation during the H 2 production was found to increase the lipid content (410.03 ± 18.5 mg/L) of the residual biomass. Fatty acid profile of the lipid extracted from the residual biomass of Scenedesmus sp. NBRI012 has showed abundance of fatty acids with a carbon chain length of C16 and C18. Cetane number, iodine value, and saponification value of biodiesel were found suitable according to the range given by the Indian standard (IS 15607), Brazilian National Petroleum Agency (ANP255) and the European biodiesel standard EN14214

  3. Does species richness affect fine root biomass and production in young forest plantations?

    DEFF Research Database (Denmark)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie

    2015-01-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass...... and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined...... be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested...

  4. Effects of gamma radiation on biomass production of ground vegetation under broadleaved forests of northern Wisconsin

    International Nuclear Information System (INIS)

    Zavitkovski, J.; Salmonson, B.J.

    1977-01-01

    Effects of gamma irradiation (10,000-Ci 137 Cs source) for one growing season on biomass production of ground vegetation under northern Wisconsin aspen and maple-aspen-birch forests and on an abandoned logging road were evaluated during and 1 year after irradiation. No significant changes in production were determined during the irradiation year. One year later three distinct zones--semidevastated, herbaceous, and original forest--developed along the radiation gradient. Biomass production under forest canopies decreased significantly in the semidevastated zone, increased significantly in the herbaceous zone (primarily responding to additional light), and remained unchanged under the original forest. Logging-road vegetation responded similarly, but the changes were restricted within higher radiation doses. At comparable levels of radiation, production of species of the logging-road vegetation was affected less than that of species under forest canopies. Such a trend was predictable from the generally smaller interphase chromosome volumes of the species on the logging road and from their ability to survive in severe habitats

  5. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  6. Bio-methane via fast pyrolysis of biomass

    International Nuclear Information System (INIS)

    Görling, Martin; Larsson, Mårten; Alvfors, Per

    2013-01-01

    Highlights: ► Pyrolysis gases can efficiently be upgraded to bio-methane. ► The integration can increase energy efficiency and provide a renewable vehicle fuel. ► The biomass to bio-methane conversion efficiency is 83% (HHV). ► The efficiency is higher compared to bio-methane produced via gasification. ► Competitive alternative to other alternatives of bio-oil upgrading. - Abstract: Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production

  7. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  8. Identifying key drivers of greenhouse gas emissions from biomass feedstocks for energy production

    International Nuclear Information System (INIS)

    Johnson, David R.; Curtright, Aimee E.; Willis, Henry H.

    2013-01-01

    Highlights: • Production emissions dominate transportation and processing emissions. • Choice of feedstock, geographic location and prior land use drive emissions profile. • Within scenarios, emissions variability is driven by uncertainty in yields. • Favorable scenarios maximize carbon storage from direct land-use change. • Similarly, biomass production should attempt to minimize indirect land-use change. -- Abstract: Many policies in the United States, at both the federal and state levels, encourage the adoption of renewable energy from biomass. Though largely motivated by a desire to reduce greenhouse gas emissions, these policies do not explicitly identify scenarios in which the use of biomass will produce the greatest benefits. We have modeled “farm-to-hopper” emissions associated with seven biomass feedstocks, under a wide variety of scenarios and production choices, to characterize the uncertainty in emissions. We demonstrate that only a handful of factors have a significant impact on life cycle emissions: choice of feedstock, geographic location, prior land use, and time dynamics. Within a given production scenario, the remaining variability in emissions is driven by uncertainty in feedstock yields and the release rate of N 2 O into the atmosphere from nitrogen fertilizers. With few exceptions, transport and processing choices have relatively little impact on total emissions. These results illustrate the key decisions that will determine the success of biomass programs in reducing the emissions profile of energy production, and our publicly available model provides a useful tool for identifying the most beneficial production scenarios. While model data and results are restricted to biomass production in the contiguous United States, we provide qualitative guidance for identifying favorable production scenarios that should be applicable in other regions

  9. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  10. Evaluating the economics of biomass energy production in the Watts Bar region

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, R.R.; English, B.C.; Bhat, M.G. [Univ. of Tennessee, Knoxville, TN (United States); Graham, R.L. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    While the commercial potential of biofuel technology is becoming more feasible, it is not clear whether the supply of biomass feedstock will be available in competitive markets. In order to exploit the potential of biomass crops as a reliable source of biofuels, a significant commitment on the part of farmers to convert large amounts of cropland would be required. Dedicated energy crops have to compete with conventional crops which could result in significant interregional shifts in crop production. Those changes could further affect overall agricultural production, food prices, consumer spending, and government spending on farm programs. Evaluating these economic impacts provides important information for the ongoing debate. This research is a case study incorporating an existing power plant. The objective of this project is to evaluate the potential of short rotation woody crops as a fuel source in the Watts Bar facility located in eastern Tennessee. The appraisal includes estimates of environmental impacts as well as of economic feasibility. This is achieved by estimating the amounts of biomass that would be supplied at a predetermined price. By changing prices of biomass at the plant in an incremental fashion, a regional supply curve for biomass is estimated. The model incorporates current agricultural production possibilities in the region along with the proposed short rotation woody crop production activities. In order to adequately model the landscape, several variables are considered. These variables include soil type, crop production, government policy, land use conversion to crop land, and distance from the plant. Environmental issues including erosion, chemical usage, and potential leaching are also incorporated within the modeling framework; however, only estimates on erosion are available in this analysis. Output from the model provides insight on where and what types of land should shift from current land use to biomass production.

  11. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  12. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    Science.gov (United States)

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  14. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  15. Progress on lipid extraction from wet algal biomass for biodiesel production.

    Science.gov (United States)

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Towards predicting basin-wide invertebrate organic biomass and production in marine sediments from a coastal sea.

    Directory of Open Access Journals (Sweden)

    Brenda J Burd

    Full Text Available Detailed knowledge of environmental conditions is required to understand faunal production in coastal seas with topographic and hydrographic complexity. We test the hypothesis that organic biomass and production of subtidal sediment invertebrates throughout the Strait of Georgia, west coast of Canada, can be predicted by depth, substrate type and organic flux modified to reflect lability and age of material. A basin-wide database of biological, geochemical and flux data was analysed using an empirical production/biomass (P/B model to test this hypothesis. This analysis is unique in the spatial extent and detail of P/B and concurrent environmental measurements over a temperate coastal region. Modified organic flux was the most important predictor of organic biomass and production. Depth and substrate type were secondary modifiers. Between 69-74% of variability in biomass and production could be explained by the combined environmental factors. Organisms <1 mm were important contributors to biomass and production primarily in shallow, sandy sediments, where high P/B values were found despite low organic flux. Low biomass, production, and P/B values were found in the deep, northern basin and mainland fjords, which had silty sediments, low organic flux, low biomass of organisms <1 mm, and dominance by large, slow-growing macrofauna. In the highest organic flux and biomass areas near the Fraser River discharge, production did not increase beyond moderate flux levels. Although highly productive, this area had low P/B. Clearly, food input is insufficient to explain the complex patterns in faunal production revealed here. Additional environmental factors (depth, substrate type and unmeasured factors are important modifiers of these patterns. Potential reasons for the above patterns are explored, along with a discussion of unmeasured factors possibly responsible for unexplained (30% variance in biomass and production. We now have the tools for basin

  17. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  18. Cascading of Biomass. 13 Solutions for a Sustainable Bio-based Economy. Making Better Choices for Use of Biomass Residues, By-products and Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Odegard, I.; Croezen, H.; Bergsma, G.

    2012-08-15

    Smarter and more efficient use of biomass, referred to as cascading, can lead to an almost 30% reduction in European greenhouse gas emissions by 2030 compared with 2010. As the title study makes clear, cascading of woody biomass, agricultural and industrial residues and other waste can make a significant contribution to a greening of the economy. With the thirteen options quantitatively examined annual emissions of between 330 and 400 Mt CO2 can be avoided by making more efficient use of the same volume of biomass as well as by other means. 75% of the potential CO2 gains can be achieved with just four options: (1) bio-ethanol from straw, for use as a chemical feedstock; (2) biogas from manure; (3) biorefining of grass; and (4) optimisation of paper recycling. Some of the options make multiple use of residues, with biomass being used to produce bioplastics that, after several rounds of recycling, are converted to heat and power at the end of their life, for example. In other cases higher-grade applications are envisaged: more efficient use of recyclable paper and wood waste, in both economic and ecological terms, using them as raw materials for new paper and chipboard rather than as an energy source. Finally, by using smart technologies biomass can be converted to multiple products.

  19. Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production.

    Science.gov (United States)

    Mendez, Lara; Sialve, Bruno; Tomás-Pejó, Elia; Ballesteros, Mercedes; Steyer, Jean Philippe; González-Fernández, Cristina

    2016-05-01

    Anaerobic digestion of microalgae is hampered by its complex cell wall. Against this background, cyanobacteria cell walls render this biomass as an ideal substrate for overcoming this drawback. The aim of the present study was to compare the growth of two cyanobacteria (Aphanizomenon ovalisporum and Anabaena planctonica) and a microalga (Chlorella vulgaris) in urban wastewater when varying the temperature (22, 27 and 32 °C). Cyanobacterial optimal growth for both strains was attained at 22 °C, while C. vulgaris did not show remarkable differences among temperatures. For all the microorganisms, ammonium removal was higher than phosphate. Biomass collected was subjected to anaerobic digestion. Methane yield of C. vulgaris was 184.8 mL CH4 g COD in(-1) while with A. ovalisporum and A. planctonica the methane production was 1.2- and 1.4-fold higher. This study showed that cyanobacteria growth rates could be comparable to microalgae while presenting the additional benefit of an increased anaerobic digestibility.

  20. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L.

    Science.gov (United States)

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar

    2014-11-01

    Adventitious root cultures of Prunella vulgaris L. were established in shaking flask system for the production of biomass and secondary metabolites. Adventitious root cultures were induced from callus cultures obtained from leaf explants on solid Murashige and Skoog (MS) medium containing combination of 6-benzyladenine (BA; 1.0 mg l(-1)) and naphthalene acetic acid (NAA; 1.5 mg l(-1)). Thereafter, 0.49 g inoculum was transferred to liquid MS medium supplemented with different concentrations of NAA (0.5-2.0 mg l(-1)). Growth kinetics of adventitious roots was recorded with an interval of 7 days for 49 days period. Highest biomass accumulation (2.13 g/l) was observed in liquid medium containing 1.0 mg l(-1) NAA after 21 days of inoculation. However, other concentrations of NAA also showed similar accumulation pattern but the biomass gradually decreases after 49 days of inoculation. Adventitious roots were collected and dried for investigation of total phenolics (TP), total flavonoids (TF), and antioxidant activities. Higher TPC (0.995 GAE mg/g-DRB) and TFC (6.615 RE mg/g-DRB) were observed in 0.5 mg l(-1) NAA treated cultures. In contrast, higher antioxidant activity (83.53 %) was observed 1.5 mg l(-1) NAA treated cultures. These results are helpful in up scaling of root cultures into bioreactor for secondary metabolites production.

  1. Yeast biomass production: a new approach in glucose-limited feeding strategy

    Directory of Open Access Journals (Sweden)

    Érika Durão Vieira

    2013-01-01

    Full Text Available The aim of this work was to implement experimentally a simple glucose-limited feeding strategy for yeast biomass production in a bubble column reactor based on a spreadsheet simulator suitable for industrial application. In biomass production process using Saccharomyces cerevisiae strains, one of the constraints is the strong tendency of these species to metabolize sugars anaerobically due to catabolite repression, leading to low values of biomass yield on substrate. The usual strategy to control this metabolic tendency is the use of a fed-batch process in which where the sugar source is fed incrementally and total sugar concentration in broth is maintained below a determined value. The simulator presented in this work was developed to control molasses feeding on the basis of a simple theoretical model in which has taken into account the nutritional growth needs of yeast cell and two input data: the theoretical specific growth rate and initial cell biomass. In experimental assay, a commercial baker's yeast strain and molasses as sugar source were used. Experimental results showed an overall biomass yield on substrate of 0.33, a biomass increase of 6.4 fold and a specific growth rate of 0.165 h-1 in contrast to the predicted value of 0.180 h-1 in the second stage simulation.

  2. Growth, biomass production and photosynthesis of Cenchrus ciliaris L. under Acacia tortilis (Forssk.) Hayne based silvopastoral systems in semi arid tropics.

    Science.gov (United States)

    Mishra, A K; Tiwari, H S; Bhatt, R K

    2010-11-01

    The growth, biomass production and photosynthesis of Cenchrus ciliaris was studied under the canopies of 17 yr old Acacia tortilis trees in semi arid tropical environment. On an average the full grown canopy of A. tortilis at the spacing of 4 x 4 m allowed 55% of total Photosynthetically Active Radiation (PAR) which in turn increased Relative Humidity (RH) and reduced under canopy temperature to -1.75 degrees C over the open air temperature. C. ciliaris attained higher height under the shade of A. tortilis. The tiller production and leaf area index decreased marginally under the shade of tree canopies as compared to the open grown grasses. C. ciliaris accumulated higher chlorophyll a and b under the shade of tree canopies indicating its shade adaptation potential. The assimilatory functions such as rate of photosynthesis, transpiration, stomatal conductance, photosynthetic water use efficiency (PN/TR) and carboxylation efficiency (PN/CINT) decreased under the tree canopies due to low availability of PAR. The total biomass production in term of fresh and dry weight decreased under the tree canopies. On average of 2 yr C. ciliaris had produced 12.78 t ha(-1) green and 3.72 -t ha(-1) dry biomass under the tree canopies of A. tortilis. The dry matter yield reduced to 38% under the tree canopies over the open grown grasses. The A. tortilis + C. ciliaris maintained higher soil moisture, organic carbon content and available N P K for sustainable biomass production for the longer period. The higher accumulation of crude protein, starch, sugar and nitrogen in leaves and stem of C. ciliaris indicates that this grass species also maintained its quality under A. tortilis based silvopastoral system. The photosynthesis and dry matter accumulation are closely associated with available PAR indicating that for sustainable production of this grass species in the silvopasture systems for longer period about 55% or more PAR is required.

  3. Hydrogen production from biomass tar by catalytic steam reforming

    International Nuclear Information System (INIS)

    Yoon, Sang Jun; Choi, Young-Chan; Lee, Jae-Goo

    2010-01-01

    The catalytic steam reforming of model biomass tar, toluene being a major component, was performed at various conditions of temperature, steam injection rate, catalyst size, and space time. Two kinds of nickel-based commercial catalyst, the Katalco 46-3Q and the Katalco 46-6Q, were evaluated and compared with dolomite catalyst. Production of hydrogen generally increased with reaction temperature, steam injection rate and space time and decreased with catalyst size. In particular, zirconia-promoted nickel-based catalyst, Katalco 46-6Q, showed a higher tar conversion efficiency and shows 100% conversion even relatively lower temperature conditions of 600 deg. C. Apparent activation energy was estimated to 94 and 57 kJ/mol for dolomite and nickel-based catalyst respectively.

  4. Biomass and biofertilizer production by Sesbania cannabina in alkaline soil

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.L.N.; Gill, H.S. [Central Soil Salinity Research Inst., Haryana (India)

    1995-12-01

    Biomass shortages in developing countries require increased investigation into fast-growing, N-fixing, woody plant species. In field trials in north India, the potential of Sesbania cannabina for production of green leaf manure (biofertilizer) and firewood (woody biomass) was investigated. At 100 days after sowing (DAS), green matter was 21.5 and 9.4 Mg ha{sup -1} in the stem and the leaf. A seeding rate of 15 kg ha{sup -1} producing a population of 10{sup 5} plants per hectare was adequate. Biofertilizer potential was 124.7 N, 5.3 P, 80.7 K and 12.0 S (kg ha{sup -1}), respectively. Nodulation was profuse and effective and N fixed was nearly 122 kg ha{sup -1} at 100 DAS. At maturity, 200 DAS, woody biomass production was 19.2 Mg ha{sup -1} and growing Sesbania until this stage was no more demanding on soil nutrients than growing it for green-matter production. There was a considerable beneficial influence from growing Sesbania on soil C and N status. (Author)

  5. Sustainable Biofuels from Forests: Woody Biomass

    Directory of Open Access Journals (Sweden)

    Edwin H. White

    2011-11-01

    Full Text Available The use of woody biomass feedstocks for bioenergy and bioproducts involves multiple sources of material that together create year round supplies. The main sources of woody biomass include residues from wood manufacturing industries, low value trees including logging slash in forests that are currently underutilized and dedicated short-rotation woody crops. Conceptually a ton of woody biomass feedstocks can replace a barrel of oil as the wood is processed (refined through a biorefinery. As oil is refined only part of the barrel is used for liquid fuel, e.g., gasoline, while much of the carbon in oil is refined into higher value chemical products-carbon in woody biomass can be refined into the same value-added products.

  6. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Audible sound treatment of the microalgae Picochlorum oklahomensis for enhancing biomass productivity.

    Science.gov (United States)

    Cai, Weiming; Dunford, Nurhan Turgut; Wang, Ning; Zhu, Songming; He, Huinong

    2016-02-01

    It has been reported in the literature that exposure of microalgae cells to audible sound could promote growth. This study examined the effect of sound waves with the frequency of 1100 Hz, 2200 Hz, and 3300 Hz to stimulate the biomass productivity of an Oklahoma native strain, Picochlorum oklahomensis (PO). The effect of the frequency of sound on biomass mass was measured. This study demonstrated that audible sound treatment of the algae cultures at 2200 Hz was the most effective in terms of biomass production and volumetric oil yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  9. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn [General Electric Global Research, Niskayuna, NY (United States); Subramanian, Ramanathan [General Electric Global Research, Niskayuna, NY (United States); Rizeq, George [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); McDermott, John [General Electric Global Research, Niskayuna, NY (United States); Eiteneer, Boris [General Electric Global Research, Niskayuna, NY (United States); Ladd, David [General Electric Global Research, Niskayuna, NY (United States); Vazquez, Arturo [General Electric Global Research, Niskayuna, NY (United States); Anderson, Denise [General Electric Global Research, Niskayuna, NY (United States); Bates, Noel [General Electric Global Research, Niskayuna, NY (United States)

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation

  10. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2016-03-01

    Full Text Available The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating “greener” industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone, a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  11. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.

    Science.gov (United States)

    Tabasso, Silvia; Grillo, Giorgio; Carnaroglio, Diego; Calcio Gaudino, Emanuela; Cravotto, Giancarlo

    2016-03-26

    The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating "greener" industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone), a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA)-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA) is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  12. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.

    Science.gov (United States)

    Zhu, Baohua; Sun, Faqiang; Yang, Miao; Lu, Lin; Yang, Guanpin; Pan, Kehou

    2014-12-01

    The potential use of microalgal biomass as a biofuel source has raised broad interest. Highly effective and economically feasible biomass generating techniques are essential to realize such potential. Flue gas from coal-fired power plants may serve as an inexpensive carbon source for microalgal culture, and it may also facilitate improvement of the environment once the gas is fixed in biomass. In this study, three strains of the genus Nannochloropsis (4-38, KA2 and 75B1) survived this type of culture and bloomed using flue gas from coal-fired power plants in 8000-L open raceway ponds. Lower temperatures and solar irradiation reduced the biomass yield and lipid productivities of these strains. Strain 4-38 performed better than the other two as it contained higher amounts of triacylglycerols and fatty acids, which are used for biodiesel production. Further optimization of the application of flue gas to microalgal culture should be undertaken. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Shrub biomass production following simulated herbivory: A test of the compensatory growth hypothesis

    Science.gov (United States)

    Terri B. Teaschner; Timothy E. Fulbright

    2007-01-01

    The objective of this experiment was to test the hypotheses that 1) simulated herbivory stimulates increased biomass production in spiny hackberry (Celtis pallida), but decreases biomass production in blackbrush acacia (Acacia rigidula) compared to unbrowsed plants and 2) thorn density and length increase in blackbrush acacia to a...

  14. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    Science.gov (United States)

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Environmental impacts of biomass energy resource production and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  16. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  17. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    Science.gov (United States)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  18. Extended light exposure increases stem digestibility and biomass production of switchgrass

    Science.gov (United States)

    Zhao, Chunqiao; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Wu, Juying

    2017-01-01

    Switchgrass is a photoperiod-sensitive energy grass suitable for growing in the marginal lands of China. We explored the effects of extended photoperiods of low-irradiance light (7 μmol·m-2·s-1, no effective photosynthesis) on the growth, the biomass dry weight, the biomass allocation, and, especially, the stem digestibility and cell wall characteristics of switchgrass. Two extended photoperiods (i.e., 18 and 24 h) were applied over Alamo. Extended light exposure (18 and 24 h) resulted in delayed heading and higher dry weights of vegetative organs (by 32.87 and 35.94%, respectively) at the expense of reducing the amount of sexual organs (by 40.05 and 50.87%, respectively). Compared to the control group (i.e., natural photoperiod), the yield of hexoses (% dry matter) in the stems after a direct enzymatic hydrolysis (DEH) treatment significantly increased (by 44.02 and 46.10%) for those groups irradiated during 18 and 24 h, respectively. Moreover, the yield of hexoses obtained via enzymatic hydrolysis increased after both basic (1% NaOH) and acid (1% H2SO4) pretreatments for the groups irradiated during 18 and 24 h. Additionally, low-irradiance light extension (LILE) significantly increased the content of non-structural carbohydrates (NSCs) while notably reducing the lignin content and the syringyl to guaiacyl (S/G) ratio. These structural changes were in part responsible for the observed improved stem digestibility. Remarkably, LILE significantly decreased the cellulose crystallinity index (CrI) of switchgrass by significantly increasing both the arabinose substitution degree in xylan and the content of ammonium oxalate-extractable uronic acids, both favoring cellulose digestibility. Despite this LILE technology is not applied to the cultivation of switchgrass on a large scale yet, we believe that the present work is important in that it reveals important relationships between extended day length irradiations and biomass production and quality. Additionally, this

  19. Biomass production and nitrogen accumulation in pea, oat, and vetch green manure mixtures

    International Nuclear Information System (INIS)

    Jannink, J.L.; Liebman, M.; Merrick, L.C.

    1996-01-01

    Interest in the use of green manures has revived because of their role in improving soil quality and their beneficial N and non-N rotation effects. This study evaluated biomass production, N content, radiation interception (RI), and radiation use efficiency (RUE) of pea (Pisum sativum L.), oat (Avena sativa L.), and hairy vetch (Vicia villosa Roth) mixtures. Treatments were a three-way factorial of pea genotype ('Century' vs 'Tipu'), pea planting density (90 vs 224 kg ha -1 ), and cropping mixture (solecropped pea vs pea planted with a mixture of oat and hairy vetch). A mixture of oat and vetch without pea was also planted. Treatments were planted in early June on a Caribou gravelly loam (coarse-loamy, mixed, frigid Typic Haplorthods) in Presque Isle, ME, in 1993 and 1994. Biomass production and radiation interception were measured by repeated sampling. Mixture biomass was affected by a year x pea density interaction: respective yields for mixtures containing low-density and high-density pea were 770 and 880 g m -2 in 1993 vs 820 and 730 g m -2 in 1994. Mixture N content paralleled biomass production and averaged 209 g m -2 across all treatments. While pea sole crops did not consistently produce biomass or N equal to three-species mixtures the two-species mixture of oat and vetch did, yielding 820 g m -2 of biomass and 21.7 g m -2 of N, averaged over the 2 yr. Multiple regression showed that 61% of the variability in mixture biomass production was accounted for by a combination of early-season pea RI and midseason total mixture RUE. Economic analyses showed that rotation including these green manures may be economically competitive with a conventional rotation of barley (Hordeum vulgare L.) undersown with clover (Trifolium spp.) in a potato (Solanum tuberosum L.) production system

  20. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  1. Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains

    Science.gov (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese

    2015-01-01

    Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...

  2. Microbial Biodiesel Production by Direct Transesterification of Rhodotorula glutinis Biomass

    Directory of Open Access Journals (Sweden)

    I-Ching Kuan

    2018-04-01

    Full Text Available (1 Background: Lipids derived from oleaginous microbes have become promising alternative feedstocks for biodiesel. This is mainly because the lipid production rate from microbes is one to two orders of magnitude higher than those of energy crops. However, the conventional process for converting these lipids to biodiesel still requires a large amount of energy and organic solvents; (2 Methods: In this study, an oleaginous yeast, Rhodotorula glutinis, was used for direct transesterification without lipid pre-extraction to produce biodiesel, using sulfuric acid or sodium hydroxide as a catalyst. Such processes decreased the amount of energy and organic solvents required simultaneously; (3 Results: When 1 g of dry R. glutinis biomass was subject to direct transesterification in 20 mL of methanol catalyzed by 0.6 M H2SO4 at 70 °C for 20 h, the fatty acid methyl ester (FAME yield reached 111%. Using the same amount of biomass and methanol loading but catalyzed by 1 g/L NaOH at 70 °C for 10 h, the FAME yield reached 102%. The acid-catalyzed process showed a superior moisture tolerance; when the biomass contained 70% moisture, the FAME yield was 43% as opposed to 34% of the base-catalyzed counterpart; (4 Conclusions: Compared to conventional transesterification, which requires lipid pre-extraction, direct transesterification not only simplifies the process and shortens the reaction time, but also improves the FAME yield.

  3. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  4. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2015-03-01

    Full Text Available We linked state-and-transition simulation models (STSMs with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  5. Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis

    International Nuclear Information System (INIS)

    Xue, Junjie; Dou, Guolan; Ziade, Elbara; Goldfarb, Jillian L.

    2017-01-01

    Graphical abstract: Integrated production of biotemplated nanomaterials and upgraded biofuels (solid lines indicate current processes, dashed lines indicated proposed pathway). - Highlights: • Novel integrated process to co-produce nanomaterials and biofuels via pyrolysis. • Impregnation of biomass with silver nitrate upgrades bio-oil during pyrolysis. • Co-synthesis enhances syngas produced with more hydrogen. • Biomass template impacts bio-fuels and morphology of resulting nanomaterials. - Abstract: Replacing fossil fuels with biomass-based alternatives is a potential carbon neutral, renewable and sustainable option for meeting the world’s growing energy demand. However, pyrolytic conversions of biomass-to-biofuels suffer marginal total energy gain, and technical limitations such as bio-oils’ high viscosity and oxygen contents that result in unstable, corrosive and low-value fuels. This work demonstrates a new integrated biorefinery process for the co-production of biofuels and silver nanomaterials. By impregnating pure cellulose and corn stalk with silver nitrate, followed by pyrolysis, the gas yield (especially hydrogen) increases substantially. The condensable bio-oil components of the impregnated samples are considerably higher in furfurals (including 5-hydroxymethylfurfural). Though the overall activation energy barrier, as determined via the Distributed Activation Energy Model, does not change significantly with the silver nitrate pre-treatment, the increase in gases devolatilized, and improved 5-hydroxymethylfurfural yield, suggest a catalytic effect, potentially increasing decarboxylation reactions. After using this metal impregnation to improve pyrolysis fuel yield, following pyrolysis, the silver-char composite materials are calcined to remove the biomass template to yield silver nanomaterials. While others have demonstrated the ability to biotemplate such nanosilver on cellulosic biomass, they consider only impregnation and oxidation of the

  6. On-line Biomass Estimation in a Batch Biotechnological Process: Bacillus thuringiensis δ - endotoxins production.

    OpenAIRE

    Amicarelli, Adriana

    2010-01-01

    In this Chapter it has been addressed the problem of the biomass estimation in a batch biotechnological process: the Bacillus thuringiensis (Bt) δ-endotoxins production process. Different alternatives that can be successfully used in this sense were presented. It has been exposed the design of various biomass estimators, namely: a phenomenological biomass estimator, a standard EKF biomass estimator, a biomass estimator based on ANN, a decentralized Kalman Filter, and a biomass concentration ...

  7. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    Directory of Open Access Journals (Sweden)

    Bernadette E. TELEKY

    2015-12-01

    Full Text Available Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as complex substrate to produce hydrogen. The timeline evolution of hydrogen production was analyzed and modelled by two functions: Logistic and Boltzmann. The results proved that hydrogen production is significant, with a maximum of 0.24 mlN/ml and the highest hydrogen production occurs between the days 4-10 of the experiment.

  8. Influence of organic waste and inorganic nitrogen source on biomass productivity of Scenedesmus and Chlorococcum sp.

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, M.; Agarwal, A.; Arya, M.C. [Defence Institute of Bio-Energy Research, Defence R and D Organization, Ministry of Defence, Govt. of India, Field Station Pithoragarh - 262501, Uttarakhand (India); Ahmed, Z. [Defence Institute of Bio-Energy Research, Defence R and D Organization, Ministry of Defence, Govt. of India Haldwani- 263 139, Uttarakhand (India)

    2011-07-01

    Algae gaining the more attention in the recent years in order to supplement the futuristic demand of fuel requirement because of its unique feature like high productivity, short duration and higher fatty acids content. However algal culturing for large-scale production is limited due to many technical and engineering challenges. One of the main constraints for large-scale biomass production is the non-availability of cost effective and affordable growth medium for open pond condition. In order to overcome this lacuna, the present study was carried out to find out the suitable cost effective growth medium using locally available resources. Farm Yard Manure an easily available organic waste yet, rich in nutrients and used for agriculture over the generations. FYM coupled with inorganic nitrogen source like urea was found to be better alternative to the synthetic growth medium, which may make wider acceptability at farmers' field for large-scale algal mass production. The present study reveals that FYM extract of 50% supplemented with 0.1% Urea was performing better for algal biomass growth in outdoor open pond condition.

  9. Perceptions of Agriculture Teachers Regarding Education about Biomass Production in Iowa

    Science.gov (United States)

    Han, Guang; Martin, Robert A.

    2015-01-01

    With the growth of biorenewable energy, biomass production has become an important segment in the agriculture industry (Iowa Energy Center, 2013). A great workforce will be needed for this burgeoning biomass energy industry (Iowa Workforce Development, n. d.). Instructional topics in agricultural education should take the form of problems and…

  10. Biomass production and basic research on photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    This document is a report of the conference: research and development work in Austria, organized by Austrian ministry of science and research, the ASSA and the OMV-stock company in 1979, which took place in Vienna. The text is about the different possible forms of solar energy utilization. Broda analyses in detail the utilization and production of biomass. (nowak)

  11. 'Underutilised' agricultural land: its definitions, potential use for future biomass production and its environmental implications

    Science.gov (United States)

    Miyake, Saori; Bargiel, Damian

    2017-04-01

    A growing bioeconomy and increased demand for biomass products on food, health, fibre, industrial products and energy require land resources for feedstock production. It has resulted in significant environmental and socio-economic challenges on a global scale. As a result, consideration of such effects of land use change (LUC) from biomass production (particularly for biofuel feedstock) has emerged as an important area of policy and research, and several potential solutions have been proposed to minimise such adverse LUC effects. One of these solutions is the use of lands that are not in production or not suitable for food crop production, such as 'marginal', 'degraded', 'abandoned' and 'surplus' agricultural lands for future biomass production. The terms referring to these lands are usually associated with the potential production of 'marginal crops', which can grow in marginal conditions (e.g. poor soil fertility, low rainfall, drought) without much water and agrochemical inputs. In our research, we referred to these lands as 'underutilised' agricultural land and attempted to define them for our case study areas located in Australia and Central and Eastern Europe (CEE). Our goal is to identify lands that can be used for future biomass production and to evaluate their environmental implications, particularly impacts related to biodiversity, water and soil at a landscape scale. The identification of these lands incorporates remote sensing and spatially explicit approaches. Our findings confirmed that there was no universal or single definition of the term 'underutilised' agricultural land as the definitions significantly vary by country and region depending not only on the biophysical environment but also political, institutional and socio-economic conditions. Moreover, our results highlighted that the environmental implications of production of biomass on 'underutilised' agricultural land for biomass production are highly controversial. Thus land use change

  12. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

    2011-10-01

    Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

  13. Technology for biomass feedstock production in southern forests and GHG implications

    Science.gov (United States)

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  14. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.

    Science.gov (United States)

    Kang, Zion; Kim, Byung-Hyuk; Ramanan, Rishiram; Choi, Jong-Eun; Yang, Ji-Won; Oh, Hee-Mock; Kim, Hee-Sik

    2015-01-01

    Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the effect of using wastewater and wavelength filters on microalgal productivity. Experimental results were then fitted into a model, and cost analysis was performed in comparison with control raceways. Three different microalgal strains, Chlorella vulgaris AG10032, Chlorella sp. JK2, and Scenedesmus sp. JK10, were tested for nutrient removal under different light wavelengths (blue, green, red, and white) using filters in batch cultivation. Blue wavelength showed an average of 27% higher nutrient removal and at least 42% higher chemical oxygen demand removal compared with white light. Naturally, the specific growth rate of microalgae cultivated under blue wavelength was on average 10.8% higher than white wavelength. Similarly, lipid productivity was highest in blue wavelength, at least 46.8% higher than white wavelength, whereas FAME composition revealed a mild increase in oleic and palmitic acid levels. Cost analysis reveals that raceways treating wastewater and using monochromatic wavelength would decrease costs from 2.71 to 0.73 $/kg biomass. We prove that increasing both biomass and lipid productivity is possible through cost-effective approaches, thereby accelerating the commercialization of low-value products from microalgae, like biodiesel.

  15. Optimisation of critical medium components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach.

    Science.gov (United States)

    Sabu, Sanyo; Singh, Isaac Sarojini Bright; Joseph, Valsamma

    2017-12-01

    Diatoms hold great promise as potential sources of biofuel production. In the present study, the biomass and lipid production in the marine diatom Navicula phyllepta, isolated from Cochin estuary, India and identified as a potential biodiesel feedstock, were optimized using Plackett-Burman (PB) statistical experimental design followed by central composite design (CCD) and response surface methodology (RSM). The growth analyses of the isolate in different nitrogen sources, salinities and five different enriched sea water media showed the best growth in the cheapest medium with minimum components using urea as nitrogen source at salinity between 25 and 40 g kg -1 . Plackett-Burman experimental analyses for screening urea, sodium metasilicate, sodium dihydrogen phosphate, ferric chloride, salinity, temperature, pH and agitation influencing lipid and biomass production showed that silicate and temperature had a positive coefficient on biomass production, and temperature had a significant positive coefficient, while urea and phosphate showed a negative coefficient on lipid content. A 2 4 factorial central composite design (FCCD) was used to optimize the concentration of the factors selected. The optimized media resulted in 1.62-fold increase (64%) in biomass (1.2 ± 0.08 g L -1 ) and 1.2-fold increase (22%) in estimated total lipid production (0.11 ± 0.003 g L -1 ) compared to original media within 12 days of culturing. A significantly higher biomass and lipid production in the optimized medium demands further development of a two-stage strategy of biomass production followed by induction of high lipid production under nutrient limitation or varying culture conditions for large-scale production of biodiesel from the marine diatom.

  16. Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations.

    Science.gov (United States)

    Carbone, Dora Allegra; Olivieri, Giuseppe; Pollio, Antonino; Gabriele; Melkonian, Michael

    2017-12-01

    Scenedesmus is a genus of microalgae employed for several industrial uses. Industrial cultivations are performed in open ponds or in closed photobioreactors (PBRs). In the last years, a novel type of PBR based on immobilized microalgae has been developed termed porous substrate photobioreactors (PSBR) to achieve significant higher biomass density during cultivation in comparison to classical PBRs. This work presents a study of the growth of Scenedesmus vacuolatus in a Twin Layer System PSBR at different light intensities (600 μmol photons m -2  s -1 or 1000 μmol photons m -2  s -1 ), different types and concentrations of the nitrogen sources (nitrate or urea), and at two CO 2 levels in the gas phase (2% or 0.04% v/v). The microalgal growth was followed by monitoring the attached biomass density as dry weight, the specific growth rate and pigment accumulation. The highest productivity (29 g m -2 d -1 ) was observed at a light intensity of 600 μmol photons m -2  s -1 and 2% CO 2 . The types and concentrations of nitrogen sources did not influence the biomass productivity. Instead, the higher light intensity of 1000 μmol photons m -2  s -1 and an ambient CO 2 concentration (0.04%) resulted in a significant decrease of productivity to 18 and 10-12 g m -2 d -1 , respectively. When compared to the performance of similar cultivation systems (15-30 g m -2 d -1 ), these results indicate that the Twin Layer cultivation System is a competitive technique for intensified microalgal cultivation in terms of productivity and, at the same time, biomass density.

  17. Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production

    International Nuclear Information System (INIS)

    Lam, Man Kee; Lee, Keat Teong

    2014-01-01

    Highlights: • A new sequential baffled photobioreactor was developed to cultivate microalgae. • Organic fertilizer was used as the main nutrients source. • Negative energy balance was observed in producing microalgae biodiesel. - Abstract: Pilot-scale cultivation of Chlorella vulgaris in a 100 L sequential baffled photobioreactor was carried out in the present study. The highest biomass yield attained under indoor and outdoor environment was 0.52 g/L and 0.28 g/L, respectively. Although low microalgae biomass yield was attained under outdoor cultivation, however, the overall life cycle energy efficiency ratio was 3.3 times higher than the indoor cultivation. In addition, negative energy balance was observed in producing microalgae biodiesel under both indoor and outdoor cultivation. The minimum production cost of microalgae biodiesel was about RM 237/L (or USD 73.5/L), which was exceptionally high compared to the current petrol diesel price in Malaysia (RM 3.6/L or USD 1.1/L). On the other hand, the estimated production cost of dried microalgae biomass cultivated under outdoor environment was RM 46/kg (or USD 14.3/kg), which was lower than cultivation using chemical fertilizer (RM 111/kg or USD 34.4/kg) and current market price of Chlorella biomass (RM 145/kg or USD 45/kg)

  18. Production of anti-streptococcal liamocins from agricultural biomass by Aureobasidium pullulans.

    Science.gov (United States)

    Leathers, Timothy D; Price, Neil P J; Manitchotpisit, Pennapa; Bischoff, Kenneth M

    2016-12-01

    Liamocins are unique heavier-than-water "oils" produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phylogenetic clades 8, 9, and 11, cultured on medium containing sucrose. In this study, 27 strains from these clades were examined for the first time for production of liamocins from agricultural biomass substrates. Liamocin yields were highest from strains in phylogenetic clade 11, and yields were higher from cultures grown on sucrose than from those grown on pretreated wheat straw. However, when supplementary enzymes (cellulase, β-glucosidase, and xylanase) were added, liamocin production on pretreated wheat straw was equivalent to that on sucrose. Liamocins produced from wheat straw were free of the melanin contamination common in sucrose-grown cultures. Furthermore, MALDI-TOF MS analysis showed that liamocins produced from wheat straw were under-acetylated, resulting in higher proportions of the mannitol A1 and B1 species of liamocin, the latter of which has the highest biological activity against Streptococcus sp.

  19. Biomass production and forage quality of head-smut disease ...

    African Journals Online (AJOL)

    Napier grass, commonly known as “elephant grass”, is a major feed used for dairy production by smallholder farmers in eastern and central Africa. However, the productivity of the grass in the region is threatened by stunt and head-smut diseases. The objective of this study was to determine biomass yield and forage quality ...

  20. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment.

    Science.gov (United States)

    Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei

    2014-07-01

    Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Biomass valorisation of Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita for biofuel production

    Science.gov (United States)

    Krička, Tajana; Matin, Ana; Bilandžija, Nikola; Jurišić, Vanja; Antonović, Alan; Voća, Neven; Grubor, Mateja

    2017-10-01

    In the context of the growing demand for biomass, which is being encouraged by the EU directives on the promotion of the use of renewable energy, recent investigations have been increasingly focused on fast-growing energy crops. The aim of this study was to investigate the energy properties of three types of agricultural energy crops: Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita. This investigation looked into the content of non-combustible and combustible matter, higher and lower heating values, lignocellulose content, and biomass macro-elements. The results indicate that the energy values of these crops are comparable, while their lignocellulose content shows significant variations. Thus, Arundo donax L. can best be utilised as solid biofuel due to its highest lignin content, while Miscanthus × giganteus and Sida hermaphrodita L. can be used for both liquid and solid biofuels production. As far as Arundo donax L. is concerned, a higher ash level should be taken into consideration.

  2. Biomass production by Coffea canephora Pierre ex Froehner in two productives cycles

    International Nuclear Information System (INIS)

    Bustamante González, Carlos; Rodríguez, Maritza I.; Pérez Díaz, Alberto; Viñals, Rolando; Martín Alonso, Gloria M.; Rivera, Ramón

    2015-01-01

    In areas of the Estación Central de Investigaciones de Café y Cacao located in La Mandarina, Tercer Frente municipality, Santiago de Cuba province, and La Alcarraza, municipality Sagua de Tánamo, Holguín province, the biomass production of Coffea canephora Pierre ex Froehner var. Robusta was assessed from planting until the fourth year in both locations and after pruning until the fourth year in Alcarraza. The coffee trees were planted at 3 x 1,5 m in Cambisol under Samanea saman Jerr shade in the first town and Leucaena leucocephala Lam de Wit in the second. The biomass was separated into: leaves, branches, stems, fruits and roots. From 24 months and one year after pruning, leaflitter was collected monthly. For the study of the root system soil blocks of 25 x 25 x 25 cm were extracted, in an area formed by 1,5 m (distance to the street) and 0,75 m (between plants), centered relative to the coffee plant and up to a meter deep. The extracted soil represented ¼ of the volume occupied by the plant. The dry mass of each organ was determined. Dry matter production reached values of 25 t dry mass ha-1 regardless of the stage of the plantation. Until the fourth year the root system dominated the biomass, followed by the leaves and then the stems. The participation of the fruits in the biomass increased in the crop stage and when concluding the experiment the coffees had dedicated for its formation among the 16-20 % of the total dry mass, independently of the development cycle. (author)

  3. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  4. A sustainable woody biomass biorefinery.

    Science.gov (United States)

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars

  5. Biomass production on marginal lands - catalogue of bioenergy crops

    Science.gov (United States)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  6. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Spyridon Achinas

    2016-09-01

    Full Text Available Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower vapor pressure, miscibility with water, and toxicity to ecosystems. One crucial problem with bioethanol fuel is the availability of raw materials. The supply of feedstocks for bioethanol production can vary season to season and depends on geographic locations. Lignocellulosic biomass, such as forest-based woody materials, agricultural residues and municipal waste, is prominent feedstock for bioethanol cause of its high availability and low cost, even though the commercial production has still not been established. In addition, the supply and the attentive use of microbes render the bioethanol production process highly peculiar. Many conversion technologies and techniques for biomass-based ethanol production are under development and expected to be demonstrated. In this work a technological analysis of the biochemical method that can be used to produce bioethanol is carried out and a review of current trends and issues is conducted.

  7. Biomass production and potential water stress increase with ...

    African Journals Online (AJOL)

    The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However ...

  8. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    Science.gov (United States)

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; He, Y.; Fang, J.; Fang, Z.; Jiang, B.; Brancourt-Hulmel, M.; Zheng, B.; Jiang, D.

    2015-07-01

    Miscanthus and Saccharum are considered excellent candidates for bioenergy feedstock production. A field experiment was conducted in Zhejiang province of China to characterize the phenotypic differences in three species, two of Miscanthus (M. sinensis and M. floridulus) and one of Saccharum (S. arundinaceum), each with two accessions collected from China. Agronomical traits, including plant height, culm number, tuft diameter and culm diameter, were monitored monthly for the first 3 years of growth. For each year of trail, flowering time was observed and biomass yield was harvested. M. floridulus produced a superior biomass yield with increasing plant age associated with higher yields (4.18, 24.16 and 29.01 t dry matter/hain November of years one to three, respectively). Higher culm diameter, plant height and tuft diameter values were observed for M. floridulus when compared to the other species. Biomass yield was positively correlated to tuft diameter, culm diameter, culm number and negatively to flowering time, but it showed no correlation with plant height. Tuft diameter and culm diameter could be suitable indicators in the selection of accessions for crop yield at the yield-building phase. Studies of the primary colonizers of Miscanthus and Saccharum in their original location may be of interest from the perspective of bioenergy germplasm resource collection. (Author)

  10. How body mass and lifestyle affect juvenile biomass production in placental mammals.

    Science.gov (United States)

    Sibly, Richard M; Grady, John M; Venditti, Chris; Brown, James H

    2014-02-22

    In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow-fast continuum.

  11. Catalytic hydrothermal liquefaction (HTL of biomass for bio-crude production using Ni/HZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2017-04-01

    Full Text Available Hydrothermal liquefaction (HTL is an effective method that can convert biomass into bio-crude, but direct use of bio-crude derived from biomass HTL remains a challenge due to the lower quality. In this study, bifunctional Ni/HZSM-5 catalysts and zinc hydrolysis were combined to produce upgraded bio-crude in an in-situ HTL process. The K2CO3 and HZSM-5 catalysts with different Ni loading ratios were tested. The effects of different catalysts on the yield and quality of bio-crude and gas were investigated. The results indicated that the catalysts improved bio-crude and gas yields, compared to pine sawdust liquefaction without catalyst. The catalysts reduced the contents of undesirable oxygenated compounds such as acids, ketones, phenols, alcohols and esters in bio-crude products while increased desirable hydrocarbons content. K2CO3 produced highest bio-crude yield and lowest solid residue yield among all catalysts. Compared to parent HZSM-5 catalyst, bifunctional Ni/HZSM-5 catalysts exhibited higher catalyst activity to improve quality of upgraded bio-crude due to its integration of cracking and hydrodeoxygenation reactions. 6%Ni/HZSM-5 catalyst produced the bio-crude with the highest hydrocarbons content at 11.02%. This catalyst can be a candidate for bio-crude production from biomass HTL.

  12. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel...

  13. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    The culture conditions of lactose fermenting, spore forming probiotic Bacillus subtilis SK09 isolated from dairy effluent were optimized by response surface methodology to maximize the biomass production. The student's t-test of the Placket-Burman screening design revealed that the effects of pH, ammonium citrate and ...

  14. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  15. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  16. An assessment of the biomass potential of Cyprus for energy production

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Tassou, Savvas A.; Florides, Georgios

    2012-01-01

    Biodegradable waste in Cyprus predominately consists of the biodegradable fraction of municipal solid waste, sewage sludge, solid and liquid agricultural residues and solid and liquid wastes from food and drink industries. Biodegradable waste is a very important source of biomass. The potential amount of solid and liquid biomass of the specified waste streams was estimated to be 9.2 million tonnes, after collecting data on the waste generation coefficients. Both liquid and solid waste can be used for the production of biogas (BG), which can be combusted for the production of thermal and electrical energy. The potential biogas production was estimated on the basis of Chemical Oxygen Demand (COD) consumption and on the basis of digested mass. The potential biogas production was found to be 114 and 697 million m 3 respectively. Further research is required for the improvement of waste generation coefficients. The results on energy production provide an indication of the importance of promotion of anaerobic digestion for the treatment of biodegradable waste to the energy balance of the country. Anaerobic digestion can provide decentralisation of energy production, and production of energy in areas that are in most cases remote. -- Highlights: ► Waste generation coefficients were estimated according to available data for Cyprus. ► Total solid and liquid biomass from waste was estimated to be 9.2 million tonnes. ► Biogas production was estimated using COD and mass digested. ► Further research is required for the improvement of waste generation coefficients. ► Energy production estimates indicates the importance of anaerobic digestion.

  17. Planting Date and Seeding Rate Effects on Sunn Hemp Biomass and Nitrogen Production for a Winter Cover Crop

    Directory of Open Access Journals (Sweden)

    Kipling S. Balkcom

    2011-01-01

    Full Text Available Sunn hemp (Crotalaria juncea L. is a tropical legume that produces plant biomass and nitrogen (N quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a rye (Secale cereale L. cover crop in east-central Alabama from 2007 to 2009. Plant populations, plant height, stem diameter, biomass production, and N content were determined for two sunn hemp planting dates, following corn (Zea mays L. and wheat (Triticum aestivum L. harvest, across different seeding rates (17, 34, 50, and 67 kg/ha. Rye biomass was measured the following spring. Sunn hemp biomass production was inconsistent across planting dates, but did relate to growing degree accumulation. Nitrogen concentrations were inversely related to biomass production, and subsequent N contents corresponded to biomass levels. Neither planting date nor seeding rate affected rye biomass production, but rye biomass averaged over both planting dates following wheat/sunn hemp averaged 43% and 33% greater than rye following fallow. Rye biomass following corn/sunn hemp was equivalent to fallow plots. Early planting dates are recommended for sunn hemp with seeding rates between 17 and 34 kg/ha to maximize biomass and N production.

  18. A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes.

    Science.gov (United States)

    Santos, C A; Ferreira, M E; da Silva, T Lopes; Gouveia, L; Novais, J M; Reis, A

    2011-08-01

    This paper describes the association of two bioreactors: one photoautotrophic and the other heterotrophic, connected by the gas phase and allowing an exchange of O(2) and CO(2) gases between them, benefiting from a symbiotic effect. The association of two bioreactors was proposed with the aim of improving the microalgae oil productivity for biodiesel production. The outlet gas flow from the autotrophic (O(2) enriched) bioreactor was used as the inlet gas flow for the heterotrophic bioreactor. In parallel, the outlet gas flow from another heterotrophic (CO(2) enriched) bioreactor was used as the inlet gas flow for the autotrophic bioreactor. Aside from using the air supplied from the auto- and hetero-trophic bioreactors as controls, one mixotrophic bioreactor was also studied and used as a model, for its claimed advantage of CO(2) and organic carbon being simultaneously assimilated. The microalga Chlorella protothecoides was chosen as a model due to its ability to grow under different nutritional modes (auto, hetero, and mixotrophic), and its ability to attain a high biomass productivity and lipid content, suitable for biodiesel production. The comparison between heterotrophic, autotrophic, and mixotrophic Chlorella protothecoides growth for lipid production revealed that heterotrophic growth achieved the highest biomass productivity and lipid content (>22%), and furthermore showed that these lipids had the most suitable fatty acid profile in order to produce high quality biodiesel. Both associations showed a higher biomass productivity (10-20%), when comparing the two separately operated bioreactors (controls) which occurred on the fourth day. A more remarkable result would have been seen if in actuality the two bioreactors had been inter-connected in a closed loop. The biomass productivity gain would have been 30% and the lipid productivity gain would have been 100%, as seen by comparing the productivities of the symbiotic assemblage with the sum of the two

  19. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors.

    Science.gov (United States)

    Si, Bu-Chun; Li, Jia-Ming; Zhu, Zhang-Bing; Zhang, Yuan-Hui; Lu, Jian-Wen; Shen, Rui-Xia; Zhang, Chong; Xing, Xin-Hui; Liu, Zhidan

    2016-01-01

    via Illumina MiSeq sequencing clarified that the biohydrogen process in the two-stage systems functioned not only for biohydrogen production, but also for the degradation of potential inhibitors. The higher distribution of the detoxification family Clostridiaceae , Bacillaceae , and Pseudomonadaceae was found in the biohydrogen process. In addition, a higher distribution of acetate-oxidizing bacteria ( Spirochaetaceae ) was observed in the biomethane process of the two-stage systems, revealing improved acetogenesis accompanied with an efficient conversion of acetate. Biohythane production could be a promising process for the recovery of energy and degradation of organic compounds from hydrothermal liquefied biomass. The two-stage process not only contributed to the improved quality of the gas fuels but also strengthened the biotransformation process, which resulted from the function of detoxification during biohydrogen production and enhanced acetogenesis during biomethane production.

  20. Assessment of potential biomass energy production in China towards 2030 and 2050

    DEFF Research Database (Denmark)

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, e...

  1. Controls upon biomass losses and char production from prescribed burning on UK moorland.

    Science.gov (United States)

    Worrall, Fred; Clay, Gareth D; May, Richard

    2013-05-15

    Prescribed burning is a common management technique used across many areas of the UK uplands. However, there are few data sets that assess the loss of biomass during burning and even fewer data on the effect of burning on above-ground carbon stocks and production of char. During fire the production of char occurs which represents a transfer of carbon from the short term bio-atmospheric cycle to the longer term geological cycle. However, biomass is consumed leading to the reduction in litter formation which is the principal mechanism for peat formation. This study aims to solve the problem of whether loss of biomass during a fire is ever outweighed by the production of refractory forms of carbon during the fire. This study combines both a laboratory study of char production with an assessment of biomass loss from a series of field burns from moorland in the Peak District, UK. The laboratory results show that there are significant effects due to ambient temperature but the most important control on dry mass loss is the maximum burn temperature. Burn temperature was also found to be linearly related to the production of char in the burn products. Optimisation of dry mass loss, char production and carbon content shows that the production of char from certain fires could store more carbon in the ecosystem than if there had been no fire. Field results show that approximately 75% of the biomass and carbon were lost through combustion, a figure comparable to other studies of prescribed fire in other settings. Char-C production was approximately 2.6% of the carbon consumed during the fire. This study has shown that there are conditions (fast burns at high temperatures) under which prescribed fire may increase C sequestration through char production and that these conditions are within existing management options available to practitioners. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  3. Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus.

    Science.gov (United States)

    Pandey, Usha; Pandey, J

    2008-07-01

    A diazotrophic cyanobacterium Nostochopsis lobatus was evaluated for enhanced production of biomass, pigments and antioxidant capacity. N. lobatus showed potentially high antioxidant capacity (46.12 microM AEAC) with significant improvement under immobilized cell cultures (87.05 microM AEAC). When a mixture of P and Fe was supplemented, biomass, pigments, nutritive value and antioxidant capacity increased substantially at pH 7.8. When considered separately, P appeared to be a better supplement than Fe for the production of biomass, chlorophyll and carotenoids. However, for phycocyanin, phycoerythrin, nutritive value and antioxidant capacity, Fe appeared more effective than P. Our study indicates N. lobatus to be a promising bioresource for enhanced production of nutritionally rich biomass, pigments and antioxidants. The study also suggests that P and Fe are potentially effective supplements for scale-up production for commercial application.

  4. Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

    Science.gov (United States)

    Doran-Peterson, Joy; Jangid, Amruta; Brandon, Sarah K.; Decrescenzo-Henriksen, Emily; Dien, Bruce; Ingram, Lonnie O.

    Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.

  5. PFB air gasification of biomass. Investigation of product formation and problematic issues related to ammonia, tar and alkali

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader

    2000-09-01

    Fluidised bed thermal gasification of biomass is an effective route that results in 100 % conversion of the fuel. In contrast to chemical, enzymatic or anaerobic methods of biomass treatment, the thermal conversion leaves no contaminated residue after the process. The product gas evolved within thermal conversion can be used in several applications such as: fuel for gas turbines, combustion engines and fuel cells, and raw material for production of chemicals and synthetic liquid fuels. This thesis treats a part of the experimental data from two different gasifiers: a 90 kW{sub th} pressurised fluidised bubbling bed gasifier at Lund University and a 18 MW{sub th} circulating fluidised bed gasifier integrated with gas turbine (IGCC) in Vaernamo. A series of parallel and consecutive chemical reactions is involved in thermal gasification, giving origin to formation of a variety of products. These products can be classified within three major groups: gases, tars and oils, and char. The proportion of these categories of species in the final product is a matter of the gasifier design and the process parameters. The thesis addresses the technical and theoretical aspects of the biomass thermochemical conversion and presents a new approach in describing the gasification reactions. There is an evidence of fuel effect on the characteristics of the final products: a mixture of plastic waste (polyethylene) and biomass results in higher concentration of linear hydrocarbons in the gas than gasification of pure biomass. Mixing the biomass with textile waste (containing aromatic structure) results in a high degree of formation of aromatic compounds and light tars. Three topic questions within biomass gasification, namely: tar, NO{sub x} and alkali are discussed in the thesis. The experimental results show that gasification at high ER or high temperature decreases the total amount of the tars and simultaneously reduces the contents of the oxygenated and alkyl-substituted poly

  6. Wastewater sludge fertilization: Biomass productivity and heavy metal bioaccumulation in two Salix species grown in southern Quebec (Canada)

    International Nuclear Information System (INIS)

    Teodorescu, T.I.; Labrecque, M.; Daigle, S.; Poisson, G.

    1993-01-01

    More than other kind of trees, fast growing tree species, such as willows, can profit from sludge application. While sludges are good fertilizers, they may also contain heavy metals which could reduce productivity and cause risks to the environment. The main aims of the present research were to study: (1) the production capacity of Salix discolor and Salix viminalis when supplied with various amounts of dried and pelleted sludge; (2) the uptake, and accumulation of heavy metals. Unrooted cuttings were planted on sandy soil in large plastic pots and grown in outdoors for 20-week period. Five doses of sludge were applied: equivalent of 200 (T1), 160 (T2), 120 (T3), 80 (T4) and 40 (T5) kg N per ha. Trees which received the largest amount of sludge showed the best growth results. The stem-branch biomass was significantly higher for Salix viminalis. The relationship between the total yield biomass Y (t/ha) and the rate of fertilization X (kg N/ha) is linear. The regression equations of prediction biomass production were established as following: Salix discolor Y = 1.807 + 0.037X and Salix viminalis Y = 2.578 + 0.042X. For both species, greatest stems-branch biomass per gram of N applied were produced by treatments 1 and 2. The amount of nitrogen per leaf area (N/LA) and per leaf dry weight (N/LW), were higher for Salix viminalis which leads us believe that its photosynthetic activity was better. The transfer coefficient did not vary between the species but was significantly different for Cd and Zn. The plants were able to absorb Cd and Zn but less of Ni, Hg and Cu and Pb. It was concluded that the dried and pelleted sludge can be a good fertilizer. The treatment is beneficial when Salix discolor and particulary Salix viminalis are used as vegetation filters for wastewater sludge purification and production purposes

  7. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    composition of the specific biomass feedstock, as well as which pretreatment, saccharification, fermentation and extraction techniques are used. Furthermore, integrating biological processes into the biorefinery that effectively consume CO2 will become increasingly important. Such process integration could...... significantly improve the sustainability indicators of the overall biorefinery process. In this study, unconventional lignocellulosic- and aquatic biomasses were investigated as biorefinery feedstocks. The studied biomasses were Jerusalem artichoke, industrial hemp and macroalgae species Laminaria digitata....... The chemical composition of biomasses was determined in order to demonstrate their biorefinery potential. Bioethanol and biogas along with succinic acid production were the explored bioconversion routes, while potential production of other compounds was also investigated. Differences and changes in biomass...

  8. Optimization of macronutrient kinetics for biomass production in Nostoc calcicola

    Science.gov (United States)

    Aiyer, Subramanian Seshadri C.; Akshai, A.; Kumar, B. G. Prakash; Ramachandran, S.

    2018-04-01

    To assess the feasibility of Allen and Arnon’s (AA) media addition to increase the biomass productivity, (0, 2.5, 5, 7.5 ml of 10x media concentrate - MC) was added to aerated culture every six days, in two separate conditions i.e., single harvest (SH) and continuous harvest (CH) after 15th day. Results show that with addition of 5 ml of MC produced maximum amount of biomass is 1.32 g/L and 2.88 g/L for Sh and CH respectively. These results show that with addition of 5 ml of MC to an aerated culture every six days with continuous biomass harvesting leads to maximum growth of Nostoc calcicola @25°C

  9. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  10. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  11. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission. (author)

  12. Production of Saccharomyces cerevisiae biomass in papaya extract ...

    African Journals Online (AJOL)

    Extracts of papaya fruit were used as substrate for single cell protein (SCP) production using Saccharomyces cerevisiae. A 500 g of papaya fruit was extracted with different volumes of sterile distilled water. Extraction with 200 mL of sterile distilled water sustained highest cell growth. Biochemical analysis of dry biomass ...

  13. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  14. Benthic invertebrate density, biomass, and instantaneous secondary production along a fifth-order human-impacted tropical river.

    Science.gov (United States)

    Aguiar, Anna Carolina Fornero; Gücker, Björn; Brauns, Mario; Hille, Sandra; Boëchat, Iola Gonçalves

    2015-07-01

    The aim of this study was to assess land use effects on the density, biomass, and instantaneous secondary production (IP) of benthic invertebrates in a fifth-order tropical river. Invertebrates were sampled at 11 stations along the Rio das Mortes (upper Rio Grande, Southeast Brazil) in the dry and the rainy season 2010/2011. Invertebrates were counted, determined, and measured to estimate their density, biomass, and IP. Water chemical characteristics, sediment heterogeneity, and habitat structural integrity were assessed in parallel. Total invertebrate density, biomass, and IP were higher in the dry season than those in the rainy season, but did not differ significantly among sampling stations along the river. However, taxon-specific density, biomass, and IP differed similarly among sampling stations along the river and between seasons, suggesting that these metrics had the same bioindication potential. Variability in density, biomass, and IP was mainly explained by seasonality and the percentage of sandy sediment in the riverbed, and not directly by urban or agricultural land use. Our results suggest that the consistently high degradation status of the river, observed from its headwaters to mouth, weakened the response of the invertebrate community to specific land use impacts, so that only local habitat characteristics and seasonality exerted effects.

  15. Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor

    Directory of Open Access Journals (Sweden)

    Mohsen Mansouri

    2017-04-01

    Full Text Available The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ, maximum specific growth rate (μmax, and maximum cell concentration (Xmax. The low root-mean-square error (RMSE and high regression coefficients (R2 indicated that the models employed were well fitted to the experiment data and it could be regarded as enough to describe biomass production. Using statistical and physiological significance criteria, the Baranyi model was considered the most appropriate for quantifying biomass growth. The biological variables of this model are as follows: μmax=0.0309 h−1, λ=100 h, and Xmax=1.82 g/L.

  16. Growth characteristics and biomass production of kenaf | Tahery ...

    African Journals Online (AJOL)

    Parameters of height, diameter and internode were measured within four to six regular intervals of 10 to 15 days, while biomass production parameters of dry one meter stalk mass (DMSM), defoliated plant mass (DPM), one meter stalk mass (MSM) and fresh plant mass (FPM) were measured at harvest time. There was no ...

  17. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  18. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  19. Development of Sustainable Landscape Designs for Improved Biomass Production in the U.S. Corn Belt

    Science.gov (United States)

    Bonner, Ian J.

    Demand for renewable and sustainable energy options has resulted in a significant commitment by the US Government to research pathways for fuel production from biomass. The research presented in this thesis describes one potential pathway to increase the amount of biomass available for biofuel production by integrating dedicated energy crops into agricultural fields. In the first chapter an innovative landscape design method based on subfield placement of an energy crop into row crop fields in central Iowa is used to reduce financial loss for farmers, increase and diversify biomass production, and improve soil resources. The second chapter explores how subfield management decisions may be made using high fidelity data and modeling to balance concerns of primary crop production and economics. This work provides critical forward looking support to agricultural land managers and stakeholders in the biomass and bioenergy industry for pathways to improving land stewardship and energy security.

  20. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    Science.gov (United States)

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    International Nuclear Information System (INIS)

    Calfapietra, C.; De Angelis, P.; Scarascia-Mungozza, G.; Gielen, B.; Ceulemans, R.; Galema, A. N. J.; Lukac, M.; Moscatelli, M. C.

    2003-01-01

    The possible contribution of short rotation cultures (SRC) to carbon sequestration in both current and elevated carbon dioxide concentrations was investigated using the free-air carbon dioxide enrichment (FACE) technique. Three poplar species were grown in an SRC plantation for three growing seasons. Above-ground and below-ground biomass increased by 15 to 27 per cent and by 22 to 38 per cent, respectively; light-efficiency also increased as a result. Depletion of inorganic nitrogen from the soil increased after three growing seasons at elevated carbon dioxide levels, but carbon dioxide showed no effect on stem wood density. Stem wood density also differed significantly from species to species. These results confirmed inter-specific differences in biomass production in poplar, and demonstrated that elevated carbon dioxide enhanced biomass productivity and light-use efficiency of a poplar short rotation cultivation ecosystem without changing biomass allocation. The reduction in soil nitrogen raises the possibility of reduced long-term biomass productivity. 60 refs., 4 tabs., 4 figs

  2. Spatial and seasonal variability of fractionated phytoplankton biomass and primary production in the frontal region of the Northern Adriatic Sea

    Directory of Open Access Journals (Sweden)

    M.R. VADRUCCI

    2005-06-01

    Full Text Available Spatial and seasonal patterns of variation of fractionated phytoplankton biomass and primary production and their relationships with nutrient concentrations were analyzed along an inshore - offshore gradient and in relation to the presence of a frontal system in the Northern Adriatic Sea. Sampling was carried out in winter and summer during four oceanographic cruises (June 1996 and 1997, February 1997 and 1998 as part of the PRISMA II project. Water samples for determining nutrient concentrations, phytoplankton biomass (as Chla and primary production (as 14 C assimilation were collected at five optical depths. Sampling stations were located along 2 or 4 parallel transects arranged perpendicularly to the shoreline and the frontal system. The transects were located at such a distance from the coast that the frontal system crossed them at their halfway point. Total dissolved nitrogen (TDN and total dissolved phosphorus concentrations (TDP were 12.41 ± 3 .95 mM and 0.146 ± 0 .070 mM, respectively. The values in the two seasonal periods were similar, decreasing along the inshore-offshore gradient. Values for phytoplankton biomass and primary productionwere higher in the winter than the summer cruises, and decreased, in both seasonal periods, along the inshore / offshore gradient. Moreover, in both seasonal periods, picophytoplankton dominated both biomass and productivity, (56% and 44%, respectively at stations beyond the frontal system, while microphytoplankton was more important at stations inside it (44% and 44%, respectively. Total phytoplankton biomass and primary production were directly related to nutrient concentrations. Regarding size classes, significant patterns of variation with nutrients were observed particularly for biomass. The results indicate that the size structure and function of phytoplankton guilds seem to be mediated by nutrient inflow, as well as by competitive interaction among size fractions.

  3. Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism.

    Science.gov (United States)

    Pandey, Pallavi; Kaur, Ranjeet; Singh, Sailendra; Chattopadhyay, Sunil Kumar; Srivastava, Santosh Kumar; Banerjee, Suchitra

    2014-07-01

    The effect of 6 years of cultivation and use of table-sugar (TS) on the biomass/terpene alkaloid productivities and rol gene expression were studied in a hairy root (HR) clone of Rauvolfia serpentina. The media cost could be reduced >94 % by replacing sucrose (SUC) with TS—an unexplored avenue for HR cultivation. The overall productivities increased over long-term cultivation with sugar proving superior to SUC for biomass (24.4 ± 2.11 g/l DW after 40 days to 17.31 % higher) and reserpine (0.094 ± 0.008 % DW after 60 days to 193.8 % more) production. The latter however revealed comparatively better yields concerning ajmaline (0.507 ± 0.048 % DW after 60 days to 61.98 % higher) and yohimbine (0.628 ± 0.062 % DW after 60 days to 38.32 % higher), respectively. PCR amplification of rol genes confirmed long-term expression stability.

  4. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  5. Biomass steam gasification for production of SNG – Process design and sensitivity analysis

    International Nuclear Information System (INIS)

    Gröbl, Thomas; Walter, Heimo; Haider, Markus

    2012-01-01

    Highlights: ► A model for the SNG-production process from biomass to raw-SNG is prepared. ► A thermodynamic equilibrium model of the Biomass-Heatpipe-Reformer is developed. ► A sensitivity analysis on the most important operation parameters is carried out. ► Adopting the steam excess ratio a syngas ideally suitable for SNG production is generated. ► Thermodynamic equilibrium models are a useful tool for process design. -- Abstract: A process design for small-scale production of Substitute Natural Gas (SNG) by steam gasification of woody biomass is performed. In the course of this work, thermodynamic models for the novel process steps are developed and implemented into an already existing model library of commercial process simulation software IPSEpro. Mathematical models for allothermal steam gasification of biomass as well as for cleaning and methanation of product gas are provided by applying mass balances, energy balances and thermodynamic equilibrium equations. Using these models the whole process is integrated into the simulation software, a flowsheet for an optimum thermal integration of the single process steps is determined and energy savings are identified. Additionally, a sensitivity study is carried out in order to analyze the influence of various operation parameters. Their effects on amount and composition of the product gas and process efficiency are evaluated and discussed within this article.

  6. Characterization of residual biomass from the Arequipa region for the production of biofuels

    Directory of Open Access Journals (Sweden)

    María Laura Stronguiló Leturia

    2015-12-01

    Full Text Available The aim of this work is to select residual biomass from the Arequipa Region for the production of biofuels (biodiesel, bioethanol and biogas. In each case, the initial point is a matrix based on products with residual biomass available in the region, from the agricultural and livestock sectors, information that was obtained from the regional Management of Agriculture web site. Specific factors of the resudue that will be used as raw material for each biofuel production would be considered for the selection process. For the production of biodiesel it is necessary to start from the oil extracted from oilseeds. Regarding obtaining bioethanol, it requires that the residual biomass has high percent of cellulose. With regard to the generation of biogas, we will use animal droppings. Finally, the raw materials selected are: squash and avocado seeds for biodiesel, rice chaff and deseeded corncob for bioethanol and cow and sheep droppings for biogas

  7. Estimating annual bole biomass production using uncertainty analysis

    Science.gov (United States)

    Travis J. Woolley; Mark E. Harmon; Kari B. O' Connell

    2007-01-01

    Two common sampling methodologies coupled with a simple statistical model were evaluated to determine the accuracy and precision of annual bole biomass production (BBP) and inter-annual variability estimates using this type of approach. We performed an uncertainty analysis using Monte Carlo methods in conjunction with radial growth core data from trees in three Douglas...

  8. Optimal processing pathway for the production of biodiesel from microalgal biomass: A superstructure based approach

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass......, such as the harvesting of microalgal biomass, pretreatments including drying and cell disruption of harvested biomass, lipid extraction, transesterification, and post-transesterfication purification. The proposed model is used to find the optimal processing pathway among the large number of potential pathways that exist...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case with different choices of objective functions. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed...

  9. Bioenergy production potential for aboveground biomass from a subtropical constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Chung [Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114 (China); Ko, Chun-Han [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Bioenergy Research Center, National Taiwan University, Taipei 10617 (China); Chang, Fang-Chih [The Instrument Center, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China); Chen, Pen-Yuan [Department of Landscape Architecture, National Chiayi University, Chiayi City 60004 (China); Liu, Tzu-Fen [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Sheu, Yiong-Shing [Department of Water Quality Protection, Environmental Protection Administration, Executive Yuan, Taipei 10042 (China); Shih, Tzenge-Lien [Department of Chemistry, Tamkang University, Tamsui, Taipei 25137 (China); Teng, Chia-Ji [Environmental Protection Bureau, Taipei County Government, Taipei 22001 (China)

    2011-01-15

    Wetland biomass has potentials for bioenergy production and carbon sequestration. Planted with multiple species macrophytes to promote biodiversity, the 3.29 ha constructed wetland has been treated 4000 cubic meter per day (CMD) domestic wastewater and urban runoff. This study investigated the seasonal variations of aboveground biomass of the constructed wetland, from March 2007 to March 2008. The overall aboveground biomass was 16,737 kg and total carbon content 6185 kg at the peak of aboveground accumulation for the system emergent macrophyte at September 2007. Typhoon Korsa flood this constructed wetland at October 2007, however, significant recovery for emergent macrophyte was observed without human intervention. Endemic Ludwigia sp. recovered much faster, compared to previously dominated typha. Self-recovery ability of the macrophyte community after typhoon validated the feasibility of biomass harvesting. Incinerating of 80% biomass harvested of experimental area in a nearby incineration plant could produce 11,846 kWh for one month. (author)

  10. Routing of biomass for sustainable agricultural development

    International Nuclear Information System (INIS)

    Suhaimi Masduki; Aini Zakaria

    1998-01-01

    Photosynthetically derived biomass and residues, including waste products from food processing industries are renewable. They accumulate every year in large quantities, causing deterioration to the environment and loss of potentially valuable resources. The conserved energy is potentially convertible; thermodynamically the energy can be tapped into forms which are more amenable for value added agricultural applications or for other higher value products such as chemicals or their feedstocks. The forms and types in which this biomass has to be modified for the intended use depend on the costs or the respective alternatives. Under current situations, where chemical feedstocks are available in abundance at very competitive prices, biomass is obviously more suitably placed in the agro-industrial sector. Recycling of the biomass or residues into the soil as biofertilizers or for some other uses for agricultural applications requires less intense energy inputs for their improvements. Highly efficient biological processes with microorganisms as the primary movers in the production of the desired end products indeed require less capital costs than in most other industrial entities. In this paper, the various processes, which are potentially valuable and economically feasible in the conversion of biomass and residues for several products important in the agricultural sector, are described. Emphasis is given to the approach and the possible permutations of these processes to arrive at the desired good quality products for sustainable agricultural development. (Author)

  11. Residual biomass resources for energy production. Extended abstract

    International Nuclear Information System (INIS)

    Prevot, G.

    2010-06-01

    This report covers the whole problematic of energy production from biomass residues in France except the production of biofuels. It is made of two parts. The first one gives an overview of the availability of residual biomass resources, The concept of residue (or waste) is placed in its economic and regulatory context (the major part of the resource cannot be considered as waste without any further potential use). The conditions of availability of the resource for each market segment are identified. The second part describes the conditions for the use of 5 different conversion options of these residues into energy. The logistics constraints for the procurement of the fuel and the intermediate operations to prepare it are briefly summarised. The objective was the identification of key issues in all relevant aspects, without giving too much emphasis to one of them at the expense of another one in order to avoid duplicating the frequent cases of facilities that do not meet environmental and economic targets because the designers of the system have not paid enough attention to a parameter of the system. (author)

  12. Canada's forest biomass resources: deriving estimates from Canada's forest inventory

    International Nuclear Information System (INIS)

    Penner, M.; Power, K.; Muhairwe, C.; Tellier, R.; Wang, Y.

    1997-01-01

    A biomass inventory for Canada was undertaken to address the data needs of carbon budget modelers, specifically to provide estimates of above-ground tree components and of non-merchantable trees in Canadian forests. The objective was to produce a national method for converting volume estimates to biomass that was standardized, repeatable across the country, efficient and well documented. Different conversion methods were used for low productivity forests (productivity class 1) and higher productivity forests (productivity class 2). The conversion factors were computed by constructing hypothetical stands for each site, age, species and province combination, and estimating the merchantable volume and all the above-ground biomass components from suitable published equations. This report documents the procedures for deriving the national biomass inventory, and provides illustrative examples of the results. 46 refs., 9 tabs., 5 figs

  13. Woody biomass production lags stem-girth increase by over one month in coniferous forests.

    Science.gov (United States)

    Cuny, Henri E; Rathgeber, Cyrille B K; Frank, David; Fonti, Patrick; Mäkinen, Harri; Prislan, Peter; Rossi, Sergio; Del Castillo, Edurne Martinez; Campelo, Filipe; Vavrčík, Hanuš; Camarero, Jesus Julio; Bryukhanova, Marina V; Jyske, Tuula; Gričar, Jožica; Gryc, Vladimír; De Luis, Martin; Vieira, Joana; Čufar, Katarina; Kirdyanov, Alexander V; Oberhuber, Walter; Treml, Vaclav; Huang, Jian-Guo; Li, Xiaoxia; Swidrak, Irene; Deslauriers, Annie; Liang, Eryuan; Nöjd, Pekka; Gruber, Andreas; Nabais, Cristina; Morin, Hubert; Krause, Cornelia; King, Gregory; Fournier, Meriem

    2015-10-26

    Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.

  14. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Production Of Bio fuel Starter From Biomass Waste Using Rocking Kiln Fluidized Bed System

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Zulkafli Ghazali; Mohd Zaid Mohamed; Phongsakorn, P.T.; Mohamad Puad Abu

    2014-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic in 2010, Malaysia produced 40 million tones per year of biomass of which 30 million tones of biomass originated from the oil palm industries. The biomass waste such as palm kernel shell can be used to produce activated carbon and bio fuel starter. A new type of rotary kiln, called Rocking Kiln Fluidized Bed (RKFB) was developed in Nuclear Malaysia to utilize the large amount of the biomass to produce high value added products. This system is capable to process biomass with complete combustion to produce bio fuel starter. With this system, the produced charcoal has calorific value, 33MJ/ kg that is better than bituminous coal with calorific value, 25-30 MJ/ kg. In this research, the charcoals produced were further used to produce the bio fuel starter. This paper will elaborate the experimental set-up of the Rocking Kiln Fluidized Bed (RKFB) for bio fuel starter production and the quality of the produced bio fuel starter. (author)

  16. A biomass energy flow chart for Kenya

    International Nuclear Information System (INIS)

    Senelwa, K.A.; Hall, D.O.

    1993-01-01

    Terrestrial (above ground) biomass production and its utilization in Kenya was analyzed for the 1980s. Total biomass energy production was estimated at 2574 x 10 6 GJ per year, most of which (86.7%) is produced on land classified as agricultural. Of the total production, agriculture and forrestry operations resulted in the harvesting of 1138 x 10 6 GJ (44.2% of total production), half of which (602 x 10 6 GJ) was harvested for use as fuel. Only 80 x 10 6 GJ was harvested for food and 63 x 10 6 GJ for industrial (agricultural and forestry) plus other miscellaneous purposes. About 85% of Kenya's energy is from biomass, with a per capita consumption of 18.6 GJ (0.44 toe, tonne oil equivalent) compared to less than 0.1 toe of commercial energy. Use of the biomass resource was found to be extensive involving bulk harvesting but with low utilization efficiencies; as a result the overall losses were quite high. Only 534 x 10 6 GJ (46.9% of harvested biomass) was useful energy. 480 x 10 6 GJ was left unused, as residues and dung, all which was either burnt or left to decompose in the fields. 124 x 10 6 GJ was lost during charcoal manufacture. Intensified use of the harvested biomass at higher efficiencies in order to minimize wastes would decrease the stress on the biomass resource base. (Author)

  17. Production of Solid Fuel by Torrefaction Using Coconut Leaves As Renewable Biomass

    Directory of Open Access Journals (Sweden)

    Lola Domnina Bote Pestaño

    2016-11-01

    Full Text Available The reserves of non-renewable energy sources such as coal, crude oil and natural gas are not limitless, they gradually get exhausted and their price continually increases. In the last four decades, researchers have been focusing on alternate fuel resources to meet the ever increasing energy demand and to avoid dependence on crude oil. Amongst different sources of renewable energy, biomass residues hold special promise due to their inherent capability to store solar energy and amenability to subsequent conversion to convenient solid, liquid and gaseous fuels. At present, among the coconut farm wastes such as husks, shell, coir dust and coconut leaves, the latter is considered the most grossly under-utilized by in situ burning in the coconut farm as means of disposal. In order to utilize dried coconut leaves and to improve its biomass properties, this research attempts to produce solid fuel by torrefaction using dried coconut leaves for use as alternative source of energy. Torrefaction is a thermal method for the conversion of biomass operating in the low temperature range of 200oC-300oC under atmospheric conditions in absence of oxygen. Dried coconut leaves were torrefied at different feedstock conditions. The key torrefaction products were collected and analyzed. Physical and combustion characteristics of both torrefied and untorrefied biomass were investigated. Torrefaction of dried coconut leaves significantly improved the heating value compared to that of the untreated biomass.  Proximate compositions of the torrefied biomass also improved and were comparable to coal. The distribution of the products of torrefaction depends highly on the process conditions such as torrefaction temperature and residence time. Physical and combustion characteristics of torrefied biomass were superior making it more suitable for fuel applications. Article History: Received June 24th 2016; Received in revised form August 16th 2016; Accepted 27th 2016; Available

  18. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia.

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina; Sagi, Moshe

    2017-09-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia : the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H 2 S, NH 3 , and pyruvate. The major function of O -acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H 2 S. This activity was significantly higher in Sarcocornia than in Salicornia , especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia . © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    Science.gov (United States)

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  20. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  1. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    Science.gov (United States)

    Xiao, Li

    ), fast growing energy crops (switchgrass), and popular forage crop (alfalfa), as well as biochar derived from those materials and their mixtures. It demonstrated that Py-MBMS coupled with MVA could be used as fast analytical tools for the study of not only biomass composition but also its thermal decomposition behaviors. It found that the impact of biomass composition heavily depends on the thermal decomposition temperature because at different temperature, the composition of biomass decomposed and the impact of minerals on the decomposition reaction varies. At low temperature (200-500°C), organic compounds attribute to the majority of variation in thermal decomposition products. At higher temperature, inorganics dramatically changed the pyrolysis pathway of carbohydrates and possibly lignin. In gasification, gasification tar formation is also observed to be impacted by ash content in vapor and char. In real reactor, biochar structure also has interactions with other fractions to make the final pyrolysis and gasification product. Based on the evaluation of process efficiencies during torrefaction, temperature ranging from 275°C to 300°C with short residence time (gas product using 700°C as primary pyrolysis temperature. In addition, pyrolysis char is found to produce less tar and more gas during steam gasification compared with gasification of pyrolysis vapor. Thus it is suggested that torrefaction might be an efficient pretreatment for biomass gasification because it can largely improve the yield of pyrolysis char during the primary pyrolysis step of gasification thus reduce the total tar of the overall gasification products. Future work is suggested in the end.

  2. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  3. Integrated production of lactic acid and biomass on distillery stillage.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  4. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Agu, R.C.; Amadife, A.E.; Ude, C.M.; Onyia, A.; Ogu, E.O. [Enugu State Univ. of Science and Technology (Nigeria). Faculty of Applied Natural Sciences; Okafor, M.; Ezejiofor, E. [Nnamdi Azikiwe Univ., Awka (Nigeria). Dept. of Applied Microbiology

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 M H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.

  5. Analysis of integrated animal-fish production system under subtropical hill agro ecosystem in India: growth performance of animals, total biomass production and monetary benefit.

    Science.gov (United States)

    Kumaresan, A; Pathak, K A; Bujarbaruah, K M; Vinod, K

    2009-03-01

    The present study assessed the benefits of integration of animals with fish production in optimizing the bio mass production from unit land in subtropical hill agro ecosystem. Hampshire pigs and Khaki Campbell ducks were integrated with composite fish culture. The pig and duck excreta were directly allowed into the pond and no supplementary feed was given to fish during the period of study. The average levels of N, P and K in dried pig and duck manure were 0.9, 0.7 and 0.6 per cent and 1.3, 0.6 and 0.5 per cent, respectively. The average body weight of pig and duck at 11 months age was 90 and 1.74 kg with an average daily weight gain of 333.33 and 6.44 g, respectively. The fish production in pig-fish and duck-fish systems were 2209 and 2964 kg/ha, respectively while the fish productivity in control pond was only 820 kg/ha. The total biomass (animal and fish) production was higher (pfeeding system compared to the traditional system, however the input/output ratio was 1:1.2 and 1:1.55 for commercial and traditional systems, respectively. It was inferred that the total biomass production per unit land was high (pfish were integrated together.

  6. BioBoost. Biomass based energy intermediates boosting bio-fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Niebel, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Katalyseforschung und -technologie (IKFT)

    2013-10-01

    To increase the share of biomass for renewable energy in Europe conversion pathways which are economic, flexible in feedstock and energy efficient are needed. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonization to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-30 GJ/m{sup 3}, enabling central GW scale gasification plants for bio-fuel production. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimization of products and processes. The utilization of energy carriers is investigated in existing and coming applications of heat and power production and synthetic fuels and chemicals. (orig.)

  7. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet

  9. Remarks on energetic biomass

    International Nuclear Information System (INIS)

    Mathis, Paul; Pelletier, Georges

    2011-01-01

    The authors report a study of energy biomass by considering its three main sources (forest, agriculture and wastes) and three energy needs (heat, fuel for transports, electricity) in the French national context. After having recalled the various uses of biomass (animal feeding, energy production, materials, chemical products), the authors discuss the characteristics of biomass with respect to other energy sources. Then, they analyse and discuss the various energy needs which biomass could satisfy: heat production (in industry, in the residential and office building sector), fuel for transports, electricity production. They assess and discuss the possible biomass production of its three main sources: forest, agriculture, and wastes (household, agricultural and industrial wastes). They also discuss the opportunities for biogas production and for second generation bio-fuel production

  10. A hyperspectral approach to estimating biomass and plant production in a heterogeneous restored temperate peatland

    Science.gov (United States)

    Byrd, K. B.; Schile, L. M.; Windham-Myers, L.; Kelly, M.; Hatala, J.; Baldocchi, D. D.

    2012-12-01

    inundation and NPV. fAPAR values were combined with GPP estimates at the field scale from eddy correlation flux measurements to develop a LUE model of plant production. To compare the effectiveness of broadband vs. narrowband indices in predicting biomass and fAPAR, we simulated eight multispectral World View-2 (WV-2) bands and 164 hyperspectral Hyperion bands with the field spectroradiometer data. We calculated NDVI-type two band vegetation indices (TBVI) using all possible band combinations, with a total of 28 WV-2 indices and 13,366 Hyperion indices. Biomass estimation was affected by water depth; regression of cattail biomass to TBVI680,910 produced a R2 that was 47% higher (R2 = 0.53) when water levels were under 50 cm compared to when water levels were over 50 cm (R2 = 0.28). fAPAR estimation was affected by the density of NPV; regression of fAPAR to TBVI539,1114 when PARtransmitted was measured above thatch was 49% higher (R2 = 0.50) than when PARtransmitted was measured below thatch (R2 = 0.20, TBVI1286,1266). Accounting for background effects in this heterogeneous environment will aid in the development of robust indices that can be applied to other wetland sites for estimates of carbon storage potential across large extents.

  11. Fungal biomass production from coffee pulp juice

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, R.; Calzada, F.; Herrera, R.; Rolz, C.

    1980-01-01

    Coffee pulp or skin represents about 40% of the weight of the fresh coffee fruit. It is currently a waste and its improper handling creates serious pollution problems for coffee producing countries. Mechanical pressing of the pulp will produce two fractions: coffee pulp juice (CPJ) and pressed pulp. Aspergillus oryzae, Trichoderma harzianum, Penicillium crustosum and Gliocladium deliquescens grew well in supplemented CPJ. At shake flask level the optimum initial C/N ratio was found to be in the range of 8 to 14. At this scale, biomass values of up to 50 g/l were obtained in 24 hours. Biomass production and total sugar consumption were not significantly different to all fungal species tested at the bench-scale level, even when the initial C/N ratio was varied. Best nitrogen consumption values were obtained when the initial C/N ratio was 12. Maximum specific growth rates occurred between 4-12 hours for all fungal species tested. (Refs. 8).

  12. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent.

    Science.gov (United States)

    Toyama, Tadashi; Hanaoka, Tsubasa; Tanaka, Yasuhiro; Morikawa, Masaaki; Mori, Kazuhiro

    2018-02-01

    To assess the potential of duckweeds as agents for nitrogen removal and biofuel feedstocks, Spirodela polyrhiza, Lemna minor, Lemna gibba, and Landoltia punctata were cultured in effluents of municipal wastewater, swine wastewater, or anaerobic digestion for 4 days. Total dissolved inorganic nitrogen (T-DIN) of 20-50 mg/L in effluents was effectively removed by inoculating with 0.3-1.0 g/L duckweeds. S. polyrhiza showed the highest nitrogen removal (2.0-10.8 mg T-DIN/L/day) and biomass production (52.6-70.3 mg d.w./L/day) rates in all the three effluents. Ethanol and methane were produced from duckweed biomass grown in each effluent. S. polyrhiza and L. punctata biomass showed higher ethanol (0.168-0.191, 0.166-0.172 and 0.174-0.191 g-ethanol/g-biomass, respectively) and methane (340-413 and 343-408 NL CH 4 /kg VS, respectively) production potentials than the others, which is related to their higher carbon and starch contents and calorific values. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Analytical evaluation of different carbon sources and growth stimulators on the biomass and lipid production of Chlorella vulgaris – Implications for biofuels

    International Nuclear Information System (INIS)

    Josephine, A.; Niveditha, C.; Radhika, A.; Shali, A. Brindha; Kumar, T.S.; Dharani, G.; Kirubagaran, R.

    2015-01-01

    The key challenges in lipid production from marine microalgae include the selection of appropriate strain, optimization of the culture conditions and enhancement of biolipid yield. This study is aimed at evaluating the optimal harvest time and effect of chlorella growth factor (CGF) extract, carbon sources and phytohormones on the biomass and lipid production in Chlorella vulgaris. CGF, extracted using hot water from Chlorella has been reported to possess various medicinal properties. However, in the present study, for the first time in C. vulgaris, CGF was found as a best growth stimulator by enhancing the biomass level (1.208 kg m −3 ) significantly on day 5. Gibberellin and citrate augmented the biomass by 0.935 kg m −3 and 1.025 kg m −3 . Combination of CGF and phytohormones were more effective than CGF and carbon sources. Analysis of fatty acid methyl esters indicated that the ratio of saturated to unsaturated fatty acids is higher in cytokinin, abscisic acid and CGF, and are also rich in short chain carbon atoms, ideal criteria for biodiesel. Nitrogen starvation favoured synthesis of more unsaturated fatty acids than saturated. This study shows that CGF enhances the biomass and lipid significantly and thus can be used for large scale biomass production. - Highlights: • Optimization studies revealed 7th day to be the ideal period for harvesting Chlorella vulgaris. • Chlorella growth factor extract acted as a chief growth promoting factor of C. vulgaris. • Chlorella growth factor with carbon sources or phytohormones was not effective than chlorella growth factor extract alone. • Cytokinin treatment increased saturated fatty acids level, although the biomass production was not significant

  14. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  15. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  16. Solar Pond devices: free energy or bioreactors for Artemia biomass production?

    Science.gov (United States)

    Gouveia, Luisa; Sousa, João; Marques, Ana; Tavares, Célia; Giestas, Margarida

    2009-08-01

    The recent exponential growth in industrial aquaculture has led to a huge increase in Artemia biomass production in order to meet increased fish production needs. The present study explores the potential use of salt gradient solar ponds (SGSPs) for production of Artemia nauplii. An SGSP is a basin of water where solar energy is trapped and collected via an artificially imposed gradient. Three zones can be identified in an SGSP: upper and lower zones, which are both convective, and a middle zone, which is intended to be non-convective. The latter acts as a transparent insulation layer and allows for storage of solar energy at the bottom, where it is available for use. The combination of salt, temperature and high transparency could make SGSPs promising bioreactors for the production of Artemia nauplii. Using particle image velocymetry (PIV) and Shadowgraph visualisation techniques, the behaviour of Artemia nauplii under critical cultivation parameters (namely, salinity, temperature and light) was monitored to determine movement velocity, and how movement of Artemia affects the salt gradient. It was observed that Artemia nauplii constantly follow light, irrespective of adverse salinity and/or temperature conditions. However, despite the substantial displacement of Artemia following the light source, the salt gradient is not disrupted. The suitability of SGSPs as bioreactors for Artemia biomass production was then tested. The results were disappointing, probably due to the lack of sufficient O(2) for Artemia survival and growth. Follow-up trials were conducted aimed at using the SGSP as a green and economically attractive energy source to induce faster hatching of cysts and improved Artemia nauplii growth. The results of these trials, and a case study of Artemia nauplii production using an SGSP, are presented. The authors constructed a Solar Pond device, which they suggest as a novel way of supplying thermal energy for Artemia biomass production in an aquaculture

  17. Production of charcoal briquettes from biomass for community use

    Science.gov (United States)

    Suttibak, S.; Loengbudnark, W.

    2018-01-01

    This article reports of a study on the production of charcoal briquettes from biomass for community use. Manufacture of charcoal briquettes was done using a briquette machine with a screw compressor. The aim of this research was to investigate the effects of biomass type upon the properties and performance of charcoal briquettes. The biomass samples used in this work were sugarcane bagasse (SB), cassava rhizomes (CR) and water hyacinth (WH) harvested in Udon Thani, Thailand. The char from biomass samples was produced in a 200-liter biomass incinerator. The resulting charcoal briquettes were characterized by measuring their properties and performance including moisture content, volatile matter, fixed carbon and ash contents, elemental composition, heating value, density, compressive strength and extinguishing time. The results showed that the charcoal briquettes from CR had more favorable properties and performance than charcoal briquettes from either SB or WH. The lower heating values (LHV) of the charcoal briquettes from SB, CR and WH were 26.67, 26.84 and 16.76 MJ/kg, respectively. The compressive strengths of charcoal briquettes from SB, CR and WH were 54.74, 80.84 and 40.99 kg/cm2, respectively. The results of this research can contribute to the promotion and development of cost-effective uses of agricultural residues. Additionally, it can assist communities in achieving sustainable self-sufficiency, which is in line with our late King Bhumibol’s economic sufficiency philosophy.

  18. Screening Prosopis (mesquite) germplasm for biomass production and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.; Cannell, G.H.; Clark, P.R.; Osborn, J.F.

    1980-01-01

    The nitrogen-fixing trees of the genus Prosopis (mesquite or algaroba) are well adapted to the semi-arid and often saline regions of the world. These trees may produce firewood or pods for livestock food, they may stabilize sand dunes and they may enrich the soil by production of leaf litter supported by nitrogen fixation. A collection of nearly 500 Prosopis accessions representing North and South American and African germplasm has been established. Seventy of these accessions representing 14 taxa are being grown under field conditions where a 30-fold range in biomass productivity among accessions has been estimated. In a greehouse experiment, 13 Prosopis taxa grew on nitrogen-free medium nodulated, and had a 10-fold difference in nitrogen fixation (acetylene reduction). When Prosopis is propagated by seed the resulting trees are extremely variable in growth rate and presence or absence of thorns. Propagation of 6 Prosopis taxa by stem cuttings has been achieved with low success (1 to 10%) in field-grown plants and with higher success (50 to 100%) with young actively growing greenhouse plants.

  19. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  20. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    Directory of Open Access Journals (Sweden)

    Ivan Baumann

    2016-01-01

    Full Text Available Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  1. Development of life cycle water footprints for the production of fuels and chemicals from algae biomass.

    Science.gov (United States)

    Nogueira Junior, Edson; Kumar, Mayank; Pankratz, Stan; Oyedun, Adetoyese Olajire; Kumar, Amit

    2018-09-01

    This study develops life cycle water footprints for the production of fuels and chemicals via thermochemical conversion of algae biomass. This study is based on two methods of feedstock production - ponds and photobioreactors (PBRs) - and four conversion pathways - fast pyrolysis, hydrothermal liquefaction (HTL), conventional gasification, and hydrothermal gasification (HTG). The results show the high fresh water requirement for algae production and the necessity to recycle harvested water or use alternative water sources. To produce 1 kg of algae through ponds, 1564 L of water are required. When PBRs are used, only 372 L water are required; however, the energy requirements for PBRs are about 30 times higher than for ponds. From a final product perspective, the pathway based on the gasification of algae biomass was the thermochemical conversion method that required the highest amount of water per MJ produced (mainly due to its low hydrogen yield), followed by fast pyrolysis and HTL. On the other hand, HTG has the lowest water footprint, mainly because the large amount of electricity generated as part of the process compensates for the electricity used by the system. Performance in all pathways can be improved through recycling channels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    International Nuclear Information System (INIS)

    Nongthombam, Grihalakshmi D.; Labala, Rajendra K.; Das, Sudripta; Handique, Pratap J.; Talukdar, Narayan C.

    2017-01-01

    Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB) sources; namely, sugarcane bagasse (BG), cassava aerial parts (CS), ficus fruits (Ficus cunia) (FF), “phumdi” (floating biomass), rice straw (RS), and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL) to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64%) was significantly higher compared with their native counterparts (0.81–17.97%). Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum) resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  3. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Nongthombam, Grihalakshmi D., E-mail: griha789@gmail.com; Labala, Rajendra K.; Das, Sudripta [Institute of Bioresources and Sustainable Development (IBSD), Imphal (India); Handique, Pratap J. [Department of Biotechnology, Gauhati University, Guwahati (India); Talukdar, Narayan C., E-mail: griha789@gmail.com [Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati (India)

    2017-07-11

    Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB) sources; namely, sugarcane bagasse (BG), cassava aerial parts (CS), ficus fruits (Ficus cunia) (FF), “phumdi” (floating biomass), rice straw (RS), and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL) to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64%) was significantly higher compared with their native counterparts (0.81–17.97%). Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum) resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  4. Characterization of biomasses available in the region of North-East India for production of biofuels

    International Nuclear Information System (INIS)

    Sasmal, Soumya; Goud, Vaibhav V.; Mohanty, Kaustubha

    2012-01-01

    The lignocellulosic materials are cheap and readily available either in the form of agricultural waste or forest residues. These materials can be used as a source for energy production either in the gaseous form (CO, H 2 etc) or in liquid form (ethanol, butanol etc) to meet the rising demand of energy. The reign of lignocellulosic materials for energy production is a proven fact in this era of energy research. The present study focuses on characterization of three biomass samples namely areca nut husk (Areca catheu), moj (Albizia lucida) and bonbogori (Ziziphus rugosa), available in the region of North-East India. Physical and chemical analysis of these lignocellulosic biomass samples were performed using X-ray diffraction techniques, thermogravimetric analysis, FTIR, Raman spectroscopy and CHNSO analysis. Maximum crystalinity was observed in areca nut husk fiber (63.84%) followed by moj (46.43%) and bonbogori (42.46%). The calorific values of all the biomasses were found within the range of 17 MJ/kg to 22 MJ/kg. All these properties combined together per se shows that areca nut husk, bonbogori and moj are potential sources for biofuel production. -- Highlights: ► Non-conventional biomasses were considered in this study. ► Complete characterization of these biomasses are reported. ► Maximum crystalinity was observed in areca nut husk fiber followed by moj and bonbogori. ► Results confirmed that these biomasses can be utilized for biofuel production.

  5. Biomass and its potential for protein and amino acids : valorizing agricultural by-products

    NARCIS (Netherlands)

    Sari, Y.W.

    2015-01-01

    The use of biomass for industrial products is not new. Plants have long been used for clothes, shelter, paper, construction, adhesives, tools, and medicine. With the exploitation on fossil fuel usage in the early 20th century and development of petroleum based refinery, the use of biomass for

  6. Biomass and Swedish energy policy

    International Nuclear Information System (INIS)

    Johansson, Bengt

    2001-01-01

    The use of biomass in Sweden has increased by 44% between 1990 and 1999. In 1999 it was 85 TWh, equivalent to 14% of the total Swedish energy supply. The existence of large forest industry and district heating systems has been an essential condition for this expansion. The tax reform in 1991 seems, however, to have been the most important factor responsible for the rapid bioenergy expansion. Through this reform, the taxation of fossil fuels in district heating systems increased by approximately 30-160%, depending on fuel, whereas bioenergy remained untaxed. Industry is exempted from the energy tax and pays reduced carbon tax. No tax is levied on fossil fuels used for electricity production. Investment grants have existed for biomass-based electricity production but these grants have not been large enough to make biomass-based electricity production economically competitive in a period of falling electricity prices. Despite this, the biomass-based electricity production has increased slightly between 1990 and 1999. A new taxation system aiming at a removal of the tax difference between the industry, district heating and electricity sectors has recently been analysed by the Swedish government. One risk with such a system is that it reduces the competitiveness for biomass in district heating systems as it seems unlikely that the taxes on fossil fuels in the industry and electricity sectors will increase to a level much higher than in other countries. A new system, based on green certificates, for supporting electricity from renewable energy sources has also been proposed by the government.

  7. Ammonia production from amino acid-based biomass-like sources by engineered Escherichia coli.

    Science.gov (United States)

    Mikami, Yosuke; Yoneda, Hisanari; Tatsukami, Yohei; Aoki, Wataru; Ueda, Mitsuyoshi

    2017-12-01

    The demand for ammonia is expected to increase in the future because of its importance in agriculture, industry, and hydrogen transportation. Although the Haber-Bosch process is known as an effective way to produce ammonia, the process is energy-intensive. Thus, an environmentally friendly ammonia production process is desired. In this study, we aimed to produce ammonia from amino acids and amino acid-based biomass-like resources by modifying the metabolism of Escherichia coli. By engineering metabolic flux to promote ammonia production using the overexpression of the ketoisovalerate decarboxylase gene (kivd), derived from Lactococcus lactis, ammonia production from amino acids was 351 mg/L (36.6% yield). Furthermore, we deleted the glnA gene, responsible for ammonia assimilation. Using yeast extract as the sole source of carbon and nitrogen, the resultant strain produced 458 mg/L of ammonia (47.8% yield) from an amino acid-based biomass-like material. The ammonia production yields obtained are the highest reported to date. This study suggests that it will be possible to produce ammonia from waste biomass in an environmentally friendly process.

  8. Decentralized biomass combustion: State of the art and future development

    NARCIS (Netherlands)

    Obernberger, I.

    1998-01-01

    The present amount of biomass used for heat, and to a smaller extent electricity production, is already considerable in several European countries but the potential unused in Europe is even higher. Combustion is the most mature conversion technology utilized for biomass. The systems addressed in

  9. Evaluation of specific lipid production and nutrients removal from wastewater by Rhodosporidium toruloides and biodiesel production from wet biomass via microwave irradiation

    International Nuclear Information System (INIS)

    Ling, Jiayin; Nip, Saiwa; Alves de Toledo, Renata; Tian, Yuan; Shim, Hojae

    2016-01-01

    This study investigated the potential use of yeast Rhodosporidium toruloides for lipid production and removal of organics and nutrients while treating a mixture of distillery and domestic wastewater at low cost without sterilization. The highest specific biomass (24.1 × 10"−"9 g L"−"1 cell"−"1 h"−"1), lipid yield (9.9 × 10"−"9 g L"−"1 cell"−"1 h"−"1), and lipid content (8.54 × 10"−"3 g lipid g"−"1 biomass h"−"1) were achieved on the 2nd day of cultivation. The organics and nutrients removal also reached the highest removal rates within 2 days, with the specific removal rates for COD (chemical oxygen demand), TN (total nitrogen), and TP (total phosphorus) at 39.5, 2.57, and 0.29 × 10"−"9 mg cell"−"1 h"−"1, respectively. The indigenous microorganisms slightly contributed to both lipid production and removal of organics and nutrients. The direct transesterification process via microwave irradiation from wet biomass was further optimized under the conditions of solvent to wet biomass rate 16 mL/g, methanol and chloroform mix rate 1:1, addition of catalyst H_2SO_4 6%, and reaction time 10 min at the reaction temperature of 60 °C. The FAMEs (fatty acid methyl esters) composition and the possibility of biodiesel production from wet oleaginous yeast biomass by the direct transesterification were also assessed. - Highlights: • Yeast Rhodosporidium toruloides used for lipid production in real mixed wastewater. • No significant lipid production and nutrients removal by indigenous organisms. • Highest specific lipid production and nutrient removal rates achieved with 0.05 × 10"8 cells mL"−"1. • Biodiesel production from wet biomass via microwave assisted direct transesterification is feasible.

  10. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  11. Co-production of bio-ethanol, electricity and heat from biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    Reith, J.H.; Den Uil, H.; Van Veen, H. [ECN Biomass, Petten (Netherlands); De Laat, W.T.A.M.; Niessen, J.J. [Royal Nedalco, Bergen op Zoom (Netherlands); De Jong, E.; Elbersen, H.W.; Weusthuis, R. [Agrotechnological Research Institute ATO, BU Renewable Resources, Wageningen (Netherlands); Van Dijken, J.P.; Raamsdonk, L. [Delft University of Technology, Delft (Netherlands)

    2002-07-01

    The use of lignocellulose biomass residues as a feedstock offers good perspectives for large scale production of fuel ethanol at competitive costs. An evaluation was performed to assess the international status of lignocellulose-to-bioethanol technology and the economical and ecological system performance, to identify RandD approaches for further development. Deriving fermentable sugars from the hemicellulose and cellulose fractions of lignocellulose materials via suitable pretreatment and enzymatic cellulose hydrolysis is a critical RandD issue. Further development of pretreatment via mild, low temperature alkaline extraction or weak acid hydrolysis using CO2, dissolved in pressurized hot water ('carbonic acid process') shows good perspectives. Enzymatic cellulose hydrolysis with the currently available industrial cellulases accounts for 36-45% of ethanol production costs. At least a 10-fold increase of cellulase cost-effectiveness is required. Despite substantial RandD efforts, no suitable fermentation system is currently available for the fermentation of pentoses (mainly xylose) from the hemicellulose fraction. Several strains of anaerobic, thermophilic bacteria are able to convert all (hemi)cellulose components into ethanol. Follow-up RandD will focus on isolation of suitable strain(s) from this group. The system evaluation shows a 40-55% energetic efficiency (LHV basis) for conversion of lignocellulose feedstocks to ethanol. Thermal conversion of non-fermentable residues (mainly lignin) in a Biomass-Integrated-Gasifier/Combined Cycle (BIG/CC) system can provide the total steam and electricity requirement for the production process and an electricity surplus for export to the grid, giving a total system efficiency of 56-68%. Water consumption in the process (28-54 liter water/liter ethanol) is much higher than in current ethanol production (lo-15 l/l ethanol). The large amount of process water (used in the pretreatment and cellulose hydrolysis

  12. The limited contribution of large trees to annual biomass production in an old-growth tropical forest.

    Science.gov (United States)

    Ligot, Gauthier; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis-Yaoba; Morin, Xavier; Bauwens, Sébastien; Baya, Fidele; Brostaux, Yves; Doucet, Jean-Louis; Fayolle, Adeline

    2018-04-16

    Although the importance of large trees regarding biodiversity and carbon stock in old-growth forests is undeniable, their annual contribution to biomass production and carbon uptake remains poorly studied at the stand level. To clarify the role of large trees in biomass production, we used data of tree growth, mortality, and recruitment monitored during 20 yr in 10 4-ha plots in a species-rich tropical forest (Central African Republic). Using a random block design, three different silvicultural treatments, control, logged, and logged + thinned, were applied in the 10 plots. Annual biomass gains and losses were analyzed in relation to the relative biomass abundance of large trees and by tree size classes using a spatial bootstrap procedure. Although large trees had high individual growth rates and constituted a substantial amount of biomass, stand-level biomass production decreased with the abundance of large trees in all treatments and plots. The contribution of large trees to annual stand-level biomass production appeared limited in comparison to that of small trees. This pattern did not only originate from differences in abundance of small vs. large trees or differences in initial biomass stocks among tree size classes, but also from a reduced relative growth rate of large trees and a relatively constant mortality rate among tree size classes. In a context in which large trees are increasingly gaining attention as being a valuable and a key structural characteristic of natural forests, the present study brought key insights to better gauge the relatively limited role of large trees in annual stand-level biomass production. In terms of carbon uptake, these results suggest, as already demonstrated, a low net carbon uptake of old-growth forests in comparison to that of logged forests. Tropical forests that reach a successional stage with relatively high density of large trees progressively cease to be carbon sinks as large trees contribute sparsely or even

  13. Impacts of paper sludge and manure on soil and biomass production of willow

    International Nuclear Information System (INIS)

    Quaye, Amos K.; Volk, Timothy A.; Hafner, Sasha; Leopold, Donald J.; Schirmer, Charles

    2011-01-01

    Land application of organic wastes to short rotation woody crops (SRWC) can reduce the environmental impacts associated with waste disposal and enhance the productivity of biomass production systems. Understanding the potential impacts of organic amendments however, requires the examination of changes in soil characteristics and plant productivity. This study was conducted to evaluate the effect of paper sludge and dairy manure on biomass production of shrub willow (Salix dasyclados SV1) and to determine the impacts of these amendments on soil chemical properties. Treatments included urea, dairy manure and paper sludge separately and in combination, and a control. These materials were applied in the summer of 2005 to two fields of SV1 at different stages of growth: An old field with one year old shoots on a 10 year old root system and a young field which was beginning regrowth after being coppiced at the end of its first growing season. Foliar nutrient concentrations and soil chemical properties were analyzed at the end of the second growing season after treatment application to determine plant response to the fertilization regimes and to determine the effects of fertilization on soil characteristics. Fertilization did not increase biomass production in either field. However, application of the N-poor paper sludge did not reduce yield either. In general, fertilization did not influence soil or foliar chemistry, although there were some exceptions. The lack of response observed in this study is probably related to the nutrient status of the site or losses of applied nutrients. -- Highlights: → The fertilization treatments did not have any significant effect biomass production. → Application of paper sludge did not reduce willow biomass yield in both fields. → Foliar N concentration of willow crops in this study is in the range considered for optimal growth. → The limited response of foliar nutrients to fertilization indicates that the site was not limited by

  14. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  15. Bio-ethanol production from waste biomass of Pogonatherum crinitum phytoremediator: an eco-friendly strategy for renewable energy.

    Science.gov (United States)

    Waghmare, Pankajkumar R; Watharkar, Anuprita D; Jeon, Byong-Hun; Govindwar, Sanjay P

    2018-03-01

    In this study, we have described three steps to produce ethanol from Pogonatherum crinitum , which was derived after the treatment of textile wastewater. (a) Production of biomass: biomass samples collected from a hydroponic P. crinitum phytoreactor treating dye textile effluents and augmented with Ca-alginate immobilized growth-promoting bacterium, Bacillus pumilus strain PgJ (consortium phytoreactor), and waste sorghum husks were collected and dried. Compositional analysis of biomass (consortium phytoreactor) showed that the concentration of cellulose, hemicelluloses and lignin was 42, 30 and 17%, respectively, whereas the biomass samples without the growth-promoting bacterium (normal phytoreactor) was slightly lower, 40, 29 and 16%, respectively. (b) Hydrolysate (sugar) production: a crude sample of the fungus, Phanerochaete chrysosporium containing hydrolytic enzymes such as endoglucanase (53.25 U/ml), exoglucanase (8.38 U/ml), glucoamylase (115.04 U/ml), xylanase (83.88 U/ml), LiP (0.972 U/ml) and MnP (0.459 U/ml) was obtained, and added to consortium, normal and control phytoreactor derived biomass supplemented with Tween-20 (0.2% v/v). The hydrolysate of biomass from consortium phytoreactor produced maximum reducing sugar (0.93 g/l) than hydrolysates of normal phytoreactor biomass (0.82 g/l) and control phytoreactor biomass (0.79 g/l). FTIR and XRD analysis confirmed structural changes in treated biomass. (c) Ethanol production: the bioethanol produced from enzymatic hydrolysates of waste biomass of consortium and normal phytoreactor using Saccharomyces cerevisiae (KCTC 7296) was 42.2 and 39.4 g/l, respectively, while control phytoreactor biomass hydrolysate showed only 25.5 g/l. Thus, the amalgamation of phytoremediation and bioethanol production can be the truly environment-friendly way to eliminate the problem of textile dye along with bioenergy generation.

  16. Coupled production in biorefineries--combined use of biomass as a source of energy, fuels and materials.

    Science.gov (United States)

    Lyko, Hildegard; Deerberg, Görge; Weidner, Eckhard

    2009-06-01

    In spite of high prices for fossil raw materials the production of biomass-based products is rarely economically successful today. Depending on the location feedstock prices are currently so high that products from renewable resources are not marketable when produced in existing process chains. Apart from the higher feedstock costs one reason is that at present no optimized production systems exist in contrast to the chemical and petrochemical industry where these systems have been established over the last decades. If we succeed in developing production systems modelled on those of petroleum refineries where we can provide a flexible coupled production of energy, fuels, materials and chemicals chances are good to enable a lastingly successful production on the basis of renewable resources. Based on examples of fat-based and sugar-based concepts ideas for platform oriented biorefineries are outlined.

  17. Biomass and protein production of Chlorella vulgarisBeyerinck (Chlorellales : Chlorellaceae via the design of selective culture media

    Directory of Open Access Journals (Sweden)

    Ángel Darío González-Delgado

    2017-09-01

    Full Text Available In recent years, it has become more frequent the use of alternative culture media that use phosphorus and nitrogen sources as well as microelements, instead of using the more traditional ones. Therefore, in this study two mixotrophic culture media were designed with different sodium nitrate, potassium phosphate and sodium acetate/ammonium carbonate concentrations as carbon source, to evaluate the biomass and protein production of the microalgae Chlorella vulgaris Beyerinck. A Pareto diagram and a response surface plot were generated in order to know the significant influence that the study variables have on protein production. The results showed that higher biomass production (3.72 g/L for the culture with acetate and 2.17 g/L for the one with carbonate are directly related to sodium nitrate (1.96 mM and potassium phosphate (2.11 mM. In addition, the maximum protein values obtained were 60% and 34% for acetate and carbonate cultures, respectively, both with 2.94 mM of sodium nitrate. Finally, the Pareto diagram showed that for the culture based on acetate there was no significant variables that influenced protein production; whereas the culture with carbonate, sodium nitrate and potassium phosphate influenced significantly the production of this metabolite.

  18. Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-08-01

    Efficient resource usage is important for cost-effective microalgae production, where the incorporation of waste streams and recycled water into the process has great potential. This study builds upon emerging research on nutrient recycling in thraustochytrid production, where waste streams are recovered after lipid extraction and recycled into future cultures. This research investigates the nitrogen flux of recycled hydrolysate derived from enzymatic lipid extraction of thraustochytrid biomass. Results indicated the proteinaceous content of the recycled hydrolysate can offset the need to supply fresh nitrogen in a secondary culture, without detrimental impact upon the produced biomass. The treatment employing the recycled hydrolysate with no nitrogen addition accumulated 14.86 g L(-1) of biomass in 141 h with 43.3 % (w/w) lipid content compared to the control which had 9.26 g L(-1) and 46.9 % (w/w), respectively. This improved nutrient efficiency and wastewater recovery represents considerable potential for enhanced resource efficiency of commercial thraustochytrid production.

  19. Liquid fuels production from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  20. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    and supply chain models specifically for biomass to bioenergy production. The study suggest that this species can be profitably managed for biomass production with rotation length of 11 to 12 years and with a stand tree density of 1,200 trees per acre. Optimum rotation length is greatly affected by seedlings costs and biomass productivity. In the fourth study, a evaluation of seven different feedstocks (loblolly pine, natural mixed hardwood, Eucalyptus, switchgrass, miscanthus, corn stover and sweet sorghum) is made in terms of supply chain, biomass delivered costs, dollar per ton of carbohydrate and dollar per million BTU delivered to a biorefinery. Forest feedstocks present better advantages in terms of a well established supply chain, year round supply and no need for biomass storage. In the same context biomass delivered costs, as well as cost to delivered one ton of carbohydrate and one million BTU is lower in forest feedstocks. In the fifth study, conversion costs, profitability and sensitivity analysis for a novel pretreatment process, green liquor, are modeled for ethanol production with loblolly pine, natural mixed hardwood and Eucalyptus as feedstocks, evaluated in two investment scenarios: green field and repurposing of an old kraft pulp mill. Better financial returns are perceived in the natural hardwood - repurposing scenario, mainly due to lower CAPEX and lower enzyme charge and cost. In the sixth study, conversion cost, CAPEX, ethanol yield and profitability for the thermochemical process (indirect gasification and production of mixed alcohol) is simulated for loblolly pine, natural hardwood, eucalyptus, corn stover and switchgrass. Higher ethanol yield with forest feedstock (due to higher content of %C and %H) result in better economic performance, when compare to agriculture biomass. This research indicates that forest feedstock outperform agriculture biomass in terms of delivered costs, supply chain, ethanol yield and process profitability. Loblolly

  1. Scenarios for power production with biomass in the Finnish forest industry

    International Nuclear Information System (INIS)

    Nousiainen, I.K.; Malinen, H.O.; Villa, A.O.

    1997-01-01

    This study presents three scenarios for power production with biomass in Finnish pulp and paper mills. The basic scenario assumes that the production capacity in the forest industry increases as in the past. The green energy scenario assumes that there is a strong demand from the market for sustainable green energy production. The maximum scenario assumes that the production capacity of chemical pulp increases significantly and the use of wood raw material extends to the maximum level. According to the basic scenario the use of biofuels in the pulp and paper mills will increase from starting level, 3.24 Mtoe in 1992, to 5.07 Mtoe by the year 2010. The utilization potential of biofuels will increase to 5.45 Mtoe in green energy and to 6.43 Mtoe in the maximum biofuels scenario. The power production with biomass will increase from the starting level, 572 MW in 1992, to 930 MW in the basic, to 1 100 MW in the green energy and to 1 670 MW in the maximum biofuels scenario by the year 2010. (author)

  2. Power production from biomass III. Gasification and pyrolysis R and D and D for industry

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). New Energy Technologies

    1999-07-01

    The Seminar on Power Production from Biomass III. Gasification and Pyrolysis R and D and D for Industry, was held on 14-15 September 1998 in Espoo. The seminar was organised by VTT Energy in co-operation with the University of Groningen, EU-Thermie Programme and Technology Development Centre, Finland (Tekes). Overviews of current activities on power production from biomass and wastes in Europe and in the United States were given, and all European and U. S. demonstration projects on biomass gasification were presented. In Europe, the target is to produce additional 90 Mtoe/a of bioenergy for the market by 2010. This is a huge challenge for the bioenergy sector, including biomass production and harvesting, conversion technology, energy companies, and end users. In USA, U.S. Department of Energy is promoting the Biomass Power Programme to encourage and assist industry in the development and validation of renewable, biomass-based electricity generation systems, the objective being to double the present use of 7 000 MW biomass power by the year 2010. The new Finnish PROGAS Programme initiated by VTT was also introduced. Several gasification projects are today on the demonstration stage prior to entering the commercial level. Pyrolysis technologies are not yet on the demonstration stage on the energy market. Bio-oils can easily be transported, stored and utilised in existing boiler and diesel plants. The proceedings include the presentations given by the keynote speakers and other invited speakers, as well as some extended poster presentations. (orig.)

  3. Algal Biomass for Bioenergy and Bioproducts Production in Biorefinery Concepts

    DEFF Research Database (Denmark)

    D'Este, Martina

    industry. The macroalgae used in this work were Laminaria digitata and Saccharina latissima, while the microalgae were Chlorella sorokiniana, Chlorella vulgaris and Chlorella protothecoides. Moreover, an evaluation of the effect of the harvesting season and location on the composition of high value...... feedstocks. Biorefinery represents an important tool towards the development of a sustainable economy. Within the biorefinery framework several bioproducts, such as food, feed and biofuels, can be produced from biomass. The specific composition of the biomass feedstock determines the potential final product...... heterotrophically in the macroalgae L. digitata hydrolyzed. The final composition of the microalgal biomass showed that the protein content was increased from 0.07 ± 0.01 gProtein gDM-1 to 0.44 ± 0.04 gProtein DM-1. The results obtained show that this solution may represent an interesting strategy to be applied...

  4. Biomass production of Lactobacillus plantarum LP02 isolated from ...

    African Journals Online (AJOL)

    The potentially hypocholesterolemic strain, designated PL02, of Lactobacillus plantarum, was isolated from infant feces. The aim of this study was to characterize and to cultivate this isolate for biomass production in a 5 L fermentor by batch or fed-batch fermentation. A modified medium composition without peptone was ...

  5. Production of bio-oil from underutilized forest biomass using an auger reactor

    Science.gov (United States)

    H. Ravindran; S. Thangalzhy-Gopakumar; S. Adhikari; O. Fasina; M. Tu; B. Via; E. Carter; S. Taylor

    2015-01-01

    Conversion of underutilized forest biomass to bio-oil could be a niche market for energy production. In this work, bio-oil was produced from underutilized forest biomass at selected temperatures between 425–500°C using an auger reactor. Physical properties of bio-oil, such as pH, density, heating value, ash, and water, were analyzed and compared with an ASTM standard...

  6. Cyanobacteria cultivation in industrial wastewaters and biodiesel production from their biomass: a review.

    Science.gov (United States)

    Balasubramanian, Lavanya; Subramanian, Geetha; Nazeer, Thayiba Thanveer; Simpson, Hannah Shalini; Rahuman, Shifina T; Raju, Preetha

    2011-01-01

    As an alternative fuel biodiesel has become increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fueled engines. Recently, research interest has focused on the production of biofuel from microalgae. Cyanobacteria appeared to be suitable candidates for cultivation in wastes and wastewaters because they produce biomass in satisfactory quantity and can be harvested relatively easily due to their size and structure. In addition, their biomass composition can be manipulated by several environmental and operational factors to produce biomass with concrete characteristics. Herein, we review the culture of cyanobacteria in wastewaters and also the potential resources that can be transformed into biodiesel successfully for meeting the ever-increasing demand for biodiesel production. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  7. Assessment of Methods to Pretreat Microalgal Biomass for Enhanced Biogas Production

    Directory of Open Access Journals (Sweden)

    Aline de L. Marques

    2018-06-01

    Full Text Available In anaerobic digestion of microalgae, the intracellular material may remain intact due to the non-ruptured membrane and/or cell wall, reducing the methane yield. Therefore, different pretreatment methods were evaluated for the solubilization of microalgae Scenedesmus sp. The anaerobic digestion of biomass hydrolyzed at 150 °C for 60 min with sulfuric acid 0.1% v/v showed higher methane yield (204-316 mL methane/g volatile solids applied compared to raw biomass (104-163 mL methane/g volatile solids applied. The replacement of sulfuric acid with carbonic acid (by bubbling carbon dioxide up to pH 2.0 provided results similar to those obtained with sulfuric acid, reaching solubilization of 41.6% of the biomass. This result shows that part of the flue gas (containing carbon dioxide and other acid gases as well as high temperatures may be used for the hydrolysis of the residual biomass from microalgae, thus lowering operational costs (e.g., energy consumption and chemical input.

  8. Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2016-12-01

    Full Text Available With the aim at enhancing the sustainability of biomass production in the Mediterranean area, this paper analyzes, for the first time, the production of sorghum (Sorghum bicolor (L. Moench biomass for bioenergy production using urban treated wastewaters and bio-fertilization. For this purpose, the effects on biomass production of three different fertilizations (no-nitrogen control, biofertilizer, and mineral ammonium nitrate, four levels of constructed wetland (CW wastewater restitutions (0%, 33%, 66% and 100% of crop evapotranspiration (ETc and three harvesting dates (at full plant maturity, at the initial senescence stage, and at the post-senescence stage were evaluated in a two year trial. For bio-fertilization, a commercial product based on arbuscular mycorrhizal fungi was used. Mineral nitrogen (N fertilization significantly increased dry biomass (+22.8% in the first year and +16.8% in the second year compared to the control (95.9 and 188.2 g·plant−1, respectively. The lowest and highest biomass production, in 2008 and 2009, was found at 0% (67.1 and 118.2 g·plant−1 and 100% (139.2 and 297.4 g·plant−1 ETc restitutions. In both years, the first harvest gave the highest biomass yield (124.3 g·plant−1 in the first year and 321.3 g·plant−1 in the second, followed by the second and the third one. The results showed that in Mediterranean areas, constructed wetlands treated wastewaters, when complying with the European restrictions for their use in agriculture, may represent an important tool to enhance and stabilize the biomass of energy crops by recycling scarce quality water and nutrients otherwise lost in the environment.

  9. Improved lipid and biomass productivities in Chlorella vulgaris by differing the inoculation medium from the production medium

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Hamedi

    2016-06-01

    Full Text Available Improvement of biomass and lipid productivities is now one of the main concerns in commercialization of microalgae cultivation as a feedstock for algal biofuel production. Conventional photoautotrophic processes using well-studied and rich in oil strain of Chlorella vulgaris are not able to meet such demands. A new strategy of inoculating algae production medium with cells grown in a different medium from the production medium was proposed herein. More specifically, when SH4 was used as production medium and N8 was used as inoculation medium, biomass and lipid productivities increased by 2.33 folds and 1.44 fold, respectively, compared with when the production and inoculation media were the same, such as SH4. The findings of the present investigation showed that this cultivation scheme resulted in 52% increase in cell number and 54% increase in dry weight leading to improved productivities. Although by even considering this improvement, photoautotrophic cultivation of algae can hardly compete with the heterotrophic cultivation, the high cost of hydrocarbon supply required in large-scale heterotrophic processes marks the technique proposed in the present study as a promising approach for commercialization of algal biofuel production.

  10. Enhanced production of green tide algal biomass through additional carbon supply.

    Science.gov (United States)

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  11. Enhanced production of green tide algal biomass through additional carbon supply.

    Directory of Open Access Journals (Sweden)

    Pedro H de Paula Silva

    Full Text Available Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2 enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (- as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (- affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9, and grew at similar rates up to pH 9, demonstrating HCO3 (- utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%, Chaetomorpha linum (24% and to a lesser extent for Cladophora patentiramea (11%, compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-.

  12. Combined heat and power production through biomass gasification with 'Heatpipe-Reformer'

    International Nuclear Information System (INIS)

    Iliev, I.; Kamburova, V.; Terziev, A.

    2013-01-01

    The current report aims is to analyze the system for combined heat and power production through biomass gasification with “heatpipe-reformer” system. Special attention is paid on the process of synthetic gas production in the Reformer, its cleaning and further burning in the co-generation unit. A financial analysis is made regarding the investments and profits generated by the combined heat and power production. (authors)

  13. A roadmap for production of sustainable, consistent and reliable electric power from agricultural biomass- An Indian perspective

    International Nuclear Information System (INIS)

    Singh, Jaswinder

    2016-01-01

    The utilization of agricultural biomass for production of electric power can help to reduce the environmental emissions while achieving energy security and sustainable development. This paper presents a methodology for estimating the power production potential of agricultural biomass in a country. Further, the methodology has been applied to develop a roadmap for producing reliable power in India. The present study reveals that about 650 Mt/year of agricultural biomass is generated in India, while about one-third of this has been found to be surplus for energy applications. The cereal crops have major contribution (64.60%) in production of surplus biomass followed by sugarcane (24.60%) and cotton (10.68%). The energy potential of these resources is of the order of 3.72 EJ, which represents a significant proportion of the primary energy consumption in the country. These biomass resources can produce electric power of 23–35 GW depending upon the efficiency of thermal conversion. The delivery of biomass to the plants and selection of appropriate technology have been found as the major issues that need to be resolved carefully. In the end, the study summarizes various technological options for biomass collection and utilization that can be used for producing clean and consistent power supply. - Highlights: •The production of bioelectricity in India is imperative and inevitable. •About one-third of the agricultural biomass is available for power generation. •The power potential of these resources is of the order of 23–31 GW. •The delivery of biomass to plants and technology selection are the key issues. •India should exploit these resources for producing clean and reliable power.

  14. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Emery, Isaac R.; Mosier, Nathan S.

    2012-01-01

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO 2 eq/MJ, relative to 5654 L/ha at 52.3 g CO 2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO 2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  15. Key factors for achieving profitable biogas production from agricultural waste and sustainable biomass

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Biswas, Rajib

    2013-01-01

    Based on numerous investigations on increasing the biogas yield of manure, a new concept was developed to increase the economical operation of manure based biogas plants by combining up concentration of manure with a more specific treatment of the recalcitrant lignocellulosic fiber fraction...... by implementing the treatment on the digested solid fraction. Catch crops have been identified as a sustainable co-substrate for biogas production with a high biogas potential. For exploiting this biomass for profitable biogas production, the biomass yield per hectare, harvest costs, TS concentration and specific...

  16. Biomass catalysis and solvents; Biomasse catalyse et solvants

    Energy Technology Data Exchange (ETDEWEB)

    Pioch, D [CIRAD-AMIS, programme Agro-Alimentaire, 34 - Montpellier (France); Pouilloux, Y; Barrault, J [Centre National de la Recherche Scientifique (CNRS UMR 6503), ESIP, Lab. de Catalyse en Chimie Organique, 86 - Poitiers (France); and others

    2000-07-01

    How to develop new technics and products and at the same time to respect the environment? The biomass seems to be an interesting domain in this framework and this document allows the selection of performing products obtain by biomass. Among these products the solvents economic and environmental advantages or consequences are discussed. A great part is also devoted to the voc emissions, bound to the solvents.

  17. Ecological impacts of biomass production at stand and landscape levels

    CSIR Research Space (South Africa)

    Du Toit, B

    2014-09-01

    Full Text Available In Chapters 4, 5 and 6 of this book, the authors discussed the production and procurement of biomass from various sources, including extensively managed systems such as woodlands, and much more intensively managed systems such as short-rotation bio...

  18. Fruit production and branching density affect shoot and whole-tree wood to leaf biomass ratio in olive.

    Science.gov (United States)

    Rosati, Adolfo; Paoletti, Andrea; Al Hariri, Raeed; Famiani, Franco

    2018-02-14

    The amount of shoot stem (i.e., woody part of the shoot) dry matter per unit shoot leaf dry matter (i.e., the shoot wood to leaf biomass ratio) has been reported to be lower in short shoots than in long ones, and this is related to the greater and earlier ability of short shoots to export carbon. This is important in fruit trees, since the greater and earlier carbon export ability of shoots with a lower wood to leaf biomass ratio improves fruit production. This ratio may vary with cultivars, training systems or plant age, but no study has previously investigated the possible effect of fruit production. In this study on two olive cultivars (i.e., Arbequina, with low growth rate, and Frantoio, with high growth rate) subject to different fruit production treatments, we found that at increasing fruit production, shoot length and shoot wood to leaf biomass ratio were proportionally reduced in the new shoots growing at the same time as the fruit. Specifically, fruit production proportionally reduced total new-shoot biomass, length, leaf area and average shoot length. With decreasing shoot length, shoot diameter, stem mass, internode length, individual leaf area and shoot wood to leaf biomass ratio also decreased. This may be viewed as a plant strategy to better support fruit growth in the current year, given the greater and earlier ability of short shoots to export carbon. Moreover, at the whole-tree level, the percentage of total tree biomass production invested in leaves was closely correlated with branching density, which differed significantly across cultivars. By branching more, Arbequina concentrates more shoots (thus leaves) per unit of wood (trunk, branches and root) mass, decreasing wood to leaf biomass ratio at the whole-tree level. Therefore, while, at the shoot level, shoot length determines shoot wood to leaf biomass ratio, at the canopy level branching density is also an important determinant of whole-tree wood to leaf biomass ratio. Whole-tree wood to leaf

  19. A decision support system for planning biomass-based energy production

    Energy Technology Data Exchange (ETDEWEB)

    Frombo, Francesco; Robba, Michela [DIST, Department of Communication, Computer and System Sciences, University of Genoa, Via Opera Pia 13, 16145 Genova (Italy); Renewable Energy Laboratory, Modelling and Optimization, Via A. Magliotto 2, 17100 Savona (Italy); Minciardi, Riccardo; Sacile, Roberto [DIST, Department of Communication, Computer and System Sciences, University of Genoa, Via Opera Pia 13, 16145 Genova (Italy)

    2009-03-15

    Environmental decision support systems (EDSS) are recognized as valuable tools for environmental planning and management. In this paper, a geographic information system (GIS)-based EDSS for the optimal planning of forest biomass use for energy production is presented. A user-friendly interface allows the creation of Scenarios and the running of the developed decision and environmental models. In particular, the optimization model regards decisions over a long-term period (e.g. years) and includes decision variables related to plant locations, conversion processes (pyrolisis, gasification, combustion), harvested biomass. Moreover, different energy products and different definitions of the harvesting and pre-treatment operations are taken into account. The correct management of the forest is considered through specific constraints, security factors, and procedures for parcel selection. The EDSS features and capabilities are described in detail, with specific reference to a case study. Discussion and further research are reported. (author)

  20. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    Science.gov (United States)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  1. Biomass energy and the global carbon balance

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1994-01-01

    Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. It is concluded that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store, particularly on higher productivity lands. Use of the biomass produced as an energy source has the added advantage of a wide range of other environmental, social and economic benefits. (author)

  2. Novel applications of biomass wet pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sillanpaa, M. [Lappeenranta Univ. of Technology (Finland)], email: mika.sillanpaa@lut.fi

    2012-07-01

    Production of carbonaceous material from unconventional wet biomass sources by thermal processing offers interesting novel opportunities and application possibilities in different fields. Thermal treatment at low temperatures refers to torrefication in general. Disadvantage in this technique is that biomass has to be dried first which consumes a lot energy and time and limits use of biomass materials widely. In wetpyrolysis (hydrothermal carbonization, HTC), biomass source can be wetter, like wood, household wastes, manure or industrial wastewater sludge. Reaction takes place in water environment at higher temperature (180-250 deg C) and pressure which is self-generated. Typically reaction system is high pressure reactor also called autoclave. Comparing to torrefaction HTC produces more solid yield, water soluble organic compounds but formation is low during reaction. Properties of the product can be easily modified by changing reaction conditions, utilization of additives or catalysts. Novel materials obtained by this technique will be used in different applications in water treatment and it will be also interesting to compare purification efficiency of these materials to activated carbon.

  3. Sustainable biomass products development and evaluation, Hamakua project. Final draft report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The PICHTR Sustainable Biomass Energy Program was developed to evaluate the potential to cultivate crops for energy production as an alternative use of lands made available by the closing of large sugar plantations. In particular, the closing of the Hamakua Sugar Company on the island of Hawaii brought a great deal of attention to the future of agriculture in this region and in the state. Many options were proposed. Several promising alternatives had been proposed for cane lands. These included dedicated feedstock supply systems (DFSS) for electrical energy production, cultivation of sugarcane to produce ethanol and related by-products, and the production of feed and crops to support animal agriculture. Implementation of some of the options might require preservation of large tracts of land and maintenance of the sugar mills and sugar infrastructure. An analysis of the technical, financial, and other issues necessary to reach conclusions regarding the optimal use of these lands was required. At the request of the Office of State Planning and Senator Akaka`s office, the Pacific International Center for High Technology Research (PICHTR) established and coordinated a working group composed of state, county, federal, and private sector representatives to identify sustainable energy options for the use of idle sugar lands on the island of Hawaii. The Sustainable Biomass Energy Program`s Hamakua Project was established to complete a comprehensive evaluation of the most viable alternatives and assess the options to grow crops as a source of raw materials for the production of transportation fuel and/or electricity on the island of Hawaii. The motivation for evaluating biomass to energy conversion embraced the considerations that Hawaii`s energy security would be improved by diversifying the fuels used for transportation and reducing dependency on imported fossil fuels. The use of waste products as feedstocks could divert wastes from landfills.

  4. Remediation of cyanide-contaminated industrial sites through woody biomass production

    Science.gov (United States)

    Dimitrova, Tsvetelina; Repmann, Frank; Freese, Dirk

    2017-04-01

    Due to the unfavourable chemical and physical soil quality parameters and the potential presence of contaminants, former industrial sites can hardly be utilized as arable land and can thus be classified as marginal areas. Still, as far as possible, they can effectively be used for the production of alternative energy, including the cultivation of fast growing trees. Apart from being a source of bioenergy, trees might facilitate the stabilization, remedation, contaminant extraction and degradation and, not on the last place, to enhance soil quality improvement on former industrial areas. This process is known as phytoremediation and has successfully been applied on industrial sites of various organic and inorganic contamination. The former manufactured gas plant site ( 2500 m2) "ehemalige Leuchtgasanstalt" Cottbus, contaminated, among others, with iron cyanides undergoes phytoremediation with simultaneous biomass production since 2011. The project "Biomass-Remediation" is fully financed by the German Railways JSC. A dense (23700 stems/ha), mixed cover of willow (Salix caprea), poplar (Populus maximowicii Henry x Populus trichocarpa Torr. et Gray (Hybrid 275)) and black locust (Robinia pseudoaccacia) trees has been planted on the site. Throughout the five years of remediation, a successful long-term stabilization of the site has been achieved as a result of the nearly outright established tree stock and the dense planting. Annual monitoring of the cyanide levels in the leaf tissue of the trees on the site and results from greenhouse experiments indicate the ability of all tree species to extract and transport the cyanide from the soil. Additonally, the greenhouse experiments suggest that the willows might be able, although not to a full extent, to detoxify the contaminant by splitting the CN moiety. The contaminated biomass material might easily be dealt with through regular harvests and subsequent incineration. Phytoremediation with simultaneous biomass production

  5. An analysis of the feasibility for increasing woody biomass production from pine plantations in the southern United States

    International Nuclear Information System (INIS)

    Munsell, John F.; Fox, Thomas R.

    2010-01-01

    In the near future, wood from the 130 000 km 2 of pine plantations in the southern United States could provide much of the feedstock for emerging bioenergy industries. Research and operational experience show that total plantation biomass productivity exceeding 22.4 Mg ha -1 y -1 green weight basis with rotations less than 25 years are biologically possible, financially attractive, and environmentally sustainable. These gains become possible when intensively managed forest plantations are treated as agro-ecosystems where both the crop trees and the soil are managed to optimize productivity and value. Intensive management of southern US pine plantations could significantly increase the amount of biomass available to supply bioenergy firms. Results from growth and yield simulations using models and a financial analysis suggest that if the 130 000 km 2 of cutover pine plantations and an additional 20 000 km 2 of planted idle farmland are intensively managed in the most profitable regimes, up to 77.5 Tg green weight basis of woody biomass could be produced annually. However, questions exist about the extent to which intensive management for biomass production can improve financial returns to owners and whether they would adopt these systems. The financial analysis suggests providing biomass for energy from pine plantations on cutover sites is most profitable when intensive management is used to produce a mixture of traditional forest products and biomass for energy. Returns from dedicated biomass plantations on cutover sites and idle farmland will be lower than integrated product plantations unless prices for biomass increase or subsidies are available. (author)

  6. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Making environmental assessments of biomass production systems comparable worldwide

    International Nuclear Information System (INIS)

    Meyer, Markus A; Seppelt, Ralf; Priess, Joerg A; Witing, Felix

    2016-01-01

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  8. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  9. Biomass in Germany

    International Nuclear Information System (INIS)

    Chapron, Thibaut

    2014-01-01

    This document provides, first, an overview of biomass industry in Germany: energy consumption and renewable energy production, the French and German electricity mix, the 2003-2013 evolution of renewable electricity production and the 2020 forecasts, the biomass power plants, plantations, biofuels production and consumption in Germany. Then, the legal framework of biofuels development in Germany is addressed (financial incentives, tariffs, direct electricity selling). Next, a focus is made on biogas production both in France and in Germany (facilities, resources). Finally, the French-German cooperation in the biomass industry and the research actors are presented

  10. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B L; Castillo, F J

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  11. DEVELOPMENT OF THE BOILER FOR COMBUSTION OF AGRICULTURAL BIOMASS BY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Valentina Turanjanin

    2010-01-01

    Full Text Available Republic of Serbia consumes about 15 million tons of equivalent oil per year (Mtoe. At the same time potential of the renewable energy sources is about 3,5 Mtoe/year. Main renewable source is biomass, with its potential of about 2,6 Mtoe/year, and 60% of the total biomass source is of agricultural origin. Mainly, that type of biomass is collected, transported and stored in form of bales. At the same time in one of the largest agricultural companies in Serbia (PKB there are over 2000 ha of soya plantations, and also 4000 t/year of baled soya straw available, none of which being used for energy purposes. Therefore, efforts have been made in the Laboratory for Thermal Engineering and Energy of the "Vinča" Institute to develop a technology for utilizing bales of various sizes and shapes for energy production. Satisfactory test results of the 1 MW experimental facility - low CO levels and stable thermal output - led to the building-up of a 1.5 MW soya straw bales-fired hot water boiler, with cigarette type of combustion, for the purposes of greenhouse and office heating in the PKB. Further more, achieving good results in exploitation of that hot water boiler, the next step is building up the first combined heat and power (electricity production facility (CHP, which will use agricultural biomass as a fuel, in Serbia.

  12. The biomass file

    International Nuclear Information System (INIS)

    2010-01-01

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  13. Biomass for energy production. Economic evaluation, efficiency comparison and optimal utilization of biomass; Biomasse zur Energiegewinnung. Oekonomische Bewertung, Effizienzvergleich und optimale Biomassenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Zeddies, Juergen [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Landwirtschaftliche Betriebslehre; Schoenleber, Nicole

    2015-07-01

    An optimized and/or goal-oriented use of available biomass feedstock for energetic conversion requires a detailed analysis of bioenergy production lines according to technical and economic efficiency indicators. Accordingly, relevant parameters of selected production lines supplying heat, electricity and fuel have been studied and used as data base for an optimization model. Most favorable combination of bioenergy lines considering political and economic objectives are analyzed by applying a specifically designed linear optimization model. Modeling results shall allow evaluation of political courses of action.

  14. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia1[OPEN

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Salazar, Octavio; Fedoroff, Nina

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5′-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia. PMID:28743765

  15. Extension of biomass estimates to pre-assessment periods using density dependent surplus production approach.

    Directory of Open Access Journals (Sweden)

    Jan Horbowy

    Full Text Available Biomass reconstructions to pre-assessment periods for commercially important and exploitable fish species are important tools for understanding long-term processes and fluctuation on stock and ecosystem level. For some stocks only fisheries statistics and fishery dependent data are available, for periods before surveys were conducted. The methods for the backward extension of the analytical assessment of biomass for years for which only total catch volumes are available were developed and tested in this paper. Two of the approaches developed apply the concept of the surplus production rate (SPR, which is shown to be stock density dependent if stock dynamics is governed by classical stock-production models. The other approach used a modified form of the Schaefer production model that allows for backward biomass estimation. The performance of the methods was tested on the Arctic cod and North Sea herring stocks, for which analytical biomass estimates extend back to the late 1940s. Next, the methods were applied to extend biomass estimates of the North-east Atlantic mackerel from the 1970s (analytical biomass estimates available to the 1950s, for which only total catch volumes were available. For comparison with other methods which employs a constant SPR estimated as an average of the observed values, was also applied. The analyses showed that the performance of the methods is stock and data specific; the methods that work well for one stock may fail for the others. The constant SPR method is not recommended in those cases when the SPR is relatively high and the catch volumes in the reconstructed period are low.

  16. Incorporating uncertainty analysis into life cycle estimates of greenhouse gas emissions from biomass production

    International Nuclear Information System (INIS)

    Johnson, David R.; Willis, Henry H.; Curtright, Aimee E.; Samaras, Constantine; Skone, Timothy

    2011-01-01

    Before further investments are made in utilizing biomass as a source of renewable energy, both policy makers and the energy industry need estimates of the net greenhouse gas (GHG) reductions expected from substituting biobased fuels for fossil fuels. Such GHG reductions depend greatly on how the biomass is cultivated, transported, processed, and converted into fuel or electricity. Any policy aiming to reduce GHGs with biomass-based energy must account for uncertainties in emissions at each stage of production, or else it risks yielding marginal reductions, if any, while potentially imposing great costs. This paper provides a framework for incorporating uncertainty analysis specifically into estimates of the life cycle GHG emissions from the production of biomass. We outline the sources of uncertainty, discuss the implications of uncertainty and variability on the limits of life cycle assessment (LCA) models, and provide a guide for practitioners to best practices in modeling these uncertainties. The suite of techniques described herein can be used to improve the understanding and the representation of the uncertainties associated with emissions estimates, thus enabling improved decision making with respect to the use of biomass for energy and fuel production. -- Highlights: → We describe key model, scenario and data uncertainties in LCAs of biobased fuels. → System boundaries and allocation choices should be consistent with study goals. → Scenarios should be designed around policy levers that can be controlled. → We describe a new way to analyze the importance of covariance between inputs.

  17. Increasing production yield of tyrosine and mevalonate through inhibition of biomass formation

    DEFF Research Database (Denmark)

    Li, Songyuan; Jendresen, Christian Bille; Nielsen, Alex Toftgaard

    2016-01-01

    , in particular, resulted in an increase in mass yield of mevalonate and tyrosine by 80% and 50%, respectively. By tracking production and biomass concentrations, it was observed that the production was maintained for more than 10 h after inhibition of cell growth, despite cell maintenance requirements...

  18. Yarrowia lipolytica yeast use for the production of biomass and lipid

    Directory of Open Access Journals (Sweden)

    Aline da Silva Delabio

    2015-06-01

    Full Text Available Fuels from renewable energy are gaining space in a landscape where the unbridled use of fossil fuels endangers the world's energy future. Thus biofuels are possible substitutes for fossil fuels. The use of yeast in lipid synthesis is presented as an alternative since the lipids produced can serve as raw material for production of biodiesel. This study was conducted in order to assess the feasibility of production of lipid by Yarrowia lipolytica and a subsequent application as biodiesel. Yeasts of Yarrowia lipolytica were maintained in liquid medium, Yeast Extract Peptone Dextrose, and inoculated into medium containing agro-industrial waste (molasses and vinasse and other available waste (urban runoff. After inoculation the medium was incubated without agitation for a period of 7; 14 and 21 days. Three bottles every seven days were taken for quantification of lipids. The length greater oil production occurred after 21 days of incubation, while greater biomass production occurred 14 days of incubation. The production of lipids was less than reported in the literature but production can be increased with the appropriate study of each nutrient composition of the culture medium. The study was conducted in laboratory scale values probably biomass and lipids are major industrial scale.

  19. Production of Solid sustainable Energy Carriers from biomass by means of TORrefaction (SECTOR)

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Bienert, Kathrin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Zwart, Robin; Kiel, Jaap; Englisch, Martin; Wojcik, Magdalena

    2012-07-01

    SECTOR is a large-scale European project with a strong consortium of over 20 partners from industry and science. The project is focussed on the further development of torrefaction-based technologies for the production of solid bioenergy carriers up to pilot-plant scale and beyond, and on supporting the market introduction of torrefaction-based bioenergy carriers as a commodity renewable solid fuel. The torrefaction of biomass materials is considered to be a very promising technology for the promotion of the large-scale implementation of bioenergy. During torrefaction biomass is heated up in the absence of oxygen to a temperature of 250-320 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density commodity solid fuel or bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage, and also with superior properties in many major end-use applications. Torrefaction has the potential to provide a significant contribution to an enlarged raw material portfolio for biomass fuel production inside Europe by including both agricultural and forestry biomass. In this way, the SECTOR project is expected to shorten the time-to-market of torrefaction technology and to promote market introduction within stringent sustainability boundary conditions. The European Union provides funding for this project within the Seventh Framework Programme. The project has a duration of 42 months and started in January 2012. (orig.)

  20. Biomass storage for further energy use through biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Atem, A.D. [Instituto CEDIAC, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Mendoza (Argentina); Indiveri, M.E. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Llamas, S. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina)

    2010-06-15

    The present work approaches the residual biomass conservation for later digestion in an anaerobic batch reactor. Twenty 4 L capacity PET reactors were used. A measuring device was constructed to quantify the biogas production. As substrate were used tomato wastes from local industry and rumen fluid as inoculum. Digestion start up was able to be controlled by varying the temperature, during a period of 118 days was not verified biogas production. After re-inoculated with rumen fluid stabilized for 34 days, biogas production was verified. They were obtained 0.10 m{sup 3} of biogas per kilogram of volatile solids, with 50% of methane content. (author)

  1. Field emissions of N2O during biomass production may affect the sustainability of agro-biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    relate measured field emissions of N2O to the reduction in fossil fuel‐derived CO2, which is obtained when agricultural biomasses are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye‐vetch, vetch and grass‐clover) and three scenarios for conversion...... of biomass to biofuel. The scenarios are 1) bioethanol, 2) biogas and 3) co‐production of bioethanol and biogas. In scenarios 3, the biomass is first used for bioethanol fermentation and subsequently the residue from this process is utilized for biogas production. The net reduction in greenhouse gas...... emissions is calculated as the avoided fossil fuel‐derived CO2, where the N2O emission has been subtracted. This value does not account for CO2 emissions from farm machinery and during biofuel production. We obtained the greatest net reduction in greenhouse gas emissions by co‐production of bioethanol...

  2. Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel Production in Michigan

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2015-04-01

    Full Text Available High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  3. A spatial model for the economic evaluation of biomass production systems

    International Nuclear Information System (INIS)

    Wei Liu; Phillips, V.D.; Singh, Devindar

    1992-01-01

    A system model for estimating short-rotation, intensive-culture woody biomass production costs, including establishment, maintenance, harvesting, and transport costs, was developed and applied to the island of Kauai. Using data from existing large-plot field trials, biomass yield of the tropical hardwood Eucalyptus saligna was predicted from site-specific factors such as local weather and soil conditions and management strategies. Possible harvesting systems were identified and associated harvesting costs were estimated. The distances from the plantation sites to a bio-conversion plant located at the Lihue sugar mill were calculated based on existing road networks. The delivered cost of biomass on a dollar per dry metric ton (Mg) basis was then calculated using a discounted cash flow method. A geographic information system was interfaced with the biomass system model to access a database and present results in map form. Under the most favorable management strategy modeled, approximately 330 x 10 3 dry Mg year -1 of Eucalyptus saligna could be produced from 12,000 ha at a delivered cost of $25-38 per dry Mg chips. (author)

  4. The regional environmental impact of biomass production

    International Nuclear Information System (INIS)

    Graham, R.L.

    1994-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  5. Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production

    Science.gov (United States)

    Teixeira, Lincoln Cambraia

    Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid

  6. Biomass production and composition of temperate and tropical maize in central Iowa

    Science.gov (United States)

    Bioethanol production in the Midwestern U.S. has largely focused on corn (Zea mays L.) grain for starch-based ethanol production. There has been growing interest in lignocellulosic biomass as a feedstock for biofuels. Because corn adapted to the tropics does not initiate senescence as early as ada...

  7. Biosorption and retention of several actinide and fission-product elements by biomass from Mycobacterium phlei

    International Nuclear Information System (INIS)

    Bouby, M.; MacCordick, H.J.; Billard, I.

    1996-01-01

    The properties of mobile, 5% w/w cell suspensions of Mycobacterium phlei have been examined for their capacity to adsorb and retain uranyl(VI) and neptunyl(V) cations from nitrate-buffered solutions at pH 1. Equilibrium conditions of sorption were attained after 3 hours for concentrations (C) in the range 0.015-18 mM cation and indicated a maximum specific adsorption capacity (Qe max ) of 182 μmol/g dry biomass for C ≥ 10 mM. NpO 2 + generally showed higher Qe values than UO 2 2+ at corresponding concentrations. Lixiviation tests with cation-loaded biomass in neutral and acidic media indicated that the extent of desorption did not vary extensively between pH 7 and pH 1 and did not exceed 3% for U and 1% for Np ions at pH 7 during 7-day periods of treatment. Analogous experiments with U-loaded biomass subjected to neutron activation prior to lixiviation enabled retention measurements for various fission-product isotopes produced in situ and showed that retention of 239 Np formed within the cellular matrix was >99% at pH 7 and ≥94% at pH 1. (author). 13 refs., 5 figs., 3 tabs

  8. Potential impacts of biomass production in the United States on biological diversity

    International Nuclear Information System (INIS)

    Cook, J.H.; Beyea, J.; Keeler, K.H.

    1991-01-01

    This paper reports that biomass could be a renewable source of energy and chemicals that would not add CO 2 to the atmosphere. It will become economically competitive as its cost decreases relative to energy costs, and biotechnology is expected to accelerate this trend by increasing biomass productivity. Pressure to slow global warming may also make biomass more attractive. Substantial dependence on biomass would entail massive changes in land use, risking serious reductions in biodiversity through destruction of habitat for native species. Forests could be managed and harvested more intensively, and virtually all arable land unsuitable for high-value agriculture or silviculture might be used to grow energy crops. The authors estimate that it would require an area equal to that farmed in 1988, about 130 million hectares, just to supply the United States with transportation fuel. Planning at micro to macro scales will be crucial to minimize the ecological impacts of producing biomass. Cropping and harvesting systems will need to provide the spatial and temporal diversity characteristics of natural ecosystems and successional sequences. To maximize habitat value for interior-dependent species, it will be essential to maintain the connectivity of the habitat network, both within biomass farms and to surrounding undisturbed areas

  9. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation.

    Science.gov (United States)

    Suja, E; Nancharaiah, Y V; Venugopalan, V P

    2014-11-15

    Microbial granules cultivated in an aerobic bubble column sequencing batch reactor were used for reduction of Pd(II) and formation of biomass associated Pd(0) nanoparticles (Bio-Pd) for reductive transformation of organic and inorganic contaminants. Addition of Pd(II) to microbial granules incubated under fermentative conditions resulted in rapid formation of Bio-Pd. The reduction of soluble Pd(II) to biomass associated Pd(0) was predominantly mediated by H2 produced through fermentation. X-ray diffraction and scanning electron microscope analysis revealed that the produced Pd nanoparticles were associated with the microbial granules. The catalytic activity of Bio-Pd was determined using p-nitrophenol and Cr(VI) as model compounds. Reductive transformation of p-nitrophenol by Bio-Pd was ∼20 times higher in comparison to microbial granules without Pd. Complete reduction of up to 0.25 mM of Cr(VI) by Bio-Pd was achieved in 24 h. Bio-Pd synthesis using self-immobilized microbial granules is advantageous and obviates the need for nanoparticle encapsulation or use of barrier membranes for retaining Bio-Pd in practical applications. In short, microbial granules offer a dual purpose system for Bio-Pd production and retention, wherein in situ generated H2 serves as electron donor powering biotransformations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  11. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis

    International Nuclear Information System (INIS)

    Phan, Binh M.Q.; Duong, Long T.; Nguyen, Viet D.; Tran, Trong B.; Nguyen, My H.H.; Nguyen, Luong H.; Nguyen, Duc A.; Luu, Loc C.

    2014-01-01

    Agricultural activities in Vietnam generate about 62 million tonnes of biomass (rice straw, rice husk, bagasse, corn cob, corn stover, etc.) annually. In this work, four different types of biomass from Vietnam, namely rice straw, rice husk, factory bagasse, and corn cob, have been studied as potential raw materials to produce bio-oil by fast pyrolysis technology. Test runs were conducted in a fluidized-bed reactor at a temperature of 500 °C and residence time less than 2 s. Size and moisture content of the feed were less than 2 mm and 2%, respectively. It was found that yields of bio-oil as a liquid product obtained from pyrolysis of these feedstocks were more than 50% and that obtained from the bagasse was the highest. Bio-oil quality from Vietnamese biomass resources satisfies ASTM D7544-12 standard for pyrolysis liquid biofuels. These results showed the potential of using biomass in Vietnam to produce bio-oil which could be directly used as a combustion fuel or upgraded into transportation fuels and chemicals. - Highlights: • Four types of Vietnamese biomass were firstly analyzed in detail. • Optimal conditions for fast pyrolysis reaction for Vietnamese biomass types. • Bio-oil product adapted to the standard specification for pyrolysis liquid biofuel

  12. Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard

    International Nuclear Information System (INIS)

    White, Eric M.; Latta, Greg; Alig, Ralph J.; Skog, Kenneth E.; Adams, Darius M.

    2013-01-01

    Production of renewable energy from biomass has been promoted as means to improve greenhouse gas balance in energy production, improve energy security, and provide jobs and income. However, uncertainties remain as to how the agriculture and forest sectors might jointly respond to increased demand for bioelectricity feedstocks and the potential environmental consequences of increased biomass production. We use an economic model to examine how the agriculture and forest sectors might combine to respond to increased demands for bioelectricity under simulated future national-level renewable electricity standards. Both sectors are projected to contribute biomass, although energy crops, like switchgrass, produced on agriculture land are projected to be the primary feedstocks. At the highest targets for bioelectricity production, we project increased conversion of forest to agriculture land in support of agriculture biomass production. Although land conversion takes place in response to renewable electricity mandates, we project only minor increases in forest and agriculture emissions. Similarly, crop prices were projected to generally be stable in the face of increased bioelectricity demand and displacement of traditional agriculture crops. - Highlights: ► We model the response of forest and agriculture to increased bioelectricity demand. ► The agriculture sector, through energy crop production, is the key biomass provider. ► Increased land exchange is projected for the highest bioelectricity demands. ► Land exchange from forest to agriculture yield the greatest changes in GHG flux. ► Agriculture and forestry must be accounted for when considering bioenergy policy

  13. Development of over-production strain of saccharification enzyme and biomass pretreatment by proton beam irradiation

    International Nuclear Information System (INIS)

    Kim, S. W.; Lee, J. Y.; Song, Y. S.; Lee, S. J.; Shin, H. Y.; Kim, S. B.

    2010-04-01

    When lignocellulosic biomass converts to ethanol, enzyme takes lots of part of whole cost. Therefore, cellulase production is one of the important processes for the successful enzymatic conversion of cellulosic biomass to ethanol. Among cellulolytic enzymes, cellulase is multi-complex enzyme containing endo-glucanase, exo-glucanase and β-glucosidase. Cellulolyticfungi, Trichodema reesei is well known to produce the highest yields of cellulase. Especially, suitable cellulase composition was important for the effective saccharification of lignocellulosic biomass and strain having high level production of cellulase should be developed for hydrolysis. For efficient ethanol production, hemicellullase of Aspergillus also develop to use xylose generated from saccharification of biomass. In this study, pretreatment process of rice straw using proton beam irradiation (PBI) was carried out for enhancement of enzyme digestibility at different proton beam doses. Also, PBI pretreatment on ammonia soaking treated (SAA, Soaking aqueous ammonia) rice straw was conducted to solve the problem that is micro-structural inhibition of rice straw. Optimal dosages of proton beam on rice straw and SAA treated rice straw for efficient recovery of sugar were 15 KGy and 3 KGy, respectively. Enzymatic saccharification of PBI treated rice straw and SAA rice straw was conducted for the guidance of NREL standard procedure. Analysis using X-ray diffractometry (XRD) for crystallinity index was carried out and CrI found to be 33.38% of control and 35.72% of 15 KGy. Also, CrI was determined to be 67.11% of control and approximately 65.58% of 3 kGy dose in PBI pretreatment on SAA treated rice straw. The result of sugar recovery of both was approximately 70 % and 91 % of theoretical glucose contents, respectively. The initial reaction rate was increased from 7.610 -4 g·l -1 ·s -1 of 15 KGy (PBI pretreated rice straw) to 9.710 -4 g·l -1 ·s -1 (3 KGy PBI pretreated SAA rice straw). The selection of

  14. Biomass: An overview in the United States of America

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T. [USDA Soil Conservation Service, Washington, DC (United States); Shapouri, H.

    1993-12-31

    Concerns about the heavy reliance on foreign sources of fossil fuels, environmental impacts of burning fossil fuels, environmental impacts of agricultural activities, the need to find sustainable renewable sources of energy, and the need for a sustainable agricultural resource base have been driving forces for the development of biomass as a source of energy. The development of biomass conversion technologies, of high-yielding herbaceous and short-rotation woody biomass crops, of high-yielding food, feed, and fiber crops, and of livestock with higher levels of feed conversion efficiencies has made the transition from total reliance on fossil fuels to utilization of renewable sources of energy from biomass a reality. A variety of biomass conversion technologies have been developed and tested. Public utilities, private power companies, and the paper industry are interested in applying this technology. Direct burning of biomass and/or cofiring in existing facilities will reduce emissions of greenhouse and other undesirable gases. Legislation has been passed to promote biomass production and utilization for liquid fuels and electricity. Land is available. The production of short-rotation woody crops and perennial grasses provides alternatives to commodity crops to stabilize income in the agricultural sector. The production of biomass crops can also reduce soil erosion, sediment loadings to surface water, and agricultural chemical loadings to ground and surface water; provide wildlife habitat; increase income and employment opportunities in rural areas; and provide a more sustainable agricultural resource base.

  15. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Julián Mario Peña-Castro

    2017-01-01

    Full Text Available The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize or proposed species (large grass families. The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.

  16. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Science.gov (United States)

    del Moral, Sandra; Núñez-López, Lizeth; Barrera-Figueroa, Blanca E.; Amaya-Delgado, Lorena

    2017-01-01

    The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass. PMID:28951875

  17. Biomass based energy combines with motor fuel production; Biobraenslebaserade energikombinat med tillverkning av drivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara

    2005-01-01

    In the report the state of development of production processes for various motor fuels, such as FT diesel, methanol , DME and ethanol, from biomass is reviewed. Biomass and black liquor gasification processes as well as processes for ethanol production from lignocellulosic biomass are discussed. The processes are complicated and still not very well tried in their whole context. The gas cleaning steps, which are necessary to reach acceptable catalyst lifetimes in the motor fuel production processes based on gasification, have been tested in the oil industry and to some extent in coal gasification plants, but not with syngas from biomass or black liquor gasification. For black liquor gasification particularly, also material selection and material lifetime issues remain to be solved. For ethanol production from lignocellulosic biomass process development is needed, to increase the yield in the pre-treatment, hydrolysis and fermentation steps. The energy yields of the processes are dependent on the degree of complexity of the processes, as well as on the integration and balancing of energy demanding steps and steps with energy surplus. This is especially valid for the processes based on gasification, due to high temperatures in the gasifier and some of the catalytic steps, but also for the ethanol process, which benefit from optimal steam integration in the evaporation and distillation steps. Also steam integration with cogeneration plants, or for black liquor gasification with pulp mills, improves the overall energy balance. In addition, the energy yield when motor fuels are produced by gasification is dependent on the usage of the off-gas. The efficiency is improved when the off-gas is burned in a boiler or gas turbine, than when it is flared. In the report examples are given of processes with and without integration.

  18. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems.

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C; Thornton, Philip K; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-12-24

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system.

  19. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel

    International Nuclear Information System (INIS)

    Kambo, Harpreet Singh; Dutta, Animesh

    2015-01-01

    Highlights: • A comparative characterization of HTC and torrefaction is proposed. • The reaction temperature is the most governing parameter in the HTC process. • The inorganic compositions of biomass were significantly reduced via HTC. • The hydrochar produced at 260 °C shows fuel qualities comparable to that of coal. - Abstract: The work presented in this study demonstrates the potential of using hydrothermal carbonization (HTC) on miscanthus feedstock for the production of a carbon-rich solid fuel, referred to as hydrochar, whose physicochemical properties are comparable to that of coal. The effects of the processing conditions on the mass yield, energy yield and higher heating values (HHVs) were examined by varying the reaction temperature (190, 225, and 260 °C), the reaction time (5, 15, and 30 min) and the feedstock-to-water ratio (1:6 and 1:12). The results show that the reaction temperature is the most significant parameter governing the physicochemical properties of biomass. Increasing reaction temperature reduces the mass yield; however, it also significantly enhances the energy density of solid products. The hydrochar samples produced at 260 °C show a maximum energy density of 26–30 MJ/kg, with 66–74% of energy retained in the solid product. In comparison, the energy density, grindability, and hydrophobicity of the solid samples produced via torrefaction (a conventional thermal pre-treatment) were considerably lower than the hydrochar samples, even if the reaction time was kept much higher than HTC. Furthermore, the inorganic metallic composition of miscanthus feedstock almost remained unaffected after torrefaction; however, it was significantly reduced (30–70%) via HTC.

  20. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Science.gov (United States)

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  1. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Directory of Open Access Journals (Sweden)

    Dhaneshwaree Asem

    Full Text Available The gastrointestinal (GI habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk and a domesticated goat (Black Bengal were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF of D2 (alkaline pretreated pulpy biomass using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL and FPase (0.5 U/mL activities (55°C, pH 8. The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  2. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.

  3. Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) platensis

    DEFF Research Database (Denmark)

    Markou, Giorgos; Angelidaki, Irini; Nerantzis, Elias

    2013-01-01

    at four concentrations, 2.5 N, 1 N, 0.5 N and 0.25 N, and for each acid concentration the saccharification was conducted under four temperatures (40 °C, 60 °C, 80 °C and 100 °C). Higher acid concentrations gave in general higher reducing sugars (RS) yields (%, gRS/gTotal sugars) with higher rates, while...... the increase in temperature lead to higher rates at lower acid concentration. The hydrolysates then were used as substrate for ethanolic fermentation by a salt stress-adapted Saccharomyces cerevisiae strain. The bioethanol yield (%, gEtOH/gBiomass) was significantly affected by the acid concentration used...

  4. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  5. The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems

    International Nuclear Information System (INIS)

    Holmgren, Kristina M.; Berntsson, Thore S.; Andersson, Eva; Rydberg, Tomas

    2015-01-01

    This study analyses the impact on the GHG (greenhouse gas) emissions of the raw material supply chain, the utilisation of excess heat and CO 2 storage for a bio-SNG (biomass gasification-based synthetic natural gas) system by applying a consequential life cycle assessment approach. The impact of the biomass supply chain is analysed by assessing GHG emissions of locally produced woodchips and pellets with regional or transatlantic origin. Results show that the supply area for the gasification plant can be substantially increased with only modest increases in overall GHG emissions (3–5%) by using regionally produced pellets. The transatlantic pellet chains contribute to significantly higher GHG emissions. Utilising excess heat for power generation or steam delivery for industrial use contributes to lower emissions from the system, whereas delivery of district heating can contribute to either increased or decreased emissions. The production technology of the replaced heat and the carbon intensity of the reference power production were decisive for the benefits of the heat deliveries. Finally, the storage of CO 2 separated from the syngas upgrading and from the flue gases of the gasifier can nearly double the GHG emission reduction potential of the bio-SNG system. - Highlights: • Greenhouse gas emission evaluation of gasification-based bio-SNG system is made. • The impact of biomass supply chains and utilisation of excess heat is in focus. • Locally produced woodchips result in lowest overall greenhouse gas emissions. • Regionally produced pellets have small impact on overall greenhouse gas emissions. • Storing separated CO 2 from the bio-SNG process reduces the GHG impact significantly.

  6. Biomass Characterization | Bioenergy | NREL

    Science.gov (United States)

    Characterization Biomass Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of

  7. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    International Nuclear Information System (INIS)

    Wilen, C.; Kurkela, E.

    1997-01-01

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW th ) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW th ) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are the main

  8. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW{sub th}) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW{sub th}) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are

  9. Woody biomass production in a spray irrigation wastewater treatment facility in North Carolina

    International Nuclear Information System (INIS)

    Frederick, D.; Lea, R.; Milosh, R.

    1993-01-01

    Application of municipal wastewater to deciduous tree plantations offers a viable opportunity to dispose of nutrients and pollutants, while protecting water quality. Production of woody biomass for energy or pulp mill furnish, using wastewater if feasible and markets exist in may parts of the world for this biomass. Plantations of sycamore (Platanus occidentalis L.), and sweetgum (Liquidambar styraciflua L.), have been established in Edenton, North Carolina for application of municipal wastewater. Research describing the dry weight biomass following the fifth year of seedling growth is presented along with future estimates for seedling and coppice yields. Ongoing and future work for estimating nutrient assimilation and wastewater renovation are described and discussed

  10. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2010-03-01

    Full Text Available Aerosols in the size class <2.5 μm (6 daytime and 9 nighttime samples were collected at a pasture site in Rondônia, Brazil, during the intensive biomass burning period of 16–26 September 2002 as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC. Homologous series of dicarboxylic acids (C2–C11 and related compounds (ketocarboxylic acids and α-dicarbonyls were identified using gas chromatography (GC and GC/mass spectrometry (GC/MS. Among the species detected, oxalic acid was found to be the most abundant, followed by succinic, malonic and glyoxylic acids. Average concentrations of total dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the aerosol samples were 2180, 167 and 56 ng m−3, respectively. These are 2–8, 3–11 and 2–16 times higher, respectively, than those reported in urban aerosols, such as in 14 Chinese megacities. Higher ratios of dicarboxylic acids and related compounds to biomass burning tracers (levoglucosan and K+ were found in the daytime than in the nighttime, suggesting the importance of photochemical production. On the other hand, higher ratios of oxalic acid to other dicarboxylic acids and related compounds normalized to biomass burning tracers (levoglucosan and K+ in the daytime provide evidence for the possible degradation of dicarboxylic acids (≥C3 in this smoke-polluted environment. Assuming that these and related compounds are photo-chemically oxidized to oxalic acid in the daytime, and given their linear relationship, they could account for, on average, 77% of the formation of oxalic acid. The remaining portion of oxalic acid may have been directly emitted from biomass burning as suggested by a good correlation with the biomass burning tracers (K+, CO and ECa and organic carbon (OC. However, photochemical production from other precursors could not be excluded.

  11. Biogas Production from Lignocellulosic Biomass : Impact of pre-treatment, co-digestion, harvest time and inoculation

    OpenAIRE

    LI, Chao

    2017-01-01

    Biogas or methane production through anaerobic digestion (AD) is gaining increasing attention worldwide due to concerns over global warming, energy security and the need for sustainable waste management. AD of lignocellulosic biomass is one facet that is highly appreciated since the conflict over biomass for food/feed or energy can be avoided. As a result the need for non-food based lignocellulosic biomass feedstock has emerged as (co-) feedstock of choice for the AD process. Despite these ad...

  12. Development of over-production strain of saccharification enzyme and biomass pretreatment by proton beam irradiation

    International Nuclear Information System (INIS)

    Kim, S. O.; Lee, J. Y.; Song, Y. S.; Shin, H. S.

    2009-04-01

    - The first year : Pre-treatment of biomass by proton beam irradiation and characterization of the pretreated biomass by IR and SEM - The second year : Strain development by proton beam irradiation for the production of cellulase and hemicellulase - The third year : Optimization of Saccharification process by cellulase and hemicellulase

  13. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...... is an unexploited, not researched, not developed source of biomass and is at the same time an enormous resource by mass. It is therefore obvious to look into this vast biomass resource and by this report give some of the first suggestions of how this new and promising biomass resource can be exploited....

  14. The willingness of farmers to engage with bioenergy and woody biomass production: A regional case study from Cumbria

    International Nuclear Information System (INIS)

    Convery, I.; Robson, D.; Ottitsch, A.; Long, M.

    2012-01-01

    In this paper we explore the willingness of Cumbrian farmers to switch land use from food production to biomass production in a landscape where food production is both heavily subsidised and the area is a centre for tourism. This is against a policy background of a switch of subsidies from food production to environmental benefits, increased concerns about emissions from farming and an increased demand for renewable energy. We identified an awareness of new markets for renewable energy, alongside increasing volatility of other crops (against a background of increasing demand for food). From this, our conclusions are that the main short-term opportunities for increasing biomass production in this region are through intensifying management of existing woodlands. In the medium term, as the financial case for biomass crops becomes more certain, we can envisage a ‘tipping point’ which would favour a switch from marginal agricultural land to biomass. - Highlights: ► Profit motive not driving force. ► Reluctance to change farming methods. ► Logs and chipped wood options.

  15. The challenge of biomass production. Analysis of Chinnahagari and Upparahalla watersheds, Bellary District, India

    International Nuclear Information System (INIS)

    Avornyo, F.; Ballal, F.; Husseini, R.; Mysore, A.; Nabi, S.A.; Guevara, A.L.P.

    2003-01-01

    Results are presented of a field study conducted in the Chinnahagari and Upparahalla watersheds in the Karnataka state of India, with the objective of identifying the opportunities for and constraints in efforts for enhancing biomass production. The Agricultural Research for Development (ARD) procedure which is a process of integrating different perspectives of stakeholders was used for planning strategies to combat low biomass problems

  16. Ethanol production from biomass by repetitive solid-state fed-batch fermentation with continuous recovery of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Moukamnerd, Churairat; Kino-oka, Masahiro; Sugiyama, Minetaka; Kaneko, Yoshinobu; Harashima, Satoshi; Katakura, Yoshio [Osaka Univ. (Japan). Dept. of Biotechnology; Boonchird, Chuenchit [Mahidol Univ., Bangkok (Thailand). Dept. of Biotechnology; Noda, Hideo [Kansai Chemical Engineering Co., Ltd., Amagasaki (Japan); Ninomiya, Kazuaki [Kanazawa Univ. (Japan). Inst. of International Environment Technology; Shioya, Suteaki [Sojo Univ., Kumamoto (Japan). Dept. of Applied Life Science

    2010-09-15

    To save cost and input energy for bioethanol production, a consolidated continuous solid-state fermentation system composed of a rotating drum reactor, a humidifier, and a condenser was developed. Biomass, saccharifying enzymes, yeast, and a minimum amount of water are introduced into the system. Ethanol produced by simultaneous saccharification and fermentation is continuously recovered as vapor from the headspace of the reactor, while the humidifier compensates for the water loss. From raw corn starch as a biomass model, 95 {+-} 3, 226 {+-} 9, 458 {+-} 26, and 509 {+-} 64 g l{sup -1} of ethanol solutions were recovered continuously when the ethanol content in reactor was controlled at 10-20, 30-50, 50-70 and 75-85 g kg-mixture{sup -1}, respectively. The residue showed a lesser volume and higher solid content than that obtained by conventional liquid fermentation. The cost and energy for intensive waste water treatment are decreased, and the continuous fermentation enabled the sustainability of enzyme activity and yeast in the system. (orig.)

  17. Onopordum nervosum as biomass source: some aspects of its production and transformation by enzymatic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, P; Negro, M J; Saez, R; Martin, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Inst. de Energias Renovables; Fernandez, J [ETSIA, Madrid (Spain). Dept. de Produccion Vegetal, Botanica y Proteccion Vegetal

    1993-01-01

    Onopordum nervosum, a lignocellulosic herbaceous species of the Iberian Peninsula, has been selected as a suitable biomass source to be used in transformation processes to obtain energy or industrial products. In this work, the effectiveness of different chemical pretreatments as a preliminary step to the enzymatic hydrolysis of this lignocellulosic biomass was evaluated. In order to determine biomass productivity, field assays were carried out in 1988 and 1989 using different planting densities and evaluating the effect to top fertilization. Biomass yields between 12 and 20 t ha[sup -1] were obtained, depending on the year and the planting density assayed. No significant differences were found in production rates when top fertilization was applied. Enzymatic hydrolysis of O.nervosum using a cellulolytic complex from Trichoderma longibrachiatum QM9414, gave low yields when untreated lignocellulosic biomass was used as substrate. Among different chemical pretreatments tested, ethanol and butanol solubilizations in the presence of a basic catalyst gave the best results. For the most effective pretreatment conditions, a delignification of about 30% and a complete recovery of glucose in the treated substrate were obtained both for butanol and ethanol. The highest enzymatic hydrolysis yields were found when ethanol was used as solvent, giving a saccharification efficiency of about 66% which, compared to the 23% for the native substrate, indicates the remarkable increment in the susceptibility of the cellulose to enzyme attack effected by this pretreatment. (author)

  18. Sampling of contaminants from product gases of biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Staahlberg, P.; Lappi, M.; Kurkela, E.; Simell, P.; Oesch, P.; Nieminen, M. [VTT Energy, Espoo (Finland). New Energy Technologies

    1998-12-01

    Reliable sampling and analysis of products from biomass gasification are essential for the successful process development and economical operation of commercial gasifiers. One of the most important and most difficult analytical tasks is to characterise the emissions from the gasifiers. This report presents a review of the sampling and analytical systems employed and developed when doing research on coal and biomass gasification. In addition to the sampling systems published in the literature, experiences obtained in various biomass gasification R and D projects of VTT in 1985-1995 are described. The present sampling methods used for different gas contaminants at VTT are also briefly presented. This report focuses mainly on the measurement of tars, nitrogen compounds and sulphur gases. Isokinetic and non-isokinetic sampling train systems are described and, in addition, special sampling apparatus based on liquid-quenched probe and gas dilution is briefly outlined. Sampling of tars with impinger systems and sampling of heavy tars with filter techniques are described in detail. Separate sampling of particulates is briefly discussed. From inorganic compounds the sampling systems used for H{sub 2}S and other sulphur gases, NH{sub 3} and HCN and HCl are presented. Proper storage of the samples is also included in the report. (orig.) 90 refs.

  19. Biomass and Biogas for Sustainable Energy Generation: Recent Development and Perspectives

    International Nuclear Information System (INIS)

    Mustafa Omer, Abdeen

    2017-01-01

    Biogas from biomass appears to have potential as an alternative energy source, which is potentially rich in biomass resources. This is an overview of some salient points and perspectives of biogas technology. The current literature is reviewed regarding the ecological, social, cultural and economic impacts of biogas technology. This article gives an overview of present and future use of biomass as an industrial feedstock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results suggest that biogas technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas. (author)

  20. PRODUCTION AND DISTRIBUTION OF Jatropha curcas BIOMASS IN THE BRAZILIAN SEMIARID

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Drumond

    2016-03-01

    Full Text Available In order to assess production and distribution of biomass shoots of different genotypes of Jatropha curcas under irrigation in the semiarid region of Pernambuco, Brazil, an experiment was established in Gabriela Farm, in the municipality of Santa Maria da Boa Vista-PE. The experimental design was randomized blocks with ten treatments (genotypes of Jatropha curcas, and three replications in row plots of six plants, with a single border and spacing of 3.0 x 2.0 m. Plants were fertilized with 150 g of NPK (06:24:12 at planting time, and a topdressing with 150 g.planta-1 NPK (10:10:10 applied at six and twelve months of age. The plants were irrigated weekly using a dripping system with an average water application of 20 l.plant-1 during the dry period of the region. At 24 months of age, the overall height of the plants, the average diameter of bifurcations at 1.30m from the soil level and the number of bifurcations at 0.5 m of height were evaluated. Twenty six fruit/ seed harvests were done weekly. Fruits were harvested ripe, before falling on the ground, for seven months. To determine dry biomass, the plants were cut at 0.30 m from soil level. The genotypes showed high agronomic uniformity, except for the variable number of bifurcations, where the genotype 1701 was superior to the genotypes 1501, 1602, 1703 and 1601. Biomass production of genotypes in irrigated conditions in the semiarid region is high and the distribution of biomass followed the decreasing order: root>fruit>thick branches>leaves>bark>thin branches.

  1. Comparison of Different Pretreatment Strategies for Ethanol Production of West African Biomass

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Gonzalez Londono, Jorge Enrique; Schmidt, Jens Ejbye

    2015-01-01

    husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. It was found that four biomass’ (plantain peelings, plantain trunks, maize cobs and maize stalks) were most promising for production of cellulosic ethanol with profitable enzymatic conversion......Pretreating lignocellulosic biomass for cellulosic ethanol production in a West African setting requires smaller scale and less capital expenditure compared to current state of the art. In the present study, three low-tech methods applicable for West African conditions, namely Boiling Pretreatment...... (BP), Soaking in Aqueous Ammonia (SAA) and White Rot Fungi pretreatment (WRF), were compared to the high-tech solution of hydrothermal pretreatment (HTT). The pretreatment methods were tested on 11 West African biomasses, i.e. cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa...

  2. Digestate as nutrient source for biomass production of sida, lucerne and maize

    Science.gov (United States)

    Bueno Piaz Barbosa, Daniela; Nabel, Moritz; Horsch, David; Tsay, Gabriela; Jablonowski, Nicolai

    2014-05-01

    Biogas as a renewable energy source is supported in many countries driven by climate and energy policies. Nowadays, Germany is the largest biogas producer in the European Union. A sustainable resource management has to be considered within this growing scenario of biogas production systems and its environmental impacts. In this respect, studies aiming to enhance the management of biogas residues, which represents a valuable source of nutrients and organic fertilization, are needed. Our objective was to evaluate the digestate (biogas residue after fermentation process) application as nutrient source for biomass production of three different plants: sida (Sida hermaphrodita - Malvaceae), lucerne (Medicago sativa - Fabaceae) and maize (Zea mays - Poaceae). The digestate was collected from an operating biogas facility (fermenter volume 2500m³, ADRW Natur Power GmbH & Co.KG Titz/Ameln, Germany) composed of maize silage as the major feedstock, and minor amounts of chicken manure, with a composition of 3,29% N; 1,07% P; 3,42% K; and 41,2% C. An arable field soil (Endogleyic Stagnosol) was collected from 0-30 cm depth and 5 mm sieved. The fertilizer treatments of the plants were established in five replicates including digestate (application amount equivalent to 40 t ha-1) and NPK fertilizer (application amount equivalent to 200:100:300 kg ha-1) applications, according to the recommended agricultural doses, and a control (no fertilizer application). The digestate and the NPK fertilizer were thoroughly mixed with the soil in a rotatory shaker for 30 min. The 1L pots were filled with the fertilized soil and the seedlings were transplanted and grown for 30 days under greenhouse conditions (16 h day/8 h night: 24ºC/18ºC; 60% air humidity). After harvesting, the leaf area was immediately measured, and the roots were washed to allow above and below-ground biomass determination. Subsequently, shoots and roots were dried at 60ºC for 48 hours. The biomass and leaf area of sida

  3. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology.

    Science.gov (United States)

    Aguirre, Ana-Maria; Bassi, Amarjeet

    2013-08-01

    The microalgae Chlorella vulgaris produce lipids that after extraction from cells can be converted into biodiesel. However, these lipids cannot be efficiently extracted from cells due to the presence of the microalgae cell wall, which acts as a barrier for lipid removal when traditional extraction methods are employed. Therefore, a microalgae system with high lipid productivity and thinner cell walls could be more suitable for lipid production from microalgae. This study addresses the effect of culture conditions, specifically carbon dioxide and sodium nitrate concentrations, on biomass concentration and the ratio of lipid productivity/cellulose content. Optimization of culture conditions was done by response surface methodology. The empirical model for biomass concentration (R(2)  = 96.0%) led to a predicted maximum of 1123.2 mg dw L(-1) when carbon dioxide and sodium nitrate concentrations were 2.33% (v/v) and 5.77 mM, respectively. For lipid productivity/cellulose content ratio (R(2)  = 95.2%) the maximum predicted value was 0.46 (mg lipid L(-1)  day(-1) )(mg cellulose mg biomass(-1) )(-1) when carbon dioxide concentration was 4.02% (v/v) and sodium nitrate concentration was 3.21 mM. A common optimum point for both variables (biomass concentration and lipid productivity/cellulose content ratio) was also found, predicting a biomass concentration of 1119.7 mg dw L(-1) and lipid productivity/cellulose content ratio of 0.44 (mg lipid L(-1)  day(-1) )(mg cellulose mg biomass(-1) )(-1) for culture conditions of 3.77% (v/v) carbon dioxide and 4.01 mM sodium nitrate. The models were experimentally validated and results supported their accuracy. This study shows that it is possible to improve lipid productivity/cellulose content by manipulation of culture conditions, which may be applicable to any scale of bioreactors. Copyright © 2013 Wiley Periodicals, Inc.

  4. Product quality optimization in an integrated biorefinery: Conversion of pistachio nutshell biomass to biofuels and activated biochars via pyrolysis

    International Nuclear Information System (INIS)

    Işıtan, Seçil; Ceylan, Selim; Topcu, Yıldıray; Hintz, Chloe; Tefft, Juliann; Chellappa, Thiago; Guo, Jicheng; Goldfarb, Jillian L.

    2016-01-01

    Highlights: • Pyrolysis temperature key variable in manipulating biofuel quality. • Pyrolysis temperature does not impact activated biochar surface area. • Activation temperature key variable to optimize surface area of pistachio biochar. • Statistical model accurately predicts surface area of biochar, especially above 600 m"2/g. - Abstract: An economically viable transition to a renewable, sustainable energy future hinges on the ability to simultaneously produce multiple high value products from biomass precursors. Though there is considerable literature on the thermochemical conversion of biomass to biofuels and biochars, there are few holistic examinations that seek to understand trade-offs between biofuel quality and the associated pyrolysis conditions on activated carbons made from the resulting biochars. Using an Ordinary Least Squares regression analysis, this study probes the impact of pyrolysis and activation temperature on surface areas and pore volumes for 28 carbon dioxide-activated carbons. Activation temperature has the largest single impact of any other variable; increasing the temperature from 800 to 900 °C leads to an increase in surface area of more than 300 m"2/g. Contrary to some prior results, pyrolysis temperature has minimal effect on the resulting surface area and pore volume, suggesting that optimizing the temperature at which biofuels are extracted will have little impact on carbon dioxide-activated carbons. Increasing pyrolysis temperature increases methane formation but decreases gaseous hydrocarbons. Bio-oil obtained at lower pyrolysis temperatures shows fewer oxygenated compounds, indicating a greater stability, but higher pyrolysis temperatures maximize production of key biorefinery intermediaries such as furans. By analyzing data in such a holistic manner, it may be possible to optimize the production of biofuels and activated carbons from biomass by minimizing the amount of raw materials and energy necessary to maximize

  5. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique.

    Science.gov (United States)

    Reddy, Y Ramana; Kumari, N Nalini; Monika, T; Sridhar, K

    2016-06-01

    A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS) based complete diets for efficient microbial biomass production (EMBP) using in vitro gas production technique. MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer) in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of incubation. In vitro organic matter digestibility (IVOMD), metabolizable energy (ME), truly digestible organic matter (TDOM), partitioning factor (PF), and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs) production were analyzed in RL fluid-media mixture after 24 h of incubation. In vitro gas production (ml) at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01) in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01) higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  6. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation.

    Science.gov (United States)

    Ji, Min-Kyu; Yun, Hyun-Shik; Park, Sanghyun; Lee, Hongkyun; Park, Young-Tae; Bae, Sunyoung; Ham, Jungyeob; Choi, Jaeyoung

    2015-03-01

    Effect of food wastewater (FW) on the biomass, lipid and carbohydrate production by a green microalga Scenedesmus obliquus cultivated in Bold's Basal Medium (BBM) was investigated. Different dilution ratios (0.5-10%) of BBM either with FW or salt solution (NaCl) or sea water (SW) were evaluated. S. obliquus showed the highest growth (0.41 g L(-1)), lipid productivity (13.3 mg L(-1) day L(-1)), carbohydrate productivity (14.7 mg L(-1) day L(-1)) and nutrient removal (38.9 mg TN L(-1) and 12.1 mg TP L(-1)) with 1% FW after 6 days of cultivation. The FW promoted algal autoflocculation due to formation of inorganic precipitates at an alkali pH. Fatty acid methyl ester analysis revealed that the palmitic and oleic acid contents were increased up to 8% with FW. Application of FW improved the growth, lipid/carbohydrate productivity and biomass recovery efficiency of S. obliquus, which can be exploited for cost effective production of microalgae biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Green energy from microalgae: Usage of algae biomass for anaerobic digestion

    International Nuclear Information System (INIS)

    Skorupskaite, Virginija; Makarevicie, Violeta

    2014-01-01

    The microalgae biomass can be used for various types of biofuels, including biodiesel and biogas. The aim of this study is to investigate the possibilities of microalgae Scenedesmus sp. and Chlorella sp. (widespread in freshwater Lithuanian lakes) usage for biogas production. Microalgae were cultivated under mixotrophic conditions (growth medium BG11 containing technical glycerol). In order to determine biogas yield and quality dependence on feedstock preparation, the analyses of biogas production have been performed with algae biomass prepared i n different ways: wet centrifuged; wet centrifuged, frozen and defrost; dry not de-oiled and dry de-oiled. The highest biogas yield in both cases (Scenedesmus sp. – 646 ml/gDM and Chlorella sp. – 652 ml/gDM) was obtained from centrifuged, frozen and defrost biomass. Biogas yield was app. 1.46 times higher comparing to yield of biogas produced from wastewater sludge. Our results showed that different types of biomass preparation have no significant influence on quality of biogas. Key words: microalgae, biomass, biogas production, biogas quality

  8. Short rotation woody biomass production as option for the restoration of post-mining areas in lower Lusatia, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, C.; Quinkenstein, A.; Freese, D. [Brandenburg Univ. of Technology, Cottbus (Germany). Soil Protection and Recultivation; Huttl, R.R. [Brandenburg Univ. of Technology, Cottbus (Germany). Soil Protection and Recultivation; GFZ German Research Centre for Geosciences, Potsdam (Germany)

    2010-07-01

    Reclaimed mine sites in the Lusatian lignite-mining district in Germany are characterized by low annual precipitation and marginal soils. As such, crop yield is typically low and conventional land use systems fail in terms of reliable and efficient crop production. The production of woody biomass for bioenergy may be a promising alternative to improve soil fertility and also to enhance the economic value of these post-mining areas. Previous studies have shown that black locust (Robinia pseudoacacia L.) may be a suitable tree species for this purpose. This paper evaluated the ecological and economic benefits of producing woody biomass in short rotation coppices (SRC) and alley cropping systems (ACS) with black locust. The results showed that compared to conventional agriculture, such land use is not very profitable due to high establishment and harvesting costs and the comparatively low prices for wood energy. However, because of the improved microclimate, the crop yield in ACS is higher than in conventional agriculture. The cultivation of black locust resulted in a higher humus accumulation and in a lower harvest-related nutrient export than the cultivation of alfalfa as a typical recultivation crop in this region. It was concluded SRC with black locust is more beneficial than conventional agriculture in terms of improving soil fertility in the degraded post-mining areas of Lower Lusatia.

  9. Electricity from biomass in the Netherlands

    International Nuclear Information System (INIS)

    Van Beuge, M.J.J.; Sillevis Smit, E.T.

    2004-01-01

    In the past decade, the international community has ta-ken various measures towards achieving a more sustainable energy supply and a reduction of greenhouse gas emissions, among which the conclusion of the Kyoto protocol. Both the European Union and The Netherlands regard the large scale use of biomass for the production of electricity as an important instrument towards achieving the aforementioned policy goals. In this regard the European Union introduced the Renewables Directive, the implementation of which in The Netherlands has recently been completed. In connection with the above, The Netherlands' Minister for Economic Affairs recently published the Biomass Action Plan, aimed at increasing - in the short term - energy production, in particular electricity production, from biomass. This article provides insight into the outlines of the legal framework that is relevant for the production of electricity from biomass in The Netherlands. Following a brief introduction to the relationship between bio energy and biomass, as well as a short introduction to the most important ways in which biomass contributes to the production of electricity in The Netherlands, the article sketches the contours of the European and Dutch policies and related legislation regarding the production of electricity from biomass. In particular, this article describes the Dutch legislation aimed at subsidising and thus promoting the production of electricity from biomass, as well as the requirements with which electricity production installations making use of biomass must comply for an environmental and/or waste perspective [nl

  10. Biomass. A modern and environmentally acceptable fuel

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1995-01-01

    The energy of the sun and carbon dioxide from the atmosphere are captured by plants during photosynthesis. Plant biomass can be used to absorb carbon dioxide emissions from fossil fuels, or it can be converted into modern energy carriers such as electricity, and liquid and gaseous fuels. Biomass supplies 13% of the world's energy consumption (55 EJ, 1990), and in some developing countries it accounts for over 90% of energy use. There is considerable potential for the modernisation of biomass fuels through improved utilisation of existing resources, higher plant productivities and efficient conversion processes using advanced technologies. The interest in bioenergy is increasing rapidly, and it is widely considered as one of the main renewable energy resources of the future due to its large potential, economic viability, and various social and environmental benefits. In particular, biomass energy is among the most favourable options for reducing carbon dioxide emissions. Most of the perceived problems such as land availability, environmental impact, economic viability, and efficiency can be overcome with good management. The constraints to achieving environmentally-acceptable biomass production are not insurmountable, but should rather be seen as scientific and entrepreneurial opportunities which will yield numerous advantages at local, national and international levels in the long term

  11. Influences of elevated CO[sub 2] on CO[sub 2] uptake and biomass production for the CAM plant Opuntia ficus-indica in open-top chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cui, M.; Miller, P.M.; Nobel, P.S. (Univ. of California, Los Angeles (United States))

    1993-06-01

    CO[sub 2] uptake, water vapor conductance, and biomass production of the CAM plant Opuntia ficus-indica were studied at the current and two elevated CO[sub 2] concentrations (plus 150 and plus 350 [mu]L L[sup [minus]1]) in open-top chambers over a 23-week period. Nine weeks after planting, daily net CO[sub 2] uptake for basal cladodes in the medium and the high CO[sub 2] treatments was 49% and 84% higher, respectively, than at the current CO[sub 2] concentration. Nine weeks after the first-daughter cladodes emerged, their daily net CO[sub 2] uptake was 35% and 49% higher, respectively, in the medium and the high CO[sub 2] treatments than at the current CO[sub 2] concentration. Despite significantly lower chlorophyll contents (19% and 62%, respectively) in the first-daughter cladodes, biomass production over 23 weeks in the medium and the high CO[sub 2] treatments was 22% and 50% higher, respectively, than for plants at the current CO[sub 2].

  12. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    production between each soil were significant for Western Wheatgrass and Alfafla. The Sheridan sandy loam soil resulted in the highest production for western wheatgrass and alfalfa while the X-ranch sandy loam had the lowest production rate for both plants. Plant production levels resulting from untreated CBNG produced water were significantly higher compared to untreated conventional oil and gas produced water. However, few differences were found between water treatments. The biomass produced from the greenhouse study was analyzed for elemental composition and for forage value. Elemental composition indentified several interesting findings. Some of the biomass was characterized with seemly high boron and sodium levels. High levels of boron found in some of the biomass was unexpected and may indicate that alfalfa and western wheatgrass plants may have been impacted by either soil or irrigation water containing high boron levels. Plants irrigated with water treated using EDR technology appeared to contain higher levels of boron with increased levels of treatment. Forage evaluations were conducted using near infrared reflectance spectroscopy. The data collected show small differences, generally less than 10%, between produced water treatments including the no treatment and 100% treatment conditions for each plant species studied. The forage value of alfalfa and western wheatgrass did not show significant tendencies dependent on soil, the amount of produced water treatment, or treatment technology.

  13. Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L.

    Science.gov (United States)

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Syed Shujait; Akbar, Fazal; Kanwal, Farina

    2016-06-01

    Light is one of the key elicitors that directly fluctuates plant developmental processes and biosynthesis of secondary metabolites. In this study, the effects of various spectral lights on biomass accumulation and production of antioxidant secondary metabolites in callus cultures of Prunella vulgaris were investigated. Among different spectral lights, green light induced the maximum callogenic response (95%). Enhanced fresh biomass accumulation was observed in log phases on day-35, when callus cultures were exposed to yellow and violet lights. Yellow light induced maximum biomass accumulation (3.67g/100ml) from leaf explants as compared to control (1.27g/100ml). In contrast, violet lights enhanced biomass accumulation (3.49g/100ml) from petiole explant. Maximum total phenolics content (TPC; 23.9mg/g-DW) and total flavonoids content (TFC; 1.65mg/g-DW) were observed when cultures were grown under blue lights. In contrast, green and yellow lights enhanced total phenolics production (TPP; 112.52g/100ml) and total flavonoids production (TFP; 9.64g/100ml) as compared to control. The calli grown under green, red and blue lights enhanced DPPH-free radical scavenging activity (DFRSA; 91.3%, 93.1% and 93%) than control (56.44%) respectively. The DFRSA was correlated either with TPC and TFC or TPP and TFP. Furthermore, yellow lights enhanced superoxide dismutase (SOD), peroxidase (POD) and protease activities, however, the content of total protein (CTP) was higher in control cultures (186μg BSAE/mg FW) as compared to spectral lights. These results suggest that the exposure of callus cultures to various spectral lights have shown a key role in biomass accumulation and production of antioxidant secondary metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Assessing impacts of intensified biomass production and biodiversity protection on ecosystem services provided by European forests

    NARCIS (Netherlands)

    Verkerk, P.J.; Mavsar, R.; Giergiczny, M.; Lindner, M.; Edwards, D.; Schelhaas, M.J.

    2014-01-01

    To develop viable strategies for intensifying the use of forest biomass and for increasing forest protection, impacts on ecosystem services need to be assessed. We investigated the biophysical and economic impacts of increased forest biomass production and biodiversity protection on forest ecosystem

  15. Large-scale production of Fischer-Tropsch diesel from biomass. Optimal gasification and gas cleaning systems

    International Nuclear Information System (INIS)

    Boerrigter, H.; Van der Drift, A.

    2004-12-01

    The paper is presented in the form of copies of overhead sheets. The contents concern definitions, an overview of Integrated biomass gasification and Fischer Tropsch (FT) systems (state-of-the-art, gas cleaning and biosyngas production, experimental demonstration and conclusions), some aspects of large-scale systems (motivation, biomass import) and an outlook

  16. Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Zárate-Chaves

    2013-01-01

    Full Text Available The present work was aimed at optimizing a culture medium for biomass production and phenolic compounds by using Ganoderma lucidum. The culture was optimized in two stages; a Plackett-Burman design was used in the first one for identifying key components in the medium and a central composite design was used in the second one for optimizing their concentration. Both responses (biomass and phenolic compounds were simultaneously optimized by the latter methodology regarding desirability, and the optimal concentrations obtained were 50.00 g/L sucrose, 13.29 g/L yeast extract and 2.99 g/L olive oil. Maximum biomass production identified in these optimal conditions was 9.5 g/L and that for phenolic compounds was 0.0452 g/L, this being 100% better than that obtained in the media usually used in the laboratory. Similar patterns regarding chemical characterization and biological activity towards Aspergillus sp., from both fruiting body and mycelium-derived secondary metabolites and extracts obtained in the proposed medium were observed. It was shown that such statistical methodologies are useful for optimizing fermentation and, in the specific case of G. lucidum, optimizing processes for its production and its metabolites in submerged culture as an alternative to traditional culture.

  17. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  18. Large mesopelagic fishes biomass and trophic efficiency in the open ocean.

    KAUST Repository

    Irigoien, Xabier

    2014-01-01

    With a current estimate of ~1,000 million tons, mesopelagic fishes likely dominate the world total fishes biomass. However, recent acoustic observations show that mesopelagic fishes biomass could be significantly larger than the current estimate. Here we combine modelling and a sensitivity analysis of the acoustic observations from the Malaspina 2010 Circumnavigation Expedition to show that the previous estimate needs to be revised to at least one order of magnitude higher. We show that there is a close relationship between the open ocean fishes biomass and primary production, and that the energy transfer efficiency from phytoplankton to mesopelagic fishes in the open ocean is higher than what is typically assumed. Our results indicate that the role of mesopelagic fishes in oceanic ecosystems and global ocean biogeochemical cycles needs to be revised as they may be respiring ~10% of the primary production in deep waters.

  19. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  20. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kartal, S.N. [Istanbul University (Turkey). Forestry Faculty; Imamura, Y. [Kyoto University (Japan). Wood Research Institute; Tsuchiya, F.; Ohsato, K. [JGC Corporation, Yokohama (Japan)

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Formitopsis palustris. However the filtrates from sugi wood processed at 270{sup o}C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot. (author)

  1. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    OpenAIRE

    Soons, Z.I.T.A.; IJssel, van den, J.; Pol, van der, L.A.; Straten, van, G.; Boxtel, van, A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst ...

  2. Evaluating Lignocellulosic Biomass, Its Derivatives, and Downstream Products with Raman Spectroscopy

    Science.gov (United States)

    Lupoi, Jason S.; Gjersing, Erica; Davis, Mark F.

    2015-01-01

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrational spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. This review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring. PMID:25941674

  3. Fungi-based treatment of brewery wastewater-biomass production and nutrient reduction.

    Science.gov (United States)

    Hultberg, M; Bodin, H

    2017-06-01

    The beer-brewing process produces high amounts of nutrient-rich wastewater, and the increasing number of microbreweries worldwide has created a need for innovative solutions to deal with this waste. In the present study, fungal biomass production and the removal of organic carbon, phosphorus and nitrogen from synthetic brewery wastewater were studied. Different filamentous fungi with a record of safe use were screened for growth, and Trametes versicolor, Pleurotus ostreatus and Trichoderma harzianum were selected for further work. The highest biomass production, 1.78 ± 0.31 g L -1 of dry weight, was observed when P. ostreatus was used for the treatment, while T. harzianum demonstrated the best capability for removing nutrients. The maximum reduction of chemical oxygen demand, 89% of the initial value, was observed with this species. In the removal of total nitrogen and phosphorus, no significant difference was observed between the species, while removal of ammonium varied between the strains. The maximum reduction of ammonium, 66.1% of the initial value, was also found in the T. harzianum treatment. It can be concluded that all treatments provided significant reductions in all water-quality parameters after 3 days of growth and that the utilisation of filamentous fungi to treat brewery wastewater, linked to a deliberate strategy to use the biomass produced, has future potential in a bio-based society.

  4. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    Science.gov (United States)

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Production of fermentables and biomass by six temperate fuelcrops

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D.J.; Gammon, T.C.; Graves, B.

    1985-12-01

    Several potential fuelcrops have been studied individually, but relatively little work has been done to compare the various temperate species in side-by-side trials. The production has been examined of readily fermentable carbohydrates and biomass by six fuelcrop candidates: grain sorghum (Sorghum bicolor), Jerusalem articoke (Helianthus tuberosus), maize (Zea Mays), sugarbeet (Beta vulgaris), sweet potato (Ipomoea batatas) and sweet sorghum (Sorghum bicolor). A randomized complete block design with four replicates was employed at each of three locations that were somewhat diverse in soil type, elevation, growing season length, and 1980 rainfall distribution. Fermentables in the harvestable dry matter were determined colorimetrically following dilute acid plus enzymatic hydrolysis. Overall, sugarbeet was the most prolific producer of fermentables (7.4 Mg/ha); Jerusalem artichoke (5.8 Mg/ha), maize (4.8 Mg/ha) and sweet sorghum stems (5.8 Mg/ha) were statistically equivalent, while sweet potato (4.0 Mg/ha) and grain sorghum (3.8 Mg/ha) were less productive than the other candidates. The crops performed somewhat differently at each location, but the most striking site-specific differences were seen at the site with the coarsest textured soil and driest season. At that location, maize produced the least fermentables (0.6 Mg/ha). Biomass production generally reflected either the amount of time each species was actively growing or limiations to growth associated with drought. No general recommendations are made concerning a preferred temperature fuelcrop. Based on the studies, however, maize may not always be the fuelcrop of choice; others, especially sugarbeet and sweet sorghum (when harvested for grain also), may be superior to maize in productivity of fermentable substrates. 6 tabs., 13 refs.

  6. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  7. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  8. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production

    International Nuclear Information System (INIS)

    Sturm, Belinda S.M.; Lamer, Stacey L.

    2011-01-01

    Recently, several life cycle analyses of algal biodiesel from virtual production facilities have outlined the potential environmental benefits and energetic balance of the process. There are a wide range of assumptions that have been utilized for these calculations, including the addition of fertilizers and carbon dioxide to achieve high algal yields in open ponds. This paper presents an energy balance of microalgal production in open ponds coupled with nutrient removal from wastewater. Actual microalgal yields and nutrient removal rates were obtained from four pilot-scale reactors (2500 gallons each) fed with wastewater effluent from a conventional activated sludge process for 6 months, and the data was used to estimate an energy balance for treating the total average 12 million gallons per day processed by the wastewater treatment plant. Since one of the most energy-intensive steps is the dewatering of algal cultures, several thickening and dewatering processes were compared. This analysis also includes the energy offset from removing nutrients with algal reactors rather than the biological nutrient removal processes typically utilized in municipal wastewater treatment. The results show that biofuel production is energetically favorable for open pond reactors utilizing wastewater as a nutrient source, even without an energy credit for nutrient removal. The energy content of algal biomass was also considered as an alternate to lipid extraction and biodiesel production. Direct combustion of algal biomass may be a more viable energy source than biofuel production, especially when the lipid content of dry biomass (10% in this field experiment) is lower than the high values reported in lab-scale reactors (50-60%).

  9. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  10. Methane and fertilizer production from seaweed biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Betzer, P.R.; Humm, H.J.

    1984-01-01

    It was demonstrated that several varieties of abundant benthic algae indigenous to Tampa Bay (Gracilaria, Hypnea, and Ulva) were readily degradable via anaerobic digestion to methane. The energy yield per unit weight biomass degraded was higher than any previously reported. Given the large masses of readily degradable plants which are annually produced in and around Tampa Bay, the resource is estimated to be at least equivalent to several million gallons of gasoline.

  11. Production of Aspergillus niger biomass on sugarcane distillery wastewater: physiological aspects and potential for biodiesel production.

    Science.gov (United States)

    Chuppa-Tostain, Graziella; Hoarau, Julien; Watson, Marie; Adelard, Laetitia; Shum Cheong Sing, Alain; Caro, Yanis; Grondin, Isabelle; Bourven, Isabelle; Francois, Jean-Marie; Girbal-Neuhauser, Elisabeth; Petit, Thomas

    2018-01-01

    Sugarcane distillery waste water (SDW) or vinasse is the residual liquid waste generated during sugarcane molasses fermentation and alcohol distillation. Worldwide, this effluent is responsible for serious environmental issues. In Reunion Island, between 100 and 200 thousand tons of SDW are produced each year by the three local distilleries. In this study, the potential of Aspergillus niger to reduce the pollution load of SDW and to produce interesting metabolites has been investigated. The fungal biomass yield was 35 g L -1 corresponding to a yield of 0.47 g of biomass/g of vinasse without nutrient complementation. Analysis of sugar consumption indicated that mono-carbohydrates were initially released from residual polysaccharides and then gradually consumed until complete exhaustion. The high biomass yield likely arises from polysaccharides that are hydrolysed prior to be assimilated as monosaccharides and from organic acids and other complex compounds that provided additional C-sources for growth. Comparison of the size exclusion chromatography profiles of raw and pre-treated vinasse confirmed the conversion of humic- and/or phenolic-like molecules into protein-like metabolites. As a consequence, chemical oxygen demand of vinasse decreased by 53%. Interestingly, analysis of intracellular lipids of the biomass revealed high content in oleic acid and physical properties relevant for biodiesel application. The soft-rot fungus A. niger demonstrated a great ability to grow on vinasse and to degrade this complex and hostile medium. The high biomass production is accompanied by a utilization of carbon sources like residual carbohydrates, organic acids and more complex molecules such as melanoidins. We also showed that intracellular lipids from fungal biomass can efficiently be exploited into biodiesel.

  12. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b.

    Science.gov (United States)

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-06-01

    Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  13. Biomass and energy production of catch crops in areas with deficiency of precipitation during summer period in central Bohemia

    International Nuclear Information System (INIS)

    Brant, V.; Pivec, J.; Fuksa, P.; Neckar, K.; Kocourkova, D.; Venclova, V.

    2011-01-01

    The biomass production dynamics of catch crops, volunteers and weeds in dependence on precipitation and air temperature, was studied in central Bohemia from 2004 to 2006. The cover of individual components of the growth was monitored during the same period. Also measured were energy and efficiency of utilization of global radiation by catch crops and volunteers. The catch crops included the following species: Brassica napus, Lolium multiflorum, Lolium perenne, Phacelia tanacetifolia, Sinapis alba, Trifolium incarnatum, Raphanus sativus var. oleiformis and Trifolium subterraneum. The highest biomass production and the highest cover of catch crops were observed in treatments with S. alba (1382.0 kg ha -1 , 47.8%). The average biomass production (sum of catch crops, volunteers and weeds) was highest in treatments with S. alba, R. sativus, and P. tanacetifolia and lowest in treatments with B. napus, L. multiflorum and L. perenne. It was demonstrated that an increase in the percentage share of volunteers caused a decrease in the biomass production of catch crops. The average energy production ranged from 0.31 to 2.37 MJ m -2 in treatments with catch crops, and from 0.25 to 0.89 MJ m -2 in treatments with cereal volunteers. The highest effectivity of global radiation utilization, was determined in treatments with S. alba (0.11-0.47%). Based on regression analysis the closest dependence between biomass production from all treatments on the experimental site and precipitation was observed from 1st May till the time of sowing and the average air temperatures from the sowing period till the time of the last biomass production assessment.

  14. Biomass: towards more co-generation than gasification? Interview with Jean-Christophe Pouet; Figures for the heat fund; biomass in the Parisian heat network; gasification still at the promise stage; Engie bets on bio-methane of 2. generation; a new bidding for biomass co-generation

    International Nuclear Information System (INIS)

    Petitot, Pauline; De Santis, Audrey; Mary, Olivier; Signoret, Stephane

    2016-01-01

    After some brief presentations of some highlights in the biomass sector in France, Ukraine, UK and Brazil, a set of articles proposes an overview of recent developments and perspectives for the biomass-based energy and heat production in France. It presents and comments some emerging projects based on biomass gasification as technologies have evolved for a higher economic profitability. It discusses the action of the Heat Fund (Fonds chaleur) which supports investors in a context constrained by the hard competition with fossil energies, notably with gas as discussed in an interview with a member of the ADEME. Some tables and graphs give data about biomass installations supported by the Heat fund, about subsidies awarded by the ADEME, about the production of the various heat sources. An article comments the operation of a biomass-based plant near Paris which supplies the Parisian heat network. A project of methane production from dry biomass from local resources by Engie near Lyons (methane of second generation). The last article comments a new bidding process for co-generation projects which can be an opportunity for new projects, and not only big ones

  15. Biomass Program 2007 Program Peer Review - Biochemical and Products Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biochemical and Products Platform Review held on August 7-9, 2007 in Denver, Colorado.

  16. Effect of sucrose and methyl jasmonate on biomass and anthocyanin production in cell suspension culture of Melastoma malabathricum (Melastomaceae

    Directory of Open Access Journals (Sweden)

    Koay Suan See

    2011-06-01

    Full Text Available Melastoma malabathricum, belongs to the Melastomaceae family, is an important medicinal plant widely distributed from Madagascar to Australia, that is used in traditional remedies for the treatment of variousailments. Besides its medicinal properties, it has been identified as a potential source of anthocyanin production.The present study was carried out to investigate the effect of sucrose and methyl jasmonate and feeding time oncell biomass yield and anthocyanin production in cell suspension culture of M. malabathricum. Addition of differentconcentrations of sucrose into the cell culture of M. malabathricum influenced cell biomass and pigment accumulation. The addition of methyl jasmonate was found to have no effect on cell biomass but the presence of higher amount (12.5-50mg/L had caused a reduction in anthocyanin production and accumulation. MS medium supplemented with 30g/L sucrose and 3.5 mg/L of MeJA added on cero day and 3rd day produced high fresh cell mass at the end of nine days of culture but did not support the production of anthocyanins. However, cells cultured in the medium supplemented with 45g/L sucrose without MeJA showed the highest pigment content (0.69±0.22Cv/g-FCM. The cells cultured in MS medium supplemented with 30 g/L sucrose with 3.5mg/L MeJA added on the 3rd and 6th day of culture, showed the lowest pigment content (0.37-0.40Cv/g-FCM. This study indicated that MeJA was not necessary but sucrose was needed for the enhancement of cell growth and anthocyanin production in M. malabathricum cell cultures. Rev. Biol. Trop. 59 (2: 597-606. Epub 2011 June 01.

  17. Assessing changes in biomass, productivity, and C and N stores following Juniperus virginiana forest expansion into tallgrass prairie

    Energy Technology Data Exchange (ETDEWEB)

    Norris, M. D.; Blair, J. M.; Johnson, L. C. [Kansas State Univ., Manhattan, KS (United States); McKane, R. B. [Environmental Protection Agency, Western Ecology Division, Corvallis, OR (United States)

    2001-11-01

    The objective of this study was to assess changes in plant productivity and above-ground plant biomass associated with red cedar forest expansion into areas formerly dominated by tallgrass prairie. Regionally appropriate allometric biomass regression equations were developed for the nondestructive estimation of red cedar biomass in eastern Kansas, followed by quantification of the carbon and nitrogen content of selected biomass components. The equations were applied, along with measurements of leaf litter production, to selected local stands of mature closed-canopy red cedars to estimate above-ground biomass, standing stocks of carbon and nitrogen and annual above-ground net primary productivity. Above-ground plant biomass for these red cedar-dominated sites ranged from 114,100 kg/ha for the youngest stand to 210,700 kg/ha for the oldest. Annual above-ground net primary productivity (ANPP) ranged from 7,250 to 10,440 kg/ha/yr for the oldest and younger red cedar stands respectively. The ANPP in comparable tallgrass prairie sites in this region averages 3,690 k/ha/yr, indicating a large increase in carbon uptake and above-ground storage as a result of the change from prairie to red cedar forests. Comparing these results with similar published data from other sites led to the conclusion that the widespread change from tallgrass to red cedars across the woodland-prairie ecotone has important consequences for regional carbon storage.37 refs., 3 tabs., 3 figs.

  18. Energy biomass and environment. The French programme

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The main themes of the french program for energy from biomass are presented: agriculture and forest products (short rotation plantations, waste products, etc.), enhancement of the biomass production, mobilization of biomass resources, biomass processing technics (biofuels, combustion processes, biotechnologies); vulgarization for diffusion of technics from laboratories to industry or domestic sectors.

  19. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effect of biomass concentration on the productivity of Tetraselmis suecica in a pilot-scale tubular photobioreactor using natural sunlight

    NARCIS (Netherlands)

    Michels, M.H.A.; Slegers, P.M.; Vermue, M.H.; Wijffels, R.H.

    2014-01-01

    The effect of biomass concentration on the net volumetric productivity, yield on light and nightly biomass loss rate of Tetraselmis suecica was studied using a pilot-scale tubular photobioreactor (PBR) under outdoor light conditions. The net average productivity and yield on light of Tetraselmis