WorldWideScience

Sample records for higher biomass production

  1. Optimization of animal manure vermicomposting based on biomass production of earthworms and higher plants.

    Science.gov (United States)

    Borges, Yan V; Alves, Luciano; Bianchi, Ivan; Espíndola, Jonas C; Oliveira, Juahil M De; Radetski, Claudemir M; Somensi, Cleder A

    2017-11-02

    The goal of this study was to optimize the mixture of swine manure (SM) and cattle manure (CM) used in the vermicomposting process, seeking to increase the manure biodegradation rate and enhance the biomass production of both earthworms and higher plants. To achieve this goal, physico-chemical parameters were determined to assess the final compost quality after 50 days of vermicomposting. The different manure ratios used to produce the composts (C) were as follows (SM:CM, % m/m basis): C1 100:0, C2 (75:25), C3 (50:50), C4 (25:75), and C5 (0:100). In addition, the earthworm biomass and the phytoproductivity of lettuce (Lactuca sativa L.) plants grown in mixtures (1:1) of natural soil and the most viable vermicomposts were investigated. The C1 and C2 compost compositions were associated with high earthworm mortality rates. The C3 compost provided the highest mineral concentrations and C5 showed the highest lettuce yield (wet biomass). The results verify that stabilized cattle manure is an excellent substrate for the vermicomposting process and that fresh swine manure must be mixed with pre-stabilized cattle manure to ensure an optimized vermicomposting process, which must be controlled in terms of temperature and ammonia levels. It is concluded that small livestock farmers could add value to swine manure by applying the vermicomposting process, without the need for high investments and with a minimal requirement for management of the biodegradation process. These are important technical aspects to be considered when circular economy principles are applied to small farms.

  2. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  3. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  4. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  5. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  6. Seaweed and Biomass production

    Science.gov (United States)

    Nadiradze, K. T.

    2016-02-01

    The Black Sea has a sensitive ecosystem, vulnerable to the potential impacts by climate, water quality, pollution and etc. Successfully restoring and sustaining healthy Black Sea aqua cultural farming will require concreted action by private sector, civil society, farmer organizations and other stakeholders. But to achieve agri-environmental goals at scale, well-organized policy goals, framework and strategy for Sea Agriculture Green energy, Algae Biomass, Sapropel Production, aquacultures farming are essential for Georgian Farmers. But we must recognizes the most sustainable and at least risky farming systems will be those that build in aqua cultural, environmental, and social management practices resilient to climate ch ange and other risks and shocks evident in Georgia and whole in a Black Sea Basin Countries. Black Sea has more than 600 kinds of seaweeds; these species contain biologically active substances also present in fish - vitamins and omega fatty acids. The task is to specify how Black Sea seaweeds can be used in preparing nutrition additives, medicines and cosmetic products. As elsewhere around the world, governments, civil society, and the private sector in Georgia should work together to develop and implement `Blue Economy' and Green Growth strategies to generate equitable, sustainable economic development through strengthening Sea Agriculture. We are very interested to develop Black Sea seaweed plantation ad farming for multiply purposes fo r livestock as food additives, for human as great natural source of iodine as much iodine are released by seaweeds into the atmosphere to facilitate the development of better models or aerosol formation and atmospheric chemistry. It is well known, that earth's oceans are thought to have absorbed about one quarter of the CO2 humans pumped into the atmosphere over the past 20 years. The flip side of this process is that, as they absorb co2, oceans also become more acidic with dramatic consequences for sea life

  7. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  8. Biomass boilers: towards a higher efficiency

    International Nuclear Information System (INIS)

    Petitot, Pauline; Signoret, Stephane; Mary, Olivier; Dejeu, Mathieu; Tachet, Jean-Pierre

    2014-01-01

    A set of articles proposes an overview of the situation and perspectives of biomass fuelled boilers in France. As outlined in an interview, professionals are supported by ADEME and the Heat Fund (Fonds Chaleur) for a continuous development of wood-energy in order to reach national objectives for renewable energies by 2020. The next article discusses issues related to wood supply, with some concerns regarding forest exploitation, and needs to find new management ways and to use other sources than forests. The technical status and perspectives of smoke condensation in wood-fuelled boilers are discussed. The example of a malt-house near Issoudun fuelled by biomass since 2013 is presented. Other examples concern a small town of Burgundy which developed and is still improving a heat network, a wood-fuelled heat network in Saint-Denis, and a biomass wood-fuelled heat production plant for the Toulouse University hospital. Graphs indicate evolutions of prices for different wood-based fuel products. The last article outlines the role of forests and the importance of their protection in the struggle against climate change, and discusses problems faced to support this preservation and its financing

  9. Production of biomass and polysaccharides of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt. :Fr.) P. Karst. (higher Basidiomycetes), by submerged cultivation.

    Science.gov (United States)

    Habijanic, Jozica; Berovic, Marin; Boh, Bojana; Wraber, Branka; Petravic-Tominac, Vlatka

    2013-01-01

    Submerged batch and repeated fed-batch cultivation techniques were used for mycelia cultivation and polysaccharide production of the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum. Although most publications use various Asiatic G. lucidum strains, the growth of the strain Ga.l 4 (Biotechnical Faculty Strain Collection, Ljubljana, Slovenia), originally isolated from the Slovenian forest, is much faster. The results between the batch and repeated fed-batch cultivation are compared with the polysaccharide production in batch cultivation. From the aspect of biomass production, the best results were obtained in repeated fed-batch after 44 days, where 12.4 g/L of dry fungal biomass was obtained.

  10. The effect of different nutrient sources on biomass production of ...

    African Journals Online (AJOL)

    The effect of various organic, inorganic and complex compounds on the biomass production (mycelial dry weight) of Lepiota procera, a Nigerian edible higher fungus was investigated. Among the seventeen carbon compounds tested, mannose enhanced the best biomass yield. This was followed in order by glucose, ...

  11. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  12. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  13. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  14. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  15. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  16. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  17. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  18. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising...... such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability...... from 39.3-66.9 Mtoe, depending on the availability of the residues. Grass from roadside verges and meadow habitats in Denmark represent two currently unutilised sources. If utilised in the Danish biogas sector, the results showed that the resources represent a net energy potential of 60,000 -122,000 GJ...

  19. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Science.gov (United States)

    Bywaters, Kathryn F.; Fritsen, Christian H.

    2015-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels. PMID:25763368

  20. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  1. Production costs of liquid fuels from biomass

    International Nuclear Information System (INIS)

    Bridgwater, A.V.; Double, J.M.

    1994-01-01

    This project was undertaken to provide a consistent and thorough review of the full range of processes for producing liquid fuels from biomass to compare both alternative technologies and processes within those technologies in order to identify the most promising opportunities that deserve closer attention. Thermochemical conversion includes both indirect liquefaction through gasification, and direct liquefaction through pyrolysis and liquefaction in pressurized solvents. Biochemical conversion is based on a different set of feedstocks. Both acid and enzyme hydrolysis are included followed by fermentation. The liquid products considered include gasoline and diesel hydrocarbons and conventional alcohol fuels of methanol and ethanol. Results are given both as absolute fuel costs and as a comparison of estimated cost to market price. In terms of absolute fuel costs, thermochemical conversion offers the lowest cost products, with the least complex processes generally having an advantage. Biochemical routes are the least attractive. The most attractive processes from comparing production costs to product values are generally the alcohol fuels which enjoy a higher market value. (author)

  2. Biomass productivity improvement for eastern cottonwood

    Science.gov (United States)

    Terry L. Robison; Randy J. Rousseau; Jianwei Zhang

    2006-01-01

    Eastern cottonwood ( Populus deltoides Marsh.) is grown in plantations by MeadWestvaco for use at its Wickliffe Kentucky Fine Papers Mill1. Genetic and productivity research over the past two decades have led to significant increases in biomass yield while reducing production costs.Initially, genetic research identified fast growing...

  3. Optimal mode of operation for biomass production

    NARCIS (Netherlands)

    Betlem, Ben H.L.; Roffel, Brian; Mulder, P.

    2002-01-01

    The rate of biomass production is optimised for a predefined feed exhaustion using the residue ratio as a degree of freedom. Three modes of operation are considered: continuous, repeated batch, and repeated fed-batch operation. By means of the Production Curve, the transition points of the optimal

  4. Production of chemicals and fuels from biomass

    Science.gov (United States)

    Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; Kania, John

    2018-01-23

    Methods, reactor systems, and catalysts are provided for converting in a continuous process biomass to fuels and chemicals, including methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  5. Production costs for SRIC Populus biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the US. Populus hybrid planted on good quality agricultural sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year. Discounted cash-flow analysis of multiple rotations showed preharvest production costs of $14/ton (OD). Harvesting and transportation expenses would increase the delivered cost to $35/ton (OD). Although this total cost compared favorably with the regional market price for aspen (Populus tremuloides), future investments in SRIC systems will require the development of biomass energy markets

  6. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  7. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  8. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  9. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    In order to increase the share of biomass for sustainable energy production, it will be an advantage to utilize fuels as straw, wood and waste on large suspension fired boilers. On a European scale, currently large straw resources are available that are not fully utilized for energy production...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized.......D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...

  10. A Review on Biomass Torrefaction Process and Product Properties

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

    2011-08-01

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

  11. The characteristics of biomass production, lipid accumulation and ...

    African Journals Online (AJOL)

    Glucose was the optimal carbon source for mixotrophic cultivation of C. vulgaris and the effects of glucose content on the alga growth under mixotrophic conditions were considerable because lower glucose content (1 g/l) promoted the production of biomass and photosynthetic pigments; higher glucose contents (>5 g/l) ...

  12. Optimization of biomass and dihydroorotase (DHOase) production ...

    African Journals Online (AJOL)

    Growth conditions which maintains DHOase overproduction by Saccharomyces cerevisiae MNJ3 (pMNJ1) and allow sufficient biomass production to ensure DHoase's purification were investigated. We used as basal medium the Yeast Carbon Base (YCB; Difco), especially designed for studies of nitrogen metabolism in ...

  13. Biomass production and basic research on photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    This document is a report of the conference: research and development work in Austria, organized by Austrian ministry of science and research, the ASSA and the OMV-stock company in 1979, which took place in Vienna. The text is about the different possible forms of solar energy utilization. Broda analyses in detail the utilization and production of biomass. (nowak)

  14. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  15. The feasibility of biomass production for the Netherlands energy economy

    International Nuclear Information System (INIS)

    Lysen, E.H.; Daey Ouwens, C.; Van Onna, M.J.G.; Blok, K.; Okken, P.A.; Goudriaan, J.

    1992-05-01

    The title study aims at providing a reliable overview of the technical and financial parameters for the available and potential methods of energy production through biomass. In the study the production of biomass has been separated as much as possible from the transport and the conversion of energy carriers such as fuels or electricity. The assessment of the feasibility is based upon data analysis in phase A of the study and subsequent interviews with key institutes and industries in the Netherlands in phase B. The problems in agriculture and environment justify an active policy with respect to the use of biomass for the Netherlands' energy economy. The developments and the programmes in other European countries and the USA, the fact that a good infrastructure is present in the Netherlands, and the possible spin-off for developing countries justify this conclusion. It is recommended to initiate a focused national programme in the field of biomass energy, properly coordinated with the present ongoing Energy from Waste programme (EWAB) and with ongoing international programmes. The programme should encompass both research and development, as well as a few demonstration projects. Research to reduce costs of biomass is important, largely through reaching higher yields. In view of the competitive kWh costs of combined biomass gasifier/steam and gas turbines systems, based upon energy and environmental considerations, development and demonstration of this system is appropriate. 14 figs., 24 tabs., 6 app., 99 refs

  16. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  17. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  18. Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass

    Energy Technology Data Exchange (ETDEWEB)

    Irmak, Sibel; Oeztuerk, ilker [Department of Chemistry, Cukurova University, Arts and Sciences Faculty, Adana 01330 (Turkey)

    2010-06-15

    Kenaf (Hibiscus cannabinus L.), a well known energy crop and an annual herbaceous plant grows very fast with low lodging susceptibility was used as representative lignocellulosic biomass in the present work. Thermocatalytic conversions were performed by aqueous phase reforming (APR) of kenaf hydrolysates and direct gasification of solid biomass of kenaf using 5% Pt on activated carbon as catalyst. Hydrolysates used in APR experiments were prepared by solubilization of kenaf biomass in subcritical water under CO{sub 2} gas pressure. APR of kenaf hydrolysate with low molecular weight polysaccharides in the presence of the reforming catalyst produced more gas compared to the hydrolysate that had high molecular weight polysaccharides. APR experiments of kenaf biomass hydrolysates and glucose, which was used as a simplest biomass model compound, in the presence of catalyst produced various amounts of gas mixtures that consisted of H{sub 2}, CO, CO{sub 2}, CH{sub 4} and C{sub 2}H{sub 6}. The ratios of H{sub 2} to other gases produced were 0.98, 1.50 and 1.35 for 150 C and 250 C subcritical water-treated kenaf hydrolysates and glucose, respectively. These ratios indicated that more the degraded organic content of kenaf hydrolysate the better selectivity for hydrogen production. Although APR of 250 C-kenaf hydrolysate resulted in similar gas content and composition as glucose, the gas volume produced was three times higher in glucose feed. The use of solid kenaf biomass as starting feedstock in APR experiments resulted in less gas production since the activity of catalyst was lowered by solid biomass particles. (author)

  19. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  20. Protein concentrate production from the biomass contaminated with radionuclides

    International Nuclear Information System (INIS)

    Nizhko, V.F.; Shinkarenko, M.P.; Polozhaj, V.V.; Krivchik, O.V.

    1992-01-01

    Coefficients of radionuclides accumulation are determined for traditional and rare forage crops grown on contaminated soils. It is shown that with low concentration of radionuclides in soil minimal level of contamination were found in the biomass of lupine (Lupinus luteus L.) and sainfoin (Onobrychis hybridus L.). Relatively high levels of contamination were found in comfrey (Symphytum asperum Lepech.) and bistort (Polygonum divaricatum L.). Comparatively low accumulation coefficients in case of higher density of soil contamination were observed for white and yellow sweetclovers (Melilotus albus Medik. and M. officinalis (L.) Desr.), while higher values of coefficients were found for bird's-foot trefoil (Lotus corniculatus L.), white clover (Trifolium repens L.) and alsike clover (t. hybridum L.). Biomass of white sweet-clover and alsike clover has been processed to produce leaf protein concentrate. It is shown that with biomass contamination of 1 kBq/kg and above conventional technology based on thermal precipitation of the protein does not provide production of pure product. More purified protein concentrates are obtained after two-stage processing of the biomass

  1. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  2. Biomass production and carbon storage of Populus ×canadensis ...

    African Journals Online (AJOL)

    euramericana (Dode) Guinier ex Piccarolo) clone I-214 have good potential for biomass production. The objective of the study was estimation of biomass using allometric equations and estimation of carbon allocation according to tree components.

  3. Medium selection for exopolysaccharide and biomass production in submerged cultures of culinary-medicinal mushrooms from Turkey

    NARCIS (Netherlands)

    Kizilcik, M.; Yamaç, M.; Griensven, van L.J.L.D.

    2010-01-01

    The present study investigates the exopolysaccharide (EPS) and biomass production of 18 strains of 15 species of culinary-medicinal higher Basidiomycetes in submerged culture under four different media. Gloeophyllum abietinum and Schizophyllum commune produced the highest EPS and biomass

  4. Synthesis gas production from various biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Juan A. Conesa

    2013-10-01

    Full Text Available The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

  5. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...

  6. Ethanol Production from Hydrothermally-Treated Biomass from West Africa

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2015-08-01

    Full Text Available Despite the abundance of diverse biomass resources in Africa, they have received little research and development focus. This study presents compositional analysis, sugar, and ethanol yields of hydrothermal pretreated (195 °C, 10 min biomass from West Africa, including bamboo wood, rubber wood, elephant grass, Siam weed, and coconut husk, benchmarked against those of wheat straw. The elephant grass exhibited the highest glucose and ethanol yields at 57.8% and 65.1% of the theoretical maximums, respectively. The results show that the glucose yield of pretreated elephant grass was 3.5 times that of the untreated material, while the ethanol yield was nearly 2 times higher. Moreover, the sugar released by the elephant grass (30.8 g/100 g TS was only slightly lower than by the wheat straw (33.1 g/100 g TS, while the ethanol yield (16.1 g/100 g TS was higher than that of the straw (15.26 g/100 g TS. All other local biomass types studied exhibited sugar and ethanol yields below 33% and 35% of the theoretical maximum, respectively. Thus, elephant grass is a highly promising biomass source for ethanol production in Africa.

  7. Liquid fuels production from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  8. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  9. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T., E-mail: rsayre@newmexicoconsortium.org [Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM (United States)

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  10. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    International Nuclear Information System (INIS)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  11. Fungal biomass production from coffee pulp juice

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, R.; Calzada, F.; Herrera, R.; Rolz, C.

    1980-01-01

    Coffee pulp or skin represents about 40% of the weight of the fresh coffee fruit. It is currently a waste and its improper handling creates serious pollution problems for coffee producing countries. Mechanical pressing of the pulp will produce two fractions: coffee pulp juice (CPJ) and pressed pulp. Aspergillus oryzae, Trichoderma harzianum, Penicillium crustosum and Gliocladium deliquescens grew well in supplemented CPJ. At shake flask level the optimum initial C/N ratio was found to be in the range of 8 to 14. At this scale, biomass values of up to 50 g/l were obtained in 24 hours. Biomass production and total sugar consumption were not significantly different to all fungal species tested at the bench-scale level, even when the initial C/N ratio was varied. Best nitrogen consumption values were obtained when the initial C/N ratio was 12. Maximum specific growth rates occurred between 4-12 hours for all fungal species tested. (Refs. 8).

  12. Economic analysis of biomass crop production in Florida

    International Nuclear Information System (INIS)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F.

    1997-01-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  13. Economic analysis of biomass crop production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F. [University of Florida, Gainesville, FL (United States)

    1997-07-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  14. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Potentials for forest woody biomass production in Serbia

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar Lj.

    2015-01-01

    Full Text Available The paper presents the analysis of possible potentials for the production of forest biomass in Serbia taking into consideration the condition of forests, present organizational and technical capacities as well as the needs and situation on the firewood market. Starting point for the estimation of production potentials for forest biomass is the condition of forests which is analyzed based on the available planning documents on all levels. Potentials for biomass production and use refer to initial periods in the production and use of forest biomass in Serbia.

  16. Biomass gasification for liquid fuel production

    International Nuclear Information System (INIS)

    Najser, Jan; Peer, Václav; Vantuch, Martin

    2014-01-01

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis

  17. Biomass gasification for liquid fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  18. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  19. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  20. Relationships between biomass composition and liquid products formed via pyrolysis

    Directory of Open Access Journals (Sweden)

    Fan eLin

    2015-10-01

    Full Text Available Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability—all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models for biomass components in formation of liquid pyrolysis products: (1 as direct sources, (2 as catalysts, and (3 as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  1. Relationships between Biomass Composition and Liquid Products Formed via Pyrolysis

    International Nuclear Information System (INIS)

    Lin, Fan; Waters, Christopher L.; Mallinson, Richard G.; Lobban, Lance L.; Bartley, Laura E.

    2015-01-01

    Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability – all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models) for biomass components in the formation of liquid pyrolysis products: (1) as direct sources, (2) as catalysts, and (3) as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques, this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  2. Potential of sustainable biomass production systems in Texas

    International Nuclear Information System (INIS)

    Sanderson, M.A.; Hussey, M.A.; Wiselogel, A.E.

    1992-01-01

    Biomass production for liquid fuels feedstock from systems based on warm-season perennial grasses (WSPG) offers a sustainable alternative for forage-livestock producers in Texas. Such systems also would enhance diversity and flexibility in current production systems. Research is needed to incorporate biomass production for liquid fuels, chemicals, and electrical power into current forage-livestock management systems. Our research objectives were to (i) document the potential of several WSPG in diverse Texas environments for biomass feedstock production, (ii) conduct fundamental research on morphological development of WSPG to enhance management for biomass feedstock production, (iii) examine current on-farm production systems for opportunities to incorporate biomass production, and (iv) determine feedstock quality and stability during storage

  3. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    NARCIS (Netherlands)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F.S. III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S.L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I.A.

    2015-01-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the

  4. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  5. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...... is an unexploited, not researched, not developed source of biomass and is at the same time an enormous resource by mass. It is therefore obvious to look into this vast biomass resource and by this report give some of the first suggestions of how this new and promising biomass resource can be exploited....

  6. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming; Peng, Meng

    2015-08-01

    This study aimed at enhancing the bacterial biomass and pigments production in together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via using different photoperiods. Different light/dark cycles and light/dark cycle frequencies were examined. Results showed that PSB had the highest biomass production, COD removal and biomass yield, and light energy efficiency with light/dark cycle of 2h/1h. The corresponding biomass, COD removal and biomass yield reached 2068mg/L, 90.3%, and 0.38mg-biomass/mg-COD-removal, respectively. PSB showed higher biomass production and biomass yield with higher light/dark cycle frequency. Mechanism analysis showed within a light/dark cycle from 1h/2h to 2h/1h, the carotenoid and bacteriochlorophyll production increased with an increase in light/dark cycle. Moreover, the pigment contents were much higher with lower frequency of 2-4 times/d. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  8. Effect of diverse ecological conditions on biomass production of ...

    African Journals Online (AJOL)

    Kangaroo grass native to Australia is known as the best grass to grow on different environmental and soil conditions. Biomass production of any grass is the key factor to estimate that if the grass could fulfill the animal requirements. Biomass production of kangaroo grass was estimated in this study at three growth stages on ...

  9. Biomass Energy Production in California: The Case for a Biomass Policy Initiative; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.

    2000-12-14

    During the 1980s California developed the largest and most divers biomass energy industry in the world. Biomass energy production has become an important component of the state's environmental infrastructure, diverting solid wastes from open burning and disposal in landfills to a beneficial use application.

  10. Benthic bacterial biomass and production in the Hudson River estuary

    International Nuclear Information System (INIS)

    Austin, H.K.; Findlay, S.E.G.

    1989-01-01

    Bacterial biomass, production, and turnover were determined for two freshwater march sites and a site in the main river channel along the tidally influenced Hudson River. The incorporation of [methyl- 3 H]thymidine into DNA was used to estimate the growth rate of surface and anaerobic bacteria. Bacterial production at marsh sites was similar to, and in some cases considerably higher than, production estimates reported for other aquatic wetland and marine sediment habitats. Production averaged 1.8-2.8 mg C·m -2 · hour -1 in marsh sediments. Anaerobic bacteria in marsh sediment incorporated significant amounts of [methyl- 3 H]thymidine into DNA. Despite differences in dominant vegatation and tidal regime, bacterial biomass was similar (1 x 10 3 ± 0.08 mg C·m -2 ) in Trapa, Typha, and Nuphar aquatic macrophyte communities. Bacterial abundance and productivity were lower in sandy sediments associated with Scirpus communities along the Hudson River (0.2 x 10 3 ± 0.05 mg C·m -2 and 0.3 ± 0.23 mg C · m -2 · hour -1 , respectively)

  11. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  12. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L; Daugbjerg Jensen, P; Svane Bech, K [Danish Technological Institute (DTI), Taastrup (Denmark); and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  13. The Prospects of Rubberwood Biomass Energy Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-03-01

    Full Text Available Rubber has been shown to be one of the most important plantation crops in Malaysia, and rubber tree biomass has widespread applications in almost all sectors of the wood products manufacturing sector. Despite its abundance, the exploitation of rubberwood biomass for energy generation is limited when compared to other available biomass such as oil palm, rice husk, cocoa, sugarcane, coconut, and other wood residues. Furthermore, the use of biomass for energy generation is still in its early stages in Malaysia, a nation still highly dependent on fossil fuels for energy production. The constraints for large scale biomass energy production in Malaysia are the lack of financing for such projects, the need for large investments, and the limited research and development activities in the sector of efficient biomass energy production. The relatively low cost of energy in Malaysia, through the provision of subsidy, also restricts the potential utilization of biomass for energy production. In order to fully realize the potential of biomass energy in Malaysia, the environmental cost must be factored into the cost of energy production.

  14. The regional environmental impact of biomass production

    International Nuclear Information System (INIS)

    Graham, R.L.

    1994-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  15. Microbial Biodiesel Production by Direct Transesterification of Rhodotorula glutinis Biomass

    Directory of Open Access Journals (Sweden)

    I-Ching Kuan

    2018-04-01

    Full Text Available (1 Background: Lipids derived from oleaginous microbes have become promising alternative feedstocks for biodiesel. This is mainly because the lipid production rate from microbes is one to two orders of magnitude higher than those of energy crops. However, the conventional process for converting these lipids to biodiesel still requires a large amount of energy and organic solvents; (2 Methods: In this study, an oleaginous yeast, Rhodotorula glutinis, was used for direct transesterification without lipid pre-extraction to produce biodiesel, using sulfuric acid or sodium hydroxide as a catalyst. Such processes decreased the amount of energy and organic solvents required simultaneously; (3 Results: When 1 g of dry R. glutinis biomass was subject to direct transesterification in 20 mL of methanol catalyzed by 0.6 M H2SO4 at 70 °C for 20 h, the fatty acid methyl ester (FAME yield reached 111%. Using the same amount of biomass and methanol loading but catalyzed by 1 g/L NaOH at 70 °C for 10 h, the FAME yield reached 102%. The acid-catalyzed process showed a superior moisture tolerance; when the biomass contained 70% moisture, the FAME yield was 43% as opposed to 34% of the base-catalyzed counterpart; (4 Conclusions: Compared to conventional transesterification, which requires lipid pre-extraction, direct transesterification not only simplifies the process and shortens the reaction time, but also improves the FAME yield.

  16. Production of yeast biomass using waste Chinese cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Min Ho Choi; Yun Hee Park [Ajou Univ., Suwon (Korea). Dept. of Molecular Science and Technology

    2003-08-01

    The possibility of using waste Chinese cabbage as a substrate for microbial biomass production was investigated. Cell mass and the protein content of four species of yeast, Candida utilis, Pichia stipitis, Kluyveromyces marxianus, and Saccharomyces cerevisiae, were determined when cultured in juice extracted from cabbage waste. Compared to YM broth containing the same level of sugar, all the strains except C. utilis showed higher total protein production in cabbage juice medium (CJM). Cell mass production was lower for all four strains in heat-treated CJM than in membrane-filtered medium, and this adverse effect was pronounced when the CJM was autoclaved at 121{sup o}C for 15 min. As a source of inorganic nitrogen, only ammonium sulfate added at a concentration of 0.5 g nitrogen per liter of CJM increased cell growth. Of the seven organic nitrogen sources tested, only corn steep powder was effective in increasing cell mass (by about 11%). As a micronutrient, the addition of 0.5 mM zinc increased cell mass. The results suggest that juice from waste Chinese cabbages can be used to produce microbial biomass protein without substantial modification, after preliminary heat treatment at temperatures below those required for sterilization. (Author)

  17. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    Claudet, G.

    2005-01-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  18. Influence of aeration and lighting on biomass production and protein ...

    African Journals Online (AJOL)

    The influence aeration and light intensity could have on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh is examined. Biomass, proximal composition and amino acid composition obtained from aerated cultures of the organism were compared with ...

  19. Thermodynamic evaluation of biomass-to-biofuels production systems

    NARCIS (Netherlands)

    Piekarczyk, W.; Czarnowska, L.; Ptasinski, K.J.; Stanek, W.

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like

  20. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  1. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  2. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  3. Thermodynamic evaluation of biomass-to-biofuels production systems

    International Nuclear Information System (INIS)

    Piekarczyk, Wodzisław; Czarnowska, Lucyna; Ptasiński, Krzysztof; Stanek, Wojciech

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like Fischer–Tropsch fuels or Substitute Natural Gas which are produced either from wood or from waste biomass. For these biofuels the most promising conversion case is the one which involves production of syngas from biomass gasification, followed by synthesis of biofuels. The thermodynamic efficiency of biofuels production is analyzed and compared using both the direct exergy analysis and the thermo-ecological cost. This analysis leads to the detection of exergy losses in various elements which forms the starting point to the improvement of conversion efficiency. The efficiency of biomass conversion to biofuels is also evaluated for the whole production chain, including biomass cultivation, transportation and conversion. The global effects of natural resources management are investigated using the thermo-ecological cost. The energy carriers' utilities such as electricity and heat are externally generated either from fossil fuels or from renewable biomass. In the former case the production of biofuels not always can be considered as a renewable energy source whereas in the latter case the production of biofuels leads always to the reduction of depletion of non-renewable resources

  4. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, R. César; Manowitz, David H.; Zhang, Xuesong

    2013-01-01

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environmental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government. - Highlights: ► Bioeconomic optimization model predicts how biomass production affects environment. ► Rising biomass production could impair climate and water quality. ► Environmental protection policies compared as biomass supply grows. ► Carbon price protects the environment cost-effectively as biomass supply expands

  5. The scale of biomass production in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yukihiko [School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima-shi 739-8527 (Japan); Inoue, Takashi; Fukuda, Katsura [Global Warming Research Department, Mitsubishi Research Institute, Inc., 2-3-6 Ohtemachi, Chiyoda-ku, Tokyo 100-8141 (Japan); Komoto, Keiichi; Hada, Kenichiro [Renewable energy Team, Environment, Natural Resources and Energy Division, Mizuho Information and Research Institute, Inc., 2-3 Kanda-nishikicho, Chiyoda-ku, Tokyo 101-8443 (Japan); Hirata, Satoshi [Technical Institute, Kawasaki Heavy Industries, Ltd., 1-1 Kawasakicho, Akashi-shi, Hyogo 673-8666 (Japan); Minowa, Tomoaki [Biomass Recycle Research Laboratory, National Institute of Advanced and Industrial Science and Technology, 2-2-2 Hiro, Suehiro, Kure-shi, Hiroshima 737-0197 (Japan); Yamamoto, Hiromi [Socioeconomic Research Center, Central Research Institute of Electric Power Industry, 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo 100-8126 (Japan)

    2005-11-01

    Policymakers working to introduce and promote the use of bioenergy in Japan require detailed information on the scales of the different types of biomass resources generated. In this research, the first of its type in Japan, the investigators reviewed various statistical resources to quantify the scale distribution of forest residues, waste wood from manufacturing, waste wood from construction, cattle manure, sewage sludge, night soil, household garbage, and waste food oil. As a result, the scale of biomass generation in Japan was found to be relatively small, on the average is no more than several tons in dry weight per day. (author)

  6. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  7. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  8. Does species richness affect fine root biomass and production in young forest plantations?

    Science.gov (United States)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  9. Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield

    International Nuclear Information System (INIS)

    Mendez, Lara; Mahdy, Ahmed; Ballesteros, Mercedes; González-Fernández, Cristina

    2015-01-01

    Highlights: • Cyanobacteria and C. vulgaris were compared in terms of growth and methane production. • Biomasses were subjected to anaerobic digestion without applying any disruption method. • Cyanobacteria showed an increased methane yield in comparison with C. vulgaris. - Abstract: The aim of the present study was to compare cyanobacteria strains (Aphanizomenon ovalisporum, Anabaena planctonica, Borzia trilocularis and Synechocystis sp.) and microalgae (Chlorella vulgaris) in terms of growth rate, biochemical profile and methane production. Cyanobacteria growth rate ranged 0.5–0.6 day −1 for A. planctonica, A. ovalisporum and Synecochystis sp. and 0.4 day −1 for B. tricularis. Opposite, C. vulgaris maximum growth rate was double (1.2 day −1 ) than that of cyanobacteria. Regarding the methane yield, microalgae C. vulgaris averaged 120 mL CH 4 g COD in −1 due to the presence of a strong cell wall. On the other hand, anaerobic digestion of cyanobacteria supported higher methane yields. B. trilocularis and A. planctonica presented 1.42-fold higher methane yield than microalgae while this value was raised to approximately 1.85-fold for A. ovalisporum and Synechochystis sp. In the biogas production context, this study showed that the low growth rates of cyanobacteria can be overcome by their increased anaerobic digestibility when compared to their microalgae counterpartners, such is the case of C. vulgaris

  10. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  11. Photocatalytic reforming of biomass for hydrogen production

    NARCIS (Netherlands)

    Ripken, R.M.; de Boer, V.J.H.W.; Gardeniers, J.G.E.; le Gac, S.

    2017-01-01

    Here, we describe a novel microfluidic device to determine the required bandgap for the photocatalytic reforming of biomass model substrates (ethylene glycol, glycerol, xylose and xylitol) in water. Furthermore, this device is applied to eventually elucidate the reaction mechanism of aqueous

  12. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  13. Vegetation Composition, Biomass Production, Carrying Capacity ...

    African Journals Online (AJOL)

    Acacia tortilis, Acacia nilotica, Acacia mellifera and Acacia seyal were the most dominant shrubs with scattered Caddaba rotundifolia, Caddaba furmisa, Seddera bagshawei, Tamarix nilotica, Dobera glabra and abundant Parthenium hysterophorus, Cissus rotundifolia and C. quadrangularis. The grass biomass estimated in ...

  14. Optimal use of biomass for energy production

    International Nuclear Information System (INIS)

    Ruijgrok, W.; Cleijne, H.

    2000-10-01

    In addition to the EWAB programme, which is focused mainly on the application of waste and biomass for generating electricity, Novem is also working on behalf of the government on the development of a programme for gaseous and liquid energy carriers (GAVE). The Dutch ministries concerned have requested that Novem provide more insight concerning two aspects. The first aspect is the world-wide availability of biomass in the long term. A study group under the leadership of the University of Utrecht has elaborated this topic in greater detail in the GRAIN project. The second aspect is the question of whether the use of biomass for biofuels, as aimed at in the GAVE programme, can go hand in hand with the input for the electricity route. Novem has asked the Dutch research institute for the electric power industry (KEMA) to study the driving forces that determine the future use of biomass for electricity and biofuels, the competitive strength of each of the routes, and the possible future scenarios that emerge. The results of this report are presented in the form of copies of overhead sheets

  15. seasonal variation of biomass and secondary production

    African Journals Online (AJOL)

    Preferred Customer

    consimilis was cultured in the laboratory to obtain life history data on duration of embryonic and post-embryonic ... medium. Laboratory duration times were close to biomass turnover rates calculated from field data ... Ethiopian lakes include the work of Seyoum. Mengistou ... water balance of this lake as the static water level.

  16. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  17. Food and disturbance effects on Arctic benthic biomass and production size spectra

    Science.gov (United States)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  18. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  19. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  20. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Hydrogen production from biomass tar by catalytic steam reforming

    International Nuclear Information System (INIS)

    Yoon, Sang Jun; Choi, Young-Chan; Lee, Jae-Goo

    2010-01-01

    The catalytic steam reforming of model biomass tar, toluene being a major component, was performed at various conditions of temperature, steam injection rate, catalyst size, and space time. Two kinds of nickel-based commercial catalyst, the Katalco 46-3Q and the Katalco 46-6Q, were evaluated and compared with dolomite catalyst. Production of hydrogen generally increased with reaction temperature, steam injection rate and space time and decreased with catalyst size. In particular, zirconia-promoted nickel-based catalyst, Katalco 46-6Q, showed a higher tar conversion efficiency and shows 100% conversion even relatively lower temperature conditions of 600 deg. C. Apparent activation energy was estimated to 94 and 57 kJ/mol for dolomite and nickel-based catalyst respectively.

  2. Microalgal biomass production pathways: evaluation of life cycle environmental impacts.

    Science.gov (United States)

    Zaimes, George G; Khanna, Vikas

    2013-06-20

    Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of -46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae's life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae's direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Given the high variability in microalgae's energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative.

  3. Introduction to energy balance of biomass production

    International Nuclear Information System (INIS)

    Manzanares, P.

    1997-01-01

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs

  4. Characterization of Various Biomass Feedstocks for Energy Production

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2013-01-01

    Biomass represents the renewable energy source and their use reduces the consumption of fossil fuels and limits the emission of CO2. In this work, various biomass feedstocks were assessed for assessing their suitability as energy production sources using thermochemical conversion routes especially...... hydrothermal liquefaction (HTL) process. The methods used to analyze involved performing proximate, ultimate and thermogravimetry analysis. On the basis of proximate, ultimate, and thermogravimetry analysis, the dried distiller grains with solubles (DDGS), corn silage, chlorella vulgaris, spirulina platensis...

  5. Root diseases, climate change and biomass productivity

    International Nuclear Information System (INIS)

    Warren, G.R.; Cruickshank, M.

    2004-01-01

    Tree growth and yield in eastern boreal spruce fir forests are both greatly affected by root and butt rots. These pests are also prevalent in western coniferous species and boreal-sub-boreal forests. Infections are difficult to detect, but reduced growth, tree mortality, wind throw and scaled butt cull contribute to considerable forest gaps. Harvesting and stand tending practices in second growth stands are creating conditions for increased incidence. Tree stress is one of the major factors affecting the spread of root disease. It is expected that climate change will create abnormal stress conditions that will further compound the incidence of root disease. A comparison was made between natural and managed stands, including harvesting and stand practices such as commercial thinning. Studies of Douglas-fir forests in British Columbia were presented, with results indicating that managed forests contain one third to one half less carbon biomass than unmanaged forests. It was concluded that root diseases must be recognized and taken into account in order to refine and improve biomass estimates, prevent overestimation of wood supply models and avoid potential wood fibre losses. 40 refs., 2 figs.

  6. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  7. Biomass production in energy plantation of Prosopis juliflora

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurti, K.

    1984-09-01

    Studies on time trends of biomass production by means of age series in energy plantations (spacing 1.3 x 1.3 m) of Prosopis juliflora is presented. The component biomass production at the age of 18, 24, 30, 36 and 48 months was determined. The results show considerable variation among the population of trees. However, distinct linear relationship between girth at breast height (GBH) and total height was discernible. The total biomass produced at 18, 24, 30, 36 and 48 months of age was 19.69, 41.39, 69.11, 114.62 and 148.63 dry tonnes per hectare, respectively. The corresponding figures for utilizable biomass (wood, bark and branch) were 14.63, 32.17, 50.59, 88.87 and 113.25 dry tonnes per hectare. At all the periods of study, branch component formed the major portion of total biomass being around 50 to 55%. Utilizable biomass was three-fourths of total biomass at all ages. The solar energy conversion efficiency ranged from 0.59% at 18 months to 1.68% at 48 months of age, the peak value being 1.87% at the age of 36 months. It is shown that the variables diameter and height can be used to reliably predict the biomass production in Prosopis juliflora with the help of the regression equations developed in the present study. It is concluded that Prosopis juliflora is an ideal candidate for energy plantations in semi arid and marginal lands, not only to meet the fuelwood demands but also to improve the soil fertility, for, this plant is a fast growing and nitrogen fixing leguminous tree.

  8. Selection of Willows (Salix sp. for Biomass Production

    Directory of Open Access Journals (Sweden)

    Davorin Kajba

    2014-12-01

    Full Text Available Background and Purpose: Willows compared with other species are the most suitable for biomass production in short rotations because of their very abundant growth during the first years. Nowadays, in Croatia, a large number of selected and registered willow clones are available. The main objective of the research should be to find genotypes which, with minimum nutrients, will produce the maximum quantity of biomass. Material and Methods: Clonal test of the arborescent willows include the autochthonous White Willow (Salix alba, interracial hybrids of the autochthonous White Willow and the English ‘cricket’ Willow (S. alba var. calva, interspecies hybrids (S. matsudana × S. alba, as well as multispecies hybrids of willows. Average production of dry biomass (DM∙ha-1∙a-1 per hectare was estimated in regard to the clone, survival, spacing and the number of shoots per stump. Results: The highest biomass production as well as the best adaptedness and phenotypic stability on testing site was shown by clones (‘V 374’, ‘V 461’, ‘V 578’ from 15.2 - 25.0 t∙DM∙ha-1∙a-1 originated from backcross hybrid S. matsudana × (S. matsudana × S. alba and by one S. alba clone (‘V 95’, 23.1 - 25.7 t∙DM∙ha-1∙a-1. These clones are now at the stage of registration and these results indicate significant potential for further breeding aimed at biomass production in short rotations. Conclusions: Willow clones showed high biomass production on marginal sites and dry biomass could be considerably increased with the application of intensive silvicultural and agro technical measures. No nutrition or pest control measures were applied (a practice otherwise widely used in intensive cultivation system, while weed vegetation was regulated only at the earliest age.

  9. Diseases and pests in biomass production systems

    International Nuclear Information System (INIS)

    Royle, D.J.; Hunter, Tom; McNabb, H.S. Jr.

    1998-01-01

    The current status of disease and pest problems in willow and poplar biomass systems for energy within Canada, Sweden, the United Kingdom and the United States is described. The IEA Disease and Pest Activities within the recent Task XII (1995-1997), and previous Tasks since 1987, have provided outstanding opportunities for international co-operation which has served substantially to augment national research programmes. Work is described on recognizing different forms of an insect pest or pathogen and understanding the genetic basis of its variability, which is of fundamental importance in developing pest management strategies that exclude inputs of energy-rich materials such as pesticides. Options for more natural pest control are considered including breeding for resistance, plantation designs based on host genotype diversity and biological control 16 refs, 2 figs

  10. Biomass production and forage quality of head-smut disease ...

    African Journals Online (AJOL)

    Napier grass, commonly known as “elephant grass”, is a major feed used for dairy production by smallholder farmers in eastern and central Africa. However, the productivity of the grass in the region is threatened by stunt and head-smut diseases. The objective of this study was to determine biomass yield and forage quality ...

  11. Biomass production and utilisation. Policy implications for LDCs

    International Nuclear Information System (INIS)

    Davidson, O.

    1997-01-01

    The importance of biomass in the energy sector of LDCs and in Africa in particular is illustrated so as to provide the background to the policy importance on the production and use of this energy source. The main areas for policy attention discussed are: biomass for power generation, biomass use in the transport sector, urban energy supply and the interactions with agricultural policies. The roles of the major institutions the government, private sector institutions, educational institutions and non-governmental organizations are identified. It is concluded that with the necessary policy shift that is being advocated, biomass can contribute to a more equitable supply of high quality and efficient energy services in the future of African countries. (K.A.)

  12. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production. PMID:24195081

  13. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Directory of Open Access Journals (Sweden)

    Hechun Cao

    2013-01-01

    Full Text Available A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  14. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  15. Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Thakur Upadhyay

    2012-12-01

    Full Text Available Efficient procurement and utilization of woody biomass for bioenergy production requires a good understanding of biomass supply chains. In this paper, a dynamic optimization model has been developed and applied to estimate monthly supply and procurement costs of woody biomass required for the Atikokan Generating Station (AGS in northwestern Ontario, based on its monthly electricity production schedule. The decision variables in the model are monthly harvest levels of two types of woody biomass, forest harvest residues and unutilized biomass, from 19,315 forest depletion cells (each 1 km2 for a one year planning horizon. Sixteen scenarios are tested to examine the sensitivity of the cost minimization model to changing economic and technological parameters. Reduction in moisture content and improvement of conversion efficiency showed relatively higher reductions in monthly and total costs of woody biomass feedstock for the AGS. The results of this study help in understanding and designing decision support systems for optimal biomass supply chains under dynamic operational frameworks.

  16. Environmental impacts of biomass energy resource production and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  17. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  18. Challenges for renewable hydrogen production from biomass

    International Nuclear Information System (INIS)

    Levin, David B.; Chahine, Richard

    2010-01-01

    The increasing demand for H 2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H 2 as a transportation fuel and portable power, will require H 2 production on a massive scale. Increased production of H 2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas), which in turn will generate greater greenhouse gas emissions. Production of H 2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermocatalytic, and biological production can be easily adapted to on-site decentralized production of H 2 , circumventing the need to establish a large and costly distribution infrastructure. Each of these H 2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H 2 production systems with H 2 purification and storage technologies. (author)

  19. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  20. Ethanol production from biomass: technology and commercialisation status

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R.

    2001-06-01

    Owing to technical improvements in the processes used to produce ethanol from biomass, construction of at least two waste-to-ethanol production plants in the United States is expected to start this year. Although there are a number of robust fermentation microorganisms available, initial pretreatment of the biomass and costly cellulase enzymes remain critical targets for process and cost improvements. A highly efficient, very low-acid pretreatment process is approaching pilot testing, while research on cellulases for ethanol production is expanding at both enzyme and organism level. (Author)

  1. Microalgal biomass pretreatment for bioethanol production: a review

    Directory of Open Access Journals (Sweden)

    Jesús Velazquez-Lucio

    2018-03-01

    Full Text Available Biofuels derived from microalgae biomass have received a great deal of attention owing to their high potentials as sustainable alternatives to fossil fuels. Microalgae have a high capacity of CO2 fixation and depending on their growth conditions, they can accumulate different quantities of lipids, proteins, and carbohydrates. Microalgal biomass can, therefore, represent a rich source of fermentable sugars for third generation bioethanol production. The utilization of microalgal carbohydrates for bioethanol production follows three main stages: i pretreatment, ii saccharification, and iii fermentation. One of the most important stages is the pretreatment, which is carried out to increase the accessibility to intracellular sugars, and thus plays an important role in improving the overall efficiency of the bioethanol production process. Diverse types of pretreatments are currently used including chemical, thermal, mechanical, biological, and their combinations, which can promote cell disruption, facilitate extraction, and result in the modification the structure of carbohydrates as well as the production of fermentable sugars. In this review, the different pretreatments used on microalgae biomass for bioethanol production are presented and discussed. Moreover, the methods used for starch and total carbohydrates quantification in microalgae biomass are also briefly presented and compared.

  2. An inventory control model for biomass dependent production systems

    International Nuclear Information System (INIS)

    Grado, S.C.; Strauss, C.H.

    1993-01-01

    The financial performance of a biomass dependent production system was critiqued based on the development and validation of an inventory control model. Dynamic programming was used to examine the constraints and capabilities of producing ethanol from various biomass crops. In particular, the model evaluated the plantation, harvest, and manufacturing components of a woody biomass supply system. The optimum wood to ethanol production scheme produced 38 million litres of ethanol in the harvest year, at 13.6 million litre increase over the least optimal policy as demonstrated in the dynamic programming results. The system produced ethanol at a delivered cost of $0.38 L -1 which was consistent with the unit costs from other studies. Nearly 60% of the delivered costs were in ethanol production. The remaining costs were attributed to growing biomass (14%), harvest and shipment of the crop (18%), storage of the raw material and finished product (7%) and open-quotes lost salesclose quotes (2%). Inventory control, in all phases of production, proved to be an important cost consideration throughout the model. The model also analyzed the employment of alternative harvesting policies and the use of different or multiple feedstocks. A comparison between the least cost wood system and an even cut wood system further revealed the benefits of using an inventory control system

  3. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  4. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  5. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Screening Prosopis (mesquite) germplasm for biomass production and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.; Cannell, G.H.; Clark, P.R.; Osborn, J.F.

    1980-01-01

    The nitrogen-fixing trees of the genus Prosopis (mesquite or algaroba) are well adapted to the semi-arid and often saline regions of the world. These trees may produce firewood or pods for livestock food, they may stabilize sand dunes and they may enrich the soil by production of leaf litter supported by nitrogen fixation. A collection of nearly 500 Prosopis accessions representing North and South American and African germplasm has been established. Seventy of these accessions representing 14 taxa are being grown under field conditions where a 30-fold range in biomass productivity among accessions has been estimated. In a greehouse experiment, 13 Prosopis taxa grew on nitrogen-free medium nodulated, and had a 10-fold difference in nitrogen fixation (acetylene reduction). When Prosopis is propagated by seed the resulting trees are extremely variable in growth rate and presence or absence of thorns. Propagation of 6 Prosopis taxa by stem cuttings has been achieved with low success (1 to 10%) in field-grown plants and with higher success (50 to 100%) with young actively growing greenhouse plants.

  7. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    Science.gov (United States)

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  8. Biomass and alcohol production potential of over-ripe plantains and ...

    African Journals Online (AJOL)

    Procedures for alcohol and protein-rich biomass production from over-ripe plantains and their peels are described. Chemical analyses indicated a significantly (P < 0.05) higher content of moisture, crude fat and protein; as well as potassium, sodium, calcium, iron and magnesium in ripe plantains than in their peels.

  9. Biomass energy production in agriculture: A weighted goal programming analysis

    International Nuclear Information System (INIS)

    Ballarin, A.; Vecchiato, D.; Tempesta, T.; Marangon, F.; Troiano, S.

    2011-01-01

    Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. Our findings show that trade-off exists between the two optimisation targets considered. Although the optimisation of the first target requires traditional agricultural crops, which are characterised by high revenue and a low production of biomass energy, the latter would be achievable with intensive wood production, namely, high-energy production and low income. Our results also show the importance of the constraints imposed, particularly water availability; water scarcity has an overall negative effect and specifically affects the level of energy production. - Research Highlights: → The aim of this study is to assess how agriculture could contribute to the production of bio-energy. → A multi-period (15-year) Weighted Goal Programming model (MpWGP) has been applied. → We identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production. → Three concurrent constraints have been considered: water, labour and soil availability.→ Water scarcity has an overall negative effect and specifically affects the level of energy production.

  10. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  11. Production of Saccharomyces cerevisiae biomass in papaya extract ...

    African Journals Online (AJOL)

    Extracts of papaya fruit were used as substrate for single cell protein (SCP) production using Saccharomyces cerevisiae. A 500 g of papaya fruit was extracted with different volumes of sterile distilled water. Extraction with 200 mL of sterile distilled water sustained highest cell growth. Biochemical analysis of dry biomass ...

  12. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    The culture conditions of lactose fermenting, spore forming probiotic Bacillus subtilis SK09 isolated from dairy effluent were optimized by response surface methodology to maximize the biomass production. The student's t-test of the Placket-Burman screening design revealed that the effects of pH, ammonium citrate and ...

  13. Ecological impacts of biomass production at stand and landscape levels

    CSIR Research Space (South Africa)

    Du Toit, B

    2014-09-01

    Full Text Available In Chapters 4, 5 and 6 of this book, the authors discussed the production and procurement of biomass from various sources, including extensively managed systems such as woodlands, and much more intensively managed systems such as short-rotation bio...

  14. Biomass production of Lactobacillus plantarum LP02 isolated from ...

    African Journals Online (AJOL)

    The potentially hypocholesterolemic strain, designated PL02, of Lactobacillus plantarum, was isolated from infant feces. The aim of this study was to characterize and to cultivate this isolate for biomass production in a 5 L fermentor by batch or fed-batch fermentation. A modified medium composition without peptone was ...

  15. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  16. Biomass production and potential water stress increase with ...

    African Journals Online (AJOL)

    The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However ...

  17. Estimating annual bole biomass production using uncertainty analysis

    Science.gov (United States)

    Travis J. Woolley; Mark E. Harmon; Kari B. O' Connell

    2007-01-01

    Two common sampling methodologies coupled with a simple statistical model were evaluated to determine the accuracy and precision of annual bole biomass production (BBP) and inter-annual variability estimates using this type of approach. We performed an uncertainty analysis using Monte Carlo methods in conjunction with radial growth core data from trees in three Douglas...

  18. Growth characteristics and biomass production of kenaf | Tahery ...

    African Journals Online (AJOL)

    Parameters of height, diameter and internode were measured within four to six regular intervals of 10 to 15 days, while biomass production parameters of dry one meter stalk mass (DMSM), defoliated plant mass (DPM), one meter stalk mass (MSM) and fresh plant mass (FPM) were measured at harvest time. There was no ...

  19. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet

  20. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    Science.gov (United States)

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323

  1. Biomass production on saline-alkaline soils

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1985-01-01

    In a trial of twelve tree species (both nitrogen fixing and non-fixing) for fuel plantations on saline-alkaline soil derived from Gangetic alluvium silty clay, Leucaena leucocephala failed completely after showing rapid growth for six months. Results for other species at age two showed that Prosopis juliflora had the best productivity.

  2. Tensor products of higher almost split sequences

    OpenAIRE

    Pasquali, Andrea

    2015-01-01

    We investigate how the higher almost split sequences over a tensor product of algebras are related to those over each factor. Herschend and Iyama gave a precise criterion for when the tensor product of an $n$-representation finite algebra and an $m$-representation finite algebra is $(n+m)$-representation finite. In this case we give a complete description of the higher almost split sequences over the tensor product by expressing every higher almost split sequence as the mapping cone of a suit...

  3. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  4. Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp., and Candida utilis

    International Nuclear Information System (INIS)

    Ahmed, S.; Ahmad, F.; Hashmi, A.S.

    2010-01-01

    Sequential culture fermentation by Arachniotus sp. at 35 deg. C for 72 h and followed by Candida utilis fermentation at 35 deg. C for 72 h more resulted in higher production of microbial biomass protein. 6% (w/v) corn stover, 0.0075% CaCl/sub 2/.2H/sub 2/O, 0.005% MgSO/sub 4/.7H/sub 2/O, 0.01% KH/sub 2/PO/sub 4/, C:N ratio of 30:1 and 1% molasses gave higher microbial biomass protein production by the sequential culture fermentation of Arachniotus sp., and C. utilis. The mixed microbial biomass protein produced in the 75-L fermentor contained 16.41%, 23.51%, 10.9%, 12.11% and 0.12% true protein, crude protein, crude fiber, ash and RNA content, respectively. The amino acid profile of final mixed microbial biomass protein showed that it was enriched with essential amino acids. Thus, the potential utilization of corn stover can minimize the cost for growth of these microorganisms and enhance microbial biomass protein production by sequential culture fermentation. (author)

  5. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  7. Optimization of macronutrient kinetics for biomass production in Nostoc calcicola

    Science.gov (United States)

    Aiyer, Subramanian Seshadri C.; Akshai, A.; Kumar, B. G. Prakash; Ramachandran, S.

    2018-04-01

    To assess the feasibility of Allen and Arnon’s (AA) media addition to increase the biomass productivity, (0, 2.5, 5, 7.5 ml of 10x media concentrate - MC) was added to aerated culture every six days, in two separate conditions i.e., single harvest (SH) and continuous harvest (CH) after 15th day. Results show that with addition of 5 ml of MC produced maximum amount of biomass is 1.32 g/L and 2.88 g/L for Sh and CH respectively. These results show that with addition of 5 ml of MC to an aerated culture every six days with continuous biomass harvesting leads to maximum growth of Nostoc calcicola @25°C

  8. Algal Biomass for Bioenergy and Bioproducts Production in Biorefinery Concepts

    DEFF Research Database (Denmark)

    D'Este, Martina

    industry. The macroalgae used in this work were Laminaria digitata and Saccharina latissima, while the microalgae were Chlorella sorokiniana, Chlorella vulgaris and Chlorella protothecoides. Moreover, an evaluation of the effect of the harvesting season and location on the composition of high value...... feedstocks. Biorefinery represents an important tool towards the development of a sustainable economy. Within the biorefinery framework several bioproducts, such as food, feed and biofuels, can be produced from biomass. The specific composition of the biomass feedstock determines the potential final product...... heterotrophically in the macroalgae L. digitata hydrolyzed. The final composition of the microalgal biomass showed that the protein content was increased from 0.07 ± 0.01 gProtein gDM-1 to 0.44 ± 0.04 gProtein DM-1. The results obtained show that this solution may represent an interesting strategy to be applied...

  9. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel...

  10. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M J; Christian, D; Wilkins, C

    1997-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  11. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.J.; Christian, D.; Wilkins, C.

    1996-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  12. Particle production in higher derivative theory

    Indian Academy of Sciences (India)

    Lemaitre–Robertson–Walker cosmological model during the early stages of the universe is analysed in the framework of higher derivative theory. The universe has been considered as an open thermodynamic system where particle production ...

  13. Higher Toda brackets and Massey products

    OpenAIRE

    Baues, Hans-Joachim; Blanc, David; Gondhali, Shilpa

    2015-01-01

    We provide a uniform definition of higher order Toda brackets in a general setting, covering the known cases of long Toda brackets for topological spaces and chain complexes and Massey products for differential graded algebras, among others.

  14. Production of charcoal briquettes from biomass for community use

    Science.gov (United States)

    Suttibak, S.; Loengbudnark, W.

    2018-01-01

    This article reports of a study on the production of charcoal briquettes from biomass for community use. Manufacture of charcoal briquettes was done using a briquette machine with a screw compressor. The aim of this research was to investigate the effects of biomass type upon the properties and performance of charcoal briquettes. The biomass samples used in this work were sugarcane bagasse (SB), cassava rhizomes (CR) and water hyacinth (WH) harvested in Udon Thani, Thailand. The char from biomass samples was produced in a 200-liter biomass incinerator. The resulting charcoal briquettes were characterized by measuring their properties and performance including moisture content, volatile matter, fixed carbon and ash contents, elemental composition, heating value, density, compressive strength and extinguishing time. The results showed that the charcoal briquettes from CR had more favorable properties and performance than charcoal briquettes from either SB or WH. The lower heating values (LHV) of the charcoal briquettes from SB, CR and WH were 26.67, 26.84 and 16.76 MJ/kg, respectively. The compressive strengths of charcoal briquettes from SB, CR and WH were 54.74, 80.84 and 40.99 kg/cm2, respectively. The results of this research can contribute to the promotion and development of cost-effective uses of agricultural residues. Additionally, it can assist communities in achieving sustainable self-sufficiency, which is in line with our late King Bhumibol’s economic sufficiency philosophy.

  15. Biomass production on marginal lands - catalogue of bioenergy crops

    Science.gov (United States)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  16. On-line Biomass Estimation in a Batch Biotechnological Process: Bacillus thuringiensis δ - endotoxins production.

    OpenAIRE

    Amicarelli, Adriana

    2010-01-01

    In this Chapter it has been addressed the problem of the biomass estimation in a batch biotechnological process: the Bacillus thuringiensis (Bt) δ-endotoxins production process. Different alternatives that can be successfully used in this sense were presented. It has been exposed the design of various biomass estimators, namely: a phenomenological biomass estimator, a standard EKF biomass estimator, a biomass estimator based on ANN, a decentralized Kalman Filter, and a biomass concentration ...

  17. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool.

    Science.gov (United States)

    Kimura, Hiroyuki; Mori, Kousuke; Nashimoto, Hiroaki; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-02-01

    Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal pool was measured by in situ cultivation using diffusion chambers. The thermophiles' growth rates ranged from 0.43 to 0.82 day(-1), similar to those of planktonic bacteria in marine and freshwater habitats. Biomass production was estimated based on cellular carbon content measured directly from the thermophiles inhabiting the geothermal pool, which ranged from 5.0 to 6.1 microg C l(-1) h(-1). This production was 2-75 times higher than that of planktonic bacteria in other habitats, because the cellular carbon content of the thermophiles was much higher. Quantitative PCR and phylogenetic analysis targeting 16S rRNA genes revealed that thermophilic H2-oxidizing bacteria closely related to Calderobacterium and Geothermobacterium were dominant in the geothermal pool. Chemical analysis showed the presence of H2 in gases bubbling from the bottom of the geothermal pool. These results strongly suggested that H2 plays an important role as a primary energy source of thermophiles in the geothermal pool.

  18. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Julián Mario Peña-Castro

    2017-01-01

    Full Text Available The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize or proposed species (large grass families. The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.

  19. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Science.gov (United States)

    del Moral, Sandra; Núñez-López, Lizeth; Barrera-Figueroa, Blanca E.; Amaya-Delgado, Lorena

    2017-01-01

    The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass. PMID:28951875

  20. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  1. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  2. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biomass production and water use efficiency in perennial grasses during and after drought stress

    DEFF Research Database (Denmark)

    Sørensen, Kirsten Kørup; Lærke, Poul Erik; Sørensen, Helle Baadsgaard

    2018-01-01

    be suitable for assessment of drought stress. There were indications of positive associations between plants carbon isotope composition and water use efficiency (WUE) as well as DM under well-watered conditions. Compared to control, drought-treated plots showed increased growth in the period after drought...... stress. Thus, the drought events did not affect total biomass production (DMtotal) of the whole growing season. During drought stress and the whole growing season, WUE was higher in drought-treated compared to control plots, so it seems possible to save water without loss of biomass. Across soil types, M......Drought is a great challenge to agricultural production, and cultivation of drought-tolerant or water use-efficient cultivars is important to ensure high biomass yields for bio-refining and bioenergy. Here, we evaluated drought tolerance of four C3 species, Dactylis glomerata cvs. Sevenop and Amba...

  4. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  5. Techno-economic analysis of ammonia production via integrated biomass gasification

    International Nuclear Information System (INIS)

    Andersson, Jim; Lundgren, Joakim

    2014-01-01

    Highlights: • Techno-economic results regarding biomass-based ammonia production systems. • Integration of an ammonia production process in a pulp and paper mill. • Integrated ammonia production gains higher system efficiency than stand-alone production. • The economics of an integrated production system is improved compared to stand-alone production. - Abstract: Ammonia (NH 3 ) can be produced by synthesis of nitrogen and hydrogen in the Haber–Bosch process, where the economic challenge is the hydrogen production. Currently, substantial amounts of greenhouse gases are emitted from the ammonia industry since the hydrogen production is almost exclusively based on fossil feedstocks. Hydrogen produced via gasification of lignocellulosic biomass is a more environmentally friendly alternative, but the economic performance is critical. The main objective of this work was to perform a techno-economic evaluation of ammonia production via integrated biomass gasification in an existing pulp and paper mill. The results were compared with a stand-alone production case to find potential technical and economic benefits deriving from the integration. The biomass gasifier and the subsequent NH 3 production were modelled using the commercial software Aspen Plus. A process integration model based on Mixed Integer Linear Programming (MILP) was used to analyze the effects on the overall energy system of the pulp mill. Important modelling constraints were to maintain the pulp production and the steam balance of the mill. The results showed that the process economics and energy performance are favourable for the integrated case compared to stand-alone production. The main conclusion was however that a rather high NH 3 selling price is required to make both production cases economically feasible

  6. Effect of Heating Method on Hydrogen Production by Biomass Gasification in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Qiuhui Yan

    2014-01-01

    Full Text Available The glucose as a test sample of biomass is gasified in supercritical water with different heating methods driven by renewable solar energy. The performance comparisons of hydrogen production of glucose gasification are investigated. The relations between temperature raising speed of reactant fluid, variation of volume fraction, combustion enthalpy, and chemical exergy of H2 of the product gases with reactant solution concentration are presented, respectively. The results show that the energy quality of product gases with preheating process is higher than that with no preheating unit for hydrogen production. Hydrogen production quantity and gasification rate of glucose decrease obviously with the increase of concentration of material in no preheating system.

  7. Biomass storage for further energy use through biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Atem, A.D. [Instituto CEDIAC, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Mendoza (Argentina); Indiveri, M.E. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Llamas, S. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina)

    2010-06-15

    The present work approaches the residual biomass conservation for later digestion in an anaerobic batch reactor. Twenty 4 L capacity PET reactors were used. A measuring device was constructed to quantify the biogas production. As substrate were used tomato wastes from local industry and rumen fluid as inoculum. Digestion start up was able to be controlled by varying the temperature, during a period of 118 days was not verified biogas production. After re-inoculated with rumen fluid stabilized for 34 days, biogas production was verified. They were obtained 0.10 m{sup 3} of biogas per kilogram of volatile solids, with 50% of methane content. (author)

  8. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  10. Torrefaction of waste biomass for application in energy production in South Africa

    Directory of Open Access Journals (Sweden)

    T.A. Mamvura

    2018-06-01

    Full Text Available Power producing plants are major emitters of greenhouse gases that lead to global warming and climate changes. In the past two to three decades, attention has been drawn to organizations such as these reduce their dependence on coal reserves which are depleting and focus on producing clean energy i.e. for every ton of fuel produced, 100 kg or more should be made from clean energy. This has made torrefaction to gain interest as it improves energy content of biomass, a renewable and clean energy source, to levels equal to and sometimes above that of coal. The benefit of this is that, torrefied biomass could be co-fired with coal thereby reducing greenhouse gases and global warming.In this study, the effect of different parameters were investigated on two abundant sources of biomass in South Africa. There parameters were temperature, oxygen content, heating rate and residence time. It was observed that a temperature range between 275 and 300 °C under inert conditions with a heating rate of 10 °C/min and residence time between 20 and 40 min were required to achieve the best biomass with properties comparable to those of coal. This made it possible to co-fire the biomass with coal for energy production at different proportions. Keywords: Torrefaction, Biomass, Coal, Higher heating value

  11. Biomass production of dense direct-seeded lodgepole pine (Pinus contorta) at short rotation periods

    Energy Technology Data Exchange (ETDEWEB)

    Backlund, I.; Bergsten, U.

    2012-07-01

    Lodgepole pine (Pinus contorta) is a fast-growing species that is suitable for producing woody biomass in Nordic countries. Direct seeding of this species is cheaper than planting and creates dense, stable stands. The objective of this study was to quantify the stem volume and biomass production of direct seeded lodgepole pine stands grown under different site conditions with different stem densities, at an age that would permit extensive harvesting of biomass. A circle-plot inventory was performed in 16 of the oldest direct seeded lodgepole pine stands in mid-northern Sweden. Stemwood production of almost 200 m{sup 3}/ha was achieved on average on the best sites, rising to about 300 m{sup 3}/ha for the best circle-plots within 30 years of direct seeding despite the fact that pre-commercial thinning was made once or twice. This corresponds to 100 and 140 tons of dry weight biomass/ha, respectively. Higher stand stem densities ({>=}3000 st/ha) yielded more biomass with only slight reductions in diameter at breast height. The development of stem volume with respect to dominant height in direct seeded stands was becoming comparable to that in planted stands with similar spacing. It therefore seems that there is an unutilized potential for cost-effectively growing lodgepole pine in dense stands for biomass production after direct seeding. It may be possible to devise regimes for short(er) rotation forestry that would yield substantial amount of inexpensive biomass for biorefineries within a few decades. (orig.)

  12. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain

    Directory of Open Access Journals (Sweden)

    Javier Sánchez

    2015-09-01

    Full Text Available The use of residual biomass for energy purposes is of great interest in isolated areas like Majorca for waste reduction, energy sufficiency and renewable energies development. In addition, densification processes lead to easy-to-automate solid biofuels which additionally have higher energy density. The present study aims at (i the estimation of the potential of residual biomass from woody crops as well as from agri-food and wood industries in Majorca, and (ii the analysis of the optimal location of potential pellet plants by means of a GIS approach (location-allocation analysis and a cost evaluation of the pellets production chain. The residual biomass potential from woody crops in Majorca Island was estimated at 35,874 metric tons dry matter (t DM per year, while the wood and agri-food industries produced annually 21,494 t DM and 2717 t DM, respectively. Thus, there would be enough resource available for the installation of 10 pellet plants of 6400 t·year−1 capacity. These plants were optimally located throughout the island of Mallorca with a maximum threshold distance of 28 km for biomass transport from the production points. Values found for the biomass cost at the pellet plant ranged between 57.1 €·t−1 and 63.4 €·t−1 for biomass transport distance of 10 and 28 km. The cost of pelleting amounted to 56.7 €·t−1; adding the concepts of business fee, pellet transport and profit margin (15%, the total cost of pelleting was estimated at 116.6 €·t−1. The present study provides a proposal for pellet production from residual woody biomass that would supply up to 2.8% of the primary energy consumed by the domestic and services sector in the Balearic Islands.

  13. Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes.

    Science.gov (United States)

    Corton, J; Donnison, I S; Patel, M; Bühle, L; Hodgson, E; Wachendorf, M; Bridgwater, A; Allison, G; Fraser, M D

    2016-09-01

    Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush ( Juncus effuses ) and bracken ( Pteridium aquilinum ) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 10 5  tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

  14. Methane and fertilizer production from seaweed biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Betzer, P.R.; Humm, H.J.

    1984-01-01

    It was demonstrated that several varieties of abundant benthic algae indigenous to Tampa Bay (Gracilaria, Hypnea, and Ulva) were readily degradable via anaerobic digestion to methane. The energy yield per unit weight biomass degraded was higher than any previously reported. Given the large masses of readily degradable plants which are annually produced in and around Tampa Bay, the resource is estimated to be at least equivalent to several million gallons of gasoline.

  15. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  16. Pectin-rich biomass as feedstock for fuel ethanol production.

    Science.gov (United States)

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  17. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  18. Biomass and biofertilizer production by Sesbania cannabina in alkaline soil

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.L.N.; Gill, H.S. [Central Soil Salinity Research Inst., Haryana (India)

    1995-12-01

    Biomass shortages in developing countries require increased investigation into fast-growing, N-fixing, woody plant species. In field trials in north India, the potential of Sesbania cannabina for production of green leaf manure (biofertilizer) and firewood (woody biomass) was investigated. At 100 days after sowing (DAS), green matter was 21.5 and 9.4 Mg ha{sup -1} in the stem and the leaf. A seeding rate of 15 kg ha{sup -1} producing a population of 10{sup 5} plants per hectare was adequate. Biofertilizer potential was 124.7 N, 5.3 P, 80.7 K and 12.0 S (kg ha{sup -1}), respectively. Nodulation was profuse and effective and N fixed was nearly 122 kg ha{sup -1} at 100 DAS. At maturity, 200 DAS, woody biomass production was 19.2 Mg ha{sup -1} and growing Sesbania until this stage was no more demanding on soil nutrients than growing it for green-matter production. There was a considerable beneficial influence from growing Sesbania on soil C and N status. (Author)

  19. PRODUCTION OF ENRICHED BIOMASS BY RED YEASTS OF SPOROBOLOMYCES SP. GROWN ON WASTE SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Emilia Breierova

    2012-02-01

    Full Text Available Carotenoids and ergosterol are industrially significant metabolites probably involved in yeast stress response mechanisms. Thus, controlled physiological and nutrition stress including use of waste substrates can be used for their enhanced production. In this work two red yeast strains of the genus Sporobolomyces (Sporobolomyces roseus, Sporobolomyces shibatanus were studied. To increase the yield of metabolites at improved biomass production, several types of exogenous as well as nutrition stress were tested. Each strain was cultivated at optimal growth conditions and in medium with modified carbon and nitrogen sources. Synthetic media with addition of complex substrates (e.g. yeast extract and vitamin mixtures as well as some waste materials (whey, apple fibre, wheat, crushed pasta were used as nutrient sources. Peroxide and salt stress were applied too, cells were exposed to oxidative stress (2-10 mM H2O2 and osmotic stress (2-10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. In optimal conditions tested strains substantially differed in biomass as well as metabolite production. S.roseus produced about 50 % of biomass produced by S.shibatanus (8 g/L. Oppositely, production of pigments and ergosterol by S.roseus was 3-4 times higher than in S.shibatanus. S.roseus was able to use most of waste substrates, the best production of ergosterol (8.9 mg/g d.w. and beta-carotene (4.33 mg/g d.w. was obtained in medium with crushed pasta hydrolyzed by mixed enzyme from Phanerochaetae chrysosporium. Regardless very high production of carotenes and ergosterol, S.roseus is probably not suitable for industrial use because of relatively low biomass production.

  20. Biomass power production in Amazonia: Environmentally sound, economically productive

    Energy Technology Data Exchange (ETDEWEB)

    Waddle, D.B. [National Rural Electric Cooperative Association, Washington, DC (United States); Hollomon, J.B. [Winrock International Institute for Agricultural Development, Arlington, VA (United States)

    1993-12-31

    With the support of the US Agency for International Development, the National Rural Electric Cooperative Association (NRECA) is assisting their utility counterparts in Bolivia to improve electric service in the country`s rural population. In remote areas, the cost of extending transmission lines to small communities is prohibitive, and diesel generators represent an expensive alternative, especially for baseload power. This has led to serious consideration of electric generating systems using locally available renewable resources, including biomass, hydro, wind, and solar energy. A project has recently been initiated in Riberalta, in the Amazonian region of Bolivia, to convert waste Brazil nut shells and sawmill residues to electricity. Working in tandem with diesel generators, the biomass-fired plant will produce base-load power in an integrated system that will be able to provide reliable and affordable electricity to the city. The project will allow the local rural electric cooperative to lower the price of electricity by nearly forty percent, enable the local Brazil nut industry to increase its level of mechanization, and reduce the environmental impacts of dumping waste shells around the city and in an adjacent river. The project is representative of others that will be funded in the future by NRECA/AID.

  1. Effects of radiation, litterfall and throughfall on herbaceous biomass production in oak woodlands of Southern Portugal

    International Nuclear Information System (INIS)

    Nunes, J.; Sa, C.; Madeira, M.; Gazarini, L.

    2002-01-01

    Micro climatic characteristics (soil moisture, and air and soil temperature) were monitored both under and outside the influence of Quercus rotundifolia canopy. The influence of tree cover on biomass production of herbaceous vegetation was studied through the simulation of the physical and chemical effects associated to the tree canopy (radiation, litterfall, throughfall). Treatments were: control (T), radiation shortage (RR), application of leaf litter (F), application of leaflitter and radiation shortage (FRR) , application of throughfall (N) and application of throughfall and radiation shortage (NRR). Most of the times, and especially in winter, soil temperature was higher in areas not influenced by the canopies than in those under their influence. Soil moisture tended to decrease faster in the areas outside the canopy influence. Mean annual biomass production of the herbaceous vegetation was 159.5, 145.8, 132.2, 126.66, 134.9 and 173.1 g m2, respectively, in treatments C, RR, F, FRR, N and NRR. The N, P, K, Mg, Mn and Ca concentrations in the herbaceous biomass were generally higher in the shaded treatments. When the amount of nutrients accumulated in the herbaceous vegetation biomass was expressed on an area basis, the highest values were observed for treatment with throughfall application and radiation shortage. Besides the possible effects of the micro climatic characteristics, differences with respect to herbaceous vegetation production may be explained by the presence of litterfall, as well as by the nutrients present in the throughfall solution [pt

  2. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  3. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    Science.gov (United States)

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  5. Particle production in higher derivative theory

    Indian Academy of Sciences (India)

    Cosmological models; particle production; higher derivative theory of gravitation. PACS No. 98.80. 1. ... is of singular models where the cosmic expansion is driven by the big-bang impulse; all ... According to Gibbs integrability condition, one cannot independently specify an equa- .... [3] B Hartle and S W Hawking Phys. Rev.

  6. Photoautotrophic Production of Biomass, Laurate, and Soluble Organics by Synechocystis sp. PCC 6803

    Science.gov (United States)

    Nguyen, Binh Thanh

    Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly. This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 muE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 muE/m2-s. Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to success. Wild-type Synechocystis channeled 75% to 84% of its fixed electrons to biomass; laurate-excreting Synechocystis fixed 64 to 69% as biomass and 6.6% to 10% as laurate. This means that 16 to 30% of the electrons were diverted to non-valuable soluble products, and the trend was accentuated with higher LI. How the Ci concentration depended on the pH and the nitrogen source was quantified by the proton condition and experimentally validated. Nitrate increased, ammonium decreased, but ammonium nitrate stabilized alkalinity and Ci. This finding provides a mechanistically sound tool to manage Ci and pH independently. Independent evaluation pH and Ci on the growth kinetics of Synechocystis showed that pH 8.5 supported the fastest maximum specific growth rate (mumax): 2.4/day and 1.7/day, respectively, for the wild type and modified strains with LI of 202 muE/m2-s. Half-maximum-rate concentrations (KCi) were less than 0.1 mM, meaning that Synechocystis should attain its mumax with a modest Ci concentration (≥1.0 mM). Biomass grown with day-night cycles had a night endogenous decay rate of 0.05-1.0/day, with decay being faster with higher LI and the beginning of dark periods. Supplying light at a fraction of daylight reduced dark decay rate and improved overall

  7. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  8. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B L; Castillo, F J

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  9. Scaling-up the biomass production of Cymbopogon citratus L. in temporary immersion system

    Directory of Open Access Journals (Sweden)

    Elisa Quiala

    2014-04-01

    Full Text Available Shoot-tips, collected from greenhouse-grown plants of Cymbopogon citratus L. (lemmon grass, were incubated on a semi-solid Murashige and Skoog (MS medium with 30% (w/v sucrose, and supplemented with 0.89 µM 6-benzyladenine (BA. After three weeks of culture shoots were individualized and then inoculated in 10 litres temporary immersion system (TIS containing 3 litres of the same basal MS liquid medium. The effects of three immersion frequency (immersion every 12, 6 and 4 hours on the production of biomass were studied. Three inoculum densities (forty, fifty and sixty shoots/TIS were also tested. The biomass growth was inûuenced by the immersion frequency. The highest proliferation rate (17.3 shoots/explants and the plant length (45.2 cm were obtained in plants immersed every 4 h. Also, the fresh and dry biomass weight (153.4 gFW and 24.8 gDW, respectively were higher in this treatment. The maximum biomass accumulation (185.2 gFW and 35.2 gDW was achieved after 30 days of culture when an inoculum density of 60 explants per TIS was used. For the first time, biomass of C. citratus has been produced in10 litres TIS. These results represent the first step in the scaling-up the biomass production of this medicinal plant in large temporary immersion bioreactors. Key words: automation, biomass growth, lemmon grass medicinal plant, tissue culture

  10. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    Science.gov (United States)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  11. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  12. Effect of culture density on biomass production and light utilization efficiency of Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Straka, Levi; Rittmann, Bruce E

    2018-02-01

    The viability of large-scale microalgae cultivation depends on providing optimal growth conditions, for which a key operational parameter is culture density. Using Synechocystis sp. PCC 6803, we conducted a series of fixed-density, steady-state experiments and one batch-growth experiment to investigate the role of culture density on biomass production and light utilization efficiency. In all cases, the fixed-density, steady-state experiments and batch-growth experiment showed good agreement. The highest biomass production rates (260 mg L -1  d -1 ) and efficiency for converting light energy to biomass (0.80 μg (μmol photons) -1 ) occurred together at a culture density near 760 mg L -1 , which approximately corresponded to the lowest culture density where almost all incident light was absorbed. The ratio of OD 680 /OD 735 increased with culture density up to the point of maximum productivity, where it plateaued (at a value of 2.4) for higher culture densities. This change in OD 680 /OD 735 indicates a photoacclimation effect that depended on culture density. Very high culture densities led to a sharp decline in efficiency of biomass production per photons absorbed, likely due to a combination of increased decay relative to growth, metabolic changes due to cell-cell interactions, and photodamage due to mixing between regions with high light intensity and zero light intensity. © 2017 Wiley Periodicals, Inc.

  13. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Spyridon Achinas

    2016-09-01

    Full Text Available Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower vapor pressure, miscibility with water, and toxicity to ecosystems. One crucial problem with bioethanol fuel is the availability of raw materials. The supply of feedstocks for bioethanol production can vary season to season and depends on geographic locations. Lignocellulosic biomass, such as forest-based woody materials, agricultural residues and municipal waste, is prominent feedstock for bioethanol cause of its high availability and low cost, even though the commercial production has still not been established. In addition, the supply and the attentive use of microbes render the bioethanol production process highly peculiar. Many conversion technologies and techniques for biomass-based ethanol production are under development and expected to be demonstrated. In this work a technological analysis of the biochemical method that can be used to produce bioethanol is carried out and a review of current trends and issues is conducted.

  14. Hydrogen production from biomass pyrolysis gas via high temperature steam reforming process

    International Nuclear Information System (INIS)

    Wongchang, Thawatchai; Patumsawad, Suthum

    2010-01-01

    Full text: The aim of this work has been undertaken as part of the design of continuous hydrogen production using the high temperature steam reforming process. The steady-state test condition was carried out using syngas from biomass pyrolysis, whilst operating at high temperatures between 600 and 1200 degree Celsius. The main reformer operating parameters (e.g. temperature, resident time and steam to biomass ratio (S/B)) have been examined in order to optimize the performance of the reformer. The operating temperature is a key factor in determining the extent to which hydrogen production is increased at higher temperatures (900 -1200 degree Celsius) whilst maintaining the same as resident time and S/B ratio. The effects of exhaust gas composition on heating value were also investigated. The steam reforming process produced methane (CH 4 ) and ethylene (C 2 H 4 ) between 600 to 800 degree Celsius and enhanced production ethane (C 2 H 6 ) at 700 degree Celsius. However carbon monoxide (CO) emission was slightly increased for higher temperatures all conditions. The results show that the use of biomass pyrolysis gas can produce higher hydrogen production from high temperature steam reforming. In addition the increasing reformer efficiency needs to be optimized for different operating conditions. (author)

  15. Hydrogen-rich gas production by cogasification of coal and biomass in an intermittent fluidized bed.

    Science.gov (United States)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  16. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cai, Hao [Argonne National Laboratory

    2017-11-01

    Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates the relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.

  17. Embodied HANPP. Mapping the spatial disconnect between global biomass production and consumption

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Krausmann, Fridolin; Haberl, Helmut; Lucht, Wolfgang

    2009-01-01

    Biomass trade results in a growing spatial disconnect between environmental impacts due to biomass production and the places where biomass is being consumed. The pressure on ecosystems resulting from the production of traded biomass, however, is highly variable between regions and products. We use the concept of embodied human appropriation of net primary production (HANPP) to map the spatial disconnect between net-producing and net-consuming regions. Embodied HANPP comprises total biomass withdrawals and land use induced changes in productivity resulting from the provision of biomass products. International net transfers of embodied HANPP are of global significance, amounting to 1.7 PgC/year. Sparsely populated regions are mainly net producers, densely populated regions net consumers, independent of development status. Biomass consumption and trade are expected to surge over the next decades, suggesting a need to sustainably manage supply and demand of products of ecosystems on a global level. (author)

  18. Integrated production of lactic acid and biomass on distillery stillage.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  19. Making environmental assessments of biomass production systems comparable worldwide

    International Nuclear Information System (INIS)

    Meyer, Markus A; Seppelt, Ralf; Priess, Joerg A; Witing, Felix

    2016-01-01

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  20. Sampling of contaminants from product gases of biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Staahlberg, P.; Lappi, M.; Kurkela, E.; Simell, P.; Oesch, P.; Nieminen, M. [VTT Energy, Espoo (Finland). New Energy Technologies

    1998-12-01

    Reliable sampling and analysis of products from biomass gasification are essential for the successful process development and economical operation of commercial gasifiers. One of the most important and most difficult analytical tasks is to characterise the emissions from the gasifiers. This report presents a review of the sampling and analytical systems employed and developed when doing research on coal and biomass gasification. In addition to the sampling systems published in the literature, experiences obtained in various biomass gasification R and D projects of VTT in 1985-1995 are described. The present sampling methods used for different gas contaminants at VTT are also briefly presented. This report focuses mainly on the measurement of tars, nitrogen compounds and sulphur gases. Isokinetic and non-isokinetic sampling train systems are described and, in addition, special sampling apparatus based on liquid-quenched probe and gas dilution is briefly outlined. Sampling of tars with impinger systems and sampling of heavy tars with filter techniques are described in detail. Separate sampling of particulates is briefly discussed. From inorganic compounds the sampling systems used for H{sub 2}S and other sulphur gases, NH{sub 3} and HCN and HCl are presented. Proper storage of the samples is also included in the report. (orig.) 90 refs.

  1. Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production.

    Science.gov (United States)

    Lima, Marisa A; Gomez, Leonardo D; Steele-King, Clare G; Simister, Rachael; Bernardinelli, Oigres D; Carvalho, Marcelo A; Rezende, Camila A; Labate, Carlos A; Deazevedo, Eduardo R; McQueen-Mason, Simon J; Polikarpov, Igor

    2014-01-18

    The search for promising and renewable sources of carbohydrates for the production of biofuels and other biorenewables has been stimulated by an increase in global energy demand in the face of growing concern over greenhouse gas emissions and fuel security. In particular, interest has focused on non-food lignocellulosic biomass as a potential source of abundant and sustainable feedstock for biorefineries. Here we investigate the potential of three Brazilian grasses (Panicum maximum, Pennisetum purpureum and Brachiaria brizantha), as well as bark residues from the harvesting of two commercial Eucalyptus clones (E. grandis and E. grandis x urophylla) for biofuel production, and compare these to sugarcane bagasse. The effects of hot water, acid, alkaline and sulfite pretreatments (at increasing temperatures) on the chemical composition, morphology and saccharification yields of these different biomass types were evaluated. The average yield (per hectare), availability and general composition of all five biomasses were compared. Compositional analyses indicate a high level of hemicellulose and lignin removal in all grass varieties (including sugarcane bagasse) after acid and alkaline pretreatment with increasing temperatures, whilst the biomasses pretreated with hot water or sulfite showed little variation from the control. For all biomasses, higher cellulose enrichment resulted from treatment with sodium hydroxide at 130°C. At 180°C, a decrease in cellulose content was observed, which is associated with high amorphous cellulose removal and 5-hydroxymethyl-furaldehyde production. Morphological analysis showed the effects of different pretreatments on the biomass surface, revealing a high production of microfibrillated cellulose on grass surfaces, after treatment with 1% sodium hydroxide at 130°C for 30 minutes. This may explain the higher hydrolysis yields resulting from these pretreatments, since these cellulosic nanoparticles can be easily accessed and cleaved by

  2. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  3. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  4. Design and performance of the KSC Biomass Production Chamber

    Science.gov (United States)

    Prince, Ralph P.; Knott, William M.; Sager, John C.; Hilding, Suzanne E.

    1987-01-01

    NASA's Controlled Ecological Life Support System program has instituted the Kennedy Space Center 'breadboard' project of which the Biomass Production Chamber (BPC) presently discussed is a part. The BPC is based on a modified hypobaric test vessel; its design parameters and operational parameters have been chosen in order to meet a wide range of plant-growing objectives aboard future spacecraft on long-duration missions. A control and data acquisition subsystem is used to maintain a common link between the heating, ventilation, and air conditioning system, the illumination system, the gas-circulation system, and the nutrient delivery and monitoring subsystems.

  5. Assessment of potential biomass energy production in China towards 2030 and 2050

    OpenAIRE

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources...

  6. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  7. Optimization of Culture Medium Enhances Viable Biomass Production and Biocontrol Efficacy of the Antagonistic Yeast, Candida diversa

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-10-01

    Full Text Available Viable biomass production is a key determinant of suitability of antagonistic yeasts as potential biocontrol agents. This study investigated the effects of three metal ions (magnesium, ferrous, and zinc on biomass production and viability of the antagonistic yeast, Candida diversa. Using response surface methodology to optimize medium components, a maximum biomass was obtained, when the collective Mg2+, Fe2+, and Zn2+ concentrations were adjusted in a minimal mineral (MM medium. Compared with the unmodified MM, and three ion-deficient MM media, yeast cells cultured in the three ion-modified MM medium exhibited a lower level of cellular oxidative damage, and a higher level of antioxidant enzyme activity. A biocontrol assay indicated that C. diversa grown in the ion-modified MM exhibited the greatest level of control of gray mold on apple fruit. These results provide new information on culture medium optimization to grow yeast antagonists in order to improve biomass production and biocontrol efficacy.

  8. High efficiency power production from biomass and waste

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M.; Van Leijenhorst, R.J.C.; Hazewinkel, J.H.O. [ECN Biomass, Coal and Environment, Petten (Netherlands)

    2008-11-15

    Two-stage gasification allows power production from biomass and waste with high efficiency. The process involves pyrolysis at about 550C followed by heating of the pyrolysis gas to about 1300C in order to crack hydrocarbons and obtain syngas, a mixture of H2, CO, H2O and CO2. The second stage produces soot as unwanted by-product. Experimental results are reported on the suppression of soot formation in the second stage for two different fuels: beech wood pellets and Rofire pellets, made from rejects of paper recycling. Syngas obtained from these two fuels and from an industrial waste fuel has been cleaned and fed to a commercial SOFC stack for 250 hours in total. The SOFC stack showed comparable performance on real and synthetic syngas and no signs of accelerated degradation in performance over these tests. The experimental results have been used for the design and analysis of a future 25 MWth demonstration plant. As an alternative, a 2.6 MWth system was considered which uses the Green MoDem approach to convert waste fuel into bio-oil and syngas. The 25 MWth system can reach high efficiency only if char produced in the pyrolysis step is converted into additional syngas by steam gasification, and if SOFC off-gas and system waste heat are used in a steam bottoming cycle for additional power production. A net electrical efficiency of 38% is predicted. In addition, heat can be delivered with 37% efficiency. The 2.6 MWth system with only a dual fuel engine to burn bio-oil and syngas promises nearly 40% electrical efficiency plus 41% efficiency for heat production. If syngas is fed to an SOFC system and off-gas and bio-oil to a dual fuel engine, the electrical efficiency can rise to 45%. However, the efficiency for heat production drops to 15%, as waste heat from the SOFC system cannot be used effectively. The economic analysis makes clear that at -20 euro/tonne fuel, 70 euro/MWh for electricity and 7 euro/GJ for heat the 25 MWth system is not economically viable at the

  9. Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis

    International Nuclear Information System (INIS)

    Xue, Junjie; Dou, Guolan; Ziade, Elbara; Goldfarb, Jillian L.

    2017-01-01

    Graphical abstract: Integrated production of biotemplated nanomaterials and upgraded biofuels (solid lines indicate current processes, dashed lines indicated proposed pathway). - Highlights: • Novel integrated process to co-produce nanomaterials and biofuels via pyrolysis. • Impregnation of biomass with silver nitrate upgrades bio-oil during pyrolysis. • Co-synthesis enhances syngas produced with more hydrogen. • Biomass template impacts bio-fuels and morphology of resulting nanomaterials. - Abstract: Replacing fossil fuels with biomass-based alternatives is a potential carbon neutral, renewable and sustainable option for meeting the world’s growing energy demand. However, pyrolytic conversions of biomass-to-biofuels suffer marginal total energy gain, and technical limitations such as bio-oils’ high viscosity and oxygen contents that result in unstable, corrosive and low-value fuels. This work demonstrates a new integrated biorefinery process for the co-production of biofuels and silver nanomaterials. By impregnating pure cellulose and corn stalk with silver nitrate, followed by pyrolysis, the gas yield (especially hydrogen) increases substantially. The condensable bio-oil components of the impregnated samples are considerably higher in furfurals (including 5-hydroxymethylfurfural). Though the overall activation energy barrier, as determined via the Distributed Activation Energy Model, does not change significantly with the silver nitrate pre-treatment, the increase in gases devolatilized, and improved 5-hydroxymethylfurfural yield, suggest a catalytic effect, potentially increasing decarboxylation reactions. After using this metal impregnation to improve pyrolysis fuel yield, following pyrolysis, the silver-char composite materials are calcined to remove the biomass template to yield silver nanomaterials. While others have demonstrated the ability to biotemplate such nanosilver on cellulosic biomass, they consider only impregnation and oxidation of the

  10. Structure and biomass production of one- to seven-year-old intensively cultured jack pine plantation in Wisconsin.

    Science.gov (United States)

    J. Zavitkovski; David H. Dawson

    1978-01-01

    Spacing and rotation length effects were studied for 7 years in intensively cultured jack pine stands. Production culminated at age 5 in the densest planting and progressively later in more open spacing. Biomass production was two to several times higher than in jack pine plantations grown under traditional silvicultural systems.

  11. Environmental and economic suitability of forest biomass-based bioenergy production in the Southern United States

    Science.gov (United States)

    Dwivedi, Puneet

    This study attempts to ascertain the environmental and economic suitability of utilizing forest biomass for cellulosic ethanol production in the Southern United States. The study is divided into six chapters. The first chapter details the background and defines the relevance of the study along with objectives. The second chapter reviews the existing literature to ascertain the present status of various existing conversion technologies. The third chapter assesses the net energy ratio and global warming impact of ethanol produced from slash pine (Pinus elliottii Engelm.) biomass. A life-cycle assessment was applied to achieve the task. The fourth chapter assesses the role of emerging bioenergy and voluntary carbon markets on the profitability of non-industrial private forest (NIPF) landowners by combining the Faustmann and Hartmann models. The fifth chapter assesses perceptions of four stakeholder groups (Non-Government Organization, Academics, Industries, and Government) on the use of forest biomass for bioenergy production in the Southern United States using the SWOT-AHP (Strength, Weakness, Opportunity, and Threat-Analytical Hierarchy Process) technique. Finally, overall conclusions are made in the sixth chapter. Results indicate that currently the production of cellulosic ethanol is limited as the production cost of cellulosic ethanol is higher than the production cost of ethanol derived from corn. However, it is expected that the production cost of cellulosic ethanol will come down in the future from its current level due to ongoing research efforts. The total global warming impact of E85 fuel (production and consumption) was found as 10.44 tons where as global warming impact of an equivalent amount of gasoline (production and consumption) was 21.45 tons. This suggests that the production and use of ethanol derived from slash pine biomass in the form of E85 fuel in an automobile saves about 51% of carbon emissions when compared to gasoline. The net energy ratio

  12. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H.

    2003-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m 3

  13. Hydrogen production from high-moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T. [Univ. of Hawaii, Honolulu, HI (United States)] [and others

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  14. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.

  15. Residual biomass resources for energy production. Extended abstract

    International Nuclear Information System (INIS)

    Prevot, G.

    2010-06-01

    This report covers the whole problematic of energy production from biomass residues in France except the production of biofuels. It is made of two parts. The first one gives an overview of the availability of residual biomass resources, The concept of residue (or waste) is placed in its economic and regulatory context (the major part of the resource cannot be considered as waste without any further potential use). The conditions of availability of the resource for each market segment are identified. The second part describes the conditions for the use of 5 different conversion options of these residues into energy. The logistics constraints for the procurement of the fuel and the intermediate operations to prepare it are briefly summarised. The objective was the identification of key issues in all relevant aspects, without giving too much emphasis to one of them at the expense of another one in order to avoid duplicating the frequent cases of facilities that do not meet environmental and economic targets because the designers of the system have not paid enough attention to a parameter of the system. (author)

  16. Biomass valorisation of Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita for biofuel production

    Science.gov (United States)

    Krička, Tajana; Matin, Ana; Bilandžija, Nikola; Jurišić, Vanja; Antonović, Alan; Voća, Neven; Grubor, Mateja

    2017-10-01

    In the context of the growing demand for biomass, which is being encouraged by the EU directives on the promotion of the use of renewable energy, recent investigations have been increasingly focused on fast-growing energy crops. The aim of this study was to investigate the energy properties of three types of agricultural energy crops: Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita. This investigation looked into the content of non-combustible and combustible matter, higher and lower heating values, lignocellulose content, and biomass macro-elements. The results indicate that the energy values of these crops are comparable, while their lignocellulose content shows significant variations. Thus, Arundo donax L. can best be utilised as solid biofuel due to its highest lignin content, while Miscanthus × giganteus and Sida hermaphrodita L. can be used for both liquid and solid biofuels production. As far as Arundo donax L. is concerned, a higher ash level should be taken into consideration.

  17. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  18. Production of fermentables and biomass by six temperate fuelcrops

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D.J.; Gammon, T.C.; Graves, B.

    1985-12-01

    Several potential fuelcrops have been studied individually, but relatively little work has been done to compare the various temperate species in side-by-side trials. The production has been examined of readily fermentable carbohydrates and biomass by six fuelcrop candidates: grain sorghum (Sorghum bicolor), Jerusalem articoke (Helianthus tuberosus), maize (Zea Mays), sugarbeet (Beta vulgaris), sweet potato (Ipomoea batatas) and sweet sorghum (Sorghum bicolor). A randomized complete block design with four replicates was employed at each of three locations that were somewhat diverse in soil type, elevation, growing season length, and 1980 rainfall distribution. Fermentables in the harvestable dry matter were determined colorimetrically following dilute acid plus enzymatic hydrolysis. Overall, sugarbeet was the most prolific producer of fermentables (7.4 Mg/ha); Jerusalem artichoke (5.8 Mg/ha), maize (4.8 Mg/ha) and sweet sorghum stems (5.8 Mg/ha) were statistically equivalent, while sweet potato (4.0 Mg/ha) and grain sorghum (3.8 Mg/ha) were less productive than the other candidates. The crops performed somewhat differently at each location, but the most striking site-specific differences were seen at the site with the coarsest textured soil and driest season. At that location, maize produced the least fermentables (0.6 Mg/ha). Biomass production generally reflected either the amount of time each species was actively growing or limiations to growth associated with drought. No general recommendations are made concerning a preferred temperature fuelcrop. Based on the studies, however, maize may not always be the fuelcrop of choice; others, especially sugarbeet and sweet sorghum (when harvested for grain also), may be superior to maize in productivity of fermentable substrates. 6 tabs., 13 refs.

  19. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  20. Methods for producing extracted and digested products from pretreated lignocellulosic biomass

    Science.gov (United States)

    Chundawat, Shishir; Sousa, Leonardo Da Costa; Cheh, Albert M.; Balan; , Venkatesh; Dale, Bruce

    2017-05-16

    Methods for producing extracted and digested products from pretreated lignocellulosic biomass are provided. The methods include converting native cellulose I.sub..beta. to cellulose III.sub.I by pretreating the lignocellulosic biomass with liquid ammonia under certain conditions, and performing extracting or digesting steps on the pretreated/converted lignocellulosic biomass.

  1. Production of xylitol from biomass using an inhibitor-tolerant fungal strain

    Science.gov (United States)

    Inhibitory compounds arising from physical–chemical pretreatment of biomass feedstock can interfere with fermentation of biomass sugars to product. A fungus, Coniochaeta ligniaria NRRL30616 improves fermentability of biomass sugars by metabolizing a variety of microbial inhibitors including furan al...

  2. Variation of Spirulina maxima biomass production in different depths of urea-used culture medium.

    Science.gov (United States)

    Affan, Md-Abu; Lee, Dae-Won; Al-Harbi, Salim Marzoog; Kim, Han-Jun; Abdulwassi, Najah Ibrahim; Heo, Soo-Jin; Oh, Chulhong; Park, Heung-Sik; Ma, Chae Woo; Lee, Hyeon-Yong; Kang, Do-Hyung

    2015-01-01

    Fewer studies have assessed the outdoor cultivation of Spirulina maxima compared with S. platensis, although the protein content of S. maxima is higher than S. platensis. Spirulina growth medium requires an increased amount of NaHCO3, Na2CO3, and NaNO3, which increases the production cost. Therefore, the current study used a low-cost but high-efficiency biomass production medium (Medium M-19) after testing 33 different media. The medium depth of 25 cm (group A) was sub-divided into A1 (50% cover with a black curtain (PolyMax, 12 oz ultra-blackout), A2 (25% cover), and A3 (no cover). Similarly the medium depths of 30 and 35 cm were categorized as groups B (B1, B2, and B3) and C (C1, C2, and C3), respectively, and the effects of depth and surface light availability on growth and biomass production were assessed. The highest biomass production was 2.05 g L-1 in group A2, which was significantly higher (p maxima died in B1 and C1 on the fifth day of culture. The biochemical composition of the biomass obtained from A2 cultures, including protein, carbohydrate, lipid, moisture, and ash, was 56.59%, 14.42%, 0.94%, 5.03%, and 23.02%, respectively. Therefore, S. maxima could be grown outdoors with the highest efficiency in urea-enriched medium at a 25-cm medium depth with 25% surface cover or uncovered.

  3. Biomass production in willows. What did we know before the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Perttu, K L [ed.

    1984-12-01

    The biological foundations of biomass with willows originate in the experiences from basket willow husbandry. This was an established discipline in Europe in the 18th century. Problems concerning site preparation, selection of clones, planting as cuttings, spacing, weed control, rotation time, harvesting and coppicing vigour with respect to the longevity of the stand, were practically solved at the research level and already in practice. The yield potential of basket willow and willows for hoop production as well as yield figures from field experiments were quite high also according to present-day biomass willow experiments. An explanation of this could be the much higher stand densities than has been customary in current willow experiments. Although many practical questions got their answers in basket willow husbandry, open questions still remain. The basket willow era gave only little experience on willow production in peatlands; actually peatsoils were almost avoided. Knowledge of nutrient require ments and fertilization was also rather elementary. These aspects must therefore be established for biomass production. Control of weeds in the establishment phase of the willow husbandry was solved by manual work. Since this is a labour intensive method which is no longer possible, a more modern weed control needs to be developed for current husbandry. As a whole it is a task for related research to attach proper optimization of cultural techniques to suitable willow clones in order to attain and maintain as high a production level as was the case in the old basket willow husbandry. With 25 refs.

  4. Improvement of biomass production and glucoamylase activity by Candida famata using factorial design.

    Science.gov (United States)

    Mosbah, Habib; Aissa, Imen; Hassad, Nahla; Farh, Dhaker; Bakhrouf, Amina; Achour, Sami

    2016-07-01

    To improve biomass production and glucoamylase activity (GA) by Candida famata, culture conditions were optimized. A 2(3) full factorial design (FFD) with a response surface model was used to evaluate the effects and interactions of pH (X1 ), time of cultivation (X2 ), and starch concentration (X3 ) on the biomass production and enzyme activity. A total of 16 experiments were conducted toward the construction of an empiric model and a first-order equation. It was found that all factors (X1 , X2 , and X3 ) and their interactions were significant at a certain confidence level (P production and GA of C. famata. Under this optimized medium, the experimental biomass production and GA obtained were 1.8 ± 0.54 g/L and 0.078 ± 0.012 µmol/L/Min, about 1.5- and 1.8-fold, respectively, higher than those in basal medium. The (R(2) ) coefficients obtained were 0.997 and 0.990, indicating an adequate degree of reliability in the model. Approximately 99% of validity of the predicted value was achieved. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  5. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production.

    Science.gov (United States)

    Zheng, Yubin; Chi, Zhanyou; Lucker, Ben; Chen, Shulin

    2012-01-01

    A two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production was studied, wherein high density heterotrophic cultures of Chlorellasorokiniana serve as seed for subsequent phototrophic growth. The data showed growth rate, cell density and productivity of heterotrophic C.sorokiniana were 3.0, 3.3 and 7.4 times higher than phototrophic counterpart, respectively. Hetero- and phototrophic algal seeds had similar biomass/lipid production and fatty acid profile when inoculated into phototrophic culture system. To expand the application, food waste and wastewater were tested as feedstock for heterotrophic growth, and supported cell growth successfully. These results demonstrated the advantages of using heterotrophic algae cells as seeds for open algae culture system. Additionally, high inoculation rate of heterotrophic algal seed can be utilized as an effective method for contamination control. This two-stage heterotrophic phototrophic process is promising to provide a more efficient way for large scale production of algal biomass and biofuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    International Nuclear Information System (INIS)

    Da Silva, P.H.M.; Poggiani, F.; Laclau, J.P.

    2011-01-01

    In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha - '1) and 86 % higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  7. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Müller da Silva

    2011-01-01

    Full Text Available In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha−1 and 86% higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  8. Effective production of fermentable sugars from brown macroalgae biomass.

    Science.gov (United States)

    Wang, Damao; Kim, Do Hyoung; Kim, Kyoung Heon

    2016-11-01

    Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.

  9. Pinch analysis for bioethanol production process from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Fujimoto, S.; Yanagida, T.; Nakaiwa, M.; Tatsumi, H.; Minowa, T.

    2011-01-01

    Bioethanol produced from carbon neutral and renewable biomass resources is an attractive process for the mitigation of greenhouse gases from vehicle exhaust. This study investigated energy utilization during bioethanol production from lignocellulose while avoiding competition with food production from corn and considering the potential mitigation of greenhouse gases. Process design and simulations were performed for bioethanol production using concentrated sulfuric acid. Mass and heat balances were obtained by process simulations, and the heat recovery ratio was determined by pinch analysis. An energy saving of 38% was achieved. However, energy supply and demand were not effectively utilized in the temperature range from 95 to 100 o C. Therefore, a heat pump was used to improve the temperature range of efficient energy supply and demand. Results showed that the energy required for the process could be supplied by heat released during the process. Additionally, the power required was supplied by surplus power generated during the process. Thus, pinch analysis was used to improve the energy efficiency of the process. - Highlights: → Effective energy utilization of bioethanol production was studied by using pinch analysis. → It was found that energy was not effectively utilized in the temperature range from 95 to 100 o C. → Use of a heat pump was considered to improve the ineffective utilization. → Then, remarkable energy savings could be achieved by it. → Pinch analysis effectively improved the energy efficiency of the bioethanol production.

  10. Sago Biomass as a Sustainable Source for Biohydrogen Production by Clostridium butyricum A1

    Directory of Open Access Journals (Sweden)

    Mohamad Faizal Ibrahim

    2013-12-01

    Full Text Available Biohydrogen production from biomass is attracting many researchers in developing a renewable, clean and environmental friendly biofuel. The biohydrogen producer, Clostridium butyricum A1, was successfully isolated from landfill soil. This strain produced a biohydrogen yield of 1.90 mol H2/mol glucose with productivity of 170 mL/L/h using pure glucose as substrate. The highest cumulative biohydrogen collected after 24 h of fermentation was 2468 mL/L-medium. Biohydrogen fermentation using sago hampas hydrolysate produced higher biohydrogen yield (2.65 mol H2/mol glucose than sago pith residue (SPR hydrolysate that produced 2.23 mol H2/mol glucose. A higher biohydrogen productivity of 1757 mL/L/h was obtained when using sago hampas hydrolysate compared to when using pure glucose that has the productivity of 170 mL/L/h. A comparable biohydrogen production was also obtained by C. butyricum A1 when compared to C. butyricum EB6 that produced a biohydrogen yield of 2.50 mol H2/mol glucose using sago hampas hydrolysate as substrate. This study shows that the new isolate C. butyricum A1 together with the use of sago biomass as substrate is a promising technology for future biohydrogen production.

  11. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L.

    Science.gov (United States)

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar

    2014-11-01

    Adventitious root cultures of Prunella vulgaris L. were established in shaking flask system for the production of biomass and secondary metabolites. Adventitious root cultures were induced from callus cultures obtained from leaf explants on solid Murashige and Skoog (MS) medium containing combination of 6-benzyladenine (BA; 1.0 mg l(-1)) and naphthalene acetic acid (NAA; 1.5 mg l(-1)). Thereafter, 0.49 g inoculum was transferred to liquid MS medium supplemented with different concentrations of NAA (0.5-2.0 mg l(-1)). Growth kinetics of adventitious roots was recorded with an interval of 7 days for 49 days period. Highest biomass accumulation (2.13 g/l) was observed in liquid medium containing 1.0 mg l(-1) NAA after 21 days of inoculation. However, other concentrations of NAA also showed similar accumulation pattern but the biomass gradually decreases after 49 days of inoculation. Adventitious roots were collected and dried for investigation of total phenolics (TP), total flavonoids (TF), and antioxidant activities. Higher TPC (0.995 GAE mg/g-DRB) and TFC (6.615 RE mg/g-DRB) were observed in 0.5 mg l(-1) NAA treated cultures. In contrast, higher antioxidant activity (83.53 %) was observed 1.5 mg l(-1) NAA treated cultures. These results are helpful in up scaling of root cultures into bioreactor for secondary metabolites production.

  12. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating...... in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production...

  13. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  14. Harvesting and processing of microalgae biomass fractions for biodiesel production

    International Nuclear Information System (INIS)

    Munir, M.; Sharif, N.; Naz, S.; Saleem, F.; Manzoor, F.

    2013-01-01

    There has been a recent resurgent interest in microalgae as an oil producer for biofuel applications. An adequate supply of nutrients and carbon dioxide enables algae to successfully transform light energy of the sun into energy - rich chemical compounds through photosynthesis. A strain with high lipids, successfully grown and harvested, could provide oil for most of our process by volume, which would then provide the most profitable output. Significant advances have also been made in upstream processing to generate cellular biomass and oil. However, the process of extracting and purifying of oil from algae continues to prove a significant challenge in producing both microalgae bioproducts and biofuel, as the oil extraction from algae is relatively energy-intensive and expensive. The aim of this review is to focus on different harvesting and extraction processes of algae for biodiesel production reported within the last decade. (author)

  15. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  16. Cascading of Biomass. 13 Solutions for a Sustainable Bio-based Economy. Making Better Choices for Use of Biomass Residues, By-products and Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Odegard, I.; Croezen, H.; Bergsma, G.

    2012-08-15

    Smarter and more efficient use of biomass, referred to as cascading, can lead to an almost 30% reduction in European greenhouse gas emissions by 2030 compared with 2010. As the title study makes clear, cascading of woody biomass, agricultural and industrial residues and other waste can make a significant contribution to a greening of the economy. With the thirteen options quantitatively examined annual emissions of between 330 and 400 Mt CO2 can be avoided by making more efficient use of the same volume of biomass as well as by other means. 75% of the potential CO2 gains can be achieved with just four options: (1) bio-ethanol from straw, for use as a chemical feedstock; (2) biogas from manure; (3) biorefining of grass; and (4) optimisation of paper recycling. Some of the options make multiple use of residues, with biomass being used to produce bioplastics that, after several rounds of recycling, are converted to heat and power at the end of their life, for example. In other cases higher-grade applications are envisaged: more efficient use of recyclable paper and wood waste, in both economic and ecological terms, using them as raw materials for new paper and chipboard rather than as an energy source. Finally, by using smart technologies biomass can be converted to multiple products.

  17. Role of Brønsted acid in selective production of furfural in biomass pyrolysis.

    Science.gov (United States)

    Zhang, Haiyan; Liu, Xuejun; Lu, Meizhen; Hu, Xinyue; Lu, Leigang; Tian, Xiaoning; Ji, Jianbing

    2014-10-01

    In this work, the role of Brønsted acid for furfural production in biomass pyrolysis on supported sulfates catalysts was investigated. The introduction of Brønsted acid was shown to improve the degradation of polysaccharides to intermediates for furfural, which did not work well when only Lewis acids were used in the process. Experimental results showed that CuSO4/HZSM-5 catalyst exhibited the best performance for furfural (28% yield), which was much higher than individual HZSM-5 (5%) and CuSO4 (6%). The optimum reaction conditions called for the mass ratio of CuSO4/HZSM-5 to be 0.4 and the catalyst/biomass mass ratio to be 0.5. The recycled catalyst exhibited low productivity (9%). Analysis of the catalysts by Py-IR revealed that the CuSO4/HZSM-5 owned a stronger Brønsted acid intensity than HZSM-5 or the recycled CuSO4/HZSM-5. Therefore, the existence of Brønsted acid is necessary to achieve a more productive degradation of biomass for furfural. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Product Characterization and Kinetics of Biomass Pyrolysis in a Three-Zone Free-Fall Reactor

    Directory of Open Access Journals (Sweden)

    Natthaya Punsuwan

    2014-01-01

    Full Text Available Pyrolysis of biomass including palm shell, palm kernel, and cassava pulp residue was studied in a laboratory free-fall reactor with three separated hot zones. The effects of pyrolysis temperature (250–1050°C and particle size (0.18–1.55 mm on the distribution and properties of pyrolysis products were investigated. A higher pyrolysis temperature and smaller particle size increased the gas yield but decreased the char yield. Cassava pulp residue gave more volatiles and less char than those of palm kernel and palm shell. The derived solid product (char gave a high calorific value of 29.87 MJ/kg and a reasonably high BET surface area of 200 m2/g. The biooil from palm shell is less attractive to use as a direct fuel, due to its high water contents, low calorific value, and high acidity. On gas composition, carbon monoxide was the dominant component in the gas product. A pyrolysis model for biomass pyrolysis in the free-fall reactor was developed, based on solving the proposed two-parallel reactions kinetic model and equations of particle motion, which gave excellent prediction of char yields for all biomass precursors under all pyrolysis conditions studied.

  19. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-05-09

    These are a set of slides from this conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  20. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341.

    Science.gov (United States)

    Li, ZhaoSheng; Yuan, HongLi; Yang, JinShui; Li, BaoZhen

    2011-10-01

    High production cost is a major obstacle to the extensive use of microalgae biodiesel. To cut the cost and achieve higher biomass productivity, Chlorella minutissima UTEX2341 was cultured under photoheterotrophic conditions. With the carbon, nitrogen and phosphorus concentration of 26.37, 2.61 and 0.03 g L⁻¹ d⁻¹ respectively, a maximum biomass productivity of 1.78 g L⁻¹ d⁻¹ was obtained, which was 59 times more than that cultured under autotrophic condition. The lipid productivity reached 0.29 g L⁻¹ d⁻¹, which was 11.9 times higher than the highest value reported by Oh et al. (2010). The conversion rate of microalgae lipids to FAME was found to be elevated from 45.65% to 62.97% and the FAME productivity increased from 1.16 to 180.68 mg L⁻¹ d⁻¹ after the optimization. 94% of the fatty acid of C. minutissima UTEX2341 was found to be composed of palmitic, oleic, linoleic and γ linoleic and the unsaturated fatty acids were the main parts (79.42%). Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Production of sugars and levulinic acid from marine biomass Gelidium amansii.

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee

    2010-05-01

    This study focused on optimization of reaction conditions for formation of sugars and levulinic acid from marine algal biomass Gelidium amansii using acid catalyst and by using statistical approach. By this approach, optimal conditions for production of sugars and levulinic acid were found as follows: glucose (reaction temperature of 139.4 degrees C, reaction time of 15.0 min, and catalyst concentration of 3.0%), galactose (108.2 degrees C, 45.0 min, and 3.0%), and levulinic acid (160.0 degrees C, 43.1 min, and 3.0%). While trying to optimize the conditions for the production of glucose and galactose, levulinic acid production was found to be minimum. Similarly, the production of glucose and galactose were found to be minimum while optimizing the conditions for the production of levulinic acid. In addition, optimized production of glucose required a higher reaction temperature and shorter reaction time than that of galactose. Levulinic acid was formed at a high reaction temperature, long reaction time, and high catalyst concentration. The combined results of this study may provide useful information to develop more economical and efficient systems for production of sugars and chemicals from marine biomass.

  2. Biomass production potentials in Central and Eastern Europe under different scenarios

    International Nuclear Information System (INIS)

    Dam, J. van; Faaij, A.P.C.; Lewandowski, I.; Fischer, G.

    2007-01-01

    A methodology for the assessment of biomass potentials was developed and applied to Central and Eastern European countries (CEEC). Biomass resources considered are agricultural residues, forestry residues, and wood from surplus forest and biomass from energy crops. Only land that is not needed for food and feed production is considered as available for the production of energy crops. Five scenarios were built to depict the influences of different factors on biomass potentials and costs. Scenarios, with a domination of current level of agricultural production or ecological production systems, show the smallest biomass potentials of 2-5.7 EJ for all CEEC. Highest potentials can reach up to 11.7 EJ (85% from energy crops, 12% from residues and 3% from surplus forest wood) when 44 million ha of agricultural land become available for energy crop production. This potential is, however, only realizable under high input production systems and most advanced production technology, best allocation of crop production over all CEEC and by choosing willow as energy crops. The production of lignocellulosic crops, and willow in particular, best combines high biomass production potentials and low biomass production costs. Production costs for willow biomass range from 1.6 to 8.0 EUR/GJ HHV in the scenario with the highest agricultural productivity and 1.0-4.5 EUR/GJ HHV in the scenario reflecting the current status of agricultural production. Generally the highest biomass production costs are experienced when ecological agriculture is prevailing and on land with lower quality. In most CEEC, the production potentials are larger than the current energy use in the more favourable scenarios. Bulk of the biomass potential can be produced at costs lower than 2 EUR/GJ. High potentials combined with the low cost levels gives CEEC major export opportunities. (author)

  3. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2000-08-01

    The report includes reports of activities that were carried out within the GRAIN project. This evaluation shows that the (technical) potential contribution of bio-energy to the future world's energy supply could be very large. In theory, energy farming on current agricultural land could contribute over 800 EJ, without jeopardising the world's food supply. Use of degraded lands may add another 150 EJ, although this contribution will largely come from crops with a low productivity. The growing demand for bio-materials may require a biomass input equivalent to 20-50 EJ, which must be grown on plantations when existing forests are not able to supply this growing demand. Organic wastes and residues could possibly supply another 40-170 EJ, with uncertain contributions from forest residues and potentially a very significant role for organic waste, especially when bio-materials are used on a larger scale. In total, the upper limit of the bio-energy potential could be over 1000 EJ per year. This is considerably more than the current global energy use of 400 EJ. However, this contribution is by no means guaranteed: crucial factors determining biomass availability for energy are: (1) Population growth and economic development; (2) The efficiency and productivity of food production systems that must be adopted worldwide and the rate of their deployment in particular in developing countries; (3) Feasibility of the use of marginal/degraded lands; (4) Productivity of forests and sustainable harvest levels; (5) The (increased) utilisation of bio-materials. Major transitions are required to exploit this bio-energy potential. It is uncertain to what extent such transitions are feasible. Depending on the factors mentioned above, the bio-energy potential could be very low as well. At regional/local level the possibilities and potential consequences of biomass production and use can vary strongly, but the insights in possible consequences are fairly limited up to now. Bio-energy offers

  4. Hydrogen production from high moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Xu, X. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  5. Impact of India's watershed development programs on biomass productivity

    Science.gov (United States)

    Bhalla, R. S.; Devi Prasad, K. V.; Pelkey, Neil W.

    2013-03-01

    Watershed development (WSD) is an important and expensive rural development initiative in India. Proponents of the approach contend that treating watersheds will increase agricultural and overall biomass productivity, which in turn will reduce rural poverty. We used satellite-measured normalized differenced vegetation index as a proxy for land productivity to test this crucial contention. We compared microwatersheds that had received funding and completed watershed restoration with adjacent untreated microwatersheds in the same region. As the criteria used can influence results, we analyzed microwatersheds grouped by catchment, state, ecological region, and biogeographical zones for analysis. We also analyzed pre treatment and posttreatment changes for the same watersheds in those schemes. Our findings show that WSD has not resulted in a significant increase in productivity in treated microwatersheds at any grouping, when compared to adjacent untreated microwatershed or the same microwatershed prior to treatment. We conclude that the well-intentioned people-centric WSD efforts may be inhibited by failing to adequately address the basic geomorphology and hydraulic condition of the catchment areas at all scales.

  6. Integrated production of warm season grasses and agroforestry for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; Omielan, J. [Resource Efficient Agricultural Production-Canada, Ste, Anne de Bellevue, Quebec (Canada); Girouard, P.; Henning, J. [McGill Univ., Ste. Anne de Bellevue, Quebec (Canada)

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to have distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.

  7. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  8. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    Directory of Open Access Journals (Sweden)

    T. T. T. Cu

    2015-02-01

    Full Text Available Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4 production to the chemical characteristics of the biomass. The biochemical methane potential (BMP and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL CH4 kg−1 volatile solids (VS compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  9. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    Science.gov (United States)

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  10. Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; He, Y.; Fang, J.; Fang, Z.; Jiang, B.; Brancourt-Hulmel, M.; Zheng, B.; Jiang, D.

    2015-07-01

    Miscanthus and Saccharum are considered excellent candidates for bioenergy feedstock production. A field experiment was conducted in Zhejiang province of China to characterize the phenotypic differences in three species, two of Miscanthus (M. sinensis and M. floridulus) and one of Saccharum (S. arundinaceum), each with two accessions collected from China. Agronomical traits, including plant height, culm number, tuft diameter and culm diameter, were monitored monthly for the first 3 years of growth. For each year of trail, flowering time was observed and biomass yield was harvested. M. floridulus produced a superior biomass yield with increasing plant age associated with higher yields (4.18, 24.16 and 29.01 t dry matter/hain November of years one to three, respectively). Higher culm diameter, plant height and tuft diameter values were observed for M. floridulus when compared to the other species. Biomass yield was positively correlated to tuft diameter, culm diameter, culm number and negatively to flowering time, but it showed no correlation with plant height. Tuft diameter and culm diameter could be suitable indicators in the selection of accessions for crop yield at the yield-building phase. Studies of the primary colonizers of Miscanthus and Saccharum in their original location may be of interest from the perspective of bioenergy germplasm resource collection. (Author)

  11. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Fuliang; Meng, Hengkai; Zhang, Yanping; Li, Yin

    2016-11-01

    Increasing photosynthetic efficiency is crucial to increasing biomass production to meet the growing demands for food and energy. Previous theoretical arithmetic analysis suggests that the light reactions and dark reactions are imperfectly coupled due to shortage of ATP supply, or accumulation of NADPH. Here we hypothesized that solely increasing NADPH consumption might improve the coupling of light reactions and dark reactions, thereby increasing the photosynthetic efficiency and biomass production. To test this hypothesis, an NADPH consumption pathway was constructed in cyanobacterium Synechocystis sp. PCC 6803. The resulting extra NADPH-consuming mutant grew much faster and achieved a higher biomass concentration. Analyses of photosynthesis characteristics showed the activities of photosystem II and photosystem I and the light saturation point of the NADPH-consuming mutant all significantly increased. Thus, we demonstrated that introducing extra NADPH consumption ability is a promising strategy to increase photosynthetic efficiency and to enable utilization of high-intensity lights. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    Science.gov (United States)

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost.

  13. Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review

    Directory of Open Access Journals (Sweden)

    Marwa M. El-Dalatony

    2017-12-01

    Full Text Available Biomass is a crucial energy resource used for the generation of electricity and transportation fuels. Microalgae exhibit a high content of biocomponents which makes them a potential feedstock for the generation of ecofriendly biofuels. Biofuels derived from microalgae are suitable carbon-neutral replacements for petroleum. Fermentation is the major process for metabolic conversion of microalgal biocompounds into biofuels such as bioethanol and higher alcohols. In this review, we explored the use of all three major biocomponents of microalgal biomass including carbohydrates, proteins, and lipids for maximum biofuel generation. Application of several pretreatment methods for enhancement the bioavailability of substrates (simple sugar, amino acid, and fatty acid was discussed. This review goes one step further to discuss how to direct these biocomponents for the generation of various biofuels (bioethanol, higher alcohol, and biodiesel through fermentation and transesterification processes. Such an approach would result in the maximum utilization of biomasses for economically feasible biofuel production.

  14. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    Science.gov (United States)

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass. PMID:23350028

  15. Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Renate Degen

    2015-08-01

    Full Text Available Little is known about the distribution and dynamics of macrobenthic communities of the deep Arctic Ocean. The few previous studies report low standing stocks and confirm a gradient with declining biomass from the slopes down to the basins, as commonly reported for deep-sea benthos. In this study, we investigated regional differences of faunal abundance and biomass, and made for the first time ever estimates of deep Arctic community production by using a multi-parameter artificial neural network model. The underlying data set combines data from recent field studies with published and unpublished data from the past 20 years, to analyse the influence of water depth, geographical latitude and sea-ice concentration on Arctic benthic communities. We were able to confirm the previously described negative relationship of macrofauna standing stock with water depth in the Arctic deep sea, while also detecting substantial regional differences. Furthermore, abundance, biomass and production decreased significantly with increasing sea-ice extent (towards higher latitudes down to values <200 ind m−2, <65 mg C m−2 and <73 mg C m−2 y−1, respectively. In contrast, stations under the seasonal ice zone regime showed much higher standing stock and production (up to 2500 mg C m−2 y−1, even at depths down to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic Ocean as it explains both the low values in the ice-covered Arctic basins and the higher values in the seasonal ice zone.

  16. Use of Jatropha curcas hull biomass for bioactive compost production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Pandey, A.K.; Lata [Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012 (India)

    2009-01-15

    The paper deals with utilization of biomass of Jatropha hulls for production of bioactive compost. In the process of Jatropha oil extraction, a large amount of hull waste is generated. It has been found that the direct incorporation of hull into soil is considerably inefficient in providing value addition to soil due to its unfavorable physicochemical characteristics (high pH, EC and phenolic content). An alternative to this problem is the bioconversion of Jatropha hulls using effective lignocellulolytic fungal consortium, which can reduce the phytotoxicity of the degraded material. Inoculation with the fungal consortium resulted in better compost of jatropha hulls within 1 month, but it takes nearly 4 months for complete compost maturation as evident from the results of phytotoxicity test. Such compost can be applied to the acidic soil as a remedial organic manure to help maintaining sustainability of the agro-ecosystem. Likewise, high levels of cellulolytic enzymes observed during bioconversion indicate possible use of fungi for ethanol production from fermentation of hulls. (author)

  17. Poplar physiology and short-term biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Reimer, P.; Lannoye, R. (Universite Libre de Bruxelles (Belgium). Lab. de Physiologie Vegetale)

    1990-01-01

    This program comprised the establishment, on biochemical and physiological basis, of specific screening tests for the rapid evaluation of poplar adaptation to environmental conditions. The resistance of chloroplasts to several major environmental stresses affecting biomass production (light, heat, cold and water stress) has been assessed in leaves of five poplar (Populus sp.) clones by in vivo chlorophyll fluorescence and oxygen production measurements. These two chloroplastic activities are correlated to the photosynthetic activity of the plant and respond immediately to any changes affecting the organization and the functioning of the photosynthetic apparatus, including regulatory mechanisms. Test clones were grown as cuttings in a .80 {times} .80m planting pattern. In addition, some plants were grown hydroponically in containers under a plastic roof in controlled conditions to test their behavior toward hydric (drought), light (shadow and overlight) and temperature (cold and warm) stresses. A specific data capture system has been developed to analyze clone resistance to environmental stresses. The results indicated considerable genetic variation in tolerance of poplar clones toward environmental stresses. The application of the in vivo fluorescence method and of the photoacoustic method appears to be an easy and rapid method to estimate the reaction of poplar clones against some stresses and thus for detecting plant species adapted to environmental stresses. 59 refs., 27 figs., 5 tabs.

  18. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  19. Willow coppice systems in short rotation forestry: effects of plant spacing, rotation length and clonal composition on biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Willebrand, E.; Ledin, S.; Verwijst, T. (Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research)

    1993-01-01

    Above ground biomass production was determined for ten Salix clones grown in pure and mixed stands at a square spacing of 1 m and seven rotation periods (1 to 6 and 8 years), and of one clone grown at four square spacings (0.5, 0.6, 0.7 and 1 m), with rotation cycles of 1 to 5 years. Most clones reached a maximum mean annual increment (8 to 14 tons dry matter ha[sup -1] yr[sup -1]) under a rotation period of 4 to 5 years. Densely spaced stands exhibited a higher production than wider spacings during the first harvests under the shortest rotation periods. Neither in later harvests of short cycles (1 to 3 years) nor in any harvests of longer cycles (> 3 years) did spacing affect biomass production. Some clones suffered from leaf rust and grazing by roe deer. Clone mixtures showed a higher biomass production in the later stages due to the compensatory effect of the successful clones which, when growing in mixtures, could fill out the gaps left by individuals that suffered from impacts other than competition. We conclude that extremely short rotations (1 to 2 years) are unsuitable for Swedish conditions, and that 4- to 6-year rotations perform best. In such longer rotations, biomass production of stands with 2 x 10[sup 4] plants per hectare equals the production of denser stands. (Author)

  20. Biomass production in experimental grasslands of different species richness during three years of climate warming

    Science.gov (United States)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2008-04-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Complementarity effects, likely mostly through both increased aboveground spatial complementarity and facilitative effects of legumes, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  1. Shrub biomass production following simulated herbivory: A test of the compensatory growth hypothesis

    Science.gov (United States)

    Terri B. Teaschner; Timothy E. Fulbright

    2007-01-01

    The objective of this experiment was to test the hypotheses that 1) simulated herbivory stimulates increased biomass production in spiny hackberry (Celtis pallida), but decreases biomass production in blackbrush acacia (Acacia rigidula) compared to unbrowsed plants and 2) thorn density and length increase in blackbrush acacia to a...

  2. Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains

    Science.gov (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese

    2015-01-01

    Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...

  3. Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis

    NARCIS (Netherlands)

    van der Heijden, H.H.J.L.; Ptasinski, K.J.

    2012-01-01

    In this paper an exergy analysis of thermochemical ethanol production from biomass is presented. This process combines a steam-blown indirect biomass gasification of woody feedstock, with a subsequent conversion of produced syngas into ethanol. The production process involves several process

  4. Advanced biomass science and technology for bio-based products: proceedings

    Science.gov (United States)

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  5. Environmental assessment of energy production from waste and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tonini, D.

    2013-02-15

    To evaluate the environmental and energy performance of bioenergy and waste-to-energy systems life cycle assessment was used in this thesis. This was supported by other tools such as material, substance, energy flow analysis and energy system analysis. The primary objective of this research was to provide a consistent framework for the environmental assessment of innovative bioenergy and waste-to-energy systems including the integration of LCA with other tools (mentioned earlier). The focus was on the following aspects: - Evaluation of potential future energy scenarios for Denmark. This was done by integrating the results of energy system analysis into life cycle assessment scenarios. - Identification of the criticalities of bioenergy systems, particularly in relation to land use changes. - Identification of potentials and criticalities associated with innovative waste refinery technologies. This was done by assessing a specific pilot-plant operated in Copenhagen, Denmark. The waste refining treatment was compared with a number of different state-of-the-art technologies such as incineration, mechanical-biological treatment and landfilling in bioreactor. The results highlighted that production of liquid and solid biofuels from energy crops should be limited when inducing indirect land use changes (iLUC). Solid biofuels for use in combined heat and power plants may perform better than liquid biofuels due to higher energy conversion efficiencies. The iLUC impacts stood out as the most important contributor to the induced GHG emissions within bioenergy systems. Although quantification of these impacts is associated with high uncertainty, an increasing number of studies are documenting the significance of the iLUC impacts in the bioenergy life cycle. With respect to municipal solid waste, state of the art incineration, MBT and waste refining (with associated energy and material recovery processes) may all provide important and comparable GHG emission savings. The waste

  6. Enhancement of Biomass and Lipid Productivities of Water Surface-Floating Microalgae by Chemical Mutagenesis.

    Science.gov (United States)

    Nojima, Daisuke; Ishizuka, Yuki; Muto, Masaki; Ujiro, Asuka; Kodama, Fumito; Yoshino, Tomoko; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-05-27

    Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively) were exposed to ethyl methane sulfonate (EMS) or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), and pale green mutants (PMs) were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability.

  7. Soil physical conditions in Nigerian savannas and biomass production

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    posed by the vast area of upland soils which are made up of coarse-textured soils and in some cases gravel and stones. Aggregates of such soils are weak, they loose productivity fast and do not retain adequate water and nutrients for sustainable production. These characteristics imply that even with the best of soil fertility amendments, soil physical conditions must be managed to achieve sustainable crop production. Plant growth had to be encouraged in the soils, such that enough biomass is produced for food and soil management. Another area which requires attention in the tropics is with regard adaptability of equipment for accurate evaluation of soil physical properties. Most commercially available equipment in the field of soil physics needs to be modified to suit the tropical environment

  8. Biomass production and water use efficiency of grassland in ...

    African Journals Online (AJOL)

    Using the results from a long-term grazing trial in the Dry Highland Sourveld of the KwaZulu-Natal province, we prepared a water use efficiency value (the ratio of the increment in annual biomass to total annual evapotranspiration) for this rangeland type. Using seasonal biomass measurements recorded between March ...

  9. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  10. Mycorrhizal Enhancement of Biomass Productivity of Big Bluestem ...

    African Journals Online (AJOL)

    The usual biomass partitioning by BB at pH=4.5 deserves further investigation. Different patterns of biomass partitioning notwithstanding, results of this study strongly suggest that BB could complement SG, the model biofuel feedstock, especially under acidic substrate conditions. Key words: Big bluestem; switchgrass; ...

  11. Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production

    Science.gov (United States)

    Teixeira, Lincoln Cambraia

    Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid

  12. Assessment of the externalise of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P; Leal, J; Saez, R M

    1996-07-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs.

  13. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P; Leal, J; Saez, R M

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  14. Assessment of the externalise of biomass energy for electricity production

    International Nuclear Information System (INIS)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-01-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs

  15. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland

    Science.gov (United States)

    Fay, P. A.; Collins, H.; Polley, W.

    2016-12-01

    Atmospheric CO2 concentration will likely exceed 500 µL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA . Whether increased abundance translates to increased inflorescence production is poorly understood, and is important because it indicates the potential effects of CO2 enrichment on genetic variability and the potential for evolutionary change in future generations. We examined whether the responses of inflorescence production to CO2 enrichment in four C4 grasses and a C3 forb were predicted their vegetative biomass, and by soil moisture, soil nitrogen, or light availability. Inflorescence production was studied in a long-term CO2 concentration gradient spanning pre-industrial to anticipated mid-21st century values (250 - 500 µL L-1) maintained on clay, silty clay and sandy loam soils common in the U.S. Southern Plains. We expected that CO2 enrichment would increase inflorescence production, and more so with higher water, nitrogen, or light availability. However, structural equation modeling revealed that vegetative biomass was the single consistent direct predictor of flowering for all species (p grass) and Solidago canadensis (C3 forb), direct CO2 effects on flowering were only weakly mediated by indirect effects of soil water content and soil NO3-N availability. For the decreasing species (Bouteloua curtipendula, C4 grass), the negative CO2-flowering relationship was cancelled (p = 0.39) by indirect effects of increased SWC and NO3-N on clay and silty clay soils. For the species with no CO2 response, inflorescence production was predicted only by direct water content (p grass) or vegetative biomass (p = 0.0009, Tridens albescens, C4 grass) effects. Light availability was unrelated to inflorescence production. Changes in inflorescence production are thus closely tied to direct and indirect effects of CO2 enrichment on vegetative biomass, and may either increase, decrease, or leave

  16. Workforce Development, Higher Education and Productive Systems

    Science.gov (United States)

    Hordern, Jim

    2014-01-01

    Workforce development partnerships between higher education institutions and employers involve distinctive social and technical dynamics that differ from dominant higher education practices in the UK. The New Labour government encouraged such partnerships in England, including through the use of funding that aimed to stimulate reform to…

  17. Does the New Economy Create Higher Productivity?

    DEFF Research Database (Denmark)

    Dilling-Hansen, Mogens; Madsen, Erik Strøjer; Smith, Valdemar

    2002-01-01

    The rapid and continuous growth in the US in the 1990s and the simultaneous boom in the IT industry created the concept "The New Economy". What connects the two phenomena is that the IT industry alone is considered productive, and increased productivity in other industries, as a result of increased...

  18. Production of Aspergillus niger biomass on sugarcane distillery wastewater: physiological aspects and potential for biodiesel production.

    Science.gov (United States)

    Chuppa-Tostain, Graziella; Hoarau, Julien; Watson, Marie; Adelard, Laetitia; Shum Cheong Sing, Alain; Caro, Yanis; Grondin, Isabelle; Bourven, Isabelle; Francois, Jean-Marie; Girbal-Neuhauser, Elisabeth; Petit, Thomas

    2018-01-01

    Sugarcane distillery waste water (SDW) or vinasse is the residual liquid waste generated during sugarcane molasses fermentation and alcohol distillation. Worldwide, this effluent is responsible for serious environmental issues. In Reunion Island, between 100 and 200 thousand tons of SDW are produced each year by the three local distilleries. In this study, the potential of Aspergillus niger to reduce the pollution load of SDW and to produce interesting metabolites has been investigated. The fungal biomass yield was 35 g L -1 corresponding to a yield of 0.47 g of biomass/g of vinasse without nutrient complementation. Analysis of sugar consumption indicated that mono-carbohydrates were initially released from residual polysaccharides and then gradually consumed until complete exhaustion. The high biomass yield likely arises from polysaccharides that are hydrolysed prior to be assimilated as monosaccharides and from organic acids and other complex compounds that provided additional C-sources for growth. Comparison of the size exclusion chromatography profiles of raw and pre-treated vinasse confirmed the conversion of humic- and/or phenolic-like molecules into protein-like metabolites. As a consequence, chemical oxygen demand of vinasse decreased by 53%. Interestingly, analysis of intracellular lipids of the biomass revealed high content in oleic acid and physical properties relevant for biodiesel application. The soft-rot fungus A. niger demonstrated a great ability to grow on vinasse and to degrade this complex and hostile medium. The high biomass production is accompanied by a utilization of carbon sources like residual carbohydrates, organic acids and more complex molecules such as melanoidins. We also showed that intracellular lipids from fungal biomass can efficiently be exploited into biodiesel.

  19. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    Butanol replaced gasoline gallon for gallon in a 10,000 miles trip across the United States without the need to highly modify a ’92 Buick (your existing car today). Butanol can now be made for less than ethanol and yields more Btu’s from the same corn, making the plow to tire equation positive – more energy out than it takes to make it and Butanol is much safer. Butanol when substituted for gasoline gives better gas mileage and does not pollute as tested in 10 states. Butanol should now receive the same recognition as ethanol in U.S. legislation “ethanol/butanol”. There is abundant plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry, which processes more than 13% of the ~9.5 billion bushels (~240 million metric tons) of corn annually produced in the U.S. to produce high-fructose-corn-syrup, dextrose, starch, and fuel alcohol, and generates more than 10 million metric tons of corn byproducts that are currently of limited use and pose significant environmental problems. The abundant inexpensive renewable resources as feedstock for fermentation, and recent advances in the fields of biotechnology and bioprocessing have resulted in a renewed interest in the fermentation production of chemicals and fuels, including n-butanol. The historic acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is one of the oldest known industrial fermentations. It was ranked second only to ethanol fermentation by yeast in its scale of production, and is one of the largest biotechnological processes ever known. However, since the 1950's industrial ABE fermentation has declined continuously, and almost all butanol is now produced via petrochemical routes (Chemical Marketing Reporter, 1993). Butanol is an important industrial solvent and is a better fuel for replacing gasoline – gallon for gallon than ethanol. Current butanol

  20. Legal framework for a sustainable biomass production for bioenergy on Marginal Lands

    Science.gov (United States)

    Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    authorities and principal laws in the field of bioenergy is given, supplemented by national biomass potentials and bioenergy use as well as by the German, Greek, Italian and Ukrainian NREAP. The overall target of all EU-28 countries - and Ukraine - is to create a more efficient bioeconomy, to increase the amount of biomass produced for bioenergy purposes, to avoid an increased competition between food/feed production on arable land and energy plant production, and decrease imports of fossil energy sources, i.e. [crude] oil, aiming at an independent, domestically based (bio)energy supply. Whereas in Germany the national policy framework regarding bioenergy is well-defined, there are only few specific national and/or regional policies in Greece, Italy or Ukraine. Moreover, the German legislation offers a higher potential for designing and modifying already existing regulations and laws, e.g. soil protection, EEG, etc. with respect to the use of MagL for bioenergy production, than in other SEEMLA partner countries. Although the biomass potential of each SEEMLA partner country varies a lot and the 2020 targets remain ambitious, the exploitation of sustainable biomass production on MagL may offer a suitable approach to fill the gaps of future biomass demands and accelerate the growth of an independent bioenergy based society.

  1. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary for photo......Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...

  3. Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production.

    Science.gov (United States)

    Gonçalves, Ana L; Pires, José C M; Simões, Manuel

    2016-01-01

    Cultivation of microalgae and cyanobacteria has been the focus of several research studies worldwide, due to the huge biotechnological potential of these photosynthetic microorganisms. However, production of these microorganisms is still not economically viable. One possible alternative to improve the economic feasibility of the process is the use of consortia between microalgae and/or cyanobacteria. In this study, Chlorella vulgaris, Pseudokirchneriella subcapitata and Microcystis aeruginosa were co-cultivated with Synechocystis salina to evaluate how dual-species cultures can influence biomass and lipid production and nutrients removal. Results have shown that the three studied consortia achieved higher biomass productivities than the individual cultures. Additionally, nitrogen and phosphorus consumption rates by the consortia provided final concentrations below the values established by European Union legislation for these nutrients. In the case of lipid productivities, higher values were determined when S. salina was co-cultivated with P. subcapitata and M. aeruginosa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  5. Effects of gamma radiation on biomass production of ground vegetation under broadleaved forests of northern Wisconsin

    International Nuclear Information System (INIS)

    Zavitkovski, J.; Salmonson, B.J.

    1977-01-01

    Effects of gamma irradiation (10,000-Ci 137 Cs source) for one growing season on biomass production of ground vegetation under northern Wisconsin aspen and maple-aspen-birch forests and on an abandoned logging road were evaluated during and 1 year after irradiation. No significant changes in production were determined during the irradiation year. One year later three distinct zones--semidevastated, herbaceous, and original forest--developed along the radiation gradient. Biomass production under forest canopies decreased significantly in the semidevastated zone, increased significantly in the herbaceous zone (primarily responding to additional light), and remained unchanged under the original forest. Logging-road vegetation responded similarly, but the changes were restricted within higher radiation doses. At comparable levels of radiation, production of species of the logging-road vegetation was affected less than that of species under forest canopies. Such a trend was predictable from the generally smaller interphase chromosome volumes of the species on the logging road and from their ability to survive in severe habitats

  6. Development of life cycle water footprints for the production of fuels and chemicals from algae biomass.

    Science.gov (United States)

    Nogueira Junior, Edson; Kumar, Mayank; Pankratz, Stan; Oyedun, Adetoyese Olajire; Kumar, Amit

    2018-09-01

    This study develops life cycle water footprints for the production of fuels and chemicals via thermochemical conversion of algae biomass. This study is based on two methods of feedstock production - ponds and photobioreactors (PBRs) - and four conversion pathways - fast pyrolysis, hydrothermal liquefaction (HTL), conventional gasification, and hydrothermal gasification (HTG). The results show the high fresh water requirement for algae production and the necessity to recycle harvested water or use alternative water sources. To produce 1 kg of algae through ponds, 1564 L of water are required. When PBRs are used, only 372 L water are required; however, the energy requirements for PBRs are about 30 times higher than for ponds. From a final product perspective, the pathway based on the gasification of algae biomass was the thermochemical conversion method that required the highest amount of water per MJ produced (mainly due to its low hydrogen yield), followed by fast pyrolysis and HTL. On the other hand, HTG has the lowest water footprint, mainly because the large amount of electricity generated as part of the process compensates for the electricity used by the system. Performance in all pathways can be improved through recycling channels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Influence of organic waste and inorganic nitrogen source on biomass productivity of Scenedesmus and Chlorococcum sp.

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, M.; Agarwal, A.; Arya, M.C. [Defence Institute of Bio-Energy Research, Defence R and D Organization, Ministry of Defence, Govt. of India, Field Station Pithoragarh - 262501, Uttarakhand (India); Ahmed, Z. [Defence Institute of Bio-Energy Research, Defence R and D Organization, Ministry of Defence, Govt. of India Haldwani- 263 139, Uttarakhand (India)

    2011-07-01

    Algae gaining the more attention in the recent years in order to supplement the futuristic demand of fuel requirement because of its unique feature like high productivity, short duration and higher fatty acids content. However algal culturing for large-scale production is limited due to many technical and engineering challenges. One of the main constraints for large-scale biomass production is the non-availability of cost effective and affordable growth medium for open pond condition. In order to overcome this lacuna, the present study was carried out to find out the suitable cost effective growth medium using locally available resources. Farm Yard Manure an easily available organic waste yet, rich in nutrients and used for agriculture over the generations. FYM coupled with inorganic nitrogen source like urea was found to be better alternative to the synthetic growth medium, which may make wider acceptability at farmers' field for large-scale algal mass production. The present study reveals that FYM extract of 50% supplemented with 0.1% Urea was performing better for algal biomass growth in outdoor open pond condition.

  8. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  9. Application of lignocellulolytic fungi for bioethanol production from renewable biomass

    Directory of Open Access Journals (Sweden)

    Jović Jelena M.

    2015-01-01

    Full Text Available Pretreatment is a necessary step in the process of conversion of lignocellulosic biomass to ethanol; by changing the structure of lignocellulose, enhances enzymatic hydrolysis, but, often, it consumes large amounts of energy and/or needs an application of expensive and toxic chemicals, which makes the process economically and ecologically unfavourable. Application of lignocellulolytic fungi (from the class Ascomycetes, Basidiomycetes and Deuteromycetes is an attractive method for pre-treatment, environmentally friendly and does not require the investment of energy. Fungi produce a wide range of enzymes and chemicals, which, combined in a variety of ways, together successfully degrade lignocellulose, as well as aromatic polymers that share features with lignin. On the basis of material utilization and features of a rotten wood, they are divided in three types of wood-decay fungi: white rot, brown rot and soft rot fungi. White rot fungi are the most efficient lignin degraders in nature and, therefore, have a very important role in carbon recycling from lignified wood. This paper describes fungal mechanisms of lignocellulose degradation. They involve oxidative and hydrolytic mechanisms. Lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase and enzymes able to catalyze formation of hydroxyl radicals (•OH such as glyoxal oxidase, pyranose-2-oxidase and aryl-alcohol oxidase are responsible for oxidative processes, while cellulases and hemicellulases are involved in hydrolytic processes. Throughout the production stages, from pre-treatment to fermentation, the possibility of their application in the technology of bioethanol production is presented. Based on previous research, the advantages and disadvantages of biological pre-treatment are pointed out.

  10. Avoiding tar formation in biocoke production from waste biomass

    International Nuclear Information System (INIS)

    Adrados, A.; De Marco, I.; Lopez-Urionabarrenechea, A.; Solar, J.; Caballero, B.

    2015-01-01

    This paper focuses in avoiding tar formation and in optimizing pyrolysis gas (maximizing H 2 and CO) in the production of biocoke from waste lignocellulosic biomass. In order to obtain metallurgical grade biochar (biocoke) slow heating rate and high temperature are required. Under such conditions useless pyrolysis liquids, mainly composed of water together with some heavy-sticky tars, are obtained. In order to make biocoke a cost-effective process it is necessary to optimize pyrolysis vapors avoiding tar formation and maximizing the amount and quality of both coke and gases. With this objective, in this work different heating rates (3–20 °C min −1 ) and catalysts (zeolite, Ni/CeO 2 –Al 2 O 3 ) have been tested in a two step pyrolysis process. Olive tree cuttings have been pyrolyzed in a 3.5 L batch reactor at 750 °C and the vapors generated have been thermally and catalytically treated at 900 °C in a second tubular reactor. About 25 wt.% biocoke useful as reducing agent in certain metallurgical processes, ≈57 wt.% gases with near 50 vol.% H 2 , and no tar production has been achieved when a heating rate of 3 °C min −1 and the homemade Ni/CeO 2 –Al 2 O 3 catalyst were used. - Highlights: • Metallurgical grade biochar was obtained by olive waste pyrolysis. • Low heating rates avoid tar formation and increase gas and biochar yields. • Ni/CeO 2 –Al 2 O 3 was better than HZSM5 zeolite for vapor upgrading in a second step. • Ni/CeO 2 –Al 2 O 3 and 3 °C min −1 gave the maximum H 2 , gas and biochar yields

  11. Biosorption and retention of several actinide and fission-product elements by biomass from Mycobacterium phlei

    International Nuclear Information System (INIS)

    Bouby, M.; MacCordick, H.J.; Billard, I.

    1996-01-01

    The properties of mobile, 5% w/w cell suspensions of Mycobacterium phlei have been examined for their capacity to adsorb and retain uranyl(VI) and neptunyl(V) cations from nitrate-buffered solutions at pH 1. Equilibrium conditions of sorption were attained after 3 hours for concentrations (C) in the range 0.015-18 mM cation and indicated a maximum specific adsorption capacity (Qe max ) of 182 μmol/g dry biomass for C ≥ 10 mM. NpO 2 + generally showed higher Qe values than UO 2 2+ at corresponding concentrations. Lixiviation tests with cation-loaded biomass in neutral and acidic media indicated that the extent of desorption did not vary extensively between pH 7 and pH 1 and did not exceed 3% for U and 1% for Np ions at pH 7 during 7-day periods of treatment. Analogous experiments with U-loaded biomass subjected to neutron activation prior to lixiviation enabled retention measurements for various fission-product isotopes produced in situ and showed that retention of 239 Np formed within the cellular matrix was >99% at pH 7 and ≥94% at pH 1. (author). 13 refs., 5 figs., 3 tabs

  12. Effects of different sources of organic waste application on the growth and biomass production of kenaf (hibiscus cannabinus L.)

    International Nuclear Information System (INIS)

    Shahariara, M.S.; Tahsina, S.; Muhammad, S.; Gani, M.N.; Huq, I.

    2012-01-01

    The growth and biomass productivity of kenaf (Hibiscus cannabinus L.) grown with different sources of organic waste viz. sewage sludge, poultry litter, cow dung and rice straw application were observed in a field experiment. Organic wastes were applied at the rate of 5 t/ha and were compared with recommended dose of fertilizers and control. The plants were harvested at 120 days after sowing (at the flowering stage). Different sources of organic wastes had a significant effect (P cow dung>poultry litter > rice straw treatments. Among the four sources of organic wastes, sewage sludge treated plot produced the highest mean biomass of 23.33 t/ha (dry weight basis) which was 14.64% higher than the mean biomass production from control plot. (author)

  13. Effects of different sources of organic waste application on the growth and biomass production of kenaf (hibiscus cannabinus L.)

    International Nuclear Information System (INIS)

    Shahariar, M.S.; Tashin, S.; Gani, N.; Muhammad, S.; Huq, I.

    2012-01-01

    The growth and biomass productivity of kenaf(Hibiscus cannabinus L.) grown with different sources of organic waste viz. sewage sludge, poultry litter, cow dung and rice straw application were observed in a field experiment. Organic wastes were applied at the rate of 5 t/ha and were compared with recommended dose of fertilizers and control. The plants were harvested at 120 days after sowing (at the flowering stage). Different sources of organic wastes had a significant effect (P cow dung>poultry litter> rice straw treatments. Among the four sources of organic wastes, sewage sludge treated plot produced the highest mean biomass of 23.33 t/ha (dry weight basis) which was 14.64% higher than the mean biomass production from control plot. (author)

  14. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    International Nuclear Information System (INIS)

    Nongthombam, Grihalakshmi D.; Labala, Rajendra K.; Das, Sudripta; Handique, Pratap J.; Talukdar, Narayan C.

    2017-01-01

    Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB) sources; namely, sugarcane bagasse (BG), cassava aerial parts (CS), ficus fruits (Ficus cunia) (FF), “phumdi” (floating biomass), rice straw (RS), and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL) to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64%) was significantly higher compared with their native counterparts (0.81–17.97%). Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum) resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  15. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Nongthombam, Grihalakshmi D., E-mail: griha789@gmail.com; Labala, Rajendra K.; Das, Sudripta [Institute of Bioresources and Sustainable Development (IBSD), Imphal (India); Handique, Pratap J. [Department of Biotechnology, Gauhati University, Guwahati (India); Talukdar, Narayan C., E-mail: griha789@gmail.com [Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati (India)

    2017-07-11

    Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB) sources; namely, sugarcane bagasse (BG), cassava aerial parts (CS), ficus fruits (Ficus cunia) (FF), “phumdi” (floating biomass), rice straw (RS), and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL) to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64%) was significantly higher compared with their native counterparts (0.81–17.97%). Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum) resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  16. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  17. Biomass Processing using Ionic Liquids for Jet Fuel Production

    Science.gov (United States)

    2014-04-09

    either water (W) or ethanol (E) as the nonsolvent and (bottom) enzymatic hydrolysis (cellulose conversion ) of the samples. PILs for Lignin Dissolution...of lignin) with IL dissolution of biomass has been demonstrated to be a highly effective pretreatment method for the conversion of raw cornstover...into glucose—this enables the rapid conversion (hydrolysis) of the biomass , while minimizing the amount of enzyme necessary (also a crucial issue for

  18. Improving Measurement of Productivity in Higher Education

    Science.gov (United States)

    Massy, William F.; Sullivan, Teresa A.; Mackie, Christopher

    2013-01-01

    Higher education is a critical element of the American economy, because of both its benefits and its costs to individuals and taxpayers. Yet we know very little about the relationships between the things colleges and universities do and the resources they need to do them. Currently, shrinking public support and increasing tuition make it urgent…

  19. Higher Education and Class: Production or Reproduction?

    Science.gov (United States)

    Sotiris, Panagiotis

    2013-01-01

    This article deals with questions relating to the role of education and especially Higher Education in the reproduction of class division in society. Social classes and how they are formed and reproduced has always been one of the greatest challenges for Marxism and social theory in general. The questions regarding the role of education, and…

  20. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  1. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  2. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    Science.gov (United States)

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Production cost of biomasses from eucalyptus and elefant grass for energy

    Directory of Open Access Journals (Sweden)

    Laurent Marie Roger Quéno

    2011-09-01

    Full Text Available This work established the unit energy cost generated from biomass of eucalyptus (Eucalyptus sp. and elephant grass (Pennisetum sp. and applied a sensitivity analysis to verify the influences of factors such as the silviculture of eucalyptus, production volume of each species, the cost of land and the interest rate. It was shown that the treatment of eucalyptus in very short rotation of 2 years with reform of stand every 6 years has a average cost of production higher than the traditional treatment of short rotation of 6 years with reform only at the age of 18. It was also observed that eucalyptus has a Production Cost on average of R$ 4,41 /Gj, lower than the elephant grass which is on average of R$ 5,44/Gj, which however has a higher annual capacity of dry matter production. The elephant grass has the possibility to compete with eucalyptus when a set of conditions is met: discount rate higher than or equal to 8%, High price of land, and elephant grass high volume production, greater than or equal to 35 tonnes of dry matter per hectare and year.

  4. Assessing impacts of intensified biomass production and biodiversity protection on ecosystem services provided by European forests

    NARCIS (Netherlands)

    Verkerk, P.J.; Mavsar, R.; Giergiczny, M.; Lindner, M.; Edwards, D.; Schelhaas, M.J.

    2014-01-01

    To develop viable strategies for intensifying the use of forest biomass and for increasing forest protection, impacts on ecosystem services need to be assessed. We investigated the biophysical and economic impacts of increased forest biomass production and biodiversity protection on forest ecosystem

  5. Perceptions of Agriculture Teachers Regarding Education about Biomass Production in Iowa

    Science.gov (United States)

    Han, Guang; Martin, Robert A.

    2015-01-01

    With the growth of biorenewable energy, biomass production has become an important segment in the agriculture industry (Iowa Energy Center, 2013). A great workforce will be needed for this burgeoning biomass energy industry (Iowa Workforce Development, n. d.). Instructional topics in agricultural education should take the form of problems and…

  6. Development of over-production strain of saccharification enzyme and biomass pretreatment by proton beam irradiation

    International Nuclear Information System (INIS)

    Kim, S. O.; Lee, J. Y.; Song, Y. S.; Shin, H. S.

    2009-04-01

    - The first year : Pre-treatment of biomass by proton beam irradiation and characterization of the pretreated biomass by IR and SEM - The second year : Strain development by proton beam irradiation for the production of cellulase and hemicellulase - The third year : Optimization of Saccharification process by cellulase and hemicellulase

  7. Biomass and its potential for protein and amino acids : valorizing agricultural by-products

    NARCIS (Netherlands)

    Sari, Y.W.

    2015-01-01

    The use of biomass for industrial products is not new. Plants have long been used for clothes, shelter, paper, construction, adhesives, tools, and medicine. With the exploitation on fossil fuel usage in the early 20th century and development of petroleum based refinery, the use of biomass for

  8. Technology for biomass feedstock production in southern forests and GHG implications

    Science.gov (United States)

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  9. The challenge of biomass production. Analysis of Chinnahagari and Upparahalla watersheds, Bellary District, India

    International Nuclear Information System (INIS)

    Avornyo, F.; Ballal, F.; Husseini, R.; Mysore, A.; Nabi, S.A.; Guevara, A.L.P.

    2003-01-01

    Results are presented of a field study conducted in the Chinnahagari and Upparahalla watersheds in the Karnataka state of India, with the objective of identifying the opportunities for and constraints in efforts for enhancing biomass production. The Agricultural Research for Development (ARD) procedure which is a process of integrating different perspectives of stakeholders was used for planning strategies to combat low biomass problems

  10. Assessment of potential biomass energy production in China towards 2030 and 2050

    DEFF Research Database (Denmark)

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, e...

  11. A hyperspectral approach to estimating biomass and plant production in a heterogeneous restored temperate peatland

    Science.gov (United States)

    Byrd, K. B.; Schile, L. M.; Windham-Myers, L.; Kelly, M.; Hatala, J.; Baldocchi, D. D.

    2012-12-01

    inundation and NPV. fAPAR values were combined with GPP estimates at the field scale from eddy correlation flux measurements to develop a LUE model of plant production. To compare the effectiveness of broadband vs. narrowband indices in predicting biomass and fAPAR, we simulated eight multispectral World View-2 (WV-2) bands and 164 hyperspectral Hyperion bands with the field spectroradiometer data. We calculated NDVI-type two band vegetation indices (TBVI) using all possible band combinations, with a total of 28 WV-2 indices and 13,366 Hyperion indices. Biomass estimation was affected by water depth; regression of cattail biomass to TBVI680,910 produced a R2 that was 47% higher (R2 = 0.53) when water levels were under 50 cm compared to when water levels were over 50 cm (R2 = 0.28). fAPAR estimation was affected by the density of NPV; regression of fAPAR to TBVI539,1114 when PARtransmitted was measured above thatch was 49% higher (R2 = 0.50) than when PARtransmitted was measured below thatch (R2 = 0.20, TBVI1286,1266). Accounting for background effects in this heterogeneous environment will aid in the development of robust indices that can be applied to other wetland sites for estimates of carbon storage potential across large extents.

  12. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    Energy Technology Data Exchange (ETDEWEB)

    Anton, David [Cellana, LLC, Kailua-Kona, HI (United States)

    2016-12-31

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing, and refining.

  13. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Thomsen, Anne Belinda; Angelidaki, Irini

    2007-01-01

    In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental...... pollution and reduce dependency on fossil fuels. There are two major biological processes that can convert biomass to liquid energy carriers via anaerobic biological breakdown of organic matter: ethanol fermentation and mixed acetone, butanol, ethanol (ABE) fermentation. The specific product formation...

  14. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Agu, R.C.; Amadife, A.E.; Ude, C.M.; Onyia, A.; Ogu, E.O. [Enugu State Univ. of Science and Technology (Nigeria). Faculty of Applied Natural Sciences; Okafor, M.; Ezejiofor, E. [Nnamdi Azikiwe Univ., Awka (Nigeria). Dept. of Applied Microbiology

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 M H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.

  15. Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, Luciana G.; Ceccarini, Lucia; Nassi o Di Nasso, Nicoletta [University of Pisa, Dipartimento di Agronomia e Gestione dell' Agroecosistema, Via S. Michele degli Scalzi, 2, 56100 Pisa (Italy); Bonari, Enrico [Scuola Sant' Anna, Piazza Martiri della Liberta, 33, 56100 Pisa (Italy)

    2009-05-15

    Cardoon (Cynara cardunculus L.) is an herbaceous species indicated as one of the most suitable energy crop for southern European countries. The aim of this work was to outline the productivity of two cardoon cultivars, Bianco Avorio (BA) and Gigante di Romagna (GR), over 11 years of cultivation in rain fed field conditions in the temperate climate of Central Italy. The quantitative and qualitative aspects of its biomass (calorific value, ultimate and proximate analyses, ash composition) as well as its energy balance (energy efficiency, net energy yield) have been determined. Crop dry yield was not different between the two cultivars and it was rather stable with a mean value (averaged from year 3 to 11) of 14 and 13 t ha{sup -1} for GR and BA respectively. Furthermore the biomass dry matter content was higher in BA than GR (51% vs 42%). The chemical analysis of cardoon biomass showed a similar composition in both cultivars with good calorific value (15 MJ kg{sup -1}) but with an ash content (13.9% d.w.) higher than other herbaceous energy crops. The total energy input was higher in the establishing than in the following years, however from the planting year onward, both cardoon crops were characterised by a positive energy balance. Even if its mean net energy is lower than other perennial energy crops (182 GJ ha{sup -1} year{sup -1}), cardoon can be easily propagated by seed with important advantages for crop management and production costs. The results confirmed cardoon's good biomass yield and favourable energy balance even in cultivation systems characterised by limited water input. Moreover future works are necessary in order to improve cardoon biomass quality and to evaluate the possibility of using it in blends with other biomass sources. (author)

  16. Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use

    International Nuclear Information System (INIS)

    Angelini, Luciana G.; Ceccarini, Lucia; Nassi o Di Nasso, Nicoletta; Bonari, Enrico

    2009-01-01

    Cardoon (Cynara cardunculus L.) is an herbaceous species indicated as one of the most suitable energy crop for southern European countries. The aim of this work was to outline the productivity of two cardoon cultivars, Bianco Avorio (BA) and Gigante di Romagna (GR), over 11 years of cultivation in rain fed field conditions in the temperate climate of Central Italy. The quantitative and qualitative aspects of its biomass (calorific value, ultimate and proximate analyses, ash composition) as well as its energy balance (energy efficiency, net energy yield) have been determined. Crop dry yield was not different between the two cultivars and it was rather stable with a mean value (averaged from year 3 to 11) of 14 and 13 t ha -1 for GR and BA respectively. Furthermore the biomass dry matter content was higher in BA than GR (51% vs 42%). The chemical analysis of cardoon biomass showed a similar composition in both cultivars with good calorific value (15 MJ kg -1 ) but with an ash content (13.9% d.w.) higher than other herbaceous energy crops. The total energy input was higher in the establishing than in the following years, however from the planting year onward, both cardoon crops were characterised by a positive energy balance. Even if its mean net energy is lower than other perennial energy crops (182 GJ ha -1 year -1 ), cardoon can be easily propagated by seed with important advantages for crop management and production costs. The results confirmed cardoon's good biomass yield and favourable energy balance even in cultivation systems characterised by limited water input. Moreover future works are necessary in order to improve cardoon biomass quality and to evaluate the possibility of using it in blends with other biomass sources.

  17. Biomass production by Coffea canephora Pierre ex Froehner in two productives cycles

    International Nuclear Information System (INIS)

    Bustamante González, Carlos; Rodríguez, Maritza I.; Pérez Díaz, Alberto; Viñals, Rolando; Martín Alonso, Gloria M.; Rivera, Ramón

    2015-01-01

    In areas of the Estación Central de Investigaciones de Café y Cacao located in La Mandarina, Tercer Frente municipality, Santiago de Cuba province, and La Alcarraza, municipality Sagua de Tánamo, Holguín province, the biomass production of Coffea canephora Pierre ex Froehner var. Robusta was assessed from planting until the fourth year in both locations and after pruning until the fourth year in Alcarraza. The coffee trees were planted at 3 x 1,5 m in Cambisol under Samanea saman Jerr shade in the first town and Leucaena leucocephala Lam de Wit in the second. The biomass was separated into: leaves, branches, stems, fruits and roots. From 24 months and one year after pruning, leaflitter was collected monthly. For the study of the root system soil blocks of 25 x 25 x 25 cm were extracted, in an area formed by 1,5 m (distance to the street) and 0,75 m (between plants), centered relative to the coffee plant and up to a meter deep. The extracted soil represented ¼ of the volume occupied by the plant. The dry mass of each organ was determined. Dry matter production reached values of 25 t dry mass ha-1 regardless of the stage of the plantation. Until the fourth year the root system dominated the biomass, followed by the leaves and then the stems. The participation of the fruits in the biomass increased in the crop stage and when concluding the experiment the coffees had dedicated for its formation among the 16-20 % of the total dry mass, independently of the development cycle. (author)

  18. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    Science.gov (United States)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  19. Pyrolysis of forestry biomass by-products in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A.

    1999-06-01

    This article summarizes the technical characteristics of a biomass pyrolysis pilot plant recently constructed in central Greece. It highlights the considerations involved in achieving successful pyrolysis technology and environmental and developmental goals, by reviewing technical and nontechnical barriers associated with biomass treatment technology in Greece. Data from the start-up phase of the plant operation are presented and some aspects of the process are outlined. The capacity of the plant is 1200 1450 kg hr, based on wet biomass (Arbutus Unedo) and the pyrolysis temperature is approximately 400{sup o}C. Char yield is 1418 % weight on dry basis and is of good quality consisting of 76{sup o}C with heat content 6760 kcal kg. Bio-oil includes 63% C and its heat content is 6250 kcal kg. (author)

  20. Pyrolysis of forestry biomass by-products in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A. [Aristotle Univ. of Thessaloniki (Greece). Dept. of Chemical Engineering

    1999-06-01

    This article summarizes the technical characteristics of a biomass pyrolysis pilot plant recently constructed in central Greece. It highlights the considerations involved in achieving successful pyrolysis technology and environmental and developmental goals, by reviewing technical and nontechnical barriers associated with biomass treatment technology in Greece. Data from the start-up phase of the plant operation are presented and some aspects of the process are outlined. The capacity of the plant is 1200--1450 kg/hr, based on wet biomass (Arbutus Unedo) and the pyrolysis temperature is approximately 400 C. Char yield is 14--18% weight on dry basis and is of good quality consisting of 76% C with heat content 6760 kcal/kg. Bio-oil includes 64% C and its heat content is 6250 kcal/kg.

  1. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  2. Future production and utilisation of biomass in Sweden: potentials and CO2 mitigation

    International Nuclear Information System (INIS)

    Boerjesson, P.; Gustavsson, L.; Christersson, L.; Linder, S.

    1997-01-01

    Swedish biomass production potential could be increased significantly if new production methods, such as optimised fertilisation, were to be used. Optimised fertilisation on 25% of Swedish forest land and the use of stem wood could almost double the biomass potential from forestry compared with no fertilisation, as both logging residues and large quantities of excess stem wood not needed for industrial purposes could be used for energy purposes. Together with energy crops and straw from agriculture, the total Swedish biomass potential would be about 230 TWh/yr or half the current Swedish energy supply if the demand for stem wood for building and industrial purposes were the same as today. The new production methods are assumed not to cause any significant negative impact on the local environment. The cost of utilising stem wood produced with optimised fertilisation for energy purposes has not been analysed and needs further investigation. Besides replacing fossil fuels and, thus, reducing current Swedish CO 2 emissions by about 65%, this amount of biomass is enough to produce electricity equivalent to 20% of current power production. Biomass-based electricity is produced preferably through co-generation using district heating systems in densely populated regions, and pulp industries in forest regions. Alcohols for transportation and stand-alone power production are preferably produced in less densely populated regions with excess biomass. A high intensity in biomass production would reduce biomass transportation demands. There are uncertainties regarding the future demand for stem wood for building and industrial purposes, the amount of arable land available for energy crop production and future yields. These factors will influence Swedish biomass potential and earlier estimates of the potential vary from 15 to 125 TWh/yr. (author)

  3. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.

    Science.gov (United States)

    Tabasso, Silvia; Grillo, Giorgio; Carnaroglio, Diego; Calcio Gaudino, Emanuela; Cravotto, Giancarlo

    2016-03-26

    The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating "greener" industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone), a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA)-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA) is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  4. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2016-03-01

    Full Text Available The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating “greener” industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone, a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  5. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    composition of the specific biomass feedstock, as well as which pretreatment, saccharification, fermentation and extraction techniques are used. Furthermore, integrating biological processes into the biorefinery that effectively consume CO2 will become increasingly important. Such process integration could...... significantly improve the sustainability indicators of the overall biorefinery process. In this study, unconventional lignocellulosic- and aquatic biomasses were investigated as biorefinery feedstocks. The studied biomasses were Jerusalem artichoke, industrial hemp and macroalgae species Laminaria digitata....... The chemical composition of biomasses was determined in order to demonstrate their biorefinery potential. Bioethanol and biogas along with succinic acid production were the explored bioconversion routes, while potential production of other compounds was also investigated. Differences and changes in biomass...

  6. Development of over-production strain of saccharification enzyme and biomass pretreatment by proton beam irradiation

    International Nuclear Information System (INIS)

    Kim, S. W.; Lee, J. Y.; Song, Y. S.; Lee, S. J.; Shin, H. Y.; Kim, S. B.

    2010-04-01

    When lignocellulosic biomass converts to ethanol, enzyme takes lots of part of whole cost. Therefore, cellulase production is one of the important processes for the successful enzymatic conversion of cellulosic biomass to ethanol. Among cellulolytic enzymes, cellulase is multi-complex enzyme containing endo-glucanase, exo-glucanase and β-glucosidase. Cellulolyticfungi, Trichodema reesei is well known to produce the highest yields of cellulase. Especially, suitable cellulase composition was important for the effective saccharification of lignocellulosic biomass and strain having high level production of cellulase should be developed for hydrolysis. For efficient ethanol production, hemicellullase of Aspergillus also develop to use xylose generated from saccharification of biomass. In this study, pretreatment process of rice straw using proton beam irradiation (PBI) was carried out for enhancement of enzyme digestibility at different proton beam doses. Also, PBI pretreatment on ammonia soaking treated (SAA, Soaking aqueous ammonia) rice straw was conducted to solve the problem that is micro-structural inhibition of rice straw. Optimal dosages of proton beam on rice straw and SAA treated rice straw for efficient recovery of sugar were 15 KGy and 3 KGy, respectively. Enzymatic saccharification of PBI treated rice straw and SAA rice straw was conducted for the guidance of NREL standard procedure. Analysis using X-ray diffractometry (XRD) for crystallinity index was carried out and CrI found to be 33.38% of control and 35.72% of 15 KGy. Also, CrI was determined to be 67.11% of control and approximately 65.58% of 3 kGy dose in PBI pretreatment on SAA treated rice straw. The result of sugar recovery of both was approximately 70 % and 91 % of theoretical glucose contents, respectively. The initial reaction rate was increased from 7.610 -4 g·l -1 ·s -1 of 15 KGy (PBI pretreated rice straw) to 9.710 -4 g·l -1 ·s -1 (3 KGy PBI pretreated SAA rice straw). The selection of

  7. 'Underutilised' agricultural land: its definitions, potential use for future biomass production and its environmental implications

    Science.gov (United States)

    Miyake, Saori; Bargiel, Damian

    2017-04-01

    A growing bioeconomy and increased demand for biomass products on food, health, fibre, industrial products and energy require land resources for feedstock production. It has resulted in significant environmental and socio-economic challenges on a global scale. As a result, consideration of such effects of land use change (LUC) from biomass production (particularly for biofuel feedstock) has emerged as an important area of policy and research, and several potential solutions have been proposed to minimise such adverse LUC effects. One of these solutions is the use of lands that are not in production or not suitable for food crop production, such as 'marginal', 'degraded', 'abandoned' and 'surplus' agricultural lands for future biomass production. The terms referring to these lands are usually associated with the potential production of 'marginal crops', which can grow in marginal conditions (e.g. poor soil fertility, low rainfall, drought) without much water and agrochemical inputs. In our research, we referred to these lands as 'underutilised' agricultural land and attempted to define them for our case study areas located in Australia and Central and Eastern Europe (CEE). Our goal is to identify lands that can be used for future biomass production and to evaluate their environmental implications, particularly impacts related to biodiversity, water and soil at a landscape scale. The identification of these lands incorporates remote sensing and spatially explicit approaches. Our findings confirmed that there was no universal or single definition of the term 'underutilised' agricultural land as the definitions significantly vary by country and region depending not only on the biophysical environment but also political, institutional and socio-economic conditions. Moreover, our results highlighted that the environmental implications of production of biomass on 'underutilised' agricultural land for biomass production are highly controversial. Thus land use change

  8. Spatial and seasonal variability of fractionated phytoplankton biomass and primary production in the frontal region of the Northern Adriatic Sea

    Directory of Open Access Journals (Sweden)

    M.R. VADRUCCI

    2005-06-01

    Full Text Available Spatial and seasonal patterns of variation of fractionated phytoplankton biomass and primary production and their relationships with nutrient concentrations were analyzed along an inshore - offshore gradient and in relation to the presence of a frontal system in the Northern Adriatic Sea. Sampling was carried out in winter and summer during four oceanographic cruises (June 1996 and 1997, February 1997 and 1998 as part of the PRISMA II project. Water samples for determining nutrient concentrations, phytoplankton biomass (as Chla and primary production (as 14 C assimilation were collected at five optical depths. Sampling stations were located along 2 or 4 parallel transects arranged perpendicularly to the shoreline and the frontal system. The transects were located at such a distance from the coast that the frontal system crossed them at their halfway point. Total dissolved nitrogen (TDN and total dissolved phosphorus concentrations (TDP were 12.41 ± 3 .95 mM and 0.146 ± 0 .070 mM, respectively. The values in the two seasonal periods were similar, decreasing along the inshore-offshore gradient. Values for phytoplankton biomass and primary productionwere higher in the winter than the summer cruises, and decreased, in both seasonal periods, along the inshore / offshore gradient. Moreover, in both seasonal periods, picophytoplankton dominated both biomass and productivity, (56% and 44%, respectively at stations beyond the frontal system, while microphytoplankton was more important at stations inside it (44% and 44%, respectively. Total phytoplankton biomass and primary production were directly related to nutrient concentrations. Regarding size classes, significant patterns of variation with nutrients were observed particularly for biomass. The results indicate that the size structure and function of phytoplankton guilds seem to be mediated by nutrient inflow, as well as by competitive interaction among size fractions.

  9. A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes.

    Science.gov (United States)

    Santos, C A; Ferreira, M E; da Silva, T Lopes; Gouveia, L; Novais, J M; Reis, A

    2011-08-01

    This paper describes the association of two bioreactors: one photoautotrophic and the other heterotrophic, connected by the gas phase and allowing an exchange of O(2) and CO(2) gases between them, benefiting from a symbiotic effect. The association of two bioreactors was proposed with the aim of improving the microalgae oil productivity for biodiesel production. The outlet gas flow from the autotrophic (O(2) enriched) bioreactor was used as the inlet gas flow for the heterotrophic bioreactor. In parallel, the outlet gas flow from another heterotrophic (CO(2) enriched) bioreactor was used as the inlet gas flow for the autotrophic bioreactor. Aside from using the air supplied from the auto- and hetero-trophic bioreactors as controls, one mixotrophic bioreactor was also studied and used as a model, for its claimed advantage of CO(2) and organic carbon being simultaneously assimilated. The microalga Chlorella protothecoides was chosen as a model due to its ability to grow under different nutritional modes (auto, hetero, and mixotrophic), and its ability to attain a high biomass productivity and lipid content, suitable for biodiesel production. The comparison between heterotrophic, autotrophic, and mixotrophic Chlorella protothecoides growth for lipid production revealed that heterotrophic growth achieved the highest biomass productivity and lipid content (>22%), and furthermore showed that these lipids had the most suitable fatty acid profile in order to produce high quality biodiesel. Both associations showed a higher biomass productivity (10-20%), when comparing the two separately operated bioreactors (controls) which occurred on the fourth day. A more remarkable result would have been seen if in actuality the two bioreactors had been inter-connected in a closed loop. The biomass productivity gain would have been 30% and the lipid productivity gain would have been 100%, as seen by comparing the productivities of the symbiotic assemblage with the sum of the two

  10. Buffers for biomass production in temperate European agriculture

    DEFF Research Database (Denmark)

    Christen, Benjamin; Dalgaard, Tommy

    2013-01-01

    , environmental pressures from intensive agriculture and policy developments. Use of conservation buffers by farmers outside of designated schemes is limited to date, but the increasing demand for bioenergy and the combination of agricultural production with conservation calls for a much wider implementation....... This paper reviews the biophysical knowledge on buffer functioning and associated ecosystem services. It describes how a three-zone buffer design, with arable fields buffered in combination by grassland, short rotation forestry (SRF) or coppice (SRC) and undisturbed vegetation along water courses, can...... be incorporated into farming landscapes as productive conservation elements and reflects on the potential for successful implementation. Land use plays a much greater role in determining catchment hydrology than soil type: shelterbelts or buffer strips have markedly higher infiltration capacity than arable...

  11. How body mass and lifestyle affect juvenile biomass production in placental mammals.

    Science.gov (United States)

    Sibly, Richard M; Grady, John M; Venditti, Chris; Brown, James H

    2014-02-22

    In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow-fast continuum.

  12. Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production.

    Science.gov (United States)

    Mendez, Lara; Sialve, Bruno; Tomás-Pejó, Elia; Ballesteros, Mercedes; Steyer, Jean Philippe; González-Fernández, Cristina

    2016-05-01

    Anaerobic digestion of microalgae is hampered by its complex cell wall. Against this background, cyanobacteria cell walls render this biomass as an ideal substrate for overcoming this drawback. The aim of the present study was to compare the growth of two cyanobacteria (Aphanizomenon ovalisporum and Anabaena planctonica) and a microalga (Chlorella vulgaris) in urban wastewater when varying the temperature (22, 27 and 32 °C). Cyanobacterial optimal growth for both strains was attained at 22 °C, while C. vulgaris did not show remarkable differences among temperatures. For all the microorganisms, ammonium removal was higher than phosphate. Biomass collected was subjected to anaerobic digestion. Methane yield of C. vulgaris was 184.8 mL CH4 g COD in(-1) while with A. ovalisporum and A. planctonica the methane production was 1.2- and 1.4-fold higher. This study showed that cyanobacteria growth rates could be comparable to microalgae while presenting the additional benefit of an increased anaerobic digestibility.

  13. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs

    Energy Technology Data Exchange (ETDEWEB)

    Douskova, I.; Doucha, J.; Livansky, K.; Umysova, D.; Zachleder, V.; Vitova, M. [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Laboratory of Cell Cycles of Algae; Machat, J. [Masaryk University, Brno (Czech Republic). Research Centre for Environmental Chemistry and Ecotoxicology; Novak, P. [Termizo Inc., Liberec (Czech Republic)

    2009-02-15

    A flue gas originating from a municipal waste incinerator was used as a source of CO{sub 2} for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO{sub 2} simultaneously. The utilization of the flue gas containing 10-13% ({nu}/{nu}) CO2 and 8-10% ({nu}/{nu}) O{sub 2} for the photobioreactor agitation and CO{sub 2} supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO{sub 2} and air (11% ({nu}/{nu}) CO{sub 2}). Correspondingly, the CO{sub 2} fixation rate was also higher when using the flue gas (4.4 g CO{sub 2} l{sup -1} 24 h{sup -1}) than using the control gas (3.0 g CO{sub 2} l{sup -1} 24 h{sup -1}). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements. (orig.)

  14. Development of Sustainable Landscape Designs for Improved Biomass Production in the U.S. Corn Belt

    Science.gov (United States)

    Bonner, Ian J.

    Demand for renewable and sustainable energy options has resulted in a significant commitment by the US Government to research pathways for fuel production from biomass. The research presented in this thesis describes one potential pathway to increase the amount of biomass available for biofuel production by integrating dedicated energy crops into agricultural fields. In the first chapter an innovative landscape design method based on subfield placement of an energy crop into row crop fields in central Iowa is used to reduce financial loss for farmers, increase and diversify biomass production, and improve soil resources. The second chapter explores how subfield management decisions may be made using high fidelity data and modeling to balance concerns of primary crop production and economics. This work provides critical forward looking support to agricultural land managers and stakeholders in the biomass and bioenergy industry for pathways to improving land stewardship and energy security.

  15. Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus.

    Science.gov (United States)

    Pandey, Usha; Pandey, J

    2008-07-01

    A diazotrophic cyanobacterium Nostochopsis lobatus was evaluated for enhanced production of biomass, pigments and antioxidant capacity. N. lobatus showed potentially high antioxidant capacity (46.12 microM AEAC) with significant improvement under immobilized cell cultures (87.05 microM AEAC). When a mixture of P and Fe was supplemented, biomass, pigments, nutritive value and antioxidant capacity increased substantially at pH 7.8. When considered separately, P appeared to be a better supplement than Fe for the production of biomass, chlorophyll and carotenoids. However, for phycocyanin, phycoerythrin, nutritive value and antioxidant capacity, Fe appeared more effective than P. Our study indicates N. lobatus to be a promising bioresource for enhanced production of nutritionally rich biomass, pigments and antioxidants. The study also suggests that P and Fe are potentially effective supplements for scale-up production for commercial application.

  16. Does species richness affect fine root biomass and production in young forest plantations?

    DEFF Research Database (Denmark)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie

    2015-01-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass...... and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined...... be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested...

  17. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass

    DEFF Research Database (Denmark)

    Petrik, SiniŠa; Márová, Ivana; Kádár, Zsófia

    2013-01-01

    In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw...

  18. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    NARCIS (Netherlands)

    Luque, L.; Westerhof, Roel Johannes Maria; van Rossum, G.; Oudenhoven, Stijn; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the

  19. Biomass for energy production. Economic evaluation, efficiency comparison and optimal utilization of biomass; Biomasse zur Energiegewinnung. Oekonomische Bewertung, Effizienzvergleich und optimale Biomassenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Zeddies, Juergen [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Landwirtschaftliche Betriebslehre; Schoenleber, Nicole

    2015-07-01

    An optimized and/or goal-oriented use of available biomass feedstock for energetic conversion requires a detailed analysis of bioenergy production lines according to technical and economic efficiency indicators. Accordingly, relevant parameters of selected production lines supplying heat, electricity and fuel have been studied and used as data base for an optimization model. Most favorable combination of bioenergy lines considering political and economic objectives are analyzed by applying a specifically designed linear optimization model. Modeling results shall allow evaluation of political courses of action.

  20. Seagrass Biomass and Productivity in Seaweed and Non-Seaweed ...

    African Journals Online (AJOL)

    Seagrass beds are often subjected to stress resulting from natural and human activities. In this study, the shoot density, biomass and growth characteristics of Thalassia hemprichii and Enhalus acoroides were measured to assess the impact of seaweed farming activities on seagrass meadows at Marumbi, Chwaka Bay and ...

  1. Experimental study of the production of biomass by Sacharomyces ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... h-1 exceeds by far the maximum specific growth rate of the yeast under aerobic condition as obtained ... use for bread-making, a staple food for large section of ..... mental yield of biomass may be inaccurate measurement.

  2. biomass production and forage quality of head-smut disease ...

    African Journals Online (AJOL)

    ACSS

    The objective of this study was to determine biomass yield and forage quality of head- smut resistant/tolerant Napier grass .... demands deployment of suitable Napier grass cultivars, with resistance/tolerance to drought conditions .... diets need to be balanced to contain sufficient and effective NDF for healthy rumen function,.

  3. Bacterial biomass in warm-core Gulf Stream ring 82-B: mesoscale distributions, temporal changes and production

    Science.gov (United States)

    Ducklow, Hugh

    1986-11-01

    The distribution of bacterioplankton biomass and productivity in warm-core Gulf Stream ring 82-B generally corresponded to the physical and dynamical structure of the ring. Mean cell volumes were uniform for 4 months, but were larger by a factor of 2-3 in the high velocity (frontal) region (HVR) near the ring edge. As a result of this gradient and higher abundances, water column biomass and production were highest in the front, which appeared to be a local maximum in those properties. In this regard bacterioplankton contrasted strongly to phytoplankton, which exhibited strong local maxima at the center of the ring in June. In April when the water column inside the ring was isothermal to 450 m, bacterial biomass and production were low and uniform to 250 and 50 m, respectively. Bacterioplankton responded dramatically to the vernal restratification of the ring. In June when the surface layer was characterized by a strong pycnocline at 10-40 m, bacterial biomass and production often had strong subsurface maxima, and were 3 and 5 times greater than in April, respectively. Abundance exceeded 1.5 × 10 9 cells l -1 at ring center and exceeded 3 × 10 9 l -1 in the HVR. Turnover rates for the euphotic zone bacterioplankton as a whole were 0.24 d -1 in April, 0.56 d -1 in June, and 0.27 d -1 in August at ring center. Bacterial production averaged 12% of hourly primary production (range 1-32%), suggesting that bacteria control a significant and sometimes large portion of the carbon cycling in the euphotic zone. These data suggest that warm-core rings are sites of enhanced variability of bacterioplankton properties in the open sea. Furthermore, the data strongly support recent work showing that frontal zones are sites of locally enhanced bacterial biomass and production. In the ring system as a whole, the euphotic zone bacterioplankton biomass and production were comparable to and occasionally greater than the biomass and production of the >64 μm zooplankton, especially in

  4. Audible sound treatment of the microalgae Picochlorum oklahomensis for enhancing biomass productivity.

    Science.gov (United States)

    Cai, Weiming; Dunford, Nurhan Turgut; Wang, Ning; Zhu, Songming; He, Huinong

    2016-02-01

    It has been reported in the literature that exposure of microalgae cells to audible sound could promote growth. This study examined the effect of sound waves with the frequency of 1100 Hz, 2200 Hz, and 3300 Hz to stimulate the biomass productivity of an Oklahoma native strain, Picochlorum oklahomensis (PO). The effect of the frequency of sound on biomass mass was measured. This study demonstrated that audible sound treatment of the algae cultures at 2200 Hz was the most effective in terms of biomass production and volumetric oil yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  6. Biomass production of sesbania sesban pers. On different habitats

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Pathak, P.S.; Roy, R.D.

    1983-01-01

    Three month-old seedlings of S. sesban (a shortlived medicinal shrub or small tree which can be used for fuelwood and forage) were planted at 7 sites starting in 1975. The seedlings were raised in polythene bags and planted in pits. Growth was assessed after 1.0-4.5 years by felling and measuring 3 sample trees each from 3 collar diameter (high, medium and low) groups at each site. Sites were (1) two nursery sites with optimum moisture and management conditions, assessed at 1 and 2.5 years old respectively, (2) three canal-side sites inundated for more than 8 months per year planted as blocks (assessed at 3.5 and 4.5 years) and as a single row (3.5 years), (3) a dry farm forestry site planted as a single row (assessed at 3.5 years) and (4) a moist silvopastoral site planted as a block (assessed at 3.5 years). Detailed growth and biomass data are tabulated. On the moist canal site plants were still growing at 4.5 year old (average above-ground biomass/plant 60 kg compared with 16-17 kg at 3.5 years); values were similar on the moist silvopastoral site (16 kg at 3.5 years) but lower on the dry site (6 kg at 3.5 years). On the nursery site average above-ground biomass increased from 2 kg/plant at 1 year old to 6 kg at 2.5 years. Collar diameter was linearly related to diameter at breast height and biomass, and diameter at breast height to biomass at all sites.

  7. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment

    International Nuclear Information System (INIS)

    Seo, Dong Cheol; DeLaune, Ronald D.

    2010-01-01

    Fungal and bacterial carbon dioxide (CO 2 ) production/emission was determined under a range of redox conditions in sediment from a Louisiana swamp forest used for wastewater treatment. Sediment was incubated in microcosms at 6 Eh levels (-200, -100, 0, + 100, + 250 and + 400 mV) covering the anaerobic range found in wetland soil and sediment. Carbon dioxide production was determined by the substrate-induced respiration (SIR) inhibition method. Cycloheximide (C 15 H 23 NO 4 ) was used as the fungal inhibitor and streptomycin (C 21 H 39 N 7 O 12 ) as the bacterial inhibitor. Under moderately reducing conditions (Eh > + 250 mV), fungi contributed more than bacteria to the CO 2 production. Under highly reducing conditions (Eh ≤ 0 mV), bacteria contributed more than fungi to the total CO 2 production. The fungi/bacteria (F/B) ratios varied between 0.71-1.16 for microbial biomass C, and 0.54-0.94 for microbial biomass N. Under moderately reducing conditions (Eh ≥ + 100 mV), the F/B ratios for microbial biomass C and N were higher than that for highly reducing conditions (Eh ≤ 0 mV). In moderately reducing conditions (Eh ≥ + 100 mV), the C/N microbial biomass ratio for fungi (C/N: 13.54-14.26) was slightly higher than for bacteria (C/N: 9.61-12.07). Under highly reducing redox conditions (Eh ≤ 0 mV), the C/N microbial biomass ratio for fungi (C/N: 10.79-12.41) was higher than for bacteria (C/N: 8.21-9.14). For bacteria and fungi, the C/N microbial biomass ratios under moderately reducing conditions were higher than that in highly reducing conditions. Fungal CO 2 production from swamp forest could be of greater ecological significance under moderately reducing sediment conditions contributing to the greenhouse effect (GHE) and the global warming potential (GWP). However, increases in coastal submergence associated with global sea level rise and resultant decrease in sediment redox potential from increased flooding would likely shift CO 2 production to bacteria

  8. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass.

    Science.gov (United States)

    Leng, Lijian; Li, Jun; Yuan, Xingzhong; Li, Jingjing; Han, Pei; Hong, Yuchun; Wei, Feng; Zhou, Wenguang

    2018-03-01

    Co-liquefaction of municipal sewage sludge (MSS) and lignocellulosic biomass such as rice straw or wood sawdust at different mixing ratios and the characterization of the obtained bio-oil and bio-char were investigated. Synergistic effects were found during co-processing of MSS with biomass for production of bio-oil with higher yield and better fuel properties than those from individual feedstock. The co-liquefaction of MSS/rice straw (4/4, wt) increased the bio-oil yield from 22.74% (bio-oil yield from liquefaction of MSS individually) or 23.67% (rice straw) to 32.45%. Comparable increase on bio-oil yield was also observed for MSS/wood sawdust mixtures (2/6, wt). The bio-oils produced from MSS/biomass mixtures were mainly composed of esters and phenols with lower boiling points (degradation temperatures) than those from individual feedstock (identified with higher heavy bio-oil fractions). These synergistic effects were probably resulted from the interactions between the intermittent products of MSS and those of biomass during processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel

    International Nuclear Information System (INIS)

    Kambo, Harpreet Singh; Dutta, Animesh

    2015-01-01

    Highlights: • A comparative characterization of HTC and torrefaction is proposed. • The reaction temperature is the most governing parameter in the HTC process. • The inorganic compositions of biomass were significantly reduced via HTC. • The hydrochar produced at 260 °C shows fuel qualities comparable to that of coal. - Abstract: The work presented in this study demonstrates the potential of using hydrothermal carbonization (HTC) on miscanthus feedstock for the production of a carbon-rich solid fuel, referred to as hydrochar, whose physicochemical properties are comparable to that of coal. The effects of the processing conditions on the mass yield, energy yield and higher heating values (HHVs) were examined by varying the reaction temperature (190, 225, and 260 °C), the reaction time (5, 15, and 30 min) and the feedstock-to-water ratio (1:6 and 1:12). The results show that the reaction temperature is the most significant parameter governing the physicochemical properties of biomass. Increasing reaction temperature reduces the mass yield; however, it also significantly enhances the energy density of solid products. The hydrochar samples produced at 260 °C show a maximum energy density of 26–30 MJ/kg, with 66–74% of energy retained in the solid product. In comparison, the energy density, grindability, and hydrophobicity of the solid samples produced via torrefaction (a conventional thermal pre-treatment) were considerably lower than the hydrochar samples, even if the reaction time was kept much higher than HTC. Furthermore, the inorganic metallic composition of miscanthus feedstock almost remained unaffected after torrefaction; however, it was significantly reduced (30–70%) via HTC.

  10. Enhanced production of green tide algal biomass through additional carbon supply.

    Science.gov (United States)

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  11. Enhanced production of green tide algal biomass through additional carbon supply.

    Directory of Open Access Journals (Sweden)

    Pedro H de Paula Silva

    Full Text Available Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2 enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (- as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (- affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9, and grew at similar rates up to pH 9, demonstrating HCO3 (- utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%, Chaetomorpha linum (24% and to a lesser extent for Cladophora patentiramea (11%, compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-.

  12. Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor

    Directory of Open Access Journals (Sweden)

    Mohsen Mansouri

    2017-04-01

    Full Text Available The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ, maximum specific growth rate (μmax, and maximum cell concentration (Xmax. The low root-mean-square error (RMSE and high regression coefficients (R2 indicated that the models employed were well fitted to the experiment data and it could be regarded as enough to describe biomass production. Using statistical and physiological significance criteria, the Baranyi model was considered the most appropriate for quantifying biomass growth. The biological variables of this model are as follows: μmax=0.0309 h−1, λ=100 h, and Xmax=1.82 g/L.

  13. Optimal processing pathway for the production of biodiesel from microalgal biomass: A superstructure based approach

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass......, such as the harvesting of microalgal biomass, pretreatments including drying and cell disruption of harvested biomass, lipid extraction, transesterification, and post-transesterfication purification. The proposed model is used to find the optimal processing pathway among the large number of potential pathways that exist...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case with different choices of objective functions. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed...

  14. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Power production from biomass III. Gasification and pyrolysis R and D and D for industry

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). New Energy Technologies

    1999-07-01

    The Seminar on Power Production from Biomass III. Gasification and Pyrolysis R and D and D for Industry, was held on 14-15 September 1998 in Espoo. The seminar was organised by VTT Energy in co-operation with the University of Groningen, EU-Thermie Programme and Technology Development Centre, Finland (Tekes). Overviews of current activities on power production from biomass and wastes in Europe and in the United States were given, and all European and U. S. demonstration projects on biomass gasification were presented. In Europe, the target is to produce additional 90 Mtoe/a of bioenergy for the market by 2010. This is a huge challenge for the bioenergy sector, including biomass production and harvesting, conversion technology, energy companies, and end users. In USA, U.S. Department of Energy is promoting the Biomass Power Programme to encourage and assist industry in the development and validation of renewable, biomass-based electricity generation systems, the objective being to double the present use of 7 000 MW biomass power by the year 2010. The new Finnish PROGAS Programme initiated by VTT was also introduced. Several gasification projects are today on the demonstration stage prior to entering the commercial level. Pyrolysis technologies are not yet on the demonstration stage on the energy market. Bio-oils can easily be transported, stored and utilised in existing boiler and diesel plants. The proceedings include the presentations given by the keynote speakers and other invited speakers, as well as some extended poster presentations. (orig.)

  16. Bioenergy production potential for aboveground biomass from a subtropical constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Chung [Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114 (China); Ko, Chun-Han [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Bioenergy Research Center, National Taiwan University, Taipei 10617 (China); Chang, Fang-Chih [The Instrument Center, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China); Chen, Pen-Yuan [Department of Landscape Architecture, National Chiayi University, Chiayi City 60004 (China); Liu, Tzu-Fen [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Sheu, Yiong-Shing [Department of Water Quality Protection, Environmental Protection Administration, Executive Yuan, Taipei 10042 (China); Shih, Tzenge-Lien [Department of Chemistry, Tamkang University, Tamsui, Taipei 25137 (China); Teng, Chia-Ji [Environmental Protection Bureau, Taipei County Government, Taipei 22001 (China)

    2011-01-15

    Wetland biomass has potentials for bioenergy production and carbon sequestration. Planted with multiple species macrophytes to promote biodiversity, the 3.29 ha constructed wetland has been treated 4000 cubic meter per day (CMD) domestic wastewater and urban runoff. This study investigated the seasonal variations of aboveground biomass of the constructed wetland, from March 2007 to March 2008. The overall aboveground biomass was 16,737 kg and total carbon content 6185 kg at the peak of aboveground accumulation for the system emergent macrophyte at September 2007. Typhoon Korsa flood this constructed wetland at October 2007, however, significant recovery for emergent macrophyte was observed without human intervention. Endemic Ludwigia sp. recovered much faster, compared to previously dominated typha. Self-recovery ability of the macrophyte community after typhoon validated the feasibility of biomass harvesting. Incinerating of 80% biomass harvested of experimental area in a nearby incineration plant could produce 11,846 kWh for one month. (author)

  17. Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Veronika; Eggers, Thies; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO{sub 2}) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  18. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.

    Science.gov (United States)

    Kang, Zion; Kim, Byung-Hyuk; Ramanan, Rishiram; Choi, Jong-Eun; Yang, Ji-Won; Oh, Hee-Mock; Kim, Hee-Sik

    2015-01-01

    Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the effect of using wastewater and wavelength filters on microalgal productivity. Experimental results were then fitted into a model, and cost analysis was performed in comparison with control raceways. Three different microalgal strains, Chlorella vulgaris AG10032, Chlorella sp. JK2, and Scenedesmus sp. JK10, were tested for nutrient removal under different light wavelengths (blue, green, red, and white) using filters in batch cultivation. Blue wavelength showed an average of 27% higher nutrient removal and at least 42% higher chemical oxygen demand removal compared with white light. Naturally, the specific growth rate of microalgae cultivated under blue wavelength was on average 10.8% higher than white wavelength. Similarly, lipid productivity was highest in blue wavelength, at least 46.8% higher than white wavelength, whereas FAME composition revealed a mild increase in oleic and palmitic acid levels. Cost analysis reveals that raceways treating wastewater and using monochromatic wavelength would decrease costs from 2.71 to 0.73 $/kg biomass. We prove that increasing both biomass and lipid productivity is possible through cost-effective approaches, thereby accelerating the commercialization of low-value products from microalgae, like biodiesel.

  19. Productivity and cost of conventional understory biomass harvesting systems

    Science.gov (United States)

    Douglas E. Miller; Thomas J. Straka; Bryce J. Stokes; William Watson

    1987-01-01

    Conventional harvesting equipment was tested for removing forest understory biomass (energywood) for use as fuel. Two types of systems were tested--a one-pass system and a two-pass system. In the one-pass system, the energywood and pulpwood were harvested simultaneously. In the two-pass system, the energywood was harvested in a first pass through the stand, and the...

  20. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J [VTT Energy, Espoo (Finland). Energy Production Technologies; and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  1. Benthic invertebrate density, biomass, and instantaneous secondary production along a fifth-order human-impacted tropical river.

    Science.gov (United States)

    Aguiar, Anna Carolina Fornero; Gücker, Björn; Brauns, Mario; Hille, Sandra; Boëchat, Iola Gonçalves

    2015-07-01

    The aim of this study was to assess land use effects on the density, biomass, and instantaneous secondary production (IP) of benthic invertebrates in a fifth-order tropical river. Invertebrates were sampled at 11 stations along the Rio das Mortes (upper Rio Grande, Southeast Brazil) in the dry and the rainy season 2010/2011. Invertebrates were counted, determined, and measured to estimate their density, biomass, and IP. Water chemical characteristics, sediment heterogeneity, and habitat structural integrity were assessed in parallel. Total invertebrate density, biomass, and IP were higher in the dry season than those in the rainy season, but did not differ significantly among sampling stations along the river. However, taxon-specific density, biomass, and IP differed similarly among sampling stations along the river and between seasons, suggesting that these metrics had the same bioindication potential. Variability in density, biomass, and IP was mainly explained by seasonality and the percentage of sandy sediment in the riverbed, and not directly by urban or agricultural land use. Our results suggest that the consistently high degradation status of the river, observed from its headwaters to mouth, weakened the response of the invertebrate community to specific land use impacts, so that only local habitat characteristics and seasonality exerted effects.

  2. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis.

    Science.gov (United States)

    Uzun, Harun; Yıldız, Zeynep; Goldfarb, Jillian L; Ceylan, Selim

    2017-06-01

    As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene

    International Nuclear Information System (INIS)

    Önal, Eylem; Uzun, Başak Burcu; Pütün, Ayşe Eren

    2014-01-01

    Highlights: • We investigate to see the effect of HDPE addition on thermal decomposition of lignocellulosic materials. • Increasing the proportion of HDPE in mixtures increases the oil yields. • After co-pyrolysis applied, obtained oil is more stable due to having lower oxygen content and higher heating value. • The addition of HDPE to aS has a positive effect on fuel properties of obtained oil. - Abstract: Biomass from almond shell (aS) was co-pyrolyzed with high density polyethylene (HDPE) polymer to investigate the synergistic effects on the product yields and compositions. The pyrolysis temperature was selected as 500 °C, based on results of TGA-DTG. Co-pyrolysis of HDPE-biomass mixtures were pyrolysed with various proportions such as 1:0, 1:1, 1:2, 2:1 and 0:1. The yield of liquids produced during co-pyrolysis enhanced 23%, as the weight ratio of HDPE in the mixture was doubled. Obtained bio-oils were analyzed with using column chromatography, 1 H NMR, GC/MS, and FT-IR. According to analyses results, produced liquids by co-pyrolysis had higher carbon (26% higher) and hydrogen contents (78% higher), lower oxygen content (%86 less) with a higher heating value (38% higher) than those of biomass oil

  4. A higher twist correction to heavy quark production

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Gunion, J.F.; Soper, D.E.

    1987-06-01

    The leading twist prediction for heavy quark production and a model for a higher twist correction that may be important for charm production was discussed. The correction arises from the interaction of the charm quark with spectator quarks

  5. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste.

    Science.gov (United States)

    Boumanchar, Imane; Chhiti, Younes; M'hamdi Alaoui, Fatima Ezzahrae; El Ouinani, Amal; Sahibed-Dine, Abdelaziz; Bentiss, Fouad; Jama, Charafeddine; Bensitel, Mohammed

    2017-03-01

    The heating value describes the energy content of any fuel. In this study, this parameter was evaluated for different abundant materials in Morocco (two types of biochar, plastic, synthetic rubber, and cardboard as municipal solid waste (MSW), and various types of biomass). Before the evaluation of their higher heating value (HHV) by a calorimeter device, the thermal behavior of these materials was investigated using thermogravimetric (TGA) and Differential scanning calorimetry (DSC) analyses. The focus of this work is to evaluate the calorific value of each material alone in a first time, then to compare the experimental and theoretical HHV of their mixtures in a second time. The heating value of lignocellulosic materials was between 12.16 and 20.53MJ/kg, 27.39 for biochar 1, 32.60MJ/kg for biochar 2, 37.81 and 38.00MJ/kg for plastic and synthetic rubber respectively and 13.81MJ/kg for cardboard. A significant difference was observed between the measured and estimated HHVs of mixtures. Experimentally, results for a large variety of mixture between biomass/biochar and biomass/MSW have shown that the interaction between biomass and other compounds expressed a synergy of 2.37% for biochar 1 and 6.11% for biochar 2, 1.09% for cardboard, 5.09% for plastic and 5.01% for synthetic rubber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Extended light exposure increases stem digestibility and biomass production of switchgrass

    Science.gov (United States)

    Zhao, Chunqiao; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Wu, Juying

    2017-01-01

    Switchgrass is a photoperiod-sensitive energy grass suitable for growing in the marginal lands of China. We explored the effects of extended photoperiods of low-irradiance light (7 μmol·m-2·s-1, no effective photosynthesis) on the growth, the biomass dry weight, the biomass allocation, and, especially, the stem digestibility and cell wall characteristics of switchgrass. Two extended photoperiods (i.e., 18 and 24 h) were applied over Alamo. Extended light exposure (18 and 24 h) resulted in delayed heading and higher dry weights of vegetative organs (by 32.87 and 35.94%, respectively) at the expense of reducing the amount of sexual organs (by 40.05 and 50.87%, respectively). Compared to the control group (i.e., natural photoperiod), the yield of hexoses (% dry matter) in the stems after a direct enzymatic hydrolysis (DEH) treatment significantly increased (by 44.02 and 46.10%) for those groups irradiated during 18 and 24 h, respectively. Moreover, the yield of hexoses obtained via enzymatic hydrolysis increased after both basic (1% NaOH) and acid (1% H2SO4) pretreatments for the groups irradiated during 18 and 24 h. Additionally, low-irradiance light extension (LILE) significantly increased the content of non-structural carbohydrates (NSCs) while notably reducing the lignin content and the syringyl to guaiacyl (S/G) ratio. These structural changes were in part responsible for the observed improved stem digestibility. Remarkably, LILE significantly decreased the cellulose crystallinity index (CrI) of switchgrass by significantly increasing both the arabinose substitution degree in xylan and the content of ammonium oxalate-extractable uronic acids, both favoring cellulose digestibility. Despite this LILE technology is not applied to the cultivation of switchgrass on a large scale yet, we believe that the present work is important in that it reveals important relationships between extended day length irradiations and biomass production and quality. Additionally, this

  7. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  8. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation.

    Science.gov (United States)

    Suja, E; Nancharaiah, Y V; Venugopalan, V P

    2014-11-15

    Microbial granules cultivated in an aerobic bubble column sequencing batch reactor were used for reduction of Pd(II) and formation of biomass associated Pd(0) nanoparticles (Bio-Pd) for reductive transformation of organic and inorganic contaminants. Addition of Pd(II) to microbial granules incubated under fermentative conditions resulted in rapid formation of Bio-Pd. The reduction of soluble Pd(II) to biomass associated Pd(0) was predominantly mediated by H2 produced through fermentation. X-ray diffraction and scanning electron microscope analysis revealed that the produced Pd nanoparticles were associated with the microbial granules. The catalytic activity of Bio-Pd was determined using p-nitrophenol and Cr(VI) as model compounds. Reductive transformation of p-nitrophenol by Bio-Pd was ∼20 times higher in comparison to microbial granules without Pd. Complete reduction of up to 0.25 mM of Cr(VI) by Bio-Pd was achieved in 24 h. Bio-Pd synthesis using self-immobilized microbial granules is advantageous and obviates the need for nanoparticle encapsulation or use of barrier membranes for retaining Bio-Pd in practical applications. In short, microbial granules offer a dual purpose system for Bio-Pd production and retention, wherein in situ generated H2 serves as electron donor powering biotransformations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Characterization of biomasses available in the region of North-East India for production of biofuels

    International Nuclear Information System (INIS)

    Sasmal, Soumya; Goud, Vaibhav V.; Mohanty, Kaustubha

    2012-01-01

    The lignocellulosic materials are cheap and readily available either in the form of agricultural waste or forest residues. These materials can be used as a source for energy production either in the gaseous form (CO, H 2 etc) or in liquid form (ethanol, butanol etc) to meet the rising demand of energy. The reign of lignocellulosic materials for energy production is a proven fact in this era of energy research. The present study focuses on characterization of three biomass samples namely areca nut husk (Areca catheu), moj (Albizia lucida) and bonbogori (Ziziphus rugosa), available in the region of North-East India. Physical and chemical analysis of these lignocellulosic biomass samples were performed using X-ray diffraction techniques, thermogravimetric analysis, FTIR, Raman spectroscopy and CHNSO analysis. Maximum crystalinity was observed in areca nut husk fiber (63.84%) followed by moj (46.43%) and bonbogori (42.46%). The calorific values of all the biomasses were found within the range of 17 MJ/kg to 22 MJ/kg. All these properties combined together per se shows that areca nut husk, bonbogori and moj are potential sources for biofuel production. -- Highlights: ► Non-conventional biomasses were considered in this study. ► Complete characterization of these biomasses are reported. ► Maximum crystalinity was observed in areca nut husk fiber followed by moj and bonbogori. ► Results confirmed that these biomasses can be utilized for biofuel production.

  10. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    Science.gov (United States)

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  11. Biomass upgrading by torrefaction for the production of biofuels: A review

    International Nuclear Information System (INIS)

    Stelt, M.J.C. van der; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J.

    2011-01-01

    An overview of the research on biomass upgrading by torrefaction for the production of biofuels is presented. Torrefaction is a thermal conversion method of biomass in the low temperature range of 200-300 o C. Biomass is pre-treated to produce a high quality solid biofuel that can be used for combustion and gasification. In this review the characteristics of torrefaction are described and a short history of torrefaction is given. Torrefaction is based on the removal of oxygen from biomass which aims to produce a fuel with increased energy density by decomposing the reactive hemicellulose fraction. Different reaction conditions (temperature, inert gas, reaction time) and biomass resources lead to various solid, liquid and gaseous products. A short overview of the different mass and energy balances is presented. Finally, the technology options and the most promising torrefaction applications and their economic potential are described. -- Highlights: → We reviewed recent developments in biomass upgrading by torrefaction. → Torrefaction improves biomass to a high quality solid fuel. → Main advantages of torrefaction are improvement of energy density and grindability. → Further research on kinetics is recommended for design of torrefaction reactor.

  12. Woody biomass production in a spray irrigation wastewater treatment facility in North Carolina

    International Nuclear Information System (INIS)

    Frederick, D.; Lea, R.; Milosh, R.

    1993-01-01

    Application of municipal wastewater to deciduous tree plantations offers a viable opportunity to dispose of nutrients and pollutants, while protecting water quality. Production of woody biomass for energy or pulp mill furnish, using wastewater if feasible and markets exist in may parts of the world for this biomass. Plantations of sycamore (Platanus occidentalis L.), and sweetgum (Liquidambar styraciflua L.), have been established in Edenton, North Carolina for application of municipal wastewater. Research describing the dry weight biomass following the fifth year of seedling growth is presented along with future estimates for seedling and coppice yields. Ongoing and future work for estimating nutrient assimilation and wastewater renovation are described and discussed

  13. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    production between each soil were significant for Western Wheatgrass and Alfafla. The Sheridan sandy loam soil resulted in the highest production for western wheatgrass and alfalfa while the X-ranch sandy loam had the lowest production rate for both plants. Plant production levels resulting from untreated CBNG produced water were significantly higher compared to untreated conventional oil and gas produced water. However, few differences were found between water treatments. The biomass produced from the greenhouse study was analyzed for elemental composition and for forage value. Elemental composition indentified several interesting findings. Some of the biomass was characterized with seemly high boron and sodium levels. High levels of boron found in some of the biomass was unexpected and may indicate that alfalfa and western wheatgrass plants may have been impacted by either soil or irrigation water containing high boron levels. Plants irrigated with water treated using EDR technology appeared to contain higher levels of boron with increased levels of treatment. Forage evaluations were conducted using near infrared reflectance spectroscopy. The data collected show small differences, generally less than 10%, between produced water treatments including the no treatment and 100% treatment conditions for each plant species studied. The forage value of alfalfa and western wheatgrass did not show significant tendencies dependent on soil, the amount of produced water treatment, or treatment technology.

  14. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  15. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis.

    Science.gov (United States)

    Li, Yong; Niu, Shuli; Yu, Guirui

    2016-02-01

    Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta-analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta-analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P-induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future. © 2015 John Wiley & Sons Ltd.

  16. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Pathak, T.S.; Srivastava, R.; Singh, A.C.

    2016-01-01

    Catalytic co-pyrolysis of biomass and plastics (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) has been performed in a fixed-bed reactor in presence of cobalt based alumina, ceria and ceria-alumina catalysts to analyze the product distribution and selectivity. Catalysts are synthesized using co-precipitation method and characterized by BET (Brunauer–Emmett–Teller) surface area and XRD analysis. The effect of catalytic co-pyrolysis at different temperature with product distribution has been evaluated. The results have clearly shown the synergistic effect between biomass and plastics, the liquid products gradually increases forming with rise in the plastic content in the blend. Gaseous products have yielded most during pyrolysis of blend having biomass/plastics ratio of 5:1 with the presence of 40% Co/30% CeO_2/30% Al_2O_3 catalyst with hydrogen gas production touched its peak of 47 vol%. Catalytic performance enhanced with increase with the cobalt loading, with best performance attributing to 40% Co/30% CeO_2/30% Al_2O_3 catalyst. - Highlights: • Catalytic co-pyrolysis of biomass and plastics (HDPE, PP & PET) blends in fixed-bed reactor. • Strong synergistic effect evident between biomass and plastics. • Solid residue diminished with application of catalysts. • Aromatics and olefins production increases with higher plastic content. • More hydrogen production with application of catalysts with higher cobalt content.

  17. Methods to measure biomass and production of bacteria and photosynthetic microbiota and their application on illuminated lake sediments. A literature study

    International Nuclear Information System (INIS)

    Nilsson, Eva

    2001-06-01

    -production method, the O 2 -microelectrodes method, the changes in dissolved inorganic carbon method, and the photosynthetic parameters method. Studies on illuminated lake bottom habitats indicate that biomass and production of benthic heterotrophic bacteria is higher than the biomass and production of pelagic heterotrophic bacteria. Also, the biomass and production of benthic photosynthesising microorganism may be higher than the biomass and production of phytoplankton. Therefore it is important to study benthic as well as pelagic microorgansims when studying lake ecosystems

  18. Methods to measure biomass and production of bacteria and photosynthetic microbiota and their application on illuminated lake sediments. A literature study

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Eva [Uppsala Univ. (Sweden). Dept. of Limnology

    2001-06-01

    }-incorporation method, the O{sub 2}-production method, the O{sub 2}-microelectrodes method, the changes in dissolved inorganic carbon method, and the photosynthetic parameters method. Studies on illuminated lake bottom habitats indicate that biomass and production of benthic heterotrophic bacteria is higher than the biomass and production of pelagic heterotrophic bacteria. Also, the biomass and production of benthic photosynthesising microorganism may be higher than the biomass and production of phytoplankton. Therefore it is important to study benthic as well as pelagic microorgansims when studying lake ecosystems.

  19. Assessment of suitability of tree species for the production of biomass on trace element contaminated soils

    International Nuclear Information System (INIS)

    Evangelou, Michael W.H.; Deram, Annabelle; Gogos, Alexander; Studer, Björn; Schulin, Rainer

    2012-01-01

    Highlights: ► Birch: lowest metal concentrations in foliage, wood and bark. ► Bark proportion does not have to decline with increasing age of tree. ► Long harvest rotation (>25 y) reduces metal concentrations in stem. ► Birch: most suitable tree for BCL. - Abstract: To alleviate the demand on fertile agricultural land for production of bioenergy, we investigated the possibility of producing biomass for bioenergy on trace element (TE) contaminated land. Soil samples and plant tissues (leaves, wood and bark) of adult willow (Salix sp.), poplar (Populus sp.), and birch (Betula pendula) trees were collected from five contaminated sites in France and Germany and analysed for Zn, Cd, Pb, Cu, Ca, and K. Cadmium concentration in tree leaves were correlated with tree species, whereas Zn concentration in leaves was site correlated. Birch revealed significantly lower leaf Cd concentrations (1.2–8.9 mg kg −1 ) than willow and poplar (5–80 mg kg −1 ), thus posing the lowest risk for TE contamination of surrounding areas. Birch displayed the lowest bark concentrations for Ca (2300–6200 mg kg −1 ) and K (320–1250 mg kg −1 ), indicating that it would be the most suitable tree species for fuel production, as high concentrations of K and Ca decrease the ash melting point which results in a reduced plant lifetime. Due to higher TE concentrations in bark compared to wood a small bark proportion in relation to the trunk is desirable. In general the bark proportion was reduced with the tree age. In summary, birch was amongst the investigated species the most suitable for biomass production on TE contaminated land.

  20. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    OpenAIRE

    Soons, Z.I.T.A.; IJssel, van den, J.; Pol, van der, L.A.; Straten, van, G.; Boxtel, van, A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst ...

  1. Production of bio-oil from underutilized forest biomass using an auger reactor

    Science.gov (United States)

    H. Ravindran; S. Thangalzhy-Gopakumar; S. Adhikari; O. Fasina; M. Tu; B. Via; E. Carter; S. Taylor

    2015-01-01

    Conversion of underutilized forest biomass to bio-oil could be a niche market for energy production. In this work, bio-oil was produced from underutilized forest biomass at selected temperatures between 425–500°C using an auger reactor. Physical properties of bio-oil, such as pH, density, heating value, ash, and water, were analyzed and compared with an ASTM standard...

  2. Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production

    International Nuclear Information System (INIS)

    Lam, Man Kee; Lee, Keat Teong

    2014-01-01

    Highlights: • A new sequential baffled photobioreactor was developed to cultivate microalgae. • Organic fertilizer was used as the main nutrients source. • Negative energy balance was observed in producing microalgae biodiesel. - Abstract: Pilot-scale cultivation of Chlorella vulgaris in a 100 L sequential baffled photobioreactor was carried out in the present study. The highest biomass yield attained under indoor and outdoor environment was 0.52 g/L and 0.28 g/L, respectively. Although low microalgae biomass yield was attained under outdoor cultivation, however, the overall life cycle energy efficiency ratio was 3.3 times higher than the indoor cultivation. In addition, negative energy balance was observed in producing microalgae biodiesel under both indoor and outdoor cultivation. The minimum production cost of microalgae biodiesel was about RM 237/L (or USD 73.5/L), which was exceptionally high compared to the current petrol diesel price in Malaysia (RM 3.6/L or USD 1.1/L). On the other hand, the estimated production cost of dried microalgae biomass cultivated under outdoor environment was RM 46/kg (or USD 14.3/kg), which was lower than cultivation using chemical fertilizer (RM 111/kg or USD 34.4/kg) and current market price of Chlorella biomass (RM 145/kg or USD 45/kg)

  3. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2015-03-01

    Full Text Available We linked state-and-transition simulation models (STSMs with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  4. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  5. Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production

    International Nuclear Information System (INIS)

    Dasgupta, Chitralekha Nag; Suseela, M.R.; Mandotra, S.K.; Kumar, Pankaj; Pandey, Manish K.; Toppo, Kiran; Lone, J.A.

    2015-01-01

    Highlights: • Chlorella sp. NBRI029 and Scenedesmus sp. NBRI012 shows high biomass productivity. • Scenedesmus sp. NBRI012 shows maximum H 2 evolution in 6th day of fermentation. • Residual biomass after H 2 production contains high lipid content. • Lipid extracted from the residual biomass fulfills various biodiesel properties. - Abstract: Dual application of biomass for biohydrogen and biodiesel production could be considered a feasible option for economic and sustainable energy production from microalgae. In this study, after a large screening of fresh water microalgal isolates, Scenedesmus sp. NBRI012 and Chlorella sp. NBRI029 have exhibited high biomass (1.31 ± 0.11 and 2.62 ± 0.13 g/L respectively) and lipid (244.44 ± 12.3 and 587.38 ± 20.2 mg/L respectively) yield with an organic carbon (acetate) source. Scenedesmus sp. NBRI012 has shown the highest H 2 (maximum evolution of 17.72% v/v H 2 of total gases) production; it produced H 2 continuously for seven days in sulfur-deprived TAP media. Sulfur deprivation during the H 2 production was found to increase the lipid content (410.03 ± 18.5 mg/L) of the residual biomass. Fatty acid profile of the lipid extracted from the residual biomass of Scenedesmus sp. NBRI012 has showed abundance of fatty acids with a carbon chain length of C16 and C18. Cetane number, iodine value, and saponification value of biodiesel were found suitable according to the range given by the Indian standard (IS 15607), Brazilian National Petroleum Agency (ANP255) and the European biodiesel standard EN14214

  6. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW{sub th}) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW{sub th}) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are

  7. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    International Nuclear Information System (INIS)

    Wilen, C.; Kurkela, E.

    1997-01-01

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW th ) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW th ) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are the main

  8. BioRefine. New biomass products programme 2007-2012. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, T. (ed.) [VTT Technical Research Centre of Finland, Espoo (Finland); Alakangas, E.; Holviala, N. (eds.) [VTT Technical Research Centre of Finland, Jyvaskyla (Finland)

    2012-07-01

    The focal areas of the BioRefine programme have been business development, raw materials, and product lines. The key issue in the programme has been the development of business opportunities. The other two programme areas - raw materials and product lines, including technologies and services - have always been viewed from the perspective of short, medium or long-term business activities.The programme has organised four calls for research projects. The focus of the first call was on biomass-based fuels for transport (in the autumn 2007), the second one focused on other biomass-based products like chemicals and materials (in the spring 2008), and the third one on new biomass sources and waste-based biomass, and research supporting the business development of SME companies (early in 2010). In the last call in the spring 2011, project proposals were expected to focus on the following areas: new innovative and multidisciplinary research initiatives related to biomass utilisation, small distributed biorefinery concepts, efficient and sustainable utilisation of biomass raw materials in new integrated solutions for biorefining, and new integrated solutions for the efficient utilisation of sidestreams in the biorefining value chain or in its parts. Unlike research organizations, companies have been able to apply for funding continuously from Tekes.

  9. Coupled production in biorefineries--combined use of biomass as a source of energy, fuels and materials.

    Science.gov (United States)

    Lyko, Hildegard; Deerberg, Görge; Weidner, Eckhard

    2009-06-01

    In spite of high prices for fossil raw materials the production of biomass-based products is rarely economically successful today. Depending on the location feedstock prices are currently so high that products from renewable resources are not marketable when produced in existing process chains. Apart from the higher feedstock costs one reason is that at present no optimized production systems exist in contrast to the chemical and petrochemical industry where these systems have been established over the last decades. If we succeed in developing production systems modelled on those of petroleum refineries where we can provide a flexible coupled production of energy, fuels, materials and chemicals chances are good to enable a lastingly successful production on the basis of renewable resources. Based on examples of fat-based and sugar-based concepts ideas for platform oriented biorefineries are outlined.

  10. Potential and impacts of renewable energy production from agricultural biomass in Canada

    International Nuclear Information System (INIS)

    Liu, Tingting; McConkey, Brian; Huffman, Ted; Smith, Stephen; MacGregor, Bob; Yemshanov, Denys; Kulshreshtha, Suren

    2014-01-01

    Highlights: • This study quantifies the bioenergy production potential in the Canadian agricultural sector. • Two presented scenarios included the mix of market and non-market policy targets and the market-only drivers. • The scenario that used mix of market and policy drivers had the largest impact on the production of bioenergy. • The production of biomass-based ethanol and electricity could cause moderate land use changes up to 0.32 Mha. • Overall, agricultural sector has a considerable potential to generate renewable energy from biomass. - Abstract: Agriculture has the potential to supply considerable amounts of biomass for renewable energy production from dedicated energy crops as well as from crop residues of existing production. Bioenergy production can contribute to the reduction of greenhouse gas (GHG) emissions by using ethanol and biodiesel to displace petroleum-based fuels and through direct burning of biomass to offset coal use for generating electricity. We used the Canadian Economic and Emissions Model for Agriculture to estimate the potential for renewable energy production from biomass, the impacts on agricultural production, land use change and greenhouse gas emissions. We explored two scenarios: the first considers a combination of market incentives and policy mandates (crude oil price of $120 bbl −1 ; carbon offset price of $50 Mg −1 CO 2 equivalent and policy targets of a substitution of 20% of gasoline by biomass-based ethanol; 8% of petroleum diesel by biodiesel and 20% of coal-based electricity by direct biomass combustion), and a second scenario considers only carbon offset market incentives priced at $50 Mg −1 CO 2 equivalent. The results show that under the combination of market incentives and policy mandates scenario, the production of biomass-based ethanol and electricity increases considerably and could potentially cause substantial changes in land use practices. Overall, agriculture has considerable potential to

  11. Characterization of residual biomass from the Arequipa region for the production of biofuels

    Directory of Open Access Journals (Sweden)

    María Laura Stronguiló Leturia

    2015-12-01

    Full Text Available The aim of this work is to select residual biomass from the Arequipa Region for the production of biofuels (biodiesel, bioethanol and biogas. In each case, the initial point is a matrix based on products with residual biomass available in the region, from the agricultural and livestock sectors, information that was obtained from the regional Management of Agriculture web site. Specific factors of the resudue that will be used as raw material for each biofuel production would be considered for the selection process. For the production of biodiesel it is necessary to start from the oil extracted from oilseeds. Regarding obtaining bioethanol, it requires that the residual biomass has high percent of cellulose. With regard to the generation of biogas, we will use animal droppings. Finally, the raw materials selected are: squash and avocado seeds for biodiesel, rice chaff and deseeded corncob for bioethanol and cow and sheep droppings for biogas

  12. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass

    International Nuclear Information System (INIS)

    Andersson, E.; Harvey, S.

    2007-01-01

    When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO 2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO 2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO 2 -lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO 2 emissions' perspective, whereas with high CO 2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable. (author)

  13. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  14. Eutrophication effects on phytoplankton size-fractioned biomass and production at a tropical estuary.

    Science.gov (United States)

    Guenther, Mariana; Araújo, Moacyr; Flores-Montes, Manuel; Gonzalez-Rodriguez, Eliane; Neumann-Leitão, Sigrid

    2015-02-28

    Size-fractioned phytoplankton (pico, nano and microplankton) biomass and production were estimated throughout a year at Recife harbor (NE Brazil), a shallow well mixed tropical hypereutrophic estuary with short residence times but restricted water renewal. Intense loads of P-PO4 (maximum 14 μM) resulted in low N:P ratios (around 2:1), high phytoplankton biomass (B=7.1-72 μg chl-a L(-1)), production (PP=10-2657 μg C L(-1) h(-1)) and photosynthetic efficiency (P(B)=0.5-45 μg C μg chl-a(-1)), but no oxygen depletion (average O2 saturation: 109.6%). Nanoplankton dominated phytoplankton biomass (66%) but micro- and nanoplankton performed equivalent primary production rates (47% each). Production-biomass models indicate an export of the exceeding microplankton biomass during most of the year, possibly through grazing. The intense and constant nutrient and organic matter loading at Recife harbor is thus supporting the high microplankton productivity that is not accumulating on the system nor contributing to oxygen depletion, but supporting the whole system's trophic web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Woody biomass production lags stem-girth increase by over one month in coniferous forests.

    Science.gov (United States)

    Cuny, Henri E; Rathgeber, Cyrille B K; Frank, David; Fonti, Patrick; Mäkinen, Harri; Prislan, Peter; Rossi, Sergio; Del Castillo, Edurne Martinez; Campelo, Filipe; Vavrčík, Hanuš; Camarero, Jesus Julio; Bryukhanova, Marina V; Jyske, Tuula; Gričar, Jožica; Gryc, Vladimír; De Luis, Martin; Vieira, Joana; Čufar, Katarina; Kirdyanov, Alexander V; Oberhuber, Walter; Treml, Vaclav; Huang, Jian-Guo; Li, Xiaoxia; Swidrak, Irene; Deslauriers, Annie; Liang, Eryuan; Nöjd, Pekka; Gruber, Andreas; Nabais, Cristina; Morin, Hubert; Krause, Cornelia; King, Gregory; Fournier, Meriem

    2015-10-26

    Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.

  16. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  17. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia1[OPEN

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Salazar, Octavio; Fedoroff, Nina

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5′-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia. PMID:28743765

  18. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia.

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina; Sagi, Moshe

    2017-09-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia : the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H 2 S, NH 3 , and pyruvate. The major function of O -acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H 2 S. This activity was significantly higher in Sarcocornia than in Salicornia , especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia . © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Research Productivity and Its Policy Implications in Higher Education Institutions

    Science.gov (United States)

    Quimbo, Maria Ana T.; Sulabo, Evangeline C.

    2014-01-01

    Responding to the Commission on Higher Education's development plan of enhancing research culture among higher education institutions, this study was conducted to analyze the research productivity of selected higher education institutions. It covered five state universities in the Philippines where a total of 377 randomly selected faculty members…

  20. Identifying key drivers of greenhouse gas emissions from biomass feedstocks for energy production

    International Nuclear Information System (INIS)

    Johnson, David R.; Curtright, Aimee E.; Willis, Henry H.

    2013-01-01

    Highlights: • Production emissions dominate transportation and processing emissions. • Choice of feedstock, geographic location and prior land use drive emissions profile. • Within scenarios, emissions variability is driven by uncertainty in yields. • Favorable scenarios maximize carbon storage from direct land-use change. • Similarly, biomass production should attempt to minimize indirect land-use change. -- Abstract: Many policies in the United States, at both the federal and state levels, encourage the adoption of renewable energy from biomass. Though largely motivated by a desire to reduce greenhouse gas emissions, these policies do not explicitly identify scenarios in which the use of biomass will produce the greatest benefits. We have modeled “farm-to-hopper” emissions associated with seven biomass feedstocks, under a wide variety of scenarios and production choices, to characterize the uncertainty in emissions. We demonstrate that only a handful of factors have a significant impact on life cycle emissions: choice of feedstock, geographic location, prior land use, and time dynamics. Within a given production scenario, the remaining variability in emissions is driven by uncertainty in feedstock yields and the release rate of N 2 O into the atmosphere from nitrogen fertilizers. With few exceptions, transport and processing choices have relatively little impact on total emissions. These results illustrate the key decisions that will determine the success of biomass programs in reducing the emissions profile of energy production, and our publicly available model provides a useful tool for identifying the most beneficial production scenarios. While model data and results are restricted to biomass production in the contiguous United States, we provide qualitative guidance for identifying favorable production scenarios that should be applicable in other regions

  1. Biomass production and nitrogen accumulation in pea, oat, and vetch green manure mixtures

    International Nuclear Information System (INIS)

    Jannink, J.L.; Liebman, M.; Merrick, L.C.

    1996-01-01

    Interest in the use of green manures has revived because of their role in improving soil quality and their beneficial N and non-N rotation effects. This study evaluated biomass production, N content, radiation interception (RI), and radiation use efficiency (RUE) of pea (Pisum sativum L.), oat (Avena sativa L.), and hairy vetch (Vicia villosa Roth) mixtures. Treatments were a three-way factorial of pea genotype ('Century' vs 'Tipu'), pea planting density (90 vs 224 kg ha -1 ), and cropping mixture (solecropped pea vs pea planted with a mixture of oat and hairy vetch). A mixture of oat and vetch without pea was also planted. Treatments were planted in early June on a Caribou gravelly loam (coarse-loamy, mixed, frigid Typic Haplorthods) in Presque Isle, ME, in 1993 and 1994. Biomass production and radiation interception were measured by repeated sampling. Mixture biomass was affected by a year x pea density interaction: respective yields for mixtures containing low-density and high-density pea were 770 and 880 g m -2 in 1993 vs 820 and 730 g m -2 in 1994. Mixture N content paralleled biomass production and averaged 209 g m -2 across all treatments. While pea sole crops did not consistently produce biomass or N equal to three-species mixtures the two-species mixture of oat and vetch did, yielding 820 g m -2 of biomass and 21.7 g m -2 of N, averaged over the 2 yr. Multiple regression showed that 61% of the variability in mixture biomass production was accounted for by a combination of early-season pea RI and midseason total mixture RUE. Economic analyses showed that rotation including these green manures may be economically competitive with a conventional rotation of barley (Hordeum vulgare L.) undersown with clover (Trifolium spp.) in a potato (Solanum tuberosum L.) production system

  2. Wastewater sludge fertilization: Biomass productivity and heavy metal bioaccumulation in two Salix species grown in southern Quebec (Canada)

    International Nuclear Information System (INIS)

    Teodorescu, T.I.; Labrecque, M.; Daigle, S.; Poisson, G.

    1993-01-01

    More than other kind of trees, fast growing tree species, such as willows, can profit from sludge application. While sludges are good fertilizers, they may also contain heavy metals which could reduce productivity and cause risks to the environment. The main aims of the present research were to study: (1) the production capacity of Salix discolor and Salix viminalis when supplied with various amounts of dried and pelleted sludge; (2) the uptake, and accumulation of heavy metals. Unrooted cuttings were planted on sandy soil in large plastic pots and grown in outdoors for 20-week period. Five doses of sludge were applied: equivalent of 200 (T1), 160 (T2), 120 (T3), 80 (T4) and 40 (T5) kg N per ha. Trees which received the largest amount of sludge showed the best growth results. The stem-branch biomass was significantly higher for Salix viminalis. The relationship between the total yield biomass Y (t/ha) and the rate of fertilization X (kg N/ha) is linear. The regression equations of prediction biomass production were established as following: Salix discolor Y = 1.807 + 0.037X and Salix viminalis Y = 2.578 + 0.042X. For both species, greatest stems-branch biomass per gram of N applied were produced by treatments 1 and 2. The amount of nitrogen per leaf area (N/LA) and per leaf dry weight (N/LW), were higher for Salix viminalis which leads us believe that its photosynthetic activity was better. The transfer coefficient did not vary between the species but was significantly different for Cd and Zn. The plants were able to absorb Cd and Zn but less of Ni, Hg and Cu and Pb. It was concluded that the dried and pelleted sludge can be a good fertilizer. The treatment is beneficial when Salix discolor and particulary Salix viminalis are used as vegetation filters for wastewater sludge purification and production purposes

  3. Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations.

    Science.gov (United States)

    Carbone, Dora Allegra; Olivieri, Giuseppe; Pollio, Antonino; Gabriele; Melkonian, Michael

    2017-12-01

    Scenedesmus is a genus of microalgae employed for several industrial uses. Industrial cultivations are performed in open ponds or in closed photobioreactors (PBRs). In the last years, a novel type of PBR based on immobilized microalgae has been developed termed porous substrate photobioreactors (PSBR) to achieve significant higher biomass density during cultivation in comparison to classical PBRs. This work presents a study of the growth of Scenedesmus vacuolatus in a Twin Layer System PSBR at different light intensities (600 μmol photons m -2  s -1 or 1000 μmol photons m -2  s -1 ), different types and concentrations of the nitrogen sources (nitrate or urea), and at two CO 2 levels in the gas phase (2% or 0.04% v/v). The microalgal growth was followed by monitoring the attached biomass density as dry weight, the specific growth rate and pigment accumulation. The highest productivity (29 g m -2 d -1 ) was observed at a light intensity of 600 μmol photons m -2  s -1 and 2% CO 2 . The types and concentrations of nitrogen sources did not influence the biomass productivity. Instead, the higher light intensity of 1000 μmol photons m -2  s -1 and an ambient CO 2 concentration (0.04%) resulted in a significant decrease of productivity to 18 and 10-12 g m -2 d -1 , respectively. When compared to the performance of similar cultivation systems (15-30 g m -2 d -1 ), these results indicate that the Twin Layer cultivation System is a competitive technique for intensified microalgal cultivation in terms of productivity and, at the same time, biomass density.

  4. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.

    Science.gov (United States)

    Luangpipat, Tiyaporn; Chisti, Yusuf

    2017-09-10

    Five nominally freshwater microalgae (Chlorella vulgaris, Choricystis minor, Neochloris sp., Pseudococcomyxa simplex, Scenedesmus sp.) with a known ability to produce high-levels of lipids for possible use as fuel oils were evaluated for their ability to thrive and produce lipids in seawater and brackish water. Only C. vulgaris was found to thrive and produce lipids in full strength seawater. Seawater tolerant strains of C. vulgaris are unusual. Lipid productivity in nutrient sufficient seawater exceeded 37mgL -1 d -1 and was nearly 2-fold greater than in freshwater. Although other microalgae such as C. minor had higher lipid productivities (e.g. 45mgL -1 d -1 ), they did not thrive in seawater. The lipid content of the C. vulgaris biomass was nearly 16% by dry weight. The calorific value of the seawater-grown C. vulgaris biomass exceeded 25kJg -1 . Compared to continuously illuminated cultures, a 12/12h light-dark cycle reduced lipid productivity of C. vulgaris by ∼30%, but did not affect the lipid content of the biomass. Biomass yield on phosphate was nearly 27% higher in seawater compared to in freshwater. While C. vulgaris has been extensively studied in freshwater, it has not been examined to any detail in full strength seawater. Studies in seawater are essential for any future large scale production of algal oils for biofuels: seawater is available cheaply and in large amounts whereas there is a global shortage of freshwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    Science.gov (United States)

    Xiao, Li

    ), fast growing energy crops (switchgrass), and popular forage crop (alfalfa), as well as biochar derived from those materials and their mixtures. It demonstrated that Py-MBMS coupled with MVA could be used as fast analytical tools for the study of not only biomass composition but also its thermal decomposition behaviors. It found that the impact of biomass composition heavily depends on the thermal decomposition temperature because at different temperature, the composition of biomass decomposed and the impact of minerals on the decomposition reaction varies. At low temperature (200-500°C), organic compounds attribute to the majority of variation in thermal decomposition products. At higher temperature, inorganics dramatically changed the pyrolysis pathway of carbohydrates and possibly lignin. In gasification, gasification tar formation is also observed to be impacted by ash content in vapor and char. In real reactor, biochar structure also has interactions with other fractions to make the final pyrolysis and gasification product. Based on the evaluation of process efficiencies during torrefaction, temperature ranging from 275°C to 300°C with short residence time (gas product using 700°C as primary pyrolysis temperature. In addition, pyrolysis char is found to produce less tar and more gas during steam gasification compared with gasification of pyrolysis vapor. Thus it is suggested that torrefaction might be an efficient pretreatment for biomass gasification because it can largely improve the yield of pyrolysis char during the primary pyrolysis step of gasification thus reduce the total tar of the overall gasification products. Future work is suggested in the end.

  6. Fresh pasta production enriched with Spirulina platensis biomass

    Directory of Open Access Journals (Sweden)

    Ailton Cesar Lemes

    2012-10-01

    Full Text Available The aim of this work was to study the enrichment of Spirulina platensis in wheat flour to prepare fresh pasta to evaluate the green color and nutritional enrichment in addition to functional properties due to the presence of the bioactive compounds in the cyanobacterium. The pastas were evaluated for the centesimal composition, microbiological contamination, sensorial acceptance and technological characteristics such as cooking time, water absorption, volume displacement and loss of solids. The superior protein contents and the satisfactory technological and sensorial attributes compared with the control with no cyanobacterium showed the usefulness of incorporating S. platensis biomass in the fresh pastas. The microbiological quality was in compliance with the legislation in force. The sensorial quality was considered satisfactory (“liked very much” and purchase intention high (“probably would buy”.

  7. Treatment of wastes from biomass used in electricity production

    International Nuclear Information System (INIS)

    Guillemes Peira, Ángel

    2015-01-01

    The main objective of this study is to find an approach for the treatment of toxic waste condensates obtained during the generation of electricity from biomass that would transform them into wastewater. Two experimental conditions have been performed using a reactor. During the first condition, potentials were applied without following a defined path to electrically calibrate the system by observing responses. In the second experimental condition and based on these previous electrical observations, the potentials were applied. This technical approach has proven suitable for condensate treatment. However, given the aggressiveness of the residue, it is necessary to use a reactor which allows reaching and maintaining the necessary electro-oxidation potential and to combine it with an electrocoagulation reactor. (author)

  8. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  9. Low cost production of perdeuterated biomass using methylotrophic yeasts

    International Nuclear Information System (INIS)

    Haon, S.; Auge, S.; Tropis, M.; Milon, A.; Lindley, N.D.

    1993-01-01

    Three strains of methylotropic yeasts, Candida boidinii, Pichia angusta (previously Hansenula polymorpha) and Pichia pastoris, were studied for their capacity to grow on methanol in deuterated media. Growth rates, determined relative to the extent of deuteration of water and/or methanol, showed that water deuteration was the major limiting factor. After adaptation to deuterium by progressive transfer through media of increasing deuteration, growth rates were diminished relative to those obtained on hydrogenated media of identical salts composition: the two Pichia species retained the highest growth rates in the full deuterated medium. Perdeuterated biomass (16 g) was obtained in a 1 liter fed-batch fermentation and the extent of deuteration of isolated ergosterol has been shown to be 97.5% by mass spectrometric analysis. (Author)

  10. Bio-oil production from biomass via supercritical fluid extraction

    International Nuclear Information System (INIS)

    Durak, Halil

    2016-01-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  11. Biomass production and composition of temperate and tropical maize in central Iowa

    Science.gov (United States)

    Bioethanol production in the Midwestern U.S. has largely focused on corn (Zea mays L.) grain for starch-based ethanol production. There has been growing interest in lignocellulosic biomass as a feedstock for biofuels. Because corn adapted to the tropics does not initiate senescence as early as ada...

  12. Increasing production yield of tyrosine and mevalonate through inhibition of biomass formation

    DEFF Research Database (Denmark)

    Li, Songyuan; Jendresen, Christian Bille; Nielsen, Alex Toftgaard

    2016-01-01

    , in particular, resulted in an increase in mass yield of mevalonate and tyrosine by 80% and 50%, respectively. By tracking production and biomass concentrations, it was observed that the production was maintained for more than 10 h after inhibition of cell growth, despite cell maintenance requirements...

  13. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor

    NARCIS (Netherlands)

    Tuantet, K.; Temmink, B.G.; Zeeman, G.; Janssen, M.G.J.; Wijffels, R.H.; Buisman, C.J.N.

    2014-01-01

    Due to the high nitrogen and phosphorus content, source-separated urine can serve as a major nutrient source for microalgae production. The aim of this study was to evaluate the nutrient removal rate and the biomass production rate of Chlorella sorokiniana being grown continuously in urine employing

  14. A management guide for planting and production of switchgrass as a biomass crop in Europe

    NARCIS (Netherlands)

    Elbersen, H.W.; Christian, D.G.; Bassam, N.E.; Sauerbeck, G.; Alexopoulou, E.; Sharma, N.; Piscioneri, I.

    2004-01-01

    Switchgrass is a perennial C4 grass native to North America, where it occurs naturally from 55º N latitude to deep into Mexico. It is used for soil conservation, forage production, as an ornamental grass and more recently as a biomass crop for ethanol, fibre, electricity and heat production. As

  15. Utilisation of biomass gasification by-products for onsite energy production.

    Science.gov (United States)

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency. © The Author(s) 2016.

  16. Production of anti-streptococcal liamocins from agricultural biomass by Aureobasidium pullulans.

    Science.gov (United States)

    Leathers, Timothy D; Price, Neil P J; Manitchotpisit, Pennapa; Bischoff, Kenneth M

    2016-12-01

    Liamocins are unique heavier-than-water "oils" produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phylogenetic clades 8, 9, and 11, cultured on medium containing sucrose. In this study, 27 strains from these clades were examined for the first time for production of liamocins from agricultural biomass substrates. Liamocin yields were highest from strains in phylogenetic clade 11, and yields were higher from cultures grown on sucrose than from those grown on pretreated wheat straw. However, when supplementary enzymes (cellulase, β-glucosidase, and xylanase) were added, liamocin production on pretreated wheat straw was equivalent to that on sucrose. Liamocins produced from wheat straw were free of the melanin contamination common in sucrose-grown cultures. Furthermore, MALDI-TOF MS analysis showed that liamocins produced from wheat straw were under-acetylated, resulting in higher proportions of the mannitol A1 and B1 species of liamocin, the latter of which has the highest biological activity against Streptococcus sp.

  17. Alcohol, biomass energy: technological and economical aspects of production

    International Nuclear Information System (INIS)

    Ometto, Joao Guilherme Sabino

    1993-01-01

    This paper presents some technological and economical aspects of sugar cane and alcohol production in Brazil since 1975 until nowadays. The evolution of their production is analysed and the relationship between cost-benefit and ethanol consumption is discussed

  18. Production Of Bio fuel Starter From Biomass Waste Using Rocking Kiln Fluidized Bed System

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Zulkafli Ghazali; Mohd Zaid Mohamed; Phongsakorn, P.T.; Mohamad Puad Abu

    2014-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic in 2010, Malaysia produced 40 million tones per year of biomass of which 30 million tones of biomass originated from the oil palm industries. The biomass waste such as palm kernel shell can be used to produce activated carbon and bio fuel starter. A new type of rotary kiln, called Rocking Kiln Fluidized Bed (RKFB) was developed in Nuclear Malaysia to utilize the large amount of the biomass to produce high value added products. This system is capable to process biomass with complete combustion to produce bio fuel starter. With this system, the produced charcoal has calorific value, 33MJ/ kg that is better than bituminous coal with calorific value, 25-30 MJ/ kg. In this research, the charcoals produced were further used to produce the bio fuel starter. This paper will elaborate the experimental set-up of the Rocking Kiln Fluidized Bed (RKFB) for bio fuel starter production and the quality of the produced bio fuel starter. (author)

  19. Yeast biomass production: a new approach in glucose-limited feeding strategy

    Directory of Open Access Journals (Sweden)

    Érika Durão Vieira

    2013-01-01

    Full Text Available The aim of this work was to implement experimentally a simple glucose-limited feeding strategy for yeast biomass production in a bubble column reactor based on a spreadsheet simulator suitable for industrial application. In biomass production process using Saccharomyces cerevisiae strains, one of the constraints is the strong tendency of these species to metabolize sugars anaerobically due to catabolite repression, leading to low values of biomass yield on substrate. The usual strategy to control this metabolic tendency is the use of a fed-batch process in which where the sugar source is fed incrementally and total sugar concentration in broth is maintained below a determined value. The simulator presented in this work was developed to control molasses feeding on the basis of a simple theoretical model in which has taken into account the nutritional growth needs of yeast cell and two input data: the theoretical specific growth rate and initial cell biomass. In experimental assay, a commercial baker's yeast strain and molasses as sugar source were used. Experimental results showed an overall biomass yield on substrate of 0.33, a biomass increase of 6.4 fold and a specific growth rate of 0.165 h-1 in contrast to the predicted value of 0.180 h-1 in the second stage simulation.

  20. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis

    International Nuclear Information System (INIS)

    Phan, Binh M.Q.; Duong, Long T.; Nguyen, Viet D.; Tran, Trong B.; Nguyen, My H.H.; Nguyen, Luong H.; Nguyen, Duc A.; Luu, Loc C.

    2014-01-01

    Agricultural activities in Vietnam generate about 62 million tonnes of biomass (rice straw, rice husk, bagasse, corn cob, corn stover, etc.) annually. In this work, four different types of biomass from Vietnam, namely rice straw, rice husk, factory bagasse, and corn cob, have been studied as potential raw materials to produce bio-oil by fast pyrolysis technology. Test runs were conducted in a fluidized-bed reactor at a temperature of 500 °C and residence time less than 2 s. Size and moisture content of the feed were less than 2 mm and 2%, respectively. It was found that yields of bio-oil as a liquid product obtained from pyrolysis of these feedstocks were more than 50% and that obtained from the bagasse was the highest. Bio-oil quality from Vietnamese biomass resources satisfies ASTM D7544-12 standard for pyrolysis liquid biofuels. These results showed the potential of using biomass in Vietnam to produce bio-oil which could be directly used as a combustion fuel or upgraded into transportation fuels and chemicals. - Highlights: • Four types of Vietnamese biomass were firstly analyzed in detail. • Optimal conditions for fast pyrolysis reaction for Vietnamese biomass types. • Bio-oil product adapted to the standard specification for pyrolysis liquid biofuel

  1. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations.

    Science.gov (United States)

    Hwang, Hyewon; Lee, Jae Hoon; Choi, In-Gyu; Choi, Joon Weon

    2018-01-29

    Hydrothermal liquefaction (HTL) of lignocellulosic biomass has been widely investigated for the production of renewable and alternative bio-crude oil. In this study, catalytic hydrothermal processing of two biomasses (larch and Mongolian oak) was performed using different K 2 CO 3 concentrations (0, 0.1, 0.5, 1.0 wt% of solvent) to improve fuel yield and properties. HTL oil, hydrochar, water-soluble fraction (WSF) and gas were characterized, and carbon balance was investigated. As a result, the maximum yield of HTL oil, 27.7 wt% (Mongolian oak) and 25.7 wt% (larch), and the highest carbon conversion ratio was obtained with 0.5 wt% of catalyst. The high catalyst concentration also resulted in an increase in higher heating values up to 31.9 MJ/kg. In addition, the amount of organic compounds in HTL oil also increased, specifically for lignin-derived compounds including catechol and hydroquinone which can be derived from secondary hydrolysis of lignin. On the other hand, formation of hydrochar was suppressed with the addition of alkali catalyst and the yield dramatically decreased from 30.7-40.8 wt.% to 20.0-21.8 wt.%. Furthermore, it was revealed that WSF had low organic carbon content less than 3.4% and high potassium content mostly derived from alkali catalyst, indicating that it may be reusable with simple purification. This work suggests that the addition of the proper amount of alkali catalyst can improve the production efficiency and quality of bio-crude oil, and another potential of WSF to be recyclable in further work.

  2. Biomass performance : monitoring and control in bio-pharmaceutical production

    NARCIS (Netherlands)

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this

  3. Production and characterization of bio-oil from catalytic biomass pyrolysis

    Directory of Open Access Journals (Sweden)

    Antonakou Eleni V.

    2006-01-01

    Full Text Available Biomass flash pyrolysis is a very promising thermochemical process for the production of bio-fuels and/or chemicals. However, large-scale applications are still under careful consideration, because of the high bio-liquid upgrading cost. In this paper the production of bio-liquids from biomass flash pyrolysis in a single stage catalytic process is being investigated using a novel once through fluid bed reactor. This biomass pyrolysis unit was constructed in Chemical Process Engineering Research Institute and comprises of a catalyst regenerator, a biomass-vibrating hopper, a fluidization reactor (that consists of an injector and a riser reactor, a product stripper along with a hot cyclone and a filter housing and finally a product condensation/recovery section. The unit can process up to 20 g/min. of biomass (50-800 mm and can circulate up to 300 g/min. of catalyst or inert material. The experiments performed in the pilot plant showed that the unit operates without problems and with satisfactory mass balances in a wide range of experimental conditions both in the absence and presence of catalyst. With the incorporation of an FCC catalyst in the pyrolysis, the physical properties of the bio-oil produced changed, while more stable bio-oil was produced. .

  4. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    Science.gov (United States)

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  6. Controls upon biomass losses and char production from prescribed burning on UK moorland.

    Science.gov (United States)

    Worrall, Fred; Clay, Gareth D; May, Richard

    2013-05-15

    Prescribed burning is a common management technique used across many areas of the UK uplands. However, there are few data sets that assess the loss of biomass during burning and even fewer data on the effect of burning on above-ground carbon stocks and production of char. During fire the production of char occurs which represents a transfer of carbon from the short term bio-atmospheric cycle to the longer term geological cycle. However, biomass is consumed leading to the reduction in litter formation which is the principal mechanism for peat formation. This study aims to solve the problem of whether loss of biomass during a fire is ever outweighed by the production of refractory forms of carbon during the fire. This study combines both a laboratory study of char production with an assessment of biomass loss from a series of field burns from moorland in the Peak District, UK. The laboratory results show that there are significant effects due to ambient temperature but the most important control on dry mass loss is the maximum burn temperature. Burn temperature was also found to be linearly related to the production of char in the burn products. Optimisation of dry mass loss, char production and carbon content shows that the production of char from certain fires could store more carbon in the ecosystem than if there had been no fire. Field results show that approximately 75% of the biomass and carbon were lost through combustion, a figure comparable to other studies of prescribed fire in other settings. Char-C production was approximately 2.6% of the carbon consumed during the fire. This study has shown that there are conditions (fast burns at high temperatures) under which prescribed fire may increase C sequestration through char production and that these conditions are within existing management options available to practitioners. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    Science.gov (United States)

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  9. Evaluating the economics of biomass energy production in the Watts Bar region

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, R.R.; English, B.C.; Bhat, M.G. [Univ. of Tennessee, Knoxville, TN (United States); Graham, R.L. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    While the commercial potential of biofuel technology is becoming more feasible, it is not clear whether the supply of biomass feedstock will be available in competitive markets. In order to exploit the potential of biomass crops as a reliable source of biofuels, a significant commitment on the part of farmers to convert large amounts of cropland would be required. Dedicated energy crops have to compete with conventional crops which could result in significant interregional shifts in crop production. Those changes could further affect overall agricultural production, food prices, consumer spending, and government spending on farm programs. Evaluating these economic impacts provides important information for the ongoing debate. This research is a case study incorporating an existing power plant. The objective of this project is to evaluate the potential of short rotation woody crops as a fuel source in the Watts Bar facility located in eastern Tennessee. The appraisal includes estimates of environmental impacts as well as of economic feasibility. This is achieved by estimating the amounts of biomass that would be supplied at a predetermined price. By changing prices of biomass at the plant in an incremental fashion, a regional supply curve for biomass is estimated. The model incorporates current agricultural production possibilities in the region along with the proposed short rotation woody crop production activities. In order to adequately model the landscape, several variables are considered. These variables include soil type, crop production, government policy, land use conversion to crop land, and distance from the plant. Environmental issues including erosion, chemical usage, and potential leaching are also incorporated within the modeling framework; however, only estimates on erosion are available in this analysis. Output from the model provides insight on where and what types of land should shift from current land use to biomass production.

  10. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  11. Development Strategies for Deployment of Biomass Resources in the Production of Biomass Power: November 6, 2001--February 28, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, J.

    2004-01-01

    The study analyzes strategies for deployment of biomass resources for biopower generation. It compares biomass supply databases and the projected biopower market penetration for several alternative incentive scenarios. It analyzes the availability of biomass to meet the projected market demands and recommends future research.

  12. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review

    International Nuclear Information System (INIS)

    Yang, Min; Zheng, Shaokui

    2014-01-01

    Microbial single-cell-protein (SCP) production from high-organic-strength industrial wastewaters is considered an attractive method for both wastewater purification and resource utilization. In the last two decades, pollutant removal-oriented yeast SCP production processes, i.e., yeast treatment processes, have attracted a great deal of attention from a variety of research groups worldwide. Different from conventional SCP production processes, yeast treatment processes are characterized by higher pollutant removal rates, lower production costs, highly adaptive yeast isolates from nature, no excess nutrient supplements, and are performed under non-sterile conditions. Furthermore, yeast treatment processes are similar to bacteria-dominated conventional activated sludge processes, which offer more choices for yeast SCP production and industrial wastewater treatment. This review discusses why highly adaptive yeast species isolated from nature are used in the yeast treatment process rather than commercial SCP producers. It also describes the application of yeast treatment processes for treating high-carboxyhydrate, oil-rich and high-salinity industrial wastewater, focusing primarily on high-strength biodegradable organic substances, which usually account for the major fraction of biochemical oxygen demand. Also discussed is the biodegradation of xenobiotics, such as color (including dye and pigment) and toxic substances (including phenols, chlorophenols, polycyclic aromatic hydrocarbons, etc.), present in industrial wastewater. Based on molecular information of yeast community structures and their regulation in yeast treatment systems, we also discuss how to maintain efficient yeast species in yeast biomass and how to control bacterial and mold proliferation in yeast treatment systems. - Highlights: • Pollutant removal-oriented yeast SCP production processes offer more choices. • Highly adaptive yeast isolates replace commercial SCP producers. • Yeasts degrade

  13. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Key factors for achieving profitable biogas production from agricultural waste and sustainable biomass

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Biswas, Rajib

    2013-01-01

    Based on numerous investigations on increasing the biogas yield of manure, a new concept was developed to increase the economical operation of manure based biogas plants by combining up concentration of manure with a more specific treatment of the recalcitrant lignocellulosic fiber fraction...... by implementing the treatment on the digested solid fraction. Catch crops have been identified as a sustainable co-substrate for biogas production with a high biogas potential. For exploiting this biomass for profitable biogas production, the biomass yield per hectare, harvest costs, TS concentration and specific...

  15. Hydrogen production from algal biomass via steam gasification.

    Science.gov (United States)

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  17. Characterization of biofilm-forming cyanobacteria for biomass and lipid production.

    Science.gov (United States)

    Bruno, L; Di Pippo, F; Antonaroli, S; Gismondi, A; Valentini, C; Albertano, P

    2012-11-01

    This work reports on one of the first attempts to use biofilm-forming cyanobacteria for biomass and lipid production. Three isolates of filamentous cyanobacteria were obtained from biofilms at different Italian sites and characterized by a polyphasic approach, involving microscopic observations, ecology and genetic diversity (studying the 16S rRNA gene). The isolates were grown in batch systems and in a semi-continuous flow incubator, specifically designed for biofilms development. Culture system affected biomass and lipid production, but did not influence the fatty acid profile. The composition of fatty acids was mainly palmitic acid (>50%) and less amounts of other saturated and monounsaturated fatty acids. Only two isolates contained two polyunsaturated fatty acids. Data obtained from the flow-lane incubator system would support a more economical and sustainable use of the benthic micro-organisms for biomass production. The produced lipids contained fatty acids suitable for a high-quality biodiesel production, showing high proportions of saturated and monounsaturated fatty acids. Data seem promising when taking into account the savings in cost and time derived from easy procedures for biomass harvesting, especially when being able to obtain the co-production of other valuable by-products. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  18. Production of fungal biomass protein using microfungi from winery wastewater treatment.

    Science.gov (United States)

    Zhang, Zhan Ying; Jin, Bo; Bai, Zhi Hui; Wang, Xiao Yi

    2008-06-01

    This study was carried out to investigate the production of fungal biomass protein (FBP) in treatment of winery wastewater using microfungi. Three fungal strains, Trichoderma viride WEBL0702, Aspergillus niger WEBL0901 and Aspergillus oryzae WEBL0401, were selected in terms of microbial capability for FBP production and COD reduction. T. viride appeared to be the best strain for FBP production due to high productivity and less nitrogen requirement. More than 5 g/L of fungal biomass was produced in shake fermentation using T. viride without nitrogen addition, and by A. oryzae and A. niger with addition of 0.5-1.0 g/L (NH4)2SO4. The FBP production process corresponded to 84-90% COD reduction of winery wastewater. Fungal biomass contained approximately 36% protein produced by two Aspergillus strains, while biomass produced by T. viride consisted of 19.8% protein. Kinetic study indicated that maximum fungal cell growth could be achieved in 24h for T. viride and 48 h for A. oryzae and A. niger. Current results indicated that it could be feasible to develop a biotechnological treatment process integrated with FBP production from the winery waste streams.

  19. Development of Value-Added Products from Residual Algae to Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Craig [Sapphire Energy, San Diego, CA (United States)

    2016-02-29

    DOE Award # EE0000393 was awarded to fund research into the development of beneficial uses of surplus algal biomass and the byproducts of biofuel production. At the time of award, Sapphire’s intended fuel production pathway was a fairly conventional extraction of lipids from biomass, resulting in a defatted residue which could be processed using anaerobic digestion. Over the lifetime of the award, we conducted extensive development work and arrived at the conclusion that anaerobic digestion presented significant technical challenges for this high-nitrogen, high-ash, and low carbon material. Over the same timeframe, Sapphire’s fuel production efforts came to focus on hydrothermal liquefaction. As a result of this technology focus, the residue from fuel production became unsuitable for either anaerobic digestion (or animal feed uses). Finally, we came to appreciate the economic opportunity that the defatted biomass could represent in the animal feed space, as well as understanding the impact of seasonal production on a biofuels extraction plant, and sought to develop uses for surplus biomass produced in excess of the fuel production unit’s capacity.

  20. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

    2011-10-01

    Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

  1. Cross-hemispheric transport of central African biomass burning pollutants: implications for downwind ozone production

    Directory of Open Access Journals (Sweden)

    E. Real

    2010-03-01

    Full Text Available Pollutant plumes with enhanced concentrations of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined the origin of these pollutant plumes, and their potential to photochemically produce ozone (O3 downwind over the Atlantic Ocean. Their possible contribution to the Atlantic O3 maximum is also discussed. Runs using the BOLAM mesoscale model including biomass burning carbon monoxide (CO tracers were used to confirm an origin from central African biomass burning fires. The plumes measured in the mid troposphere (MT had significantly higher pollutant concentrations over West Africa compared to the upper tropospheric (UT plume. The mesoscale model reproduces these differences and the two different pathways for the plumes at different altitudes: transport to the north-east of the fire region, moist convective uplift and transport to West Africa for the upper tropospheric plume versus north-west transport over the Gulf of Guinea for the mid-tropospheric plume. Lower concentrations in the upper troposphere are mainly due to enhanced mixing during upward transport. Model simulations suggest that MT and UT plumes are 16 and 14 days old respectively when measured over West Africa. The ratio of tracer concentrations at 600 hPa and 250 hPa was estimated for 14–15 August in the region of the observed plumes and compares well with the same ratio derived from observed carbon dioxide (CO2 enhancements in both plumes. It is estimated that, for the period 1–15 August, the ratio of Biomass Burning (BB tracer concentration transported in the UT to the ones transported in the MT is 0.6 over West Africa and the equatorial South Atlantic.

    Runs using a photochemical trajectory model, CiTTyCAT, initialized with the observations, were used to estimate

  2. Onopordum nervosum as biomass source: some aspects of its production and transformation by enzymatic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, P; Negro, M J; Saez, R; Martin, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Inst. de Energias Renovables; Fernandez, J [ETSIA, Madrid (Spain). Dept. de Produccion Vegetal, Botanica y Proteccion Vegetal

    1993-01-01

    Onopordum nervosum, a lignocellulosic herbaceous species of the Iberian Peninsula, has been selected as a suitable biomass source to be used in transformation processes to obtain energy or industrial products. In this work, the effectiveness of different chemical pretreatments as a preliminary step to the enzymatic hydrolysis of this lignocellulosic biomass was evaluated. In order to determine biomass productivity, field assays were carried out in 1988 and 1989 using different planting densities and evaluating the effect to top fertilization. Biomass yields between 12 and 20 t ha[sup -1] were obtained, depending on the year and the planting density assayed. No significant differences were found in production rates when top fertilization was applied. Enzymatic hydrolysis of O.nervosum using a cellulolytic complex from Trichoderma longibrachiatum QM9414, gave low yields when untreated lignocellulosic biomass was used as substrate. Among different chemical pretreatments tested, ethanol and butanol solubilizations in the presence of a basic catalyst gave the best results. For the most effective pretreatment conditions, a delignification of about 30% and a complete recovery of glucose in the treated substrate were obtained both for butanol and ethanol. The highest enzymatic hydrolysis yields were found when ethanol was used as solvent, giving a saccharification efficiency of about 66% which, compared to the 23% for the native substrate, indicates the remarkable increment in the susceptibility of the cellulose to enzyme attack effected by this pretreatment. (author)

  3. Incorporating uncertainty analysis into life cycle estimates of greenhouse gas emissions from biomass production

    International Nuclear Information System (INIS)

    Johnson, David R.; Willis, Henry H.; Curtright, Aimee E.; Samaras, Constantine; Skone, Timothy

    2011-01-01

    Before further investments are made in utilizing biomass as a source of renewable energy, both policy makers and the energy industry need estimates of the net greenhouse gas (GHG) reductions expected from substituting biobased fuels for fossil fuels. Such GHG reductions depend greatly on how the biomass is cultivated, transported, processed, and converted into fuel or electricity. Any policy aiming to reduce GHGs with biomass-based energy must account for uncertainties in emissions at each stage of production, or else it risks yielding marginal reductions, if any, while potentially imposing great costs. This paper provides a framework for incorporating uncertainty analysis specifically into estimates of the life cycle GHG emissions from the production of biomass. We outline the sources of uncertainty, discuss the implications of uncertainty and variability on the limits of life cycle assessment (LCA) models, and provide a guide for practitioners to best practices in modeling these uncertainties. The suite of techniques described herein can be used to improve the understanding and the representation of the uncertainties associated with emissions estimates, thus enabling improved decision making with respect to the use of biomass for energy and fuel production. -- Highlights: → We describe key model, scenario and data uncertainties in LCAs of biobased fuels. → System boundaries and allocation choices should be consistent with study goals. → Scenarios should be designed around policy levers that can be controlled. → We describe a new way to analyze the importance of covariance between inputs.

  4. Biomass feedstock production systems: economic and environmental benefits

    Science.gov (United States)

    Mark D. Coleman; John A. Stanturf

    2006-01-01

    The time is ripe for expanding bioenergy production capacity and developing a bio-based economy. Modern society has created unprecedented demands for energy and chemical products that are predominately based on geologic sources. However, there is a growing consensus that constraints on the supply of petroleum and the negative environmental consequences of burning...

  5. PFB air gasification of biomass. Investigation of product formation and problematic issues related to ammonia, tar and alkali

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader

    2000-09-01

    Fluidised bed thermal gasification of biomass is an effective route that results in 100 % conversion of the fuel. In contrast to chemical, enzymatic or anaerobic methods of biomass treatment, the thermal conversion leaves no contaminated residue after the process. The product gas evolved within thermal conversion can be used in several applications such as: fuel for gas turbines, combustion engines and fuel cells, and raw material for production of chemicals and synthetic liquid fuels. This thesis treats a part of the experimental data from two different gasifiers: a 90 kW{sub th} pressurised fluidised bubbling bed gasifier at Lund University and a 18 MW{sub th} circulating fluidised bed gasifier integrated with gas turbine (IGCC) in Vaernamo. A series of parallel and consecutive chemical reactions is involved in thermal gasification, giving origin to formation of a variety of products. These products can be classified within three major groups: gases, tars and oils, and char. The proportion of these categories of species in the final product is a matter of the gasifier design and the process parameters. The thesis addresses the technical and theoretical aspects of the biomass thermochemical conversion and presents a new approach in describing the gasification reactions. There is an evidence of fuel effect on the characteristics of the final products: a mixture of plastic waste (polyethylene) and biomass results in higher concentration of linear hydrocarbons in the gas than gasification of pure biomass. Mixing the biomass with textile waste (containing aromatic structure) results in a high degree of formation of aromatic compounds and light tars. Three topic questions within biomass gasification, namely: tar, NO{sub x} and alkali are discussed in the thesis. The experimental results show that gasification at high ER or high temperature decreases the total amount of the tars and simultaneously reduces the contents of the oxygenated and alkyl-substituted poly

  6. Biomass Characterization | Bioenergy | NREL

    Science.gov (United States)

    Characterization Biomass Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of

  7. Potential impacts of biomass production in the United States on biological diversity

    International Nuclear Information System (INIS)

    Cook, J.H.; Beyea, J.; Keeler, K.H.

    1991-01-01

    This paper reports that biomass could be a renewable source of energy and chemicals that would not add CO 2 to the atmosphere. It will become economically competitive as its cost decreases relative to energy costs, and biotechnology is expected to accelerate this trend by increasing biomass productivity. Pressure to slow global warming may also make biomass more attractive. Substantial dependence on biomass would entail massive changes in land use, risking serious reductions in biodiversity through destruction of habitat for native species. Forests could be managed and harvested more intensively, and virtually all arable land unsuitable for high-value agriculture or silviculture might be used to grow energy crops. The authors estimate that it would require an area equal to that farmed in 1988, about 130 million hectares, just to supply the United States with transportation fuel. Planning at micro to macro scales will be crucial to minimize the ecological impacts of producing biomass. Cropping and harvesting systems will need to provide the spatial and temporal diversity characteristics of natural ecosystems and successional sequences. To maximize habitat value for interior-dependent species, it will be essential to maintain the connectivity of the habitat network, both within biomass farms and to surrounding undisturbed areas

  8. Production and trading of biomass for energy - An overview of the global status

    International Nuclear Information System (INIS)

    Heinimoe, J.; Junginger, M.

    2009-01-01

    The markets for industrially used biomass for energy purposes are developing rapidly toward being international commodity markets. Determining international traded biomass volumes for energy purposes is difficult, for several reasons, such as challenges regarding the compilation of statistics on the topic. While for some markets (pellets and ethanol) separate overviews exist, no comprehensive statistics and summaries aggregating separate biomass streams are available. The aim of this paper is to summarise trade volumes for various biomasses used for energy and to review the challenges related to measurement of internationally traded volumes of biofuels. International trade of solid and liquid biofuels was estimated to be about 0.9 EJ for 2006. Indirect trade of biofuels thorough trading of industrial roundwood and material byproducts comprises the largest proportion of trading, having a share of about 0.6 EJ. The remaining amount consisted of products that are traded directly for energy purposes, with ethanol, wood pellets, and palm oil being the most important commodities. In 2004-2006, the direct trade of biofuels increased 60%, whereas indirect trade has been almost constant. When compared to current global energy use of biomass (about 50 EJ yr -1 ) and to the long-term theoretical trading potential between the major regions of the world (80-150 EJ yr -1 ), the development of international trade of biomass for energy purposes is in its initial stage, but it is expected to continue to grow rapidly. (author)

  9. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Science.gov (United States)

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  10. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Directory of Open Access Journals (Sweden)

    Dhaneshwaree Asem

    Full Text Available The gastrointestinal (GI habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk and a domesticated goat (Black Bengal were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF of D2 (alkaline pretreated pulpy biomass using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL and FPase (0.5 U/mL activities (55°C, pH 8. The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  11. Combined heat and power production through biomass gasification with 'Heatpipe-Reformer'

    International Nuclear Information System (INIS)

    Iliev, I.; Kamburova, V.; Terziev, A.

    2013-01-01

    The current report aims is to analyze the system for combined heat and power production through biomass gasification with “heatpipe-reformer” system. Special attention is paid on the process of synthetic gas production in the Reformer, its cleaning and further burning in the co-generation unit. A financial analysis is made regarding the investments and profits generated by the combined heat and power production. (authors)

  12. The Times Higher Education Ranking Product: Visualising Excellence through Media

    Science.gov (United States)

    Stack, Michelle L.

    2013-01-01

    This paper will examine the Times Higher Education's (THE) World University Rankings as a corporate media product. A number of empirical studies have critiqued the methodology of the THE, yet individuals, Higher Education Institutions (HEIs) and governments continue to use them for decision-making. This paper analyses the influence of…

  13. Effects of Sodium Nitrate and Mixotrophic Culture on Biomass and Lipid Production in Hypersaline Microalgae Dunaliella Viridis Teod

    Directory of Open Access Journals (Sweden)

    Mansour Kharati-Koupaei

    Full Text Available To access the potential application of Dunaliella viridis Teod. for biofuel production, the effects of culture media composition on biomass and lipid content of this microalgae were investigated. Measured at the 20 th day, sodium nitrate at 5.0 mM augmented biomass production by 26.5 percent compared to control (1 mM sodium nitrate. Total lipids expressed as µg mL-1 of culture also increased with increase in nitrate concentration up to 5.0 mM sodium nitrate, whereas when expressed on the per cell basis, total lipids stayed relatively constant at most of the tested nitrate concentrations except at 0.5 mM which was 31.4 percent higher compared to 1.0 mM nitrate. At 5.0 mM sodium nitrate, by using 20 g L-1 of glucose in mixotrophic culture of D. viridis, cell number augmented by 36.4 percent compared to the cultures with no added glucose. Llipid content per cell and per mL of culture was increased by 71.4 and 135.1 percent, respectively. Among plant hormones, 10-9 M indole-3- acetic acid (IAA plus 10 -8 M trans-zeatin riboside led to 22.8 percent higher biomass relative to control (without hormone and at 1.0 mM sodium nitrate. It is concluded that altering the growth conditions of D. viridis can lead to higher cell densities and higher lipids content which can be exploited for biofuel production.

  14. Cyanobacteria cultivation in industrial wastewaters and biodiesel production from their biomass: a review.

    Science.gov (United States)

    Balasubramanian, Lavanya; Subramanian, Geetha; Nazeer, Thayiba Thanveer; Simpson, Hannah Shalini; Rahuman, Shifina T; Raju, Preetha

    2011-01-01

    As an alternative fuel biodiesel has become increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fueled engines. Recently, research interest has focused on the production of biofuel from microalgae. Cyanobacteria appeared to be suitable candidates for cultivation in wastes and wastewaters because they produce biomass in satisfactory quantity and can be harvested relatively easily due to their size and structure. In addition, their biomass composition can be manipulated by several environmental and operational factors to produce biomass with concrete characteristics. Herein, we review the culture of cyanobacteria in wastewaters and also the potential resources that can be transformed into biodiesel successfully for meeting the ever-increasing demand for biodiesel production. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  15. Biomass production of pleurotus sajor-caju by submerged culture fermentation

    International Nuclear Information System (INIS)

    Kausar, T.; Nasreen, Z.; Nadeem, M.; Baig, S.

    2006-01-01

    The effect of different carbon sources, namely, sawdust and powder of agro wastes (as such, or water soluble extracts), and inorganic/natural nitrogen sources on the biomass production of Pleurotus sajor-caju by submerged culture fermentation was studied. Supplementation of the fermentation medium with 2% molasses, 2% wheat spike powder, extract of 2% wheat spike powder, and com gluten meal resulted in 12.85, 10.85, 12.35 and 13.92 g/sub l/ biomass production of P. sajor-caju, respectively. The fungal hyphae biomass contained 8.28% moisture, 21.18% crude protein, 1.55% fat, 3.59% ash, 2.32% crude fibre, and 63.48% nitrogen-free extract. (author)

  16. Comparison of biomass productivity and nitrogen fixing potential of Azolla SPP

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Singh, P.K. [Indian Agricultural Research Inst., New Delhi (India)

    2003-03-01

    Study was conducted on six different Azolla species, available in the germplasm collection of NCCUBGA, IARI, New Delhi namely A. filiculoides, A. mexicana, A. microphylla, A. pinnata, A. rubra and A. caroliniana in a polyhouse to assess their growth potential by determining their maximal biomass productivity, doubling time and relative growth rates. Their nitrogen fixing potential was assessed by acetylene reduction assay. Among them Azolla microphylla gave highest biomass production and relative growth rate followed by Azolla caroliniana. Both these had high nitrogenase activity also. Peak nitrogenase activity of these strains was found on 14th day of growth and it declined on further incubation. Azolla microphylla and Azolla rubra were more tolerant to salinity than others. On the other hand Azolla pinnata, which is endemic species found in India, exhibited low biomass production, relative growth rate and lower nitrogenase activity compared to other species. It was unable to sustain growth in saline medium. Under polyhouse conditions, A. microphylla was found to perform better than other cultures in terms of biomass productivity, N fixing ability and salt tolerance. Hence it is taken up for mass production.(author)

  17. Biomass steam gasification for production of SNG – Process design and sensitivity analysis

    International Nuclear Information System (INIS)

    Gröbl, Thomas; Walter, Heimo; Haider, Markus

    2012-01-01

    Highlights: ► A model for the SNG-production process from biomass to raw-SNG is prepared. ► A thermodynamic equilibrium model of the Biomass-Heatpipe-Reformer is developed. ► A sensitivity analysis on the most important operation parameters is carried out. ► Adopting the steam excess ratio a syngas ideally suitable for SNG production is generated. ► Thermodynamic equilibrium models are a useful tool for process design. -- Abstract: A process design for small-scale production of Substitute Natural Gas (SNG) by steam gasification of woody biomass is performed. In the course of this work, thermodynamic models for the novel process steps are developed and implemented into an already existing model library of commercial process simulation software IPSEpro. Mathematical models for allothermal steam gasification of biomass as well as for cleaning and methanation of product gas are provided by applying mass balances, energy balances and thermodynamic equilibrium equations. Using these models the whole process is integrated into the simulation software, a flowsheet for an optimum thermal integration of the single process steps is determined and energy savings are identified. Additionally, a sensitivity study is carried out in order to analyze the influence of various operation parameters. Their effects on amount and composition of the product gas and process efficiency are evaluated and discussed within this article.

  18. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    user

    2010-11-22

    Nov 22, 2010 ... INTRODUCTION. Probiotic organisms find their potential use in food and ..... complex nutrients, temperature and pH on bacteriocin production by. Bacillus subtilis ... B, Gupta R (2004). Application of statistical experimental.

  19. Bioethanol fuel production from rambutan fruit biomass as reducing ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... bioethanol from rotten rambutan was to manage rambutan wastes, cleaning the ... regarding rambutan, mango, banana and pineapple for the ethanol production ... small pieces together with their skin and blended in a Philips.

  20. Planting Date and Seeding Rate Effects on Sunn Hemp Biomass and Nitrogen Production for a Winter Cover Crop

    Directory of Open Access Journals (Sweden)

    Kipling S. Balkcom

    2011-01-01

    Full Text Available Sunn hemp (Crotalaria juncea L. is a tropical legume that produces plant biomass and nitrogen (N quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a rye (Secale cereale L. cover crop in east-central Alabama from 2007 to 2009. Plant populations, plant height, stem diameter, biomass production, and N content were determined for two sunn hemp planting dates, following corn (Zea mays L. and wheat (Triticum aestivum L. harvest, across different seeding rates (17, 34, 50, and 67 kg/ha. Rye biomass was measured the following spring. Sunn hemp biomass production was inconsistent across planting dates, but did relate to growing degree accumulation. Nitrogen concentrations were inversely related to biomass production, and subsequent N contents corresponded to biomass levels. Neither planting date nor seeding rate affected rye biomass production, but rye biomass averaged over both planting dates following wheat/sunn hemp averaged 43% and 33% greater than rye following fallow. Rye biomass following corn/sunn hemp was equivalent to fallow plots. Early planting dates are recommended for sunn hemp with seeding rates between 17 and 34 kg/ha to maximize biomass and N production.

  1. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  2. Biomass production and secretion of hydrolytic enzymes are influenced by the structural complexity of the nitrogen source in Fusarium oxysporum and Aspergillus nidulans.

    Science.gov (United States)

    da Silva, M C; Bertolini, M C; Ernandes, J R

    2001-01-01

    The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.

  3. Production of Solid sustainable Energy Carriers from biomass by means of TORrefaction (SECTOR)

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Bienert, Kathrin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Zwart, Robin; Kiel, Jaap; Englisch, Martin; Wojcik, Magdalena

    2012-07-01

    SECTOR is a large-scale European project with a strong consortium of over 20 partners from industry and science. The project is focussed on the further development of torrefaction-based technologies for the production of solid bioenergy carriers up to pilot-plant scale and beyond, and on supporting the market introduction of torrefaction-based bioenergy carriers as a commodity renewable solid fuel. The torrefaction of biomass materials is considered to be a very promising technology for the promotion of the large-scale implementation of bioenergy. During torrefaction biomass is heated up in the absence of oxygen to a temperature of 250-320 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density commodity solid fuel or bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage, and also with superior properties in many major end-use applications. Torrefaction has the potential to provide a significant contribution to an enlarged raw material portfolio for biomass fuel production inside Europe by including both agricultural and forestry biomass. In this way, the SECTOR project is expected to shorten the time-to-market of torrefaction technology and to promote market introduction within stringent sustainability boundary conditions. The European Union provides funding for this project within the Seventh Framework Programme. The project has a duration of 42 months and started in January 2012. (orig.)

  4. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    Science.gov (United States)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  5. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  6. Methods and materials for deconstruction of biomass for biofuels production

    Science.gov (United States)

    Schoeniger, Joseph S; Hadi, Masood Zia

    2015-05-05

    The present invention relates to nucleic acids, peptides, vectors, cells, and plants useful in the production of biofuels. In certain embodiments, the invention relates to nucleic acid sequences and peptides from extremophile organisms, such as SSO1949 and Ce1A, that are useful for hydrolyzing plant cell wall materials. In further embodiments, the invention relates to modified versions of such sequences that have been optimized for production in one or both of monocot and dicot plants. In other embodiments, the invention provides for targeting peptide production or activity to a certain location within the cell or organism, such as the apoplast. In further embodiments, the invention relates to transformed cells or plants. In additional embodiments, the invention relates to methods of producing biofuel utilizing such nucleic acids, peptides, targeting sequences, vectors, cells, and/or plants.

  7. Ethanol production from biomass. Voorlopig nauwelijks ethanolproduktie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van der Knijff, A; Wildschut, L R [Haskoning Koninklijk Ingenieurs- en Architectenbureau, Nijmegen (Netherlands); Williams, A [Technische Univ. Twente, Enschede (Netherlands)

    1991-04-01

    Fluid fuels, for instance ethanol and methanol, can be produced from agricultural materials and from waste materials. For 37 waste flows (among which scrap from the oil- and fat industry, waste potatoes, withdrawn vegetables, waste wood, straw, roadside grass, vegetables-, fruits- and garden wastes and beet tails) possibilities to produce fuels have been considered. In general, sacchariferous and farinaceous wastes, which could be used for ethanol production, are used for other purposes. Therefore ethanol production from these materials is expensive. Cellulose wastes (for instance straw, wood wastes and paper sludge) can be suitable in the future for ethanol production. But first a cheap method to decompose and hydrolize cellulose has to be developed. 2 figs., 2 ills., 3 refs.

  8. Impacts of paper sludge and manure on soil and biomass production of willow

    International Nuclear Information System (INIS)

    Quaye, Amos K.; Volk, Timothy A.; Hafner, Sasha; Leopold, Donald J.; Schirmer, Charles

    2011-01-01

    Land application of organic wastes to short rotation woody crops (SRWC) can reduce the environmental impacts associated with waste disposal and enhance the productivity of biomass production systems. Understanding the potential impacts of organic amendments however, requires the examination of changes in soil characteristics and plant productivity. This study was conducted to evaluate the effect of paper sludge and dairy manure on biomass production of shrub willow (Salix dasyclados SV1) and to determine the impacts of these amendments on soil chemical properties. Treatments included urea, dairy manure and paper sludge separately and in combination, and a control. These materials were applied in the summer of 2005 to two fields of SV1 at different stages of growth: An old field with one year old shoots on a 10 year old root system and a young field which was beginning regrowth after being coppiced at the end of its first growing season. Foliar nutrient concentrations and soil chemical properties were analyzed at the end of the second growing season after treatment application to determine plant response to the fertilization regimes and to determine the effects of fertilization on soil characteristics. Fertilization did not increase biomass production in either field. However, application of the N-poor paper sludge did not reduce yield either. In general, fertilization did not influence soil or foliar chemistry, although there were some exceptions. The lack of response observed in this study is probably related to the nutrient status of the site or losses of applied nutrients. -- Highlights: → The fertilization treatments did not have any significant effect biomass production. → Application of paper sludge did not reduce willow biomass yield in both fields. → Foliar N concentration of willow crops in this study is in the range considered for optimal growth. → The limited response of foliar nutrients to fertilization indicates that the site was not limited by

  9. Is the hydrogen production from biomass technology really sustainable? Answer by Life Cycle Emergy Analysis

    DEFF Research Database (Denmark)

    Liang, Hanwei; Ren, Jingzheng; Dong, Liang

    2016-01-01

    The Sustainability performance of biomass-based hydrogen is in debate. This study aims at using Emergy Theory to investigate the sustainability hydrogen production from corn stalks by supercritical water gasification, all the inputs including renewable resources, non-renewable resources, purchased...

  10. Hybrid Aspen Response to Shearing in Minnesota: Implications for Biomass Production

    Science.gov (United States)

    Grant M. Domke; Andrew J. David; Anthony W. D' Amato; Alan R. Ek; Gary W. Wycoff

    2011-01-01

    There is great potential for the production of woody biomass feedstocks from hybrid aspen stands; however, little is known about the response of these systems to silvicultural treatments, such as shearing. We sought to address this need by integrating results from more than 20 years of individual tree and yield measurements in hybrid aspen (Populus tremuloides Mich. ×...

  11. Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy

    NARCIS (Netherlands)

    Cho, M.A.; Skidmore, A.K.

    2009-01-01

    The research objective was to determine robust hyperspectral predictors for monitoring grass/herb biomass production on a yearly basis in the Majella National Park, Italy. HyMap images were acquired over the study area on 15 July 2004 and 4 July 2005. The robustness of vegetation indices and

  12. Competition between biomass and food production in the presence of energy policies: a partial equilibrium analysis

    NARCIS (Netherlands)

    Ignaciuk, A.; Vöhringer, F.; Ruijs, A.J.W.; Ierland, van E.C.

    2006-01-01

    Bioenergy has several advantages over fossil fuels. For example, it delivers energy at low net CO2 emission levels and contributes to sustaining future energy supplies. The concern, however, is that an increase in biomass plantations will reduce the land available for agricultural production. The

  13. Butanol biorefineries: simultaneous product removal & process integration for conversion of biomass & food waste to biofuel

    Science.gov (United States)

    Butanol, a superior biofuel, packs 30% more energy than ethanol on a per gallon basis. It can be produced from various carbohydrates and lignocellulosic (biomass) feedstocks. For cost effective production of this renewable and high energy biofuel, inexpensive feedstocks and economical process techno...

  14. Progress on lipid extraction from wet algal biomass for biodiesel production.

    Science.gov (United States)

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Ecological sustainability of alternative biomass feedstock production for environmental benefits and bioenergy

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Jill A. Zalesny; Edmund O. Bauer

    2007-01-01

    The incorporation of intensive forestry with waste management fills a much-needed niche throughout numerous phytotechnology applications. There is a growing opportunity to incorporate sustainable recycling of waste waters as irrigation and fertilization for alternative biomass feedstock production systems. However, the success of short rotation woody crops is largely...

  16. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    NARCIS (Netherlands)

    Faaij, A.; Meuleman, B.

    1997-01-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated with help of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from

  17. On polydispersity of plant biomass recalcitrance and its effects on pretreatment optimization for sugar production

    Science.gov (United States)

    J.Y. Zhu; Steve P. Verrill; Hao Liu; Victoria L. Herian; Xuejun Pan; Donald L. Rockwood

    2011-01-01

    This paper discusses a property associated with plant biomass recalcitrance to enzyme and microbial deconstructions in sugar production from cellulose and hemicelluloses. The hemicelluloses are more readily hydrolyzed to sugars than is cellulose. As a result, optimization to maximize individual glucose and hemicellulose sugar recovery is not possible. This property is...

  18. Interactive Effects of Diversity and Biomass on Productivity: Insights from Succession

    Science.gov (United States)

    Qinfeng Guo

    2008-01-01

    Do commonly observed spatial relationships also exist over time? As an example of attempting to answer this question, this article examines whether the frequently observed diversity-biomass-productivity-relationships over space can also be seen over time. Syntheses of long-term data and literature show that when the full successional cycles are examined, diversity and...

  19. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    Science.gov (United States)

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    NARCIS (Netherlands)

    Soons, Z.I.T.A.; IJssel, van den J.; Pol, van der L.A.; Straten, van G.; Boxtel, van A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation

  1. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North-East...

  2. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual tri-component annual intercrops

    DEFF Research Database (Denmark)

    Andersen, M.K.; Hauggaard-Nielsen, H.; Ambus, P.

    2005-01-01

    The interspecific complementary and competitive interactions between pea (Pisum sativum L.), barley (Hordeum vulgare L.) and oilseed rape (Brassica napus L.), grown as dual and tri-component intercrops were assessed in a field study in Denmark. Total biomass production and N use at two levels of ...

  3. Biomass Program 2007 Program Peer Review - Biochemical and Products Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biochemical and Products Platform Review held on August 7-9, 2007 in Denver, Colorado.

  4. Case studies on sugar production from underutilized woody biomass using sulfite chemistry

    Science.gov (United States)

    J.Y. Zhu; M. Subhosh Chandra; Roland Gleisner; William Gilles; Johnway Gao; Gevan Marrs; Dwight Anderson; John Sessions

    2015-01-01

    We examined two case studies to demonstrate the advantages of sulfite chemistry for pretreating underutilized woody biomass to produce sugars through enzymatic saccharification. In the first case study, we evaluated knot rejects from a magnesium-basedsulfite mill for direct enzymatic sugar production.We found that the sulfite mill rejects are an excellent feedstock for...

  5. Product quality optimization in an integrated biorefinery: Conversion of pistachio nutshell biomass to biofuels and activated biochars via pyrolysis

    International Nuclear Information System (INIS)

    Işıtan, Seçil; Ceylan, Selim; Topcu, Yıldıray; Hintz, Chloe; Tefft, Juliann; Chellappa, Thiago; Guo, Jicheng; Goldfarb, Jillian L.

    2016-01-01

    Highlights: • Pyrolysis temperature key variable in manipulating biofuel quality. • Pyrolysis temperature does not impact activated biochar surface area. • Activation temperature key variable to optimize surface area of pistachio biochar. • Statistical model accurately predicts surface area of biochar, especially above 600 m"2/g. - Abstract: An economically viable transition to a renewable, sustainable energy future hinges on the ability to simultaneously produce multiple high value products from biomass precursors. Though there is considerable literature on the thermochemical conversion of biomass to biofuels and biochars, there are few holistic examinations that seek to understand trade-offs between biofuel quality and the associated pyrolysis conditions on activated carbons made from the resulting biochars. Using an Ordinary Least Squares regression analysis, this study probes the impact of pyrolysis and activation temperature on surface areas and pore volumes for 28 carbon dioxide-activated carbons. Activation temperature has the largest single impact of any other variable; increasing the temperature from 800 to 900 °C leads to an increase in surface area of more than 300 m"2/g. Contrary to some prior results, pyrolysis temperature has minimal effect on the resulting surface area and pore volume, suggesting that optimizing the temperature at which biofuels are extracted will have little impact on carbon dioxide-activated carbons. Increasing pyrolysis temperature increases methane formation but decreases gaseous hydrocarbons. Bio-oil obtained at lower pyrolysis temperatures shows fewer oxygenated compounds, indicating a greater stability, but higher pyrolysis temperatures maximize production of key biorefinery intermediaries such as furans. By analyzing data in such a holistic manner, it may be possible to optimize the production of biofuels and activated carbons from biomass by minimizing the amount of raw materials and energy necessary to maximize

  6. Fuel production from biomass: generation of liquid biofuels

    Directory of Open Access Journals (Sweden)

    Carmen Ghergheleş

    2008-05-01

    Full Text Available Anaerobic fermentation processes mayalso be used to produce liquid fuels frombiological raw materials. An example is theethanol production from glucose, known asstandard yeast fermentation in the beer, wine andliquor industries. It has to take place in steps, suchthat the ethanol is removed (by distillation ordehydrator application whenever itsconcentration approaches a value (around 12%which would impede reproduction of the yeastculture.

  7. Mixed plantations of Eucalyptus and leguminous trees enhance biomass production

    Science.gov (United States)

    Dean S. DeBell; Craig D. Whitesell; Thomas H. Schubert

    1985-01-01

    Two Eucalyptus species-E. saligna Sm. and E. grandis Hill-are especially favored in Hawaii forwood, fiber, and fuel production because of their quick growth and high yields. Their growth is limited, however, on many sites by low levels of available nitrogen. Supplemental nitrogen can be provided by nitrogen-...

  8. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  9. Cyanophycin production from nitrogen-containing chemicals obtained from biomass

    NARCIS (Netherlands)

    Elbahloul, Y.A.K.B.; Scott, E.L.; Mooibroek, H.; Sanders, J.P.M.; Obsts, M.; Steinbüchel, A.

    2006-01-01

    The present invention relates to fermentation processes for the production of cyanophycin in a microorganism whereby a plant-derived nitrogen source is converted by the microorganism into cyanophycin. The plant-derived nitrogen source preferably is a process stream being obtained in the processing

  10. Sustainable Production of Asphalt using Biomass as Primary Process Fuel

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    is the heating and drying of aggregate,where natural gas, fuel oil or LPG is burned in a direct-fired rotary dryer. Replacing this energy source with amore sustainable one presents several technical and economic challenges, as high temperatures, short startuptimes and seasonal production variations are required...

  11. Modeling belowground biomass of black cohosh, a medicinal forest product.

    Science.gov (United States)

    James Chamberlain; Gabrielle Ness; Christine Small; Simon Bonner; Elizabeth Hiebert

    2014-01-01

    Tens of thousands of kilograms of rhizomes and roots of Actaea racemosa L., a native Appalachian forest perennial, are harvested every year and used for the treatment of menopausal conditions. Sustainable management of this and other wild-harvested non-timber forest products requires the ability to effectively and reliably inventory marketable plant...

  12. Biomass production of Lactobacillus plantarum LP02 isolated from ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... 1Department of Food Science and Technology, HungKuang University, No. 34, Chung-Chie Road, Shalu ... tions for LAB industrial production are rarely reported due to the commercial advantage for the company marketing the strains. .... blowing N2 gas during incubation in a 60°C water bath. Next, 4 ml of.

  13. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    NARCIS (Netherlands)

    Achinas, Spyridon; Euverink, Gerrit Jan Willem

    2016-01-01

    Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower

  14. Optimisation of critical medium components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach.

    Science.gov (United States)

    Sabu, Sanyo; Singh, Isaac Sarojini Bright; Joseph, Valsamma

    2017-12-01

    Diatoms hold great promise as potential sources of biofuel production. In the present study, the biomass and lipid production in the marine diatom Navicula phyllepta, isolated from Cochin estuary, India and identified as a potential biodiesel feedstock, were optimized using Plackett-Burman (PB) statistical experimental design followed by central composite design (CCD) and response surface methodology (RSM). The growth analyses of the isolate in different nitrogen sources, salinities and five different enriched sea water media showed the best growth in the cheapest medium with minimum components using urea as nitrogen source at salinity between 25 and 40 g kg -1 . Plackett-Burman experimental analyses for screening urea, sodium metasilicate, sodium dihydrogen phosphate, ferric chloride, salinity, temperature, pH and agitation influencing lipid and biomass production showed that silicate and temperature had a positive coefficient on biomass production, and temperature had a significant positive coefficient, while urea and phosphate showed a negative coefficient on lipid content. A 2 4 factorial central composite design (FCCD) was used to optimize the concentration of the factors selected. The optimized media resulted in 1.62-fold increase (64%) in biomass (1.2 ± 0.08 g L -1 ) and 1.2-fold increase (22%) in estimated total lipid production (0.11 ± 0.003 g L -1 ) compared to original media within 12 days of culturing. A significantly higher biomass and lipid production in the optimized medium demands further development of a two-stage strategy of biomass production followed by induction of high lipid production under nutrient limitation or varying culture conditions for large-scale production of biodiesel from the marine diatom.

  15. Catalytic hydrothermal liquefaction (HTL of biomass for bio-crude production using Ni/HZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2017-04-01

    Full Text Available Hydrothermal liquefaction (HTL is an effective method that can convert biomass into bio-crude, but direct use of bio-crude derived from biomass HTL remains a challenge due to the lower quality. In this study, bifunctional Ni/HZSM-5 catalysts and zinc hydrolysis were combined to produce upgraded bio-crude in an in-situ HTL process. The K2CO3 and HZSM-5 catalysts with different Ni loading ratios were tested. The effects of different catalysts on the yield and quality of bio-crude and gas were investigated. The results indicated that the catalysts improved bio-crude and gas yields, compared to pine sawdust liquefaction without catalyst. The catalysts reduced the contents of undesirable oxygenated compounds such as acids, ketones, phenols, alcohols and esters in bio-crude products while increased desirable hydrocarbons content. K2CO3 produced highest bio-crude yield and lowest solid residue yield among all catalysts. Compared to parent HZSM-5 catalyst, bifunctional Ni/HZSM-5 catalysts exhibited higher catalyst activity to improve quality of upgraded bio-crude due to its integration of cracking and hydrodeoxygenation reactions. 6%Ni/HZSM-5 catalyst produced the bio-crude with the highest hydrocarbons content at 11.02%. This catalyst can be a candidate for bio-crude production from biomass HTL.

  16. Extension of biomass estimates to pre-assessment periods using density dependent surplus production approach.

    Directory of Open Access Journals (Sweden)

    Jan Horbowy

    Full Text Available Biomass reconstructions to pre-assessment periods for commercially important and exploitable fish species are important tools for understanding long-term processes and fluctuation on stock and ecosystem level. For some stocks only fisheries statistics and fishery dependent data are available, for periods before surveys were conducted. The methods for the backward extension of the analytical assessment of biomass for years for which only total catch volumes are available were developed and tested in this paper. Two of the approaches developed apply the concept of the surplus production rate (SPR, which is shown to be stock density dependent if stock dynamics is governed by classical stock-production models. The other approach used a modified form of the Schaefer production model that allows for backward biomass estimation. The performance of the methods was tested on the Arctic cod and North Sea herring stocks, for which analytical biomass estimates extend back to the late 1940s. Next, the methods were applied to extend biomass estimates of the North-east Atlantic mackerel from the 1970s (analytical biomass estimates available to the 1950s, for which only total catch volumes were available. For comparison with other methods which employs a constant SPR estimated as an average of the observed values, was also applied. The analyses showed that the performance of the methods is stock and data specific; the methods that work well for one stock may fail for the others. The constant SPR method is not recommended in those cases when the SPR is relatively high and the catch volumes in the reconstructed period are low.

  17. Methane and hydrogen production from crop biomass through anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, O.

    2011-07-01

    The feasibility of methane and hydrogen production from energy crops through anaerobic digestion was evaluated in this thesis. The effects of environmental conditions, e.g. pH and temperature, as well as inoculum source on H{sub 2} yield were studied in batch assays. In addition, the effects of pre-treatments on methane and hydrogen yield as well as the feasibility of two-stage H{sub 2} + CH{sub 4} production was evaluated. Moreover, the effect of storage on methane yield of grasses was evaluated. Monodigestion of grass silage for methane production was studied, as well as shifting the methanogenic process to hydrogenic. Hydrogen production from grass silage and maize was shown to be possible with heat-treated inoculum in batch assays, with highest H{sub 2} yields of 16.0 and 9.9 ml gVS{sub added}-1 from untreated grass silage and maize, respectively. Pre-treatments (NaOH, HCl and water-extraction) showed some potential in increasing H{sub 2} yields, while methane yields were not affected. Two-stage H{sub 2} + CH{sub 4} producing process was shown to improve CH{sub 4} yields when compared to traditional one-stage CH{sub 4} process. Methane yield from grass silage monodigestion in continuously stirred tank reactor (CSTR) with organic loading rate (OLR) of 2 kgVS (m3d)-1 and hydraulic retention time (HRT) of 30 days was at most 218 l kgVS{sub fed}-1. Methanogenic process was shifted to hydrogenic by increasing the OLR to 10 kgVS (m3d)-1 and shortening the HRT to 6 days. Highest H{sub 2} yield from grass silage was 42 l kgVS{sub fed}-1 with a maximum H{sub 2} content of 24 %. Energy crops can be successfully stored even for prolonged periods without decrease in methane yield. However, under sub-optimal storage conditions loss in volatile solids (VS) content and methane yield can occur. According to present results energy crops such as grass silage and maize can be converted to hydrogen or methane in AD process. Hydrogen energy yields are typically only 2-5 % of the

  18. Nonlinear adaptive optimization of biomass productivity in continuous bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Sauvaire, P; Mellichamp, D A; Agrawal, P [California Univ., Santa Barbara, CA (United States). Dept. of Chemical and Nuclear Engineering

    1991-11-01

    A novel on-line adaptive optimization algorithm is developed and applied to continuous biological reactors. The algorithm makes use of a simple nonlinear estimation model that relates either the cell-mass productivity or the cell-mass concentration to the dilution rate. On-line estimation is used to recursively identify the parameters in the nonlinear process model and to periodically calculate and steer the bioreactor to the dilution rate that yields optimum cell-mass productivity. Thus, the algorithm does not require an accurate process model, locates the optimum dilution rate online, and maintains the bioreactors at this optimum condition at all times. The features of the proposed new algorithm are compared with those of other adaptive optimization techniques presented in the literature. A detailed simulation study using three different microbial system models was conducted to illustrate the performance of the optimization algorithms. (orig.).

  19. Use of farm waste biomass in the process of gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Piechocki, J. [Warmia and Mazury Univ., Olsztyn (Poland)

    2010-07-01

    The process of gasification of waste biomass from farm production was examined along with the energy balance of the process. A newly developed biomass gasification technology that uses manure from poultry farms as the input material was shown to meet all environmental requirements. The gas was purified in a membrane process to increase its calorific value. The gas was then used in an internal combustion engine powering a current generating system to produce electricity and heat in a combined heat and power system (CHP).

  20. Commercial production of specialty chemicals and pharmaceuticals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    McChesney, J.D. [Univ. of Mississippi, University, MS (United States)

    1993-12-31

    The chemical substances utilized in consumer products, and for pharmaceutical and agricultural uses are generally referred to as specialty chemicals. These may be flavor or fragrance substances, intermediates for synthesis of drugs or agrochemicals or the drugs or agrochemicals themselves, insecticides or insect pheromones or antifeedants, plant growth regulators, etc. These are in contrast to chemicals which are utilized in large quantities for fuels or preparation of plastics, lubricants, etc., which are usually referred to as industrial chemicals. The specific utilization of specialty chemicals is associated with a specific important physiochemical or biological property. They may possess unique properties as lubricants or waxes or have a very desirable biological activity such as a drug, agrochemical or perfume ingredient. These unique properties convey significant economic value to the specific specialty chemical. The economic commercial production of specialty chemicals commonly requires the isolation of a precursor or the specialty chemical itself from a natural source. The discovery, development and commercialization of specialty chemicals is presented and reviewed. The economic and sustainable production of specialty chemicals is discussed.